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The Structural Algebra Option: A Discussion Paper
Introduction

| wish in a short space, to offer new interpretations and explanations for some
familiar events and phenomena connected with symbol skills education in elementary
algebra; also to point to some new pedagogical possibilities that ensue from these
perspectives, and to discuss over-arching themes of secondary school algebra -
curriculum. This wide scope precludes definitive treatment of any one topic. But |

hope in a panoramic sweep to raise new options for consideration in the algebra
curriculum debate.

Firstly, to define the terrain more clearly, | am concerned here with the usual
secondary school curriculum related to simplifying algebraic expressions, solving
equations, rationalizing numerators and denominators, etc. Three standard
pedagogical approaches to this topic can be found in the literature:

The structural approach views algebraic symbol manipulation as an exercise
in explicit reasoning and logical deduction. Standard textbooks of the ‘new
math’ legacy of the 1960s and 1970s take this approach (e.g., Brown, Smith,
& Dolciani, 1986; Dolciani, Wooton, & Beckenbach, 1983), as do more recent
efforts to provide computer tutors to instruct students, and to diagnose and
remediate their errors (e.g., McArthur, 1987; McArthur, Stasz, Hotta, Peter, &
Burdorf, 1988). Researchers concerned with structural models of
expressions/equations and solution processes address this aspect of algebra
(e.g., Bundy, & Welham, 1981; Carry, Lewis, & Bernard, 1980; Matz, 1980).

The empirical approach sees the key to competence in ready access to
referential domains like real world situations (Fey, 1989; Nemirovsky, & Rubin,
1991, Usiskin, & Senk, 1990), graphs and tables (Confrey, 1991, 1992;
Dugdale, 1990; Goldenberg, 1991; Kaput, 1987, 1989; Yerushalmy, 1991a,
1991b; Yerushalmy, & Gafni, 1992), and arithmetic domains (Hyde; Kilpatrick,
Mason et al) all of which can serve to anchor otherwise arbitrary and
forgettable rules, and to facilitate reasonableness checks on erroneous
procedures (Booth, 1989; Resnick, Cauzinille-Marmeche, & Mathieu, 1987).

The drill approach, now regaining ascendancy in school practice, trains
students to non-reflective competence through repetitive, incremental practice
(e.g., Kumon Math; Saxon, 1990, 1991).

A confluence of factors impinge upon the pedagogical debate in algebra. | selectively
review several of these factors and highlight aspects of their influence on the
pedagogical choices.

1. Technology: Due to the automation of algebraic manipulation on readily
available calculators and computers, the scientific utility imperative that has
driven the symbol skills algebra curriculum through decades and centuries is
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no longer operative, or at least much weakened (Fey, 1984; NCTM, 1989;
NCTM, 1991; NRC, 1989). This fact has raised doubts for many educational
theorists and psychologists about the usefulness of the drill approach which,
by design, makes little direct contribution to the learner other than behavioral
facility (Conference Board of the Mathematical Sciences, 1983; Thorpe, 1989).

Equity: Skill in algebra eludes most students in most schools, but minority
students and females are proportionately over-represented among the algebra-
injured (Fennema, 1980; Fennema, 1985; Mullis, Dossey, Owen, & Phillips,
1991). Because algebra serves a gatekeeper function for exclusion from a
variety of technical and scientific fields, there is a moral/social imperative that
curricular modifications improve all students’ learning benefits, but especially
students from underachieving groups (NCTM, 1989, 1991; NRC, 1989).
Indirectly, this imperative weighs in against curriculum innovations that may be
too cost intensive in terms of hardware or teacher training requirements. Also,
this imperative weighs in favor of drill curricula which have been more
equitably successful in training students as symbol manipulators.

History: Structural algebra was a major focus of the ‘new math’ curricula of the
1960’s and 1970’s (e.g., Haag, 1961). Indeed, part of the new math agenda
was to transfer to algebra a share of the concern for deductive reasoning that
previously resided in the geometry curriculum (College Entrance Examination
Board, 1959). The reasons usually cited for the failure of the new math
initiative include the inherent difficulty and abstractness of the deductive
approach (it mainly was intended for college-bound students), and the lack of
preparation and training of teachers (NACOME, 1975). Because of equity
issues, and because the previous sustained and determined effort of the new
math era was not successful, educators may be reluctant to revisit this territory
of structural algebra.

Technology (again): Apart from its influence in diminishing the scientific utility
imperative for aigebra symbol skills, technology also contributes positively to
educational potential through linked representation microworlds (Confrey, 1991,
1992; Dugdale, 1990; Coldenberg, 1991; Kaput, 1992; McArthur, 1990;
Thompson, 1988). The major educational intention of such microworlds, at
least in their current trajectory of development, is to help students develop
multirepresentational capabilities and perspectives (Kaput, 1987; Thompson,
1989). This technological front supports empirical approaches to algebra
which, by definition, are multirepresentational.

| believe that the score from assessing and integrating these various factors favors
the ascendancy of empirical algebra. The skills curriculum, despite a certain appeal
for its equity performance, simply is obviated by the availabiiity of computer symbol
manipulators. The structural approach suffers from the inherent difficulty of deduction
in an abstract domain (it scores low on equity) and from the fact that it already has
been the subject of intensive reform efforts where it failed (NACOME, 1975).
Empirical approaches traditionaily have been caricatured in curricula by routine word
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problems that present only a very limited range of contextual association (Brown,
Collins, & Duguid, 1989; Caldwell, & Goldin, 1987; Rosnick, & Clement, 1980). But
the evolving initiatives in linked representation microworlds are poised to breath new-
life into this crucially important area of algebra education.

| seek to stimulate a renewed interest in the structuralist option by arguing the
following points:

1. Inits logical deductive structure, algebraic symbol manipulation is a relatively
simple domain; much simpler, for example, than geometric proof.

2. The difficulties encountered with the structural approach do not stem from its
inherent abstractness or deductive complexity, but from particular visual
characteristics of algebraic language that facilitate superficial assimilation at
the expense of reflective engagement.

3. A modified structural curriculum can be designed to counter the dependence
on visual features, and to successfully engage students in structural thinking
rather than in non-refiective, incremental skill acquisition.

Building such a case requires a detailed model of algebraic symbol skills that is
presented in the next section. Before moving to this, | conclude the introduction with
a statement of the overall intentions of this line of investigation. The objective is not
to defuse interest in the exciting developments in empirical approaches to algebra,
but to work towards a balanced curriculum of excellence in which the complementary
aspects of structural and empirical algebra both are viable.

A Model of Algebraic Symbol Skills

This section provides an an.lysis of algebraic symbol manipulation into components
of knowledge that can be independently characterized (though they may interact
complexly in actual cognitive processing of algebra). The purpose here is to provide
a vocabulary and to make distinctions that can be built upon or challenged in
subsequent sections. The basic model itself is consistent with most of the work that
is already in the literature (e.g., Carry, Lewis, & Bernard, 1980; Ernest, 1987; Kieran,
1992; Wagner, Rachlin, & Jensen, 1980) --though few authors have found it
necessary to describe more than one or two components in a given study. A

linguistics lexicon is employed here by loose (rather than firm or principled) analogy
to levels of language structure.

1. Morphological Component:
The morphological component specifies the fundamental elements of meaning
in an algebraic expression or equation. These elements include numbers,
operations (addition, subtraction, multiplication, division, exponentiation,
radical, and negation), variables, etc. Individual morphological elements have
received sustained analysis (e.g., Herscovics, & Kieran, 1980; Klichemann,
1978; Usiskin, 1988). This component is distinguished from the graphological
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forms by which these meanings may be signified.

Graphological Component:

The graphological component specifies the written forms for presentation of the
morphemes described above, as well as the physical indicators that serve
parsing functions. For instance, the operation of addition is symbolized by ~+~
(where ~ represents a blank space of a certain width), but multiplication
(usually) is represented only by horizontal juxtaposition; exponentiation by
diagonal juxtaposition, etc. Parsing functions are signaled by such
graphological elements as parentheses, bracksts, and braces, vincula

(compare /3xy and ,/3xy ), and raising (compare 2 and 2'y).

Presumably competence in algebra entails a detailed knowledge of the morphological
and graphological components, and of the correlation between them. Most
psychological analyses of algebra skill simply have assumed these components and
begun with higher level elements. For instance, Carry, Lewis and Bernard (1980)
note the necessity of accounting for algebraic performance expressed as strings of
symbols, but they restrict their analysis to structural tree diagrams which display
certain aspects of representation more conveniently.

3.

Parsing Component:

The parsing component specifies the conventions for grouping together
morphs as they occur in symbol strings. In addition to delineating the
functioning of the graphological parsing elements described above, the parsing
components delineates the conventional hierarchy of operations (e.g.,
multiplication has precedence over addition or subtraction, etc.). The crucial
cognitive function of parsing knowledge has been noted by several authors
(Ernest, 1987; Thompson, & Thompson, 1987; Larkin, 1989; Norman, 1986).

Transformational Component:

The components discussed thus far permit the parsed graphological
representation of morphs in expressions and equations. But the activity of
algebraic symbol manipulation consists in the transforming of expressions and
equations into new expression and equations. [or instance the expression
3x? - 2% can be transformed to (3x - 2)(3x + 2) by application of a difference
of squares rule. The transformational component specifies all such rules that
normally would be available to an expert algebra symbol manipulator.

Pragmatic Component:

The manipulation of aigebraic symbols is not just an arbitrary application of
transformational rules to expressions and equations. For instance
8x2 +2x+4 = X2+ 2x%+2x+4 = X2-4+4+2(x°+x)+ 4
= (x-2)(x +2) + 2[2 + (X* + X) + 2] is a formally correct symbolic derivation,
but it accomplishes none of the tasks that experts normally find it useful to
accomplish in algebra. The pragmatic componeni governs the selection and
sequencing of transformation to accomplish standard tasks (like simplifying
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fractional expressions, rationalizing denominators, etc.). It has been
extensively analyzec' as strateyic knowledge by Carry, Lewis, and Bernard,
(1980), and for the special case of linear equation solving as meta-level
inferencing by Bundy and Welham (1981).

6. Semantic Component:

The semantic component specifies the referential domains for the
graphological elements. For instance, the link between ~+~ and some
expariential notion of combining is located here. Similarly, the reference of a
variable to a number (in a numerical domain) or to a quantity (in some ’real
world’ situation) resides in the semantic component. This aspect of algebraic
knowledge is fundamental to algebraic applications and more generally to
empirical algebra, as discussed in the introduction. But working withir a formal
system explicitly denies referential extension. Thus a formal analysis of
structural algebra makes no reference to the semantic aspect.

The Deductive Structure of Algebraic Symbol Manig:lation

In this section, | argue that in its logical operations algebraic symbo! manipulation is
an inherently simple domain --far simpler for example than geometric proof. In this
regard | distinguish algebraic symbol manipulation, which assumes the existence and
unigueness of identities, inverses, etc., and which may include certain other rules
(e.g., some exponent laws) as axioms, from abstract algebraic approaches which
start with minimal (or nearly minimal) axiom sets and proceed through existence and

uniqueness proofs (e.g. uniqueness of the additive identity) to build up properties of
the number systems.'

'This is a gloss of a fundamental and possibly controversial point. Elementary algebra
evolved as a tool for scientific and commercial application long before it was formalized
in abstract analyses of number systems (Kline, 1980). Thus there is a history of usage
that may diverge from frameworks of explanation. Forinstance, the operations of addition
and multiplication are defined within abstract algebraic treatments of the rational numbers,
whereas exponentiation is addressed within analytic treatments of the real numbers.
These are even different branches of mathematics! But rules like (') = a*, a®* = a®a",
etc., participate together with rules like (ab)c = a(bc), a(b + ¢) = ab + ac, etc., as part of
a completely integrated domain of practice. What | am suggesting is that structural
treatments of elementary algebra can specify exponent rules (or indeed, any rules of
convenience) as foundationai for the purposes of developing rigorous derivations within
elementary (school) algebra. Whether there is pedagogical merit in engaging students
in rigorous processes of mathematical derivation outside of tne content of established
mathematical theory is a matter for discussion. It might be noted that attempts to
formalize exponentiation within algebraic treatments of real numbers are unresolved. For
instance, Macintyre (1979) concludes one such initiative as follows:

The most interesting problem provoked by the above is that of showing that there
are no "exotic" laws [of real numbers], i.e. that every law is a consequence of the
laws of +, ¢, -, ', 0, 1 together with X' = x, x'** = x"i, X = (X')%, (xy)* = X}y*.

It seems difficult to prove such a theorem by the methods of real algebra used
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To begin this analysis, | review some aspects of logical deduction and analyze their
difficulty for learners. Logical deduction often is based on conditional inferences
which begin with a conditional statement consisting of an antecedent and a
consequent, one of which is asserted or denied in a subsequent statement. For
instance the logical principle modus ponens asserts the conditional, if p then g, and
the antecedent, p, from which one may deduce the truth of the consequent, g. There
are four inferential possibilitias, but only modus ponens and its contrapositive mocus
tolens are logically sound (Table 1).

Table 1
Conditional Inferences (Evans, 1982, p. 121)
Modus ponens If p then g
(MP) p
Therefore, ¢
Denial of the antecedent If p then q
(DA) not p
Therefcre, notq
Affirmation of the consequent If ptheng
(AC) q
‘ Therefore, p
Modus tolens If pthen g
(MT) not q

Therefore, notp

DA and AC are common inferential errors. Table 2 reports percentages of errors in
logic by experimental subjects in three studies. Importantly, the percentages of DA
and AC errors are very similar, in keeping with the interpretation that conditionals are
being mistaken for equivalences (bi-conditionals) (Evans, 1977; Griggs, 1976; Taplin,
1971, Taplin & Staudenmayer, 1973). Reasoning from equivalences is less error
prone because asserting the bi-conditional and the truth or falsity of either the
antecedent or consequent assures the truth or falsity, respectively, of the other.

above. (p. 97)




Table 2

Percentage of Adult Subjects Endorsing Conditional Inferences in Several Studies,
for an Affirmative Rule, If p then q (Evans, 1982, p. 129)

Study MP DA AC MT
Taplin (1971) 92 52 57 63
Taplin and Staudenmayer (1973) 98 82 84 87
Evans (1977) 100 69 75 75

| argue now that the logical structure of algebraic symbol manipulation involves,
almost exclusively, bi-conditional reasoning; almost never, conditional reasoning. A
contrast with geometric proof will help establish this point.

A school geometry problem starts with a theorem to be proved. Usually the theorem
is expressed as an implication: If certain given conditions X hold, then conclusion Y
follows. Now the theorem could be expressed as a bi-conditional: X iff (X and Y).
But it is the deductive structure of the solution processes rather than the theorem
statement that is at issue. For instance to prove that X implies Y, a typical strategy
is proof by contradiction; assume not Y and prove not X. As we've seen, proof by
contradiction is based upon modus tolens, one of the rules of conditional inference.
In this and many other instances, geometry proof depends upon inferential reasoning.

We turn now to the case of algebraic symbol manipulation as illustrated by a typical
derivation: 3x? - 27y? = 3(x® - 9y?) = 3(x - 3y)(x + 3y). (For the sake of completeness
we include the tacit steps: 3x*-27 = 3x*-39 = 3(x*-9) = 3(x¥-3?) =
3(x - 3j(x + 3).) In its logical structure, this derivation constitutes a proof of the
equivalence of 3x* - 27y* with 3(x - 3y)(x + 3y). But again, it is tiie deductive
structure of the solution process rather than the theorem statement that is at issue.
In such derivations each sti? is derived from the previous one by substitution: 27 iff
3+9 yields the substitution x* - 27 iff x* - 3¢9, and so on. The solution may require
considerable procedural skill in comparing the structure of a given expression (e.g.,
x? - (3y)?) to the condition of a rule a? - b?, noting the correspondence of structural
components and rigorously applying substitutions of component parts. This may be
technically demanding, but it is not logically obscure. Substitution of equivalences
is an aspect of bi-conditional, not conditional, reasoning.

There are other differences between the logic of algebraic symbol manipulation and
geometric proof. In algebra the conclusion to be reached is not given. Rather, one
starts with an initial expression (or equation), and an instruction such as “factor" (or
"solve"). Knowing the characteristics of the desired end-state, and deciding what
transformational rules to apply to get there, are part of the pragmatic component
(Kirshner, 1987). Thus the pragmatic component in algebra necessarily is based
upon a knowledge of routine tasks. Geometry theorems, which do provide the
conclusion sought, need not have a routine character (Anderson, 1983b). It is this

9
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difference that justifies the term pragmatic knowledge for algebra, but not for
geometry, where creative strategies may need to be devised and implemented. This
is another factor that may serve to make algebraic derivation a more tractable study
than geometry proof (though of course educational goals and values need not favor
more tractable problems).

The Visual Structure of Algebra

If, as argued above, the deductive structure of algebra symbol manipulation does not
depend upon difficult inferential reasoning, then some other sources of difficulty need
to be identified to explain (1) students’ legendary difficulties with the subject, (2) the
failure of the new math movement which involved a massive mobilization of
resources to support structural algebra in scheols, and (3) the predilection of many
teachers and students for incrementalist skill-drill curricula like Saxon Algebra and
Kumon Algebra in which opportunities to grapple with the (relatively simple) logical
structure of the domain are minimized.

A comparison to computer programming can highlight this last point. Programming
education is characterized by an explicit curriculum in which the components of
knowledge to be acquired are carefully categorized and fully explicated for students.
And care is taken to assure that declarative representations are integrated into
students’ initial construction of the domain. Anderson, Conrad, and Corbett (1989)
describe their design of a LISP tutor as follows:

Students must encode such information [explicit descriptions about the rules
of the programming language] in a declarative representation ... and use it to
guide their programming.... There are clear pedagogical implications of this
initial stage of using declarative knowledge. One is that one shou'd carefully
fashion it so that the target productions will be compiled. (p. 475)

Furthermore successful students generally are able to describe the structure of the
language that they have learned, as a result of which "explanation helps students
immediately correct their code” (Anderson, Conrad, & Corbett, 1989, p. 501). But
algebra students, even those who are relatively successful, generally are unable to
provide coherent accounts of their own knowledge base (Davis, 1984, Kirshner,

1989), and instruction-resistant algebra errors are commonplace. Algebra just seems
to have a mind of its own.

In this section, | argue that algebra, which has evolved over a millennium (see Cajori,
1928), is different in kind from wholly artificial languages like computer languages,
whose functioning is contrived in advance by its developers at a given point in time
--a slight exaggeration, but nearly true reiative to the evolution of algebraic language.
In the case of algebra, notational attributes which facilitate cognitive functioning and
acquisition may have evolved in ways that were not explicitly intended, and w' 3

consequently, may not be fully accommodated for in instructional practices. But my
claim for unintended cognitive attributes goes beyond mere notational device (the
graphological component) to include aspects of the very construction of algebra

10




10

content (the transformational component). In this section | briefly summarize two
empirical studies that implicate the visual structure of algebra in students’
unconscious assimilation of algebraic knowledge. in the next section | sketch a
curricular model that accommodates for these implicit characteristics in developing
students explicit structural understanding of the topic.

Visual Parsina

One component of parsing knowledge Involves a weil-known hierarchy of operations.
A succinct (propositional) account of this hierarchy involves a system of operation
levels (Schwartzman, 1977): :

Operation Levels

Level 1 operations addition, subtraction
Level 2 operations multiplication, division
Level 3 operations exponentiation, radical

This system groups together inverse operations in a natural way. Parsing rules for
algebra expressions follow this hierarchy:

Parsing Rule

1. Precedence is assigned to the highest level operation.
2. Foroperation of equal level, precedence is assigned to the left-most operation.

For example 1 + 3x° is parsed as 1 + [3(x%)] because exponentiation (Level Q) has
precedence over multiplication (Level 2) which has precedence over addition (Level
1). 3-x+YylIs parsed as (3 - x) + y (rather than 3 - (x + y)) because the left-most
Level 1 operation has precedence over the Level 1 operation on the right.

It is instructive to note that such propositionally accurate accounts of operation
hierarchy are not provided in standard curricula. Rather, incomplete mnemonic
dovices like My Dear Aunt Sally for Muitiply Divide Add Subtract (Keedy, 1986)
provide an informal guide to operation precedence for some operations. Most

textoooks devote only three or four pages to developing parsing skills (Kirshner,
1989).

Kirshner (1989) identified visual correlates to the propositional structure of operation
level:
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Operation Levals (Visual)

Level 1 operations wide spacing (a+b;a-b)
Level 2 operations horizontai/vertical juxtaposition (ab; &)
Level 3 operations diagonal juxtaposition @5 Vb )

With operation level defined in these visual terms the character of the hierarchy of
operations rule is altered: The propositional construct that exponentiation has
precedence over multiplication which has precedence over addition becomes the
implicit knowledge that diagonal juxtaposition 'ties tighter than’ horizontal juxtaposition
which 'ties tighter than’ wide spacing. Kirshner (1989) verified that many students
who are fully competent in parsing algebraic expressions in ordinary notation are
unable to transfer this ability to a contrived notation in which propositional information
about operations is present but visual/spatial characteristics are distorted; and they
are unable to give coherent accounts of their parsing knowledge. These data
suggest that parsing knowledge may not be conveyed through the explicit curriculum

(which anyway is inaccurate and incomplete) but induced directly through immersion
in symbol skill activities.

Visual Transformation

Whereas this first study implicates visual structure in the conventional system of
notational parsing, | want further to argue that visual pattern reaches into the heart
of algebraic structure --the transformational component. Transformational rules seem
to vary with respect to their degree of visual salience. Some rules like a(b + ¢) =

ab -ac, (a"°=a" &€ = 86 efc, have a certain visual coherence that other
bd bd
rules like @ -b®=(a-b)a+b), (a+bP =a+2ab+b?, 4 ,C = ad+be
b d bd

lack.

In a recent study (Awtry, in preparation) two groups of grade 7 students, complete
novices in algebra, were asked to memorize a set of eight rules, four of which were
of the visually salient variety, four of which were not. One group was taught the rules
in standard algebraic notation. The other group was introduced to a tree notation in
which the parse of the expression is encoded in a hierarchy of operation nodes. For
instance the rule a®*° = a°a’ is encoded in tree notation as follows (where P, M, and
A represent power, multiplication, and addition, respectively):

M
P\A P / \ P
b/ \c a/ \b a/ \c
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it must be noted that tree notation also is a visual medium. Indeed it is strongly
visual. But the visual characteristics that contribute to the salience of ordinary
notation rules seem to be related to visual parsing features {diagonal juxtaposition,
horizontal juxtaposition, and spacing) that are not preserved in tree notation. Thus
the visual character of tree notation does not insure that iransformational rules will
have differential visual salience.?

Two kinds of tasks were given to the students in the study: recognition and rejection
tasks. In recognition tasks students were presented with an initial expression and
asked to select from among six choices (including "none," but never as the correct
response) the expression that could be derived from the given expression by legal
application of one of the given rules. In the rejection tasks, no rule exactly applied
to the given expression, though there was one rule that nearly (but not exactly)
applied. Thus recognition tasks check the student's ability to recognize a routine
application of a rule; whereas, rejection items invite the student *o overgeneralize the

context of application of algebra rules. The correct responsa for these latter itemns
is "none".

The results were that in ordinary notaticn, visually salient rules were significantly
easier to recognize than non visuaiiy-salient rules, but for tree notation items visual
and non-visual rules were equally difficult. This pattern of results did not hold true
for the rejection items. Indeed, in ordinary notation students more often
overgeneralized visual items by applying them to inappropriate expressions than non-
visual items (though the differences in this direction were not significant).

These data raise the possibility that students schooled in standard curricula may not
be developing equally propositional representations for all of the transformational
rules encountered. Some rules, based on their high degree of visual salience, may
be slipping into usage more easily. But these visual rules appear to be just the ones
that students most often overgeneralize, as illustrated by students’ common errors

like (a + b)? = a* + b? (an overgeneralization of (ab)> =a®?, & ., & _ a+b

) — 4 — =

c d c+d

(an overgeneralization of 8.0

% ), etc. (Davis, Jockusch, & McKnight, 1978;
Laursen, 1978; Matz, 1980; Schwartzman, 1977).

A Structural Algebra Curriculum
The foregoing provides a framework for explaining anomalous features of current

algebra teaching and learning, including: (1) the non-rigorous presentation of parsing
rules in textbooks; and (2) the apparent predilection of students to learn from

*My fuller speculation is that transformational rules in algebra evolved in dialectical
relation to parsing features. But this historical analysis has yet to be undertaken.

id
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examples and practice rather than from explanation and principles. Because
students generally are successful in acquiring the ability to determine the correct
parse of algebraic expressions, curriculum materials that present parsing rules
rigorously may seem unnecessary. Unaware of the visual structure of notation,
curriculurn authors may make the reasonable assumption that students’ parsing skill
reflects a propositional foundation for parsing rules. Indeed, current theories of
acquisition of intellectual skills often start with acquisition of declarative
representations (Anderson, 1983).

But rigorous comprehension and application of transformational rules must be
founded upon an explicit model of parsing hierarchies. For instance to successfully

apply the rule ab _b requires knowing that it specifies multiplication as the main
ac ¢

operation in numerator and denominator, and then being able to identify such
conditions in a given expression. Now if parsing skills are detached (by visual
properties of notation) from explicit knowledge of operations, little sense can be made
of teachers’ rule explanations, and the student is well-launched to a superficial,
apropositional acquisition of visually salient rules. Students’ proclivity for learning
through examples and practice (Sweller, & Cooper, 1985) without attending to
explanations, is a natural consequent, as is the subsequent proliferation of curricula
that promote non-reflective incremental practice (Kumon Math; Saxon, 1991; Saxon,
1992).

A successful structural algebra curriculum must take active measures to counteract
the passive seductions of visual structure. The method that | advocate uses a verbal
support system (VSS) to instantiate propositional aspects of parsing structure. The
VSS provides a lexicon for structural elements of algebraic expressions. For
instance each expression has a dominant or principal operation defined as the least
precedent operation according to the rules for parsing. Becoming conversant with
this term requires an explicit knowledge of parsing rules, as well as practice in
creating explicit structural maps of expressions. But a further structural lexicon is
needed. The subexpressions joined by the dominant operation might be called the
principal subexpressions. From here, standard vocabulary items like term (or facton)
can rigorously be defined as "the principal subexpressions of an expression whose
dominant operation is addition (or multiplication)". Mastering this vocabulary
constitutes a propositional grounding for the parsing structure of expressions and

equations. Such mastery must precede introduction to transformational rules which
alter structure.

Following mastery of the structural vocabulary, it becomes possible to instantiate

algebra rules propositionally. For instance the description of ab _ b asarulefor
ac ¢

canceling common factors can take on a precise meaning traced back to the parsing
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structure of expressions. Errors like X.* : = .g_ now can be analyzed as
X +

violating the scope of the cancellation rule, because "factor" has a precise meaning.
The propositional basis for parsing structure can constrain overgeneralization of
transformations. Ultimately it is possible to link the pragmatic component to an
explicit analysis of structural states. For instance standard tasks like simplify the
fractional expression can be related to an end state of applying the cancellation law
for fractions, which requires achieving a preceding state of having the numerator and
denominator in factored form. Explicating the pragmatic structure of various tasks
is something that good teachers of structural algebra might try and do anyway. But
the VSS moves one past the very natural assumption that students who can parse
expressions and perform simple transformations successfully must have a
propositional base for their knowledge of (Anderson, 1983; Anderson, Conrad, &
Corbett, 1989). It provides for a language of shared meanings between student and
teacher.

Conclusions

Internal structure and external reference are complementary and equally vital aspects
of algebraic knowledge. The twin circumstances of computer/calculator symbol
manipulators that remove the practical imperative for mastery of symbol skills, and
a history of failure at implementing structural algebra (including the current retreat to
non-reflective, incremental practice) have pushed many educators to an exclusively
empirical agenda: If it has no referential basis, it has no pedagogical value! But
to deny the value of learning to reason within a closed (referentially truncated)
system is to abandon entirely the logicist/formalist aspect of mathematics. Such a
position needs to be carefully considered.

| have suggested in this paper that structural algebra uses a relatively limited
repertoire of logical operations (that may be tractable to students) and that a
reasoning, discursive structural curriculum can replace the mindless incrementalist
approaches gaining ascencuncy today. Ironically this entails subverting (for a time)
the visual structures that allow students a certain surface facility with expressions and
transformations. But the visual aesthetic woven into the form and content of
algebraic language that supports easy symbol fluency for the mathematically mature
can overwhelm the propositional aspect of the language for the novice.
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