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Abstract

The purpose of this paper is to discuss some of the different

approaches to standard setting. Brief comments and references are offered

concerning strategies that rely primarily on the use of expert judgment. A

minimax procedure, an empirical procedure that invokes evaluation of the

mathematical properties of various cutoffs through the application of

decision theory, is illustrated. Minimax procedures are useful in

minimizing probabilities of misclassification; i.e. the optimal minimization

of false negatives and positives.
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The setting of standard cutoff scores, commonly called standard

setting, is preliminary to interpreting many test performances. Examples

of situations which require these types of scores are those in which the

examinee is required to meet or exceed a previously set score before

advancing to the next level or unit of learning, or certification for practice

in a particular profession or occupation, After an appropriate cutoff score
has been determined, say x0 , an examinee must meet or exceed this score

on the test to pass. In this case, the cutoff score of x0 was applied

directly to the observed scores, which is the most common way to use a

cutoff score. A less common way to use a cutoff score is to apply it to the

true (or domain) scores. The domain cutoff score divides the true score

scale into two regions which are referred to as mastery states. Examinees

who have a true score at or above the cutoff score are called true masters

and the examinees who have a true score below the cutoff score are called

true nonmasters. Note that some standard-setting situations may call for

the use of more than one cutoff score, but in practice it is most common to

use a single score (Crocker & Algina, 1986). The purpose of this paper is

to discuss some of the different approaches to standard setting. Most

strategies that rely primarily on the use of expert judgments are based on

one of three categories: 1) holistic impressions of the item pool, 2)

content of each test item, and 3) examinee's performance on the test

(Crocker & Algina, 1986).

Methods where judgments are based on holistic impressions of the

item pool are widely used, but frequently criticized. Alternate panels of

judges might set the standard cutoff score at different levels. A test
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developer could perform replication studies, but the number of judges

available for each study decreases by 1/k, where k is the number of

replications performed. This, in turn, causes more fluctuation in the cutoff

scores from sample to sample.

Methods where judgments are based on the content of each test item

have been the most studied approaches to standard setting. Crocker and

Algina (1986) consider three well-known procedures in this category.

Nedelsky (1954) designed a procedure for multiple choice items and

was primarily concerned with setting standards of minimum competency

for university-level examinations.

Angoff (1971) developed a method based on an individual judges'

concept of the proportion of individuals from a minimally competent group

who could answer a given item correctly. Summing across items would

give a minimum passing score per judge. A general average or consensus

of ratings across judges is the cutoff score.

Ebel (1972) uses a categorizing technique employing a two-

dimensional grid. With one dimension as relevance and the other as

difficulty, this system takes into account the possible influence of these

two dimensions on the perception of the judges.

Comparison studies of these three methods have not shown one

method to be superior over the others, although a well- -cited study by

Andrews and Hecht (1976) found large differences in standards set by the

same panel of judges using the Ebel and Nedelsky methods. A more recent

study by Behuniak, Archambault and Gable (1982) supported findings of

large differences in standard scores set by different panels of judges using

the same method. Saunders, Ryan and Huynh (1981) found that a judge's
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content knowledge was a factor in producing a cutoff score using the
Nedelsky method.

A final problem to be considered is that of intrajudge inconsistency

(van der Linden, 1982). A judge may assign a lower probability to passing

i..rt easier test item and a higher probability to passing a harder test item.

Using item response theory, van der Linden offers an index of discrepancy

and demonstates its application.

Methods where judgments are based on examinees actual

performance during some trial administration of a test have many critics.

Logic for support of these methods comes from Shepan: (1979), who

explains that judges' standards are swayed by their concents of howknown

individuals would perform on a test or given test item and their judgments

are confined to finite perceptions of these abilities. Empirical studies have

shown that different cutoffs might be set by judges that have varying
characteristics. One approach in this area is to use a test group of

examinees lower in ability than the target population and set a standard

using the "average" of the group.

Jaeger (1982) combines features of all three categories in a method

called iterative structured item judgment process. A study illustrating its

application was conducted for the North Carolina High School Competency

Tests. Differences in standards set were reported depending upon group

membership, e.g., the group of teachers recommended different cutoff

scores than did the group of citizens.

To try and obtain an estimate of the contribution of differences in

judges to a final cutoff score, Brennan and Lockwood (1980) examined the

possibility of using generalizibility theory. Continued exploration in this

area using this procedure is suggested (Crocker & Algina, 1986).
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The psychometric problem of standard setting naturally invokes the

question of legitimacy and justification. There are proponents for and
against the practice. Crocker and Algina suggest the following steps to help

answer these questions:

1. Question whether there exists a legitimate need to set

standards.

2. Identify the likely threats to invalidity of the inferences to be

made.

3. Use two or more different procedures.

4. Examine empirical evidence of how a typical sample of

examinees perform on the test.

Recall that a domain cutoff score divides the true score scale into two

regions; true masters and true nonmasters. Adopting the notation of

Crocker and Algina, (1986), the domain cutoff score is denoted to, and

may be determined by one of the previously described methods. The

observed score cutoff, denoted xo, is to be determined.

Let ti be the true score for a particular examinee and let x be the

observed score for the same examinee. The examinee will be classified in

one of the following four ways:

Classification Grid

?_ 'L 'C < 'Co

True False

x xo positive positive

False True
x < xo negative negative
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Examinees on the off-diagonal are misclassified. Minimizing the

probability of an examinee falling into one of these two categories, false

positive or false negative, is the goal of these empirical procedures.

Hunyh (1976) developed a procedure for determining a cutoff score

based on the assumption that the bivariate distribution of the domain and

observed scores is beta-binomial Hunyh's procedure is quite accurate, but

complicated to apply. A less complicated procedure was shown by Hunyh

to be a good estimate if the number of test items is greater than or equal

to 20 and the domain scale cutoff score is in the interval from .5 to .8

(Hunyh & Saunders, 1980). A formula for estimating the observed cutoff

score is given.

A practical problem with these procedures can occur when used in

ongoing testing programs which put psychometric and legal principles in

possible conflict (Crocker & Algina, 1986). Estimates of observed cutoff

scores may vary from year to year indicating samples from different

populations. If a lower cutoff score is used in one year for psychometric

reasons, legal problems could arise since previous examinees at that level

would have failed the test.

One approach to examining empirical evidence of how a typical

sample of examinees perform on a test that avoids this problem is to use a

minimax procedure. A minimax procedure invokes the evaluation of the

mathematical properties of various cutoffs through the application of

decision theory. These procedures are useful in minimizing the

probabilities of misclassification, i.e., false negatives and false positives, in

a systematic way. A minimax procedure developed by Hunyh (1980) will

be illustrated in this paper.
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As in Hunyh's more complicated procedure, assumptions about the

distribution of scores must be made before probabilities can be calculated.

Most specifically, the distribution of the scores of the misclassified

examinees is of concern. The binomial distribution is the most common

assumption for these scores since scores are based on the proportion of
items answered correctly. Proportions can be interpreted as probabilities

for randomly chosen items. By specifically applying the theory of

Bernoulli trials, the probability of answering x out of n randomly chosen

items correctly can be computed.

Bernoulli Trials and the Binomial Distribution

A Bernoulli trial is a type of experiment with two possible outcomes,

each the complement of the other. One is designated as a success and the
other as a failure. For example, suppose the experiment of interest is the
roll of a fair die. Suppose the outcome of interest is rolling a 6. A success

(S) for this experiment is a 6 turning up on one roll of the die and a failure

(F) is anything else turning up on the one roll of the die. Then the
1

probability of a success, denoted p, is 6 and the probability of a failure,
5

denoted q (--= 1 - p), is . This experiment is classified as a Bernoulli

trial.

Barnett and Ziegler (1990) afford us the following defin:Lion:

A sequence of experiments is called a sequence of Bernoulli trials, or a

binomial experiment, if:

1. Only two outcomes are possible on each trial.

2. The probability of success p for each trial is a constant

(probability of failure is then q = 1

3. All trials are independent.

8
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The probability of x successes in n Bernoulli trials is computed by

(1) Cnoc px qn-x

n!where
Clbx (n-x)! x! yields all possible combinations of n

things taken x at a time without regard to order.

Clearly, then, the matter of correctly answering an item on a

particular test is also a Bernoulli trial where S is a correct response and F

is an incorrect response. A test would constitute a sequence of these trials.

A brief review of the binomial formula will lend itself to

understanding the relationship between the binomial distribution and a

sequence of Bernoulli trials. In general, it can be shown that a binomial

expansion is given by

(a + b)n = Cn,0 an + Cn,1 an-1 b + Cri,2 an-2 b2
Cn,n bn

where n is a natural number.

Consider now an experiment consisting of a sequence of

threeBernoulli trials. The number of successes for this sequence of

experiments are the values of the random variable X. The probabilities

associated with each of these values have been computed using formula

(1) and shown in the following table.
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X (= po5sibl # of successes in 3 trials) P(X)

0
0C 3,0 p q3

= q3

1 C3,1 pl q2
= 3q2p

2 C3,2 p2 q 1

= 3qp2

3 C3,3 p3 q0
= p3

Expanding (q + p) 3 using the binomial formula, we obtain

(q +p)3 = C3,0 q3 + C3,1 q 2 p + C3,2 qp2 + C3,3 p3

= q3 + 3q2p + 3qp 2
+ p3.

Note that the probabilities in the second column of the above table are the

terms in the binomial expansion of (q +p)3.

Reasoning in the same way for the general case, the probability of

each value of the random variable X is a term in the binomial expansion

of (q + p)n. Thus, the probability of x successes in n trials calculated by

Cno, px n-xq where x is an element of (0,1,2,...,0, yields the Binomial

Distribution.

Example

In using Hunyh's minimax procedure, t0 is not the domain cutoff

score of interest. Instead, an indifference zone is created by setting
domain cutoff scores 't 1 and T2 where T1 is the upper bound for the

nonmastery region and T2 is the lower bound for the mastery region.

10
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nonmastery region

indifference zone

i1 tie mastery region

Examinees with scores in the indifference zone are close to both regions.

Thus, the probability of misclassifying an examinee in this range is of no

concern. The probabilities of concern and those we wish to minimize are

the probabilities that an examinee at the 't1 level will be misclassified as

a master (false positive) and the probability that an examinee at the T2

level will be misclassified as a nonmaster (false negative).

Suppose that there are 5 items on a hypothetical test and that T1 =

.6 and ,t2 = .8. The probability of correctly answering exactly x items

out of the 5 item test must be caluculated using the formula for Bernoulli

trials. The result will be a binomial proabability distribution for the two
domain scores til and 12.. A taole summarizing the probability of

misclassification at each possible cutoff score based on the binomial

distribution of the domain scores will allow the minimax cutoff score to

be determined. Note that the values for the random variable X in the two

probability distributions range from 0 to 5, inclusive, which is also the

number of possible correct items on the test. The Bernoulli trial formula
uses p = .6 and p = .8, respectively, which are the domain cut scores t1

and T2 .
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X (= possible # of correct
items out of 5) (probability

Domain Score
correct)of exactly x items

til = .6 tie = .8

0 C5,0 (.8)° (.2)5 = .00032C5,0 (.6)° (.4)5 = .01024
1 C5,1 (.8)1 (.2)4..0064C5,1 (.6)1 (.4)4..0768
2 C5,2 (.6)2 (.4)3..2304 C5,2 (.8)2 (.2)3=.0512
3 C5,3 (.6)3 (.4)2..3456 C5,3 (.8)3 (.2)2 =.2048
4 C5,4 (.6)4 (.4)1..2592 C5,4 (.8)4 (.2)1 =.4096
5 C5,5 (.6)5 (.4)°=.07776 C5,5 (.8)5 (.4)°=.32768

Note that all probabilities satisfy the conditions for a probability

distribution, i.e., each probability is in the range 0 to 1, inclusive and

the probabilities for each distribution sum to 1.

To illustrate the use of the above table, suppose 3 is chosen as the

cutoff score. Then an examinee with a domain score of .6 is misclassified

as a master (false positive) if that examinee answers 3, 4 or 5 items

correctly. The probabilities for those scores are taken from the

probability distribution above and added to reach the total probability of a

nonmaster being misclassified at that cutoff score. An examinee with a

domain score .8 will be misclassified as a nonmaster (false negative) if

that examinee answers 2 or less items correctly. Thus, the pro abilities

for 2, 1 and 0 are taken from the probability distribution above ar.d added

to reach the probability of misclassification. These values have been

calculated for each possible cutoff score and summarized in the table

below. An asterisk has been placed by the maximum probability for each

cutoff score. The minimum of these maximum probabilities will be the
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probability of the optimal cutoff score. In this example, the observed

minimax cutoff score should be set at 4 items with maximum probability

of misclassification at .33696. It follows, then, that all other

examinees have a misclassification probability smaller than .33696.

Possible Domain Scores
f k I

'r1 = =

0 1 * 0

1 .98976 * .00032
2 .91296 * .00672
3 .68256 * .05792
4 .33696 * .26272
5 .07776 .67232 *

If the probability associated with the minimax cutoff score is

unacceptable, increasing the test length will reduce this probability. Set

first a maximum acceptable probability of misclassification and

cor, truct new tables for a first choice test length. Increase the length of

the test item by item, calculating the new probabilities until the

acceptable probability is reached. A more detailed treatment of

increasing test length to reach a desired maximum probability can be

found in Fahner (1974) and Wilcox (1976).

Summary

Many different approaches to setting standard cutoff scores are

currently used in research and in practice. Controversy surrounds methods

which employ expert judges and also those using test groups to

empirically set scores. A minimax procedure developed by Hunyh was

illustrated to provide insight into an empirical procedure that invokes the
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evaluation of the mathematical properties of various cutoff scores. The

example provided is an application of decison theory with underlying

binomial probability distribution. The minimax procedure helps to

minimize the probabilities of misclassification for false negatives and

false positives.
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