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A Theoretical Framework for Research in Algebra:

Modification of Janvier's "Star" Model of Function Understanding

Anita H. Bowman

University of North Carolina at Greensboro

A pentagonal model, based on Janvier's (1987) "star" model of function

understanding, is presented as a framework for design and hiterpretation of research in

the area of learning the concept of mathematical function. The five vertices of the

proposed pentagonal model correspond to five common external representations for

mathematical function: graph, table, algebraic formula, verbal description, and

situation. The ten line segments forming the sides and diagonals of the pentagon

represent translations between representations. The twenty possible one-way

translations are identified as source-to-target translations (Figure 1).

Insert Figure 1 about here

Mathematical function may be presented in either of two conceptualizations: (a)

a mathematical perspective, based on the Dirichlet-Bourbaki set-theoretical definition

Winner & Dreyfus, 1989), or (b) a scientific perspective (Sierpinska, 1992), where

function is viewed as a relationship between variable magnitudes. Viewed within the

pentagonal model, the mathematical perspective focuses on algebraic formulas, tables,

and graphs, and on the corresponding translations among these three representations

(Figure 2). The scientific perspective involves all five representations and situation-to-

table, table-to-graph, graph-to-algebraic formula, and algebraic formula-to-verbal

description translations (Figure 3).

Insert Figure 2 and Figure 3 about here

By comparing these two perspectives within the framework of the pentagonal

model, problems associated with connecting representations and developing a
comprehensive understanding of the function concept can be seen as inherent in the
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ways mathematical function is taught. The model provides a means for (a) identifying

gaps in curriculum design and instructional practices and (b) designing and interpreting

research on learning and teaching the concept of mathematical function. As an
example of the usefulness of the pentagonal model as a framework for designing
research and interpreting research data, a stedy of preservice elementary teachers'
understandings of tasks involving buildiag, interpreting, and using linear mathematical
models is presented. Further, it is proposed that the pentagonal model be used in three
ways: (a) to re-analyze existing research on learning and teaching mathematical

function, (b) to frame a unified plan of action for research directed at filling gaps in
our understanding of how learners connect various representations to form stronger

conceptions of mathematical function, and (c) to use the model as a vehicle for
communication among educational researchers, curriculum specialists, and classroom
teachers.

Research Example

Background for the Study

Elementary school science teachers are expected to teach children science

process skills, including the processes associated with a scientific inquiry approach.

Traditionally, science methods courses for preservice elementary teachers have stressed
incorporating hands-on science experiences in elementary science instruction.
However, preservice teachers are rarely asked to take the process beyond the data
collection step. Therefore, elementary preservice programs have failed to adequately
prepare teachers to instruct students in data analysis processes associated with a
scientific inquiry ilpproach.

The National Council of Teachers of Mathematics (1989) stresses the need for
increased emphasis on functional relationships, data analysis, and problem solving in
the elementary curriculum. Instructionally, these topics may be incorporated within a
scientific inquiry approach to teaching science. There are four advantages to
integrating science and mathematics insixtiction in this manner.

1. A major goal of school science, construction of verbal descriptions of
relationships between real-world variables, may be facilitated through application of
data analysis techniques involving several representations of mathematical function.
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2. A major goal of school mathematics, developing understanding of

mathematical function and its representations and associated translation processes, may
be facilitated by situating instruction within a scientia: context.

3. The integration of science and mathematics via a scientific inquiry/data

analysis approach may help students develop an understanding of the nature of science.
4. The integration of science.and mathematics via a scientific inquiry/data

analysis approach may help students appreciate the usefulness of mathematics in

exploring our physical world.

Elementary teachers need to experience learning science and mathematics via a

scientific inquiry/data analysis approach before they can reasonably be expected to
teach elementary children using this approach. The treatment sessions utilized in this

study were designed to engage preservice elementary teachers in activities involving

building, interpreting, and using linear mathematical models based on sets of scientific
data. Specifically, the study was designed to assess the effectiveness of the treatment
sessions in helping preservice teachers connect the notion of describing relationships

hetween two variables based on data collected in a physical science setting to what they
already knew about linear mathematical functions in the form y=mx+b from the
study of algebra. This study was based on the Mathematical Association of America's

(1991) recommendations for the mathematical preparation of teachers of mathematics,

common standards: (a) connecting mathematical ideas, (b) building mathematical
models, and (c) using technology.

Overview of the Study

The pentagonal model was used as a theoretical basis for framing an

experimental study of the relationship between preservice elementary teachers'

performance on tasks involving building, interpreting, and using linear mathematical
models based Jil physical science data and whether or not the student participated in

data collection tasks. Fifty-two elementary education majors enrolled at a small
university in the southeastern region of the United States participated in this experiment
by completing two, 2-hour workshops and a 50-minute, 36-item posttest. The 52
students were randomly assigned to one of two treatment groups. The 27 students in
the "data collection" group were then randomly assigned to one of 13 experimental
groups and the 25 students in the "no data collection" group were randomly assigned to
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one of 12 experimental groups. The students used TI-81 graphing calculators to

analyze the relationships between four pairs of variables: (a) total mass of a liquid and

its container (Y) versus the volume of liquid used (X), (b) total height from the table

top to the water level in a beaker (Y) versus the volume of water in the beaker (X), (c)

total mass of coins and the cup containing the coins (Y) versus the number of coins in

the cup (X), and (d) the length of a spring (Y) versus the total mass of objects attached

to the spring (X). Data analysis via TI-81 calculators included entering data from

tables, constructing scatter plots, and determining the least squares linear regression

model. For each mathematical model constructed, students identified the slope and y-

intercept, including units of measure; constructed a contextual (situational)

interpretation of the slope and y-intercept; and solved verbal problems using the model

to predict outcomes.

Objectives

1. To determine if the concrete activity of data collection has a measurable effect on

students' performance on tasks involving building, interpreting, and using linear

mathematical models.

2. To test the usefulness of the pentagonal model as a model for framing research on

designing instruction to increase connections students make among various aspects

of the mathematical function concept.

Methodology

During two, 2-hour workshop sessions, students built, interpreted, and used

linear mathematical models based on data sets from experiments that were carefully

selected to involve (a) simple measurements, using common measuring instruments,

that elementary school children could make, and (b) linear mathematical models, with

little error variation, where both the slope and y-intercept have simple and clearly-

recognizable physical interpretations. Time spent on data analysis, interpretation, and

prediction activities was controlled to be the same for subjects in each treatment group.

Since students were randomly assigned to the two treatment groups, the major

difference in the two groups was that students in the "data collection" group collected

data in the laboratory before analyzing the data, whereas the "no data collection" group
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worked on, presumably, non-interfering activities for a time period equivalent to the
time students in the "data collection" group spent collecting data.

A 50-minute, 36-item posttest was administered to each student. Scores on the
posttest were obtained by a blind, double grading procedure. Six students were
selected to participate in the interview phase of this project. These interviews were
conducted to provide additional insights into differences in group responses to treatment
sessions and the posttest. Two-sample t-tests were conducted on the overall posttest
score, each individual item score, and on 16 subscores of the posttest. Several

repeated-measures MANOVAs were run on selected sets of posttest subscores.

Results

The "no data collection" group scored higher than the "data collection" group
on the posttest, on all 16 subsets of the posttest considered in this analysis (Table 1),
and on all 36 individual test items (Table 2). Inferentially, these differences in group
means are significant, at an a = .05 level, on the posttest, on 14 of the 16 subsets of
the posttest considered in this analysis, and on 17 of the 36 individual posttest items.
The mean posttest scores for "no data collection" group were significantly higher than
the mean scores for the "data collection" group on each of the following:

1. the overall posttest (p = .0023);

2. items involving building, interpreting, and using mathematical models given
data tables (p = .0055);

3. items involving building, interpreting, and using mathematical models given
verbal descriptions (p = .0140);

4. items involving interpreting and using mathematical models given models as
algebraic formulas (p = .0033);

5. items involving building mathematical models (p = .0269);
6. items involving interpreting mathematical models (p = .0045);
7. items involving using mathematical models (p = .0031);
8. items involving building, interpreting, and using mathematical models based

on the same physical contexts utilized during treatment sessions (p =
.0015); and
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9. items involving building, interpreting, and using mathematical models based

on physical contexts different from the contexts utilized during treatment

sessions (p = .0091).

Insert Table 1 and Table 2 about here

Repeated measures MANOVAs, based on percentage scores, revealed only one

group-by-subscore interaction. A Wilks' lambda value of .80 (F = 5.60; df = 1, 23;
p = .0268) for the test of two-way interactions between (a) scores on tasks involving

writing physical interpretations of slopes and (b) scores on tasks involving writing

physical interpretation of y-intercepts indicated that there is a significant group-by-

subscore interaction for these subscores. The experimental results are graphically

summarized in Figure 4.

Insert Figure 4 about here

Research Conclusions

The results indicate that, within the limited time frame of the experimental

treatment, data collection activities interfere with, rather than enhance, performance on
tasks involving building, interpreting, and using linear mathematical models. The

observed group differences may be the result of a combination of two factors: (a)

conceptual versus procedural knowledge and (b) treatment time limitations. If the

"data collection" group approached the modeling tasks conceptually and the "no data

collection" group approached the tasks procedurally, then it is reasonable to expect
that, due to treatment time limitations, the "no data collection" group might score
higher on the posttest than the "data collection" group since it simply takes longer to
develop an understanding of concepts than it does to develop sldll in carrying out

procedures. This proposed explanation is supported by comments made by students

during individual interview sessions.

The pentagonal model was used to frame this research study. From a design
perspective, the "data collection" group participated in tasks involving situation-to-table
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translations, the "no data collection" group did not participate in these tasks. Thus, the

model provides a clear framework for considering the designed treatment difference

(Figure 5). The pentagonal model was also used in interpreting the group mean results
on various subsets of the posttest. Within the framework of the pentagonal model, each

posttest task could be identified with one or more source-to-target translations.

Comments made by students during individual interview sessions indicated that there

might be a group difference in the translations used to complete a given task.

Discussion

The research project presented in this paper serves as an example of designing

and interpreting research within the framework of the pentagonal model. The concept
of mathematical function is a complex concept that may be viewed differently in (a)

each of its representations add (b) each task involving translations between

representations. Viewing representations, translations, and translation processes within

the framework of the pentagonal model, provides a way to connect various aspects of
the mathematical function concept. Making such connections seems crucial, not only
for the student, but for teachers, curriculum specialists, and researchers. Making

connections among so many, apparently diverse, ideas is not an easy task. Therefore,
it seems imperative that instruction be specifically designed to increase the probability

that students will develop multiple connections.

The pentagonal model is expected to prove a useful aid in designing instruction,

first, by helping identify gaps in current instructional practices and, secondly, by

providing a clear view of ways to link instructional units. A substantial body of
research on learning mathematical function may be found within the research literature.
The task of synthesizing the research results into a clear direction for curriculum

reform is monumental without an appropriate framework for analyzing each piece as
part of the whole. The pentagonal model may provide just that needed framework.

Toward the goal of improving instruction in mathematical function for all students, it is
proposed that (a) existing research on learning and teaching mathematical function be
re-analyzed within the framework of the pentagonal model, (b) a unified plan of action
for research be developed based on the model, and (c) the model be used as a vehicle
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for communication among educational researchers, curriculum specialists, and
mathematics and science teachers.
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MATHEMATICAL PERSPECTIVE

A function is a correspondence between two non-empty
sets A and B that assigns to each element of A one and
only one element of B.

(Dirichlet-Bourbaki Concept of FUnction)
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Figure 2. The Function Concept from a Mathematical
Perspective
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SCIENTIFIC PERSPECTIVE

Maybe, in teaching, functions should first appear as
models of relationships. This is how they came into
being in history. They were tools for description and
prediction. If we assume that the meaning of a
conceil lies in the problems and quesi ions that gave
birth to it, and we wish that our students grasp the
meaning of the notion of function, then this seems to
be a quite reasonable claim to make.

Sierpinska, 1992
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Figure 3. The Function Concept from a Scientific
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Table 1

Posttest Results by Selected Subtests: Group Means,t-Statistics, and p-Values

(df = 23)

Subtest

(# Items)

Group A Mean

(% Correct)

SDA. Group B Mean

(% Correct)

SDB t-value p-value

POST (36) 13.18 (36.61) 5.65 20.28 (57.33) 4.63 -3.42 .0023

DATASETS (12) 5.36 (44.66) 2.05 7.65 (63.77) 1.65 -3.06 .0055

VERBAL (12) 4.51 (37.55) 2.39 6.95 (57.93) 2.18 -2.66 .0140

ALGEBRAIC (12) 3.31 (27.62) 1.98 5.67 (47.28) 1.57 -3.28 .0033

BUILD1 (2) 1.60 (80.13) .42 1.88 (93.75) .31 -1.82 .0813

BUILD2 (2) .65 (32.69) .51 1.07 (53.47) .44 -2.16 .0417

BUILD (4) 2.26 (56.41) .80 2.94 (73.61) .63 -2.36 .0269

SLOPE1 (6) 2.41 (40.17) 1.00 3.75 (62.50) .87 -3.56 .0017

INTERCEPT1 (6) 2.93 (48.82) 1.24 3.90 (64.93) 1.06 -2.09 .0482

SLOPE2 (6) 1.45 (24.15) .92 2.85 (47.57) 1.27 -3.19 .0041

INTERCEPT2 (6) 1.63 (27.24) .87 2.23 (37.15) .74 -1.83 .0801

INTERPRET (24) 8.42 (35.10) 3.33 12.73 (53.04) 3.51 -3.14 .0045

USEY (6) 2.06 (34.40) 1.54 3.62 (60.30) 1.02 -2.94 .0073

USEX (2) .44 (21.79) .44 .99 (49.31) .26 -3.75 .0010

USE (8) 2.50 (31.25) 1.91 4.60 (57.55) 1.30 -3.31 .0031

FAMILIAR (18) 7.51 (41.74) 3.19 11.60 (64.47) 2.38 -3.61 .0015

UNFAMILIAR (18) 5.67 (31.48) 2.59 8.67 (48.19) 2.68 -2.85 .0091
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Table 2

Posttest Results by Item: Group Means.

SDA

t-Statistics. and

Group B Mean

p-Values

SDB t-value p-valueItem Group A Mean

P1 .820 .240 .958 .144 -1.72 .0989
P2 .506 .265 .736 .181 -2.51 .0194
P3 .269 .260 .451 .356 -1.47 .1550
P4 .532 .282 .771 .225 -2.33 .0290
P5 .455 .346 .590 .212 -1.17 .2560
P6 .340 .265 .556 .228 -2.17 .0402
P7 .782 .249 .917 .195 -1.50 .1479
P8 .391 .191 .64.6 .129 -3.88 .0008
P9 .186 .181 .479 .310 -2.92 .0077
P10 .558 .291 .729 .198 -1.71 .1017
P11 .077 .188 .125 .226 -.58 .5674
P12 .442 .423 .694 .407 -1.52 .1431
P13 .436 .351 .653 .261 -1.74 .0947
P14 .391 .260 .625 .272 -2.20 .0381
P15 .410 .237 .694 .274 -2.78 .0106
P16 .532 .242 .764 .200 -2.60 .0161
P17 .494 .222 .611 .239 -1.28 .2150
P18 .455 .315 .764 .273 -2.61 .0156
P19 .218 .249 .417 .289 -1.85 .0776
P20 .321 .240 .535 .267 -2.11 .0458
P21 .353 .330 .563 .264 -1.75 .0940
P22 .365 .300 .479 .291 -.96 .3462
P23 .295 .304 .375 .225 -.74 .4649
P24 .237 .347 .472 .316 -1.77 .0908
P25 .429 .183 .625 .199 -2.56 .0176
P26 .154 .217 .438 .304 -2.70 .0128
P27 .500 .306 .688 .241 -1.69 .0144
P28 .237 .240 .444 .237 -2.17 .0405
P29 .333 .373 .660 .220 -2.64 .0148
P30 .218 .249 .576 .265 -3.49 .0020
P31 .372 .217 .583 .163 -2.74 .0117
P32 .077 .188 .229 .249 -1.73 .0962
P33 .442 .208 .465 .202 -.28 .7824
P34 .077 .188 .083 .195 -.08 .9339
P35 .256 .251 .472 285 -2.01 .0560
P36 .218 .227 .410 .260 -1.97 .0611
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Figure 5. Translations Involved in Treatment Tasks. The Situation-to-Table
Translation was Incorporated in Tasks for the "Data Collection" Group but not in Tasks

for the "No Data Collection" Group
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