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A Meta-Analysis of Correlations of Spatial and Mathematical Tasks
Lynn Friedman, University of Chicago

Reports of substantial correlations between spatial and mathematical tasks
have been common in the last half of the twentieth century. Sherman (1967) has

suggested that inferior spatial skill is the explanation for females' inferior
performance in mathematics. Many studies have reported relevant correlations:
These are uniform neither in absolute size nor in size relative to other
correlations calculated in the same studies. The meta-analysis reported in this
paper considers the implications of combined correlational evidence for the nature
of the relationship of mathematical and spatial skills, and for the possibility that
spatial skill underlies gender differences in favor of males on mathematical tasks.

Results indicate that corrected space-math correlations are not high. They
range from means of approximately .35 for two-dimensional orientation tasks to
.47 for three-dimensional visualization tasks. Geometry-space correlations are
surprisingly low. Orientation correlations are generally lower than visualization
correlations. Verbal-math correlations are usually numerically higher than space-
math correlations: same-study differences are frequently significant, especially for
two-dimensional spatial tasks. Thus correlational evidence does not indicate that
spatial skill plays a special role in mathematical achievement as mathematics is
taught and tested today.

Gender patterns sometimes vary: 1) Females' correlations do not differ
according to the cognitive level of the mathematics task as often as do males;
2) Females have higher verbal-math than space-math correlations in more
categories than do males. Correlations of spatial tasks with mathematical tasks on
which gender differences are found are high only for SAT-Q-space correlations.
SAT-Q-space correlations also exhibit gender differences: Females' SAT-Q-space
correlations are higher than males'. Intervening variables which might explain
the high SAT-Q-space correlations and the gender difference are confidence and

C\)-
clusters of interests. Few other gender differences were found. Correlational
evidence does not support Sherman's hypothesis that spatial skill underlies
gender differences in mathematics.
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A Meta-Analysis of Correlations of Spatial and Mathematical Tasks

The resurgence of feminism in the 1960's has brought a renewed interest in
cognitive gender differences. In particular, gender differences in mathematical tasks
have become the focus of a steadily growing body of research. Attempts to explain
these gender differences have led to a scrutiny of the particular types of abstract
reasoning involved in the varied tasks of mathematics. This, in turn, has led to an
examination of theories held by psychometricians who distinguish between verbal
and nonverbal intelligence. Some of these theories posit an essential connection
between spatial skill and advanced mathematical achievement.

Many mathematical tasks have obvious spatial prerequisites. Being able to
visualize a cube is helpful, when no cube is around, in calculating its surface area.
Visualizing the rotation of a right triangle about the extension of one of its legs is
surely vital in understanding the calculation of the volume of the generated solid.
Mathematical tasks involving the measurement of physical objects or their motions
could hardly be accomplished without visualization. However, the spatial skills
involved in such tasks are often elementary.

Other mathematical processes do not reauire spatial imagery in any obvious
way. Forming number and operation concepts, sequencing, and solving some of the
more difficult types of word problems do not appear to require visualization. Yet

researchers have sometimes found that these tasks correlate as well with spatial tests
as do more obviously spatial mathematical tasks.

Hypotheses regarding the nature of the connection between spatial and
mathematical skills have very practical implications for mathematics educators. If

spatial skills underlie mathematical skills, should we not be training spatial skills to
increase our students' mathematical competence? And, if so, how should we go
about it? Should we train spatial skills separately, or should we give more time and
coverage to the mathematical problems with spatial content? Mathematics
educators have few doubts about the overall value of spatial skill, but they are
unsure of where it plays a role and how it can be developed. They now encourage
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teachers to develop spatial sense in their students, using a somewhat eclectic "bag of
tricks". Should more be done?

Smith (1964) is representative of a group of theorists who believe that spatial
and mathematical skills are both outcomes of the same process, or set of processes, of
thought. He writes that "...there is a growing awareness that mathematics is
primarily concerned with spatial, geometrical or configurational concepts" (page
134). In his view, spatial ability, or something underlying it, will enable those who
possess it to reason differently, more effectively. He and others believe that this
ability is innate, but may go undeveloped because its wider effects are not
understood.

Smith, a factor analyst, has supported his views with correlational evidence.
However, a wide range of studies have reported relevant correlations: These
correlations are uniform neither in absolute size nor in size relative to other
correlations calculated in the same studies. The meta-analysis reported in this paper
considers the implications of combined correlational evidence for the nature of the
relationship of mathematical and spatial skills, and for the possibility that spatial
skill underlies gender differences in favor of males on mathematical tasks.

Correlations of tested skills may be moderate or high because the skills are
related. On the other hand, intervening variables such as general intelligence or
common interests may cause spurious correlation. Correlations may be low because
the skills are unrelated. Another, sometimes overlooked, reason for low
correlations is uneven development of abilities: one of the two abilities measured
may have been trained while the opportunity to learn the other has been limited or
absent completely. For example, in Project Talent data (see Flanagan et al., 1964).,
correlations between arithmetic reasoning and advanced mathematics aie very low
for 9th graders: for 12th graders, they exceed .50.

These four general explanations, two for low correlations and two for hif,h,
form the basis of the interpretation of results of this meta-analysis. Conclusions
will be presented after a review of the literature, a review of the studies collected for
the meta-analysis, a discussion of methodology, and presentation of results.

4



Review and discussion of the literature on the
relationship of spatial and mathematical tasks

Investigations of spatial ability: Sir Francis Galton's (1918) research on visual
imagery is frequently cited as the inspiration for modern studies of spatial ability.
Among Galton's conclusions were "the visualizing faculty is a natural gift, and like
all natural gifts, has a tendency to be inherited..." (p. 69). At the same time he
believed that the faculty could be developed by education. Women, he claimed,
have higher visualizing power than men, and, moreover, "scientific men, as a class,
have feeble powers of visual representation" (p. 60).

Galton argued that this deficit in scientific men occurred because a propensity
to create detailed mental images works against the development of "habits of highly-
generalized and abstract thought" needed for science; disuse causes the loss of the
former skill. However, Galton did not believe this had to be the case. He valued
the ability to transform images and use those transformations in problem solving:
"this free action of a vivid visualizing faculty is of much importance in connection
with the higher processes of generalized thought, though it is commonly put to no
such purpose..." (p. 76). In these words lie the seeds of theories that were to be
developed later by Smith, Herman Witkin, Raymond Cattell, and others.

Spearman considered spatial ability to be simply one of many particular
manifestations of general ability (1927). Yet, as the predictive value of tests of
mechanical ability became evident, and as non-verbal paper and pencil tests were
developed to measure these and other abilities, factor analysts began to affirm the
existence of a "group" spatial factor, interpreted as a spatial acumen or intelligence
underlying these tests (e.g.,Kelley, 1928; El Koussy, 1935; Thurstone,1938). As large
batteries of tests began to be administered to large numbers of subjects, there was a
progression from agreement that there was one spatial ability to accord that there
might be several. (e.g., Guilford et al., 1951; Thurstone, 1951 as discussed in Smith,
1964). However, the progression was not straightforward. Moreover, terminology
was not uniform among theorists: Differing studies found different tests clustered
together.

3
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In 1957, Michael, Guilford, Fruchter and Zimmerman published an article
describing three classes of spatial abilities that seemed to embody the characteristics
described in Thurstone's later work as well as those of the Guilford group. Two of
these classes have been connected to mathematical problem solving by various
researchers. Many group tests have been constructed to measure them. Most of the
tests are variations of the process of identifying two different pictures of the same
object. The chain of reasoning connecting the two may involve either visualizing a
rotation or similar transformation of the object as a whole or visualizing movement
of parts of the object so that it takes a different shape. The first type of reasoning is
currently believed to be holistic reasoning, and is usually denoted "spatial
orientation" skill; the second is characterized as multi-step reasoning allowing trial
and error checking of features of the object, and is usually denoted "spatial
visualization" skill.

Schonberger (1976) has given a mathematical characterization of the distinction
of orientation from visualization, noting that the former involves simple rigid
transformations of whole objects. She hypothesized that three-dimensional
transformations were more difficult to visualize than two-dimensional ones, and
thus distinguished four categories of spatial tests in her work. We have used her
categorization in this work. The dimensional breakdown is important because of
the greater familiarity of two-dimensional tasks: Two-dimensional orientation
tasks are frequently taught in school; two-dimensional visualization tasks can be
found in children's magazines: puzzles using hidden figures are especially popular.

ETS's Card Rotations is a typical test for orientation in two dimensions (o2): a

sample item from it is shown below. The respondent is asked to distinguish
reflections from rotations of the figure to the left of the line in those figures to the
right of it.

0 0 0 0 0 0 0 0
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FIG. 1. Sample items from ETS's Card Rotations Test. Reprinted by permission of
Educational Testing Service, the copyright owner.
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Orientation in three dimensions (o3) is often tested by using the Vandenberg-
Shepard Mental Rotations Test. The respondent is asked to identify those figures to
the right of the one in the circle which are rotations of it.

0

FIG. 2. A sample item from the Vandenberg-Shepard Mental Rotations Test. Used
by permission, Steven G. Vandenberg, Institute for Behavioral Genetics, Boulder,

Colorado.

The Minnesota Paper Form Board Test is a typical two-dimensional visualization
(v2) test: the respondent is asked to identify the configuration in the lettered square
that is the result of putting together the shapes in the numbered square:

FIG. 3. A sample item from the Minnesota Paper Form Board Test. From the
Revised Minnesota Paper Form Board Test. Copyright 1948, 1970 by the
Psychological Corporation. Reproduced by permission. All rights reserved.
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The Differential Aptitude Spatial Relations Test has been used as a test of
visualization in three dimensions (v3) in many studies: the respondent is to select
the figure on the right that can be obtained by folding the plane figure on the left.

e 00
A

HG. 4. A sample item from the Differential Aptitude Space Relations Test. From
the Differential Aptitude Tests: 4th Edition. Copyright © 1982, 1972 by The
Psychological Corporation. Reproduced by permission. All rights reserved.

Both two- and three- dimensional visualization tests can be broken down into
sequences of steps involvi'tg rigid transformations of two-dimensional figures,
sometimes in three-dimensional space. Thus it is conceivable that the sets of tests of
o2, v2, and v3 form a series of increasing difficulty. The o3 tests do not seem to fall
in this series in any natural way. Guay and McDaniel (1978) and Zimowski and
Wothke (1985) argue that these are the best tests of pure spatial reasoning precisely
because their items are most resistant to solution by analytic processing, the kind of
processing involved in visualization tasks.

Investigations of mathematical ability: The idea of a single mathematical
ability is not entirely a lay notion: Binet , Hadamard , and Poincare (1910, 1945, and
1908, respectively, as discussed in Krutetskii, 1976) all thought that there was a
mathematical ability that was, in some sense, unitary. Today, Howard Gardner
(1983) articulates the notion of a single "logico-mathematical" ability, at the core of
which are the abilities to handle long chains of reasoning and to discover analogies
between mathematical abstractions. These processes are not necessarily specific to
mathematical ability, and Gardner does neglect the specific, very abstract and
nonpersonal, content of mathematics.

Plato may have been the first to distinguish types of mathematical content:
arithmetic with number as its content, geometry with form, were subjects of the
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intellect as opposed to subjects of opinion. Since Plato's time, mathematical content
has mushroomed. It is the nature of the varied content areas and their applications
that has generated doubts about the unity of mathematical reasoning.

Early in this century, analyses of Courtis (1910) and Stone (1910) (see the
discussion in Werdelin,1958, p. 53) and of Rogers (1918) found diverse mathematical
abilities. Results from factor analysis, a technique used frequently from the 1920's to
the 1980's, have been scattered and sometimes contradictory with respect to the
number and kinds of mathematical factors found (e.g., Thurstone, 1938; Wilson,
1933; Wrigley, 1958). Barakat (1950 and 1951) carried out a large study of younger
students, concluding that verbalization may obstruct the gestalt-like grasp of
mathematical notions, hindering mathematical thinking. Guilford and his
colleagues carried out many factor analyses of armed services personnel. In these
studies, reported in the 1950's, mathematical and verbal reasoning tests often loaded
on the same factor.

Observational and factor analytic studies were not the only source of
illumination of mathematical ability in the first half of the century: Several
introspective studies were published, including two by prominent research
mathematicians (Hadamard, 1945; Poincare, 1908). According to Krutetskii, Poincare
was the first to distinguish two types of mathematical thought, which today would
be characterized as analytic and holistic. Soviet psychologists, who have perceived
written tests as instruments of the bourgeoisie, used for class oppression, prefer
clinical studies: Krutetskii himself modeled the type of clinical study that is
increasing popular with mathematics educators in the United States today, the
observation of problem-solving protocols of individual students (see, e.g.,
Schoenfeld, 1985; Fennema and Tartre, 1984).

Werdelin (1958) gave particular attention to analyses of older or more talented
students, in which he found what he dubbed a "mathematical reasoning factor"; it

had substantial loadings for geometry tests, arithmetic word p :oblems, algebraic
equations, and spatial visualization tasks. This factor was not deductive. Plato
considered demonstration, or proof, the primary mode of reasoning for mathematics,
as for any science: problem solving was a matter for artisans in the market place or
warriors on the battlefield, not for philosophers. Neo-Platonists, those who claim
that space and number are the primary content of "core" mathematics and that
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deduction is its primary form of reasoning, are still with us (e.g., Moore and Witmer,
1991). Yet market places and battlefields are held in incre.;sing respect by many
mathematicians and educators today.

In order to analyze the relationship of mathematical and spatial skills, we have
used the categories of mathematical tests familiar in standardized testing. "Problem
solving" or "application" subtests are common in standardized tests of mathematical
achievement today. They, along with tests characterized as tests of mathematical
concepts, form the basis for judgments about higher level skills in mathematics.
Computational subtests, considered tests of lower level skills, are also the rule.
Mathematical deductive skill is rarely tested except in geometry proofs.

The connection of spatial and mathematical skills: Interest in perceptual and
performance tests as measures of intelligence increased in the 1930's and 1940's. This
led to two major developments in psychology in the United States.

The first was Cattell's articulation (e.g., 1971) of the notions of fluid and
crystallized intelligence. Cattell was skeptical that verbal intelligence tests measured
innate ability: His doubts were reinforced by the findings that performance on the
nonverbal, figural tests seems to stabilize at about 13 years of age whereas
performance on verbal tests improves over all the school years. Thus he formulated
two concepts, "fluid intelligence" to characterize basic nonverbal skill in reasoning,
"crystallized intelligence" to characterize reasoning as embellished by school and
cultural learning. Cattell writes that performance tests, which measured fluid
intelligence, came to be characterized as "culture fair" tests. However, not everyone
agrees that they deserve the label (see, e.g., Mc Fie's study of African youth [19611).

Another group of psychologists was as influenced by perceptual tests measuring
"flexibility of closure" and related skills as Cattell had been by other performance tests.
Led by Herman Witkin, they developed the notion of "field independence". Field
independence represents a nonverbal ability to discern the salient features of a

situation and thus to solve problems and plan tasks effectively. Witkin and others
believed that field independence is related to "complex arithmetical tasks" (1962, p.
201). Research on field independence has dwindled since Witkin and Goodenough
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recognized that different tests of the concept were not always well correlated (1981).
The less specific notion of an underlying spatial nature to mathematical skill, as
outlined by Smith, remains with us. In the 1980's and 1990's, this notion has become
interwoven with theories of brain hemispheric dominance.

Brain hemispheric research has found its way even into the popular press.
Left- and right- brain processes have been distinguished, each with its own set of
adjectives so firmly embedded in the descriptions that meanings seem to merge.
Left-brain processes are variously characterized as multi-step, analytic, verbal-analytic,
and prone to feature extraction. Right-brain processes are depicted as holistic,
intuitive, gestalt-like, employing parallel (instantaneous) comparisons.

Spatial skill is usually considered a right-brain skill, verbal skill a left-brain skill.
As we have seen earlier, spatial skill has been spliced again, into the purely holistic
orientation skills and the more analytic, multi-step visualization skills. These
dichotomies and trichotomies are not well-defined. As not all spatial skills are
considered purely holistic, not all verbal skills are analytic: Vocabulary skills are not
analytic; verbal "doze" procedure skills are very similar to those spatial closure skills
entitled "gestalt-completion" skills. However, the distinction of holistic from analytic
skills has become important to discussions of mathematical problem solving.

Some mathematics educators suggest that holistic, "right-brain" skills play a key
role in mathematical problem solving (e.g., Wheatley, Frank land, Mitchell and Kraft,
1978). Others believe it is the step-by-step analysis of spatial movement that reflects
mathematical reasoning (e.g., Moses, 1977).

Well before brain hemispheric research became widely discussed, Smith (1964)
claimed that spatial skills were more important than verbal skills to advanced
mathematical achievement. He cited evidence from several factor analyses which he
thought indicated that verbal and mathematical abilities were independent except for
a shared component of general ability. To explore the question in this research,
math-verbal and math-space correlations from the same studies have been compared.
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Im lications of the relationshi of s atial and mathematical skills for ender
differences. Gender differences in favor of males have frequently been found on both
spatial and mathematical tasks (El Koussy, 1955; Maccoby & Jacklin, 1974), though they
have been decreasing or disappearing on some spatial tasks (Hilton, 1985; Linn and
Petersen, 1985), and nearly vanishing on many mathematical tasks (Friedman, 1989;
Hyde, Fennema and Lamon, 1990). Sherman (1967) conjectured that male advantage
in spatial ability might be the source of gender differences found in mathematical
achievement. She noted that activities that are stereotypically male -- building models
and fixing machines, mechanical drawing, map-reading, and sports -- develop spatial
skill. While the traditional causal explanation for male advantage is that males are
biologically more likely to possess the skills and thus to choose the activities in which
the skills are used and further developed, Sherman suggested that sex-role
socialization might be a decisive influence in differential spatial practice.

Many educators have found Sherman's hypothesis plausible (e.g., Burnett,
Lane, and Dratt, 1979; Ethington and Wolfle, 1984; Fennema,1980). Study reports of
markedly different space-math correlations for females and males have added weight
to the conjecture. Some of these studies have found the correlations higher for
females, others for males. Tartre (1990) has suggested that spatial skill may be more
related to all facets of mathematical performance for females than for males.

Sherman's conjecture shares some of the inference of Smith's argument: If

possession of advanced mathematical ability implies possession of spatial ability, then
females' lack of spatial ability must lead to inferior mathematical ability. However,
even if Smith's theory is incorrect, Sherman might be right if mathematical ability
implied spatial ability in some of the mathematical tasks on which gender differences
are found. Traditionally, the most consistent reports of gender differences in
mathematical tasks have been in the areas of problem solving and applications and of
geometry and measurement. More recently, studies of college entrance examinations
such as the College Entrance Examination Board's Scholastic Aptitude Test (SAT)
have found substantial gender differences, particularly in samples of gifted junior
high school students. If Sherman is right, then math-space correlations should be
high either in some of these areas or overall.
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Questions addressed in this study: Four questions directed this meta-analysis of
the relationship between spatial and mathematical abilities. First, does the
relationship indicate a pervasive spatial character to mathematical thought? Second,

is there a substantial relationship between holistic spatial skill and mathematical
problem solving? Third, does the space-math relationship differ for males and
females? Finally, does it underlie gender differences in mathematical skills?

These general questions led to specific research questions which guided
calculations. The first general question was primarily addressed by four research
questions: 1) Do any of the four types of spatial reasoning skills -- two- and three-
dimensional spatial orientation skills and two- and three-dimensional spatial
visualization skills - have substantial combined correlations with all mathematical
tasks? 2) Does the cognitive level of the mathematics skill tested influence the size of
correlations? 3) Does the age of the test-taker influence the size of correlations?
4) Are correlations of mathematical and spatial tasks higher than correlations of
mathematical and verbal tasks, and do age of subject or level of mathematics tasks
influence any differences found?

The fourth research question has implications for the relevance of holistic
spatial skill to mathematical problem-solving skill. This second general question was
explored through an additional research question: 5) Are orientation spatial skills
better related to mathematical problem-solving tasks than visualization spatial skills?

The next research question is relevant to Smith's and other theorists'
arguments, as well as to investigation of gender differences. 6) Do geometry,
problem-solving, or SAT-Q tasks correlate more highly with spatial tasks than other
mathematical tasks?

Finally, gender differences were explored by direct calculation of differences in
correlations: 7) Do groups of math-space correlations divided according to the four
spatial categories exhibit gender differences? Do groups of geometry-, problem-
solving-, or SAT-Q-space correlations exhibit gender differences? Theoretical questions
on gender differences were further addressed by considering each of the first six
questions separately by gender, in order to see if there were differences in patterns.
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Studies collected for the meta-analysis

Reports of studies in journal articles, technical reports, and dissertations were
collected, using computerized searches of the ERIC and PSYCHINFO data bases and of

Dissertation Abstracts Online. "Spatial ability" and "mathematics achievement" were
the descriptors used to select the studies. Only studies carried out after 1950 and before
the end of 1990 were collected. Only studies using test results to compute correlations
were used. The final group used contained 116 articles and dissertations, reporting on

136 independent studies.

The studies collected exhibit trends over time both in subject matter and
statistical techniques. Factor analysis dominates the early studies. Many of the factor
analyses collected from the 1950's and 1960's used all-male samples, either of armed
services personnel or college or college prep students (e.g., French, 1957,1963; Guilford
et al, 1951, 1955; Werdelin, 1958). Corrected correlations range from -.10 to .55,
generally not as high as might be expected.

Doctoral students at the Catholic University of America produced another set of
factor analyses (e.g., Emm, 1959; McCall, 1955; Mc Taggart, 1959; Ruszel, 1952). These
studies found differences in cognitive strengths between females and males: Emm
concluded that girls and boys should not be taught in the same way and thus, perhaps,
not in the same classroom. On the other hand, a more recent study by Harris and
Harris (1973) found no difference in factor patterns for female and male sixth graders.
When differences have been found (e.g., Mc Taggart, 1959; Wormack, 1980), males'
abilities tend to yield spatial factors more often and to be more stratified. Fillela's

study of Columbian youth is an exception: here the females were more differentiated
than the males.

From the mid 1960's through the 1980's large groups of researchers considered
individual differences. One group looked for aptitude-treatment interactions (ATI's)
(e.g., Adams and McLeod, 1979; Battista, 1981; Behr and Eastman, 1975; J. P. Becker,

1983; Durapau and Carry, 1981; Kiser, 1986; MacGregor, Shapiro and Niemiec, 1988;

McLeod and Briggs, 1980). Results from ATI studies have generally been

14



13

inconclusive, though when a figure matrix test was used to determine spatial ability,
Eastman and Carry (1975) found that those high in spatial but low in verbal ability
benefited more from a graphical treatment of quadratic inequalities, whereas those
high in verbal but low in spatial ability benefited more from an analytic treatment.
Apparently treatments should build upon strengths rather than supplement them.

A large body of studies on field independence has accumulated (e.g., Acker,
1967; Bieri, Bradburn, and Galinsky, 1958; Carment, 1988; Gardner, Jackson, and
Messick, 1960; Lynchard, 1988; McKay, 1978; Tabler, 1980; Vaidya and Chansky, 1980).

Correlations ranged from about .2 to .6 in these studies. However, problems with
distinguishing field independence from general intelligence have arisen in the
research, as have disagreements of differing tests of the concept.

A spate of relatively recent studies has directly considered the relationship of
spatial and mathematical skills (e.g., Battista, Wheatley and Talsma, 1980; Lean and
Clements, 1981; Middaugh, 1979). The relationship of spatial skill to mathematical
problem solving has been a particularly popular topic (e.g., Landau, 1974;
Schonberger, 1976; Wong, 1984). Landau found that students of low spatial ability
solved problems more readily if they were provided diagrams, while students c f high
spatial ability did best with just the instruction (given to all students) to rank problems
according to how helpful a diagram would be in their solution. Wong found that
providing visual aids helped students solve problems, but, when visual aids were not
supplied, students taught to generate their own visual aids often did so and were more
successful problem solvers than other students.

Sherman's conjecture motivated many studies. Schonberger (1976) found that
the relationship between spatial skill and performance on math problems for which
spatial skill was helpful but not necessary was stronger than the relationship between
spatial skills and spatial problems, and somewhat stronger for females than males.
Fennema and Sherman (1977, 1978) found some support for Sherman's hypothesis.
(However, later studies by Fennema and Tartre (1985) and Tartre (1984) showed that
males with low spatial and high verbal skills mathematically outperformed males and
females with other combinations of spatial and verbal skills.)

Gender difference researchers are particularly interested in spatial training
studies because, if Sherman's conjecture is correct, then gender equity in mathematics

/1
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can be addressed through spatial training. Many spatial training studies produced
correlations for the meta-analysis (e.g., Baldwin, 1985; Moses, 1977; Tillotson, 1984):

hese studies fourid spatial training successful, but ineffective in improving
mathematical skills. Connor and Serbin (1985), who have been involved in several
spatial training studies, did separate correlational studies as well. Researchers
interested in developing questionnaires intended to measure spatial experience also
have been a source of correlations (e.g., Lunneborg and Lunneborg, 1984, 1986).

Burnett, Lane, and Dratt (1979) and Hyde, Geiringer, and Yen (1975) found
evidence to support Sherman's hypothesis: for their college age samples, gender
differences in mathematical achievement were insignificant when spatial tests were
used as covariates. However, in Pattison and Grieve's (1984) sample of select
Australian high-school students, using spatial tests as covariates had little effect on
gender differences calculated on groups of mathematical problems.

The Burnett, Lane, and Dratt study was one of many using the SAT-Q as the
mathematical measure (e.g., B. Becker, 1978; Gallagher, 1987; Johnson, 1984; Weiner,
1984; Wormack, 1984). For the most part, these studies are of gifted or elite college
populations, very selected samples. These studies produced correlations which were
atypical in more than one way, and more will be said of them later.

Two large national studies with probability samples, High School and Beyond
and Project Talent, produced correlations for the meta-analysis (see Ethington and
Wolfle, 1984; Flanagan et al., 1964; Shaycoft et al., 1963). The space-math correlations
reported in these studies ranged from about .20 to .48. Project Talent tested a large
number of cognitive variables; many of the non- spatial measures, including verbal
ones, were more strongly related to mathematics achievement than were the spatial
tests.

161
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Methodology

Four types of data were coded from the studies: the necessary statistics, the tests
used and their classifications, circumstances of the testing, and characteristics of the
sample. Correlations of spatial, mathematical, and verbal tasks were collected.
Statistics were recorded for the sexes separately when the information was so reported.

Classification of the spatial and verbal tests was carried out by the researcher.
Three colleagues helped in the classification of the mathematical tests: items were
placed into categories according to whether they required computational, concept, or
problem-solving skills. The tests were then classified as either "computational" or
"reasoning," Tests classified as computational often included some noncomputa-
tional material, though more than 60% of the items were computational, and more
than 80% of the items were computational or conceptual. Intercoder agreement on
the tests was 85%. The Brownell Problem Solving Test, the California Achievement
Test's Mathematics Total, the Cognitive Abilities Test's Quantitative Subtest,
Educational Testing Service's Necessary Arithmetic Operations, the Iowa Tests of
Basic Skills, Project Talent's Math I, the Scholastic Aptitude Test's Quantitative
Subtest, the Stanford Achievement Test's Applications Subtest, and the Test of
Academic Progress's Mathematics Subtest are some of the tests categorized as
"reasoning" tests. Examples of tests categorized as "computational" are the California
Intelligence Test's nonverbal Numerical Quantity Subtest; the Comprehensive Test of
Basic Skills' Computation Subtest, the Differential Aptitude Test's Numerical
Aptitude Subtest, the Moore-Castori Algebra Test, the School College and Ability Test,
the Science Research Associates Mathematics Concepts Subtest, the Stanford
Achievement Test's Computation Subtest, and the Wide Range Achievement Test's
Arithmetic Subtest. Test categorizations are available in Friedman (1992).

The only circumstance of testing that -raried enough to warrant inclusion as a
possibly influential study feature was the year of testing. Sample size, average age,
minority composition, and nationality were coded. The academic selectivity of the
sample was also coded: Studies of disadvantaged students were coded 1; of average
school populations, 2; of college preparatory or college students, 3; of gifted or elite
college populations, 4. Study codings are available in Friedman (1992).
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Studies often supplied a number of space-math correlations even within one of
the four spatial categories and for more than one computational or reasoning
mathematics task. Median correlations were used when the number available was
odd; when it was even, the correlation just above the median was used. Examples of
correlations used from the studies appear in Friedman (1992).

Basic methods of calculating weighted averages of correlations, homogeneity
statistics, and random effects model means were taken or extrapolated from Hedges
and Olkin (1985). A conversion of anova F's to product-moment correlations was
made using an equality appearing in Glass, McGaw, and Smith (1981, p. 150).

Study samples were often large, as were numbers of studies in groups;
homogeneity was hard to find. Thus the researcher decided to use random effects
models for all groups. If a weighted average of correlations (or their z-transforms) was
homogeneous in its group of studies, it was considered to be the mean of a random
effects model with variance zero.

Comparison of different types of correlations was carried out in two ways. First,
if the measure to be combined was the study correlations (z-transforms), the difference
of random effects model means for correlations of the two different types was
calculated, under the assumption that both means were approximately normally
distributed, and thus that their difference was as well.

However, comparison by combining simple z-transforms was not the method of
choice for this researcher. A large number of study features may affect correlations.
Correction for restriction of range was carried out, using regressions calculated on data
from studies which used national probability sample or for which a population
standard deviation could be found. Yet measurement error is also known to affect
correlations, but can be difficult or fruitless to correct for (personal communication,
Hedges, June, 1990). While many study features can be coded, others, such as time
(and even year) of testing, location of the sample, and attitudes of researchers and
testers are often not reported. An oft-repeated experience for this researcher was to
remark that, say, a study number series-space correlation was high compared to
average math-space correlations, but then to find that other math-space correlations in
that same study were high as well.

iG
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Thus the difference in z-transforms of correlations from the same study was the
preferred study measure when contrasting correlations of different types. Combining
differences in correlations is not problematic when study samples can be separated --
e.g., in gender difference calculations. The variance of the difference is a function of

the correlation between the two correlations, which, in independent samples, is zero.
However, when the sample is the same for both correlations, the correlation is a
function of another intermediate, often unreported, correlation. To circumvent this
problem, it was assumed that, for any one group of studies, the correlation, c was the
same for all studies. Calculations were then carried out for three possible values of c:

-1, 0 and 0.9, "bracketing" the possibilities for c. If the c's at all three different values
produced the same conclusion, that conclusion was assumed to be valid. When
differing values of c produced different conclusions, reasonable intermediate values of
c were checked.

If the difference of random effects model means was the basis of a comparison, it
was called an external comparison. If random effects model means of differences of
correlations in the same studies was the basis, the comparison was called internal.
Often both types of comparisons were made to answer a question: when results
differed, internal comparisons were the primary evidence on which conclusions were
based. (When differences occurred, the direction (sign) of the difference was usually
the same, but the statistical significance of the results varied.)

Correction for restriction of range was carried out using regression techniques.
Population standard deviations could be obtained for about one-third of the tests used
in correlations. Correlations using these tests were corrected by a formula from
Guilford (1965, p. 363). These corrected correlations are here called "basically
corrected" correlations. Basically corrected correlations were used in a regression
analysis: The equations they generated were then used to correct all the space-math
correlations collected for the meta-analysis.1

In order to ensure that results were not artefacts of the correction procedure,
calculations made with (regression) corrected correlations were repeated either with
uncorrected correlations or basically corrected correlations, whichever of the latter
groups was appropriate. The significance level of a few results dropped in the repeated
calculations: only results replicated in the comparison calculations are reported here.
Because of time restraints, correlations of verbal tests with other measures were not
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corrected for restriction of range, so, in any comparison employing verbal measures,
uncorrected correlations were used throughout.

Results

Outcomes for research questions are presented here. Numerical estimates of
differences of correlations will reveal which set of correlations is higher in a
numerical sense; however, when confidence intervals for the mean difference
cover zero, we shall say "numerical estimates suggest that ...". When the intervals
do not cover zero, the language will be "these re- its indic«te ..." or "these results
show that ...". Restricting vocabulary in this fashion will prevent misstating the
strength of the results. The standard significance level is 95%; however, when the
p-value of a result is between .10 and .05, a 90% significance level is reported. Tables
of statistics for all results may be found in Friedman (1992). Only statistics relevant
to significant results are reproduced here.

Question one: Do any of the four types of spatial reasoning skills two- and
three-dimensional spatial orientation skills and two- and three-dimensional spatial
visualization skills - have substantial combined correlations with all mathematical
tasks? Table 1 displays weighted averages and other statistics calculated for groups
of corrected correlations of mixed gender, female, and male samples. Averages and
means range from approximately .33 to .47. They generally form an increasing
sequence, with the smallest correlations produced by two-dimensional orientation
skills, the next smallest by two-dimensional visualization skills, followed by three-
dimensional orientation skills and then three-dimensional visualization skills.
Female samples are an exception: both two- and three-dimensional visualization
skills produce higher correlations than two- and three-dimensional orientation
skills.
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TABLE 1: Means and other statistics for sets of independent correlations from the
four spatial categories.

r+ a2() 62 (w) CI

Mixed Gender Samples
o2 -math .354 25 38.9 .364 .0008 .0001 (.343,.384)

v2-math .405 52 281.6 .425 .0276 .0007 (.381,.468)

o3 -math .410 40 292 .428 .0345 .0012 (.372,.481)

v3-math .467 55 251.7 .449 .0057 .0002 (.426,.471)

Females
o2 -math .335 16 28.5 .329 .0015 .0003 (.297,.360)

v2-math .439 27 80.8 .444 .0161 .0010 (.393,.493)
o3 -math .352 23 99.4 .380 .0292 .0017 (.307,.447)
v3-math .451 30 179.1 .450 .0114 .0006 (.410,.488)

Males
o2 -math .325 22 56.8 .328 .0033 .0004 (.294,.360)
v2-math .352 36 111 .372 .0132 .0006 (.328,.413)

o3 -math .376 27 124.2 .398 .0236 .0012 (.340,.453)

v3-math .439 42 234.3 .409 .0116 .0004 (.375,.443)

NOTE: r+ = weighted average of the correlations; k = the number of correlations
estimating r+; H = the homogeneity statistic for r+; = mean correlation calculated
from the mean of the random effects model estimated for z-transforms of the group;
62() = variance of the random effects model for z-transforms; o2 (ii,) = variance of
the mean of the random effects model for z-transforms; CI = a 95% confidence
interval for the mean of the random effects model.

Table 8 in The appendix gives some of these statistics for uncorrected and
basically corrected correlations. Uncorrected correlations follow the same patterns,
though means are somewhat lower. Means for basically corrected correlations are

2/
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higher, reaching .56 for o3-math, and dropping to .47 for v3-math: however, a
substantial subgroup of these correlations are from SAT studies, in which corrections
were expected to be high because of selectivity of sample: in particular, the three-
dimensional orientation correlations in this group are dominated by an atypical group
of SAT-Q-space correlations, which will be described later in the paper.

Differences of random effects means of correlations from the four spatial
categories are usually not significant. External comp risons show that the two-
dimensional orientation mean is different from the others, but internal comparisons
differentiate only the two-dimensional orientation from the three-dimensional
visualization category. These remarks hold for all three types of samples -- mixed
gender, female, and male using both corrected and uncorrected correlations.

Question two: Does the cognitive level of the mathematics skill tested
influence the size of correlations? The cognitive level (or degree of abstraction) of the
mathematics tests does influence the size of correlations. For mixed-gender samples,
space-math correlations are higher for reasoning than for computational mathematics
tasks in all but the three-dimensional orientation category.

Differences between correlations of computational and reasoning mathematics
tasks are not as common with females as with males. For females, they appear in
visualization but not in orientation tasks; for males, they appear in all spatial
categories.

Because this pattern difference appeared, additional analyses were carried out
for single-gender samples grouped by age. If the average age of the sample is less than
14 years, the sample is described as young. Other samples are described as older.
Differentiation between space-math correlations of computational and reasoning
math tasks does seem to be a function of age. Young females differentiate in two-
dimensional visualization-math correlations. In corrected correlations, young males
give some indication of differentiating in the three-dimensional spatial categories:
however, this trend does not show up in uncorrected correlations. The older samples
reproduce the results for samples of all ages.
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Table 2 summarizes the results for samples of all ages and for single gender
samples divided by age. Tables 9 and 10 in the appendix give the statistics for these
results using corrected correlations.

TABLE 2: Summary of differences in math-space correlations for the four spatial
categories and computational and reasoning mathematics tasks.

Mixed-gender Females Males

o2-math
v2-math
o3-math
v3-math

o2-math
v2-math
o3-math
v3-math

o2-math
v2-math
o3-math
v3-math

Reasoning larger
Reasoning larger
No difference
Reasoning larger

Samples of all ages

No difference
Reasoning larger
No difference
Reasoning larger

Young samples

No difference
Reasoning larger
No difference
No difference

Older samples

No difference
Reasoning larger
No difference
Reasoning larger

Reasoning larger
Reasoning larger
Reasoning larger
Reasoning larger

No difference
No difference
Reasoning larger, 90%
Reasoning larger, 90%

Reasoning larger
Reasoning larger
Reasoning larger
Reasoning larger

Question three: Does the age of the test-taker influence the size of
correlations? Very few significant differences were found, and these seemed to
follow no particular pattern. In mixed gender samples, older students have higher
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o3-math correlations than do younger students: however, when the one study in
this group using a low-level mathematics test is removed, the difference between
older and younger students becomes insignificant. Young male samples have
higher o2-math correlations than do older ones; older females have higher o3-math
correlations than do younger ones.

Question four: Are correlations of mathematical and spatial tasks higher than
correlations of mathematical and verbal tasks, and do age of subject or level of
mathematics tasks influence any differences found? Verbal-math correlations are
higher than two-dimensional space correlations for all types of samples. Three-
dimensional space-math correlations are not different from verbal-math
correlations in mixed gender samples. However, for single gender samples, verbal-
math correlations are also higher than three-dimensional orientation-math
correlations. For samples of any gender composition, verbal-math correlations are
not significantly different from three-dimensional visualization correlations.
Ho. "ever, all numerical estimates of verbal-math correlations are higher than those
of space-math correlations.

Division of correlations by age of sample and by level of mathematics test
produced mixed patterns. Females often had higher verbal-math than space-math
correlations. Young males showed only one significant difference: verbal-math
correlations were higher in the two-dimensional spatial category on mathematical
reasoning tests. Older males produced more differences in favor of verbal-math
correlations: in particular, verbal-math correlations were higher in both two-
dimensional spatial categories for mathematical reasoning tests.

Table 3 presents a summary of the results of all comparisons made between
verbal-math and spatial math correlations. When differences were significant at the
90% rather than the 95% level, it is noted in the table.
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TABLE 3. Summary of verbal-math and spatial-math correlations.

Mixed gender Females Males

o2-math
v2-math
o3-rn ath
v3-math

o2-comp. math
o2-reas. math
v2-comp. math
v2-reas. math
o3-comp. math
o3-reas. math
v3-comp. math
v3-reas. math

o2-comp. math
o2-reas. math
v2-comp. math
v2-reas. math
o3-comp. math
o3-reas. math
v3-comp. math
v3-reas. math.

a A one-study result.

Verbal higher
Verbal higher
No difference
No difference

All correlations
Verbal higher
Verbal higher
Verbal higher
No difference

Young samples

No difference
Verbal higher (90%)
Verbal higher
Verbal higher
Verbal higher
Verbal higher (90%)
No difference
No difference

Older samples

Verbal higher
Verbal higher
Verbal highera
No difference
Verbal highera
No difference
Verbal higher
Verbal higher

Verbal higher
Verbal higher
Verbal higher
No difference

No difference
No difference
No difference
Verbal higher
No difference
No difference
No difference
No difference

Verbal higher
Verbal higher
Space higher (90%)
Verbal higher (90%)
No difference
No difference
Verbal higher
No difference

Tables 11 and 12 in the appendix give the statistics for overall comparisons of
verbal-math and space-math correlations and of comparisons when correlations are
divided by age of sample and math level, respectively.
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Results for question two indicated that reasoning mathematics tasks are better
related to spatial tasks than are computational tasks. A glance at numerical values
suggests that this is true for verbal-math correlations as well: that is, reasoning math
tasks have higher correlations with verbal tasks than have computational tasks.
Table 4 presents numerical values of weighted averages for combined verbal-math
correlations divided by math level: groups of verbal-math correlations have also
been separated according to the spatial category of the correlations to which they
were originally compared.

TABLE 4. Numerical values of weighted averages of combined verbal-math
correlations, separated by level of mathematics task and spatial category.

o2 reasoning math
computational math

v2 reasoning math
computational math

o3 reasoning math
computational math

v3 reasoning math
computational math

Mixed gender Female Male

.59 .59 .58

.42 .42 .40

.48 .42a .39

.43 .43 .26

.39 .41 .41

.21 .39 .12

.56 .56 .54

.42 .44 .36

aThis is the only pair of values in which the verbal-reasoning math correlation is
lower than the verbal-computational math correlation.

Question five: Are orientation spatial skills better related to mathematical problem-
solving tasks than visualization spatial skills? When mathematical tasks are
classified as problem-solving according to test titles, visualization skills are as well-
related to mathematical problem-solving tasks as are orientation skills. All

numerical estimates suggest that visualization-math correlations are higher than
orientation-math correlations. These results hold for samples regardless of gender
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composition. Moreover, the results recur when orientation tasks are restricted to
those in three dimensions: i.e., when only "pure" spatial skill is considered.

However, if the term "problem-solving" is stretched to included
"mathematical reasoning," three-dimensional orientation tasks are well-related to
SAT-Q tasks in the sense that they have the highest combined correlations -- e.g., .67
for basically corrected correlations in mixed-gender samples -- in the meta-analysis.
However, the difference between these and the visualization-SAT-Q correlations is
not statistically significant. (There are no studies which have two-dimensional
orientation-SAT-Q correlations in the meta-analysis.) Tables 13 and 14 in The
appendix contains the statistics for comparisons of orientation-problem solving and
visualization-problem solving studies and for orientation-SAT-Q and visualization-
SAT-Q studies, respectively, using mixed-gender samples and corrected correlations.

Question six: Do geometry, problem-solving, or SAT-0 mathematical tasks
correlate more highly with spatial tasks than other mathematical tasks? For mixed
gender samples, correlations were first divided into geometry-space and
nongeometry-space correlations. Comparisons of these often found geometry-space
correlations lower -- never higher than nongeometry-space correlations. Space-
geometry proof correlations were then omitted from the geometry-space
correlations, and the remaining correlations compared to nongeometry-space
correlations. Comparisons then found differences insignificant except that internal
comparisons showed geometry-v3 correlations higher than nongeometry-v3
correlations. Space-geometry proof correlations are significantly lower than other
space-geometry correlations. Tables 15 and 16 in the appendix hold the statistics for
these comparisons, using corrected correlations.

In single gender samples no significant differences are found except for a few
external comparisons in which nongeometry-space correlations are higher than
geometry-space correlations.

Tasks explicitly defined by researchers as mathematical problem-solving tasks
do not produce math-space correlations which differ from other math-space
correlations. In fact, numerical differences calculated are among the smallest of all
those produced in this research. Table 17 in the appendix holds internal
comparisons for mixed gender samples, using corrected correlations.
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The College Board's Scholastic Aptitude Test, Quantitative Section (SAT-Q),
produced unexpected results. In every spatial r'ategory represented, and for mixed
gender, female, and male samples, external comparisons of corrected correlations
indicate that space-SAT-Q correlations are higher than other space-math
correlations, excepting only v3-SAT-Q comparison for male samples. (There were
no o2-SAT-Q correlations in these data.) Internal comparisons produce no
significant differences. However, the numerical differences are among the largest
produced in this work; also, only four studies are available for internal comparisons:
external comparisons may be the evidence of choice here. Table 5 displays external
comparisons for mixed-gender samples.

Table 5. External comparisons of SAT-Q-space with other math-space z-transforms
for three spatial categories.

cy2() 02 (NJ) W1 W2 Ca
o2-SAT-Q contrasted with other o2-math

No studies available.

v2-SAT-Q contrasted with other v2-math
v2-SAT-Q .620 6 7.8b .620 0 .0017

v2-math .414 46 240.8 .429 .0252 .0008 .191 (.093,.289)

o3-SAT-Q math contrasted with o3-math
o3-SAT-Q .782 3 11.6 .776 .0186 .0075

o3-math .397 37 176.9 .423 .0216 .0009 .353 (.174,.533)

v3-SAT-Q math contrasted with v3-math
v3-SAT-Q .630 4 3.1b .630 0 .0022

v 3- ma th .508 52 282.8 .474 .0057 .0002 .156 (.060,.252)

NOTE. z+ = weighted average of the z-transforms: k = number of studies;
H = homcgeneity statistic; w = es ..mate of the mean of the random effects model;
02(4) = variance of the random effects model; a2( NI) = variance of the estimate of the
mean of the random effects model; wi w2 = difference in means of the random
effects model; CI = 95% confidence interval for difference in yi - W2.

bHomogeneity upheld at the 95% confidence level.
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It should be noted that in uncorrected correlations, the difference appears only
in the three-dimensional orientation category. Because people who take the SAT-Q
are always part of a selected sample, it can be argued that this is the population, and
correlations shouldn't be corrected: however, if correlations are to be comparable,
considering SAT-Q populations as subpopulations of the whole is reasonable.

Uncorrected correlations are not the statistics of choice to compare with
corrected ones in SAT-Q data: all of these samples are fairly select, and it is reasonable
that their correlations should require correction. Basically corrected correlations are a
better comparison in checking that results from corrected correlations are not
artefactual, even though the numbers of correlations in comparisons are smaller. The
smaller number of studies probably increased the variance of random effects means, so
not as many results were significant: however, enough of the results were significant
to indicate that SAT-Q correlations are often higher than other math-space
correlations. Table 6 gives a summary of the statistics using basically corrected
correlations. Table 18 in the appendix holds the statistics themselves.

TABLE 6. Summary of results of external comparisons of SAT-Q-space and other
math-space correlations, using basically corrected correlations

Mixed gender Females Males

o2-math No studies available
v2-math No difference No difference SAT-Q-space higher

o3-math No difference SAT-Q-space higher SAT-Q-space higher

v3-math SAT-Q-space higher SAT-Q-space higher No difference

Question seven: Gender difference calculations of correlations divided by
spatial category produced some of the smallest means of the meta-analysis. None
were significantly different from zero.

When groups are additionally subdivided by level of mathematical task and by
age, some differences do appear: females sometimes have higher computational
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math-space correlations, and males sometimes have higher reasoning math-space
correlations. Table 7 contains a summary of these gender difference results.

TABLE 7: Summary of gender difference calculations for correlations of spatial and
various types of mathematics tasks.

o2-math
v2-math
o3-math
v3-m ath

All mathtmaticaLlaaka

No difference
No difference
No difference
No difference

Computational math Reasoning math

Samples of all ages

o2-math No difference No difference
v2-math No difference No difference
o3-math No difference No difference
v3-math Females higher No difference

Young samples
o2-math No difference No difference
v2 -math No difference Females higher, 90%
o3-math No difference Males higher
v3 -math Females higher No difference

Older samples
o2-math Females higher
v2-math No difference
o3-math No difference
v3-math Females hither, 90%

No difference
No difference
No difference
Males hi her, 90%
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There are no gender differences in geometry-space or problem-solving-space
correlations. However, females' SAT-Q correlations are higher than those of males in
all samples, as well as in young and older samples. Uncorrected correlations - better
comparison statistics in this case as it is reasonable to assume that female and male
samples from the same studies will be similar with regard to selectivity , and thus all
studies compared in corrected correlations can be used -- substantiated these results.

Tables 19-23 in the appendix contain the statistics for calculations of all gender
differences noted above.

Conclusions

The general, theoretical questions posed in the introduction are addressed
here.

Is there a particular spatial character to mathematical thought? The bulk of
correlational evidence casts doubt on the conjecture that spatial skill is pervasive in
mathematics as mathematics is taught and tested today. Mean correlations are low.
Individual space-math correlations have been corrected for restriction of range,
raising weighted averages and random effects model means. Yet the latter range
from .35 to .47, numbers generally considered small or moderate (see, e.g., Cohen,
1987; DeVore, 1982).

The sequence of mean correlations suggests that correlations are higher for
three-dimensional than two-dimensional spatial tasks and for visualization than
orientation. Yet the highest of the average correlations is less than .50, and only the
lowest and the highest are significantly different.

Can these low correlations be the result of uneven development of skills?
Mathematical skills are trained; with the exception of two-dimensional orientation
skills, spatial skills are not. However, by high school years, two-dimensional
orientation and possibly two-dimensional visualization skills have ordinarily been
developed: two-dimensional orientation skills are often part of the middle school
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curriculum. Three-dimensional skills may have received some emphasis in high
school geometry. Yet correlations of older students are no higher than those of
younger students except, marginally, in three-dimensional orientation. Differences
calculated for correlations of different age groups are among the smallest in absolute
value that we have seen here. From the sequence of mean correlations, it appears
that the more familiar the spatial task, the smaller will be its correlation with
mathematical tasks.

One of Smith's assertions found support in this meta-analysis: spatial tests do
correlate more highly with reasoning than with computational mathematics tests,
especially for males, and this differentiation appears more often in older students.
However, even reasoning math-space correlations are not large. Moreover,
informal comparisons indicate that verbal tests correlate more highly with
high-than with low-level mathematics tests. This last result is not consistent with
the picture drawn by Smith.

The most damaging findings of this meta-analysis for the hypothesis that
spatial ability underlies mathematical thought is that verbal-math correlations are
often significantly higher -- almost never significantly lower -- than space-math
correlations. Overall numerical estimates of mean differences between verbal-math
and space-math correlations in each spatial category were always negative,
indicating that verbal-math correlations were higher. The differences were
significant for the two-dimensional spatial categories. They were significant for
three-dimensional orientation in both groups of all-female and of all-male studies.

Considering male achievement at different ages, the results here contradict
Smith's assertion that high spatial rather than high verbal ability is necessary for
advanced mathematical courses. Verbal-math correlations were sometimes higher
than space-math ones for older males, though almost never for younger ones. The
picture was different for females. However, females seem to be irrelevant to
Smith's argument: even before Sherman's conjecture was published, Smith wrote
that females learn mathematics poorly precisely because of inadequate facility in
imagery (see, e.g., 1964, p. 133).

Why was Smith so convinced that spatial and mathematical skills are
outcomes of the same thought processes? He did not form his opinion from
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considering studies of college youth performing college mathematics, for there are
few in the literature. Samples of college age youth often consist of education
students or armed services personnel, and the mathematics tests used are not of
college-level material. Hills' 1957 study is one that does concern college
mathematics; Project Talent is another, though it reports on advanced mathematics
as learned by high school students; Dick's study of college youth is another. The
space-math correlations reported in Dick's study, corrected or not, are extremely
low, not more than .25; correlations from the other two studies are not high.

Geometrical concepts are those which most immediately seem to involve
spatial skill, and Smith reported some results which indicated that geometry-space
correlations were higher than other mathematics-space correlations. The combined
results of this meta-analysis do not agree with this conclusion. Geometry-space
correlations were unexpectedly low, lower or at least no higher, than other math-
space correlations.

A plausible explanation for this phenomenon is grounded in the fact that
often, in geometry tasks, problems are presented to the student visually. Spatial
skill may not be crucial when pictures are provided. Visual aids are helpful to the
understanding of a problem: however, students should be able to, and can be taught
to, generate visual aids for themselves if they are to succeed in solving p-oblems
presented to them without visuals (see Wong, 1988).

Is there a substantial relationship between holistic spatial skill and
mathematical problem solving skill? If mathematical problem solving skill is
measured by test items developed by researchers and test-constructors for that
purpose -- items posed verbally which draw on computational, algebraic, geometric
or combinatoric mathematical skills -- then the answer to the second question must
again be negative. Mean combined correlations are not high: they are no higher for
problem-solving tasks than for other mathematical tasks no matter whether
orientation or visualization skills are considered. When orientation-math and
visualization-math correlations are contrasted, the visualization-math correlations
are higher numerically, though not, generally speaking, significantly so.
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Shifting perspective slightly, we may take mathematical problem solving skill
to include what is often referred to as "mathematical reason' -'; ability" -- the skill
that SAT-Q administrators intend to test. Many SAT-Q items are multi-step, and
thus could be expected to have more in common with visualization than with
orientation tasks. However, there is some evidence that three-dimensional
orientation is particularly strongly related to SAT-Q scores. The weighted average z-
transform for the three o3-SAT studies was .782, the largest combined space-math z-
transform in the meta-analysis. When external comparisons were made of
orientation-SAT-Q and visualization-SAT-Q correlations, the numerical estimate of
the difference favored orientation correlations, though, again, the difference was
not significant.

The three o3-SAT studies all test older students. Gallagher's (1987) study was
of gifted high school students: it produced the lowest correlations of the three.
Johnson's (1984) study is of college students. He used the Guilford-Zimmerman
"Clocks" test, which has been classified here as a three-dimensional orientation test,
as all the items involve rotation of three-dimensional whole objects. However,
more than one rotation is often involved, so the classification is somewhat
problematic. The Burnett, Lane and Dratt study (1979) is of students at Rice
Universal , a highly selective institution. The authors report that approximately
70% of those admitted will probably follow studies in engineering and science.

With these samples, intervening variables may be just as likely to explain the
high correlation as some underlying connection of spatial and mathematical skills.
The majority of students in the Burnett et al. study may have decided to
concentrate on the sciences at a relatively early age, and thus become proficient in
both mathematical and spatial skills. All subjects involved are certain to have had
successful precollege experience, which should instill confidence in test-taking.
Specialization and confidence should be explored as alternative explanations for the
SAT-Q results.

This meta-analysis produced little evidence that holistic spatial skills are well-
related to mathematical problem solving. Spatial strategies useful for
mathematical problem solving often do not make heavy demands on spatial
reasoning skill, though students confident with spatial reasoning may be more
likely to attempt spatial strategies. More important than a high level of spatial

37



33

ability is the conviction that these techniques have utility. The teacher's word that
they do is not enough. Apparently students can be taught to generate visual aids in
the process of mathematical problem solving. Educators should, perhaps, focus on
this process in order to improve mathematical skills.

Does the relationship of spatial and mathematical skills differ for males and
females? From the many calculations made, few significant or large gender
differences appear in this study. Two dissimilarities between the genders in patterns
of correlations emerge. The first concerns differentiation between correlations of
spatial tasks with computational and reasoning mathematics tasks. Smith,
Werdelin and others have suggested that spatial ability is involved in higher-level
mathematical reasoning tasks as opposed to numerical, or computational tasks.

Females show less differentiation than males: Younger samples differentiate
high and low-level mathematics tasks in two-dimensional visualization
correlations, and older samples differentiate in both visualization categories.
However, younger or older, they show no differentiation in orientation categories,
and younger samples show no differentiation in either of the three-dimensional
categories. There is some evidence that younger males do differentiate in three-
dimensional categories; older males differentiate in every category.

This pattern difference is often the result of females' relatively high space-
computational math correlations. It is consistent with Tartre's (1990) remark that
females with low spatial ability have trouble with many tasks involved in problem
solving: That spatial ability predicts computational skill just as reliably as
reasoning mathematics skill may indicate that the two tend to be found together --
that is, that they are themselves well related in females.

The second pattern dissimilarity appears in the contrast of verbal-math and
space-math correlations. When correlations are divided with regard to math level
and age, females often have higher verbal-math correlations than space-math
correlations whereas males tend to display this difference only in older samples.
This could be construed as evidence that females are more verbal-analytic in
approach than males. It could equally support the conclusion that school learning is
more influential in mathematics learning for females than males.
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Gender difference calculations provided only one significant difference --
females have higher SAT-Q-space correlations than males. This was true for both
younger and older samples, using both corrected and uncorrected correlations.

An argument can be made that gender differences in favor of females could
be expected in all math-space correlations when males have greater spatial skill than
females and when spatial skill underlies abstract mathematical thought to a certain
degree. In this scenario, spatial skill would be a better predictor of mathematical
skill for females, because male spatial skill would be high for so many that small
variations would not be reflected in mathematical achievement. (This is a version
of the explanation of low correlations by uneven development of skills.) However,
the gender difference in correlations in favor of females is unique to the SAT-Q
correlations. And while generalizations can be made about the items of the SAT-Q,
none of them transparently involve spatial skill.

Many of the items on the SAT-Q demand two or more mathematical
observations for their solution. Confidence is almost surely a factor in the ability to

carry out chains of reasoning: doubts can be debilitating at any link. Another
generalization applies to the SAT-Q: it is a college entrance test. Students who take
it have, on the average, performed well in high schools or college preparatory
schools. High school students may have become specialized in their interests by the
time they take the SAT: that is, they may have chosen to concentrate on the
sciences or the humanities. Specialization seems particularly likely for those
students applying to elite colleges. Common interest can also explain high
correlations in the studies of gifted junior high school students who take the SAT,
especially in the case of females.

Specialization and confidence have particular implications in the context of
gender differences. Mathematical and spatial interests are each atypical for females.
If atypical interests tend to cluster in the same individuals, it may be that
mathematical and spatial interests are found together, developed to more or less the
same degree, more often in females than males. This explanation is relevant to the
younger SAT-Q-takers, who are classified as gifted students. It applies as well to the
older females applying for college entry, whose atypical interests may have
solidified into career ambitions. If spatial ability is developed to a substantial degree
in any male, spatial rank is less likely to predict mathematical rank; in females,
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those who have opted for scientific careers will have developed spatial and
mathematical abilities together, while those who have remained in the humanities
may have been able to escape the development of either.

Concerning confidence, studies of gender differences in mathematics have
found confidence in ability to be one of the most consistent predictors of
achievement and participation in mathematics for both females and males. Such
studies report consistent gender differences in favor of males with regard to
confidence in mathematical ability (Benbow, 1988; Meyer and Koehler, 1990). This
gender difference appears even in the Study of Mathematically Precocious Youth's
seventh and eighth graders. The argument for confidence as an intervening
variable producing the gender difference is similar to the one given for spatial
ability: as males have more confidence, small variations would not be reflected in
ma th,-matical or spatial rankings as much for them as it would be for females. The

argument is more convincing with regard to confidence than to spatial ability:
standard deviations of measures of confidence are often smaller for males than for
females, unlike standard deviations of cognitive measures (e.g., see Sherman and
Fennema, 1977).

Are differences in spatial skill the source of gender differences in
mathematical tasks? Overall, spatial skill does not appear to be a strong and
pervasive influence in mathematical processes as they are taught and tested today.
Moreover, of the areas of mathematics for which gender differences appear
problem solving, geometrical tasks, and performance on mathematics sections of
college entrance exams, only SAT-Q-space correlations provide any evidence of the
involvement of spatial skill in mathematics.

We have suggested two alternative explanations for both the high
correlations and the gender difference: one is confidence, leading to persistence in
solving puzzles or handling chains of reasoning in abstract areas, and the other is
common interests in non-verbal topics leading to a more parallel development of
mathematical and spatial skills in females than males. The first of these alternatives
takes account of a special character of the SAT-Q and is not impacted by the lack of
gender differences found in other correlational categories as is the argument that
spatial skill underlies abstract mathematical thought. The second alternative,
common interest or specialization, is similarly unaffected by other findings in
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young age groups -- groups of subjects too young to have developed common
interests -- and in studies of unselected samples.

In summary, correlational studies provide little evidence that spatial skill
underlies abstract mathematical thought: correlations of spatial and mathematical
tasks are moderate or small, certainly smaller than verbal-mathematical
correlations. Predicting mathematical skill from spatial skill, or vice versa, is
clearly an uncertain endeavor. Educators are not likely to be successful in
improving performance on mathematical tasks as they are taught and tested today
simply by improving spatial skills. Nor is the improvement of spatial skill likely to
promote gender equity on mathematical tasks. There is evidence that we would
be better off considering ways cc training our students to generate nonverbal but
simple representations of mathematical problems.

This is not to say that mathematics will always be taught and tested as it is
today, nor that spatial skill is unimportant to gender equity in other sciences.
However, alternative strategies must be found to correct the problems that exist in
mathematical performance today.
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NOTE

1Separate regressions were carried out for three types of samples: samples
containing both female and male subjects (mixed-gender samples), samples of

female subjects, and samples of male subjects. Early hopes were that the same
equation would fit all three types, but this was not the case. Fisher z-transforms were
used. The original z-transforms were always the strongest predictors. The mixed-
gender and female samples produced similar equations. Where S denotes selectivity
of sample, N denotes nationality of sample, z denotes the uncorrected z-transform,
and Z denotes the corrected z-transform, for mixed-gender samples, the equation was

Z = -0.26 + (0.12)S + (0.14)N + (1.07)z.
(0.043) (0.016) (0.048) (0.062)

The equation for ferr ale samples was

Z = -0.19 + (0.10)S + (1.01)z.
(0.060) (0.027) (0.136)

The equation for males differed considerably. Where A denotes age and Y
represents year of testing, the equation was

Z = 0.48 + (0.023)A + (0.008)Y + (1.08)z.
(0.141) (0.008) (0.002) (0.155)

3c3
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TABLE 8. Random effects model means for space-math correlations divided by spatial
category and by gender, for uncorrected and basically corrected correlations

rr
uncorrected

k a2 (11)) Q
basically corrected

rt k a2 NO CI

Mixed-gender

o2-math .321 25 .0001 (.299,342) .350 8 .0001 (.332,.369)

v2 -math .375 52 .0004 (.341,.407) .442 16 .0012 (.386,.496)

o3-math .358 40 .0009 (.305,.409) .568 7 .0093 (.427,.682)

v3 -math .396 55 .0002 (.370,.422) .474 17 .0002 (.454,.492)

Females

o2-math .298 16 .0004 (.262,.334) .338 4 .0001 (.319,.356)

v2 -math .387 27 .0007 (.343,.493) .397 7 .0118 (.204,.560)

o3-math .311 23 .0034 (.244,.376) .559 4 .0191 (.345,.717)

v3 -math .400 30 .0005 (.361,.438) .507 12 .0008 (.465,.546)

Males

o2-math .312 22 .0003 (.282,.341) .331 5 .0010 (.274,.385)

v2 -math .340 36 .0003 (.307,.371) .409 7 .0145 (.195,.585)

o3-math .313 27 .0009 (.258,.313) .543 5 .0145 (.357,.688)

v3-math .371 42 .0003 (.341,.400) .465 10 .0005 (.430,.498)

NOTE: See Table 1 for explanation of notation.
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TABLE 9. Internal comparisons of computational and reasoning mathematics-space z-
transforms, divided by spatial category, using corrected correlations

z+1 z+2 z+dif k H CI

o2-math
Mixed-gender

c = -1 .276 .368 -.093 12 12.7b -.093 (-.118,-.067)

c = 0 25.4 -.095 (-.136,-.054)

c = 0.9 254.3 -.088 (-.124,-.053)

v2-math
c = -1 .372 .485 -.113 17 18.1b -.113 (-.177,-.048)

c = 0 36.1 -.104 (-.181,-.027)

c = 0.9 361.8 -.089 (-.162,-.017)

o3-math
c = -1 .248 .477 -.230 4 12 -.199 (-.431,.032)

90% CI (-.394,-.005)

c = 0 24.1 -.193 (-.423,.037)

c = 0.9 240.9 -.187 (-.415,.041)

v3-math
c = -1 .286 .506 -.220 16 85 9 -.160 (-.236,-.185)

c = 0 171.7 -.154 (-.226,-.083)

c = 0.9 1717.4 -.144 (-.208,-.080)

(Table continues)



Females
o2-math
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c = -1 .328 .347 -.019 6 9.2a -.019 (-.057,.018)

c = 0 18.4 -.032 (-.098,.034)

c = .9 184.3 -.042 (-.102,.018)

v2-math
c = -1 .283 .425 -.142 8 5.3a -.142 (-.256,-.027)

c = 0 10.7a -.142 (-.222,-.061)

c = .9 106.8 -.169 (-.274,-.064)

o3-math
c = -1 .194 .380 -.186 4 6.5a -.186 (-.353,-.019)

c = 0 12.9 -.178 (-.433,.078)

c = .9 129.3 -.168 (-.420,.085)

v3-math
c = -1 .326 .487 -.161 11 29.5 -.115 (-.190,-.040)

c = 0 59.1 -.106 (-.179,-.033)

c = .9 590.8 -.098 (-.163,-.033)

Males

o2-math
c = -1 .236 .334 -.098 13 10.1a -.098 (-.134,-.063)

c = 0 20.1b -.124 (-.167,-.080)

c = .9 201.1 -.152 (-.190,-.113)

v2-math
c = -1 .226 .333 -.106 15 16.3a -.106 (-.176,-.037)

c = 0 32.6 -.101 (-.183,-.019)

c = .9 326.3 -.091 (-.170,-.013)

(Table continues)

5



Males (cont.)

o3-math

57

c = -1 .150 .342 -.192 6 5.7a -.192 (-.300,-.084)

c = 0 11.5 -.180 (-.301,-.059)

c = .9 114.8 -.172 (-.291,-.052)

v3-math
c = -1 .231 .474 -.242 20 45.4 -.256 (-.318,-.194)

c = 0 90.8 -.268 (-.328,-.207)

c = .9 908.3 -.281 (-.335,-.228)

NOTE: z+1 = average weighted mean of z-transforms from the first group; z+2=
average weighted mean of z-transforms from the second group;
z+dif = average weighted mean of the difference of z-transforms from the first and second
groups; k = number of studies; H = homogeneity statistic for z+dif in this group; 4) =
random effects model mean for the difference in z-transforms; CI = 95% confidence
interval for

aThe numbers in columns 1-4 are the same for all values of c. This is not obvious in
the case of z+dif: however, as

z+dif = 1,[[(ni-3)/2(1-c)]/[1,( ni-3)/2(1-c)11

the constant factor 2(1 -c) cancels; thus c plays no role in the calculations.

bHomogeneity upheld at the 95% confidence level.

5
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Table 10. Internal comparisons of space-math z-transforms for different spatial categories
between z-transforms of computational and reasoning mathematics tests, by gender,
divided b age of sample, using corrected correlations.

z+1 z+2 z+dif k H yt CI

oung samples

Females
o2-math

c = -1 .375 .329 .046 3 0.9a .046 (-.138,.231)

c = 0 1.8a .046 (-.084,.177)

c = .9 17.5 .090 (-.041,.222)

Males

.447 .512 -.065 3 0.06a -.065 (-.267,.136)c = -1

c = 0 0.1a -.065 (-.208,.077)

c = .9 1.1a -.065 (-.110,-.020)c

v2-math
Fean

.347 .437 -.090 6 1.4a -.090 (-.215,.035)c = -1

c = 0 2.9a -.090 (-.179,-.002)

c = .9 28.6 -.094 (-.167,-.022)

Males
.327 .364 -.036 6 0.3a -.036 (-.168,.096)c = -1

c = 0 0.5a -.036 (-.130,.057)

c = .9 5.1a -.036 (-.066,-.007)d

(Table continues)



59

Females
o3-math

c = -1 .262 .305 -.043 2 0.04a -.043 (-.293,.208)

c = 0 0.09a -.043 (-.219,.135)

c = .9 0.9a -.043 (-.097,.014)

Males
.300 .421 -.120 2 0.03a -.120 (-.391,.150)c = -1

c = 0 0.06a -.120 (-.311,.068)

c = .9 0.6a -.120 (-.181,-.060)e

v3-math
Females

.556 .572 -.016 4 3.8a -.016 (-.131,.098)c = -1

c = 0 7.7b -.063 (-.214,.089)

c = .9 76.6 -.084 (-.232,.064)

Males
.468 .545 -.077 4 2.9a -.077 (-.198,.044)c = -1

c = 0 5.8a -.077 (-.163,.009)

90% CI -.077 (-.149,-.005)

c = .9 57.7 -.129 (-.268,.009)

90% CI (-.246,-.012)

(Table continues)
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Females

Older samples

o2-math

c = -1 .329 .349 -.021 5 8.3b -.029 (-.092,.035)

c = 0 16.5 -.039 (-.105,.027)

c = .9 165.4 -.076 (-.137,-.015)f

Males
.229 .328 -.099 10 9.9a -.099 (-.136,-.063)c = -1

c = 0 19.8 -.135 (-.085,-.086)

c = .9 197.8 -.175 (-.218,-.130)

v2-m ath
Females

-.028 .367 -.395 2 0.06a -.395 (-.673,-.117)c = -1

c = 0 0.1a -.395 (-.592,-.199)

c = .9 1.2a -.395 (-.457,-.333)

Males
.187 .320 -.133 9 14.6b -.140 (-.261,-.019)c = -1

c = 0 29.1 -.138 (-.259,-.017)

c = .9 291.2 -.139 (-.255,-.022)

o3-math
Females

.139 .440 -.300 2 4.2 -.307 (-.763,.149)c = -1

c = 0 8.3 -.308 (-.764,.148)

c = .9 83.0 -.309 (-.765,.147)

Males

.121 .327 -.206 4 54b -.200 (-.361,-.039)c = -1

c = 0 10.8 -.195 (-.356,-.034)

c = .9 107.8 -.190 (-.350,-.029)

(Table continues)
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Females
v3-math

61

c = -1 .304 .479 -.174 7 19.0 -.141 (-.219,-.062)

c = 0 38.0 -.129 (-.207,-.052)

c = .9 380.4 -.109 (-.179,-.038)

Males
.214 .469 -.255 16 34.9 -.280 (-.343,-.215)c = -1

c = 0 69.7 -.296 (-.358,-.234)
c = .9 697.4 -.318 (-.372,-.262)

NOTE: See Table 9 fcr explanation of notation.
aHomogeneity upheld at the 95% confidence level.
bHomogeneity disputed at the 90%, but not 95%, confidence level.
c95% confidence interval does not cover zero for c .75.

d95% confidence interval does not cover zero for c > .80.
e90% confidence interval does not cover zero for c .45.

f95% confidence interval does not cover zero for c > .80.
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TABLE 11. Comparison of space-math and verbal math z-transforms in the
four spatial categories

z+1 z+2 z+dif is H CI

c = -1

c = 0

c = 0.9

c = -1

c = 0

c = -1

c = 0

c = 0.9

c = -1

c = 0

c = 0.9

.351

Mixed-gender samples

(-.283,-.119)

(-.265,-.110)

(-.239,-.098)

o2-math contrasted with verbal-math
.668 -.316 16 94.9 -.201

189.8 -.188

1898.1 -.168

v2-math contrasted with verbal-math
.388 .524 -.135 23 28.9a -.135 (-.186,-.085)

58.0 -.131 (-.193,-.068) c = 0.9

579.6 -.122 (-.182,-.062)

o3-math contrasted with verbal-math
.350 .421 -.071 15 35.0 -.054 (-.153,.046)

70.0 -.046 (-.145,.053)

700.0 -.036

v3-math contrasted with verbal-math

(-.133,.062)

.469 .623 -.154 29 95.4 -.056 (-.115,.002)

90% CI (-.105,-.007)

190.9 -.043 (-.098,.011)

1908.6 -.029 (-.077,.019)

(Table continues)



c = -1

c = 0

c = .9

c = -1

c = 0

c = .9

c = -1

c = 0

c = .9

c = -1

c = 0

c = .9

63

.330

Females

verbal-math
35.5 -.257

70.9 -.230

709.3 -.198

(-.341,-.174)

(-.309,-.151)

(-.266,-.130)

o2-math contrasted with
.666 -.336 14

v2-math contrasted with verbal-math
.390 .472 -.082 21 29.8a -.082 (-.151,-.012)

59.6 -.111 (-.205,-.016)

596.7 -.120 (-.209,-.031)

o3-math contrasted with verbal-math
.309 .462 -.153 15 21.0a -.153 (-.243,-.063)

42.1 -.126 (-.240,-.012)

420.5 -.110 (-.222,.001)

90% CI (-.204,-.016)

v3-math contrasted with verbal-math
.458 .627 -.169 23 48.7 -.115 (-.183,-.047)

97.3 -.097 (-.162,-.032)

973.2 -.063 (-.118,-.007)

65

(Table continues)
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Males

o2-math contrasted with verbal-math
c = -1 .348 .651 -.303 24 124.4 -.168 (-.243,-.194)

c = 0 248.8 -.156 (-.226,-.086)

c = .9 2488.0 -.141 (-.204,-.078)

c = -1 .343

c = 0

v2-math contrasted with verbal-math
.443 -.099

1171.6

39

-.118

58.6 -.107

117.2 -.111

(-.168,-.068)

(-.159,-.054)

(-.164,-.059) c = .9

o3-math contrasted with verbal-math
c = -1 .308 .388 -.079 22 38.4 -.074 (-.148,-.0003)

c = 0 76.8 -.071 (-.145,.003)

90% CI (-.133,-.009)

c = .9 768.5 -.069 (-.141,.003)

90% CI (-.130,-.008)

v3-math contrasted with verbal-math
c = -1 .461 .593 -.132 43 143.5 -.028 (-.081,.024)

c = 0 287.0 -.022 (-.071,.028)

c = .9 2870.2 -.022 (-.066,.022)

NOTE: See Table 9 for explanation of notation.

aHomogeneity upheld at the 95% confidence level.
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TABLE 12. Comparison of space-math and verbal-math z-transforms for young (< 14
years) and older 14 years) samples, divided by level of mathematics test and the four

spatial types of spatial task, by gender.

z+1 z+2 z+dif k H yr CI

o2-math contrasted with verbal-math, young samples, low math
Females

c = -1 .277 .611 -.334 2 2.6a -.334 (-.584,-.083)

c = 0 5.1 -.213 (-.707,.282)

c = .9 51.3 -.187 (-.684,.311)

Males
.495 .416 .079 2 .25a .079 (-.192,.349)c = -1

c = 0 .51a .079 (-.113,.270)

c = .9 5.1 .111 (-.046,.267)

o2-math contrasted with verbal-math, older samples, low math
Femalesz

c = -1 .321 .457 -.136 3 2.2a -.136 (-.174,-.098)

c = 0 4.4a -.136 (-.163,-.109)

c = .9 44.5 -.133 (-.174,-.093)

Males:

c = -1 .258 .435 -.177 6 7.7a -.177 (-.215,-.140)

c = 0 15.4 -.162 (-.22G, .104)

c = .9 154.4 -.160 (-.214,-.107)

(Table continues)
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o2-math contrasted with verbal-math, young samples, high math
Females

c = -1 .321 .635 -.313 4 10.5 -.306 (-.612,.001)

90% CI (-.564,-.048)

c = 0 20.9 -.303 (-.608,.002)

90% CI (-.567,-.039)

c = .9 209.0 -.300 (-.601,.002)

90% CI (-.554,-.046)
Males

.436 .532 -.096 4 5.6a -.096 (-.264,.072)c = -1

c = 0 11.2 -.068 (-.306,.171)

c = .9 112.3 -.050 (-.285,.186)

o2-math contrasted with verbal-math, older samples, high math
Females

c = -I .331 .669 -.338 10 24.0 -.260 (-.345,-.176) c = 0

48.1 -.220 (-.3u2,-.139)

c = .9 480.8 -.164 (-.234,-.095) Males

c = -1 .330 .667 -.337 16 68.3 -.173 (-.267,-.078)

c = 0 136.6 -.152 (-.241,-.063)

c = .9 1366.0 -.132 (-.214,-.050)

v2-math contrasted with verbal-math, young samples, low math
Females:

c = -1 .295 .521 -.226 4 2.7a -.226 (-.385,-.066)

c = 0 5.5a -.226 (-.339,-.113)

c = .9 54.6 -.212 (-.381,-.042)

Males:
c = -1 .347 .490 -.143 4 9.8 -.226 (-.573,.121)

c = 0 19.6 -.254 (-.598,.090)

c = .9 196.4 -.284 (-.621,.054)

(Table continues)
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v2-math contrasted with verbal-math, older samples, low math
Females

c = -1 .424 .709 -.285 1 0 -.285 (-.501,.020)

90% CI (-.504,-.066)

c = 0 0 -.285 (-.501,-.069)

c = .9 0 -.285 (-.525,-.045)

Males
.290 .199 .091 4 1.3a .091 (-.054,.236)c =

c = 0 2.6a .091 (-.012,.193)

90% CI (.005,.177)

c = .9 25.5 .095 (-.009,.200)

90% CI (.007,.183)

v2-math contrasted with verbal-math, young samples, high math
Females:

c = -1 .379 .592 -.212 9 6.7a -.212 (-.325,-.099)

c = 0 134b -.213 (-.326,-.100)

c = .9 134.1 -.224 (-.334,-.114)

Males:
c = -1 .410 .555 -.146 10 4.8a -.146 (-.254,-.038)

c = 0 9.5a -.146 (-.222,-.069)

c = .9 95.2 -.133 (-.216,-.050)

v2-math contrasted with verbal-math, older samples, high math
Females

= -1 .321 .306 .017 10 10.9a .017 (-.077,.111)

21.9 -.006 (-.127,.115)

c = .9 218.6 -.009 (-.123,.106)

Males
.285 .330 -.045 19 16.6a -.045 (-.105,.016)c = -1

c =0 33.2 -.061 (-.125,.003)

90% CI (-.115,-.007)

c = .9 332.3 -.083 (-.144,-.022)

(Table continues)
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o3-math contrasted with verbal-math, young samples, low math
Females

c = -1 .250 .611 -.361 2 2.3a -.361 (-.612,-.110)

c = 0 4.6 -.251 (-.717,.215)

c = .9 45.7 -.223 (-.693,.247)

Males
.234 .416 -.182 2 0.4a -.182 (-.452,.089)c = -1

c =0 0.7a -.182 (-.373,.009)

90% CI (-.343,-.021)

c = .9 6.7 -.142 (-.325,.042)

o3-math contrasted with verbal-math, older samples, low math
Females

c = -1 .390 .710 -.320 1 0 -.320 (-.626,-.015)

c = 0 0 -.320 (-.536,-.105)

c = .9 0 -.320 (-.389,-.252)

Males
.213 .132 .080 2 1.3a .080 (-.092,.252)c =

c = 0 2.6a .080 (-.042,.202)

c = .9 26.1 .013 (-.227,.252)

o3-math contrasted with verbal-math, young samples, high math
Females

c = -1 .312 .655 -.343 3 5.8b -.308 (-.656,.041)

90% CI (-.601,-.015)

C = 0 11.6 -.295 (-.643,.053)

90% CI (-.588,-.002)

c = .9 115.9 -.281 (-.625,.063)

Males
.388 .438 -.049 4 1.8a -.049 (-.211,.113)c = -1

c = 0 3.6a -.049 (-.164,.065)

c = .9 36.2 -.032 (-.161,.097)

(Table continues)
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o3-math contrasted with verbal-math, older samples, high math
Females

c = -1 .252 .327 -.076 12 10.7a -.076 (-.181,.030)

c = 0 21.4 -.053 (-.161,.054)

c = .9 213.9 -.031 (-.137,.075)

Males
.300 .363 -.062 16 29.0 -.067 (-.174,.041)c = -1

c = 0 58.0 -.068 (-.175,.039)
c = .9 580.4 -.066 (-.170,.039)

v3-math contrasted with verbal-math, young samples, low math
Females

c = -1 .541 .587 -.046 4 14.4 -.109 (-.403,.186)

c = 0 28.7 -.104 (-.395,.187)

c = .9 287.2 -.094 (-.378,.191)

Mk Iva

c = -1 .444 .498 -.054 4 3.8a -.054 (-.176,.067)

c = 0 7.5b -.078 (-.238,.083)

c = .9 75.0 -.065 (-.222,.092)

v3-math contrasted with verbal-math, older samples, low math
Females

c = -1 .275 .453 -.177 6 6.0a -.177 (-.215,-.140)

c = 0 11.9 -.162 (-.213,-.112)

c = .9 119.4 -.134 (-.182,-.086)

Maki
c = -1 .230 .417 -.186 10 20.0 -.141 (-.213,-.069)

c = 0 40.1 -.117 (-.187,-.046)

c = .9 401.0 -.093 (-.154,-.031)

(Table continues)



v3-math contrasted with verbal-math, young samples,
Females
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high math

= -1 .502 .527 -.025 7 20.6 -.028 (-.251,.196)

c = 0 41.2 -.017 (-.237,.202)

c = .9 411.8 -.008 (-.219,.203)

Males
.439 .453 -.014 8 5.4a -.014 (-.112,.084)c = -1

c = 0 10.8a -.014 (-.084,.055)

c = .9 108.0 -.025 (-.117,.068)

v3-math contrasted with verbal-math, older samples, high math
Females

c = -1 .453 .640 -.187 14 19.3a -.187 (-.222,-.152)

c = 0 38.7 -.138 (-.198,-.077)

c = .9 386.8 -.088 (-.139,-.037)

Males
.447 .613 -.166 27 99.5 -.040 (-.117,.038)c = -1

c = 0 198.9 -.031 (-.104,.043)

c = .9 1989.2 -.032 (-.099,.035)

NOTE: See Table 9 for explanation of notation.
aHomogeneity upheld at the 95% confidence level.
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TABLE 13. Comparison of orientation-problem-solving z-transforms with
visualization-problem solving transforms, for mixed gender samples, using corrected

correlations.

z+1 z+2 z+dif k H W CI

Orientation-problem solving contrasted with visualization-problem solving

Or. Vis.
c = -1 .391 .455 -.064 14 15.8a -.064 (-.137,.010)

90% CI (-.124,-.002)

c = 0 31.9 -.062 (-.151,.026)

c = 0.9 317.3 -.077 (-.162,.008)

90% CI (-.149,-.005)b

o3 -problem solving contrasted with visualization-problem solving

c = -1 .388 .456 -.068 12 14.2a -.068 (-.148,.011)

90% CI (-.135,-.001)

c = 0 28.4 -.059 (-.155,.037)

c = 0.9 284.1 -.046 (-.139,.046)

NOTE: See Table 9 for explanation of notation.
aHomogeneity upheld at the 95% confidence level
bConfidence interval does not cover zero for c ?. .9.
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Table 14. External comparison of z-transforms of orientation and of visualization
correlations with SAT-Q studies for mixed-gender samples, using corrected correlations

z÷ k H cr2(0 62 (*) 41 4)2 CI

()Hen. .782 3 11.6 .776 .0186 .0075

Vis. .629 8 10.3a .629 0 .0011

Difference in means .147 (-.035,.329)

NOTE: See Table 5 for explanation of notation.

aHomogeneity upheld at the 95% confidence level.
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TABLE 15. Internal comparisons of space-geometry z-transforms with other math-
space z-transforms, using corrected correlations from mixed-gender samples

z÷1 z+2 z+dif k H IP CI

02-geometry contrasted with other o2 -math
c = -1 .377 .489 -.112 5 1.8a -.112 (-.217,-.006)

c = 0 3.6a -.112 (-.186,-.037)

c = 0.9 35.9 -.124

o2-geometry contrasted with other o2-math

(-.197,-.051)

(no proof-space correlations included)
c = -1 .456 .516 -.060 4 1.8a (-.174,.054)

c = 0 3.6a (-.141,.020)

c = 0.9 35.8

v2-geometry contrasted with other v2-math

(-.166,.016)

c = -1 .379 .521 -.143 4 0.3a (-.281,-.004)

c = 0 0.6a (-.240,-.045)

c = 0.9 5.8a

v2-geometry contrasted with other v2-math

(-.174,-.112)

(no proof-space correlations included)
c = -1 .568 .576 -.008 3 1.4a (-.185,.121)

c = 0 2.8a (-.119,.104)

c = 0.9 27.3

o3-geometry contrasted with other o3-math

(-.233,.099)

c = -1 .384 .434 -.050 4 0.8a (-.156,.056)

c = 0 1.6a (-.125,.025)

c = 0.9 15.8 -.039 (-.088,.010)

(Table continues)
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o3-geometry contrasted with other o3-math
(no proof-space correlations included)

c = -1 .481 .449 .032 4 0.3a (-.081,.146)

c = 0 0.5a (-.048,.113)

c = 0.9 5.2a

v3-geometry contrasted with other v3-math

(.007,.058)b

c = -1 .393 .463 -.070 5 0.6a (-.175,-.036)

c = 0 1.1a (-.145,.005)

90%CI (-.133,-.007)

c = 0.9 10.7 -.064

v3-geometry contrasted with other v3-math

(-.104,-.023)

(no proof-space correlations included)
c = -1 .589 .511 .078 4 0.9a (-.036,.192)

c = 0 1.9a (-.002,.159)

90%CI (.010,.146)

c = 0.9 18.7 .068 (.002,.134)

NOTE: See Table 9 for explanation of notation.

aHomogeneity upheld at the 95% confidence level.

bintervals excluded zero only for c .85.
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TABLE 16. Internal comparisons of geometry proof and nonproof z-transforms
using corrected correlations from mixed-gender samples

z+1 z+2 z+dif k H 14) CI

geometry proof-space contrasted with other geometry-space

c = -1 .447 .614 -.167 4 0.3a -.167 (-.286,-.048)
c = 0 0.5a -.167 (-.251,-.083)

c = 0.9 5.4a -.167 (-.194,-.140)

NOTE: See Table 9 for explanation of notation.

aHomogeneity upheld at the 95% level.
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TABLE 17. Internal comparisons of space-problem solving with other space-math z-
transforms, for mixed-gender samples, using corrected correlations.

z+1 z+2 z+dif k H IP CI

o2-problem solving contrasted with other o2-math
c = -1 .438 .404 .033 4 2.1a .033 (-.051,.118)

c = 0 4.3a .033 (-.026,.093)

e = 0.9 43 .036 (-.020,.092)

v2-problem solving contrasted with other v2-math
c = -1 .499 .481 .018 13 4.9a .018 (-.052,.088)

c = 0 9.8a .018 (-.032,.067) c = 0.9

97.7 .016 (-.032,.063)

o3-problem solving contrasted with other o3-math
c = -1 .437 .436 .002 7 3a .002 (-.086,.089)

c = 0 6a .002 (-.060,.064)

c = 0.9 60.2 -.022 (-.086,.041)

v3-problem solving contrasted with other v3-math
c = -1 .493 .477 .016 16 23.8b .005 (-.063,.074)

c = 0 47.7 -.004 (-.072,.065)

c = 0.9 476.9 -.011 (-.075,.053)

NOTE: See Table 9 for explanation of notation.

aHomogeneity upheld at the 95% confidence level.

bHomogeneity disputed at the 90% confidence level, not at the 95% level.
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TABLE 18. External comparisons of SAT-0 math-space with other math-space z-
transforms for the four spatial categories, by gender, using basically corrected

correlations

z+ k H yr 62() 02 (w) W2 CI

o2 -SAT-Q contrasted with other o2-math
No studies available.

v2 -SAT-Q contrasted with other v2-math
Females
v2-SAT-Q .541 4 19.4 .542 .1071 .0327

v2-math .244 3 0.2a .244 0 .0027

difference in means

Males
v2-SAT-Q .614 4 14.5 .564 .1074 .0340

v2-math .218 3 0.9a .218 0 .0021

difference in means

.298 (-.071,.667)

.346 (-.026,.718)

90% CI (.033,.660)

03 -SAT-Q contrasted with other o3-math
Females
o3-SAT-Q .719 3 13.3 .726 .0519 .0204

o3-math .302 1 Oc .302 0 .0200

difference in means .424 (.030,.818)

Males
o3-SAT-Q .761 3 16.0 .744 .0499 .0190

o3-math .392 2 0.001a .392 0 .0044

difference in means .352 (.052,.652)

(Table continues)
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v3 -SAT-Q contrasted with other v3-math
Females
v3-SAT-Q .910 3 3.1a .910 0 .0065

v3-math .499 9 16.6 .512 .0010 .0003

difference in means .398 (.236,.560)

Males
3 6.0 .555 .0337 .0171v3-SAT-Q .545

v3-math .488 7 17.2 .497 .0014 .0004

difference in means .058 (-.202,.317)

NOTE: See Table 5 for explanation of notation.

aHomogeneity upheld at the 95% confidence level.
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TABLE 19. Gender difference calculations for space-math z-transforms in the
four spatial categories, using corrected correlations

z+ Mdif k Hdif lif ( d f) CI

o2-math
Females .348 .0007 15 45.7 -.042 (-.106,.023) Males
.345

v2-math
Females .461 .057 24 71.0 .045 (-.051,.141)

Males

o3-math

.390

Females .367 -.047 21 37.7 -.049 (-.125,.026) Males
.415

v3-math
Females .482 -.013 29 71.0 -.025 (-.074,.025)

Males .484

NOTE: z+ = weighted average mean for the group of z-transforms; Mdif =

weighted average mean difference of female and male z-transforms from the same
study; k = number of studies; Hdif = homogeneity statistic for Mdif; w(dif) =

random effects model mean for the difference of female and male z-transforms
from the same study; CI = 95% confidence interval for w(dif).

81



80

TABLE 20. Gender difference calculations for space-math z-transforms in the
four spatial categories and for mathematics tasks separated by level, using corrected

correlations

z+ Mdif k Hdif Val 0

o2-computational math

Females .330 .067 9 20.6 .038 (-.020,.097) Males

.256

o2-reasoning math

Females .348 .001 14 44.5 -.038 (-.103,.026) Males

.345

v2-computational math

Females .330 .002 11 17.0b -.016 (-.118,.086) Males

.270

v2-reasoning math

Females .455 .060 21 68.1 .045 (-.060,.151) Males

.382

o3-computational math

Females .290 -.016 6 5.2a -.016 (-.115,.082) Males

.221

03-reasoning math

Females .353 -.054 19 33.9 -.061 (-.139,.017) Males

.413

82
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v3-computational math

Females .331 .053 14 29.3 .058 (.010,.105) Males

.264

v3-rea5oning math

Females .481 -.013 25 70.9 -.027 (-.080,.026) Males

.489

NOTE: See Table 19 for explanation of notation.

aHornogeneity upheld at the 95% confidence level.

bHomogeneity disputed at the 90% confidence level, not at the 95%
level.
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Table 21. Gender difference calculations for space-geometry z-transforms using
corrected correlations.

z+ Mdif k Hdif xv(dif) CI

Geometry nonproof

Females .439 .059 6 5.7a .059 (-.053,.171)

Males .355

Geometry proof

Females .278 .016 4 19.6 -.035 (-.337,.268)

Males .252

NOTE: See Table 19 for explanation of notation.

aHomogeneity upheld at the 95% confidence level.

TABLE 22. Gender difference calculations for space-problem solving
z-transforms, usin: corrected correlations

z+ Mdif k Hdif CI

Problem solving

Females .458 -.011 18 40.5 .027 (-.053,.107)

Males .455

NOTE: See Table 19 for explanation of notation.
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TABLE 23. Gender difference calculations for SAT -Q- -space z-transforms using
corrected correlations

z+ Mdif k Hdif tif(dif)

SAT-Q-space

Females .591 .145 12 18.6b .137 (.021,.253)

Males .457

SAT-Q-space, young samples

Females .690 .346 3 1.7a .346 (.126,.567)

Males .340

Females

SAT-Q,-space, older samples

.582 .122 9 13.3a .122 (.046,.198)

Males .475

NOTE: See Table 19 for explanation of notation.

aHomogeneity upheld at the 95% confidence level.

bHomogeneity disputed at the 90% confidence level, not at the 95% level.
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