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ABSTRACT

Most item response theory models assume a unidimensional latent space. This study extended

previous work on the effects of dimensionality on parameter estimation from dichotomous

models to the polytomous graded response (GR) model. A multidimensional GR model was

developed to generate data in one-, two-, and three-dimensions. The two- and three-

dimensional conditions contained data sets that varied from one another in their

interdimensional association. Moreover, additional factors investigated were test length and

the ratio of sample size to the number of item parameters to estimate. Results showed that for

the unidimensional data a sample size ratio of 5 : 1 provided reasonably accurate estimation

and that increasing the test length from 15 to 30 items did not have a significant impact on

the accuracy of item parameter estimation. Regardless of the data's dimensionality, the

difficulty parameters were well-estimated and for the multidimensional data the correlations

between the estimated item discrimination and the average (as well as the sum of the)

dimensional discrimination were greater than the correlations between the estimated item

discrimination and the individual dimensional discriminations. Fidelity coefficients between

the mean ability and the ability estimate (6) were greater than those between the 6 and the

latent traits. The impact of equating on accuracy indices in a multidimensional context was

discussed.
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The Influence of Multidimensionality on the Graded Response Model

To date a number of item response theory (IRT) models have been proposed. One taxonomic

scheme for these models is to classify the models as either dichotomous or polytomous (e.g.,

the Rasch (Rasch, 1980) and Samejima's (1969) graded response (OR) models, respectively).

Except for some multidimensional dichotomous models, the majority of IRT models assume a

unidimensional latent space. The multidimensional dichotomous models (e.g., McKinley &

Reckase, 1983; Sympson, 1978) were developed to overcome the restrictiveness of the

unidimensionality assumption and may be classified as either compensatory or

noncompensatory. Whereas, Sympson (1978) labeled his model as partially compensatory,

however, Way, Ansley, & Forsyth (1988) considered this model to be an example of a

oncompensatory multidimensional model. Conceptually, a compensatory model is one in

which an examinee's latent traits (Os) interact to produce a response to an item. This

interaction may take the form of an examinee's facility on one latent trait (01) compensating

for a deficiency in another latent trait (02). In contrast, in a noncompensatory model the

examinee's Os do not compensate, per se, for one another to yield a response. Because of

difficulties in parameter estimation as well as in the interpretation of the ability space,

multidimensional models have yet to obtain widespread acceptance or use in applications.

However, it appears that NOHARM (Fraser, 1986) may provide a workable solution to the

estimation problem (cf., Miller, 1991). Luecht and Miller (1992) present a unidimensional

composite abilities approach for addressing the multidimensionality of some data.

Given that most IRT models assume unidimensionality, several studies (e.g., Ackerman,

1989; Ansley & Forsyth, 1985; Drasgow & Parsons, 1983; Reckase, 1979; Way, Ansley, &

Forsyth, 1988) have examined the effect of multidimensionality on unidimensional IRT

parameter estimation. These studies have been primarily concerned with the effects of

dimensionality on the calibration of a multidimensional data set by either LOGIST

(Wingersky, Barton, & Lord, 1982) and/or BILOG (Mislevy & Bock, 1982); both programs are

limited to parameter estimation of dichotomous IRT models. Although the models used for

data generation differed from one another, the results of these studies have consistently found

that multidimensionality affects parameter estimation. In general, when a compensatory

multidimensional IRT model was used for data generation, the estimated difficulty (P) was

found to be an estimate of the average of the true difficulties (Way et al., 1988), the estimated

discrimination (id) was an estimate of the si of the dimensional discriminations (Way et al.,

1988), and ability estimates (6) were an estimate of the average true Os (Ackerman, 1989; Way

et al., 1988). In contrast, data generation using a noncompensatory model showed that S was

an overestimate of or correlated more highly with one dimension's difficulty parameters than
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with the other dimension's (Ackerman, 1989; Ansley & Forsyth, 1985; Way et al., 1988), it\

was an estimate of the average of the true discriminations (Ansley & Forsyth, 1985; Way et

al., 1988), and 6 to be an estimate of the average true Os (Ackerman, 1989; Ansley & Forsyth,

1985; Way et al., 1988). In general, these conclusions come from correlational analyses of the

estimates with their parameters and an assessment of the accuracy of parameter estimation

through the use of the mean absolute difference (a.k.a., MAD or average absolute difference

(AAD)). Luecht and Miller (1992) discuss some of the issues associated with ignoring

multidimensionality in polytomous data. For instance, they found that item information is

reduced when a unidimensional refereace composite is fitted to multidimensional polytomous

data.

This study's objective was to examine the effect of dimensionality on the parameter

estimation of the GR model. Data sets were generated that differed from one another in the

number of latent factors as well as their interdimensional association, the number of test

items, and the sample size. In this regard, this research extends previous work on the effects

of dimensionality on dichotomous model parameter estimation to polytomous models.

METHOD

Model Definition

A multidimensional extension of the GR (MGR) model was developed and used for data

generation. This model requires a set of multidimensional Os as well as a set of

(multidimensional) item parameters. In the MGR model the examinee responses to item i are

categorized into mi + 1 categories, where higher categories indicate greater ability and mi is

the number of category boundaries. Associated with each category of item i is a category
score, xi, with values 0..mi. The MGR model may be expressed as:

DIaih(eh dx1)

Pxi(8) = c
D

(1),
aih(Oh - dxj)1 + e

where Oh is the latent trait on dimension h (h=1..r dimensions), aih is the discrimination
parameter for item i on dimension h, dxi is the difficulty parameter for category score x for

item i, and the summation is across dimensions. A scaling constant, D = 1.702, may be
introduced if desired. Pxj(8) is the probability of a randomly selected examinee with latent

traits 8 responding in category score xi or higher for item i; the probability of responding in

the lowest category (i.e., Po) or higher is defined as 1.0 and the probability of responding in
the highest category (i.e., Pin i) is 0.0. For example, for an item with four response

categories (i.e., 0, 1, 2, and 3) P2(8) is the probability of responding in categories 2 or 3
rather than in categories 0 or 1. Because Pxi is the (cumulative) probability of responding in

xi or higher, the probability of responding in a particular category, px1(8), equals the
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difference between the cumulative probabilities for adjacent categories (e.g., p2(8) = P2(e) -

P3(8)). For instance, given m = 3, 8 = (1.00, 1.50), d = (0.75, 1.250), a = (1.50, 0.75) and

omitting the scaling constant D, one obtains:
1.50(1.00 - 0.75) + 0.75(1.50 - 0.75)

ePi(e)=
1 + e1.50(1.00 - 0.75) + 0.75(1.50 - 0.75) = 0.7186

1.50(1.00 - 1.25) + 0.75(1.50 - 1.25)
P2(8) = 1.50(1.00 - 1.25) + 0.75(1.50 - 1.25)

= 0.4533
1 + e

Therefore, the probabilities of responding in categories 0, 1, and 2 are:

P0(e) = P0(e) P1(8) = 1.0 - 0.7186 = 0.2814

pi(e) = P1(8) P2(8) = 0.7186 - 0.4533 = 0.2653

P2(0) = P2(8) - P3(8) = 0.4533 - 0.0 = 0.4533

When r > 2 and mi = 2 the MGR reduces to the M2PL (McKinley & Reckase, 1983), if r = 1 the

MGR reduces to the GR model, and when r = 1 and mi = 2 (correct and incorrect) the MGR model

reduces to the two-parameter model. The option response surfaces (ORS) for the three-step

item above are presented in Figures la - lc.

Insert Figures la to lc about here

Design

The data generated differed in terms of the number of latent dimensions and the degree of
interdimensional association (mei), test length, and the ratio of examinees to item parameter

estimates. The number of dimensions factor contained three levels: one-, two-, and three-

dimensions. The two-factor data contained three degrees of interdimensional associations
(p0102 = 0.0, 0.30, 0.75); the first two P0 102s were obtained from Ackerman (1989) and the

third po 10 2 was from Wang (1987). The three-dimensional condition contained four data sets

that varied from one another in their peiejs (pcjiej = 0.0, 0.0, 0.0; peigj = 0.30, 0.30, 0.30; mei

= 0.30, 0.30, 0.75; PO ei = 0.75, 0.75, 0.75).

The test length factor contained two levels, 15 and 30 items, where the 15 items were

randomly selected from the 30-item test. The sample size ratio factor consisted of two ratios

of examinees to item parameter estimates, 5 to I and 10 to 1. These two ratios resulted in

sample sizes of 375 and 750 for the 15-item test and 750 and 1500 for the 30-item test.

Therefore, the study's design consisted of sample size ratio by test length by

dimensionality (2 X 2 X 8 = 32 cells). For each cell 15 replications were generated and all of

the 480 (=15 x 32) data sets were unique. For each data set item parameter estimates for the

GR model were obtained using MULTILOG 5.1 (Thissen, 1988).
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Data

For the unidimensional data set Os were randomly sampled from a unit normal distribution.

The two- and three-dimensional conditions were created by randomly sampling Os from a
multinormal distribution with known poiej. For each data set the appropriate number of zs

were randomly sampled from the relevant distribution and their responses to 5-choice items

were generated; the zs were taken to be the simulees' 0(s). In the following and unless

otherwise noted, the subscript on the discrimination parameters refers to the dimension and
the subscript for the item, i, will be omitted. The dxs used in the response string generation

were identical to the bxs used in Dodd, Koch, and De Ayala (1989). Dodd, Koch, and De Ayala

generated their bxs so that they would distribute the items uniformly across the 0 continuum

(as expressed by their category boundaries) while at the same time representing values
obtained from real data. The ahs were randomly sampled from a uniform distribution [0.80,

2.0]. For the unidimensional data the ais were used in generating the response data and for

the bidimensional data the a i s and a2s were used.

For each data set the Os plus the relevant item parameters were used to generate

polytomous response strings with a random error component for each simulated examinee. For

the multidimensional and unidimensional data sets the generation of an examinee's

polytomous response strint, was accomplished by calculating the probability of responding to

each item alternative according to the MGR model; the scaling factor D was set to 1.0. Based on

the probability for each alternative, cumulative probabilities were obtained for each

alternative. A random error component was incorporated into each response by selecting a

random number from a uniform distribution [0, 1] and comparing it to the cumulative
probabilities. The ordinal position of the first cumulative probability that was greater than

the random number was taken as the examinee's response to the item.
Equating

The Stocking and Lord (1983) procedure, as implemented in Equate (Baker, Al-Karni, & Al-

Dosary, 1992), was used to place the item parameter estimates on the same scale as their

parameters. The equating was done at 21 theta points; Baker (1992) contains a discussion of

the procedure used.

Analyses
ADescriptive statistics and Pearson product-moment correlation coefficients between a and the

ah(s), the average of the ahs across dimensions (a), and the sum of the dimensional ahs (Ea) as
A

well as between bxi and dxi were computed for each replication and averaged across

replications. Analysis of the accuracy of the item parameter estimation involved calculating

root mean square error (RMSE), and Bias. RMSE and Bias were calculated according to:

7
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(2)

Bias(0) = (3)

where x was either txi (i.e., the difficulty estimate for category x of item i) or (the

discrimination parameter estimate of item i), and n was the number of replications. For item
difficulty 41) was dxi and for item discrimination RMSE(0) and Bias(b) were calculated with

respect to each ah, the "a, and the Ea (i.e., cD was ah, or 'a, or Ea ). The accuracy of the item

parameter estimates for the 15-item test were compared to the estimates of the same items

embedded in the 30-item test. RMSE and Bias were treated as the dependent variables in a

one-group repeated measure design to determine whether they were significantly affected by

test length (within subjects) and the sample size ratio (between subjects); the Bonferroni

procedure was used to control for experimentwise Type I error rate.
For ability, cto was set to the the true ability and x was the 6. Correlations (fidelity

coefficients) were calculated between the Os and the Ohs as well as between & and

(rgeh and rgg, respectively). The correlations were calculated for each replication and

averaged across replications.

Because the true abilities were randomly generated each examinee had potentially

unique true abilities. Therefore, for ability RMSE and Bias were calculated in two ways: (a)

across all examinees for each replication and across replications, and (b) across replications
but as a function of ability. In this latter case, it was necessary to group the examinees so

that the calculations of RMSE and Bias were based on more than one examinee at each theta

point. Therefore, the true abilities were rounded to one decimal place and the examinees

having the same rounded true ability were used for calculating RMSE at that particular theta
point.

RESULTS

Component analyses of the covariance matrix for each (multidimensional) level of the number
of dimensions factor showed that the peiej = 0.0, 0.0, 0.0 level contained three factors each

accounting for 33.3% of the total variance (02 otalh
, the poiej = 0.30, 0.30, 0.30 level containedt

a dominant first factor and two additional factors each of which accounted for 23.3% of a2t ()tap

the p eiej = 0.30, 0.30, 0.75 level's distribution of oLtal across the three factors was 64.71%,

26.96%, and 8.33%, and the fourth level (poioj = 0.75, 0.75, 0.75) contained a single factor

accounting for 83.3% of the ot otal with the remaining factors each accounting for 8.3% of the

total variability. Therefore, the component analyses appear to support the fact that the data
possessed the intended characteristics.

8
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Tables 1 and 2 contain the average Pearson correlation coefficients (across

replications) between the item parameters and their estimates. For the unidimensional data

sets the correlations between a and a 1 increased as the sample size ratio increased for a given

test length (Table 1). Moreover, for the unidimensional data and for a given sample size ratio

the correlations were higher for the 30-item test than for the 15-item test. This increase in

the correlation was not due to the as for the 30-item test having greater variability than those

of the 15-item test. (For the 5 : 1 sample size ratio the standard deviation (s) for the as based

on the 30-item test was 0.355 and for the 15-item test 4 = 0.435, whereas for the 10 : 1 sample

size ratio for the 30- and 15-item tests the sa = 0.355 and sa = 0.403, respectively; the s of the

as for the 30-item test was 0.360 and for the 15-item test it was 0.335.)

Insert Table 1 about here

Except for the 15-item test data sets (sample size ratio 5 : 1), as the data became
Aprogressively more unidimensional the correlations between a and the ahs, as well as between a

and a, increased. The addition of a third factor led to a decrease in the vans and raah. In

addition, the ran for the bidimensional pe 1 e2 = 0.0 level was larger than that for the
tridimensional level (all peiej = 0.75). Comparisons of the rails to the raahs for the

multidimensional data sets showed that, in general, a had a stronger linear relationship with a
and Ea than with the individual abs.

Table 2 shows that, in general, the gxs were highly linearly related to their corresponding

dxs. As can be seen, gi tended to be more highly related to di than were the bxs and dxs for the

other category boundaries. Furthermore, as one progressed from the second to the fourth category
boundary the rtxdx decreased. This was true regardless of the dimensionality of the data. In

general, as the two- and three-dimensional data sets became more unidimensional the raxdxs

increased and the rxdxs based on the multidimensional data were higher than were the

corresponding category rPxdxs based on the unidimensional data. This pattern of rgxdxs was

associated with standard deviations for the gxs bawd on the multidimensional data that were

larger than the standard deviations for the gx s based on the unidimensional data. In general, for
a given sample size ratio, the rPxdxs tended to be higher for the 30-item test than for the 15-item

test and the r0xdxs tended to be larger for the 10 : 1 ratio than for the 5 : 1 ratio. In addition,

regardless of the data's dimensionality, the test length, and the sample size ratio, there was a

tendency for the standard deviations of the gxs to increase as one progressed from category 1 to

category 5. For instance, for the 15-item test/10 : 1 sample size ratio/unidimensional data the
standard deviations for b 1, b2, b3 and b4 were 0.64, 1.09, 1.19, and 1.39, respectively, and for

9
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the 30-item test/10 : 1 sample size ratio/bidimensional (p0102= 0.0) data the standard deviations

were sg1 = 1.28, 42 = 1.45, 43 = 1.56, and s64 = 2.07.

Insert Table 2 about here

Table 3 contains the Summary Tables for the analysis of the RMSE(a) and Bias(a)

for the unidimensional data. As can be seen, neither the sample size ratio nor the test

length had a significant effect on the accuracy of estimation. Figure 2 contains the

corresponding RMSE and Bias plots. The RMSE plot reflects the finding that test length

and sample size ratio did not have an effect on RMSE(a). Moreover, MULTILOG exhibited a

slight reduction in the accuracy of estimation as a increased; this inaccuracy was due to

an increase in overestimating a.

Insert Table 3 and Figure 2 about here

Analysis of the difficulty parameters (Table 4) showed that there was a significant
test length by sample size ratio interaction only in the estimation accuracy of di. Post

hoc analyses showed that for the 5 : 1 sample size ratio the accuracy in estimating di

based on the 15-item test was significantly greater than that based on the 30-item test.
Moreover, for the 15-item test the RMSE(di) increased when the sample size ratio was

doubled. Similarly, the bias analysis showed that the Bias(di ) for 15-item test/5 : 1

sample size ratio was significantly less than that for either the 30-item test/5 : 1 sample

size ratio or the 15-item test/I0 : 1 sample size ratio. There were no statistically
significant findings for d2, d3, or d4.

Insert Table 4 about here

RMSE(dx) plots for the unidimensional data are presented in Figure 3. As can be

seen, for the 15-item test/5 : 1 sample size ratio d1 was comparatively well-estimated

(Figure 3a), but that for d2, d3 and d4 this condition yields less accurate estimates

(Figure 3b to Figure 3d, respectively) than the other conditions. There appeared to be a
tendency for a decrease in the accuracy of estimation of d2, d3 and d4 as these difficulty

parameters became more difficult (e.g., d4 = 2.0).

Insert Figure 3 about here

Figure 4 presents the Bias(dx) plots. As was the case with the RMSE(dx) plots, for

the 5 : 1 sample size ratio/15-item test there was less bias in estimating d1 than in

estimating d1 under the other conditions. This pattern was reversed for d2, d3 and d4

10
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and, in general, there appeared to be a tendency for an increase in the overestimation bias
for d2, d3 and d4 as these difficulty parameters became more difficult.

Insert Figure 4 about here

The average fidelity coefficients across replications are presented in Table 5. For a

given dimensionality the fidelity coefficients based on the 30 -item test were greater than
those for the 15-item test regardless of the sample-size ratio. Overall, the rggs were greater
than the r68h' regardless of the data's dimensionality. For a given test length/sample size

ratio the rggs were higher with the multidimensional data than they were with the

unidimensional data.

Insert Table 5 about here

Table 6 ontains the average RMSE and Bias for ability across examinees and

replications. As can be seen, the mean RMSEs for the unidimensional data are comparable to

those found by Reise and Yu (1990). Increasing the test length resulted in a reduction in

the average RMSEs, however, increasing the sample size ratio led to an increase in the
average RMSE. In general, there appears to be very little overall bias in estimating 0,

although there is a slight tendency to underestimate. These averages are potentially
misleading. Figure 5 contains RMSE and Bias plots for the estimation of 0. As can be seen,

the RMSE(9) was relatively consistent regardless of the sample size ratio or the test length.

The Bias plot showed that there was only a slight underestimation bias around -1.5 <8 <

0.75, although the 15-item test tended to result in less Bias across the 8 scale than did the

30-item test. It should be noted that RMSE and Bias values outside the -2.0 to 2.0 ability

range are based on relatively small numbers of examinees sizes, and therefore, are less

stable and should have little significance attached to them.

Insert Table 6 and Figure 5 about here

DISCUSSION

The number of alternatives was not a factor in this study. However, the present

results in conjunction with those of Ackerman (1989) using two category items appear to

indicate that the general findings should not be influenced by the number of item

alternatives.

Reise and Yu (1990) have recommended that a minimum of 500 examinees should be

used to obtain accurate and stable estimates of the unidimensional GR item parameters.

However, we feel that in general such guidelines are more useful if stated in terms of the ratio

i
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of examinees to item parameters to be estimated. For instance, in this study comparatively

reasonably accurate RMSEs were achieved with 375 examinees. That is, it appears that a ratio
of examinees to item parameter estimates of 5 : 1 provides reasonable item parameter

estimation. This 5 : 1 ratio is consistent with the Reise and Yu (1990) suggestion of the use of

500 examinees because their study used 25 four-choice items. However, it should be noted

that regardless of the sample size, with polytomous models it is the distribution of responses

across the item alternatives that will result in accurate and stable item/category parameter

estimation. As an extreme example, consider a 10-item test (4 option items) administered to

40,000 examinees (ratio of 10,000 : 1). If all of the examinees respond only in the first

category, the item parameters for the other categories will be "poorly" estimated. With larger

sample sizes this piublem is less likely to occur.

For the purposes of the study the replication samples could have been assumed to be
randomly equivalent. Because the coefficients from the equating of each replication to the

parameter scale were similar to one another the assumption that the replications were more or

less equivalent would be confirmed. However, strictly speaking simply because the

replications were essentially equivalent to one another does not imply that the estimates'

scale will be the same as the parameter scale. For instance, Table 7 contains the repeated

measur-s analysis for a when the item parameter estimates were not equated to the parameter
scale. As can be seen, with the unequated estimates there was a significant test length main

effect; doubling the 15-item test produced a significant decrease in RMSE(a) from 0.392 for

the 15-item test to 0.168 for the 30-item test. However, this effect is an artifact attributable

to the use of a scale dependent accuracy index with noncomparable scales. Figure 6 contains

the corresponding RMSE(a) plot depicting the effect of test length. Moreover, a comparison of

Figures 6 and 2 shows that when the item estimates are not equated to the parameter scale, the

estimates appear to be mom. accurate when they are not equated than when they are equated

and that the order of the conditions' RMSEs conditional on 0 is not the same across figures

(e.g., compare the two figures' RMSEs at a = 1.1 and a = 1.6). Because at present there is no

way to equate the unidimensional parameter estimates to the multidimensional parameter

scale, the use of scale dependent accuracy indices, such as RMSE, Bias, MAD (or AAD), for

assessing the effect of multidimensionality on the accuracy of estimation is ill-advised and
inappropriate.

Insert Table 7 and Figure 6 about here

The use of correlations for the assessment of the (linear) relationship between

estimates and parameters may be used. In this regard, the influence of multidimensionality

12
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on parameter estimation was reflected in an overall decrease in raa and raah as the number of

factors in the data increased and as the interdimensional correlation decreased. For the

multidimensional data, as had a stronger linear relationship with a than with the individual
ahs. However, because riaa = raza there is no way to determine whether a was an estimate of

the sum of the dimensional discriminations or the average dimensional discrimination; the

equating issue discussed above negates the use of accuracy indices for deciding between Ea

and -a-. Furthermore, the poorer accuracy indices others have found in multidimensional

situations may be more a function of the large values that may arise with Ea than anything

intrinsic to the taken of a sum. For example, large RMSE values for Ea may be primarily a

result of the fact that the data simply do not reflect items that discriminate to a degree
characterized by Ea (e.g., the data were generated with 0.8 <a < 2.0 and Ea > 2.5). The fact

that the transformation is a sum of ah as oppose to the taking of an average of ah may be

irrelevant. What is more important is that the value of the transformation (either a sum or an

average) fall within a range represented by the data (e.g., 0.8 to 2.0). Conceptually then, for

as that are comparable in magnitude to as the corresponding accuracy indices

for Ea and 71 should be similar to one another.

In addition to the equating issue there is an additional problem concerned with

rotational indeterminacy. That is, the latent ability space does not have a unique orientation
and the dimensions may be rotated without affecting Pxi(8) or pxi(8). Therefore, different 8

and a will produce identical Pxj(8), pxi(8), and option response surfaces. For instance, if

one rotates the axes 90° the transformed abilities become 8' = (-1.50, 1.00) and the

correspondingly transformed discriminations a e= (-0.15, 2.40). Omitting the scaling

constant D and letting d = (0.75, 1.250) one obtains:
-0.15(-1.50 - 0.75) + 2.40(1.00 - 0.75)

Fi(8)=
I + e

-0.15(-1.50 - 0.75) + 2.40(1.00 - 0.75) = 0.7186

-0.15(-1.50 - 1.25) + 2.40(1.00 - 1.25)
P2(e) =

1 + e-0.15(-1.50 - 1.25) + 2.40(1.00 - 1.25) = 0.4533 ,

and the probabilities of responding in categories 0, 1, and 2 are:

PO(8) = P0(8) P1(8) = 1.0 - 0.7186 = 0.2814

pi(e) = P1(8) - P2(8) = 0.7186 - 0.4533 = 0.2653

P2(8) = P2(8) P3(8) = 0.4533 - 0.0 = 0.4533

These are the same Pxi(8) and pxi(8) obtained above with 8 = (1.00, 1.50), a = (1.50, 0.75),

and d = (0.75, 1.250). Clearly, this indeterminacy may also affect the assessment of

estimation accuracy.

3
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While Hirsch (1989) has explored the equating of multidimensional models to one

another, his results were not completely satisfactory and more research needs to be concern

with equating with multidimensional models. First, because comparison studies such as this

one and the others discussed above require equating and, second, because if multidimensional

models are to become a viable approach to measurement, then horizontal and vertical equating

issues will need to be addressed. In this regard, Wang's (1987) reference composite may

provide a pragmatic approach to this problem when the latent traits are linearly independent.
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Table 1

Average correlations between a and ai, a2, a3, a.

Sample
size
ratio

Test
Length

Parameter ja IIb IIc nd IIIe Illf IIIg IIIh

5: 1 15 ai u.920 0.662 0.684 0.689 0.669 0.655 0.606 0.700
a2 0.765 0.752 0.744 0.676 0.696 0.704 0.593
a3 0.530 0.542 0.574 0.592
ai 0.910 0.914 0.911 0.872 0.882 0.882 0.873

30 al 0.954 0.491 0.577 0.654 0.488 0.563 0.493 0.608
a2 0.782 0.729 0.691 0.605 0.590 0.628 0.548
a3 0.246 0.254 0.311 0.305

ai 0.895 0.915 0.939 0.813 0.852 0.866 0.880

10 : 1 15 al 0.946 0.689 0.714 0.768 0.675 0.717 0.644 0.673
a2 0.781 0.776 0.735 0.712 0.693 0.706 0.673
a3 0.540 0.557 0.645 0.652

a i 0.937 0.948 0.950 0.897 0.913 0.932 0.932

30 al 0.959 0.505 0.563 0.613 0.568 0.589 0.530 0.630
a2 0.780 0.771 0.739 0.583 0.627 0.646 0.564
a3 0.201 0.238 0.307 0.302

a i 0.903 0.936 0.946 0.821 0.882 0.897 0.901

Notes: aunidimensional, hp8102= 0.0, cp01e2= 0.30, dp0102= 0.75, epoiej = 0.0, 0.0, 0.0,
fPeiej = 0.30, 0.30, 0.30, gpejoi = 0.30, 0.30, 0.75, hpoiej = 0.75, 0.75, 0.75, 'These

average correlations between A and a are the same as would be obtained between the a
and Ea

18
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Table 2

Average correlations between S and di, d2, d3, d4.

Sample
size
ratio

Test
Length

Parameter la iib He IId Ille IIIf III8 111h

5: 1 15 di 0.987 0.993 0.992 0.994 0.967 0.983 0.993 0.995
d2 0.954 0.983 0.986 0.986 0.992 0.994 0.995 0.993
d3 0.907 0.959 0.967 0.972 0.956 0.990 0.992 0.991
d4 0.913 0.847 0.950 0.978 0.871 0.949 0.988 0.990

30 di 0.992 0.995 0.996 0.997 0.990 0.998 0.997 0.998
d2 0.931 0.981 0.983 0.987 0.994 0.995 0.995 0.995
d3 0.911 0.967 0.976 0.982 0.991 0.993 0.993 0.994
d4 0.891 0.935 0.974 0.979 0.945 0.977 0.993 0.994

10 : 1 15 di 0.990 0.996 0.996 0.997 0.981 0.996 0.997 0.998
d2 0.959 0.984 0.987 0.988 0.994 0.995 0.995 0.994
d3 0.913 0.965 0.973 0.975 0.983 0.988 0.991 0.992
d4 0.913 0.953 0.973 0.975 0.921 0.976 0.989 0.991

30 di 0.995 0.997 0.998 0.998 0.993 0.998 0.999 0.998
d2 0.934 0.981 0.984 0.987 0.988 0.995 0.995 0.995
d3 0.915 0.971 0.975 0.981 0.984 0.994 0.994 0.995
d4 0.897 0.954 0.971 0.977 0.944 0.993 0.994 0.995

Notes: aunidimensional, hp0102= 0.0, cp0102 = 0.30, dp0102= 0.75, epeiej = 0.0, 0.0, 0.0,

pee = 0.30, 0.30, 0.30, gpojoi = 0.30, 0.30, 0.75, hp0i0j = 0.75, 0.75, 0.75
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Table 3

Summary Table for unidimensional data set: RMSE(a)

Source SS df MS

Between
Ratioa 0.0029 1 0.0029 0.115 0.736
Items w/i Ratioa 1.2400 4 8 0.0258

Within
Test Length 0.0211 1 0.0211 1.381 0.274
Ratio x Test Length 0.0011 1 0.0011 0.072 0.795
Error 0.1222 8 0.0153

Summary Table for unidimensional data set: Bias(a)

Source SS df MS

Between
Ratioa 0.0003 1 0.0003 0.010 0.919
Items w/i Ratioa 1.2584 48 0.0262

Within
Test Length 0.0140 1 0.0140 1.008 0.345
Ratio x Test Length 0.0003 1 0.0003 0.022 0.887
Error 0.1111 8 0.0139

Note: Ratioa: sample size ratio

20
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Table 4

Summary of RMSE(dil analysis for unidimensional dam

Source SS df

Between
Ratioa 0.3185 1 0.3185 9.858 0.003*
Items w/i Ratioa 1.5807 48 0.0329

Within
Test Length 0.0767 1 0.0767 3.847 0.086
Ratio x Test Length 0.1638 1 0.1638 8.218 0.021*
Error 0.1594 8 0.0199

RMSE Cell Means: Ratioa x Test Length

Test Length
Ratioa 15 30

5: 1' 0.182 0.450
10 : 1 0.499 0.445

Summary of Bias(dil analysis for unidimensional data

Source SS df MS

Between
Ratioa 0.6413 1 0.6413 17.340 0.000*
Items w/i Ratioa 1.8157 4 8 0.0378

Within
Test Length 0.1371 1 0.1371 6.833 0.031
Ratio x Test Length 0.2400 1 0.2400 11.962 0.009*
Error 0.1605 8 0.0201

Bias Cell Means: Ratioa x Test Length

Test Length
Ratioa 15 3 0

5 : 1 -0.060 -0.443
10 : 1 -0.493 -0.441

Note: Ratioa: sample size ratio; *significant at overall a = 0.05
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Table 5

Average fidelity coefficients

Sample
size
ratio

# of
items

Theta ia 1lb Ilc Ild Ille IIIf IIIB IIIh N

5: 1 15 01 0.948 0.659 0.773 0.899 0.550 0.693 0.641 0.884 5625
82 0.709 0.796 0.913 0.552 0.725 0.842 0.894 5625
03 0.586 0.725 0.844 0.893 5625

0.963 0.968 0.969 0.967 0.974 0.975 0.977 5625

30 01 0.963 0.677 0.783 0.912 0.553 0.699 0.644 0.896 11,250
02 0.692 0.792 0.915 0.542 0.710 0.841 0.896 11,250
03 0.593 0.728 0.850 0.900 11,250

0.974 0.975 0.977 0.977 0.980 0.981 0.983 11,250

10 : 1 15 81 0.948 0.657 0.769 0.904 0.535 0.700 0.634 0.888 11,250
02 0.703 0.790 0.913 0.572 0.721 0.844 0.887 11,250
03 0.569 0.718 0.845 0.894 11,250

0.962 0.968 0.970 0.967 0.973 0.975 0.977 11,250

30 01 0.963 0.675 0.780 0.914 0.550 0.708 0.647 0.893 22,500
02 0.697 0.791 0.914 0.554 0.709 0.847 0.894 22,500
03 0.585 0.732 0.855 0.901 22,500

0.974 0.976 0.978 0.977 0.980 0.982 0.983 22,500

Notes: aunidimensional, hp0102 = 0.0, cpe1e2 = 0.30, dp0102= 0.75, apoioj = 0.0, 0.0, 0.0,
fP0.0 = 0.30, 0.30, 0.30, 8p0.0- = 0.30, 0.30, 0.75, hp0i0j= 0.75, 0.75, 0.75
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Table 6

Average RMSE/Bias for ability lunidimensional datal

Sample # of RMSE Bias N
size items
ratio

5 : 1

10 : 1

15
30

15
30

0.381
0.353

0.444
0.435

-0.130
-0.058

-0.140
-0.127

5625
11,250

11,250
22,500
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Table 7

II II II I I 6 : /

Source SS df MS F P

Between
Ratioa 0.0107 1 0.0107 1.562 0.217
Items w/i Ratioa 0.3314 48 0.0069

Within
Test Length 0.3188 1 0.3188 62.301 0.000*
Ratio x Test Length 0.0022 1 0.0022 0.438 0.527
Error 0.0409 8 0.0051

Note: Ratioa: sample size ratio; *significant at overall a = 0.05
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Figure Captions

Figure 1 Option response surfaces for a three-category item with d = (0.75, 1.250)
and a = (1.50, 0.75)

Figure I a: ORS for category 1
Figure lb: ORS for category 2
Figure 1 c: ORS for category 3

figuraj, RMSE(a) and Bias(a) for unidimensional data
Figure 2a: RMSE(a)
Figure 2b: Bias(a)

Figure 3, RMSE(d 1 ), RMSE(d2), RMSE(d3), and RMSE(d4) for unidimensional data
Figure 3a: RMSE(d 1 )
Figure 3b: RMSE(d2)
Figure 3c: RMSE(d3)
Figure 3d: RMSE(d4)

Figure 4. Bias(dx)
Figure 4a: Bias(dl)
Figure 4b: Bias(d2)
Figure 4c: B ias(d3)
Figure 4d: Bias(d4)

Figure 5. RMSE(0) and Bias(0) for unidimensional data
Figure 5a: RMSE(0)
Figure 5b: Bias(0)

Figure 6. RMSE(a) for unequated unidimensional data
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