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Abstract
Generalizability theory (G-Theory) and many-facet Rasch measurement (Rasch) manage the
variability inherent when raters rate examinees on test items. The purpose of G-Theory is
to estimate test reliability in a raw score metric. Unadjusted examinee raw scores are
reported as measures. A variance component is estimated for the examinee distribution,
Other variance components, due to item and rater distributions, interaction effects and
random noise, are accumulated as examinee score error. Rasch computes a measure for
each examinee, adjusted for the particular items and raters met by that examinee, that is
more fair than the raw score. Rasch test reliability is higher than G-Theory reliability
because Rasch error variance excludes item and judge variance.

Key-words: Generalizability Theory, Many-facet Rasch measurement.
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Generalizability Theory and Many-facet Rasch Measurement
INTRODUCTION

Performance assessment requires a ratei to evaluate the quality of an examinee’s
performance on some task or performance item. The rater’s evaluation is expressed as a
numerical rating on a rating scale. The numerical ratings obtained by each examinee are
summed into a raw score. This raw score summarizes the examinee’s performance level for
decision-makers, but the raw score is skewed by rater severity, item difficulty, examinee-
rater-item interactions and random noise. This skew must be managed in order for valid,
fair decisions to be made.

"The score on which the decision is to be based is only one of many scores that might
serve the same purpose... The ideal datum on which to base the decision would be
something like the person’s mean score over all acceptable observations, which we shall
call his universe score... Knowing that observed score and universe score are not identical,
the decision maker will want to take the discrepancy into account. One way to do this is to
accompany each [observed score] by an expression of uncertainty. Another possibility is to
correct the observed score in some manner so that it better approximates the universe score;
this corrected value will also have uncertainty” (Cronbach et al. 1972 p.15-16).

Cronbach identifies two approaches to raw score discrepancies. Generalizability theory (G-
theory) follows Cronbach’s first way. Many-facet Rasch measurement (Rasch) follows
Cronbach’s second possibility. But, in following these alternative approaches, G-theory and
Rasch address two different, but related problems. The decisions-maker’s choice of
technique must be guided by which problem is more pressing.

G-theory concerns itself with discovering how similar the observed raw scores might be to
any other raw scores the examinees might obtain under very similar circumstances. G-
theory considers the examinees as a group. Its aim is to estimate the error variance
associated with examinee raw scores, but not to adjust any examinee’s raw score for the
particular raters, tasks or items that the examinee encountered. The finalé of a G-theory
analysis is a reliability coefficient, "the generalizability coefficient", that summarizes the
correlation between the examinees’ unobservable "universe" scores and the scores that
happen to have been observed. This reliability is only generalizable to very similar
situations because all the variance components (main effects, interactions and random error)
must maintain their values. This is the "observation is a sample from a defined universe"
requirement (Cronbach et al. p.366).

Rasch (Linacre 1989) concerns itself with obtaining for each examinee a measure from
which the details of the examinee’s particular raters, items and tasks have been removed.
Rasch considers each examinee as an individual, and attempts to liberate, statisticaily, each
examinee’s measure from the distributional details of the other examinees who happen to be
included in the same analysis. The analytic aim is to transform each raw score from its
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inevitably non-linear form into a linear measure, correcting it for the particular raters, tasks
or items that the examinee encountered. A local error variance is also estimated for each
examinee measure. The finalé of a Rasch analysis is thus a linear measure of each
examinee’s performance level, qualified by its standard error and quality-control fit
statistics. Rasch also provides reliability coefficients. Rasch measures generalize to
qualitatively similar, but quantitatively different, situations, such as adding slightly harder
items to a math test, or including some more lenient raters on the judging panel. This is
the "unidimensionality" requirement (Andrich 1988 p.9).

The decision-maker’s criteria for selection of analytic approach are clear:

A. If it is important to estimate the similarity between the observed raw scores of this
group of examinees and the raw scores that similar groups of examinees might obtain under
other, similar circumstances, then G-theory is helpful.

B. If it is important to estimate for each examinee a measure as free as possible from
the particularities of the components that generated the raw score, then Rasch is essential.

AN INSTRUCTIVE EXAMPLE

Kenderski (1983), reported in Shavelson and Webb (1991 p.8), presents a data set shown in
Table 1, with fictitious identifying names added. Nine-year-old children were tape-recorded
while solving mathematics problems in class, and again three weeks later. Two raters
counted, independently, the number of times each child asked for help from other children.
While solving the problems, each child asked between 0 and 4 times.

G-theory analysis
The data is modelled as a linear composition of components in the raw-score metric.
Xpor = Bogm * Bp ¥ By + B Bt TR Yy, )

where
X, = the observed count for child ¢ on occasion o by rater r
Mg, = the grand mean of the counts
n, = the effect for child n
u, = the effect for rater r
K, = the effect for occasion 0
K, = the interaction effect between child n and rater r
H,, = the interaction effect between child n and occasion o
K, = the interaction effect between rater r and occasion o
Muoe = the interaction effect between child n, rater r and occasion o, combined with,

and indistinguishable from, random error, e.
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Applying equation (1) to the data in Table 1 yields the raw score components shown in
Figure 1. Though these components do, in fact, provide an estimate of each child’s
propensity to ask for help, it is not the individual component values, but their distribution
that is of essence to G-theory. '

G-theory analyses these data in two stages. The first stage is the generalizability study (G-
study). This estimates variance components from a pilot data set. In the G-study equation
(1) from the basis for an analysis of variance (ANOVA). The results are shown in Table 2.
The ANOVA mean-squares agree with the Figure 1. For instance, the variance of the .
occasion effect is much greater than of the child-occasion interaction. But this is deceptive.
The mean-squares are themselves composites in which the variance of each effect has been
inflated by variance identified with interactions and error. Thus Table 2 identifies how the
expected mean-squares, estimated by the observed mean-squares, decompose into
underlying variance components. After decomposition, the variance of the occasion effect
is less than that of the child-occasion interaction.

It is the variance components, now separated from other sources of variance, that are
hypothesized to be generalizable. Computing varience components requires detailed
knowledge of the experimental design. Design misspecification or data not in accord with
the design invalidate the variance component estimates.

The second stage of a G-theory analysis is the decision study (D-study). This uses the
variance components from the G-Study applied to new (or the same) data to make
decisions. The experimental design of the D-study can be different from the G-study, but
its variance components must be estimable from G-study variance components. Thus the
G-study may have two raters for each examinee’s performance, but the D-study may have
only one rater. The D-study includes consideration of alternative data collection strategies,
as depicted in Table 3. This captures the relationship between data collection effort and
raw score reliability. The "generalizability coefficient" is analogous to the Cronbach alpha,
and is the reliability of relative decisions among child raw scores. The "index of
dependability" is the reliability of absolute decisions relative to fixed raw scores.

G-Theory, itself, is not concerned with the substantive results of the study. The G-study
enables an optimal data collection design to be hypothesized during the D-study. Data for
decision-making will then be coilected according to this design. These data will be
reported and analyzed as uncorrected raw scores, assumed to have the same reliability as
that estimated for this design from the G-study.

Under G-theory, pass-fail decisions for individual examinees are based solely on their raw
scores. G-theory only provides information as to the overall level of correct classification
for all examinees at all possible raw-score pass-fail points.
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Rasch analysis compared to G-theory

The data is modelled to be the stochastic outcome of the logit-linear probability model:
/! P
logLP"""‘)=B..~C,—Do~F, @)

norx-1

where
P, = the probability of child n being given by rater r on occasion o a rating of x
P o1 = the probability of child n being given by rater r on occasion o a rating of x- -
. .

B, = the propensity to ask for child n

C, = the resistance to noticing asking of rater r

D, = the difficulty of asking on occasion o

F, = the incremental psychological obstacle overcome in asking x times compared
with x-1 times.

Since the intention is to obtain child m=asures generalizabie to any similar raters and
occasions, interaction terms are not parameterized. Any interactions inflate the
measurement error and are also detected by quality-control fit statistics.

Figure 2 summarizes the results of the Rasch analysis. A measure for each element (child,
rater or occasion) of each facet (children, raters and occasions) is estimated and located in a
common frame of reference. Tables 4, 5, and 6 list the measures, standard errors and fit
statistics for the three facets.

In contrast to the G-Theory analysis, the Rasch analysis permits substantive investigation
into the behavior of individual children. Table 1 suggests several such questions. Figure 2
provides the answers. Fred clearly asks significantly more often than the other children.
Children asked significantly less often on the second occasion, three weeks after the first
occasion. This important result, buried in a variance component in Table 2, begs for further
investigation. Do the children no long need help? Have the children discovered that other
children’s help doesn’t help? Has the teacher requested children not to ask for help?

Rasch does not have an explicit counter-part of the D-study because every G-study is also a
D-study. Every data collection is for decision making. Nevertheless the results of one study
may be used to guide the experimental design of another study. If the expected spread of
person measures is expected to be the same in both studies, then, to estimate the reliability
of the new study, S
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Cr*R,
R, = )
Cr.*R, + Cp*x(1-R,)

where
R = Target (wanted) reliability
R, = Observed (previous) reliability
C, = Target (wanted) average number of observations per examinee
R, = Observed (previous) average number of observations per examinee.

or, to estimate average number of observations per examinee,

Co* Ry * (1-Ry)

Cr= Ry, (5)

where the parameterization is the same as before.

Rasch reliability is independent of the scurce of the extra observations, e.g., more occasions
or more raters, provided the extra observations are independently made and relevant.
Consequently, the exira observations can be made in any way that is convenient. Further,
there is no requirement that each examinee be observed the same number of times, or that
any statistically-motivated experimental design be enacted precisely.

Unlike G-theory, Rasch does not require exactly formulated experimental designs. G-theory
requires these designs in order for the co.nplete set of variance components to be estimable.
The constrainis on Rasch data collection designs are that the measures be estimable
unambiguously in one frame of reference or that the relationship between disjoint
observations be specified. Unambiguous estimation implies that the measure of every
element of every facet can be located unambiguously relative to every other element. In
complete data collection designs, this requirement s always met.

Ambiguous estimates occur when there are disjoint subsets., Suppose the California raters
rate the California students, but the New York raters rate the New York students. If there
is no overlap in siudents or raters, then we do not know if the Cclifornia students were
more successful because they were more able or their raters more lenient. An obvious
solutions to this disjunction is to share raters or students across both test sites.
Alternatively, assert that, as groups, California and New York students are equally able, or
California and New York raters are equally lenient. This problem is often overlooked in
the raw score metric that, in this case, automatically asserts that Cealifornia and New York
raters are equally lenient.

Rasch analysis challenges the normality assumption that underlies G-Theory analysis. The
distribution of child measures is highly skewed. This is also visible in Figure 1, which also
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identifies the lack of normality in other components, but this lack of normality is not
identified in the ANOVA in Table 2. Dropping the two outliers, Fred and Betty, from the
analysis, improves the normality of the data, but reduces the observed child variance below
the error variance in both Rasch and G-Theory analyses. In the Rasch analysis, this merely
indicates how homogeneous most children are in asking. There are simply not enough
observations of each child to clearly distinguish their different proclivities to ask. In the G-
theory analysis, this produces components with negative variance, indicative of either model
misspecification or sampling error. This incongruity reinforces the "steady state" constraint
of G-theory. D-study data collection must include outliers similar to Fred and Betty or else -
its results will be paradoxical - a theoretical impossibility (Shavelson & Webb 1991 p. 39). *

Rasch goes beyond G-Theory not only by estimating a measure and a standard error for
each element, but also by reporting quality control fit statistics. An assumption of G-theory
is that the observed behavior is a random sample of all behavior. "To the extent that
behavior is inconsistent across occasions, generalization form the sample of behavior
collected on one occasion to the universe of behavior across all occasions is hazardous"
(Shavelson and Webb 1991 p.7). G-theory collects such inconsistency into variance
components that are modelled to apply equally everywhere. Inconsistent behavior,
however, is either local to particular observations or particular elements, or is systematic in
which case it has size and direction. In this data, most children were systematically
inconsisient across occasions - they asked less the second time. But Archie was locally
inconsistent in that he asked conspicuously more the second time. The systematic effect is
quantified by the relative Rasch measures of the two occasions. Archie’s local
inconsistency is detected by his fit statistics. Archie’s behavior inflates the child-occasion
interaction variance. What is unusual about Archie that prompts this locally inconsistent
behavior? Can this behavior be expected to be observed in the D-study in order to
maintain the size of the child-occasion variance?

The aim of G-theory is to estimate and optimize the reliability of decisions emanating from
the data collection. For this data, the G-theory reliability is the generalizability coefficient
for relative child scores reported in the D-study, Table 3, for 2 raters on two occasions.

The G-theory reliability value is 0.62. The equivalent Rasch reliability coefficient is report
on Table 4. The Rasch reliablity value is 0.87. In both cases the variance due to rater and
occasion main effects is discounted.

G-theory reliability is more conservative because G-theory parameterizes interaction
variance as structural and not part of random variance. The effect of random variance
reduces directly with the number of replications of all types. Interaction variance reduces
only with replications of those interactions. But interaction variance cannot be expected to
maintain a steady state across D-studies or even within a study. Consequently, regarding
interaction as random error, except when identified otherwise by fit statistics, is the more
consistent approach. Interaction identified by misfit is a local inconsistency that falls
outside the framework of both G-theory and Rasch.
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CONCLUSION

, The view that G-theory and Rasch are alternative solutions to the same problem is seen to
' be an illusion. G-theory provides a general summary of a process that is hypothesized to
continue into the future in exactly the same way, apart from well-controlled alterations in
experimental design. G-theory has no implications for the individual examinee apart from
the number of observations that will be made. For each examinee, the raw score is the
measure estimate.

Rasch concentrates on the individual examinee. For each examinee, a measure is estimated
that is-as independent as is statistically possible of the particularities of the raters, items,
tasks etc, that the examinee encountered. Rasch thus provides a measure as fair and
accurate as it is possible to derive from the data that was obtained. It is on such a measure
that decisions relating to each examinee must be based.

-
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TABLE 1

How many times does each 9-year old child ask for help
from other children to solve math problems in class (Kenderski 1983)?

Occasion: First 3 weeks later || + does time matter?
Child Rater: Sue Lucy Sue Lucy || <+ are raters exchangeable?
1 Archie 0 1 1 2
2 Betty 3 4 | 2 <+ does Betty ask signif. more?
3 Charles 2 2 1 0
4 David | 2 0 1
5 Ethel 1 2 2 |
6 Fred 4 4 3 4 < does Fred ask signif. most?
7 George 1 1 2 1
8 Harriet 2 2 0 0
9 Ida 1 1 1 2
10 Jenny 1 | 1 0 « does Jenny ask signif. least?
11 Kate 1 2 1 1
12 Luke 1 2 1 1 T
13 Mary 2 | | | Rasch questions
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TABLE 2

10

Generalizability Theory Generalizability Study
as described in R. Shavelson & N. Webb,
Generalizability Theory, 1991, Newbury Park CA, Sage

ANOVA G-Study

Source of Variance Expected Mean Square df Mean Estimated Variance
__Variation Component Square Component

13 Children (n) | o} Oorpe * My00p + MO0 + mmos | 12 | 2.5769 0.3974

2 Raters () of o:m .t npof, + noo:, +n, naof 1 0.6923 0.0096

2 Occasions (0) | o Ohroe *+ MO0 *+ M,O2 + M, M.C, 1 | 3.7692 0.1090

nr o5 Olpge + MO 12 | 0.359 0.0673

no o2 Ooroe + 1,900 12 | 0.8526 0.3141

ro o, Ooroe * 1,000 1 | 0.3077 0.0064

nro,e O O 12 | 0.2244 0.2244

) e
o




Linacre

Generalizability Theory and Rasch Measurement

TABLE 3

Generalizability Theory Decision Study
as described in R. Shaveison & N. Webb,
Generalizability Theory, 1991, Newbury Park CA, Sage

G Study Alternative D Studies
Raters = 1 2 2 4
Occasions = 1 2 4 2
Source of Variation &2 Estimated Variance Component
Children (n) 8> | 03974 | 0.3974 | 0.3974 | 0.3974
Raters (r) 5> | 0.009 | 0.0048 | 0.0048 | 0.0024
Occasions (0) 52 | 0.1090 | 0.0545 | 0.0273 | 0.0545
nr 57 | 0.0673 | 0.0337 | 0.0337 | 0.0168
no 57, | 0.3141 [ 0.1571 | 0.0785 | 0.1571
ro 52, | 0.006¢ | 6.0016 | 0.0008 | 0.0008
nro,e 8¢ | 0.2244 | 0.0561 | 0.0281 | 0.0281
Relative (child score) error variance 6;,, 0.6058 | 0.2469 | 0.1403 { 0.2020
(nr+no+nro,e)
Generalizability coefficient p? 0.40 0.62 0.74 0.66
Absolute (child score) error variance 6:,,, 0.7308 | 0.3078 | 0.1732 } 0.2597
{(r+o+nr+no+ro-+nro,e) .
index of dependability (reliability) ¢ 0.35 0.56 0.70 0.60

12

11
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TABLE 4
Child Measurement Report (Rasch)

Ethel
Charles
George
Ida
Kate
Luke

Mary

David
Harriet
Jenny

0.75

Second
Archie «asks more

12

«Two outliers
Betty e<up 8.D.
0.59 to 1.75

from

time

not less

Obsvd Obsvd Obsvd Calib Model Infit Outfit
Score Count Average Logit Error |MnSq Std MnSqg Std
15 4 3.8 3.97 0.%8 | 0.3 -1 0.2 0
10 4 2.5 1.42 0.65 | 0.6 0 0.7 0
6 4 1.5 -0.68 0.83 0.8 0 1.0 0
5 4 1.3 -1.40 0.87 1.3 0 1.3 0
5 4 1.3 -1.40 0.87 1.4 0 1.4 c
5 4 1.3 -1.40 0.87 1.0 0 1.1 0
5 4 1.3 -1.40 0.87 0.2 -1 0.2 -1
5 4 1.3 -1.40 0.87 0.2 -1 0.2 -1
5 4 1.3 -1.406 0.87 0.6 0 0.6 0
4 4 1.0 -2.17 0.89 2.2 1 2.3 1
4 4 1.0 -2.17 0.89 0.7 0 .7 0
4 4 1.0 -2.17 0.8S 1.8 0 1.8 0
3 4 0.8 -2.98 0.92 0.6 0 0.7 0
5.8 4.0 1.5 -1.01 0.86 0.9 -0.3 0.8 -0
3.1 0.0 0.8 1.75 0.07 0.6 0.9 0.6 0
RMSE 0.87 Adj S.D. 1.52 Separation 1.75 Reliability

Fixed (all same) chi-square: 50.78 d.f.:

Random (normal) chi-square:

12 significance:
11.71 d.f.: 11 significance:

.00 «Children differl

.39

but only Fred

& Betty, not others
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| TABLE 5
\
|
Occasion Measurement Report (Rasch)
Obsvd Obsvd Obsvd Calib Mcodel Infit outfit
Score Count Average Logit Error |MnSg Std MnSqg Std Occasion
45 26 1.7 0.80 0.33 0.8 0 0.8 0 First
31 26 1.2 -0.80 0.34 1.1 0 1.1 0 3 weeks later
38.0 26.0 1.5 0.00 0.33 0.9 -0.4 0.8 =-0.2{ Mean
7.0 0.0 0.3 0.80 0.01 0.1 0.5 0.2 0.5} S.D
RMSE 0.34 Adj S.D. 0.72 Separation 2.16 Reliability 0.82 I
Fixed (all same} chi-square: 11.29 d.f.: 1 significance: .00 «Occasions differ!
Not randomly equivalent
) TABLE 6
¢
Rater Measurement Report (Rasch)
Obsvd Obsvd Obsvd Calib Model Infit Outfit
Score Count Average Logit Error {MnSq Std MnSq Std Rater
41 26 1.6 0.35 0.33 0.9 ] 0.9 0 Lucy
35 26 1.3 -0.35 0.34 0.9 ] 1.0 ] Sue
38.0 26.0 1.5 0.00 0.33 0.9 -0.3 0.9 -0.2} Mean
3.0 0.0 0.1 0.35 0.00 0.0 0.1 0.0 0.1} S.D

RMSE 0.33 Adj S§.D. 0.09 Separation 0.26 Reliability C.06 But
Fixed (all same) chi-square: 2.13 d.f.: 1 significance: .14 «Raters exchangeablel!
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Figure 1. Decomposition of raw scores according to the G-Theory model.

All Facet Summary (Rasch) Non-linear scale ¢
Measure|+Child Total Asks +Rater +0Occasion Times
4 + Fred Asks most: 15 +Notices more+ More +(4)
| | 1 s.EB. | | asking |
3 + + + + + 3.5
I ! I |
2 + ¢ 1 S.E. + + + 3

| Betty 10 | | | 2.5
1 + + 1 S.E. + + First +
| | Lucy |] +185.B. | 2
0 * - 81 S.Buw = = = =« = = = = = = - =~ I * oo - -
| Ethel 6 | Sue | +18.B. | 1.5
-1 + t$ 1 S.E. + + Later +
| Charles George Ida Kate Luke Mary 5 | | |
-2 + Archie David Harriet 4 + + + 1
I | | Less I
-3 + Jenny Asks least: 3 +Notices leas+ asking +(0)
L] L] L Hean
Fred - SEx.98 significantly most Raters the same Later less
Betty - SE=.65 significantly more statistically significantly
Others - SE=.S much the same SE=.35 SE=.35

Figure 2. Estimated measures according to the many-facet Rasch model.




