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Diagnosing Knowledge States in Algebra

Using the Rule Space Model

Abstract

This paper illustrates the use of rule space as a tool to support cognitive analyses of students'

mathematical behavior. The rule space approach is explained and is then used to classify students

into one of two methods for solving linear algebraic equations in one unknown and to diagnose

their knowledge states in this topic. A 32-item test with open-ended questions was administered to

231 eighth and ninth graders. The following outcomes of the rule space model were presented: (a)

a classification of examinees into knowledge states resulting from the two solution zpproaches at

the group level along with individual examples; (b) tree-diagrams of the transitional relationships

among the states for each strategy. Implications for using the feedback provided by the rule space

model in the context of instruction and assessment are discussed.

U
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Diagnosing Knowledge States in Algebra

Using the Rule Space Model

Indices that may be quickly and inexpensively generated from standard mathematics tests

include total number correct for each student, measures of central tendency, dispersion, and

standard errors of measurement. While these summary and descriptive statistics are of value in

ranking students or comparing a student's performance to the performance of students on some

larger normative sample, they do not provide much diagnostic information about the mathematical

operations that the student has mastered or has not yet mastered.

In the case of solution of linear equations in one unknown, for example, a teacher may

wish to know more than that a given student is "poor at algebra" because his or her score was one

standard deviation below the class mean. Ideally, the teacher would wish to know which of the

many components of performance in algebra is causing difficulty for a given student and for the

class as a whole. Adequate performance in the algebra of linear equations requires more than skill

in applying an algorithm. It rests upon adequate performance in and understanding of a larger

body of mathematics that ranges from mastery of simple operations such as addition to mastery of

more difficult concepts such as the distributive law and quotients. Armed with this diagnostic

information, the teacher may then examine the difficult area(s) for the students in terms of

misconceptions or faulty skill performance using any of the interview and protocol analytic tools

provided by researchers in cognitive science. In considering group-level performance, the teacher

may wish to examine teaching methods to determine if these are responsible in any way for the

students' mislearning.

The value of a diagnostic profile that points out deficiencies and strengths in the students'

performance in mathematics has long been recognized (VanLehn, 1982). However, the

computational problems involved in "teasing out" the dimensions underlying students'

performance are formidable. VanLehn (1982) noted that thousands of hours of work by trained

experimenters were required to determine students' "bugs" in subtraction. The problem is
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exacerbated when the instructor has available only the student's correct/incorrect score on each

item, or has little time to deal with detailed levels of assessment.

To illustrate the combinatoric problem involved in producing profiles of mastery/non

mastery on task subcomponents, imagine that one can describe the solution of an item in terms of

the mastery of four underlying dimensions. Thus, it may be argued that a student who fails this

item (who is not ge:...ssing) may have failed to master all four dimensions, or failed to master any

three, or any two, or any one. For a problem with four dimensions, there are 24 -1 patterns that

could account for an incorrect answer. In general, for an item with k dimensions, there are 2k -1

patterns that could account for an incorrect answer. As the number of dimensions increases, the

number of patterns to consider climbs exponentially.

Tatsuoka developed the rule space methodology to address the combinatoric problem

associ, xl with diagnosis of mastery of underlying dimensions of an item (called attributes), (e.g.,

Tatsuoka, 1983, 1985, 1990, 1991; Tatsuoka & Tatsuoka, 1987). An attribute of a task is a

description of the processes, skills or knowledge a student would be required to possess in order

to successfully complete the target task. Attributes are not generated by rule space; they are

generated by a domain expert (usually in concert with a cognitive scientist). They may include,

but are not limited to, a student's ability to perform some procedures. Attributes may also include

a student's use of heuristics, or adoption of a strategy. In general, rule space can handle any

expression of an underlying dimension of a task that can be specified to the extent that certain items

tap that attribute and other that do not. By examining a student's differential performances on the

items, rule space categorizes students into the attribute mastery pattern that would best account for

the student's individual, item-response pattern.

For the mathematics educator, rule space can provide the following diagnostic information:

(a) a description of each student's mastery (and nonmastery) of the attributes judged by a domain

expert to be necessary for successfully completing the test; (b) a description of group level mastery

patterns obtained by aggregating across the individual profiles; and (c) partial-mastery charts that
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can be used to aid in the design of remediation ( Tatsuoka & Tatsuoka, 1992). A detailed

description of rule space is beyond the scope of this paper. A simplified description follows.

Rule space is a statistical methodology for classifying students' responses to a set of items

into one (or more) prespecified attribute-mastery patterns. In practice, a domain expert and

cognitive scientist would identify the attributes of the target task that are of interest. They would

then write items that sample from this set of attributes. The resulting items and attributes would

then be arranged in an attribute-by-item matrix (referred to as a Q matrix in rule space).

Unfortunately, a student's actual mastery or nonmastery of a set of attributes cannot be measured

directly, but must be inferred from the student's pattern of responses to the items. In an ideal case,

a student who had mastered some, but not other, attributes would answer correctly only those

items that contain attributes that he or she had mastered, and answer incorrectly those items that

contain at least one attribute that he or she had not mastered. Such a student would produce an

ideal item-response pattern. Within rule space, specialized functions, called Boolean Description

Functions (BDF), are used systematically to determine the knowledge states of interest (i.e., those

that describe ideal behavior in terms of attributes) and to map them into ideal item-response patterns

( Tatsuoka, 1991; Varadi & Tatsuoka, 1989). Rule space then plots the ideal item-response

patterns in terms of two variables: 0 (theta), and C (zeta).

0 and C. The ability continuum derived from an item-response (IRT) analysis (Lord &

Novick, 1968), 0, is used as one dimension along which to describe the ideal item-response

patterns. Thus, a high-ability student (scoring high on 0) would have an ideal item-response

pattern with many is and few Os (for correct and incorrect responses to items, respectively);

conversely, a student at the lower end of the ability continuum (scoring low on 0) would display

an ideal item-response pattern containing mostly Os. A student of high ability who gets some easy

items incorrect, or a student of low ability who gets some hard items correct would be measured

high on an "unusualness of response" scale, which is what C is (Tatsuoka, 1984; Tatsuoka &

Linn, 1983). C is the second dimension that rule space uses to describe students' responses.
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Thus, rule space generates a two-dimensional coordinate space (with 0 on the x-axis and ;

on the y-axis) in whose plane certain points represent the 0 and ; of the ideal-response patterns.

However, students' performances on the test items are often subject to fluctuations. Producing an

ideal response pattern is likely to be rare. Students' item-response patterns that deviate from an

ideal response pattern are considered as "fuzzy" response patterns. Points corresponding to the

fuzzy response patterns swarm around their respective ideal response patterns, and generate

regions within probability ellipses with the ideal response patterns as their centers. A 90%

probability ellipse encloses 90% of the fuzzy-response-pattern points; a 95% probability ellipse

encloses 95% of them; and so forth. Rule space then uses information on a student's actual score,

measured on 0, and ;, to decide where in the two-dimensional space spanned by these measures

the student's fuzzy item-response pattern lies (Tatsuoka & Tatsuoka, 1987). A student is

classified to the ideal response pattern that embraces his or her point in the smallest associated

ellipse. This determination is made by measuring how far from the centroid the student's point is,

in terms of Mahalanobis' distance. Once the most likely ideal item-response pattern is identified,

the most conservative attribute-mastery pattern for that ideal item-response pattern is assigned by

rule space to that student. The most conservative pattern is chosen for instructional purposes. The

most conservative pattern will err in the direction of suggesting that a student has not mastered the

identified attributes, when he or she may have mastered them. Thus, the conservative diagnosis

would spur a remedial strategy that would be most likely to target the student's weaknesses.

Rule space entails a statistical pattern classification approach. Its accuracy of classification

depends on how well the items are written, how well they test (as unambiguously as possible) the

attributes that were established by the domain expert, and the amount of error in the student's

responses. Since rule space does not produce the attributes, the onus lies on domain experts and

cognitive scientists to provide it with useful descriptions. For areas that are well-defined (e.g.,

subtraction of fractions, signed numbers operations), rule space has been shown to perform quite

well ( Tatsuoka, 1990; Tatsuoka & Tatsuoka, 1992).
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From among the several methods possible to solve a given lii.ear equation in one unknown,

we have chosen to demonstrate the use of rule space using two different approaches (expressed as

two different Q matrices). One method involves the use of a simple heuristic -- initially evaluating

the equation to determine if a simpler solution path would result by not rewriting the equation in

standard form until the final step (method 1). The other method involves consistently rewriting the

equation in standard form (i.e., with variables on the left -hand side of the equation and constants

on the right (method II). More details regarding the two methods are given in the method section.

The purpose of the present study was to illustrate the application of the rule space model for

diagnosing students' knowledge states in linear equations based on the two specified solution

methods. Thus, we will see how rule space can used to identify students who may need further

remediation, to identify subcomponents of linear algebra that may be causing difficulty for the

entire group of students, to produce partial mastery charts that may form the basis of fruitful

remediation, and to identify students for whom it may be of value to study further in terms of their

particular strategy use.

Method

subjects

The sample consisted of 231 8th and 9th graders (age 14-15) from an integrative high

school in Tel Aviv. Fifty-seven percent of the subjects were girls. The students studied

mathematics in high and low achievement groupings (106 in the former and 125 in the latter).

Instruments and procedures

A 32-item diagnostic test in linear algebraic equations in one unknown was developed by

Gutvirtz (1989). (The test items appear in Appendix A).

The internal consistency of the 32-item test as measured by Cronbach's Alpha coefficient

was 0.95. The item difficulty indices (percent correct) ranged from 0.41 to 0.93 with an average

of 0.74. The item discrimination indices (item-total correlations) ranged from 0.40 to 0.75 with an

average of 0.60.



Knowledge States in Algebra
8

Two sets of attributes were specified for the two solution methods (see Tables 1 and 2) and

these sets used to produce two separate Q matrices (see Appendices A & B). The two sets of

attributes result from a strategic decision made at the outset. In method I, a heuristic,"evaluation,"

is applied, wherein the student scans the equation in its initial form to determine if it is likely to be

simpler to delay writing the equation in standard form until the final step. For example, the

evaluation rule could be applied to item 5 in the test. When the evaluation heuristic is applied the

solution unfolds, thus:

4x + 21= 10x+ 17

21 - 17 =10x - 4x (evaluating, and subtracting an x-term and a constant from both sides)

4 = 6x (adding or subtracting variable terms)

6x = 4 (applying the symmetry law)

x = 4/6 (dividing across by the coefficient of x, when a>!-)

These operations are denoted in Table 1 as 12, 2, 6, 11, 10, and 14 (see also the

corresponding row for item 5 in Appendix A).

In method II, the student performs the mathematical operations necessary to bring the x-

terms to the left-hand side of the equation, and the constants to the right in all cases. Thus when

the evaluation heuristic is not applied, the solution path is more complex, since it now involves

operations with signed numbers:

4x+ 21 = 10x+ 17

4x - 10 x = 17 - 21 (subtracting an x-term and a constant from both sides)

-6 x = -4 (adding or subtracting variable terms and operations with signed

numbers)

6x = 4 (multiplying both sides of the equation by -1)

x = 4/6. (dividing across by the coefficient of x)

These operations are denoted in Table 2 as 2, 7, 8, 11, 13 (see also the corresponding row

for item 5 in Appendix B).
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The rule-space analysis.,

1. The adequacy of the two attribute matrices was tested by regressing the vector of item

difficulties on the set of attribute vectors. The entire set of attributes accounted for 95% of the

variance (R2=.95; R2adj=.91) for method I, and 77% of the variance (R2=.77; R2adj=.63) for

method II in the total sample.

2. The BILOG program (Mislevy & Bock, 1983) was used for estimating the item

parameters (A's and h's) of the IRT two-parameter logistic model. The a values ranged from 0.55

to 2.20 with a mean value of 1.21; the h values ranged from -2.12 to 0.45 with a mean value of

-0.84.

3. In order to determine the ideal item-response patterns corresponding to the attribute

mastery patterns, the BUGLIB program (Varadi & Tatsuoka, 1989) was used. As a result, 461

ideal item-response groups (representing 461 different knowledge states) were generated for

method I, and 453 for method II.

Results

A. Method I classification results

The classification of the actual students' response patterns into the 461 predetermined

knowledge states resulted in 55 non-empty groups. A summary of the classification results is

presented in Table 3. As can be seen in the table, 15 groups had frequencies of 2 or more, the

maximum having 10 students in a group. The table also presents the states into which one or more

students were classified, ordered by IRT 0. Figure 1 is a tree representation of those states. Each

state is represented by a node indicating the non-mastered attributes in that knowledge state, and

located on the IRT 0-value scale, which is given on the left side of the table. The arcs connecting

the nodes indicate transitional relationships among the states. A transition from one state of

knowledge to another is said to be possible whenever the set of non-mastered attributes associated

with the second state is a proper subset of the first state. Thus, arcs connect lower knowledge

states to higher ones, where a higher state is defined as a state having at least one less non-

mastered attribute than the lower state connected to it.

1j



Knowledge States in Algebra
10

Insert Table 3 and Figure 1 about here

R. Method II classification results

The classification of the students' response patterns into the 453 predetermined knowledge

states resulted in 51 non-empty groups. A summary of the classification results is presented in

Table 4. As can be seen in the table, 20 groups had frequencies of 2 or more, the maximum having

8 students in a group. The groups are ordered by IRT 8. Figure 2 is a tree representation of those

states.

Insert Table 4 and Figure 2 about here

C. Classifying Students into the two Solution Methods.

A decision rule was set to determine which of the two methods a given student was more

likely to have used. The shorter of the two distances (Mahalanobis' distances) between a student's

response pattern and that of the nearest ideal item-response group in each method was chosen to

indicate the student's group affiliation. Applying this decision rule resulted in 104 students being

classified into method I and 89 into method 11. Of the rest, 13 students had identical Mahalanobis'

distances for both methods; 19 answered all items correctly, and 6 answered all items incorrectly --

thus the method used by these students could not be determined. The students' average

ability/proficiency levels as measured by IRT 8 were -0.08 and 0.05 for methods I and II,

respectively (with SDs 0.98 and 0.84, respectively). Thus, the difference between the two groups

in mathematics ability as inferred form their performance on the current test was insignificant.

Among the students who were classified into methods I and H, 80% and 81%, respectively, were

within the 95% probability ellipses of knowledge states--the ideal response patterns (7,..2cv 3df cc.05

= 0.35). (For a complete discussion of probability ellipses in this regard see Tatsuoka &

Tatsuoka, 1987).
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Examples of Classified Responses for Method;.

To illustrate the outcomes of the rule space model for method I, three students who were

better classified to this method are now described.

Student 13 correctly answered 6 items (items 6, 9, 14, 17, 23, 29) and erred on 26 items. This

student was classified into knowledge state No. 437 with a Mahalanobis' distance of 0.00,

indicating a perfect match between the student's response pattern and the ideal response pattern

represented by that knowledge state. As can be seen in Table 3 the IRT 0 value for that state is a

low -1.73, and it is characterized by non-mastery of the following attributes (see Table 1): 1

(adding a term to both sides of the equation), 2 (subtracting a term from both sides of the

equation), 3 (applying order of operations), 4 (applying the distributive law), 5 (applying the

commutative law), 7 (applying signed numbers operations), 8 (dividing across by the coefficient of

x, resulting in x = b/a, when a =b), 10 (dividing across by the coefficient of x, resulting in x = b/a,

when a >b), 12 (evaluating the equation), 13 (applying order of operations and the distributive

law), and 14 (applying the symmetry law and evaluating the equation).

In order to reach state No. 0 (mastery of all attributes) from the state the student is currently

in (state 437), a number of transitions need to take place, as can be seen in the tree diagram

presented in Figure 1 one possible path is through states 429 (in which students have mastered

attributes 1, 2, 4, 12, and 14), to state 244 (attributes 3 and 5), to state 3 (attributes 8 and 10), to

state 1, by which time one attribute remains to be mastered (7), thus reaching a mastery of all

required skills (state 0).

Student 50 correctly answered 31 items and erred on item 21. This student was classified

into knowledge state No. 1 with a Mahalanobis' distance of 0.00. As can be seen in Table 3, five

other students were classified into this knowledge state, which has a 0 value of 1.23 and is

characterized by non-mastery of only attribute 7 [Performing signed number operations].

Student 175 correctly answered 25 items and erred on items: 1, 13, 16, 19, 21, 25, 30.

This student was classified into knowledge state No. 301 with a Mahalanobis' distance of 0.04

(the student's point is within the 99% probability ellipse for that state). As can be seen in Table 3,
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six other students were classified into this state which is characterized by non-mastery of the

attributes 1 [adding a term], 3 [order of operations], 7 [signed number operations], and 13 [order

of operations and distributive law]. In order to reach state No. 0 (mastery of all attributes) from the

state the student is currently in, a number of transitions need to take place, as can be seen in the tree

diagram presented in Figure 1. One possible route is through states 3, 1 to state 0.

Dumples of Classified Responses for Method II

To illustrate the outcomes of the rule space model for method II, three students who were

better classified to this method using the above decision rule are now described.

Student 148 correctly answered 27 items and erred on 5 items (items 1, 13, 16, 25, and 30).

This student was classified into knowledge state No. 234 with a Mahalanobis' distance of 0.00,

indicating a perfect match between the student's response pattern and the ideal response pattern

represented by that knowledge state. As can be seen in Table 4 the IRT 0 value for that state is .51

and it is characterized by non-mastery of attribute 3 (see Table 2): (applying order of operations).

As can be seen in Appendix B, 61% of the subjects in method II group mastered that attribute.

Student 136 correctly answered 26 items and erred on the following 6 items [items 3, 5,

26, 27, 28, and 31]. This student was classified into knowledge state No. 59 with a Mahalanobis'

distance of 0.05 (i.e., the student's point is within the 99% probability ellipse for that state). As

can be seen in Table 4, four other students were classified into this knowledge state, which has an

IRT 0 value of -0.01 and is characterized by non-mastery of attribute 11 (dividing across by the

coefficient of x, resulting in x = b/a, when a >b). As can be seen in Appendix B, 57% of the

subjects in method II group mastered that attribute.

Student 142 correctly answered 11 items (items: 2, 6, 8, 14, 17, 18, 20, 22, 23. 24. 29)

amel erred on the other items. This student was classified into knowledge state No. 83 with a

Mahalanobis' distance of 0.09 (a value within the 99% probability ellipse for that state). This state

is characterized by non-mastery of the attributes 1 (adding a term to both sides of the equation), 4

(applying the distributive law], 6 (applying the distributive and commutative laws), 8 (applying
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signed number operations), and 11 (dividing across by the coefficient of x, resulting in x = b/a,

when a >b). No other student in our sample was classified into that state.

D. Comparing the Results of the two Solution Methods.

The two methods, I and II, yielded overall significantly different results for item difficulties

as was indicated by a discriminant analysis. Thirty five percent of the variance in item difficulty

was explained by group affiliation to method I or II (Wilks Lamda 0.65, x2 32df = 76.01,

p<.0001). The discriminant function yielded substantive weights (>3) for the following items: 8

(.62), 16 (.57), 18 (.35), 21 (.55), 27 (-.33), 28 (-.34) , 29 (-.30). (The values in the parentheses

are the standardized canonical discriminant function coefficients). As is evident from the signs of

these weights, some items turned out to be easier for method I students and others for method II

students. Item difficulties (percent correct) for each method appear in Appendices A and B.

The mastery level for the two groups also differ as can be seen by comparing the mastery level of

similar attributes in the two groups given in Appendices A and B. These differences can not be

tested statistically because even for the same attribute definition different items may apply in the

two methods. However, a qualitative comparison of the interpretations based on mastery profiles

for each method indicates that for students in method I the least mastered attributes (see table 1) are

7 (Performing signed numbers), 13 (Applying both arithmetic order and the distributive law in the

same equation), 10 (Dividing across by the coefficient of x, [x=b/a when a>b]) and 5 (Applying

the commutative law); whereas for method II students (see Table 2), the least mastered attributes

are: 6 (Applying the distributive and commutative law), 4 (Applying the distributive law), 1

(Adding a term to both sides of the equation). and 11 (Dividing across by the coefficient of x,

when a>b).

Discussion

This paper illustrated the use of rule space to diagnose student's individual and group-level

mastery of attributes related to linear algebra. Two different pre-specified solution models were

identified and students were classified according to them. One model was chosen to be more

mathematically sophisticated and involves mastery of the symmetry law and the application of a

1 7
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heuristic that allows for strategic decision making when solving the equation (i.e., to delay writing

the equation in standard from until the final step). The other model represents a solution that

progresses in a more standard fashion in which all the x-terms are brought to the left-hand side of

the equation, and the constants to the right. Many other solution models could exist, of course. In

order to test these models, unique Q matrices would have to be written.

Of this sample of students, 104 were more likely to be using the heuristic approach, and 89

students the standard approach. Supporting evidence for this distinction was found in that item

difficulties differed for each Q matrix, indicating that the difficulty of an item is a function of the

strategy used to solve it (since different attributes are called upon for each method). For example,

attribute 7 (Performing signed numbers, negative subtraction and multiplication operations) posed

the greatest difficulty for students classified as using the heuristic approach. This finding seems

reasonable in that students who evaluate the equation to see whether it is easier (i.e., results in

positive integer values) to bring x-terms to the right-hand side rather than to the left -hand side of

the equation would generally not encounter operations involving negative numbers. Note that

attribute 7 poses difficulty across all levels of ability (see Table 3). Attribute 13 also poses

consistent difficulty (Applying both arithmetic order and the distributive law in the same equation).

On the other hand, attribute 2 (Subtracting a term from both sides of the equation) causes difficulty

for only the lowest ability students. For students using the standard approach, on the other hand,

attribute 6 (Applying the distributive an commutative laws in the same equation) proved the most

difficult.

When we consider the partial-mastery chart for students using the heuristic method (Figure

1), we see how the transitional states are interrelated when they are linked as proper subsets one of

the other. One approach to remediation using this chart is to first identify the knowledge state that

best describes the target student. Then, to consider the transition path that causes the least change

as reflected on the ability measure, 0. Thus, a student classified to state 437 is more likely to

respond to remediation that results in attaining state 429 (i.e., remediating attributes 1, 2, 4, 12,

and 14), rather than to remediation that results in attaining state 303 (i.e., remediating attributes 2,

6
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5, 8, 10, 12, and 14) -- since the latter state is associated with higher-ability students. For a more

complete description of how to use transitional states for remediation purposes, see Tatsuoka and

Tatsuoka (1992).

At the whole-class level, a teacher using the current analyses would know that a significant

number of students were most likely not using the heuristic method. Therefore, the teacher could

explicitly teach the evaluation heuristic, which would provide the students a choice of solution

models, and would make algebra seem less mechanical and more mathematical. Concerning the

class's performance on each attribute, the teacher could address each of the unmastered attributes

using whole class instruction. Similar options would exist at the individual student level, in which

the teacher could focus on the strategy-level decisions that the student is making or on remediation

of the nonmastered attributes.

Comparing the rule space and buggy approaches. In recent years, cognitive scientists and

psychometricians have contributed to the effort to better understand mathematics performance

beyond simple indices (e.g., Birenbaum & Tatsuoka, 1987; Brown & Burton, 1978; Matz, 1982;

Sleeman, 1984; Tatsuoka, 1990; Tatsuoka & Tatsuoka, 1992; VanLehn, 1990). An alternative

modeling approach to rule space is the buggy approach, in which diagnoses are generated in

response to the student's errors (Sleeman, Kelly, Martinak, Ward & Moore, 1989; Payne &

Squibb, 1990; VanLehn, 1982). Many such errors may be "wild" or result from slips (e.g.,

Sleeman et al., 1989). As a consequence, remediation resulting from buggy analysis may lead the

teacher and student far afield from the target task. To illustrate, consider an equation in the form ax

= b. Bugs that have been noted for this case generate x = b (Sleeman et al., 1989), x = b - a

(Sleeman et al., 1989; Payne & Squibb, 1990), x = -(a + b) (Gutvirtz, 1989), x = a b (Gutvirtz,

1989), and x = a + b (Gutvirtz, 1989; Payne & Squibb, 1990). To explain each of these cases, the

teacher must make complex inferences about the underlying mathematical models of the student,

and design remediation targeted to these inferences -- predicated on the questionable assumption

that students are not generating many of these errors capriciously (Sleeman et a1.,1989; Payne &

Squibb, 1990).
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The rule space analysis, by contrast, focuses diagnosis and remediation decisions on

attributes that are integral to the task at hand. Then rule space analysis considers the extent to

which the attributes for a given item are mastered over the entire test. For item 7 in the test [8 +

4(x - 3) = 24] method H, for example, the attributes to consider for this item would be 1 (Adding a

term to both sides of the equation), 4 (Applying the distributive law), 5 (Applying the commutative

law), 6 (Applying the distributive and commutative law), 8 (Performing signed numbers

operations), and 10 (Dividing across by the coefficient of x, when a<b [x=b/a]). The decision as

to which attributes would be remediated would be based not on the given student's bug(s) for that

ice, rather on an analysis of how the attributes were mastered across the entire set of items by that

student. In addition, the information gathered on the entire sample of students allows the teacher to

consider a pathway to mastery for this student by considering the number of students assigned to

each knowledge state (see Table 4 and Figure 2). The usefulness of remediation based on these

knowledge states remains to be tested empirically. If they are found to be of value instructionally,

remedial strategies can be proposed and scripted beforehand to address nonmastery of each of the

attributes. Further, the rule space analysis permits the investigation of the application of these

attributes at a strategic level (heuristic vs. standard methods in this case), which lends itself to

remediation at this level.. Finally, a careful examination of the Q matrix and the resulting group

attribute mastery profiles can aid in designing future tests in that topic, thus increasing the validity

of those tests. Regarding questions of validity, it should be noted that the two Q matrices

(describing two different approaches to solving the linear equations) resulted in different item

difficulties.
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Tabk, Attributes Used to Describe Method I.

No. Description

1 Adding a term to both sides of the equation

2 Subtracting a term from both sides of the equation

3 Applying arithmetic order of operations

4 Applying the distributive law

5 Applying the commutative law

6 Adding or subtracting variable terms

7 Performing signed numbers, negative subtraction and multiplication operations

8 Dividing amiss by the coefficient of x, [resulting in x=b/a when a=b]

9 Dividing across by the coefficient of x, [resulting in x=b/a when a<b]

10 Dividing across by the coefficient of x, [resulting in x=b/a when a>b]

11 Applying symmetry law

12 Evaluating the equation to determine the simplest solution path

13 Applying both arithmetic order and the distributive law in the same equation

14 Applying symmetry law and evaluating the equation to determine the simplest solution path

C't
C .11)
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Table 2. Attributes Used to Describe Method H.

No. Description

1 Adding a term to both sides of the equation

2 Subtracting a term from both sides of the equation

3 Applying arithmetic order of operations

4 Applying the distributive law

5 Applying the commutative law

6 Applying the distributive and commutative law

7 Adding or subtracting variable terms

8 Performing signed numbers, negative subtraction and multiplication operations

9 Dividing across by the coefficient of x, [resulting in x=b/a when a=b]

10 Dividing across by the coefficient of x, [resulting in x=b/a when a<b]

11 Dividing across by the coefficient of x, [resulting in x=b/a when a>bj

12 Number of distinct mathematical operations > 3

13 Multiplying both sides of the equation by (-1)
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Table 3. For Method I the States with two or More Students Classified into Them Ordered by

Theta (0), and a Listing of Attributes Not Mastered.

State No. IRT 0 Frequency Attributes not Mastered

0 * 5.00 19 (all mastered)

1 1.23 6 7

3 .41 6 7, 13

6 .12 3 4, 7, 13

11 .02 3 4, 5. 7, 13

86 -.21 3 7, 10

107 -.52 2 1, 5, 7, 10

180 -.13 2 7, 8. 14

244 -.57 10 7, 8, 10, 13

301 .13 7 1, 3, 7, 13

303 -.08 3 1, 3, 4, 7, 13

304 .12 2 3, 5, 7, 13

348 -.59 7 3, 5, 7, 10, 13

376 -.24 2 3, 4, 5, 7, 8, 13

429 -.73 5 3, 5, 7, 8, 10, 13

437 -1.73 3 1. 2, 3, 4, 5, 7, 8, 10, 12, 13, 14

372* -5.00 6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 (none mastered)

* Students in these states were not included in the analysis since their method could not be
determined.
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Table 4. For Method II: The States with two or more Students Classified into them Ordered by
Theta (0), and a Listing of Attributes Not Mastered.

State No. 0 Frequency Attributes not Mastered

0*

1

3

10

11

12

14

59

61

73

213

234

237

244

246

285

293

294

304

336

394

453*

5.00

.34

.33

.40

.27

.00

-.12

-.01

-.15

-.66

-1.79

.51

.10

.09

-.11

-.48

-.56

-.65

-1.01

-.15

-.57

-5.00

19

2

8

5

2

2

2

5

2

2

2

2

2

5

4

2

2

2

2

2

3

6

(all mastered)

12

1, 6

4

4,6

1, 4, 6

1, 4. 6, 12

11

6, 11

1, 4, 6, 11, 12

1, 4. 5, 6, 7. 8, 9,

3

1, 3, 6

3, 4

1, 3, 4, 6

1, 3, 6, 11

3, 4, 6, 11

1, 3, 4, 6. 11

1, 3. 4, 6, 8, 11

3, 5, 6, 9

3, 9, 11, 12

1, 2, 3, 4, 5, 6, 7,

11,

8,

12

9, 10, 11, 12, 13 (none mastered)

* Students in these states were not included in the analysis since their method could riot be
determined.
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Appendix A

The Incidence Matrix for MethodI for the 32 Items Using 14 Attributes with Percent Correct
for each item and Percent Mastered for each Attribute.

Item Attributes % Correct

1 2 3 4 5 6 7 8 9

1 1

0 1

1 1

2 3

1

4 Method I Total sample

1 3 +x6+3 *2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 72 74
2 7x+7=14 0 1 0 0 0 0 0 1 0 0 0 0 0 0 83 81

3 16x=4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 57 63
4 6x=2x+3 0 1 0 0 0 1 0 0 0 1 0 1 0 0 58 63
5 4x+21=10x+17 0 1 0 0 0 1 0 0 0 1 1 1 0 1 52 60
6 35=7x 0 0 0 0 0 0 0 0 1 0 1 0 0 0 95 93
7 8+4(x-3)=24 1 1 0 1 0 0 0 0 1 0 0 0 0 0 67 73
8 3+6x=18 0 1 0 0 0 0 0 0 1 0 0 0 0 0 69 77
9 60+12=6x+2x 0 0 0 0 0 1 0 0 1 0 1 0 0 0 88 81

10 4(2x+3)=10x 0 1 0 1 0 1 0 0 1 0 1 1 0 1 84 83
11 6+4x+x=22 0 1 0 0 0 1 0 0 1 0 0 0 0 0 75 77
12 98=7+7x 0 1 0 0 0 0 0 0 1 0 1 0 0 0 85 83
13 x-4=4+2*4 1 0 1 0 0 0 0 0.0 0 0 0 0 0 71 73
14 11x-3x+4x=44-12+4 0 0 0 0 0 1 0 0 1 0 0 0 0 0 87 87
15 4x+2=5+3x 0 1 0 0 0 1 0 0 0 0 0 1 0 0 84 84
16 2+2*3(2x+3)=22x 0 1 1 1 0 1 0 0 1 0 1 1 1 1 27 48

17 6x+8x=48+48 0 0 0 0 0 1 0 0 1 0 0 0 0 0 79 81

18 8+4x=26 0 1 0 0 0 0 0 0 1 0 0 0 0 0 83 85

19 6(x+3)=12x 0 1 0 1 0 1 0 0 1 0 1 1 0 1 80 81

20 5+3x+x=16 0 1 0 0 0 1 0 0 1 0 0 0 0 0 75 76
21 3+2*2(2x-323x 1 1 1 1 1 1 1 0 0 1 1 1 1 1 20 42
22 75=5+5x 0 1 0 0 0 0 0 0 1 0 1 0 0 0 85 84
23 24=6x 0 0 0 0 0 0 0 0 1 0 1 0 0 0 95 92
24 12x+12=24 0 1 0 0 0 0 0 1 0 0 0 0 0 0 83 81

25 4+x=6+2*3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 74 73
26 8x=4X+2 0 1 0 0 0 1 0 0 0 1 0 1 0 0 66 68
27 28x=7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 53 54
28 14x+30=78-2x 1 1 0 0 0 1 0 0 1 0 0 0 0 0 80 78
29 5x+2x-3x=25+12-9 0 0 0 0 0 1 0 0 1 0 0 0 0 0 91 88
30 x-6=3+5*3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 65 67
31 7+4x=28x 0 1 0 0 0 1 0 0 0 1 1 1 0 1 47 53

32 6+4(x-2)=18 1 I 0 1 0 0 0 0 1 0 0 0 0 0 66 70

% Mastered 6 9 6 6 5 9 0 5 9 5 9 8 2 7

4 4 4 9 8 5 1 9 6 1 5 9 3 7
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Appendix B

The Incidence Matrix for Method II for the 32 Items Using 13 Attributes with Percent Correct for
each item and Percent Mastered for each Attribute.

Item Attributes % Correct

1111
1234567890123 Method II Total sample

1 3+x=6+3*2 0110000000000 73 74
2 7x+7=14 0100000010000 80 81

3 16x=4 0000000000100 63 63
4 6x=2x+3 0000001000100 62 63
5 4x+21=10x+17 0100001100101 61 60
6 35 =7x 0100000001001 97 93
7 8+4(x-3)=24 1001110101000 76 73
8 3+6x=18 0100000001000 85 77
9 60+12=6x+2x 0100001101001 81 81

10 4(2x+3)=10x 0101001101001 84 83
11 6+4x+x=22 0100001001000 79 77
12 98=7+7x 0100000101001 82 83
13 x-4 4 +2'4 1010000000010 73 73
14 llx -3x+4x=44-12+4 0000001001010 90 87
15 4x+2=5+3x 0100001000000 85 84
16 2+2*3(2x+3)=22x 0111001101011 62 48
17 6x+8x=48+48 0000001001000 82 81
18 8+4x=26 0100000001000 89 85
19 6(x+3)=12x 0101001101001 83 81
20 5+3x+x=16 0100001001000 76 76
21 3+22(2x-323x 1101111101011 52 42
22 75=5+5x 0100000101001 85 84
23 24=6x 0100000001001 92 92
24 12x+12=24 0100000010000 79 81
25 4+x=6+23 0110000000000 70 73
26 8x=4X+2 0100001000100 65 68
27 28x=7 0000000000100 44 54
28 14x+30=78-2x 1100001001000 73 78
29 5x+2x-3x=25+12-9 0000001001000 87 88
30 x-6=3+5*3 1010000000010 66 67
31 7+4x=28x 0100001100101 52 53
32 6+4(x-2)=18 0001110001000 71 70

% Mastered 1 1

5064729870579
1012681590728

23
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Figure Captions

Figure 1

A Tree Representation of the States in Method I to Which More Than One Student Was Classified

Note: The small numerals correspond to the State labels.

Figure 2

A Tree Representation of the States in Method II to Which More Than One Student Was Classified

Note: The small numerals correspond to the State labels.

Authors' note:
The authors would like to thank Yaffa Gutvirtz for use of her data set for this study.
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