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MEASUREMENT OF BASIC SKILLS IN MATHEMATICS

Robert J. Trombley and David J. Weiss

University of Minnesota

The process of developing a measuring instrument to measure any educational or
psychological variable requires that the domain be carefully delineated and specified (Linn,
1980). This process usually begins with a review of the conceptual literature on the topic.

The next step is to evaluate the empirical research on the nature of the domain under
consideration. A third step is to examine the literature on how others who have attempted

to measure the domain have approached the measurement problem, evaluate any special

problems that they encountered, and consider possible solutions to these problems. Once
this process is completed, the development of the measuring instrument proceeds from the

definition of the domain and the experiences of others who have attempted to develop
measuring instruments for that domain. The development of the measuring instrument
includes writing test items to sample the relevant aspects of the domain, and the selection

and application of the relevant psychometric technology to implement the measurement

process. The present paper follows this approach, with afocus on the measurement of

basic skills in mathematics.

Assessment serves many purposes and it is becoming increasingly important in many

aspects of everyday life (Haertel & Calfee, 1983). In education, for instance, tests and

assessment batteries have been used for such diverse purposes as certifying competency for

high school graduation, college placement, and in evaluating the effectiveness of school

district policies (Baker & Herman, 1983). Hieronymous (1972) identified ten purposes for

testing. Shoemaker (1975) observed that the list clustered into two groups--individual

assessment and group assessment. While Hieronymous' list specifically concerns reading

skills, the list--particularly those items which concern individual assessment--can be

generalized to include the assessment of mathematical skills. Shepard (1980) suggests that
there are three reasons for using tests. One is for classification of people, the second is for

diagnosis of individuals, and the third is concerned with program evaluation.

Diagnostic tests, which are by definition individual assessment instruments, are used to

determine whether someone is ready to move on to more advanced work, needs additional
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work at their current level, or needs remedial help. In educational institutions, for

instance, diagnostic testing is used to evaluate students' progress with respect to a series of

educational objectives by matching educational objectives with the test items (Shepard,

1980). Wood (1980) eloquently depicted the need to do diagnostic testing for deficiencies

in mathematical ability in today's educational environment:

Despite the current emphasis on mathematics in both elementary and
secondary schools, modern high schools still offer varying routes to a
diploma, not all of which prepare a student for college entrance. But a
diploma from an accredited high school, however acquired, .-emains a suf-
ficient condition for entrance in many colleges, particularly junior colleges.
Colleges with an open-door policy are therefore faced with ever-larger
numbers of entering freshmen who have studied very little or no mathematics
(p. 59).

Generally, the domains used for diagnostic testing are narrowly defined because the

interest of the examiner lies in whether a particular skill has been learned, rather than a

global score which reflects the general attainment across a heterogeneous domain of skills.

A clear, concise definition of the domain being tested is particularly important in the

assessment of basic skills in mathematics; however, there has been some controversy

among mathematicians as to the nature of "mathematics" (Rees, 1962; Freemont, 1969),

and this has led to different categorizations and partitioning of mathematics (Griffiths &

Howson, 1974). Changes in the way mathematics is viewed can affect the mathematics

curriculum (Robitaille & Dirks, 1982). One such curriculum change that has taken place in

the last twenty years is the introduction of "New Math" concepts. Instead of splitting

mathematics into a great number of small domains, concepts such as set theory provide a

unifying structure to the mathematics curriculum. Such debates and innovations

underscore the need to develop a clear and concise description of the content domain prior

to the development of measuring instruments.

In the remainder of this review a closer look is taken at the structure of the domain of

mathematics as it pertains to the assessment of basic skills in mathematics. "Basic skills"

means those skills that the majority of high school graduates would be able to perform

successfully after exposure to the typical mathematics curriculum. Special emphasis is

placed on the relationship of the content domain to the purposes for which assessment is

being implemented. In particular, the efficacy of using global scores versus sub-scale scores

for assessing the basic mathematics skills of students entering post-secondary vocational

education programs is evaluated.
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CONCEPTUAL DEFINITIONS OF MATHEMATICS SKILLS

Very (1967) suggests that math ability is a multifaceted construct that, in general,

reflects the ability to do quantitative thinking, or, more specifically, to be able to "discover,

manipulate, and evalua< relationships" (p. 172). Very noted that mathematicians whom he

queried bout the nature of mathematical ability did not provide any consistent definition

of the subject, but for Very their responses suggest two general approaches to
understanding mathematical ability. One group tended to match ability with individual

courses like algebra, trigonometry, and calculus, while the other group linked ability to

theoretical processes such as general reasoning.

Whether Very's conception of mathematical ability is accepted, or definitions of

mathematical ability provided by mathematicians are used, there are three common el-
ements to these conceptualizations of mathematical ability. Each view involves a content

domain, an individual, and a cognitive process. In a similar vein, Hart (1981) pointed out

that there are three meanings to the concept of hierarchical development in mathematics:
(1) a logical sequence, which refers to the structure inherent within the topic; (2) a
psychological sequence, which refers to the order in which a topic can be learned; and (3)

an instructional sequence, which refers to the order in which a topic is taught.

Hart pointed out that while these three ways of understanding mathematical hierarchies

are independent, they are all necessary to successfully learn how to do mathematics. This

suggests that when a set of operational definitions in mathematics is being explicated for

use in test development, the structure of mathematics must be considered from all three

perspectives -- logical sequence, developmental sequence, and curriculum sequence. This
section reviews the literature concerning each of these structural definitions of

mathematics.
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The Logical Structure of Mathematics

It is difficult to singularly characterize the domain of mathematics. Spitznagel (1971)

views mathematics in terms of the objects of mathematical inquiry. Mathematics,
according to Spitznagel, is concerned with "quantitative, spatial, and logical relationships"

(p. 2). Kline (1962) has said, "One can look at mathematics as a language, as a particular

kind of logical structure, as a body of knowledge about number and space, as a series of

methods for deriving conclusions, as the essence of our knowledge of the physical world, or

merely as an amusing intellectual activity" (p. 2). Another characteristic of mathematics is

that it does not "deal with particular things or particular properties: we [mathematicians]
deal formally with what can be said about any thing or any property" (Russell, 1919, p. 196,

italics in original). Kline (1962), evaluating the developmental history of mathematics,
graphically illustrates Russell's observation. Kline suggests that people first thought of

numbers in terms of objects. Later they began to abstract the numbers from the objects
themselves so that they could think about whole numbers without attaching them to

specific objects like apples or sheep. The process of discovering mathematical concepts is

both developmental and hierarchical. As Kline stated, "On the basis of elementary
abstractions, mathematics creates others which are even more remote from anything real.
Negative numbers, equations involving unknowns, formulas and other concepts ... are

abstractions built upon abstractions" (p. 31).

Mathematics is a very large field and its structure is difficult to describe. There are

about one hundred recognized subdisciplines in mathematics; if specialized fields of
mathematics, such as theoretical physics and operations research, are included the number

of disciplines would be several hundred (Steen, 1978). In point of fact, the domain of

mathematics is so large that it must be divided into subdomains in order to grasp its nature
and extent, even if the subdomain boundaries are not exactly defined (Stein, 1963). One

way of coping with such a large domain is to break the field down into a few very broad

categories. According to Kothe and Ballier, the work of Bourbaki, a group of French

mathematicians who have been publishing a multi-volume work titled Elements de

Mathe'matique, which treats mathematics as the theory of structures, consists of

reorganizing mathematics by selecting worthwhile structures and "arranging the various

structures according to their mutual relationships [by] incorporating them in a natural way

into the edifice as a whole, which then may be called a hierarchy of structures" (p. 521).

The three primary structures that Bourbaki adopted are algebraic structures, topological
structures, and ordered sets. Similarly, Steen (1978) refers to algebra, analysis, and
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topology as representative of the "common culture of modern mathematician[s]" (p. 6).
Other authors, however, do not emphasize fundamental branches of mathematics; rather,

they treat each major area of mathematics as separate branches (see Kline, 1962; and

Stein, 1963).

Although fundamental branches in mathematics can be considered independent, the

structure within a branch is hypothesized to be hierarchical. As Kothe and Baffler (1974)

stated, "the whole edifice of algebra, of general topology and of the theory of ordered seta

will therefore be constructed by first investigating the most general of these structures, and

then proceeding to more special structures by the stepwise adjunction offurther axioms" (p.

522). A similar concept is suggested by Kline (1962). Kline argued that each branch,

although distinct, has the same fundamental logical structure. For instance, each begins
with a fundamental concept such as whole numbers in the mathematics of numbers, or the

concepts of point, line, and triangle in Euclidean geometry. The concepts also obey

explicitly stated axioms, and theorems derived from concepts and axioms. For example,

Kline argued that "Arithmetic, algebra, the study of functions, the calculus, differential
equations, and various other subjects which follow the calculus in logical order are all

developments of the real number system" (p. 660).

Taken together, these conceptual definitions of the logical structure of mathematics

suggest that the domain of mathematics can be represented as a collection of independent

branches of specialized areas, and that within these separate areas there is a hierarchical

structure. Although useful in a conceptual sense, these definitions of the domain of

mathematics are not specific enough for the purposes of developing measurement

instruments for measuring basic skills.

Developmental Structures

The second type of hierarchical structure, the developmental process, suggested by Hart

(1981) concerns the order in which material can be learned. The learning process involves
the integration of the domain, the purpose for which it is being learned, and the student

(Dienes, 1960). According to Bloom, Hastings, & Madaus (1971) the learning process,

which is driven by pedagogical considerations, can be facilitated by the intrinsic structure of

the domain. Three models which typify the cognitive developmental models are the

formalistic model, the structuralist model, and the learning model.

- 5 -
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The central concept of Piaget's formalistic model of development is that children go

through a series of cognitive stages where each successive stage represents a higher level of

cognitive development (see Piaget, 1952). The first stage is represented by a dominance of

sensory perceptions and an inability to mentally reconstruct a prior situation. At the

second stage, which Piaget labeled preoperational, the child is dependent on his/her

immediate perceptions. The third stage is one of concrete operations. Finally, at about the

age of adolescence children enter the stage of formal operations. This stage is

characterized by the beginnings of advanced mathematical and scientific reasoning

(Resnick & Ford, 1981).

There are several systems based on a structuralist model (Griffiths & Howson, 1974;

Resnick & Ford, 1981). In general, these developmental theories maintain that the

complex structures in mathematics can be broken down into simple structures which can be

taught to children of any age. Development occurs as children first learn these simple

structures and then later combine the simple structures into more and more complex

structures. Thus, development is a process that incorporates both learning the structure

and the process by which structures are related (Griffiths & Howson, 1974). Bruner (1960)

suggests that mathematical development occurs in children as they "discover" the structure

of mathematics. The child's intuition allows him/her to grasp the meaning of the structure

even though they are not yet able to articulate, in a formal way, what it is they have

discovered. The process begins to resemble a spiral curriculum where ideas are first

presented at one level and then returned to at a later stage to be developed further.

A related developmental structure is a learning model devised by Dienes (1973). In

Dienes' system a child progress through six stages as he/she progresses from being totally

unaware of mathematics to understanding the theorems that underlie mathematics. In the

first stage, the child comes to understand and adapt to a learning environment. The

environment contains the tools and examples of the mathematical concept which the child

will eventually learn. In the second stage, the child learns the rules which govern the

situation. During the third stage, the child learns to abstract common elements from

different concepts that have the same underlying structure. The fourth stage is

characterized by the development of a symbolic system to represent the abstraction. This

allows the child to talk about the abstraction itself without reference to the particular

concepts from which the abstraction was derived. During the fifth stage the representation

is examined in order to understand its properties. This process requires that a language be

- 6 -
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created as part of the descriptive process. These descriptions can later become axioms or

even theorems. Finally, in the sixth stage the descriptions are bounded into a finite domain

and the rules for moving through the domain are specified.

The three models of the development of mathematical abilityoutlined above suggest

that achievement in mathematics depends on the person's state of cognitive development as

well as his/her familiarity with the content domain being assessed. Two criticisms of this

model can be raised, however. One is that all three models are dependent on age. For

instance, Piaget's model suggests that most people will develop stage four mathematical

processing abilities in their early teens. If this is correct, then evaluating this dimension of

mathematical ability will not provide much information to aid in assessing a person's ability

if they are over a certain age or if the goal of assessment is not limited to a specific stage of

development, such as basic skills like computational ability.

A second area of concern is whether these models represent a global evaluation of the

person or whether the evaluations are specific to each branch of mathematics being

measured. In the former case the value of the evaluation is limited because of the age

effects; however, a cognitive development profile score that was area specific could be

quite useful with any age group if the level of cognitive development for individuals varies

across branches of mathematics (see Kolen & Jarjoura, 1984). The models reviewed here,

standing alone, do not however provide sufficient operational definitions for designing a

measuring instrument which would measure cognitive development across branches of

mathematics.

7 -
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Curriculum

Bloom, Hastings, and Madaus (1971) stated that the primary function of education is

the development of individuals so that they are "able to live effectively in a complex

society" (p. 6). This naturally leads to a system where the goals of teaching, which are

based on the sequence of curriculum being taught, are objectified so that students' progress

toward these goals can be quantified. In Bloom's taxometric design, student learning is

broken down into a set of behavioral objectives. In rough terms, an objective represents

the way a teacher expects the behavior of a student to be changed. Furthermore, the
behavioral objective should be clearly defined so that any other teacher would be able to

determine whether the objective has been reached. The individual cells of a rectangular
matrix, where behavioral objectives are listed along the horizontal axis and subject content

along the vertical axis, represents specific content in relation to a particular objective or

behavior.

Wilson (1971) developed a model for evaluating mathematics achievement based on

the guidelines proposed by Bloom. This model concerned only grades 7 through i2,

however, since the matherm...ics curriculum is sequential from kindergarten on up, it can

easily be extended to the elementary grades. On the vertical, content dimension Wilson

includes number systems, algebra, and geometry as general classifications. Each category is

broken down into several subcategories (see Table 1). The behavior dimension, in this

case cognitive behaviors, is subdivided into four categories -- computation, comprehension,

applications, and analysis. Just as with the content dimension, each cognitive behavior is

capable of being further subdivided into more specific behaviors (see Table 1). The

cognitive dimension is arranged based on a hierarchy of cognitive complexity and not just

the difficulty of the task. It is hierarchical in that an item representing an "application"
would also require the student to select the appropriate "operation" (comprehension) and

be able to perform the "calculation" (computation).

The terms used in Table 1 for the content dimension are rather straightforward, but the

terms used for the cognitive dimension require further elaboration. Computation items

emphasize knowing how to perform particular operations and, of course, being able to

perform these operations. Doing square roots or conversion of fractions to decimals are

good examples of this computational behavior. Comprehension items
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Table 1
The Content and Cognitive Dimensions of Wilson's (1971)
Table of Specifications for Secondary School Mathematics

Content Dimension
1.0 Number systems
1.1 Whole numbers
1.2 Integers
1.3 Rational numbers
1.4 Real numbers
1.5 Complex numbers
1.6 Finite number systems
1.7 Matrices and determinants
1.8 Probability
1.9 Numeration systems

2.0 Algebra
2.1 Algebraic
2.2 Algebraic sentences and their solutions
2.3 Relations and functions

3.0 Geometry
3.1 Measurement
3.2 Geometric phenomena
33 Formal reasoning
3.4 Coordinate systems and graphs

Cognitive Dimension
AO Computation

A.1 Knowledge of specific facts
A.2 Knowledge of terminology
A.3 Ability to carry out algorithms

B.0 Comprehension
B.1 Knowledge of concepts
B.2 Knowledge of principles, rules, and generalizations
B.3 Knowledge of mathematical structure
B.4 Ability to transfer problem elements from one mode to another
B.5 Ability to follow a line of reasoning
B.6 Ability to read and interpret a problem

C.0 Application
C.1 Ability to solve routine problems
C.2 Ability to make comparisons
C.3 Ability to analyze data
C.4 Ability to recognize patterns, isomorphisms, and symmetries

D.0 Analysis
D.1 Ability to solve nonroutine problems
D.2 Ability to discover relationships
D.3 Ability to construct proofs
D.4 Ability to criticize proofs
D.5 Ability to formulate and validate generalizations



require that the student understand mathematical concepts and be able to generalize them.

Application items require the student to be able to determine for any particular situation
what specific mathematics concepts are required to arrive at a solution and, of course, to be

able to perform these operations. Finally, analytical items concern the highest order of
cognitive processing. This may mean the non-routine application of concepts or developing

proofs.

The basic two-dimensional model developed by Wilson (1971) has been used in a

number of curriculum studies. In a comparative study of national curriculua (Garden &

Robitaille, 1989), the International Association for the Evaluation of Educational

Achievement used a testing grid very similar to that developed by Wilson. The cognitive

behavior dimension depicted by Wilson was adopted in its entirety; the content dimension

was first divided into five strands--Arithmetic, Algebra, Geometry, Descriptive Statistics,

and Measurement--and then subdivided into 133 categories. A very similar model was used

in the National Longitudinal Study of Mathematical Abilities (Howson, Keitel, &

Kilpatrick, 1981) study. According to Howson, et al., "The designers of NLSMA believed

that achievement in mathematics is multifaceted and that its assessment required a battery

of short tests . . . aimed at different facets" (p. 189). Wilson's model is ideally suited for this

purpose because the individual cells of its two-dimensional matrix provide a constrained

description of the domain from which test items can be developed.

Bruner (1960) pointed out that one key element necessary for students to learn new

concepts is the sequence in which the information is presented. Indeed, the integration of

mathematics depends upon building upon prior years of instruction. One area of research

which has directly considered sequencing is curriculum development. Curriculum
sequencing refers to the ordering of a structured domain consistent with the methods used

for instruction, although it is not necessarily true that the sequential structure developed

for instruction will mirror the content domain. Bloom, Hastings, and Madaus (1971)

pointed out that if instruction in mathematics is to be successful, the curriculum needs to be

sequenced. Because mathematics has both independent branches and a hierarchical
structure within branches, sequencing can be a difficult task.

Strict sequencing of curriculum tends to follow a hierarchy based on difficulty. As

Resnick and Ford pointed out ". .. the school curriculum has classically followed a path

from simple to complex--from adding and subtracting single digits to computing complex

multidigit arithmetic problems to solving algebraic equations." (p. 38) The same attitude

-10-
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toward the importance of sequencing is expressed by those who aredirectly involved in

setting curriculum. The following expression on the purpose and importance of sequencing

is taken from "Mathematics Activities, Level Nine" (1982):

The mathematics curriculum for grades 1-8 is divided into 20 teaching levels. This
organization is designed to improve instruction and to foster the continuous
development of children. Each level embodies carefully delineated areas of
learning arranged in progressive stages. Such an arrangement of sequential skills

and subject matter eliminates grace restrictions and permits continuous growth
according to the individual's ability and rate of learning (p. V.)

The origins of curriculum models can be found in both the theoretical investigations of

the structure of mathematics and in basic research into the process of cognitive

development. A model such as that offered by Wilson, represents a synthesis of these two

independent lines of investigation. In particular, Wilson's model provides a structure

matrix of target behaviors which can be used to design instructional sequences. Fur-

thermore, the behavioral objectives matrix developed by Wilson provides a structure

sufficiently detailed to serve as a starting point for the development of a basic skills test

battery.

RESEARCH ON MATHEMATICAL ABILITIES

Guion (1977) suggested that in order to establish content validity the domain must

represent behavior with a "generally accepted meaning" (p. 6). Empirical investigations of

the observed behaviors that reflect elements of the domain provide one type of evidence

validating the operational definitions used to develop a measuring instrument. These

investigations must be undertaken whether the practitioner wishes to evaluate aperson's

score on either the content dimension or the cognitive dimension, or a mixture of the two

such as Wilson's two-dimensional matrix of behavior objectives.

There are two primary lines of investigation in mathematical ability assessment--factor

analyses of mathematical ability and studies of mathematical hierarchies. Factor analytic

studies (1) have studied mathematical ability in relationship to other abilities such as verbal

ability, and (2) have looked at mathematical ability in isolation by factoring only

mathematical items. Studies of mathematical hierarchies have generally focused on

circumscribed aspects of mathematics, such as the hierarchical structure of addition skills.

This section reviews literature focusing on these two areas of empirical research.
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Factor Analysis of Mathematical Abilities

Factor analysis, according to Harman (1976), "provides mathematical models for the

explanation of psychological theories of human ability and behavior" (p. 3). The intent of

factor analysis is to reduce the original set of variables into a smaller number of "factors"

that retain the common information contained in the original variables, but which are more

interpretable. There are a number of factor analytic models available, and any particular

model may represent particular psychological theories better than another. In addition,

decisions about what type of factoring method to use or what criterion to use for rotation

can affect the conclusions derived from an empirical factor study. As a consequence of

these multiple decisions, which must be made during the course of a factor analytic study,

the interpretation of factor analytic studies involves some level ofsubjective decision

making.

One of the key debates that has occurred in factor analytic work is concern for the

nature of "ability." Spearman (1904) proposed a model for ability which emphasized.a

general factor. Spearman's "general factor" (g) represents the general cognitive ability of

people across a wide range of separate abilities. In Spearman's approach, specific abilities,

such as verbal and numerical, appear as narrowly defined factors which are specific to the

type of operation being tested.

An alternative model postulates a series of specific abilities which are to a high degree

independent. Thurstone's investigations into primary mental abilities are a good example

of studies which consider ability to be made up not of "g," but rather a constellation of

specific abilities. Thurstone's (1938) investigation of primary abilities identified a cognitive

factor on which eight variables having high to moderate loadings measured numerical
ability. Thurstone called this factor "N" for numerical. This factor included the four basic

arithmetic operations--addition, subtraction, multiplication, and division--which had

loadings (correlations with the factor) between .62 (division) and .81 (multiplication).

Other tests, such as arithmetic reasoning and numerical judgment had loadings of .38 and

.43 rest ectively.

After Thurstone's investigations into specific mental factors during the 1930s, a series of

factor analytic studies of mathematical ability were undertaken in the 1940s and 1950s.

These studies further investigated the nature of mathematical ability. In a study of
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numerical ability, Coombs (1941) factor analyzed a battery of tests that included separate

tests of two-, three-, and four-digit addition and multiplication. Perceptual speed, verbal

ability and other tests designed to assess various hypotheses about the nature of numerical

ability were also included. The first factor extracted was labeled a "number" factor by

Coombs. The two-, three- and four-digit addition problems loaded .74, .72 and .66 on it

and the multiplication test loaded .64. These variables did not load highly on any of the

other factors such as verbal, space, or perceptual speed. Coombs also extracted a

deductive factor on which arithmetic and number series had the highest loadings (.57 and

.56 respectively) and an inductive factor on which addition loaded .32.

Fruchter (1952) factored the subtests of the Airman Classification Test Battery along

with the Guilford-Zimmerman Aptitude Survey, the AF Aircrew Classification Test

Battery, the Army Classification Test Battery, and a battery of temperament and

intelligence tests. The first factor extracted after rotation to simple structure was a verbal

factor and the second factor "represents the ability to do arithmetical computations

speedily and accurately" (p. 31). Subtests that had high loadings on the second factor

included the Gray-Votaw Arithmetic test and the Differential Aptitude Test of numerical

ability, both of which contain arithmetic computation items. The Aircrew Classification

Test Battery Numerical Operations II test, which includes subtraction and division items,

and the Army Classification Test Battery Arithmetic Computation test also had high

loadings on this factor.

A series of factorial studies of mathematical ability done in the early 1950s by Guilford

and his associates provided additional evidence for a numerical factor and several more

specialized mathematical ability factors (Northrop, 1977). Results reported by Green,

Russell, Guilford, and Christensen (1953) typify these studies. Green et al. factor analyzed

34 tests including many that were used by Fruchter (1952). After rotation, using the

Zimmerman graphic orthogonal system of rotation, a verbal comprehension factor

accounted for the most variance and a numerical facility factor was the second most

important factor. The test which had the highest loading on the numeric facility factor was

numeric operations, which included addition, subtraction, multiplication, and division

problems.

The purpose of Green's et al.'s research was to identify factors that could be labeled as

"reasoning." Two factors were extracted on which tests that assessed various aspects of

reasoning ability had high loadings. In particular, for the first reasoning factor (which was
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labeled as a general reasoning factor), problem solving (which measures the ability to solve

arithmetic-reasoning problems), and symbol manipulation had the highest loadings (.43 by

one researcher and .53 by a second). Problem solving also had a moderate loading on the

second reasoning factor, logical reasoning. Severa'i subtests of mathematical ability such as

number and operation changes (equation operations) loaded on several reasoning factors,

which suggests that certain mathematical procedures are complex in nature and provide

information about a number of distinct abilities.

In a study of gender differences in the factor structure of mathematics ability, Very

(1967) found number facility to be the second factor extracted for both males and females.

Consistent with the findings of Green et al. (1953), the tests that had the highest loading on

this factor were addition, subtraction, multiplication, and division (.79 to .89). For women- -

but not men--one of two mathematical achievement tests used had a moderate (.31)

loading on this factor, as did two tests of mathematical reasoning. For men, factor 5

represented an arithmetic reasoning ability. The two mathematics achievement tests

loaded most highly on this factor, as well as all tests considered to represent arithmetic

reasoning. The author suggested that incomplete factoring may explain why an arithmetic

reasoning factor was not extracted for women.

Wrigley (1958) investigated the question ofwhether "mathematics should be regarded

as an integrated whole" (p. 66) as measured by a special mathematical group factor, or

whether the linkages of branches of mathematics (arithmetic, algebra, and geometry) can

be adequately accounted for by a general factor which includes verbal ability. Based on his

review of the literature from the turn of the century to the late 1950s, he determined that

there was a split in the conclusions of prior researchers. Accord Lig to Wrigley, research

from both sides of the issue, however, suffered serious methodological flaws .

Wrigley's (1958) experimental design used measured mathematical ability based on

problems measuring mathematical "attainment," as opposed to using aptitude items or a

combination of both attainment and aptitude. Wrigley noted that he ran the risk of

deriving a pedagogical factor because "what is measured is greatly dependent upon the

teaching which children have received" (p. 69), but practical considerations about what can

be done in a single experiment led him to select items based on a survey of course syllabi

(p. 70). In addition to mathematics tests, several tests measuring a "g" factor were included.

Factor analysis was done using centroid analysis.
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As expected, the first factor to emerge, which accounted for 31% of the common

variance, was a general factor. However, since the common variance accounted for only

61.5% of the total variance, the first factor accounted for only 19.3% of the total variance.

The mathematical tests and the Manchester General Ability test had high loadings on the

first factor, suggesting that mathematical ability is closely connected with general

intelligence. The mathematical group factor, which accounted for 3.8% of the total

variance, was the fourth factor extracted, and--as expected--the mathematical tests had

their highest loadings on this factor.

The above factor studies of mathematical ability demonstrate that in a test battery that

includes items with mathematical content, a general mathematical ability factor can be

extracted. The nature of the mathematical ability factor is, however, difficult to

characterize. Evidence suggests that the first mathematical factor does represent a general

mathematical ability factor. Across the studies reported, numerous diverse mathematical

tests have loaded on this factor, suggesting that the factor is tapping an ability which

apparently is common to many areas of mathematics. On the other hand, these studies also

show several lower-order factors which apparently relate to specific areas of mathematical

ability. It is difficult to interpret these lower-order factors because the tests used in these

studies often represent both a content dimension and a cognitive development dimension.

In addition, the overall design of these studies perhaps led to a general inability to interpret

lower-order mathematical factors, because the mathematics tests represented only a

portion of the total number of tests factor analyzed; where the number of tests representing

the construct of interest is small, little confidence can be placed in interpreting lower-order

factors.

Wrigley's (1958) research was based on the factor analysis of tests; Furneaux and Rees

(1978), however, suggest that research on the structure of mathematical ability should be

based on the correlations among test items. Their 1978 study was a partial replication of a

prior study, but a larger item set was used. The item set consisted of items that measured

various mathematical operations. Factoring was done by maximum likelihood and

Varimax rotation was used. Twenty-three factors, which accounted for only 49.6% of the

total variance, were extracted. Six factors with eigenvalues over 1.0 were retained. The

items which loaded on the first two factors had no obvious content or process in common;

consequently, they were interpreted as general factors. They accounted for 22.5% and

16.5% of the common variance or 11.1% and 8.2% of the total variance, respectively.
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Furneaux and Rees (1978) equated the second factor with a general intellectual ability
factor, since the four Thurstone Primary Mental Abilities variables also loaded on this

factor. The first factor to emerge contained a large number of "core" items. By this the

authors seemed to mean items that were designed to be more difficult, or at least turned

out to be more difficult, than expected. The authors call this factor an "inference" factor

and they suggest that it represents a general mathematics ability factor.

Based on their research results, Furneaux and Rees suggest that "g" items are clearly

structured problems which can be solved once the proper algorithms have been learned.
Inference items, on the other hand, require the "ability to conceptualize the problem in
such a way that the relevant operations can first be identified, and then applied in proper
combination and sequence" (p. 512). It should be emphasized, however, that the first two

factors accounted for only 40% of the common factor variance. The next four factors
accounted for another 16.1% of the common variance, which means that the factors beyond
the sixth accounted for approximately 44% of the common factor variance and 21.8% of

the total variance. Indeed, Furneaux and Rees pointed out that 28 of the 69 mathematics
items loaded only on factors beyond the sixth, thus in this study these items did not provide

any significant information about a mathematical ability trait even though items that

loaded on these separate, minor factor; ad either similar content or relied on similar

processes.

Powers, Swinton, Spencer, and Carlson (1977) investigated the structure of the

Graduate Record Exam. Twelve principal factors were extracted, which accounted for

virtually all of the common variance but only about 40% of the total variance. After in-

spection of the roots, the first eight factors were retained. These factors accounted for 94%
of the common variance and 37.5% of the total variance. The first three factors were taken
to represent three global skills, two of which represented the two verbal sections and one
representing the quantitative section. Little content classification covariance was found

among verbal items, but indications of content structure among the quantitative items were

found.

The first extracted factor was the quantitative factor, and it accounted for 28.3% of the

common variance or 10.6% of the total variance. Forty-three of the fifty-five items in the
quantitative section loaded on this factor, and none of the verbal items did. Three of the
factors that we were extracted after the third global factor represented algebra, data
interpretation, and application or word problems. Algebraic items loaded most heavily on
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factor 4, accounting for 7.5% of the common variance. Factor 6, accounting for 4.3% of the

variance, was characterized by the data interpretation items, and factor 7 was best

described as representing word problems. The structure for the smaller factors was not the

same when the second form was analyzed. The first general factor to emerge was again a

general quantitative factor, but of the three mathematical subgroups defined above only

data interpretation emerged as a separate factor, and even it was split between two factors.
Algebra and application items loaded on the general factor.

Martin and Dunbar (1985) factor analyzed the Iowa Tests of Basic Skills (ITBS) to

determine whether, in addition to a general ability factor, secondary group factors existed.

To increase the likelihood of discovering hypothesized group factors, the number of

variables factor analyzed was increased by creating composites from subtest items. As

expected, there was a very large general factor, but there were also four interpretable
group factors. The fourth factor to be extracted, mathematics computation, had the highest

subtest loadings of any of the composite variables. It is interesting to note that two of the

computational composites also had moderate loadings on the sixth factor, although this

factor was not interpreted by the authors. The authors suggested that these results do not
support Klein's (1981) conclusion that the subscale scores do not provide information over

and above what is generated by the ITBS total score.

In the Lawrence and Dorans (1987) study, items were prepared for factor analysis by

grouping them into parcels which represented content domains (arithmetic, algebra,

geometry, and miscellaneous) and similar item difficulties. The authors, using LISREL's

confirmatory factor analysis capabilities, concluded that the one-factor solution provided a

good fit to the item parcel data. The two-factor model, which assumed geometry items as
forming the second factor, and the three-factor model, which allowed each content area to

be represented by a factor, added very little to the fit of the data to the model. According

to the authors, the results demonstrate that the SAT-Mathematical is unidimensional. For

the three-factor model, the factors correlated above .92 across four SAT administration.

The general factor accounted for 99% of the algebra parcel variance, .98% of the arithmetic
parcel variance, and 90% of the geometry parcel variance. The authors concluded that the

empirical evidence does not support reporting content area scores for SAT-Mathematical.

Reckase, Davey, and Ackerman (1989) investigated the structural properties of the

Mathematics Usage Test (AAP Math), which is used to measure mathematics achievement

of high school students in the content found in courses offered in grades seven through
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eleven. These tests were constructed using a set of content specifications; therefore, the

tests may not be unidimensional either within a specific form or across several forms, and

different forms may measure different dimensional structures. The content areas

investigated included arithmetic and algebraic operations, arithmetic and algebraic

reasoning, geometry, intermediate algebra, number and numeration concepts, and

advanced topics. The analysis was performed on a six-by-six matrix of Pearson product-

moment correlations of number-correct scores for each content area. All forms had a

dominant first factor which accounted for 88% or more of the total variance, which suggest

that AAP Math is highly unidimensional. Factor analysis done on the tetrachoric

correlations suggested that a two-factor solution was appropriate. A multidimensional item

response theory analysis was performed on each of the test forms. This analysis

distinguished between computational items and word problem items, but these constructs

were highly intercorrelated.
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Summary

The above group of factor analytic studies of mathematical ability suggest that when
mathematical ability is measured without reference to other abilities there is a relatively
clear-cut structure to mathematical ability. In particular, when the studies use a
heterogeneous sample, a general factor representing mathematical ability will emerge as a

dominant factor. On the other hand, the studies generally point to specific area factors in

mathematics which, while not as important as the general factor, account for a large

amount of the total variation in the correlation matrix but only a small amount of the

common variance. For designing a measurement instrument for mathematical skills, the

usefulness of a general factor is limited, but information concerning specific mathematical
factors is potentially useful when the descriptions of the specific factors can be used as

operational definitions of the content domains being assessed.

Studies of Mathematical Hierarchies

It was noted above that the domain of mathematics can be conceived as composed of
independent branches and hierarchical structures within branches of mathematics. The

factor studies of mathematical ability support the conclusion that branches of mathematics
can be treated as independent subdomains. Support for the nature of the relationships of

mathematical concepts within a branch of mathematics requires studies which directly

evaluate the structure of an area of mathematics.

One way to examine the relationship of concepts within a branch of mathematics is as a

hierarchical structure. Learning psychologists view hierarchies as a transfer relationship
between different tasks, where two tasks are in a hierarchical relationship if (1) one task is

easier to learn than the other, and (2) if the simpler task is learned first. When such a

relationship exists, it will be easier for a student to learn the more complex task having first
mastered the easier task (Resnick, 1973)--learning how to add will make learning how to

multiply easier, and being able to multiply will facilitate learning how to divide. Resnick

(1973) refers to this as "a hierarchically organized sequence of tasks" (p. 312, italics in

original).

Gagne and Paradise (1961) investigated the hierarchical structure of learning sets
hypothesized as necessary steps in learning how to solve simple algebraic equations.

Learning sets, according to Gagne and Paradise, mediate the positive transfer of knowl-
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edge between lower- and higher-order tasks. Knowledge of lower-order skills necessary to

solve equations were determined by asking the question "What would an individual have to

know how to do in order to achieve successful performance of this class of task, assuming

he were given only instructions?" (p. 4). By applying this analysis to successively lower-

order tasks, the learning sets become increasingly simple and increasingly general.

According to Gagne and Paradise there are four possible pass-fail relationships

between any two learning sets. An examinee could pass both the lower level and higher

level learning sets ( +, +) or the examinee could fail at both tasks (-,-) or the examinee

could pass the lower level set but fail the higher level set (+ ,-). These three relationships

are consistent with what would be expected if there is a hierarchical structure to the

learning sets. The mixed (+,-) relationship can occur because of an ineffective learning

process. On the other hand, the other mixed pattern (-,+) is inconsistent with a

hierarchical model. In the Gagne and Paradise (1961) study, 13.1% of the tested rela-

tionships showed this inconsistent pattern, 842% were consistent with the hierarchical

model (-,- or +,+) and 2.7% neither supported nor refuted the model (+,-).

Gagne, Mayor, Garstens, and Paradise (1962) investigated the hierarchical structure of

learning sets necessary to be able to do integer arithmetic. The results from this study

ger,ei ally support the hypothesized hierarchical structure. Eighty-two percent of the tested

relationships were consistent with the hierarchical structure, but 17% of the relationships

were found to be exceptions (-,+). In another study Gagne (1962) investigated the

hierarchical structure of learning sets leading to the ability to derive formulas for the sum

of n terms in a number series. For th-, seven students involved in this study, the

hierarchical structure of the nine learning :;its is clearly evident and, in this study, there

were no exceptions (-,+) to the anticipated hierarchical relationship between learning sets.

As can be seen in these three studies by Gagne and his associates, the existence of a

hierarchically structure in specific areas of mathematics is supported. Two of the studies

reported response patterns that are inconsistent with the proposed hierarchy. Gagne and

Paradise (1961) suggest that unreliability in the measuring instrument may account for the

inconsistent data.

White (1973) also considered reasons that would account for the inconsistent patterns,

and listed four possible explanations: (1) there may be measurement error, since only one

item was used to measure each element; (2) lower level skills may have been forgotten

without affecting the higher level skills; (3) errors in the hierarchical structure; or (4)
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r;omplete failure of the hierarchy model. The fact that 84.1% of the tested relationships in

one study and 82% of the tested relationships in the other study supported the proposed

hierarchical structure suggests that there is a reasonably well-defined hierarchy, but more

research is needed to demonstrate which of the other three explanations--singly or in
combination--would account for the response patterns that were inconsistent with the

proposed hierarchy

Airasian and Bart (1975) reanalyzed the data from Gagne et al.'s (1962) study of the

hierarchy of addition skills using order theory (see Bart & Krus, 1973). Order theory

circumvents the need to define each testable relationship as was done by Gagne et al

(1962) and allows for the testing of logical equivalence and logical independence, in
addition to prerequisite relationships. The hierarchical structure generated in this study

was similar to that found in the Gagne et al. study, but was somewhat more complex. In

particular, many indirect relationships were found that were not identified by Gagne et al.

Using Gagne and Paradise's (1961) method for constructing skill hierarchies, Linke
(1975) constructed a learning hierarchy of graphical interpretation skills. This structure

was far more complex than those investigated by Gagne. It was composed of 22 basic skills

and six terminal skills. With certain minor exceptions, the predicted hierarchy was
validated. Furthermore, the results were shown to be consistent with results from an

independent replication. The inconsistent results, according to Linke, were likely due to

incidental acquisition caused by redundancy in lower level skills acquired in learning

different higher level skills.

Kolb (1967) hypothesized that a hierarchically based mathematical learning sequence

would facilitate the acquisition of quantitative science abilities, whereas an unrelated
learning sequence would not facilitate learning quantitative science skills. Kolb developed

two exercises in static friction to represent scientific behaviors. The first contained

exercises for generating operational definitions, and the second exercise provided

experience in data interpretation. The science behaviors also included three quantitative
performances which were then used as the final tasks of the mathematical learning
hierarchy. The instructional sequence developed to support the final skills included topics

in ratio and line segment graphs.

There were 26 tasks in Kolb's mathematical hierarchy. Using the ratio of positive
transfer, with a critical value of .90 being necessary to conclude that a hierarchy of
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mathematical tasks existed, 25% of the hypothesized relationships failed to meet this

criterion. However, it should be noted that all L It one of these ratios were equal to or

greater than .74, and three out of the seven that failed to make this criterion were equal to

or greater than .85. Even though Kolb could not claim to have validated a specific

mathematical hierarchy, there was strong support for his hypothesis that a curriculum

designed according to a mathematical hierarchy facilitates the learning of science objec-

tives.

Shermis (1988) investigated the relationship between undergraduate mathematics

curriculum sequence and the difficulty of items that were selected to test learning of the

skills in that curriculum. Principal components factor analysis was used to determine

whether the data met the unidimensional assumption of one-dimensional item response

theory (IRT) models, and IRT was used to determine item difficulties. Nearly 70% of the

common variance was accounted for by the first factor, and the remainder was accounted

for by the other two factors. It must be noted, however, that these three factors only

accounted for 16.6% of the total test variance. As a consequence, the first factor accounted

for only 11.6% of the total variance in the test items. Shermis noted that there was a high

correspondence between the item rank--the position of the item in the curriculum

sequence--and the item difficulty (Spearman's rho = .62, p < .001).

Summary

The results of the hierarchical studies reported here strongly suggest that, within

narrowly defined areas of mathematics, there are hierarchical relationships between

different mathematical processes. This research is limited in two ways, however. One

limitation is that the mathematical hierarchies that have been researched and validated

generally focus on a very narrowly defined area ofmathematics. Further research needs to

be done to show that the separately validated hierarchies may be linked together into a

single hierarchical structure. A second limitation is that Gagne's procedure for

constructing mathematical hierarchies to match a specific final task is too cumbersome to

use when the hierarchy of relationships cover a very broad area (i.e., the hierarchical

structure of arithmetic). Gagne's procedure may not be flexible enough to uncover a

hierarchical relationships when the tasks are defined in this way.
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One approach to task analysis suggested by Baker (1983), which may prove to be more
flexible for working with broadly defined mathematical hierarchies, might prove to be more

a more viable procedure. Baker noted how difficult it is to create tests that are sensitive to

academic learning. The solution to this problem, according to Baker, is to design an

integrated system in which the starting point is the definition and description of learning

objectives or, as the author calls it, task structure. Curriculum design, and ultimately test

design, would be based on the defined task structures. Conceptually, the task structure
approach to learning uses rules and examples to clearly present a specific set of skills to be

learned. Birenbaum and Shaw (1985) also suggested that task structure can be used to
develop tests. In this case the skills which a person is expected to learn are modeled and

then the test is developed from this model.

TEST DEVELOPMENT

There is evidence that supports the validity of both global and specific measurement for
mathematics skills. The choice between the two approaches therefore depends, to a great

extent, on a clear understanding of the purposes for which the measuring instruments are

being developed.

The Need for Measures of Basic Skills in Mathematics

"A test of 'basic skills,"' according to the New Jersey Basic Skills Council (1987), "is a

test to determine whether an individual has developed the practical working skills of ...
mathematical literacy needed to take advantage of the learning opportunities that colleges

provide" (p. 2). This is equally true in vocational education. As noted above, basic skills in
mathematics can be defined as those that the majority of high school graduates would be

able to perform successfully after exposure to the typical mathematics curriculum in the

educational system of the United States. Instructors in vocational education classes cannot

be expected to take time out from substantive topics to teach computational skills which

should have been learned at some other point in the student's educational career.
Moreover, teaching mathematics is a specialized skill in itself and should be left to

instructors skilled in teaching mathematics. Vocational instructors should only be
concerned with teaching math as it directly applies to a substantive field.
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The need for assessment at the point where the student is just beginning a new course
of education is very evident. At a junior college in Texas, a mortality rate of 50% was

common in the college algebra course because of an inadequate background in

mathematics (Wood, 1980). Of 625 students that took the Texas college placement exam

in 1967, 585 were not prepared for college mathematics; consequently, the school began
using a placement test to determine if students could be placed directly in college algebra

or in a one-semester remedial course. The placement program has since been expanded to

the point where, depending on the placement test results, a student can be placed at any of

four mathematical ability levels.

The New Jersey Basic Skills Council (1987) reported that 46% of the 1987 class of

college freshman lacked proficiency in computational mathematics and 23% of the students

were classified as proficient only in some areas of computation. With respect to
elementary algebra, 57% lacked proficiency and 29% were proficient in some areas. The

figures do not change much if only recent high school graduates are examined. For these
recent graduates, 38% lacked proficiency in computations and 25% were partly proficient.

Similarly, for elementary algebra, 44% lacked proficiency and 36% were partially

proficient. Clearly, a significant number of students would become mortality figures if they
attempted regular college mathematics courses or other courses, such as the sciences,

where proficiency in computation and elementary algebra are assumed.

Classification of students in the New Jersey Basic Skills assessment program can be

made directly from the placement exam scores. The guidelines offered by the Council for

Computation follows:

A scaled score of 164 or below (18 or fewer questions correct out of 30 on the 1987
test) indicates pronounced weaknesses in dealing with certain computational
operations and, in particular, with problems involving percentages and decimals.
Declining scores indicate progressively greater difficulty with operations involving
fractions. Students scoring below 165 on the computation test are included in the
category: "Lack Proficiency." The range of scaled scores from 165 to 172 (19 to 24
questions correct) indicates greater familiarity with elementary computation but still
shows definite weaknesses. The particular weaknesses of a student can be identified
only by examining individual item responses. Students falling in the range of 165 to
172 on the computation test fall in the category: "Appear to be Proficient in Some
Areas." Students who achieve a scaled score of at least 174 (25 questions correct)
seem to be proficient in the elementary computational skills measured by this test
and fall in the "Appear to be Proficient" category. (p. 56-57)
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The consequence of providing a "placement service" should be the future success of

these students when they return to the normal academic program. Wood (1980) indicates

that for 203 students who were identified as needing remedial help, 96.6% improved their

scores when they were retook the placement exam at the end of the review. The median

score of these students went from 7 to 74. More importantly, however, the mortality rate
for the college algebra course dropped from 56% to 28%. The New Jersey Basic Skills

Council (1987) reports that the success rate of students who completed the prescribed

remedial courses was comparable to non-remedial students, whereas those students who

did not complete the remedial review had a success rate of only about one-third of those

students who completed remediation.

A vocational assessment program, reported by Benn (1982), demonstrates how specific

area tests can be used to place students in appropriate mathematics courses. This project

was undertaken to develop a series of program-specific vocational locater teststhat would

consist of subject-specific questions in three academic disciplines -- writing, reading, and

mathematicsfor use in predicting vocational students' success in their vocational program

and to determine what, if any, remedial work they needed to do. The specific skills which a

student is presumed to possess as they enter the program were identified. These are skills
that the student is expected to have mastered prior to beginning their vocational program
and would not be taught in the program. The degree of academic proficiency in
mathematics needed for each program was also determined. This information was used to

select the specific item bank question used in each of the pilot locater tests. If an examinee

did not pass the mathematics portion of the test, the individual items were visually

inspected to determine what were the specific deficiencies of the examinee.

The three programs detailed above depict two ways in which assessment of basic

mathematics skills has been used with new students. First, the examinee's score on the test

is used to decide whether the student is sufficiently prepared in mathematics to proceed

with more advanced training in either mathematics or vocational education, or whether the

student needs to take remedial courses. Second, for those students deemed mathematically
unprepared to learn new material, these programs use crude or inefficient diagnostic

measures to determine the level at which new students should begin their remedial

education.

Both the New Jersey Basic Skills Program and the testing program at the Texas junior

college use a general global score to represent mathematical ability to assign students to
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the appropriate level of remedial course. If the range of remediation courses is limited,

then global estimates of ability may be all that is needed to make a reasonable placement

decision; but if the range of remedial education is great (i.e., course in everything from

basic addition and subtraction to pre-calculus mathematics), a more accurate measure of

ability is needed.

The assessment program described by Benn (1982) is superior to the New Jersey and

Texas programs for placement of students in appropriate remedial programs. This

program, however, would be difficult to implement on a large scale since it requires visual

inspection of the items on each test to determine specific deficiencies. To assess abilities

and diagnose deficiencies for a large number of students it would be better to automate the

process by using a computer for administration and scoring the test, and also to provide an

initial evaluation of which mathematical topics, if any, the student needs to review.

Limitations On The Usefulness Of Global Scores

Even though global scores have been shown to be useful and effective for some

situations, there are some major problems that limit their overall usefulness. As Wood

(1980) pointed out in a review of mathematics placement procedures used at a Texas junior

college, the use of the ACT test score in math for placement decisions decreased the

number of failures in college algebra, but the test was, nevertheless, an unreliable measure

of algebraic skills since students who had scores above cutoff levels failed college algebra.

The New Jersey Basic Skills Placement Program described above is a good example of

the way in which global scores limit the confidence that can be placed in assessment
decisions. As indicated, the New Jersey Placement Program uses a single score onthe

computational test to determine whether the student lacks proficiency, is proficient in some

areas, or is possibly proficient in all areas (The New Jersey Basic Skills Council, 1987). The

Council feels confident in making classification decisions about students who score below

19 correct answers. They also suggest that if the number of difficult items were increased,

they would not need to equivocate about the students who score over 24 by classifying them

as "Appear to be Proficient." In point of fact, the same problem does exist for the lower

end of the ability scale since more basic skills like addition and subtraction of whole
numbers were not tested. More importantly, the global test score cannot determine with
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precision where students in the middle category, "Appear To Be Proficient In Some Areas,"

are in relation to the computational hieramhv. For instance, a mid-range score does not

provide information on whether the person is having problems with decimals, fractions, or

division of decimals and fractions. This limitation is a natural outcome of using a global

score with a fixed set of heterogeneous items.

A global score is generally an inadequate measure of specific abilities when the item

domain is heterogeneous. Hartke (1978) said that psychometricians generally agree that

homogeneity is a desirable characteristic of test items, but questions about what

homogeneity means or how it should be measured have not been resolved. To the extent

that items measure the same concept or type of performance they are said to be

homogeneous (Crocker & Algina, 1986). If a test is composed of vocabulary items, spelling

items, math items and history items, it cannot be measuring one type of performance. Even

when a test is composed of only math items, more than one type of performance may be

being measured (e.g., some items may be strictly computational while others are based on

applications).

The degree of item homogeneity of a mathematics testwill follow from the definition of

the content domain being tested. Tests that measure a variety of mathematical concepts

(e.g., adding, multiplying, geometry, algebra) are probably not homogeneous, but tests that

measure a particular mathematical concept--single-digit addition, for example--have a high

degree of content homogeneity. attween these two extremes is a large gray area where the

homogeneity of items may depend on the group taking the exam. For instance, if a test

were designed to cover all aspects of addition (e.g., single-digit, multiple-digit, carries, no

carries), the test would appear homogeneous for high school students, but might appear to

be heterogeneous for third graders.

The description of a skill or trait in terms of the domain being used to test the trait may

suggest the use of either heterogeneous or homogeneous items. A heterogeneous domain

is necessary if the trait or skill itself is heterogeneous as, for instance, general reading

ability. A distinction can be made between response homogeneity, which is based on

empirical analysis of response patterns, and conceptual homogeneity, which is based on the

conceptual similarity of items. According to Hartke (1978), 'The analysis of the conceptual

homogeneity of an item population is a logical, judgmental process" (p. 43). Experts make

decisions about which sub-population items should be assigned to based on the skills or
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knowledge examinees must have to correctly respond to the items. These two
conceptualizations of domain homogeneity coincide when the conceptual definition is so

narrow that the domain items would tend to have roughly equivalent item characteristics

(e.g., two-digit multiplication problems). In this case, the items are completely

interchangeable. Up to a point, even when the domain definition is loosened (e.g., all
multiplication problems involving whole numbers), as long as the items are conceptually

similar, items may be treated as interchangeable for testing purposes.

One advantage to using highly homogeneous tests is that the test user can have greater

certainty in the interpretations that are made of a test score (Anastasi, 1976). If the test is

heterogeneous, any particular score could represent many different patterns of ability. On

the other hand, with a highly homogeneous set of items a particular score could be
interpreted as the proportion of the content domain that the person knows or, if the items

are arranged in increasing order of difficulty, the score can be treated as a rough estimate

of the person's ability within the narrow domain of items. Another advantage of having

highly homogeneous items is that fewer items are needed for measurement at any given

degree of accuracy (Shoemaker, 1975). The number of items needed to measure a domain

at a given level of accuracy increases as the item heterogeneity increases or the variance of

item difficulties increases. In practical terms, a person's test behavior would be expected to

be consistent within homogeneous domains or subdomains, and variable across

heterogeneous domains (Hive ly, Patterson, & Page, 1968).

Using a global score to represent an examinee's achievement across several
mathematical domains, instead of scores on the separate domains, would create two

problems. One difficulty would be that no precise interpretation could be given to the

score because of the high level of item heterogeneity. In particular, no information on the

pattern of performance on separate, homogeneous domains would be available. This

problem is evident in the New Jersey Placement Program. Another problemwould be the

increase in the number of items needed to generate scores with sufficient accuracy.

Another potentially serious problem which could occur when using global scores for

classification is that the scores may be biased against a subclass of examinees. As a

consequence of the American education system, where local school districts have authority

to set curriculum, the curriculum varies between school districts. Because of these

differences, test publishers must expend resources to assure that tests are adequate
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measures of educational objectives common to a large number of schools (Mehrens &

Phillips, 1986), but even for large commercial test publishers there is no guarantee that

there will be a perfect match between any particular curriculum and an achievement test.

Airasian and Mandaus (1983) suggest that many achievement tests, because of their

widespread use, are designed to assess only those skills that all schools have used. In effect,

tests are designed to assess the lowest common denominator of skills. Standardized tests,

according to Airasian and Mandaus, used in this way are not sensitive to differences

between schools or programs because the tests do not adequately reflect specific content

and objectives of particular schools and programs. Haladyna and Roid (1981) refer to this

as "instructional sensitivity" and define it "as the tendency for an item to vary in difficulty as

a function of instruction" (p. 40).

Coombs (1941), in a factorial study of numerical ability, hypothesized that this ability

might be related to "quick recollection and manipulation of well-established associations"

(p. 164). Coombs pointed out that these associations come about through education;

therefore, a person whose education did not include training specific to developing quick

recollection of these associations might have lower scores on this ability than if their

education did include the relevant training. Mehrens and Phillips (1986) refer to this as

"content tested but not taught." For individuals and groups who did not receive instruction

on the content represented by items, these items are non-representative--and, hence,

invalid and biased, according to Schmidt (1983).

Research by Phillips and Mehrens (1987) suggests that thepotential bias problem may

not be as great as feared; nevertheless, this problem can be expected to occur at least for

some individuals such as foreign students or even those who come from an atypical school

district. While bias may have a negative impact on a particular individual if global scores

are used (this is test bias for which the test developer and users may be held accountable),

there is no "bias" in diagnostic testing because the source of bias is not within the test. This

is because in diagnostic assessment the only thing the evaluator is interested in is whether

the student has the prerequisite skills necessary to complete a particular course of study. If

they lack the skills, for whatever reason, they need to be offered remedial education.

Alternatives to Global Measurement

Ruthven (1987) summed up the natural tension which arises from using global

assessmerAZ to evaluate mathematical learning very well when he said:
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It seems, then, that the view of mathematics learning as an ordered progression
through a hierarchy of knowledge and skill, medicated by a stable cognitive ca-
pability of the individual pupil . .. is defensible only as a gross, general, global
model. It appears to be incapable of capturing the finer, more individual and more
local aspects of mathematics learning, and thus to be of limited value in describing
and understanding the particular cognitive capabilities of individual pupils in order
to plan, promote and evaluate their learning. (p. 247)

Clearly, global achievement scores, which are based on a heterogeneous content domain,

do not provide very much information about the specific skills and abilities of the

examinees. Even when the domain definition can be made clear and concise, the as-
sessment of mathematical ability by a single global achievement score is inadequate. Only

when "a single thread of relationships ties together most of the categories in the universe"

would we be able to deduce from a total score which skills a person has (Hively, Patterson,
& Page, 1968). But when the subject matter has a complex structure such as in

mathematics where there are independent, hierarchically structured areas, a single score
cannot explain the various patterns of scores that add up to the total score. On the other

hand, narrowly defined domains are very useful when the test user is interested in whether

particular skills have been learned. (Linn, 1980). The key elements for designing a

program to assess the mathematical ability of students entering a vocational education

program is to accurately define the domain structure and provide an assessment battery

which efficiently determines the mathematical ability of the examinee within the total

domain structure.

Conventional paper-and-pencil tests, such as the Texas junior college placement exam

or the New Jersey test of basic skills, which are designed to cover a broad ability band

using a fixed item format, use valuable testing time inefficiently. When an item is much too

easy or far too difficult for the individual at a specific ability level, little useful information

is obtained about that individual's ability.

One assessment methodology which may be adaptable to use as an assessment battery

design comes from adaptive or sequential testing research. Adaptive testing is a flexible

system of testing which allows for different sets of items to be given to individual examinees

depending on the characteristics of the individual. Weiss (1985) provides a basic

introduction to adaptive testing.

Efficient testing may be important when assessing ability in a single content domain;

efficient testing procedures are critically important when assessment is being done across
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several content domains, such as with a mathematical ability test battery. Reise and Weiss

(1990) evaluate efficient computer-administered adaptive and sequential approaches to

measuring mastery of specific skills. These approaches would be particularly useful in

mathematics skills assessment where subcontent domains can be narrowly defined.

Adaptive or sequential testing approaches can also take advantage of the hierarchies

extant in mathematics achievement, using approaches such as proposed by Brown and

Weiss (1977). The authors compared the effects of using a combination of inter-content

and intra-content branching strategy for a five content area biology test against results from

a conventional test for the same content areas. The unique aspect of this strategy was that

the estimated ability of an examinee at the end of one subtest was used, in combination
with a measure of the degree of redundancy between the first test and the next test to be

administered, to determine the starting point in subsequent subtests. Thus, after the first

test examinees would have differential starting points in all subsequent tests. As

anticipated from prior research, the average reduction in test length was 49.3%--a
substantial savings in testing time. More importantly, the data demonstrated that the

minimum number of items administered under the adaptive strategy decreased as latter
subtests were administered. The authors attribute this savings to the increased use of prior

information.

If assessment is being conducted for reasons such as assessment of mathematical ability

for diagnostic and placement purposes, it may not be necessary to assess the examinee's

performance in all content areas when the separate content domains are hierarchically
structured. Spineti and Hambleton (1977) suggested that adaptive testing methods could
substantially reduce testing time when the domain has a hierarchical structure of learning
objectives. In their simulation study, Spineti and Hambleton investigated the effects on the

quality of decisions and testing time of varying several test relevant factors. Test length for

each objective was set at 1, 2, 3, 4, and 5 items; the mastery cutting score was set at either 3,

4, or 5; and four different starting points for each of two hierarchies were used. One
hierarchy used in the study was initially developed by Gagne (1965) to represent the

learning structure for hydrolysis of salts. The second hierarchy came from Ferguson (1969)

and concerned addition and subtraction. One interesting feature of this study was the non-
computerized routing strategy used. The routing strategy had two basic rules: (1) wherever

in the hierarchy the examinee started, they moved sequentially up or down the hierarchy

depending on whether they mastered the objective; and (2) if an examinee was successful at
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a mastery level they were given credit for all objectives below that point in the hierarchy--if

the person was unsuccessful, they were assumed to be unable to be successful at any higher

level in the hierarchy.

Results from the Spineti and Hambleton study for the Gagne hierarchy indicate that

there was a 59.2% average reduction in testing time with slightly fewer classification errors.

Results from the analyses of Ferguson's hierarchy showed a similar pattern. For the

adaptive test, on the average, only 8.43 o the 18 objectives were tested with essentially

equivalent errors to the conventional test. Also, results indicate that starting in the middle

of the hierarchy produced the greatest savings in test time. On the average, two less

objectives needed to be tested if testing were started in the middle of the hierarchy.

CONCLUSIONS

In order to develop a diagnostic test battery for measuring mathematical ability many

separate issues must be resolved. Initially, the domain structure must be clearly defined so

that test items can be written to reflect its elements. The conceptual literature concerning

the domain of mathematics suggests that there are branches of mathematics such as

algebra and topology which share few, if any, common elements, but mathematical

concepts within a branch of mathematics such as algebra are structured hierarchically. The

conceptual definitions of mathematical structure are interesting and may be useful for

some purposes, but they are not specific enough for test development purposes. They do,

however, suggest that an adequate test for measuring basic skills in mathematics should

take into account the hierarchies of skills that exist within defined areas of mathematics.

Describing the domain of mathematics solely in terms of its mathematical properties is

an important first step, but the development of a test battery for measuring mathematical

skills also requires an understanding of the developmental processes of the persons to be

examined. Basically, developmental theorists suggest that children progress through an

ordered sequence of levels of cognitive understanding of mathematics. In the early stages a

person is mainly concerned with learning very specific computational algorithms; it is only

much latter in the developmental process that a person can perform higher-order

mathematical operations. Observations about ability that are made from a developmental

point of view, however, tend to be a global evaluation of the person's ability and therefore
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such evaluations are of limited usefulness for diagnostic purposes. Similar to the

conceptual definitions of mathematics, however, the developmental theorists also

emphasize the hierarchical structure of the domain.

The work of researchers and authors such as Bloom and Wilson in curriculum
development provides the iecessary structure for relating the domain of mathematics to

the developmental processes of the target population. Wilson (1971) accomplishes this by

creating a two-dimensional matrix wh;re mathematical content is represented on one
dimension and the cognitive complexity of the problem on the other dimension. The cross-

classification of both dimensions into combined categories leads to a useful description of

the individual cells of the matrix. The matrix cells, which represent behavior objectives,
provide all the information necessary to generate test items to assess a person's competency
with respect to a particular cell. However, for purposes of measuring the basic math skills

of high school graduates, Wilson's taxonomy would have to be extended to a greater range

of content than that covered by the seventh through ninth grade curriculum on which it was

based.

The nature of mathematical ability has been empirically investigated in two major ways.

First, a review of factor analytic studies of mathematical ability indicates that there is a

general ability factor for mathematics, as well as separate factors representing different

content domains in mathematics. The general factor of mathematical ability is strongest

when the test battery is made very heterogeneous by including other kinds of tests such as

verbal ability, whereas group factors become stronger when the tests include only

mathematics items. The factors, both general and specific, retained for analysis together

often account for less than 50% of the total variance, because many factors are defined by

one or two items and so do not account for much of the common variance. As a

consequence, they have been typically eliminated from the analysis. The fact that many

studies provide evidence that a few specific factors can account for most of the common

variance may be misleading since in most studies 50% or more of the matrix variance is still

not accounted for by the extracted factors.

A second major line of empirical research is typified by the work of Gagne and others

who have shown that clusters of mathematical concepts can be interrelated within a
hierarchical structure. Basically, two tasks are hierarchically related if one task must be

learned prior to learning another task. A hierarchical structure can be described a priori
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using the method developed by Gagne, by more sophisticated methods such as through task

analysis, or empirically. Although the evidence is not unequivocal, there is sufficient

evidence from numerous studies to support the conclusion that mathematical concepts or

processes can be hierarchically related. Hierarrhical structures have been shown to exist

for computational problems, working with algebraic equations, and graph interpretation

skills. One limitation of these studies, however, is that they concerned circumscribed areas

of mathematics. Research needs to be done to determine if hierarchies also exist across

mathematical content areas, as well as research in mapping out hierarchical relationships

within narrowly defined areas of mathematics.

It is quite evident that there is a real need for accurate, efficient diagnostic testing of

mathematical abilities. As the experience of the New Jersey Basic Skills Program (1987)

and the Texas junior college program (Wood, 1980) indicates, a significant proportion of

students who graduated from high school needed to take remedial courses in mathematics.

Programs such as these, however, make only relatively crude placement decision about

students who were diagnosed as deficient in mathematical skills because they rely on a

single global score to represent mathematics achievement rather than focusing on an
individual's pattern of mathematical abilities. Measuring basic skills in mathematics using

global scores may be useful for distinguishing between persons who are either competent

or not competent in these skills; however, they cannot be used with any accuracy to

prescribe specific remediation courses for the examinee. Furthermore, in certain

situations, such as inadequate instruction, global scores may be biased estimates of a
examinee's mathematical ability. Diagnostic assessment, which is only concerned with

determining whether a person has mastered a very specific skill, should be less susceptible

to bias related problems.

Finally, complete diagnostic testing of mathematical ability would be very time-

consuming if paper-and-pencil tests are used. Even if only three questions per skill were

used, a battery developed from Wilson's (1971) behavior objective matrix would have

several hundred items. Research done by Brown and Weiss (1977) and Spineti and

Hambleton (1977) has shown that computerized testing methods can, on the average,

significantly reduce the number of items which must given to an examinee with no loss of

measurement accuracy. A further reduction in testing time is possible if a computerized

adaptive testing system can utilize the hierarchical structure of mathematics by not testing

at all levels of the hierarchy. In addition to providing maximal diagnostic capability in a
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minimal amount of student testing time, computerized administration of a mathematics

basic skills battery would also allow immediate test scoring and reporting, thereby

providing test data to the student and instructor in a time frame and form that would

maximize its use in the educational process.
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