DOCUMENT RESUME

ED 362 020 FL 021 473

AUTHOR Tomlin, Russell S.; Douglas, Sarah A.

TITLE Beginning Second Language Instruction. Computer-Based
Curriculum Improvements.

INSTITUTION Oregon Univ., Eugene. American English Inst.

PUB DATE 89

CONTRACT G008541129

NOTE 38p.

PUB TYPE Reports — Descriptive (14l) —-- Reports -
Evaluative/Feasibility (142)

EDRS PRICE MFO1/PC02 Plus Postage.

DESCRIPTORS Authoring Aids (Programing); Communicative Competence
(Languages); *Computer Assisted Instruction; Computer
Simulation; *Computer Software; Curriculum
Development; Higher Education; *Listening
Comprehension; Oral Language; *Second Language
Instruction; Second Language Learning; Undergraduate
Students

IDENTIFIERS Project Teach (FIPSE); University of Oregon

ABSTRACT

This project developed computer—based language
teaching software to assist beginning second language learners
develop listening comprehension skills. Students interact with
computer—based simulations of real world problems, which require
their understanding of oral language provided by the computer system.
The project embraced a communicative approach to language teaching
and learning that placed language learning in a task-oriented,
problem—solving, communicative context. It also embraced programming
by rehearsal in which teachers utilize a theatrical metaphor (teacher
as director) to develop novel simulations within the object—oriented
authoring component of the computer tutor system, LingWorlds. The
project’'s target population was 2100 undergraduate student: beginning
foreign language study in several language departments (Romance,
Germanic, Russian, Japanese, Mandarin, and the American Language
Institute) at the University of Oregon. LingWorlds is detailed in the
project description. The end result of the project is the creation of
an intelligent computer—assisted instruction system. (Contains 48
references.) (Author/JP)

¥e de e ot Yo e v e dle e vl e v v Jeslede e e v vl v e deve e v v e v S e e e v e vesh e ey

%

Reproductions supplied by EDRS are the best that can be made

¥ from the original document.

Yo v Yo ve e Ve e Yo dlededk e e e S de e e de v e e vt e e e vl

%
%

3% 2o o'e 9 3% D e vl v e v e ot o vl e S oot wte ol Y Ve e e s Yo ot oo S e Mo 9t Yo o v e e v Y e o St Sl e e oo v e e v v v v v o Yo vl S e e s st ve sk ve veve vedk st

Q : Beginning Second Language Instruction
Computer-Based -Curriculum Improvements

Cover Sheet

& jzation:
aQ Grantee Organization:
S University of Ore
\ gon
R American English Institute
= 241 PLC.1t
Eugene, OR 97403
Grant No.:
G008541129
Project Dates:

Starting Date: September 1, 1985
Ending Date: August 31, 1988
Number of Months: 36 '

Project Directors:

Russell S. Tomlin Sarah A. Douglas
Department of Linguistics ~ Department of Computer

& Information Scences
University of Oregon University of Oregon
Eugene, OR 97403 Eugene, OR 97403
(503) 686-3909 (503) 686-3974

tomlin @fog.uoregon.edu douglgs@m.uoregon.edu

Sandra Newkirk

Year 1: $87,235
Year 2: $86,457
Year 3: $52,780
Total: $226,472

U.S. DEPARTMENT OF EDUCATION
e of Eck R and

EDUCATIONAL RESOURCES INFORMATION

CENTER (ERIC)
hig doCument hes been repioduced as
10COIved ffom the DeFson Of o/ganizahon
onginating it
C Minor changes have been made 10 1MptOve
reproduction quaily

e BEST COPY AVAiLABLE

ment do not necessarily represent ofthicial
OER! position of policy

cof L0247 3

gy
i@

2

Summary

This project developed computer-based language teaching software to assist beginning second language leamers
develop listening comprehension skills. Students interact with computer-based simulations of real world
problems, which require their understanding of oral language provided by the computer system. The project
combined two independent insights. First, it embraced an approach 1o language leaming and teaching called the
communicative approach (along with a more narrowly defined sibling, the comprehension approach), which
emphasize placing language leaming in a task-oriented, problem-solving, communicative context. Second, it
embraced sn approach to computer tutor design called “programming by rehearsal®, in which teachers utilize 2
theatrical metaphor (teacher as director) to develop novel simulations within the object-oriented authoring
component of the computer tutor system. The project developed software to produce and operate such interactive
language learning simulations and associated materials to assist language teachers in developing
communicatively oriented simulations.

Beginning Second Language Instruction
Computer-Based Curriculuin Improvements
FIPSE Grant: G008541129

Russell S. Tomlin
Sarah A. Douglas
University of Oregon

Executive Summary

A. Project Overview

This FIPSE project was directed at improvements in undergraduate foreign language education at the University
of Oregon (and similar institutions across the U.S.). More specificalty, the project was directed at improving
foreign language instruction for beginning level students and in the specific area of listening comprehension.
At project conception, we believed that a new kind of computer-based support system could be created which

would permit students to engage in listening oriented communicative interactions with simulations of real world
problems.

The principal outcomes of the project were: (1) user friendly software for use by teachers in designing and by
students in interacting with language teaching simulations, and (2) new insight into the nature of language

learning and teaching. Both of these should have some impact on foreign language instruction and on the design
of other software systems.

B. Purpose

Oral communication skills—the ability to comprehend and produce oral discourse—are crucial in nearly every
educational, business, and scientific setting of language use. Yet the development of oral communication skills
remains a difficult theoretical and practical problem, and traditional language teaching approaches regularly fail
to help many learners. The central problem addressed by this project was to design a computer assisted language
instruction system which could help beginning language learners develop their aural comprehension abilities.
The reasons for targeting beginners as well as listening comprehension were three. First, relatively littie
software is directed at true beginners. Second, relatively little software is directed at improving listening
comprehension. Third, the computer environment is best suited to work in teaching listening.

C. Background and Origins
Origins

Given an interest among our graduate students in computer-assisted language instruction and our examination of
available systems, we believed existing software and the approaches to language teaching taken under them to be
generally unsatisfactory, both pedagogically and computationally. From a pedagogical viewpoint, existing
CALL (computer assisted language learning) software did not incorporate innovations in second language
teaching approaches otherwise important to the field, in particular task-oriented, problem-solving approaches
subsumed under the general communicative approach. From a computational viewpoint, existing CALL
utilized very simplistic programming strategies and control structures while not permitting easily truly creative
teacher initiated variation in student lessons.

Institutional Context

The narrow target of our project was undergraduate students beginning foreign language study at the University
of Oregon, 2 population of some 2100 students. These students were distributed in several languages
departments: Romance, Germanic, Russian, East Asian (Japanese and Mandarin), and the AEL

In addition, we had resources available to us through the American English Institute (AEI). The AEI represents a
rather unique context for this FIPSE project. Unlike most English language teaching units on major university
campuses, the AEI, in its operational charter specifies that it must support and promulgate research in second
language leamning and teaching. Thus, in addition to the direct grant support by FIPSE, the AEI provided
substantial material support 10 the project in the form of new equipment and additional personnel support.

D. Project Description

Overall, the principal goal of this project was to develop a second language teaching software system to assist
nil proficiency leamners develop beginning listening comprehension skills. We entered the project with a
number of elaborated examples of the kind of system we wanted to produce, but without great certainty about
the precise path that would get us there. In some respects, one of the most important outcomes of the project,
besides the actual software developed, was the development of understanding of what some of the basic issues are
in language leamning and teaching that must be faced in sofiware development as well as what some of the basic
issues are in software design and implementation. As we proceeded, and even as we continue now, we redefined

our project goals to pursue some fundamental questions in this leaming/teaching domain that conventional
wisdom did not address.

Language Learning and Language Teaching

From the point of view of language teaching theory our project draws on two important and innovative
approaches to second language learning and teaching: the communicative and the comprehension approaches.
Proponents of the communicative approach argue that successful language leaming occurs when the student is
provided the opportunity to solve non-language problems using the developing second language (Widdowson,
1978; Krashen and Terrell, 1983). They criticize traditional language teaching for focusing too much effort on
the conscious discussion and manipulation of rules of language usage and not enough effort on the acquisition of
the second language grammar through efforts to use that grammar to solve actual communication problems.
This philosophy integrates well with the general spirit of ICAI wherein leamning is a problem-solving process.

Proponents of the comprehension approach argue that second language leaming is enhanced when beginning
stages of language learning are devoted to developing the ability to understand the second language. Obligatory
oral production is delayed until the student is able to understand easily utterances in the second language.
Delaying production improves student performance in other aspects of language acquisition (Postovsky, 1974,
1976; Asher, 1966, 1969, 1972, 1974, 1981; Winitz, 1981).

Our project embraces both of these complementary approaches to language learning and teaching. The
instructional system we have created involves the student in solving communicative problems interactively with
the system. T student participates in problem-solving simulations which allow manipulation of objects in a
physical scznario or inicroworld. Information about the problem to be solved as well as information about the
microworld is given in the second language. Meta-level commentary by the tutor is also in the second language.

The teaching intervention in these simulations can vary from highly directed to coaching to purely student-
controlled explocation.

Design Approach

Our pedagogical model requires many small problem-solving environments to be built, as well as many expert
tutc rs. This has mativated us to study the possibility of building a high-level authoring system. Our general
philosophy in constructing this system is that we want the microworlds to be very knowledge-intensive and
totally integrated with the interface. We also want them to be reusable. These two themes have pushed us to
envision a sort of Iibrary of microworlds and tutoring components. LingWorlds offers the teacher a rather large

amount of programming power, if the teacher wants to use it, while permitting teachers with less ex,.rience the
facility to build simple simulations.

Authoring lessons for computer-based second-language instruction is, raditionally, a time-consuming and
intensive task which has all of the problems of interface construction. With the advent of bit-mapped displays
and mice, the author s faced with ever increasing design complexity as graphics and sound supplement text
displays, windows allow multiple contexts for user tasks, and pointing devices join keyboards. On sophisticated

systems such as Interlisp on the Xerox 1100's, the interface programming effort has been informally estimated
to consume about 80% of the total programming time. The long delay experienced in software development for
even less complex machines such as the Macintosh can similarly be attributed to the complexity of composing
over 600 ROM-based interface functions into usable interactive programs.

For later purposes of building the authoring system as well as generalizing microworlds, we are committed to
three design methodologies: rapid prototyping, taxonomic classification, and direct manipulation for the
interfaces. We. feel that these methods provide greater programming productivity through the ability to custom-
tailor existing code by specializing subclasses and adding instances, and by immediate simulation of of code
modules which shortens the generate-and-test loop. These three approaches are manifested in object-oriented
programming environments like Smalltalk and Lisp with Flavors. Previous work comparing rule-based with
object-criented ICAI tutors (Douglas, 1986) suggested that there are significant advantages possible with an
object-oriented implementation, not the least of which is the accommodation of event-driven, student-initiated
control with event-driven, tutor-initiated control. Thus, our system, like Programming by Rehearsal, ARK,
Thinglab, and STEAMER, is almost eatirely object-oriented.

AN EXAMPLE: PROVISIONING THE LIFEBOAT

In order to provide the reader with & concrete idea of how the system works, the following is an extended
example of one microworld called Provisioning the Lifeboat. In this simulation the student is faced with the
non-linguistic task of provisioning a lifeboat before an ocean liner sinks. The simulation begins with an
introductory animation and instructions. The computer displays an animation showing an ocean liner
approaching an iceberg. A simple oral narrative accompanies the animation. As the ship collides with the
iceberg, a second, close-up animation occurs showing the sinking ship. Finally, an on-deck scene of equipment
and people near a lifeboat is presented. At this point in the simulation, student interaction begins. Oral language
directs the student to Jocations of provisions and equipment needed to use the lifeboat successfully. The student
responds to the instructions by pointing, clicking or dragging with a mouse. Only through successful
comprehension of the spoken language will the student be able to complete the tasks required to use the lifeboat.

While commands can be relatively simple to begin (“Put the anchor in the lifeboat."), they can become
increasingly complex (“Put the binoculars in the basket in the boat and then put the waterjug beside them.”).
Note that in this second problem the student must solve several complicated problems: know the names of the
objects, perform the task in the correct temporal order, select which of the two baskets is the correct location,
and understand prepositions of location (beside, in, eic.).

There are three versions of the Lifeboat simulation which vary the mix of student and tutor initiation and
control complexity: an exploratory (student-initiated), a game, and a directed tutor. They demonstrate the kind of
versatility that we want to provide for microworld control. In the exploratory mode, the student can use the
mouse to single-click objects and hear their names (“The basket.”) or double-click objects to hear a linguistic
description of their Jocations in relation to another object (“The woman is not in the lifeboat.”) The student is
also free to drag objects from one location to another to hear the effect of a changed location. Help instructions
are available by clicking a question mark (?) icon. In the game mode, oral commands direct the student to
locations of provisions and equipmen needed to provision the lifeboat successfully. The sinking of the ship
provides time pressure for completion of the tasks. The system keeps a score of successful tasks,

Finally, in the futored lifeboat mode, the direcied tutor mode supplements the oral commands of the game
mode with remedial intervention. The control strategy that we use is derived from protocol studies of 8 human
expert tutor. The tutor maintains a curriculum of concepts to be taughtand a differential student model to
determine state transition information and to diagnose types of ezrors. If the student fails to move any object
after a few seconds, the command is repeated. A second such failure causes repetition of the instructions for the
overall task; after the third failure the system demonstrates the action. If the student moves an object to the
wrong place, it is retumed (by the system) (o its initial location and the command is repeated. After several

failures, the system will move the object to the appropriate location, demonstrating the task. The student is
then given another opportunity.

These examples develop the comprehension-based grammar of the nil-proficiency leamer in at least the
following ways:

¢ Development of lexicon/vocabulary.

e Development of the grammar of spatial relations.
e Development of the grammar of reference.

¢ Development of basic syntax and word order.

¢ Development of the English article system.

From the point of view of the student, we believe that the system we have developed witl be challenging and
interesting. The student cannot accomplish the needed tasks simply through knowledge of the world, but must
comprehend the second language utterances. That is, the student is engaged in true communicative behavior,
using the developing second language to solve meaningful, non-languagé problems—the essence of the
communicative approach. The student demonstrates mastery of the linguistic task by physical manipulation of
the world rather than by linguistic production. Thus, the studeat works on aural comprehension, the essence of
the comprehension approach to second language leamning.

E. Project Results ’
Pedagogical Efforts

Complementary to the general problem of developing the computer tutor are a number of pedagogical issues
pursued during the project: (1) the nature of tutoring, (2) the nature of language teaching simulations,)
specific curriculum and simulation lessons to be implemented when the system was ready, and (4) general
principles for developing listening abilities at beginning levels.

1. The nature of tutoring. Perhaps the most fundamental question for this project was posed carly on:
what is it that tutors teach and how do they decide what to do at any given point in a tutorial interaction?

In our efforts,we developed an approach which yielded understanding of what it is tutors do when they teach.
Using a limited serantic domain, we videotaped expert language tutors engaged in one-on-one tutorials with nil
proficiency leamers of various languages. These observations were taken both of face-to-face tutorials and of
computer mediated tutorials (tutorials where, like the computer, the tutor did not have access to visual
information on the movements of learner face and hands and eyes). From these observations, we have been able
10 extract significant components and principles of second language tutorials (Douglas, in press; Tomlin,
Douglas et. al., 1988).

2. The development of model language teaching simulations. During the course of the project
we developed a number of listening oriented language teaching simulations. They represent the kinds of
simulations we believe will prove effective pedagogically and engaging to the language learner.

(1) The lifeboat. In this simulation the student must provision a lifeboat in response to oral instructions in
a second language (cither ESL or Japanese). The student moves objects about the computer screen and places
them in requested positions in the lifeboat. In order to do this successfully, the swdent must comprehend lexical
expressions for the various items and relational expressions for the targzted locations.

(2) Maptiles. This simulation represents one of our ideal lesson environments. In the development of
listening abilities itis guite common 0 use maps to represent a territory through which the student must
navigate in response to input in the target language. The maptiles environment provides a toolbox with which
teachers can construct their own maps and language lessons based on them.

(3) The animated dictionary. The animated dictionary (AD) is a lexical support system for students and
teachers. Students use the animated dictionary to search for lexical items, related items and collocations, a
variations from semantic prototypes. Teachers control the extent of student access in a given scenario.

{4) FatLand. In this simulation, the student builds simple two-dimensional configurations from a limited set
of objects: black or white, large or small, circles or squares.

(5) Mystery world. This simulation places the student in the position of a witness to some set of events.

The events are presented as an animated film of some kind or other. Associated with the filn, is a descriptive
sound track which relates the actions witnessed by the student.

3. The nature of simulations. In order to assist teacher in the design of engaging and effective language

teaching simulations, we examined the underlying organization of task-oriented language teaching simulations
and developed a taxonomy of simulation problem types.

4. General principles of communicative language teaching targeting listening
comprehension. We effected a search of the pedagogical and theoretical literature in second language leamning
and teaching and we interviewed practicing second language teachers in order to create an inventory of listening
activities. The inventory of activities is organized to reveal: (1) the necessary prerequisite skills required to
perform the task, (2) the learning goals for the task, (3) the expected outcomes for the task, (4) the
means/methods of presenting/executing the task, and (5) means of cvaluating the effectiveness of the task.

The LingWorlds Simulation System: Implementation

The LingWorlds tutoring sysiem consists of two component parts. One component is seen and used by the
leamner to engage in language leaming simulations. This component we will call the tutorial system. The

second component is used by language teachers to create simulations anc Janguage learning problems. We will
call this component the authoring system.

The LingWorlds Tutorial System

The LingWorlds micreworld consists of sequences of scenes of objects. Each object has a graphic display and is
capable of performing various programmable actions such as speaking and moving in response to 1) student
interactions such as clicking or dragging the object, 2) actions directed by other objects and 3) internally
generated tutor actions, The language generator contains special routines which manipulate digitized data and are
written in assembly language to be as efficient as possible. The language generator has a di gitized lexicon, and
a case-frame semantic grammar, and is capable of dynamically generating utterances from a conceptual
representation. It is much too primitive to be considered a full-fledged natural language generator but is
sufficient for our simple language teaching. A separate generator is needed for each language taught.

LingWorlds microworlds are generated by the authoring system (see below). Each object is essentially an
object-oriented programming construct, as is the tutor component. If the student clicks with the mouse on a
particular object on the screen, a method is appropriately activated which may move the object, cause it to say
something, etc. This is the basic flavor of all exploratory learning environments. It is the case, though, that we
often want 1o introduce more teaching intervention into student actions. Control from the tutor is introduced
into LingWorlds by the tutor object. In LingWorlds the control is knit together by message-passing between
objects and the tutor object. A totally exploratory microworld has its control locally defined with the behavior
of each object tied to student actions. A game microworld increases ttor control. Finally, a goal-directed tutor
microworld controls most of the interaction through a task-based agenda. Even in the goal-directed tutor, objects
still retain individual control over the semantics of their own actions. For example, the tutor can be notified
that a particular object has been dragged, and through additional message-passing with the object determine the
Jocation. Thus, the object-oriented paradigm allows an event-driven format that accommodates user-initiated
actions as well as internally controlled actions.

The LingWorlds Authoring System

Briefly, the goals of the authoring system were to enable a non-programming teacher of language to build
microworld-based lessons. This is achieved by three types of novice programming: direct manipulation, menu-
based selection and a very easy to leamn programming language. Using the authoring system, functioning
lessons can be developed, tested, and refined very quickly. The authoring system allows immediate switching
between creating the microworld and testing it.

Direct manipulation is used to position objects in a scene and trace animation paths. Menu-based selection is
used for choosing graphic images, selecting attributes of objects (such as whether they are draggable), and
choosing system fanctions such as testing a microworld. The programming language is composed of English
like actions and is wsed to create functionality for objects. Objects have a (growing) set of primitive actions,
such as flash, highlight, say, and move. There are also control primitives such as if and repeat while. From

XJ

=

these primitive actions and controls, users can create new actions. Taken together, the built-in primitive and
user-composed actions are available to all things and are called “global actions.” Each thing also has a set of six
“local actions,” which are functional responses of the specific thing to student everis. The local actions are 1
click action, 2 click action, dragging action, landing action, evaluation action, and history action. The actions,
both global and local, are written by the teacher in a semantically based structure editor using hierarchical
dialogues. There is no typing of text, simply selection of pop-up menu items. The system makes sure that the
menu items presented to the user are syntactically and semantically appropriate.

The anthoring system produces sound by dynamically generating speech from a digitized phrasal lexicon. The
sounds are recorded using SoundCap™ or SoundWave™, and then converted into resources which can be selected
as arguments to the speak method. Thus, for example, one might use three separate sounds, “the lantern,” “is
in,” and “the lifeboat,” which are suitably inflected to produce the unified coherent utterance “The lantemn is in
the lifeboat.™ Sound generation can be context-dependent since an object can have a state history. Thus different
utterances for an object can be generated in respo-se to different situations.

The LingWorlds authoring system is an interpreter implemented on the Macintosh II computer in Allegro
Common Lisp using Allegro's Object Lisp system. It generates Lisp code which can be supplemented by
additional Lisp programming if so desired. Technically, the system is built from a set of primitive features,
which are either constructed in the authoring system (such: as text) or are imported from other programs {such as
SoundWave™ and MacPaint™). These primitives include digitized sound, Macintosh-style images, locations,
integers, booleans, text, and icons.

Evaluation .

Our informal evaluation of the system indicates that the average time to prototype a microworld is about several
orders of magnitude less the time taken by Pascal programmers on the Mac (days rather than months). We have
yet 10 extensively test the system with more formal evaluation studies, but those are planned for the future.
Since the system is actually quite a powerful system for creating any instructional software, a version of the

system was recently requested and sent to Yale University for use in building instructional software for
mathematics tutoring.

We have built both an English and Japanese version of Provisioning the Lifeboat, with all the expected savings
in programming. We built the exploratory version first, and then added the directed tutor version. A game
version has not been programmed, but would be trivial. Since interactors and tutors can be specialized for any
particular microworld. most of the code is inherited and reusable. The Yapanese version of the Lifeboat is
virtually identical to the English except for the addition of animacy features required for speech synthesis.
Instantiation allows easy copies of objects with the minimum of programming effort. We have also built a
microworld called Flatland, in which the student is taught gcometric shapes, colors, size and spatial relations.
This is a directed tutor version, based on extensive protocols with human tutors. The implementation of
Flatland 0ok one day, since almost all of the code was reusable from the Lifeboat problem.

F. Summary and Conclusions

In this summary we have attempted to describe the principal outcomes and problems associated with our project
1o build an interesting and effective computer-based second language tutor, LingWorlds. Over the course of the
project, we found that the basic problems of interest to us in creating this system increased in complexity and -
scope. However, the end result of the project is the creation of a ICAI system that teachers will be able to use
coupled with important new insights into the nature of language learning and teaching.

Final Report

A. Project Overview

This FIPSE project was directed at improvements in undergraduate foreign language education at the University of
Oregon (and similar institutions across the U.S.). More specifically, the project was directed at improving foreign
language instruction at the beginning level and in the specific area of listening comprehension. At project
conception, we believed that a new kind of computer-based support system could be created which would permit
students to engage in listening oriented communicative interactions with simulations of real world problems.

The principal outcomes of the project were: (1) software for use by teachers in designing and by students in
interacting with language teaching simulations, and (2) new insight into the nature of language learning and
teaching. Both of these have impact on foreign language instruction and on the design of other instructional
sofiware systems.

B. Purpose

Oral comriunication skills—the ability to comprehend and produce oral discourse—are crucial in nearly every
educational, business, and scientific setting of language use. Yet the development of oral communication skills
remains a difficult theoretical and practical problem, and traditional langucge teaching approaches regularly fail to
help many learners. The central problem addressed by this project was to design a computer assisted language
instruction system which could help beginning language learners develop their aural comprehension abilities. The
reasons for targeting beginners as well as listening comprehension were three. First, relatively little software is
directed at true beginners. Second, relatively little software is directed at improving listening comprehension. Third,
the computer environment is best suited to work in teaching listening.

From the point of view of langnage teaching theory our project draws on two important and innovative approaches
to second language learning and teaching: the communicative and the comprehension approaches. Proponents of the
communicative approach argue that successful language learning occurs when the student is provided the opportunity
to solve non-language problems using the developing second language (Widdowson, 1978; Krashen and Terrell,
1983). They criticize traditional language teaching for focusing too much effort on the conscious discussion and
manipulation of rules of language usage and not enough effort on the acquisition of the second language grammar
through efforts to use that grammar to solve actual communication problems. This philosophy integrates well with
the general spirit of ICAI wherein learning is a problem-solving process.

Proponents of the comprehension approach argue that second language learning is enhanced when beginning stages
of language learning are devoted to developing the ability to understand the second language. Obligatory oral
production is delayed until the student is able to understand easily utterances in the second language. Delaying
production may even improve student performance in other aspects of language acquisition (Postovsky, 1977, 1979;
Asher, 1966, 1969, 1977; Winitz, 1981; Winitz & Reeds, 1973).

Our project embraces both of these complementary approaches to language learning and teaching. The instructional
system we have created, called Lingworlds, involves the student in solving communicative problems interacti vely
with the system. The student participates in problem-solving simulations which allow manipulation of objects in a
physical scenario or microworld Information about the problem to be solved as well as information about the
microworld is given in the second language. Meta-level commentary by the tutor is also in the second language. The

teaching intervention in these simulations can vary from highly directed to coaching to purely student-controlled
exploration.

Our pedagogical model requires many small problem-solving environments to be built, as well as many expert
tutors. This motivated us to create a high-level authoring system. Our general philosophy in constructing this
system is that we want the microworlds to be very knowledge-intensive and totally integrated with the interface. We
also want them %0 be reusable. These two themes have pushed us to envision a sort of library of microwerlds and

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

tutoring components. LingWorlds offers the teacher a rather large amount of programming power, if the teacher
wants to use it, while permitting teachers with less experience the facility to build simple simulations.

C. Background and Origins
Origins

The historical origins for this FIPSE project involved the interaction and integration of ideas from four distinct
disciplines: linguistics, applied linguistics, artificial intelligence, and computer science. Initially, graduate students
in applied linguistics, in preparation to be English language instructors, were very much interested in the
possibilities represented by computer assisted instruction {CAI or CALL, as it is referred to). However, the PI's,
each in hisher own domain, found existing software and the approaches to language teaching taken under them to be
unsatisfactory, both pedagogically and computationally. From a pedagogical viewpoint, existing CALL (computer
assisted language learning) software did not incorporate innovations in second language teaching approaches
otherwise important to the field, in particular task-oriented, problem-solving approaches subsumed under the general
communicative approach From a computational viewpoint, existing CALL utilized very simplistic programming
strategies and control structures while not permitting easily truly creative teacher initiated variation in student
lessons. Simply put, we found our students interested in the possibilities represented by CALL but we felt unable
to recommend much of anything to them to study or emulate.

Subsequently, we began to talk about how an interesting CALL system might be made, and we played around with
the idea of replicating aspects of Asher’s (1977) model of "total physical response’ training within a CALL
environment. A student of Tomlin’s (Yuri Saul) had mocked up a very simplistic vocabulary learning example on
an Apple Ile which showed that the idea had possibilities. Review of this and further considerations by PI Douglas

led to the belief that an interesting CALL system could be developed using ideas from knowledge-basad (artificial
intelligence) and microworlds programming. '

The past 15 y=ars have seen reasonable progress in delivering ICAI (Intelligent Computer-Assisted Instruction)
systems which can be used in real pedagogical situations (Anderson, 1985; Clancey, 1982; Sleeman, 1982; Soloway

et al., 1981). ICAI systems can be contrasted with traditional CAI (Computer-Assisted Instruction) in the
following ways:

o The problem of learning and, consequently, teaching is seen as a cognitive, knowledge-intensive, and
typically problem-solving process rather than a reinforcement process.

« The control structure is dynamically generated by the interaction of curriczium, student response, and
heuristics for diagnosis and tutoring rather than simply stored by the program.

« The domain knowledge being taught is explicitly available for pedagogical decisions rather than
embedded as numerical calculations (simulations or drill and practice) or blocks of text/images/sound
(programmed instruction).

» Empirical, scientifically conducted studies of students and teachers form the foundation for the research,
from initial data collection through to evaluation.

Influenced heavily by the cognitive sciencé movement, ICAI systems represent a significant attempt to model the
cognitive aspects of teaching and learning, particularly in providing an individualized approach.

The notion of microworlds was first proposed by Papert (1980) for LOGC programming. A later paper by Burton
and Brown (1982) on reactive learning environments urged the pedagogical value of exploratory learning in domains
other than programming. Our work has been greatly influenced by research on embedded semantics in microworlds
with direct manipulation interfaces: Programming by Rehearsal (Gould & Finzer, 1984), ARK (Smith, 1986), the
latest work on STEAMER (Hollan et al., 1986), and Thinglab. However, we intend to build microworlds which are
a simulation of the world as represented for tutoring purposes. This places our work closer to the work of
Programming by Rehearsal than systems like ARK, STEAMER, and Thinglab which represent the knowledge of

9

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Oregon

Newtonian mechanics and hydraulics. We are interested in packing as much knowledge as possible into the
microworld. Thus we want to allow the system to derive inferences beyond the facts explicitly declared. For
example, we want the system to be able to compute spatial relations dynamically. We have found that Al work on
scene analysis and diagram understanding, as well as the literature on spatial reasoning and data bases is related to our
work. Additionally, while we wish to continue the basic notion of exploratory learning, we also want to introduce
more tutor-controlled strategies and ICAT computational mechanisms into the microworlds.

For later purposes of generalizing microworlds as well as building the authoring system, we were committed to three
design methodologies: rapid prototyping_ taxonomic classification, and direct manipulation for the interfaces. We feel
that these methods provide greater programming productivity through the ability to custom-tailor existing code by
spedializing subdlasses and adding instances, and by immediate simulation of of code modules which shortens the
generate-and-test loop. These three approaches are manifested in object-oriented programming environments like
Smalltalk and Lisp with Flavors. Previous work comparing rule-based with object-oriented ICAI tutors (Douglas,
1986a) suggested that there are significant advantages possible with an object-oriented implementation, not the least
of which is the accommodation of event-driven, student-initiated control with event-driven, tutor-initiated control.

Thus, our system, like Programming by Rehearsal, ARK, Thinglab, and STEAMER, is almost entirely object-
oriented.

At this point, the original FIPSE pre-proposal was written, in some ways as a preliminary test of whether the ideas
we were entertaining would be of interest to others. FIPSE scemed an interesting funding source because it was risk
ard innovation oriented and because it was pragmatically oriented. Both Douglas and Tomlin had substantial
commitments to pragmatically oriented work. Tomlin was serving as Director of the University of Oregon’s
American English Institute (AEI), which provides English language training (ELT) to prospective and matriculated
foreign students at the UO. Douglas had served as Director of an academic computing center. Both enterprises put
us in touch with practical applications of research. It was at this stage that we began to reformulate our issues so
that they would more directly serve educational purposes.

Institutional context

The narrow target of our project was undergraduate students beginning foreign language study at the UO, a
population of some 2100 students. These students were distributed in several languages departments: Romance,
Germanic, Russian, East Asian (Japanese and Mandarin), and the AEI. We did not cultivate any preliminary
relations with these departments (aside from the AEI), though we expected all to become interested as the project
developed (which has in fact happened, except for the every smail Germanic department). Thus, we knew who the
targlg]eted population of terminal users were, but more might have been done to engage language teaching faculty at an
earlier stage.

On the other hand, we did have substantial resources available to us through the American English Institute (AEI),
which PI Tomlin directed. The AEI represents a rather unique context for this FIPSE project. Unlike most English
language teaching units on major university campuses, the AEI, in its operational charter specifies that it must
support and promulgate research in second language learning and teaching. In addition, as a self-support unit in the
UO College of Arts and Sciences, the AFI is able to direct material support to a project like this. Thus, in addition
to the direct grant support by FIPSE, the AFI provided substantial material support to the project in the form of new
equipment and additional personnel support.

Perhaps the greatest change in the context over time has been ancillary to the project itself but nonetheless important
to its eventual successful articulation at the UO. First, a change in Department head in the huge Romance languages
department has resulted in a change in orientation regarding Romance language instruction. In particular, Romance
has hired one new facuity member and is searching currently for a second specificaily in the area of foreign language
instruction. This has added some impetus to greater interaction between Romance and the AEI and Linguistics.
Second, the UO has, through efforts by the AFI Director, secured a private gift of some $200,000 to be used
specifically for the redesign and rebuilding of UO language lab facilities, including computer equipment. Both of
these developments represent improvements in the UO context which will help set the stage for incorporation of our
FIPSE project results into the UO foreign language instructional setting.

el
© L

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Oregon

D. Project Description

Overall, the principal goal of this project was to develop a second language teahing software system to assist nil
proficiency learners develop beginning listening comprehension skills. We have built a knowledge-based tutoring
system for teaching beginning oral communication skills for second (natural) languages. We entered the project with
a numbser of elaborated examples of the kind of system we wanted tc produce, but without great certainty about the
precise path that would get us there. In some respects, one of the most important outcomes of the project, besides
the actual software developed, was the deveiopment of understanding <f what some of the basic issues are in language
learning and teaching that must be faced in software developraent as well as what some of the basic issues are in
software design and implementation. As we procceded, and even as we continue now, we redefined our project goals
to pursue some fundamental questions in this learning/teaching domain that conventional wisdom did not address.

LingWorlds As a Tutoring System
AN EXAMPLE: PROVISIONING THE LIFEBCAT

In order to provide the reader with & concrete idea of how the system works, the following is an extended example
called Provisioning the Lifeboat In this siinulation the student is facedt with the non-linguistic task of provisioning
a lifeboat before an ocean liner sinks. The simulaiion begins with an introductory animation and instructions. The
computer displays an animation showing an ocean liner approaching an iceberg. A simple oral narrative
accompanies the animation. As the ship collides with the iceberg, a second, close-up animation occurs showing the
sinking ship. Finally, an on-deck scene of equipment and people nezr a lifeboat is presented (Figure 1). At this
point in the simulation, student interaction begins. Oral language directs the studeni 1o locations of provisions and
equipment needed to use the lifeboat successfully. The student responds to the instructions by pointing, clicking or

U
NG Yn

Figure 1. Provisioning the Lifeboat Scene

4). .,
().nf

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Oregon

dragging with a mouse. Only through successful comprehension of the spoken language will the student be able to
complete the tasks required to use the lifeboat.

While commands can be relatively simple to begin (“Put the anchor in the lifeboat.”), they can become increasingly
complex (“Put the binoculars in the basket in the boat and then put the waterjug beside them.”). Note that in this
second problem the student must solve several complicated problems: know the names of the objects, perform the
task in the correct temporal order, select which of the two baskets is the correct location, and understand prepositions
of location (beside, in, etc.).

Three versions of Lifeboat are described below which vary by the mix of student and tutor initiation and control

complexity: an exploratory (student-initiated), & game, and a directed tutor. This demonstrates the kind of versatility
that we want to provide for microworld control.

Exploratory Lifcboat. In a totally exploratory mode, the student can use the mouse to single-click objects and
hear their names (“ The hasket.”) or doubleclick objects to hear a linguistic description of their locations in relation
to another object (“ The woman is not in the liftboat™) The student is also free to drag objects from one location to
another to hear the effect of a changed location. Help instructions are available by dicking a question mark (?) icon.
(See Figure 1.)

Game Lifeboat During a game format, oral commands direct the student to locations of provisions and
equipment needed to provision the lifeboat successfully. The sinking of the ship provides time pressure for
completion of the tasks. The system keeps a score of successful tasks.

Tutored Lifeboat. The directed tutor mode supplements the oral commands of the game mode with remedial
intervention. The contro} strategy that we use is derived from protocol studies of a human expert wtor. The tutor
maintains a curriculum of concepts to be taught and a differential student model to determine state transition
information and to diagnose types of errors. If the student fails to move any object after a few seconds, the command
is repeated. A second such failur: causes repetition of the instructions for the overall task; after the third failure the
system demonstrates the action. If the student moves an object to the wrong place, it is returned (by the system) to
its initial location and the command is repeated. Afer several failures, the system will move the object to the
appropriate location, demonstrating the task. The student is then given another opportunity.

These examples develop the comprehension-based grammar of the nil-proficiency learner in at least the following
ways:

Development of lexicon/vocabulary.

« Development of the grammar of spatial relations.

Development of the grammar of reference.

« Development of basic syntax and word order.

From the point of view of the student, we believe that the system we have developed will be challenging and
interesting. The student cannot accomplish the needed tasks simply through knowledge of the world, but must
comprehend the second language utterances. That is, the student is engaged in true communicative behavior, using
the developing second language to solve meaningful, non-language , .oblems--th. essence of the communicative
approach. The student demonstrates mastery of the linguistic task by physical manipulation of the world rather than
by linguistic production. Thus, the student works on aural comprehension, the essence of the comprehension
approach to second language learning.

o &)

!

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

E. P:oject Results

This section desc:ibes the LingWorlds simulation system, both in terms of its actual implementation and its
associated pedagogical insights.

Pedagogical Efforts

Complementary to the general problem of developing the computer tutor are a number of pedagogical issues we
pursued during the project. These efforts fall into five classes: (1) the nature of tutoring, (2) the nature of language
teaching simulations, (3) specific curriculum and simulation lessons to be implemented when the system was ready,
(4) general principles for developing listening abilities at beginning levels, and (5) support efforts to the computer
tutor directly. We will describe briefly the details of the efforts in each area.

1. The nature of tutoring Perhaps the most fundamental question for this project was posed by Douglas early
on: what is it that tutors teach and how do they decide what to do at any given point in a tutorial interaction? An
answer to this compound question is needed if the computer tutor is to perform in a way similar to human witors.
The existing literature in communicative language teaching provides only the most general guidelines on this,
guidelines which are not specific enough 10 incorporate in any way in the tutor system. Consequently, we have
devoted considerable effort to understanding the nature of individual ttoring.

The communicative literature provides only the most general of assertions regarding what is taught and how that
teaching is accomplished. The communicative approach (Widdowson, 1978, 1979; Piepho, 1981) views language
learning as a cognitive enterprise in which the learner entertains multiple hypotheses regarding the structure and
function of target language constituents in natural discourse contexts until sufficient contextualized input is
encountered to settle on and automate the learner’s closest approximation of the native speaker norms. This process
of creative construction of an inferlanguage grammar (Selinker, 1972) is facilitated when linguistic input is
comprehensible to the learner (Krashen 1977, 1982), when it is of sufficient quantity in a variety of discourse

contexts, and when the affective environment does not constrain exploration and risk-taking (Krashen 1977, 1982;
Schumann 1978).

There are a number of “tenets” of the communicative approach that can elaborate brielfy the general characterization
provided above. Under the communicative approach language is viewed as situated social activity , as efforts of
discourse production and comprehension, as communication. Thus, in communicative language teaching:

(1) Systematic attention is paid to functional as well as structural aspects of language (Littlewood 1981:1).
(2) Classroom work is aimed at the situational and context@alized use of language (Piepho 1981:20-21).

(3) Teaching and learning are made observable and transparent through content which is made real to the learner
through pictures, sketches, diagrams, and other representations (Piepho 1981:20-21).

(4) Attention is focused on the ability to understand and convey information; i.e. on information transfer (Johnson
1982:163-175).

(5) The leamer is seen a responsible partner in learning rather than as an object to be manipulated (Piepho 1981:11-
12).

Language teaching represents the effort by the tutor to set up the conditions for learning described above. That is,
with more or less finely grained teaching efforts, the tutor seeks to provide to the learner a sufficient quantity of
comprehensible input drawn from a wide variety of genuine or authentic discourse contexts (Widdowson 1978,
Krashen & Terrell 1983) in an affectively “supportive” environment. While the observations above represent some
of the general principles defining the communicative approach, these general principles do little to tell us exactly
what teachers manipulate in tutoring and when and how they do it.

©

FIPSE FINAL REPORT: Beginning Sccond Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Oregon

In our efforts, then, we developed an 2pproach which yielded understanding of what it is tutors do when they teach.
Using a limited semantic domain, we videotaped expert language tutors engaged in one-on-one tutorials with nil
proficiency learners of various languages. These observations were taken both of face-to-face tutorials and of
computer mediated tutorials (tutorials where, like the computer, the tutor did not have access to visual information
on the movements of learner face and hands and eyes). From these observations, we have been able to extract

significant components and principles of second language tutorials (Douglas, in press; Tomlin, Douglas et. al.,
1989). ‘

(1) Tutorials are organized around a limited set of rhetorical acts. A rhetorical act represents a basic, composite
unit of tutorial activity. The rhetorical act represents a basic linguistic action taken by an individual in a given
discourse context. It represents an attempt by the speaker to direct some action on the part of the listener. A
rhetorical act consists of three criterial components: '

 An intentional construct, or simply intention,
* Behavioral content,
* Preparatory conditions.

The intention of a rhetorical act represents the underlying motive precipitating performance of the act. It is,
following Brandt (1984), a mental event, the immediate and proxim:ate cause of particular actions engaged in by the
tutor. It is also the principal defining characteristic of particular rhetorical acts.

The behavioral content represents the set of actions, mental or physical, which the tutor carries out due to the
intention. The behavioral content of a rhetorical act includes a description of the generally desired outcome (goals) of

the rhetorical act and of the means of achieving t}is outcome (methods). For the rhetorical act DESCRIBE
OBJECT, the behavioral content includes: :

* Goaly: Tutor directs leamner attention to some part of the environment.
 Method,: Tutor points to object.

* Goaly: Learner links attended object to linguistic input.

» Method,: Tutor utters object-name after attention is allocated to object by learner.

Preparatory conditions represent tutor assumptions regarding preliminary or ongoing states of affairs in the
tutor, in the leamer, or in the world which must be present in order for a given rhetorical act to be executed. For the
LingWorlds tutor, relevant preparatory conditions for many rhetorical acts include assumptions regarding:

« state of the learner,

« state of the curriculum,

» comparison of (1) with (2),

« state of the environment (world).

For the act of DESC OBJ, the preparatory conditions incluce:

* tutor assumes object is available to the learner,
* tutor assumes learner is familiar with the concept of the object.

A rough model of a thetorical act, then, similar to the informal action model presented in Brandt (1984:128, is
presented in Figure 2. Our descriptive efforts reveal that beginning second language tutorials (within the domain we
examined) are composed of a limited inventory of these kinds of acts. Thus, the building blocks of the computer
tutor should be those rhetorical acts utilized in particular discourse domains.

Q)
O

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

Preparatory Conditions

!

. > General Specific
Intention Coals Metiods

Figure 2. Components of a rhetorical act

(2) Tutor evaluation tactics. In order to decide what to do next, the tutor must evaluate current actions of the
student. In our observaticns, the information used by the tutor to do this varies according to the nature of the
tutoria) interaciion. In both face-to-face and computer-mediated tutorials, it seems very dear that the tutor makes
decisions about which act to select next prior to seeing the actual completion of a student action. That is, if the
tutor in order to test some hypothesis like * the studeut knows with certainty that ’atas means above’ * asks the
student to manipulate (in the target language Indonesian) a specific object with respect to another (Put the black
square above the small white circle), the tutor will generally decide whether the student has gotten it prior to the
action being completed.

In both face-to-face and computer-mediated tutorials, the decision is made on the basis of the extent of uncertainty or
hesitation in the student’s response. The more hesitant the student is, the more likely the tutor will conclude the
student does not yet have control of the relevant part of the grammar. However, the two conditions reveal differences
in the tactical information exploited to reach this decision. In the face-to-face tutorials, the decision is made
tactically on the basis of information provided by a wide variety of responses: (1) latency in initiating response, (2)
hesitation in movement of objects during response, (3) eye gaze, (4) head positions, (5) hand positions. In the
computer-mediated tutorials, the visual cues on the student are not available, and the tutor relies primarily on latency
and hesitancy in evaluating student performance. Unlike the assumption in virtually all CAUCALL software we
know of, the tutor does not rely solely or even primatily on the correctness of the: student response. In the
development of the computer tutor then, such observations must be taken into account.

(3) The tutor’s model of the student. Both the human tutor and the computer tutor must maintain a dynamic
model of the student and what he has learned of the second language. In our studies, we embraced the general notion
that students engage in “creatively constructing” the second language grammar. That is, on the basis of linguistic
input which links utterances in the second language to observable situations in the world, the student formulates (not
consciously of course) hypoiheses regarding the grammar as used to effect communication. Additional input serves

(8)

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S_.A_, Univ of Oregon

to aid the student to reject false hypotheses and to increase the certainty with which he holds some hypotheses to be
true.

The tutor, then, must organize the tutorial effort to take this into account. Thus, the tutor must represent the
student’s current knowledge of the target language in terms of possible hypotheses and the strengths to which they
are held. And, the tutor’s actions (selection and use of rhetorical acts) must be tied to the formulation, rejection, and
testing of hypotheses by the student.

(4) The role of repetition in language learning and teaching. There has been great interest in language
learning and teaching in understanding the role of repetition (and more generally correction) in language teaching.
Our descriptive studies have revealed a number of interesting hypotheses regarding the nature and use of repetiticn in
language learning. First, we see three distinct types of repetition: (1) repetition of the most recent utterance (REP
EXP), repetition of a selected part of an utterance (REP FOC), and repetition of an entire utterance/action complex
(REP ACT). While the three types of repetition share the gross structural property of similarity in the utterance
token, the three differ interestingly in their function and, hence, use by tutors.

The first type of repetition, REP EXP, seems to occur without much, if any, behavioral input from the learreer.
Typically, then tutor produces 2 REP EXP immediately after DESC OBJ and independent of any request for the

student to do something. For example, at the beginning of our Indonesian learning protocol, one can observe the
following:

(1) An example of REP EXP -

00:00 X on LBS

00:06 LBS ->

00:08 LBS lower right screen
00:08 Ko:tak./

00:11 03 Ko:tak/

In this example, at the beginning of the tutorial (second 00:00), the tutor produces the rhetorical act DESC OBJ,
placing the cursor is on the large black square (LBS), moving the large black square to the lower right hand comer
of the display, and uttering an appropriate description of ¢ targeted object. Immediately after the DESC OBJ is
complete, the tutor produces a REP EXP, repeating exactly the previous utterance. There is no expectation on the
part of the tutor at this point that the student will do anything, yet the repetition occurs nonetheless. It appears that
the actual purpose of the repetition in this instance is to allow the student the benefit of retaining in working
memory a good representation of the original token. That is, the REP EXP is a social act keyed into the difficulty a
beginning learner has in sustaining an auditory presentation of novel linguistic input. Such a hypothesis is
supported by comments of learners after the protocols are collected which indicate how difficult subvocalizing the
input was for them (even though they were able to perform the tasks required without great difficulty). REP EXPs
are used also more at the beginnings of learning segments than in the middles or ends.

Repetitions in which only a part of the previous utterance is repeated, what we call REP FOC (repetition focus),
ocaur at very different times for apparently very different reasons. REP FOCs occur after the tutor requests the
student to manipulate some object and the student reveals latency or hesitation in responding. The REP FOC
repeats just the targeted lingnistic notion in that request. Fro example, consider the data below:

(2) An example of a REP FOC (repeat focus)

13:30 03 2.34 Ko:tak hi:tam ke:cil (.36) DI:ATAS (.15) kotak hitam besar .
/
13:35 05 1.11 DIiATAS ¥
13:36 SBS -->
13:40 SBS a LBS
13:40 05 3.81 Baik ./
€0

IR
(®))

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

The utterance at 13:30 represents a request of the student by the tutor to put the small (kecil), black (hitam) square
(kotak) above (di-atas) the large (besar), black square. At this stage, the student has already mastered the lexical and
structural aspects of Indonesian required to determine the referents of the noun phrases. It is precisely the the spatial
relation of 'above’ that is being manipulated in this instance. The student Lesitates briefly after the end of the
utterance (1.11 seconds afler completion of "besar’), and the tutor produces the REP FOC. Thus, the purpose of REP
FOC seems to be to draw the student’s attention to the linguistic item under review or examination at the present
moment in the tutorial interaction. And, it seems that REP FOCs occur as the tutor entertains a hypothesis that the
student has failed to understand or to hear what had been said. That is, the tutor seems to believe that the student
has made a mistake rather than an error.

Finally, there are repetitions of entire acts, what we call REP ACT, which involves not only the repetition of the
linguistic utterance associated with some manipulation of the simulated world but also requires repetition of the
actions taken by the tutor linked to them. REP ACTs seem to be restricted in use to occasions where the tutor
believes the student simply has failed to learn something, where he has made what is traditionally described as an
error. While ordinarily errors are not directly addressed, but seem to be ignored in favor of new examples for
consideration, tutors do occasionally repeat entire acts. We thus can see that REP ACTs are distinct from other
forms of repetition in that they address error rather than mistakes or rather than assisting in sustaining a memory
representation of the input, but we at present do not know when REP ACTs occur rather than simply using
additional and new examples. '

These observations and others like them are described in a working paper, a part of which we will present at a major
second language acquisition conference in February and hope to publish sometime after that. Most of these insights
must still be built into the tutor sub-component of the overall system.

2. The development of model language teaching simulations. During the course of the project we
developed a numbser of listening oriented language teaching simulations. They represent the kinds of simulations we
believe will prove eflective pedagogically and engaging to the language learner. An examination of these
simulations also reveals something of the general nature of simulations for language teaching. Of these

simulatio~ -nly the lifeboat has been implemented fully.

(1) The lifeboat. In this simulation, which was discussed in the Project Description section, the student must
provision a lifeboat in response to oral instruciions in a second language (either ESL or Japanese). The student
moves objects about the computer screen and places them in requested positions in the lifeboat. In order to do this

successful, the student must comprehend lexical expressions for the various items and relational expressions for the
targeted locations.

The lifeboat simulation has two component lessons. One is a traditional lesson in which the computer tutor
controls the interaction, requesting acts of the student, monitoring student performance, and altering in interesting
but limited ways the organization of the tutorial according to that performance. The second lesson departs from
traditional language teaching activities in interesting and important ways. In this second lesson, which we have

-called a prosponsive lesson, the student manipulates objects in the simulated microworld of the lifeboat scene and the

computer tutor responds by describing the resulting state of affairs.

(2) Maptiles. This simulation represents one of our ideal lesson environments. In the development of listening
abilities it is quite commonly the practice to use maps of one kind or another to represent a territory through which
the student must navigate in response to input in the target language. Maps offer many advantages to the language
teacher: (1) maps are good for information transfer and sharing; (2) students find map work engaging; (3) object/place

locations and directions given are concrete and observable; and (4) resulting procedural discourses are rich as well as
natural.

The maptiles environment provides a toolbox with which teachers can construct their own maps and language
lessons based on them. The principal component of the system is the MAPTILE, an object composed of three
parts: (1) pathways (which define five particular maptile objects), locations (in which building objects may be
placed), and (3) buildings (which may have size, address, name, and other internal properties). The maptile inventory
is illustrated below.

(10)

+

‘I
s

FIPSE FINAL REPORT: Beginning Sccond Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Oregon

Figure 3. The inventory of maptile objects

In designing a map, the teacher builds a map by selecting maptiles and placing them on the display. Each maptile
defines the pathways and other properties exhibited by each maptile selected. Unspecified parameters are assigned
default values. For instance, a given pathway might be designated as one-way, if the teacher so desired, or it could
be left zione and assigned its default two-way flow of traftic. Having defined a map, the teacher may also place

buildings at locations on each tile, defining properties that each building may have (graphic appearance, name,
address, hours, and so on).

With a completed map, the teacher can also define a maptile problem. This represents the real world problem the
student will be required to manage. Typically, such problems will be defined as NAVIGATION problems, in which
the student must follow some specified path (as directed by oral input from the computer) under time pressure. The
teacher defines the required path, the time limits or other limits on performance, and the language input provided to
the student. For example. the teacher might create a simulation in which the student controls a getaway vehicle.
The vehicle must be maneuvered to a specific hideout along a particular path by following directions provide as oral

input for the student. The student controls the cursor which may be represented graphically as a vehicle or pedestrian
or other figure.

(3) The animated dictionary. The animated dictionary (AD) is 2 lexical support system for students and
teachers. Students use th- animated dictionary to search for lexical items, related items and collocations, and
variations from semantic prototypes. Teachers control the extent of student access in a given scenario.

In the animated dictionary, lexical entries for ostensive vocabulary are represented by animated sequences. For
example, WALK would show an individual walking acrcss the screen and other manners of locomotion would be
similarly displayed (RUN, SKIP, JOG, JUMP, TRIP, etc.). Students have two means of accessing the AD: (1)
*meaning” to sound (What is the word for this?), or (2) sound to meaning (What does this mean?).

Dictionasy entries include a phonological representation consisting a digitized recordings of the item in a citation
form as well as exemplars of its use in context. Th entries also include an orthographic representation, which may
be represented alcng with or independently of the phonological representation or suppressed altogether.

The graphic representation for each entry is composed of prototypical cases along with positive and negative
exemplars. Prototypes present stereotypic examples of the requested category. Positive exemplars demonstrate
typical and fringe cases. Negative exemplars demonstrate common misconceptions or confusions. In addition to
these cases, the AD also links a given entry to parallel and subordinate entries from the same general semantic class.

1)~ (-
()r.;(!

FIPSE FINAL REPORT: Beginning Secord Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

For instance, RUN is linked to parallel verbs of motion WALK, HOP, SKIP as well as to subordinate semantic
associates SPRINT, JOG, LOPE, etc.

The organization of the animated dictionary is a simple hierarchical one in which the student uses buttons on a
Macintosh menu to select 2mong alternative actions. The selections take the student to various other menus:
BASIC ENTRY (a graphic, animated representation; a phonological representation; an orthographic representation),
VARIATIONS (positive and negative exemplars), RELATED ITEMS (semantic associates and contextual uses), and
SOUND VARIATIONS (coniext sensitive variations in pronunciation).

(4) FlatLand. In this simulation, the student builds simple two-dimensional configurations from a limited set of ..
objects: black or white, large or small, circles or squares. The tutor initially trains students to deal with the lexical
items needed to ident %y individual objects. It then introduces the specific spatial relations manipulated (above,

below, left, right, between). Finally, the student is directed to build configurations of these objects like the one
shown in Figure (4). This is done by placing one object at a time in its proper location in response to a single,
complex utterance in the target language.

SSOLY |

Figure 4. A final FlatLand configuration

(5) Mystery world. This simulation places the student in the position of a witness to some set of events. The
events are presented as an animated film of some kind or other. Associated with the film is a descriptive sound track
which relates the actions witnessed by the student. This narration, whose contents are provided by the teacher, can
precede, follow, or occur simultaneously with the movie.

The student engages in two kinds of tasks. First, the student practices ordinary listening, matching the narration
with the ongoing events portrayed in the movie. Second, and moré interesting, the student can then interact as
witness to the computer tutor’s detective to solve a mystery presented in the movie. The detective can interview
other witnesses in the scene and the student must listen and verify the truth and accuracy of those interview
responses. In addition, the detective can interview the student directly, through the judicious use of yes-no questions.
This interaction can take the student through the traditional hierarchy of question types in listening: (1) questions of
observed fact, (2) questions of inferred fact, (3) questions of inferred motivations, and (4) questions of evaluation.

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Oregon

This particular simulation has been mocked up using Apple animation for one scenario. In this scenario the
student/Awitness observes several people entering and exiting a bookstore. A robbery occurs in the bookstore (unseen
directly by the witness), but the timing of events permits the witness to infer who the culprit was.

(6) Minor simulations. In addition to the major simulation types described above we also considered and in one
case partially implemented several other more minor simulation types. One example is a simulation of the face. By
pointing to parts on a human face, the student is able to hear the lexical names for the constituent parts of the face
(eyes, nose, mouth ,etc.). This has been implemented. :

Other simulations examined included:

(1) ClothesWorld: in which the student travels through a mall to acquire climate appropriate clothing under
a limited spending budget.

(2) Plumbing: in which the studeat builds a water system out of plumbing components in response to
instructions from the tutor.

(3) ForestWorld: in which the student manages forest resources according to orally presented information
on the state of the forest and possible outcomes of alternative decisions that might be taken at a given
moment.

(4) BusinessWorld: in which the student manages a simple manufacturing scenario, buying raw materials,
producing manufactured goods, and selling these goods in a competitive market.

It is our belief that these curriculum efforts represent important ways in which the basic computer tutor system
might be used effectively. As the project continues, it is our hope that the first four simulations types above will be
implemented, both for their own merit and as examples for others to modify and work with.

3. The nature of simulations. In order to assist teacher in the design of engaging and effective language

teaching simulations, we examined the underlying organization of task-oriented language teaching simulations and
developed a taxonomy of simulation problem types. These include:

(1) Resource Management Problems: the student manages a finite quantity of resources, seeking to maximize
their utility under varying constraints and conditions of use.

Examples

Budget management (In order to accomplish some GOAL, the student expends portions of a finite MASS
VARIABLE (money, time, energy)...

Inventory management (In order to accomplish some GOAL, th+ student distributes individual items from a
limited INVENTORY of ITBM TYPES (auto parts, flora, f una, etc.)...

(2) Navigation Problems: the student maneuvers through some medium or territory as directed by the tutor,
reaching specified goals and avoiding specified obstacles.

Examples:
MAPTILES: described above.

Adventure simulations: the student travels through a PHYSICAL WORLD (dungeon, forest, shopping mali,
tourist zone, Paris) collecting ARTIRACTS (gold, goblets, butterflies, bric-a-brac, souvenirs, insults)
depending on the successful interpretation of INSTRUCTIONS (warnings, suggestions, recommendations,
etc.) provided by a TOURGUIDE (imp, ranger, store proprietor, taxi driver).

(3) Race/chase Problems: these represent collocations of limited resource problems (in particular TIME) with
navigation problems.

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

4. General principles of communicative language teaching targeting listening comprekension
We effected a search of the pedagogical and theoretical literature in second language learning and teaching and we
interviewed practicing second language teachers in order to create an inventory of listening activities. The inventory
of activities is organized to reveal: (1) the necessary prereqguisite skills required to perform the task, (2) the learning
goals for the task, (3) the expected outcomes for the task, (4) the means/methods of presenting/executing the task,
and (5) means of evaluating the effectiveness of the task. While no original work was done in this area, it remains
useful in organizing suggestions for practicing teachers who might be interested in using the computer tutor system.
These insights will be reflected in the final LingWorlds manual.

The LingWorlds Simulation System: Implementation

The LingWorlds tutoring system consists of two component parts. One component is seen and used by the learner
to engage in language learning simulations. This component we will call the tutorial system. The second

component is used by language teachers to create simulations and language learning problems. We will call this
component the authoring system.

The Tutorial System

The LingWorlds system is illustrated by functional parts in Figure 5. The microworld component is essentially all
object-oriented, as is the tutor component. The animator and language generator contain special routines which
manipulate digitized data and are written in assenbly language to be as efficient as possible. The language generator
has a digitized lexicon, and a case-frame semantic grammar, and is capable of dynamically generating utterances from
& conceptual representation. It much too primitive to be considered a full-fledged natural language generator but is
sufficient for our simple language teaching, A separate generator is needed for each language taught. The animator is
a specialized unit for running long animation sequences as “movies” rather than generating them directly in the
microworld. However, the microworld objects are capable of simple animation sequences.

(N

I Tutor uWorld

T 7]

Language Generator Animator

l

N

INTERFACE
Figure S. Functional Description of LINGWORLDS

(14)

L

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

Contexts and Scenes: FEach lesson or exercise consists of a sequence of contexts. Each context is either a
“movie” sequence or else a “scene”. Within a context, a series of movies or scenes may occur. Each scene can be
composed of subscenes appearing simultaneously in the same window or in recursive windows. A scene is simply a
set of problem-solving objects for the student to manipulate and to focus attention on. A scene may have a
background which is simply a bit-mapped picture and not a fuli-fledged object.

Interactors: Each object represented in a scene is a highly specialized object called an “interactor” object.
Interactors in the Lifeboat microworld (Figure 1) include the rope, the anchor, the lifeboat, and the question mark (?)
icon. Interactor instances have various features, actions and relations with other interactor instances. Interactors are
usually visible as a bit-mapped picture and arranged in x-y locations during the initialization of a scene. They can
also become invisible. An invisible interactor can mark a spatial region to which other interactors can be moved.
Interactors are located on planes with each interactor occupying its own plane. Interactors can swap planes

dvnamically. This provides the scene with a simulation of three-dimensional reality as interactors are animated by the
system or dragged by the user.

Interactor Actions: Interactors can respond to both user actions, such as mouse clicks, and system actions such
as message passing. Interactors can highlight themselves and they can speak. System animation for the interactors
can result from following any of three methods: an arbitrary path stored by the designer, a computed trajectory, or a
location described by a natural langnage spatial relation, which allows a description of motion by displacement. It
should be emphasized that these interactors, while representing concrete entities in the real world, do not manifest the
physical laws of that world. Interactors do not “fall” under the influence of gravity, unless caused by the system
designer. In other words, the microworld is more of an imaginary, linguistic world. Each interactor responds to 1-
click, 2-clicks, press-and-hold, and press-and-drag mouse actions by the user. The designer can choose to enable or
disable these methods. Thus the system can enable drag actions on some interactors and ignore them on others.

Semantic Properties: Each interactor has a list of semantic features that define it for linguistic purposes. These
features include whether or not the interactor is animate, a person, an artifact, a vehide, a vehicle of public
transportation, or a container. Any other attribute-value pairs can be added by the designer. For example, an author
could specify the interactor’s color or the lexical item that designates its naine. In a Japanese version of Lifeboat,
animacy features were added 1o interactors for purposes of generating the correct morphemes during speech
generation. Each interactor can also be decomposed into a subset of other interactors. This expresses the has-parts
relation. For example a human interactor can be decomposed into further interactors of arms, legs, torso, and head.
This relation can also be used for generalized possession as well. Interactors can also have ports which cause auto-
message passing between them when they are contiguous.

Spatial Relations: Probably the most difficult and interesting part of the system is the set of spatial relations
that we have very thoroughly studied and built into the system. Although this was done initially for the pedagogical
goal of teaching spatial relations involving prepositions, it has had interesting side effects for the overall design of

the system. For example, it allows interactors io locate themselves in a scene relative to a spatial relationship with
another interactors.

Our initial work with spatial prepositions included those in the essentially horizontal and vertical two-dimensional
planes: Jeft af, right of, above, below; and between (Because of issues hinted at previously, our simulations are
primarily two dimensional but because of the possibility of overlapping and movement, they approximate three
dimensions. At this time we have yet to implement the depth plane prepositions: in frant ofand in back of)

A major problem for us was where to put the deictic origin of the speaker. Is the speaker, in this case the tutor,
describing the scene from the position of the student looking at the scene on the CRT screen, or is the speaker
sitting opposite the student? An argument can be made for either case. Certainly the voice is coming from an entity
seated across from and facing the student. On the other hand, people using deictic expressions can always see the
location of the speaker and make the relative orientation adjustments between what the speaker sees and what the
hearer sees. In the case of the computer, one is simply not sure where the speaker is. The least ambiguous
assumption is that the descriptions are from the point of view of the speaker in a position of the viewer since the

location of the speaker isn’t known. Thus spatial relations are computed for a scene from the deictic perspective of
the student.

a3

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

In addition to the issue of point of view, as noted above, it is the case that judgements of these relations can vary
depending on shape, size, discourse task, and contextual arrangement. There also may be prototype positions for
some situations. We have conducted extensive protocol analyses of human tutors using simple geometric shapes to
teach the relations of Jefl, right, above, below, and between (Tomlin, Douglas, et. al., 1988). Based on these
protocols, our own intuitions and psycho-physical experiments, we have developed algorithms to compute these
relations in a manner similar to native English speakers (Douglas et al., 1987). These spatial relations algorithms
and tutoring strategies have been incorporated into a microworld simmulation called Flatland

In order to implement spatial relations in our tutor, we compute on demand for each interactor several spatial
properties: center-of-area (centroid), distance, areas that project from edges, and angular displacements. These
properties, as implemented in some rather straightforward message-passing algorithms, have sufficed to compute
successfully the relations Jefl, right, above, below; and a modified two-dimensional in In some linguistic tasks
proximity becomes a crucial factor for the computation of these relations and appears as the most difficult
component to determine in the general case, since it is clearly dependent on social and psychological factors. We
also implement certain spatial properties as features attributed to an interactor. This allows for the specification of a
container feature for “in” relations.

Since our primary goal is to allow generalized tutors for various languages, it seems reasonable to allow the
teacher/author 1o change the semantics of spatial relations as they may vary by languages. While this might seem
trivial to mono-lingual English readers of this paper, it can be a tricky and difficult problem. For example, imagine

imagine that the bow] is turned upside down (hopefully you imagined the first one in its canonical orientation).
English speakers would now say “The apple is under the bowl,” (even though it is still within the containment of
the bowl), but Chinese speakers would still say “The apple is in the bowl.” Clearly the same problems occur in
instances like “Get on the bus.” in English, which French speakers would imagine as someone on top of the bus.
These semantic differences suggest that the knowledge representations for spaual relations will have to be open to
change by the authoring system. This could be an exceedingly difficult goal to achieve.

Integrating the Microworld with the Tutor

The preceding description or the microworld components describes how program code is modularized by what is
essentially display and control of the interface. Since much of this is generalizable, it is highly productive to have
them available as part of the class definitions. However, as just described, the basic control appears to be primarily
student initiated. If the student clicks with the mouse on a particular interactor on the screen, a method is
appropriately activated which may move the interactor, cause it to say something, etc. This is the basic flavor of all
exploratory learning environments. It is the case, though, that we often want to introduce more teaching intervention
into student actions. Thus, 1CAI systems vary along a continuum from totally event-driven exploratory
environments, tc coaches which are embedded within a game structure, to goal-directed tutors which have a highly
specified control structure. Teaching expertise includes how to tutor, what instructional approach to use, and why and
how often to tutor the student. Insights into the complexity of language tutoring are described below as well as in
Douglas (in press) and Tomlin, Douglas, et. al. (1989).

Control from the tutor is introduced into LingWorlds by the tutor object. In LingWorlds the control is knit together
by message-passing between interactor objects and the tutor object. A totally exploratory microworld has its control
locally defined with the behavior of each object tied to student actions. A game microworld increases tutor control.
Finally, 2 goal-directed tutor microworld controls most of the interaction through a task-based agenda. Even in the
goal-directed tutor, interactors still retain individual control over the semantics of their own actions. For example,
the tutor can be notified that a particular interactor has been dragged, and through additional message-passing with the
interactor determine the location. Thus, the object-oriented paradigm allows an event-driven format that
accommodates user-initiated actions as wel] as internally controlled actions.

e e ——— |

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

The Authoring System

Characteristics of Authoring Systems

Authoring lessons for computer-based second-language instruction is, traditionally, a time-consuming and intensive
task which has all of the problems of interface construction. With the advent of bit-mapped displays and mice, the
author is faced with ever increasing design complexity as graphics and sound supplement text displays, windows
allow multiple contexts for user tasks, and pointing devices join keyboards. On sophisticated systems such as
Interlisp on the Xerox 1100’s, the interface programming effort has been informally estimated to consume about
80% of the total programming time (Smith, 1984). The long delay experienced in software development for even
less complex machines such as the Macintosh can similarly be attributed to the complexity of composing over 600
ROM-based interface functions into usable interactive programs.

The reasens for this increased complexity are due to several factors. First of all, designing an interactive interface is
not an exact engineering task, and much less a science. Although the demands for understanding human-computer
interaction have been met with an explosion of experimental psychology literature, it still remains that knowledge of
human behavior and langnage is not a precise science. Consequently, ihie author must still rely upon a generate and
test methodology that introduces users into the design loop early in the process. A second reason that programming
complexity has increased is that much of the output of the program is now represented visually. This requires
programming of graphic algorithms, perhaps even animation. These techniques are not well-known by the average
programmer and need constant visual verification during the programming process. Thirdly, the coding effort for
implementing the details of pull-down menus and user-definable windows is enormous. While many systems have
window managers to assist in the run-time association of mouse and keyboard events to particular windows and
menus, the author may still have to handle much of the control in the application code. Finally, the aspects of
multiple window contexts which are dynamically generated by the user at run-time contribute to an event-driven
program that is not easily represented in standard procedural languages such as PASCAL. In classical procedural
languages, input and output is primarily from files. The state of the program determines almost entirely the state of
the output. Interactive interfaces require that the state of the interface as well as the state of the program be taken
into account. This leads to event-driven rather than data-driven programming (Shaw, 1986). Even standard
approaches to formal specification of interfaces with state transition diagrams (cf. Jacob, 1985) lose their usefilness
as the sequential nature of text-style dialogue interaction disappears to be replaced by direct manipulation.

Although there ha: seen a good deal of research on reducing the complexity of interface programming by developing
User Interface Management Systems (UIMS), these research efforts fail to sufficiently address the programming
design effort by concentrating instead on the relationship between the low-level functionality of the workstation and
the specification of various interface attributes in a particular language. (See, for example, Buxton et al., 1983;
Flecchia & Bergeron, 1987; Hayes et ai., 1985; Hill, 1987.)

What few systems have been developed for interface design, such as Trillium (Henderson, 1986), AIDE (Hix &
Hartson, 1986) and PANTHER (Helfman, 1987), tend to have limitations caused by specializing in a particular type
of interactive format. For example, Trillium is used to design copiers and AIDE, dialogue interaction. The
limitations make it difficult to generalize these systems to the creation of microworlds for linguistic interaction.

Design is a highly knowledge-intensive activity which results in the creative production of an object or process.
Most theories of design tend to emphasize top-down refinement beginning with a specification and proceeding to the
implementation. This prescriptive approach ignores many of the bottom-up practices of working designers. For
example, human designers are more opportunistic and domain knowledge intensive, such as using an existing design
to guide the design process. Adelson and Soloway (1984) in their study of software designers have also highlighted
the usefulness of simulating the specification as an attempt to ferret out possible specification bugs. Finally,
implementation imposes many constraints on specification. Thus, the prevailing utilization in practice (as opposed
to theory) of what are called rapid prototyping methods for design. Therefore, it is important to let the author of a
language lesson quickly build and then refine the microworld in which the tutoring interaction will take place. Tools

for the creation of graphics and sound already exist; what is lacking is an environment which easily provides
programmatic functionality for these elements.

An important result from studies by Adelson & Soloway (1984), Kant (1985), Kant & Newell (1982), and Steier &
Kant (1985) in the domain of software engineering is the following:

an

FIPSE FINAL REPORT: Beginning Second Language instruction
Tomlin, R.S. & Douglas, S.A., Univ of Cregon

(1) Designers rapidly develop a kemel idea and refine it during the design process.

(2) Designers spend about half of their time simulating the behavior of their programs. The simulation process
serves many functions: it helps the designer integrate constituents from several paris of the design; it serves as
a kind of agenda to keep track of subtasks that require attention; it encourages a kind of balanced, methodological
refinement of the software system; and it allows for comparison to the design goal. Simulation helps tke
designer identify interesting oppertunities for improving the design.

(3) Designers take both mental and written notes on things to remember ater in the design such as constrains.
partial solutions, and potential inconsistencies. These were not handled immediately since they were at a greater
level of detail than the current state of the design. In practice, the designer is freqquently able to avoid sroblem
solving the entire design by recailing previous partial solutions

(4). This suggests that a support system for design should provide examples of common parts and previous designs
which can be canmualized. This supports the idea of inheritance through class specialization or prototype-
modify found in object-oriented languages.

It has also been observed that designers make mistakes which they do not recognize until far along in the actual
implementation process when change may have a radical effect on previous design choices. This suggests that
simulation of the design as early as possible is crucial for debugging it . In a nutshell, this is the justification for
techniques of rapid prototyping. For mechanical engineers drawings play an important role in the process of design.
They act as completeness checks, simulation, and analysis. Interface designers no doubt gsin the same value by
direct graphic layout of the interface objects. This supports the notion of a direct manipulation approach tc design.
The objects which are to be the context and referenis of the linguistic interaction should, then, be manipuiable by the
lesson author in much the same way that objects can be manipulated in the microworld itself.

We believe that much of the effort and complexity involved in lesson design and implementation are be recuced by
the introduction of rapid prototyping using object-oriented programming. In addition, we believe that a system for
design of the lesson interface should provide a specialized environment for this aspect of programsming.
Furthermore, we believe that this UTDS should incorporate, wherever possible, direct manipulaticn technigues as the
fundamental presentation to the author. The system that we have developed thus incorporates two programming
methodologies, direct manipulation and object-oriented programming.

Object-oriented Programming

The message-passing nature of object-oriented programming languages, exemplified by languages such as Smalitalk,
Lisp with Flavors, and NEON, an cbject-oriented Forth, allow easier represeritation of the event-driven nature of the
modern interface. Class inheritance increases programming productivity by allowing design by taxonomic
classification and specialization, with less duplication of common code. Muitiple copies of a defined object can be
easily and dynamically instantiated to further reduce programming code. Thus, development time can be reduced by a
factor of four or five (Schmucker, 1986). Lesson authoring becomes an effort of selecting from a library of reusable
programming parts. This encourages consistency across lesson design. The encapsulation of functions within
objects as cleanly interfaceable modules reduces programming bugs.

Although all object-oriented systems offer an extensive collection of interface “pieces” such as a window package
that the programmer can use to build the interface, only Smalltalk has a well-developed and systematic approach to
the user interface incorporated into a system called the Model-View-Controller (MVC). This system provides the
programmer with ready-made texi editor, scrolled windows, pop-up menus and process scheduler. Unfortunately, the
MVC is not documented in any of the three currently available Smalltalk books, a fact which makes it unavailable
even to Smalltalk programmers.While the Model-View-Controller holds promise as a viable system for interface
design, our laboratory experience with it has shown it to be less than desirable. The scparation between these three
elements is not oflen easily made, i.e. controllers have views, and view information is frequently still embedded in
the mode! (the application code). A spatial mapping between the displayed object (view) at which the user may
point and the mode! object does not exist. The lack of an extensive collection of interface functions such as dragging
and simple animation. Finally, all since views are dependent upon receiving change messages from a model, an

ag -

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Oregon

inefficient synchronous system of sending messages to all views is required. While several object-oriented systems
such as STEAMER (Hollan, 1986), ThingLab, and ARK (Smith, 1986) provide some unusual approaches to
modifying the user interface, none are as extensive as a Smalltalk system called Programming by Rehearsal (Gould
& Finzer, 1984). It was developed for non-programming teachers to build simple educational games. Programming
by Rehearsal does not use the Model-View-Controller system of Smalltalk, but substitutes its own interface model
whose metaphor is that of a theatrical production. Using a primarily visual programming environment “performers”
(objects) can be moved around on “stages” (windows) and taught how to interact with each other by sending “cues™
(messages). Performers have simple animation and picture display as part of their definition.

Class inheritance is finessed by using the concept of prototype. Thus, the basic definition is to copy an existing
object and then modify it, rather than define a sub-class and declare an instance.

Direct Manipulation

Object-oriented languages usually encourage a rapid-prototyping style of program development that allows
incremental visual verification of program modules by the programmer. The programming environment is richly
endowed with integrated editors, browsers and debuggers. However, interface design is done through traditional
textual programming, not by a form of direct manipulation. Direct manipulation environments provide the user
with several highly useful features when performing a complex task: continuous representation of the object of
interest, physical actions or labeled button presses instead of complex syntax, and rapid incremental reversible
operations whose impact on the object of interest is immediately visible (Shreiderman, 1982).

The incorporation of direct manipulation interfaces into authoring systems (and programming generally) has taken
two forms: visual programming and programming by demonstration. The former emphasizes the visual
representation of the code (Myers, 1987). In describing an interface specification system, Jacob (1985) recommends
the use of graphically displayed state transition networks as design notation over BNF grammars because of user
interface ease, emphasizing the importance of visible graphics to represent abstract entities over linguistic
description. Programming by demonstration, emphasizes the physical actions of the programmer to capture the
actions nf the user at the interface (Myers, 1987; Gould & Finzer, 1984).

A direct manipulation design environment for programming the interface allows the desigrer to specify the interface
both visually and by manipulation in order to automatically generate the code. For example, a window can be built
out of window parts with sizing done by manipulation rather than textual specification. For design in areas where
specification languages may be difficult to implement (for example, graphic design) or where it is difficult to
formally specify the effident implementations (for example, human computer interaction), direct manipulation rapid
prototyping systems appear preferable to textual parameters. A specificeiion of the user’s possible physical
interaction can be done by simulating that interaction (Myers, 1987).

How The LingWorlds Authoring System Works

Following the precepts delineated in the preceding section, we developed the LingWorlds Authoring System.
Briefly, the goals of the authoring system were to enable a non-programming teacher of language to build
microworld-based lessons. The system integrates images, sounds, and interface functionality in an authoring system
for second-language lessons. The authoring system’s principal characteristics include object-oriented prototyping,
making interface-related functionality available to all objects, and providing a language for object functions powerful
enough to encompass domain functions in the interface. Using the authoring system, functioning lessons can be
developed, tested, and refined.

System Overview

The LingWorlds authoring system is an interpreter implemented on the Macintosh I computer in Allegro Common
Lisp using Allegro’s Object Lisp system. It generates Lisp code which can be supplemented by additional
programming. The system is built from a set of primitive features, which are either constructed in the authoring
system (such as text) or are imported from other programs (such as graphic images). These primitives include
digitized sound, Macintosh-style images, locations, integers, booleans, text, and icons.

(19)

FAN!
C’"l

FIPSE FINAL REPORT: Beginning Sccond Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

“Tutor” menu permits the user to create and develop the tutor in the Aether window. Finally, the “Windows™ menu
lets the user toggle between the World and Aether windows. Many of the menu choices are shadowed by
mnemonic Macintosh-style command-key combinations.

& World Tutor Windows
Create %C pefault World _
Duplicate ®D
Rename
image 81

Set Position %P
Exchange Planes
Movement %M

§ Actions %A
i ~eed| Dellete
!E!.3!!!:‘5“52;!;2".'m'a'-'-'.'-'-‘-'-'T‘O'O‘v'a'a' i
e < o e ——

Figure 7. Menu Selections for Things

LingWorld’s things are prototypical rather than classed. That is, every thing is created with all the characteristics of
the basic prototypical thing. There is no notion of inheritance or class-based specialization. The various aspects of
things are determined by a user through direct manipulation, menu-based construction, or in an English-like language
using structured dialogues.

Direct Manipulation

Direct manipulation is used to determine positioning and paths of things. The user can simply drag a thing to a
desired location in the window. Things can be displayed in different forms, including image, icon and text. Things
not only have the static notion of location but a related dynamic notion of path as well. Each thing can
automatically record and then follow a sequence of positions. Such paths can either be recorded demonstratively by
dragging the thing with the mouse, or by specifying exact locations. In both cases, the path can be edited using 2
suitable dialogue. Figure 8 shows the author editing a thing’s path. ~Multiple things can follow their paths
simultaneously to produce simple animations.

21

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

¢ world JIITFY rutor windows

Defauit World

Movement for Default Thing Nam:

it 10, 15 i
il |26, 48 Add

57,52

Replace

i Delete

|

(Follow mouse |

a1l

Movement Mode
H: |86 @ Drag
O Jump

v: |89
Orag Increment

1 (Cancel]

Figure 8. Editing a Thing's Movement Path

Menu-Based Construction

Menu-based construction is used for specifying the thing's graphic representation. Fach thing can have a graphic
image, a textual representation, and an iconic representation, although only one of these can be displayed at a time,
of course. Thing menu commands allow the user to choose an image and a mask for the graphic image
representation, to set the text for the textual representation, to select an icon for the iconic representation, or to
choose the displayed representation of the thing from any of these. Menu-based construction is also used in building
the lexicon, creating and deleting things, and setting attributes of things.

Each thing is created with a set of seven built-in attributes. Attributes are analogous to instance variables in regular
Lisp things, but are strungly typed. Each attribute has an initial and a current value, and is defaulted appropriately.
The built-in attributes are position, which is the location of the thing in the Interface window; highlighted?, a
boolean value indicating if the thing’s representation is in reverse video; visible?, a boolean value indicating if the
thing’s representation is visible or invisible (invisible things are useful for things like “hot spots” in larger things);
draggable?, a boolean value indicating if the thing can be dragged when the interface is in running mode; click 1?and
click 22 boolean values indicating if the thing will execute its response to being clicked or double-clicked in running
mode; and plane, an non-negative integer indicating the foreground/background position of the thing’s representation

(22)

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Oregon

relative to other things in the window. New attributes may also be created by the user, who must specify the
appropriate type.

Adding Functionality to Things
Related Languages

In developing the action language for L.ngWorlds, we looked at a number of user interface design languages,
including ExperInterface Builder (for ExperCommonLisp), a system developed by Luca Cardelli (Cardelli, 1987),
Hypercard, and Programming by Rehearsal (Gould and Finzer, 1984).

ExperInterface Builder is built on top of Macintosh ExperCommonLisp and was developed by Jean-Marie Hullot. It
allows the designer to select interface objects (buttons, text box, scroll bar, etc.) from a palette similar to MacPaint
and drag them to the desired location in a window. Each object is associated with a Lisp function that will be
evaluated when a user event occurs. Graphic images can be imported from MacPaint to give individualized
appearance to the interface objects. Testing and debugging can be rapidly done since the interface design is entirelv
within the ExperCommonLisp environment.

The system developed by Luca Cardelli is similar to ExperInterface Builder but allows a more general concept of user
interface objects called interactors which are located within a higher level object called a dialog. Each interactor’s
appearance is customizeable by location, size and graphics. Interactors can be composed into groups. Interactors
communicate with the application by way of an abstraction of user information called the events Events are defined
as having attributes, state, and status. This allows the application to avoid low-level attention to mouse and
keyboard actions. The interface designer has available a dialog editor which allows mouse-based selection of

interactor instances and customizable appearance. Cardelli's svstem was built for use with Modula-2+ and runs on
the Firefly personal workstation.

Hypercard is a system recently developed and released by Apple Computer for the Macintosh. It is intended as a
programming system for novices. The system is object-oriented and based on ObjectPascal. What is exciting about
it is that it provides a direct manipulation interface design system which is very easy to use. There are six major
kinds of objects: stack, card, button, field, background and picture. The first five are first-class objects, in that they
can have scripts containing message-handlers. Picture is a second-class object which can display an image but does
not allow user interaction. (Note that this differs from ExperInterface Builder.) Cards are objects that are linked to
form a tangled hierarchy. They are essentially a window and can contain the other types of objects. The script

writing language, Hypertalk, is a combination of Pascal and Smalltalk and has about 40 basic commands and a
reasonable set of control structures.

Action Language in LingWorlds

The LingWorlds authoring system's English-like language for methods is used to create running-mode functionality
for things. Things have a (growing) set of primitive actions, such as flash, highlight, say, and move. Tt.ere are
also control primitives such as if and repeat while. From these primitive actions, users can also compe se additional
actions. Taken together, the built-in primitive and user-composed actions are available to all things 2..d are called
“global actions.” Each thing also has a set of six “local actions,” which are functional responses of the specific
thing to run-time events. The local actions are I click action, 2 click action, dragging action, landing action,
evaluation action, and history action

23)

[1
S
[

FIPSE FINAL REPORT: Beginning Second Language Instruction

v

Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

The actions, both global and local, are written by the user in a semantically based structure editor using hierarchical
dialogues. There is no typing of text, simply selection of pop-up menu items. The system makes sure that the
menu items presented to the user are syntactically and semantically appropriate. Thus the LingWorlds authoring
system differs from Programming by Rehearsal in that LingWorlds 1) does not provide for writing methods by
“watching” the user, but 2) does provide a high-level, semantically appropriate language for construction of actions
rather than require the user to program in the underlying language in which the system was implemented. In Figure

9, the author is expanding the template for an “If-then-else” statement.

3 IUOrI(IMTutor Windows

arrange
P{ if [thingd is to the right of thing2]
then 5] [Accept]
move thingd to the right of thing3 — 'ﬁ
Cq
W4

else _
move thingd to the left of thingl

i i
el

Euplain
Belete

) gpeee

i

Figure 9. Programming an “If-then-elsc” Statement

(24)

«
A

FIPSE FINAL REPORT: Beginning Sccond Language Instruction
: Tomlin, R.S. & Douglas, S.A., Univ of Oregon

¢ world [T Tutor Windows

arrange

vl says
P4 N
P{ Name: sounds

good _— I.I
morning (cancet]

Ce students

m_

Delete

L

-—1

<

Figure 10. Programmmng a “bays” Statement
Figure 10 shows the author constructing an action in which the thing says the phrase "Good morning students.”

The tutor is also a thing. Actions can be called and written, using the same interface, for the tutor to produce
appropriate direction of the lesson. Direct selection of tutoring modes is also enabled.

Using the Authoring System

Without actions, things merely have static qualities. These qualitics are represented by, for example, the thing's
graphic representation, 1ts name. and its attributes. Having presented the various parts of *he LingWorlds authoring
systemn, we now discuss the construction of things with four distinct kinds of functionality. We note that the
functionality of things in Ling\W uilds reflects a set of levels of behavior inherent 1o interfaces: hehavior 1) aflecting
only the thing itselt, 2) aflecting other things. 3) taking state into account, and 4) as a group or aggregation.

Actions Limited to Self: In a simple exploratory version of the lifeboat lesson shown being tuilt in Figure
1, the lantern was set up so that it spoke its name when it was clicked. The attributes of the thing 1-2re set so that
1-click? was True and draggable? was True. The thing's 1 click action was constructed to be flash self; say “The

293

(S

FIPSE FINAL REPORT: Bcginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Orcgon

Jantern.” Thus when, in running mode, when the user clicks the mouse once on the lantern thing, it will flash
itself and cause the phrase “The lantem” to be uttered. The attributes and behavior of no other thing are affected.

Actions Affecting Other Things: Things can also have actions which affect each other. Let us suppose that
the intent of the author is to have some things cause the lifeboat to flash whenever they are dragged. To accomplish
this, the author sets the thing’s landing-action? attribute to True and then constructs the thing’s landing-action local
action as flash lifeboat As a result, any time the student stops dragging a thing with these characteristics, the
lifeboat’s image will flash.

State-Based Actions: A more complex set of actions takes into account the history of the user’s interaction.
Thus, for example, the author might wish to provide a history-based tutoring strategy. One way of doing this
would be to create a new thing-attribute like “Number of wrong tries.” The tutor, then, in directing the student to
perform a task in the microworld could tailor its responses based on the value of this attribute for a particular thing.
Thus if the value of the wrong-tries attribute for the lantern were zero, the tutor might simply repeat the instruction.
If the value were sufficiently large, the tutor might demonstrate the requested task for the student.

Group-Related Actions: Finally, we look at the behavior of explicitly grouped things. For example, the
lifeboat thing consists of two things: the lifeboat and its *inside,” which corresponds to the lifeboat’s floor. The
inside is used for determining if another thing is in fact *in” the lifeboat. Obviously, much more complex
aggregations and behaviors can be obtained by suitable modifization of the action of the constituent objects which
compose the group. The important thing to note here is that the objects actions directly encods their interface
functions. In a sense, LingWorlds obijccts represent a “deconstruction” of the usual interface features. That is, the
functional limitations of stercotypical interface components ki i-een removed; in their place are the members of the
basic function set of LingWorlds prototvpical objects. From thesc elements, new microworlds are constructed.

Implementation

LingWorlds is currently implemented fully on a2 Macintosh II. The Macintosh version is written in CommonLisp.
The movies and digitized sound are files created by existing commercial products to which we had to program some
conversion software to load them into the Macintosh resources, All the actual code for the interactors and tutor
objects are also loaded as resources. This gives us a “declarative” feel to the object-oriented code and reduces the
complexity of loading in the program as part of the object-oriented environment.

Evaluation

Our informal evaluation of the svstem indicates that the average time to prototype a microworld is about several
orders of magnitude less the time taken by Pascal programmers on the Mac (days rather than months). We have yet
to extensively test the system with more forma) evaluation studies, but those are planned for the future, Since the
system is actually quite a powerful system for creating any instructional software, a version of the system was
recently requested and sent to Yale University for use in building instructional software for mathematics tutoring.

We have built both an English and Japanese version of Provisioning the Lifeéboat, with all the expected savings in
programming. We built the exploratory version first, and then added the directed tutor version. A game version has
not been programmed, but would be trivial. Since interactors and tutors can be specialized for any particular
microworld. most of the code is inherited and reusable. The Japanese version of the Lifeboat is virtually identical to
the English except for the addition of animacy features required for speech synthesis. Instantiation allows easy copies
of objects with the minimum of programming effort. We have also built a microworld called Flatiand, in which the
student is taught geometric shapes, colors, size and spatial relations. This is a directed tutor version, based on
extensive protocols with human tutors. The implementation of Flatland took one day, since almost ail of the code

was reusable from the Lifehoat problem. We have designed several other microworlds of various types, as described
above.

20 <4

FIPSE FINAL REPORT: Beginning Sccond Language Instruction
Tomlin, R.S. & Douglas, S.A_, Univ of Oregon

F. Summary and Conclusions

In this report we have attempted to describe the principal outcomes and problems associated with our project to build
an interesting and effective computer-based second language tutor, LingWorlds. Over the course of the project, we
found that the basic problems of interest to us in creating this system increased in complexity and scope. However,
the end result of the project is the creation of a ICAI system that teachers will be able to use coupled with important
new insights into the nature of language learning and teaching.

@27

&y
<D

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Oregon

References

Adelson, B. and E. Soloway. 1984. A cognitive model of software design. Report No. 342, Department of
Computer Science, Yale University.

Anderson, J.R., C.F. Boyle, and B.J. Reiser, “Intelligent Tutoring Systems,” Science, Vol. 228, April 26,
1985.

Asher, J. 1966. The learning strategy of the total physical response: a review. Modern Language Journal 50:
79-84.

Asher, J. 1969. The total physical response approach to second language learning. Modern Language Journal
53: 3-17.

Asher, J. 1977. Leaming Another Language Through Actions: The Complete Teacher's Guidebook Los
Gatos, CA: Sky Oaks Publications.

Brandt, M. 1984. Intending and Acting: Toward a Naturalized Action Theory. New York: MIT Press.

Burton, R.R. and J.S. Brown. 1982. An investigation of computer coaching for informal learning activities.
In D. Sleeman and J.S. Brown (eds.), Intelligent Tutoring Systems. London: Academic Press.

Buxton, W., Lamb, M.R., Sherman, D., and Smith, K.C. 1983. Towards a comprehensive user interface
management system. Computer Graphics 17.3: 35-42.

Cardelli, L. 1987. Building user interfaces by direct manipulation. DEC Systems Research Center Technical
Report #22, October 2, 1987.

Clancey, W.J. “Tutoring Rules for Guiding a Case Method Dialogue,” in D. Sleeman and J.S. Brown (eds.)
Intelligent Tutoring Systems, Acacemic Press, London, 1982.

Douglas, S.A. 1986a. Prospects for an ICAI authoring system: a review of computer-based design.
Proceedings of the IEEE Systems, Man, and Cybernetics Conference, Atlanta, GA, 1986.

Douglas, S. A. In press. Detecting and repairing tutoring failures. In P. Goodyear (Ed.) Tutoring Knowledge
and Intelligent, Ablex, in press. Also available as Dept. of Computer and Information Science,
University of Oregon, Technical Report CIS-TR 88-09, 1988.

Douglas, S. A., Novick, D. G., and Tomlin, R. “Consistency and variation in spatial reference.” Proceedings
of the Ninth Annual Cognitive Science Conference, July 1987.

Flecchia, M.A. and.Bergeron, R.D. 1987. Specifying complex dialogs in ALGAE. Proceedings of the Human
Factors tn Computing Systems and Graphic Interface: CHI + GI 1987, Toronto, Canada, April 1987.

Gould, L. and W. Finzer. 1984. Programming by Rehearsal Technical Report. #SCL-84-1, Xerox PARC,
Palo Alto, Calif.

Hayes, PJ., and Szekely, P. 1985. Design alternatives for user interface management systems based on

experience with COUSIN. Proceedings of the Human Factors in Computing Systems: CHI" 85, San
Francisco, CA, April 1985.

Helfman, J. 1987. PANTHER: A specification system for graphical controls. Proceedings of the Human
Factors in Computing Systems and Graphic Interface: CHI + GI 1987, Toronto, Canada, April 1987.

Henderson, D.A. 1986. The Trillium user interface design environment. Proceedings of the Human Factors in
Computing: CHI'86 Boston, MA, April 1986, 221-227.

(28)

FIPSE FINAL REPORT: Beginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Oregon

Hill, R.D. 1987. Event-response systems - A technique for specifying multi-threaded dialogues. Proceedings of
the Human Factors in Computing Systems and Graphic Interface, Toronto, Canada, April 1987.

Hix, D. and Hartson, H.R. 1986. An interactive environment for dialogue development: its design, use and
evaluation. Proceedings of the Human Factors in Computing: CHI'86, Boston, MA, April 1986.

Hollan, J., E.L. Hutchins, T.P. McCandless, M. Rosenstein, and L. Weitzman. 1986. Graphical Interfaces for

Simulation, ICS Report 8603, Institute for Cognitive Science, UC San Diego, La Jolla, Calif., May
1986.

Jacob, R.J.K. 1985. A state transition diagram language for visual programming. JEEE Computer, Vol. 18,
No. 8, August 1985,

Johnson, K. 1982, Communicative Syllabus Design and Methodology. Oxford: Pergamon Press.

Kant, E. 1985. Understanding and automating algorithm desing. In Proceedings of IJCAI-85, Los Altos, CA:
Morgan-Kaufimann. 1243-1253.

Kant, E. and Newell, A. 1982. Naive algorithm design techniques: A case study. In Proceedings of the
European Conference on Arttificial Intelligence, Orsay, France, July. 40-51.

Krashen, S. 1977. Second Language Acquisition and Second Language Learning. Oxford: Pergamon Press.
Krashen, S. 1982. Principles and Practice is Second Language Acquisition. Oxford: Pergamon Press.
Krashen, S. and Terrell, T. 1983. The Natural Approach San Francisco: Alemany Press.

Myers, B. 1987. Creating dynamic interaction techniques by demonstration. Proceedings of the Human Factors
in Computing Systems and Graphic Interface: CHI + GI 1987, Toronto, Canada, April 1987.

Papert, S. Mindstorms: Children, computers and powerful ideas Basic Books, New York, NY, 1980.

Postovsky, V. 1977. Why not start speaking later? In M.Burt et al (eds) Viewpoints on English as a Second
Language. New York: Regents.

Postovsky, V. 1979. Effects of delay in oral practice at the beginning of second language learning. Modern
Language Journal 58:229-239.

Schmucker, K. 1986. MacApp: An application framework. BYTE 11.8.

Schumann, J. 1978. Social and psychological factors in second language acquisition. In J. Richards (ed.),

Understanding Second and Foreign Language Learning: Issues and Approaches, 163-178. Rowley,
MA: Newbury House.

Selinker, L. 1972. Interlanguage. International Review of Applied Linguistics 10: 209-231.

Shaw, M. 1986. An input-cutput model of interactive systems. Proceedings of the Human Factors in
Computing Systems Conference: CHI '86\ Boston, MA, April 1986.

Shneiderman, B. 1982. Direct manipulation: a step beyond programming languages. IEEE Computer 16.8:
57-69.

Sleeman, D., “Assessing Aspects of Competence in Basic Algebra,” in D. Sleeman and J.S. Brown (eds.)
Intelligent Tutoring Systems, Academic Press, London, 1982.

Smith, R.G. 1984. On the development of commercial expert systems. Al Magazine 5.3: 61-73.

129)

raXed

FIPSE FINAL REPORT: Becginning Second Language Instruction
Tomlin, R.S. & Douglas, S.A., Univ of Oregon

Smith, R. 1986. The Alternate Reality Kit. 1986 IEEE Computer Society Workshop on Visual Languages,
July 1986.

Soloway, E., B. Woolf, P. Barth, and E. Rubin. 1981. “MENO-II: An Intelligent Tutoring System for
Novice Programmers,” Seventh Int'l Joint Conf. Artificial Intelligence, Vancouver, Canada.

Steier, D. M. and Kant, E. 1985. Symbolic execution in algorithm design. In Proceedings of IJCAI-85, Los
Altos: Morgan-Kaufmann, 225-231.

Tomlin, R.S.; Douglas, S.A.; & Novick, D. 1988. Modeling the meaning and use of spatial relations.
Unpublished ms. Department of Linguistics, University of Oregon.

Tomlin, R.S.; Douglas, S.A.; & Novick, D. 1989. The microanalysis of individual tutorials. Unpublished
ms. Department of Linguistics, University of Oregon

Widdowson, H.G. 1978. Teaching Language as Communicstion Oxford: Oxford University Press.
Widdowson, H.G. 1979. Explorations in Applied Linguistics. Oxford: Oxford University Press.

Winitz, H. (ed). 1981. The Comprehension Approach to Foreign Language fnstruction. Rowley,
Massachusetts: Newbury House.

Winitz,H. and Reeds, J. 1973. Rapid acquisition of a foreign language by the avoidance of speaking.
International Review of Applied Linguistics 11:295-317.

~ C
SO

(30)

