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levels of the unobserved ability. This occurs whenever the
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incongruent or non-overlapping. This situation was investigated in a

series of computer simulations using 2,000 White and 2,000 African

American examinees and item responses from previous administrations

of the American College Testing Mathematics Usage Test. Results

indicate that the magnitude of the problem, in terms of being able to

detect true DIF with moderate sample sizes when ability distributions

are incongruent, may not be that serious for tests that are, on the

average, free of DIF. On table and four graphs support the
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Abstract

A popular method of analyzing test items for differential item functioning (DIF) is

to compute a statistic that conditions samples of examinees from different populations on

an estimate of ability. This conditioning or matching by ability is intended to produce an

appropriate statistic that is sensitive to true differences in item functioning, provided the

ability estimate accurately reflects a comparable level of the true ability for these

populations. If the observed or number-correct score is used as a conditioning or

grouping variable, a problem exists whenever examinees from two different populations

are matched on the same level of the observed test score, but actually have quite

different levels of the unobserved ability. This occurs whenever the distributions of true

abilities for the populations of interest are incongruent or non-overlapping. This

situation was investigated in a series of computer simulations. The results indicated that

the magnitude of the problem, in terms of being able to detect true DIF with moderate

sample sizes when ability distributions are incongruent, may not he that serious for tests

which are, on average, free from DIF.



Performance of the Mantel-Haenszel Statistic and the Standardized Difference in

Proportions Correct When Population Ability Distributions Are Incongruent

Two statistics that are used to indicate differential item functioning (DIF)

between two populations of examinees are the Mantel-Haenszel common-odds ratio

(MH) (or equivalently the Mantel-Haenszel negative log-odds ratio) (Holland & Thayer,

1986) and the standardized difference (STD) in proportions correct (Dorans & Ku lick,

1986). Both statistics condition on some ability measure, usually the observed score of

the test containing the items undergoing the DIF analysis. Conditioning on the

observeu test score in order to evaluate population differences in item proportion correct

would appear to be appropriate provided the matching observed test score accurately

reflects a comparable level of the measured trait for the populations of interest.

However, problems arise whenever identical values of the observed test score, X,

represent different levels of ability across groups. This can occur when the conditional

distributions of ability giver_ observed score are different for the comparison groups used

in the DIF analysis.

Zwick (1990) has discussed the implications of this problem within a theoretical

context. The purpose of the current paper is to present a more applied analysis of this

problem and to attempt to determine how severe the situation must be before a DIF

analysis that employs the MH or STD statistic leads to erroneous conclusions.
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Definitions of the DIF Statistics

The definitions of the estimator of the standardized difference in proportions

correct (STD) and the Mantel-Haenszel common-odds ratio estimator (MH) are given as

follows.

If the two populations of examinees are labeled as a focal group (F) and a base

group (B), and s indexes each observed score category of a k-item test, or s = 0, 1, ..., k,

then
NF - the number of examinees in the F group at score s,

N13 the number of examinees in the B group at score s,

NS - the number of examinees in F and B at score s,

k

Gi,s AT!, E N the relative frequency of F at s,
s-o

GB NB / E NB , the relative frequency of B at s, and
s-o

G5- Ns / E Ns, the total relative frequency of F and B at s.
s-o

If 1:?1, and RB are the numbers of examinees (i.e., absolute frequency), in F and B

respectively, at s who answer the item of interest correctly, then the proportion-correct

values for each group at s are given by PFs - RFs I Ni,s, and PBs RB /A/Bs.

The STD Statistic

The standardized difference in proportions correct is defined as
k

STD - E (Pr, Pn,) Grs

2

(1)



where the signed difference, Prs Ply is weighted by the relative frequency of F. The

statistic is defined on the proportion-correct scale and indicates, on average, how

members of F differed from comparable members of B. Negative values of STD indicate

that an item favors B, while positive values indicate that an item favors F. Values of the

STD statistic near zero indicate no DIF.

The MH Statistic

If
Wes and WB are the absolute frequencies of incorrect responses to this item in

F and B respectively at s, and Ns is the total number of responses at s, then the

Mantel-Haenszel common-odds ratio estimator is
k

ERI3s W's /Ns
s-o
k

E RI; IVB //V,
s s

s-O

If QF and Q are defined as (1 PI :s) and (1 P11) respectively, then this

statistic could also he written as

(2)

k GB GF

PB Q_ s 1,

MH - s".° (3)

EPI' QI3
s-O

s s GS

The MH statistic can be interpreted as an estimate of the common odds-ratio. It

indicates, on average, how much more (or less) likely it is that a member of B answered

the item correctly than did a comparable member of F. The MI! statistic has a value at

or near 1.0 if there is no DIF between B and F. If the item favors B, MH is greater than
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1.0; if the item favors F, MI-I is less than 1.0. Frequently, the odds ratio is transformed

by using some function of the negative of the natural log of the ratio.

Population DIF Indices

The DIF statistics given by Equations 1 and 2 are defined in terms of the

observed test score. As mentioned previously, the examinees from each group ideally

should be matched on their latent abilities or true scores. For computer simulation

work, it is possible to define some measure of population DIF in terms of the latent

ability or true score. This value then becomes the parameter of interest in estimation

because it represents the value of the indices when true ability matching or conditioning

has occurred. The DIF statistics can he compared to these population DIF indices,

which then serve as a reference for valid DIF identification.

The usual assumption concerning the latent ability or true score can be made,

namely that the latent ability, 0, is a continuous random variable with known density

functions. If these arbitrary density functions of 0 are denoted by gi:(0) and g1(0), then

the combined group density can he represented by

g"(0) - agi:(0) + (1 a)gB(0) ,

where a mixing proportion, a, is defined as 0 5_ a 5 1. The mixing proportion is usually

taken to equal the relative proportion of examinees who appear in F (either sampled or

in the F population).

The definitions of each population DIF index are facilitated by replacing the

proportions correct and incorrect at each score category (i.e., P13 Qr Pr and Qus) with

probability functions of the latent ability variable, 0. In the context of the present paper,
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it was assumed that the success probabilities, PB(0) and PF(0), were given by the

unidimensional three-parameter logistic item response function with known item

parameters for each group and for each item, or in general by

P(0) - c (1 -c)
-1.7a(0 -b)

(4)

A population value of STD, waswas defined as the expected difference between

the proportions correct, relative to (or weighted by) gF(0) as the standardizing

distribution (Kendall, Stuart, & Ord, 1987, p. 46), or

Asm I [PF(0) (0)A gF(0) dO . (5)

The population value of the common-odds ratio, 41, was defined to be the latent

variable-equivalent to Equation 3, or

g,;(0)
PB (6) QF 03)

gB(0)
dOS

g"(0)
o

g/3(0)gF(0)
PF (e) QB (e) dO

g*(0)

(6)

Defining Equation 6 as the population value of the common-odds ratio is not

thout some interpretative difficulties. Greenland (1982) pointed out that, although

there are several interpretations of an odds ratio when the ratio is not assumed to be

homogeneous in the population (i.e., the odds ratio is not constant across different values

5
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of 0), the weights, (CiiGE,) /G*,, used in the Mantel-11aenszel estimator have no logical

interpretation in the population. However, within the context of the present study, it was

more important to compare the effects of conditioning on the observed score as opposed

to the true latent variable, 0, than to defend one population interpretation over another.

And because different definitions of the population odds ratio can result in quite

discrepant values for the odds ratio parameter (Greenland, 1982), the definition given in

Equation 6 was chosen so that any confounding of results which could be attributed to

an inconsistent choice of the population odds ratio (i.e., inconsistent with the MH

statistic) would he eliminated.

Prior Ability Distributions

Previously, it was stated that if examinees from different populations have been

matched on observed test scores, they might not he matched on latent abilities. This

occurs whenever the conditional distributions of true score given observed score are

different for the two groups.

Zwick (1990) showed that if the test reliabilities for both groups were less than

1.0, and if the means of the ability or true-score distributions for each group were not

equal so that the ability distributions were incongruent, then the conditional distributions

of true score given observed score would not be identical but would result in conditional

distributions that were described as being stochastically ordered. Under certain

circumstances, this could produce results that would lead to the MH DIE' statistic

erroneously favoring the group with the higher ability. Regardless of the order of the

conditional error distributions of observed score given ability, or f(XI 0), if such
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distributions exist for both groups, then different distributions of ability, g(0), will yield

different conditional distributions of ability given observed score, j(0 IX), due to Bayes

theorem.

Degree of Distributional Incongruence

A measure of the degree with which the two distributions of 0, gy(0) and gB(0)

are incongruent is the percentage of overlap of the areas under the density functions.

This measure allows for an infinite number of combinations of distributions to be

mapped to a simple scalar between 0.0 (signifying no overlap or total incongruence) and

1.0 (complete overlap, or total congruence), and is defined by

OVERLAP - f MIN[gB(0),gF(8)] (10 (7)

Method

The present study utilized computer simulation methods in order to manipulate

the primary condition of interest, the degree of incongruence or overlap between the

distributions of ability of two populations of examinees (B and F). In order to make the

results more generalizable to real testing situations, item responses taken from previous

administrations of a 40-item ACT Assessment Mathematics Usage Test were fit using a

three-parameter logistic model that assumed a unidimensional examinee trait or ability.

Two comparison samples of 2000 Caucasian and 2000 African-American examinees were

used to obtain separate B and F group item parameter estimates. Marginal maximum

likelihood procedures, which assumed standard normal prior ability distributions, were

7
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used on each of the two samples via the computer program, PC-BILOG 3 (Mislevy &

Bock, 1989).

Because the groups were thought to be nonequivalent, the item parameters from

the F group (aF, bF, and cF) were resealed (a'r, CF, and c.p.) to the B group parameters

using the family of linear transformations,

where

aF
a *F , b*F + B , c*F Cr; ,

SD(bB)
A -

SD(bF)
, and B - (b) -A (7,)

"Real" DIF between the two groups on any of the 40 items was thus somewhat

reflected in the item parameter estimates.' As far as goodness-of-fit was concerned, no

statistical procedure was used to assess the degree of model fit or misfit. Prior

experience has shown that the unidimensional three-parameter logistic model fits these

types of mathematics items on samples of 2000 at least well enough to yield item

parameters that can subsequently produce observed score distributions that are very

close to those obtained from national administrations of the tests. Therefore, these

parameters estimates were used as known item parameters in all of the subsequent

computer simulations.

The B ability distribution, gB(0), was always assumed to be standard normal.

Therefore, only gi:(0) varied throughout the simulations, and the measure of

incongruence between the two ability distributions was the proportion of their overlap (in

8
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area). The F ability distribution, gr(0), was normally distributed with variance fixed at

either 1.0 or .5. The Focal group mean was varied such that F(0) iLB(0).

The known item parameters were used to describe the success probabilities,

Pr(0) and PB(0), with the item response function given by Equation 4. Once gr(0) and

gB(0) were specified and a value of 0 from either F or B had been sampled, 40 item

responses were generated in the usual way by comparing either P1 :(0) or PB(0) to a

pseudorandomly generated uniform deviate between 0 and 1. Statistics were then

computed as functions of the item responses from either Equation 1 and 2, and these

values were compared to Asn, and from Equations 5 and 6, respectively. Actually, the

negative of the natural log of Equation 2 and Equation 6 was computed. Sampling

variability was achieved by replicating each simulation 100 times and by drawing samples

of 500 values each of 0 from gr(0) and gB(0).

Two methods were used to assess the fidelity of either DIF statistic in the

identification of an item's true DIF status. One was to compute the bias, standard error

and root mean square error relative to the population DIF value over replications.

These values also could he averaged over the 40 test items to obtain single measures of

estimation accuracy. The second method was to arbitrarily establish a DIF criterion

value for each true DIF index and then to observe the proportion of true positive and

true negative DIF identifications or "hit rates" over replications and items. The DIF

criteria used were 1p.s-I-D1 > .10, and 1-1n(*)1 > ln(2).

Regardless of the degree of incongruence, the simulated test overall was free from

DIF, as measured by _1 E(4, ID) and E -1n(*). These average population DIF
40 40
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values varied only from -.0116 to .0057 and from -.0409 to .0429, respectively, and

indicated, on average, a test free from DIF.

Results

The results of the computer simulations are summarized in a series of plots given

by Figures 1-3. Figures 1 and 2 show the results of the MH and STD estimators,

respectively, in terms of average bias or [( -In MH) - 4r)] (across items), average

standard error (SE of estimate across items) and average root mean squared error

(RMSE across items), each as a function of distributional overlap. In each of these

figures, the solid lines represent those situations where the variances of F and B ability

distributions were equal to 1.0; the dotted lines indicate those situations in which the

variance of the ability distribution of F was .5 while the variance of the ability

distribution of B remained at 1.0.

Insert Figures 1 and 2 About Here

Figure 3 shows the proportion of times (out of 100 replications) that MI-1 and

STD accurately identified items as either having no DIF or as having DIF, as measured

by the DIF criteria given above. Because the simulated tests were, on average, free from

DIF, these "hit rates" tended to he situations involving true negatives (i.e., items without

DIF). Once again, the solid and dotted lines represented the two different variance

conditions.
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Insert Figure 3 Here

MH Results

It was anticipated that the bias in I'vIH would become increasingly negative as

overlap decreased, due to the effect of ordered distributions on MH, as discussed by

Zwick (1990) (i.e., as gF(0) became less than gi3(0) in terms of stochastic ordering,

-In MH should have favored B in terms of the DIF analysis). Figure 1 shows that this

did not occur. The MH bias remained slightly positive but basically close to zero until

the percentage of overlap fell to values near .1. The obvious explanation for the

apparent unbiased behavior of MH even as overlap approached zero was due to the

presence of empty cells or zero frequencies for many of the score categories. These zero

contributions to the overall estimate of the log of the common odds-ratio did not affect

the no-DIF conclusion. And because this was the true situation, the MH estimates

appeared to be unbiased.

The instability of the MH estimator as the percentage of overlap decreased was

also apparent from the increase in the SE. See Figure 1. Overall, the RMSE remained

fairly constant until the percentage of distributional overlap was less than .4. This value

of .4 represented mean differences of -1.75 in the equal variance case and -1.5 in the

unequal variance case.

11
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The correct identification of DIF and no-DIF items remained fairly high, above

.90, for MH until overlap reached approximately .3. The MH Hit Rate fell off sharply

after that. See Figure 3.

STD Results

Similar findings were noted for the STD estimator. Assuming that the stochastic

ordering of the two distributions would once again produce results which (falsely)

favored B, it was again anticipated that the bias in STD would become increasingly

negative as overlap decreased. Figure 2 shows that the STD estimator remained fairly

unbiased once again, even when the overlap percentage approached zero. The SE again

increased as the two distributions separated, which resulted in an increase in the RMSE.

These results were consistent across both variance conditions.

Correct DIF identification with STD was consistently lower than that of MH until

the percentage of distributional overlap reached .2. After that, the situation was

reversed with STD performing better than MH. See Figure 3.

Asymptotic Bias

In order to determine the effect of sample sizes on these results, it was possible to

evaluate MH and STD as the number of items, k, remained fixed and the sample sizes

within the cells of the k+1 2 X 2 tables used to obtain MH and STD increased

indefinitely. This was done analytically, using a recursive procedure to obtain f(Xj 0) and

hence, h(X), for each group, as described in Lord and Wingersky (1984, p.454). This

evaluation did two things. First, because the sample sizes were infinite, SE was driven to

zero. And because the cells contained expected frequencies, zero cell frequencies were

12
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eliminated. These analytical values of MH and STD were then compared to bls-m and -

In ty. The difference between the analytical and the population value was termed

asymptotic bias. Figure 4 shows the average asymptotic bias (over items) of MH and

STD as functions of overlap. In this figure, the anticipated direction of the bias was

confirmed. Both MH and STD were biased in the direction of B (i.e., negatively). Note

that the severity of the bias for MH and STD was about the same. The appearance of

differences between MH and STD in Figure 4 was due to differences in the scales of the

two estimators.

'1111111111111111111=111

Insert Figure 4 Here

11111111111111111111111111I

Figures 1, 2, and 4 illustrate an interesting paradox in using the MH and STD

estimators when the two ability distributions were non-overlapping. The statistics

remained fairly unbiased for tests with no DIF when the sample sizes were moderate, due

to the many zero cell frequency contributions to MH and STD. However, for these

moderate sample sizes, the SE was fairly substantial. The end result was that the RMSE

increased as overlap decreased. Increasing the sample sizes would certainly decrease the

SE of the MH and STD estimates but coincidentally it would increase the bias. The net

result would be the same, namely that the RMSE would increase as the percentage of

overlap decreased.

13
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Results for Completely Congruent Cases

Three other simulations were conducted to show the effects of reduced test

reliability alone, as opposed to distributional incongruence, on DIF identification. These

simulations were conducted so that the variances of both latent ability distributions were

1.0, but 1.1F6 and /.1138 were both set at -1.0, -2.0, and -3.0. The results were then

compared to the original case of complete congruence, with uFe and p,B8 equal to 0.0, as

well as the non-overlapping cases illustrated previously in Figures 1-4. In this way the

effects due to distributional incongruence could be somewhat separated from those due

only to reduced reliability. These results are summarized in Table 1.

Insert Table 1 Here

As Table 1 illustrates, most of the increases in SE (and, consequently in RMSE)

and the decreases in Hit Rates seen in Figures 1-4 were due to distributional

incongruence rather than to lowered test reliabilities alone. As long as the two

distributions remained congruent, SE and Hit Rates were fairly consistent. And although

there was some decline in DIF identification performance as reliability decreased, it was

not as severe as that observed when overlap was less than 1.0. However, it should be

pointed out that reduced test reliability and distributional incongruence, as modeled in

these computer simulations, were somewhat confounded. Obviously, it was impossible to

shift MO) too far in the negative direction without affecting the test reliability of F, due

to the nonzero lower asymptote imposed by the three-parameter logistic function.

14
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Although distributional incongruence imposed a reduced reliability condition on F, it was

necessary to tolerate this confounding unless the item parameters wzre modified across

each simulation condition, which was an unappealing alternative.

Table 1 also shows that the average asymptotic bias remained relatively

unchanged as long as the two distributions were congruent. The average bias for

samples of 500 was fairly close to the asymptotic results, even when test reliability was

reduced.

Discussion

Although the results of these simulations were obtained using item response

models estimated from a specific test and abilities generated from specific distributions,

it is believed that these results are generalizable to a broader class of testing situations

because of the wide range of distributional incongruence studied and because the test

that was used to generate the responses was typical of many achievement tests. The

major conclusion drawn from this study was that the use of the observed score, X, as a

latent ability surrogate in computing MH and STD appeared to he acceptable, even

when the degree of distributional incongruence was fairly substantial. DIF identification

by MH and STD was acceptable for latent ability distributions that were as much as 1.5

to 2.0 standard deviations apart.

These results would appear to hold for tests which contain few DIF items. A

similar study should be conducted to investigate the effect of the severity of distributional

incongruence on tests where the occurrence of DIF is more frequent.
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Footnote

'Item parameter estimates are not included in this paper but will be provided upon

request.



Table 1

DIF Results for Completely Congruent Cases

Congruent
Base & Focal
Distributions

(4, a2)
Reliabilities
(Base, Focal)

M FI STD

ASYMP-
TOTIC
BIAS

BIAS
SE

RMSE
HIT

RATES

ASYMP-
TOTIC

BIAS

BIAS
SE

RMSE
HIT

RATES

.0039 .0125 .967 .0011 .0031 .957

(0, 1) (.91, .93) .1568 .0267

.1647 .0279

.0320 .0432 .975 .0059 .0142 .969

(-1, 1) (.8686) .1692 .0273

.1761 .0311

.0152 .0138 .941 .0021 .0068 .928

(-2, 1) (.69, .65) .1973 .0246

.1905 .0254

-.0049 -.0332 .885 -.0006 -.0027 .921

(-3, 1) (.34, .28) .2463 .0229

.2282 .0227
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Figure Captions

Figure 1. Bias, SE, and RMSE as a function of overlap for MH

Figure 2. Bias, SE, and RMSE as a function of overlap for STD

Figure 3. Hit rates as a function of overlap

Figure 4. Asymptotic bias as a function of overlap
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