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Abstract

The PRODIGY/EBL system [Minton88] was one of the first works to directly attack the problem of
strategy utility. The problem of finding effective strategies was reduced to the problem of finding
effective rules. However, this paper illustrates limitations of the approach. There are two basic diffi-
culties. The first arises from the fact that the utility of a control rule cannot be accurately determined
from a single instance of the rule. This is a manifestation of a more basic problem which we term
the utility generalization problem. The difficulty is that the generalization techniques employed by
speed-up learning systems are accuracy preserving but not utility preserving. The second difficulty
is that control rules interact such that the utility of one control rule is a function of the other control
rules in the system. This composability problem means that systems cannot reduce the problem of
learning effective strategies to the problem of identifying rule utility in isolation. We document the
seriousness of these problems with an example domain theory. With this theory, PRODIGY/EBL
generates control strategies which are up to seventeen times slower than the original planner. While
this raises serious questions about the effectiveness of PRODIGY/EBL, we also claim the the utility
generalization and composability problems are basic issues which are not adequately addressed by
current speed-up learning techniques. We introduce an alternative technique calied COMPOSER.
This system is based on a sound statistical model which is validated with a series of experiments.
COMPOSER successfully avoids the utility generalization and composa. :iity problems.
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1 INTRODUCTION

There is considerable research in machine learning intotechniques to improve problem solving abil-
ity. Unfortunately, “speed—up learning” systems can result in substantial performance degradation
[Etzioni%0a, Minton85, Mooney89, Subramanian90, Tambe89]. Additionally, empirical claims of
success are frequently shown to be sensitive to subtle changes to the experimental conditions
[Gratch90, Mooney89, Segre91, Subramanian90]. It is not surprising that a basic question domi-
nates research in this area: what is the value of knowledge?

There are two major approaches to identifying “good” knowledge. The first places syntactic restric-
tions on the learning mechanism such that it only generates beneficial knowledge. Researchers try
to identify a set of domain independent syntactic constraints to discriminate helpful from harmful
knowledge. Learning systems can then be designed to obey these constraints. We will use the term
operationality criteria [Mitcheli86] to refer to any set of domain independent syntactic constraints
which limit the generation of knowledge. Many criteria have been proposed [Etzioni90a, Letov-
sky90, Segre87, Subramanian90].

A second approach is to compute a numeric £stimate of the value of knowledge. This estimate is
then used to discard harmful knowledge. The learning system implements a cost model and esti-
mates parameters of this model through direct observation of problem solving behavior within a par-
ticular domain [Gratch91, Keller87, Leckie91, Minton88, Yoo91]. We use the term utility analysis
for techniques which directly estimate the value of knowledge. The two approaches complement
each other. Utility analysis allows an inexact operationality criteria. An accurate operationality cri-
teria reduces the burden for utility analysis.
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Figure 1: PRODIGY/EBL leaming curve illustrating a harmful control strategy.
Results are averaged over ten frials.

In this paper we will relate an in—-depth investigation of one approach to utility analysis: the utility
analysis method of PRODIGY/EBL [Minton88] This is an approach which has shown empirical suc-
cessonseveral domains. Unfortunately, this success is not guaranteed. Figure 1 illustrates alearning
curve for PRODIGY/EBL on an artificial domain (described below). The leamed strategy actually
degrades performance by an order of magnitude. As we will show, there are many issues not ade-
quately addressed by the PRODIGY/EBL method. We will then argue that these are fundamental
problems, and are not adequately addressed by current approaches to utility analysis or operational-

ity.




2 REVIEW OF PRODIGY/EBL

PRODIGY/EBL [Minton88] is a learning approach which enhances the effectiveness of an underly-
ing STRIPS-like planner. The system uses explanation—-based learning (EBL) [DeJong86, Mitch-
ell86] to produce control rules from traces of problem solving behavior. Control rules are condition—
action statements which alter the way the PRODIGY planner explores its problem spaces. By
default, the planner lists all operators which unify with an unachieved goal and explores these alter-
natives depth—first. Control rules change the search by discarding or reordering some alternatives.
Figure 2 illustrates a control rule learned by PRODIGY/EBL on the blocksworld domain. The block-
sworld has several operators for clearing a block. RULE-1 asserts that in situations with an unheld
block, only consider the UN STACK operator.

RULE~1: JF current-node is Tn
current-goal at n is (CLEAR 7x)
{(NOT (HOLDING 7x)) is true at 7n
THEN choose operator UNSTACK

Figure 2: An examiple control rule

2.1 Utility Analysis

Not all control rules increase -he efticiency of planning. Control rules avoid search in the problem
space, however they introduce \hc cost of matching their preconditions. A rule is harmful when the
precondition evaluation cost exceeds the savings. PRODIGY/EBL incorporates utility analysis to
avoid this situation. Minton proposes a cost model to captures the tradeoff between a control rule’s
savings aad precondition match cost. The model associates a urility value with each control rule:

UTILITY (rule) = Average_Savings(rule) x Success_rate(rule) — Match_cost(rule) (1a)

The utility of a control rule is the difference between the savings it produces (attenuated by the per-
cent of time its preconditions are satisfied) and its precondition match cost. Savings, Success-rate,
and Match—cost are parameters of the model which the system must estimate. Unfortunately, it is
diffi.ult to measure Averagej Savings directly. To do so would require exploring the portions of the
problem space which the rule avoids, nullifying the effect of the rule. To avoid this difficulty, PROD-
IGY/EBL is implemented with a simplified cost model:

UTILITY prrcervep(r) = Initial_savings(r) X Success_rate(r) — Match_cost(r) (1b)

This model derives Average-Savings from the savings which results on the instance from which the
control rule was learned. Success-Rate and Match—cost are directly measured from subsequent
problem solving experience. Minton assumes that perceived utility (Equation 1b) will be a close
approximation to the true utility (Equation 1a).

2.1 Defining “Cost”

PRODIGY/EBL is based on an average cost model of utility. That is, the model considers a control
strategy effective if it reduces average problem solving cost. This model does not entail that the cost
of any particular problem will be reduced. Rather, the cost to solve any representative sample of
problems will be less. The average cost model is ubiquitous in the speed-up learning community
and we will not discuss its merits in this paper. One should be aware, however, that alternatives do
exist.

Speed-up learning cystems reduce the cost of problem solving. Therefore, it is paramount to define
“cost” precisely. Many criteria are in use. One possibility is to emphasize solution quality; either




by guaranteeing optimality [Mostow89] or by defining cost metrics which prefer quality solutions
[Eskey90]. Accuracy is another important dimension. Namely, what is the ratio of sclvable to un-
solvable problems. PRODIGY/EBL defines cost by CPU seconds required to solve problems. The
system actually measures the time required to perform certain processes, and tries to reduce total
problem solving time.

The choice of a cost criteria can have dramatic impact on system behavior. This issue is explored
in detail in [Segre91]. We will briefly illustrate the difficulties in the context of PRODIGY/EBL.
PRODIGY/EBL tries to reduce problem solving cost. This is easily accomplished by a single control
rule which immediately fails to solve a problem. But this “fast” strategy reduces the accuracy of
the problem solver to zero. Instead, the rule generator constrains control rules to be “truth preserv-
ing” in the sense that they only eliminate provably irrelevant portions of the search space. Thus,
presurrably, if a problem is solvable, it cannot become unsolvable with leaming.

Unfortunately, there is a further complication. Problem solving is combinatorially expensive. Plan-
ners, like PRODIGY, impose resource limitations on their problem solving. This makes problem
solving tractable at the expense of accuracy. The planner simply aborts problem solving when it
reaches the resource limit. It might appear that PRODIGY/EBL can enhance enhance accuracy by
simply minimizing problem solving cost. This happens when a problem which is to expensive to
solve becomes solvable with the learned strategy. But a learned contrcl strategy can also reduce ac-
curacy. This is a legacy of the average cost model of utility. By reducing average Cost, a strategy
can increase the cost of certain problems. The technique reduces accuracy if the solutions to these
problems require more resources that the limit allows.

Finally, there is an issue of how to account for the resources expended during training. The most
popular approach is to assume learning cost can be amcrtized over a large body to test problems.
Minton adopts this approach and learning cost does not participate in his performance data. There
are some alternative approaches. The training phase can be shown to be tractable (i.e., polynomial)
[Natarajan89, Tadepalli91]. Another possibility is to include training time in the cost models [ Yama-
dad1].

2.3 Assumptions

In this paper we will preserve several of the assumptions embodied in PRODIGY/EBL. Therefore,
we assume our goal is to increase the efficiency of satisficing search [Simon75]. In this situation
the problem solver may search for any valid solution. Therefore, as in PRODIGY/EBL, solution qual-
ity isnotan issue. We will also discount training cost, assuming it can be amortized over future prob-
lem solving. We make one additional assumption to avoid tradeoffs between efficiency and accura-
cy. For the remainder of this paper we assume that all problems are solvable within the resource
bounds of the PRODIGY planner. Together with the assumption the PRODIGY/EBL generates truth
preserving rules, this insures that reducing CPU cost does not affect problem solving accuracy.

3 CRITIQUE GF PRODIGY/EBL: Single-rule strategies

For the moment we will ignore how rules combine and consider the reduced problem of finding an
effective single-rule control strategy. The system may learn a control rule if the planner finds no
solution in a large subtree of the problem space. PRODIGY/EBL analyzes such instances of wasted
effort and proposes control rules to avoid the situation. What we will show is that is that PRODIGY/
EBL cannot accurately determine rule utility. As wili become apparent, we refer to this as the utility
generalization problem.




3.1 Savings Variance

When PRODIGY/EBL learns a control rule, it applies to a particular planning context. This context
is defined by a world state and a set of unsatisfied goals. FRODIGY/EBL uses analytic techniques
to generalize the rule, ignoring aspects of the context which did not participate in the failure. The
resulting rule can then apply to a large set of planning situations and we are guaranteed that in each
instance, the rule avoids fruitless alternatives!. While the generalization preserves correctness, it
does not guarantee that the savings observed in the training instance will reflect the savings every-
where the rule applies. If savings varies too much, it is unlikely that the initial observation of rule

savings will reflect the average. This violates the assumption that perceived utility approximates
true utility.

In practice, the savings induced by a rule is highly dependent on information dropped by generaliza-
tion. To illustrate this, consider Figure 3 which displays a portion of a search space for the blocks—
world domain. Boxes contain the current goals at a node. Operators connect boxes. The goal is
to clear block B. There are three operators which achieve this effect: UNSTACK, PUTDOWN, and
STACK. Each operator may apply to multiple blocks. This results in ten alternative paths for satisfy-
ing the goal. Assume that we explore the space from left to right and from top to bottom. If the rule
in Figure 2 is available to the planner, it eliminates the two alternatives using the PUTDOWN opera-
tor and the four alternatives using the STACK operator (six of the ten choices).

PUTDOWN(A) —f (holding
PUTDOWN(B) ——f (hoiding
Y/ STACK(A,A) —F (holding A gA’S’é S .
‘ ‘ earch space avoided
GOAL: STACK(AB) ~—fGlearB) Je& by the agplication of
STACK(B,A) ~——f(holdingB) RULE-1
STACK(B,B) =——1 (cloar B)

UNSTACK(A,Ac——¢ SOn A Az ‘
UNSTACK(A,By—1 success | r:[j .
UNSTACK(B.A— (on B A)_ €& =
UNSTACK(B,B——t (onB L, T T T

INITIAL STATE:

Figure 3. An example search space for the blocksworld domain

Next, consider adding an irrelevant block to the table. This creates more ways to instantiate PUT-
DOWN and UNSTACK (three for PUTDOWN and eight for UNSTACK), each of which is trimmed
by RULE-1. In general, this rule saves n + n(n — 1) alternatives where n is the number of blocks in
the current state. The lesson is that savings provided by a rule on its generalized set of instances may
vary greatly [Gratch91].

3.1 Quantifying the Effects of Variance

We can borrow notions from statistics toun< *rstand how the variance in savings effects utility analy-
sis. We can view the savings that a control rule provides as a random variable (SAV). Rule savings
can then be described by its average (SAV), and a probability density function (p.d.f.). The bell—
shaped curves in Figure 4 are examples of p.d.f.’s. The horizontal axis describes legal values for
the random variable. The vertical axis represents probability. The probability that an instance of
the variable will lie within a specified range is the integral of the p.d.f over that range. Average sav-
ings must be attenuated by success rate before it can be compared with the match cost. To simplify

1. This guarantee only holds for control rules which eliminaie altematives. PRODIGY/EBL can also learn rules
which re-order alternatives. These “preference rules” are only heuristics.

4
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the discussion, we define another random variable S = SAVxSuccess_rate(r). S = SAVxSuc-
cess_rate(r).

We can use these properties to discuss the likelihood that the utility of a single~rule strategy will be
mis-represented. There are two ways in which the utility analysis can err. Either the system can
<op a harmful rule (false positive) or the system can discard a helpful rule (false negative). Each
case is the dual of the other so we only discuss the case of false positives.

Two conditions must hold to retain a control rule with negative utility. First, the learning module
must generate a rule with negative utility (a failure of the operationality criteria). Second the 1ule
must have positive perceived utility (a failure of utility analysis). In terms of Equations la and 1b,
§ < Match_cost(r) and Initial_Savings(r)xSuccess_rate(r) > Match_cost(r). The likelihood of the
former depends on the effectiveness of the generation bias. The likelihood of the latter depends on
the p.d.f for SAV. Problems with operationality criterion will be discussed in Section 7. Here we
will consider the probability of a false~positive given that the generator produced a rule with nega-
tive utility.

If a generated rule has negative true utility, in can be mistakenly retained. Figure 4 illustrates the
probability of a false~positive for two such control rules. The control rules have identical p.d.f.’s
but different match costs. S; is the average savings times success rate for rule i. C; is the match cost

for the rule. [Utilityl is difference between S;and Cy. Control rule 2 has greater match cost and there-
fore its utility is more negative than the utility of control rule 1.

Probability of a false—positive = I foodx

<

Utility! {Utitity!
sy

Px(S)
Pz(S)

Rule 2

7218 o
13

S —————
Figure 4. Probability of a false—positive for two control rules.

To mistakenly retain a rule, the system must overestimate the average savings such that savings ap-
pears greater than cost. As this estimate is based on a single observation drawn from the p.d.f, the
chance of obtaining a false positive is simply the probability mass to the right of the average cost
(the shaded region of the p.d.f.). Notice that the probability of mis—classifying control rule 2 is much
less than the probability of mis—classifying control rule 1. This p.d.f. has the desirable property that
as the difference between savings and cost grows, the probability of mis—classification diminishes
In other words, when mistakes are made, they are likely to be small. A very different situation is




illustrated in Figure 5. In this case the p.d.f has a bi- modal distribution. This is an example of one
class of p.d.f’s which can allow large mistakes to occur with high probability.

- [Utilityl
Probability of a false~positive = J Sfdx
G

Pr(S)

0 S3
S

Figure 5. Probability of a false—positive given a bi~modal p.d.f.

The previous discussion highlights the importance of bounded error. False positives may be accept-
able if we ensure that the mistakes are small. We can ensure Equation 1 exhibits bounded error if
a combination of the following properties hold:

1) small average match cost — in the worst case a rule will save nothing. Utility is then 0 — Match~
cost(r). By bounding match cost we can guarantee small negative utility.

2) savings has small variance — this reduces the likelihood of large discrepancies betwecen esti-
mated and actual savings.

3) savings is normally distributed — this ensures that the likelihood of a false positive diminishes
with the harmfulness of the rule.

Some of these properties hold in the domains PRODIGY/EBL is tested on. For example, problems
are generated by a procedure which randomly varies several problem parameters. These parameters
exhibit little variance. In che STRIPS domain the number of blocks present in the world vary from
two to five. In the scheduling domain the number of objects vary from two to four. The savings
for many control rules learned in these domains vary with these parameters. Because the parameters
do not vary, these control rules exhibit the small savings variance property.

4 DOCUMENTING SINGLE-RULE MISTAKES

The preceding section illustrates the shortcommings of the utility analysis described by Equation
1b. Inthis section we illustrate a simple domain (Figure 6) which exhibits this problem. The domain
theory will also be utilized in the experiment in Section 6. The domain is for a robot assembly task
where the goal is to construct a component from its parts. All parts for a componeni are contained
in a parts bin. If all the parts in the bin are free of defects, the component may be assembled. Other-
wise another bin must be found.

When PRODIGY/EBL is given a problem in this domain, it considers multiple instantiations of the
INSPECT-BIN operator — one for each bin in the initial state. If the first bin contains a defect, it
produces the control rule in Figure 7. As future problems are solved, this rule avoids instantiations
of INSPECT-BIN which lead to failure. Asin RULE-1 above, the savings provided by this rule de-
pends on information not mentioned in the rule. The savings increases as we increase the number




ASSEMBLE-COMPONENTS INSPECT BIN
PRECONDITIONS:; PRECONDITIONS:
3 ?BIN : parts-bin(7BIN) V 7PART : in~bin(?PART 7BIN)
defect-free—components(?BIN) good(?BIN TPART)
ADD: ADD;
assembly-complete() defect—free~components(?BIN)

Figure 6: A simple assembly domain

of parts per bin. If bin size exhibits a large variance then the small savings variance property will
be violated. We exploit this property to demonstrate single~rule failures of Equation 1b.

RULE-2:  IF current-node is Tnode

current-goal at 7node is assembly—complete()
current-operator at 'node is INSPECT-BIN
candidate-bindings at Inode is (7bin)
V 7part : in—-bin(?part 7bin)
good(?bin ?part)
candidate-bindings at Tnode is (?other—bin)
THEN prefer (?bin) to (?other--bin)

Figure 7: A control rule from the assembly domain

It is not immediately apparent why RULE-2 would be conjectured. The control rule examines all
contents of a bin to decide if the planner should examine all contents of a bin. In fact, this rule reduces
planning time in many cases. The rule avoids the overhead of generating a problem space (generat-
ing intermediate nodes, searching the domain theory for relevant operators, etc.). However, the po-
tential effectiveness of the control rule is irrelevant to this discussion. The importance of utility anal-
ysis is that permits harmful rules to be generated. What we demonstrate in this section is that
PRODIGY/EBL fails in this task. The reasons for this failure are independent of the actual form of
ihe control rule.

4.1 Methodology

We violate the small savings variance property by creating a problem distribution which varies bin
size bi-modally. We accomplish this with two classes of problems. In each problem class the first
bin contains defects. This forces the planner to backtrack and, consequently, to produce RULE-2.
Equation 1b credits the rule with an average savings commensurate with the number of parts in this
bin. The first class contains problems with fifty bins of two parts each. The second class contains
problems with two bins of two hundred parts each. If PRODIGY/EBL learns the rule on a problem
from the first class, it should have little perceived savings. If it learns the rule on a problem from
the second class, it should have high perceived savings.

Problems are randomly generated, half from the first class and half from the second. Using this dis-
tribution, we train PRODIGY/EBL following the methodology outlined in Minton’s thesis [Minton88
pp. 117-118]. We present the system with 100 training problems followed by a “settling phase” of
25 problems. The settling phase is required so that control rules learned at the end of the training
phase can undergo utility analysis. This regimen is repeated for ten independent trials with different
problem sets (from the same distribution) on each trial.
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All trials were executed on an IBM RT 125 with 16MB of memory, using LUCID Common LISP
and PRODIGY 2.0.?

4.2 Results

Results are summarized in Table 1. This reports the mean problem solving time across the ten trials.
We computed a 95% confidence interval for each mean using a t~test. We also generated a learning
curve, illustrated in Figure 1. Tlus is constructed with the same regimen but varying the size of the
training set.

System Type Execution Time
(100 problems)

without learning 346£9 CPU sec.

with learning 5839498 CPU sec.

Table 1: Empirical results from single-rule experiment

RULE-2 produces a large performance degradation for problems from the first class (50 bins of 200
parts each). and a moderate performance enhancement for problems of the second class (2 bins of
200 parts each). The overall effect is a large performance degradation. If the rule is learned on a
problem from the first class, PRODIGY/EBL uniformly perceives the rule to produce little savings.
In this case utility analysis correctly discards the rule. If learned from the sccond class, the system
uniformly perceives the rule to have high savings. Thus, the rule is mistakenly retained. Discarded
rules may be relearned, so eventually the rule is learned on a problem from the second class.

The results indicate that learning substantially degrades problem solving performance. From this
we can conclude that perceived utility can substantially diverge from true utility. Thus the utility
analysis embodied by Equation 1b can retain rules with high negative utility.

The experiment also illustrates the potential to discard a good rule (false-negative). PRODIGY/EBL
produces a small savings estimate for RULE-2 if it is learned on a problem with small bin size. This
results in an underestimate of savings when the system solves problems with large bin size. In this
the underestimate did not effect the performance of utility analysis because the rule has negative
utility. However false negatives could result if the rule has positive utility. This could be achieved,
for example, by increasing the likelihood of problems with high bin size.

5 CRITIQUE OF PRODIGY/EBL: Muliti-rule strategies

As we have seen, Equation 1b may misrepresent the utility of a control rule. This section illustrates
that even with accurate savings estimates, this utility analysis <an still produce undesirable results.
The problem is that control rules may interact such that the utility of multiple control rules cannot
be predicted by simply knowing their utilities in isolation. This dependency is noted in Markovitch’s
definition for the value of knowledge [Markovitch89 pp. 6~7] We call this property the composabil-
ity problem.

2. PRODIGY is available through Carnegie Mellon University. Contact prodigy@cs.cmu.edu. The domain
theory and problem generators used in these experiments are available upon request from the authors. Contact
gratch@ cs.uiuc.edu..




There are many ways that the presence of one control rule can influence the utility of another. Two
rules may avoid the same areas of the problem space. As there is no added benefit in ignoring an
area twice, the utility of the rules together is not cquivalent to the sum of & ir individual utilities.
A. subtle example occurs when a control rule has different match costs in different portions of the
problem space. A second control rule which removes portions of this problem space may substan-
tially change the average v ‘ch cost of the first rule.

A particular interaction between two control rules is illustrated in Figure 8. This shows a hypotheti-
cal problem space of fifteen nodes. Supposed r and s are two control rules which prune the nodes
in setsR and S respectively when compared to problem~solving with no control rules. IR is the num-
ber of nodes trimmed by rule r. 1Sl is similarly defined. When used in isolation, rule r is checked
six times (i.e. 15 -~ [RI). It successfully applies twice: at node 2 saving nodes 3-8 and at node 9 saving
nodes 10-12. Rule s is checked eight times (i.e. 15 ~ISI) and succeeds at node 1, saving nodes 9~15.

~ssume the average match cost of r is My, the average match cost of s is M;, and the average cost
to expand a node is g.

[C__1R-S = nodes saved only by rule r
[__JS-R = nodes saved only by rule s

[CJRAS = nodes saved by both rules
rand s

M, = Average match cost of rule »
M; = Average match cost of rule s
g = Average cost to expand a node

Figure 8: example of interacting rules

Utility(X) is the utility of a set of control rules. The interaction between two rules is the amount to
which their utilities are not additive:

Residue = Utility({r, s}) - [Utility({r}) + Utility({s )] = IR=-SIxM; +IS-RIxM, —IRASIxg  (2)
The residue in Equation 2 is the amount by which the utilities of  and s are not composable. The

rules combine synergistically if this value is positive. If negative, they engage in a harmful interac-
tion. Two rules with positive utility can potentially combine to yield a strategy worse than neither.

Interactions force us to discard the notion of rule utility as defined in Equation 1. Instead, we propose
condirional utility to capture the benefit of a cont:ol rule. The conditional utility of a rule is the
change in performance arule provides when added to an existing set of rules. Thus, for the example
in Figure 8, Utility(slr) is the utility of adding rule s to an existing strategy of rule r alone. More
generally, for any two sets of rules X and Y:

Utility (XU Y1) = Utility(XID) + Utility(Y1X) (3)

where & is the empty strategy. Forarule r, the utility of r in Equation 1 is equivalent to its conditional
utility with respect to the empty set of rules: Utility(r) = Utility(rID).

Ignoring these interactions can lead to degraded performance. As the savings estimate is fixed at
learning time, the perceived savings can diverge from the true average. The directly measured pa-
rameters(Success—rate and Match—cost) are also impacted by this property. PRODIGY/EBL bases
these parameters on the average of many observations. For an average to be meaningful the observa-
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tions must be drawn from the same distribution. However, as control rules are acquired or discarde i,
the distribution can change. As a result, these parameters have questionable semantics.

6 DOCUMENTING MULTI-RULE MISTAKES

The preceding section suggests another way that the utility analysis described by Equation 1b can
fail. In this section we illustrate a simple control rule interaction which degrades performance in
our assembly domain. Again we use two problem classes, each of which has equal representation.
The first class has forty bins of 20 parts each, most of which have defects. The second class has forty
bins of 20 parts each, all of which have defects.

The first problem class results in the generation of RULE-2 from Figure 7, In combination with the
second clac~ of problems, this rule has high negative utility and, after a few subsequent problems,
utility ar. atysis correctly discards it (notice that bin size does not vary in these problem classes). The
second problem class results in the generation of RULE-3 in Figure 9. This rule checks every part
in every bin, searching for a defect free bin. If it does not find such a bin, it terminates problem solv-
ing. This rule has high negative utility and is quickly discarded by utility analysis.

RULE-3: TR candidate-node is Tnode
is—top—level-goal assembly-complete()
¥ 7bin : is—bin(?bin)

—defect—free—~components(?bin)
d 7part : is—part(?part ?bin)
—good(?bin ?part)
THEN reject 7node

Figure 9: A control rule from the assembly domain

A different situation arises if the system learns RULE-3 before it discards RULE-2. RULE-2 is ex-
pensive to match on problems from the second class, and it provides no savings (there is no defect—
free bin to prefer). As aresult, the problem takes much longertosolve. This greater problemsolving
time is reflected in a greater savings estimate for RULE-3. With this estimate, RULE-3 is retained.
If RULE~2 remained in the system, this estimate would accurately reflect the savings for RULE-3.
However, as RULE-2 has negative utility, utility analysis eventually discards it. When it is dis-
carded, the estimate is not updated and RULE-3 is mistakenly retained.

We tested this domain using the same methodology as in section 4. It is possible that the degradation
could arise through factors other than the composability problem. We control for this situation by
introducing another test condition. Our analysis indicates that RULE-3 is retained through an inter-
action with RULE-2. If this analysis is correct, RULE-3 should not be learned if RULE-2 is never
learned. The new test condition prevents the learning of RULE-2.

Table 2 summarizes the results. PRODIGY/EBL learned the control strategy containing RULE-3.
This degraded performance by a factor of three. When RULE-2 is suppressed, no rule is acquired,
yielding results equivalent to the condition without learning3. This confirms that PRODIGY/EBL
retains RULE-3 through a control rule interaction.

7 OPERATIONALITY CRITERION

In this section we argue that the limitations in PRODIGY/EBL’s utility analysis translate into general
problems for speed-up learning. We illustrate this by considering the alternative argument. PRODI-

3. As the control condition acquired no control rules, the same timing data is reported for the no learning and the
control conditions.
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System Type Execution Time
(100 problems)

without learning 2292 £4 CPU sec.

with learning 7436+ 81 CPU sec.

without RULE-2 2292+ 4 CPU sec.

Table 2: Empirical results from multi-rule experiment

GY/EBL can acquire harmful knowledge. But this is areflection of two failures. First the knowledge
must be mistakenly generated and then it must be mistakenly retained. We have only demonstrated
the latter failure. A better rule generator would avoid the former. In fact, a perfect rule generator
would obviate the need for utility analysis. Much of the research in speed-up learning investigates
alternate criteria for generating knowledge.

The composability problem raises a serious obstacle to this argument. An operationality criteria is
designed to prevent the generation of harmful rules. However, the existence of rule interactions calls
into questions the the notion of a harmful rule. A control rule which is harmful in one context may
result in improved performance in a different context. Most criteria ignore these interactions (e.g.,
[Etzioni90a, Letovsky90, Mitchell86, Segre87, Subramanian90, Tambe89, Yamada89]). Further-
more, reasoning about interactions can be costly. A set of i control rules yields 2! distinct controi
strategies (the power set of the i rules). In the worst case we must consider all these alternatives.

The variance in savings also raises difficulties. Most current criteria ignore distribution information.
For example, the nonrecursive hypothesis [Etzioni90b] states that explanation-based learning “is
effective when it is able to curtail search via nonrecursive explanations.” A recursive explanation
contains assertions which depend on instances of the same assertion. An example is where a sorted
list is explained by explaining how sublists are sorted. This hypothesis claims that beneficial rules
can be identified by their syntactic structure alone. A similar claim is stated in [Letovsky90, Subra-
manian90] in the context of macro—operators.

The harmful control rules learned in our experiments are nonrecursive by the definitions in [Etzio-
ni90a, Letovsky90, Subramanian90] which directly contradicts the nonrecursive hypothesis. These
experiments solidly demonstrate that utility varies across problems. From this we must conclude
that utility for a rule depends on the problem distribution. For example, RULE-2 enhances perform-
ance if we limit the distribution to problems with large bin size. Criteria which ignore distribution
information are insufficient. Furthermore, it is difficult to obtain this information. A system must
know more that the distribution of problems. It must know the distribution of rule applications both
within and across these problems. It must also know how features of iaese rule application impact
utility. This is especially difficult as these features may not appear in the body of the control rule
(e.g., the utility for RULE-2 varies with the size of the bin).
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Researches have not addressed these limitations, in part, because of the historical development of
the field. Speed-up leaming techniques evolved from earlier work in concept learning. A concept
learning system must learn classification rules to identify some target concept accurately. Thus, the
focus was on techniques which produced accurate generalizations of examples. In the context of
speed-up learning these techniques can accurately generalize the conditions for applying a control
decision. We have inherited this focus on accuracy. However, in speed-up learning, accuracy is no
longer the primary issue. Instead a system must balance accuracy with efficiency [Keller87]. Accu-
racy is only tenuously related to efficiency. For example, RULE-2 accurately predicts when a bin
of arbitrary size will succeed. It benefits the system if generalized to problems with large bin size.
However, its effects are disastrous when applied to the full range of sizes. But in each case the rule
is accurate.

The weak link between accuracy and efficiency is observed in other systems as well. For example,
Carlson, Weinberg, and Fisher [Carlson90] learn strategies with a probabilistic concept hierarchy.
This approach accurately eliminates fruitless alternatives, but it produces strategies with worse ex-
ecution time (negative utility). A similar effect is observed in DADALUS, a case~based planner
which incorporates macro—operators into a probabilistic concept hierarchy [Allen90].

8 PERFORMANCE ELEMENT

Different problem solvers implement different search mechanisms. One way to view this is to say
that a problem solver implements a body of default control knowledge. From this perspective, the
composability problem suggests that the same learned control knowledge should have different util-
ity when used with different problem solvers. Indeed, Mooney demonstrated this in several experi-
ments [Mooney89]. He shows that macro—operators have very different effects when used with a
depth-first planner or a breadth—first planner.

9 COMPOSER

Utility is a complex function of the problem solver, the structure of the domain theory, a possibly
unknown problem distribution, and other learned knowledge. In this section we introduce a statisti-
cal approach to utility analysis, called COMPOSER, which addresses these issues. The technique
is implemented in conjunction with PRODIGY/EBL and takes the place of the utility analysis of
Equation 1b. '

Equation 3 suggests a simple hill climbing approach for avoiding interactions. If a control rule has
positive conditional utility with respect to a control strategy X, adding the control rule to X must
result in a more effective strategy. The greedy technique begins with X initialized to the empty set
and incrementally adds to X a control rule with the highest estimated conditional utility with respect
to X. This cycle continues until no rule remains with positive conditional utility. In this way the
problem of finding an effective control strategy is reduced to the problem of finding a control rule
with positive conditional utility.

PRODIGY/EBL misrepresents the utility of a single control rule because it is restricted to a single
observation of the rule’s savings. We avoid this limitation by using many observations. These obser-
vations are combined to derive a mean utility and a confidence interval on that mean. Observations
are made with respect to the current control strategy, and the method allows multiple rules to be eva-
luated simultaneously.

The COMPOSER approach works in conjunction with an existing planner and control rule generating
system. Our implementation is built on top of the PRODIGY/EBL system but it can be readily
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adapted to work with alternative rule conjecturing schemes. PRODIGY/EBL is provided with several
control rule classes. Our implementation currently implements only a subset of these classes. We
implement rejection rules and selection rules which unequivocally remove alternatives. Preference
rules are not implemented but we anticipate little difficulty in extending the approach to this class.

9.1 Gathering Observations

Learning proceeds much as in PRODIGY/EBL. The planner generates solutions anda problem solv-
ing trace. As in PRODIGY/EBL, the trace includes the resources spent at each node, including time
spent evaluating control rules. The PRODIGY/EBL learning module analyzes this trace and conjec-
tures control rules. However, instead of directly adding these rules to the current control strategy,
they are placed on a list of pending rules. Pending rules are allowed to match against the current
planner state and the match cost recorded. However the actions of pending rules are not performed.
Rather the system annotates the problem trace with the choices it would have eliminated. After a
problem runis complete, the cost of each subtree which would have been pruned can be determined.
If the control rule is checked but does not apply, it is credited with zero savings.

We can illustrate this with an example. Recall RULE-1 in Figure 2 and the blocksworld search space,
reproduced in Figure 10. If RULE-1 is on the pending list, it is consulted as the planner explores
(generates) the problem space. In this case example the rule applies at node N1. If the rule was
allowed to apply it would eliminate the first six alternatives. As the rule is on the pending list, these
alternatives are not eliminated. Instead a marker is placed on each link. After problem sclving is
complete, these markers are identified and the resources expended in the subtree below the marker
are recorded. This total is the potential savings for the particular rule application associated with
that marker.

) PUTDOWN(A) o Marker indicating a successful
application of RULE-1

%) PUTDOWN(B) — N3:(bolding B

& STACK(A.A) N4 (holding A

€5 STACK(A,B) [RGi(clear B

: . , INITIAL STATE:

™ STACK(B.A) [N6:(holding B

D STAKED) — [ ﬁq

\ UNSTACK(A.A) NB-(on A A)_ ™= B

UNSTACK(A.B)

UNSTACK(B.A) ———{NiG{on B A) legz
UNSTACK(B,B) | Nll:(on B BE |

N1:(clear B) 8

i

Figure 10: COMPOSER analyzing a search space for the blocksworld domain

There are three additional points. First, the system must not attempt a pending control rule in a por-
tion of the space which would have been trimmed by that rule. For example, RULE-1, if activated,
trims the first six alternatives of N1. Since the rule is pending, these alternatives are explored. It
is possible that the rule applies in other nodes within these alternatives. For example the rule poten-
tially applies at nodes N5 and N7. These must not be considered as valid applications because they
would never have been reached if the control rule was activated.
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Second, we require that pending rules do not effect the behavior of the planner. However, the vlanner
expends resources to evaluate the preconditions of pending rules. If the planner has resource bounds
(as in PRODIGY), these bounds must be insensitive to this additional cost. The mach cost of pending
rules must also be discounted when summing the resources expended below an application marker.

Finally, all of the observations are contingent on a particular control strategy. All observations must
be discarded each time a new control rule is added to the current strategy. To see why contexts effects
are important, imagine that a rule which eliminates the STACK alternatives is selected as the next
active rule. Before this addition, RULE-1 saved all six unsuccessful alternatives in the example.
With this new rule, RULE-1 only avoids the two PUTDOWN alternatives. If we did not discard the
old observations, the estimate would be skewed by these higher savings observations.

9.2 Estimating Utility

We now have a mechanism for gathering observations of conditional utility. Toidentify the pending
rule with the highest conditional utility we must compute an average conditional utility for a control
rule. We must place a confidence bound on this mean. Only control rules which have positive utility
with high confidence will be added to the current strategy. Deriving a bound is difficult because
utility varies within any given problem. Furthermore, differentproblems will have different patterns
of variance. For example, one problem may be dominated by control rule applications which have
positive utility, while another problem may be dominated with application of negative utility. The
final mean must reflect the composite of these individual distributions. Standard statistical ap-
proaches require sampling utility randomly from any place within any problem. Unfortunately the
constraints of problem solving force us to sample at the level of complete problems. This means
that our observations will consist of all the rule applications in one randomly selected problem, fol-
lowed by all the rule applications of the next randomly selected problem, etc. We describe a statisti-
cal technique known as cluster sampling which is designed for this task. Our description of this tech-
nique is derived from the presentation in [Kish65 pp. 148-216].

'The basic problem is that both the total utility (i.e., the numerator of the sample mean) and the num-
ber of rule applications (i.e., the denominator of the sample mean) are random variables. Because
we are sampling problems randomly from a population of problems and the number of control rule
applications within problems in not constant across problems, the sample size is random. The sam-
pling plan can be thought of as a cluster sample with problems representing the clusters and rule
applications representing observations within the clusters. Rule applications appear in the sample
because their problem was selected (i.e., problems are the primary sampling unit).

We first introduce some notation. These definitions are with respect to a particular rule, R.

u;; is the utility of the ith rule application of R within the jth problem. Utility is the savings
resulting from that application minus the match cost for that application

X; is the number of applications of rule R in problem (cluster) j

uj = 3w, (f = 1, X;), is the sum of the utilities for each application of rule R in problem j.
This is also called the sample total for cluster j.

u=23;u;, (j=1,a), isthe sum of the sample totals for each problem where there are a
problems selected from a population of size A
X =2, X, (j=1,a), isthe total number of applications of rule R in the selected problems.

Then the average utility of R over its applications is
rewx =(U/0Xw =)/ (&%)
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Note that r is also a weighted mean of the problem means:
£=wXx
= (Va)X; [x/(x/a)]y’; wherey’; = yi/X;

Thus, the average utility of rule R for each problem is weighted by the specific number of rule appli-
cations in that problem relative to the average number of rule applications across all problems.

Given these relations and definitions, the variance of the average utility for rule R is found to be:

Var(r) = (1/x2)[Var(u) + r2 Var(x) - 2 r Cov(u,x)]
where Var( ) indicates variance of the variable in () and Cov() indicates the covariance between
the two variables listed in (). The variables are as previously defined.

This formula is approximate and is reliable only if se(x)/x < .20 whe.e se(x) is the standard error of
X.

There are many equivalent expressions for the variance. We will utilize the following expression.
A derivation can be found in [Kish65 p. 189, Equation 6.3.6]:*

Var(r) = 1/ [a(a - D] { % [( a/x)(y’ —D*)

That is, the squared deviations of the problem means from the grand mean (y’; - 1)? are weighted
by the relative sample sizes in the clusters (xy/(x/a).

9.3 Putting it Together

With cluster sampling we can combine the observations of conditional utility for a particular control
rule into a meaningful average and a bound on that average. An average and tound is maintained
foreach rule on the pending list. Aftereach problem solving attempt, COMPOSER updates the statis-
tics for pending rules and then considers incorporating a control rule into the current strategy. A
control rule is only considered for inclusion if it has positive utility within a confidence interval of
3. For our current implementation & is set arbitrarily at 95%. After each problem is executed, the
system checks if any rules satisfy the confidence requirement. If so, COMPOSER adds the rule with
highest positive to the current strategy, and removes this rule from the pending list. Statistics for
the remaining pending rules are discarded as they are meaningless in the context of the resulting con-
trol strategy. The same method identifies rules with negative utility. If a control rule has negative
utility with confidence 9, it is eliminated from the pending list. This operation does not affect the
cutrent strategy, so the statistics associated with the remaining pending rules are left unchanged.
This cycle is repeated until the training set is exhausted.

9.4 Evaluating COMPOSER

Necessarily, adding a rule of positive conditional utility will increase the efficacy of the composite
strategy. The COMPOSER technique could fail, however, if conditional utility is not properly esti-
mated. To test this possibility, we instigated a series of experiments which are summarized in Figure
11. These graphs illusirate learning curves where the independent measure is the number of random
training examples and the dependent measure is execution time for 100 test problems. The method-
ology is identical to that described in Section 4. As COMPOSER does not implement preference
4. Kish multiplies this equation by a faction (1 —f) where fis the probability of selecting a particular rule application,
which is the same for all applications. Specifically, f= ff, where f; istheratio of a/ A {the number of problems selected
relative tothe size of the population of available problems), and f§, is the fixed probability of selecting a rule application
within a problem. In our case we will use all rule applications associated with a problem. Consequently, f, = 1.0. In

addition we will assume the general case where there are an infinite number of problems. In this case a/A approaches
zero. Tighter bounds can be achieved if A is finite.
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rules, differences in performance could be attributed to this difference, rather than the improved util-
ity analysis. To control for this effect we tested two versions of PRODIGY/EBL: the default version
and a version which cannot learn preference rules. Results are presented for the most effective of
these two systems, which in each case was the system without preference rules. All problem genera-
tors were supplied with the PRODIGY 2.0 system. More effective strategies have lower solution
times. Ideally CoMPOSER should be compared against the optimum control strategy but it is compu-
tationally infeasible to do this. Instead we provide PRODIGY without learning and PRODIGY/EBL
as benchmarks. The systems are tested on two domains from [Minton88] and the domain in [Etzio-
ni90a] for which PRODIGY/EBL produced harmful strategies. The system could not be tested on
the two domains reported here as these involve preference rules which have not been implemented
in COMPOSER. However, in similar domains which did not involve the learning of preference rules,
COMPOSER accurately avoided learning harmful control rules.

E;gg — e Bl ——— e Nolearning

\ 2100 0 — = = COMPOSER
8 20 ) 1800 B) STRIPS 0 ~— | PRODIGY/EBL
,§ SN 1500 250 .

m \\ —————— lm m
150 900 ‘\’__’\—’_ | —m———————
100 600 [\

100

%{A) BLOCKSWORLD | 30| “=—————e— 50| C) [Etzioni%0a]
00102030405060708090100 00102030405060708090!00 001020‘.’:0405060708090100
# of training examples # of tralning examples # of training examples
DOMAIN COMPOSER PRODIGY/EBL No Leaming
Rules Learned | Solution Time | Rules Leamned | Solution Time Solution Time
A 2 177 sec. 14 238 sec. 390 sec.
B 4 344 sec. 23 724 sec. 2436 sec.
C 1 178 sec. 9 293 sec. 229 sec.

Figure 5. Summary of empirical results

The results illustrates several interesting features. On all domains COMPOSER exceeded the per-
formance of PRODIGY/EBL. An important result is that the execution times associated with CoMpOs-
ER are monotonically decreasing. This suggests that conditional utility is accurately estimated. A
surprising fact is that in the domains where COMPOSER acquired a strategy, only one or two control
rules account for most, if not all, of the savings. This indicates that most of the rules acquired by
PRODIGY/EBL are, at best, superfluous.

9.5 Limitations and Extensions

The COMPOSER technique corrects limitations of previous utility estimation techniques, but this
guarantee may come at a considerable cost. Rules of high utility may require many examples before
reaching an acceptable level of confidence. More importantly, the estimation of utility requires that
rule preconditions be evaluated many times within a training problem, and each precondition match
requires an expense of resources. If the number or size of rules inactive rules grows too large, train-
ing problems may tal-¢ prohibitively long to solve. Resolution of this issue requires making conser-
vative choices for which rules to consider, quickly discarding bad choices, and relaxing some guar-
antees. A number of these approaches are discussed below.
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One interesting extension involves exploring the use of an approximate domain theory for judging
utility to drive the EBL component. Currently, the EBL component does not use a theory of utility
at all. Instead it exploits only a theory of rule correctness. Since the hybrid method relaxes the need
for a complete and correct domain theory, an approximate theory may be possible.

Alternatively, or in addition, a correct but incomplete utility domain theory might be entertained.
It may be possible, for example, to fashion a theory that recognize sub—cases in which two rules,
R and S, have identical effects but R has more general preconditions. From this information we can
conclude that that R subsumes the savings of S and that R and S should never appear together in the
same strategy. If we can further state that the match cost of R is less than the match cost of S then
R dominates S. Any strategy containing R is guaranteed to have higher utility than a strategy con-
taining S.

The empirical component estimates conditional utility for a rule across all problems in the distribu-
tion. In practice, rule utility varies systematically across different problems. For example the sav-
ings of the rule in Figure 2 is a function of the number of blocks in the initial state. If problems can
be classified based on features which effect rule utility, tighter utility bounds may be achieved. This

extension would allow a flexible control strategy which utilize different rules for different problem
classes.

Another important consideration is that the greedy reductionist algorithm is a hill-climbing tech-
nique and thus, while guaranteeing improvement, may terminate with a non—optimal strategy. It is
also conceivable that no strategy will be found when beneficial strategies do, in fact, exist. It can
happen that all rules have individual negative conditional utilities but combine synergistically to
produce a good strategy, confounding the greedy approach. The method for combining rules can
be viewed as a strong bias on the space of possible control strategies. The appropriateness of this
bias needs further investigation.

Finally it is useful to consider when simplifications of this technique are sufficient to produce posi-
tive strategies. This is an important consideration because the guarantees provided by COMPOSER
may come a considerable cost in increased learning time. For example, the PRODIGY/EBL system
[Minton88] does not address the composability problem and yet has demonstrated success on a nuni-
ber of domains. Equation 2 indicates that in the case where control rules are nearly independent,
conditional utility can be approximated by a measure which is independent of the current strategy.

10 RELATED WORK

COMPOSER is one approach to the utility generalization and composability problems. In this sec-
tion we describe other work which addresses these issues. We have organized the presentation into
four basic trends.

9.1 Elaboration

The protiems with PRODIGY/EBL arise from its simplified cost model. A natural approach is to
elaborate the model. COMPOSER is one such elaboration. Leckie and Zukerman describe another
approach [Leckie91]. They present an inductive system which reasons about some control rule in-
teractions.” They define a global cost model which is a function of a finite set of p ,ssible control
rules. The problem of which rules to keep is reduced to the problem of minimizing this function.
The model makes several assumptions. For example, all rules are considered to have the same con-
stant match cost. Even so, the model must entertain all 2! alternative combinations of i control rules.
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9.2 Simplification

Complete models of utility appear intractable. An alternative is to introduce deliberate simplifica-
tions into a complete model. Any simplification will pa:tition domains intotwo sets: those for which
the simplification is appropriate, and those for which it is not. For example, Equation 1b is a simpli-
fied model which operates correctly in the domains reported in [Minton88] and incorrectly in the
domains reported here. Given a simplification, we must formalize the qualities of a domain which
affectits classification. Thisallows potential users to decide if the tool fits their, -oblem. This paper
can be viewed as a preliminary attempt to formalize the properties of domains with respect to Equa-

tion 1b. Formal treatments of the macro-operator approach appear in [Greiner89, Korf87, Tadepal-
1i91].

The work of Oren Etzioni is similar in spirit [Etzioni90a]. Etzioni looked extensively into to control
rules which were rejected by PRODIGY/EBL’s utility analysis. He then identified a property of these
rules which seemed to hold across multiple domains. He captured this in a syntactic criteria — the
nonrecursive hypothesis. This transfers an aspect of utility analysis into the rule generator. We have
demonstrated in this paper that the nonrecursive criteria is a simplification. The next step is then
to identify the domain constraints which influence the accuracy of this method.

Admittedly there are many possible simplifications, many of which create useless distinctions. An
alternative approach is to identify a set of “natural” domains and design simplifications appropriate
to them. Unfortunately there is little consensus on the extent of this set. Leaving these problems
aside, regularities in these domains can suggest simplifications to a complete mode of utility. We
are not aware of any research in this area.

9.3 Specificity

One of the primary reasons for the utility generalization and composability problems is that a control
strategy is required to improve performance over an entire set of problems. Thus, knowledge ac-
quired during one problem can affect performance on every other problem solved. A beneficial rule
may well decrease performance on some problems as long as it mpkes up for this in other enhance-
ments. The resulting tradeoffs can be quite complex.

This need for a global performance improvement exacerbates the utility generalization problem.
A control rule may have to make recommendations about vastly different problems. Thusits savings
can be expected tohave wide variance as well. This global property also insures that many irrelevant
rules will be entertained while solving a particular problem, increlhsing the opportunity for interac-
tions.

A natural altemative is to be conservative about rule use; do not generalizing a control rule to apply
atevery legal opportunity. For example, a system could only consider a control rule if it was learned
on a problem which is “similar” to the current problem being solved. This approach is taken by Fish-
erand Yoo [Fisher91] where problem classification rules to control search. There is also psychologi-
cal evidence that humans perform limited generalization in the context of problem solving [Me-
din89]. They explain this effect in terms of a case-based reasoning model.

9.4 Theories of Utility

As we mentioned, speed-up learning techniques have focused on generalization techniques which
preserve the accuracy of control decisions. Utility considerations have been patched on as a filter
to traditional generalization techniques. An alternative is to identify utility preserving generaliza-
tions. For example, PRODIGY/EBL constructs control rules based on a theory of rule accuracy. An
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alternative would be to generate rules from a theory of rule utility. Hirsh suggested such an approach
in [Hirsh87].

7 CONCLUSION

The PRODIGY/EBL system [Minton88] was one of the first works to directly attack the problem of
strategy utility. The problem of finding effective strategies was reduced to the problem of finding
effective rules. However, this paper illustrates limitations of the approach. There are two basic diffi-
culties. The firstarises from the fact that the utility of a control rule cannot be accurately determined
from a single instance of the rule. This is a manifestation of a more basic problem which we term
the utility generalization problem. The difficulty is that the generalization techniques employed by
speed-up learning systems are accuracy preserving but not utility preserving.

The second difficulty is that control rules interact such that the utility of one control rule is a function
of the other control rules in the system. This composability problem means that systems cannot re-
duce the problem of leaming effective strategies tothe problem of identifying rule utility in isolation.

We documented the seriousness of these problems with an example domain theory. With this theory,
PRODIGY/EBL generated con‘rol strategies which were up to seventeen times slower than the origi-
nal planner. While this raises serious questions about the effectiveness of PRODIGY/EBL, we also
claim the the utility generalization and composability problems are basic issues which are not ade-
quately addressed by current speed-up learning techniques.

Finally, we introduced an alternative technique called COMPOSER. This system is based on a sound
statistical model which is validated with a series of experiments. COMPOSER successfully avoids
the utility generalization and composability problems. However, the technique may result in sub-
stantially higher learning cost. Our future research seeks toreduce this learning cost by identifying
acceptable simplifications to the complete model.
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