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ABSTRACT

One important and very promising application of item response theory (IRT) is

computerized adaptive testing (CAT). Although most CATs use dichotomous IRT models,
research on the use of polytomous 1RT models in CAT has shown promising results. This
study concerned the implementation of a nominal response model-based CAT (NR CAT).
Item pool characteristics for the NR CAT as well as the comparative performance of the NR
CAT and a CAT based on the three-parameter logistic (3PL) model were examined. Results
showed that for two-, three-, and four-category items, items with maximum information of
at least 0.16 produced reasonably accurate ability estimation for tests with a minimum
test length of about 15 to 20 items. Moreover, the NR CAT was able to produce ability
estimates comparable to those of the 3PL CAT. Implications of these results were
discussed.
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One important and very promising application of item response theory (IRT) is

computerized adaptive testing (CAT). Unlike the conventional paper-and-pencil test in

which an examinee, regardless of ability, is adMinistered all test items, CAT is a

procedure for administering tests which are individually tailored for each examinee. The

advantage of IRT-based CAT over paper-and-pencil testing have been well documented

(e.g., Wainer, 1990; Weiss, 1982).

Although not necessary (cf., De Ayala, Dodd, & Koch, 1990), a CAT system typically

uses an IRT model in combination with test item characteristics to estimate the examinee's

ability. Typically, either the dichotomous three-parameter logistic (3PL) or Rasch models

(e.g., McBride & Martin, 1983; Kingsbury & Houser, 1988) have been used in CAT. These

models do not differentiate between an examinee's incorrect answer and other incorrect

alternatives for purposes of ability estimation. In short, dichotomous models and

dichotomous model-based CATs operate as if an examinee either knows the correct answer

or randomly selects an incorrect alternative.

The operation of dichotomous model-based CATs do not incorporate findings from

human cognition studies (e.g., Brown & Burton, 1978; Brown & VanLehn, 1980; Lane, Stone,

& Hsu, 1990; Tatsuoka, 1983). For instance, Tatsuoka's (1983) analysis of student

misconceptions in performing mathematics problem showed that wrong responses could be

of more than just one kind, however, dichotomous scoring uniformly assigned a score of

zero to all the wrong responses. Moreover, it has been demonstrated by Nedelsky (1954),

from a classical test theory (CTT) perspective, and Levine and Drasgow (1983), from an IRT

perspective, that the distribution of wrong answers over the options of multiple-choice

items differed across ability levels. In this regard, an item's incorrect alternatives may

augment our estimate of an examinee's ability by providing information about the

examinee's level of understanding (i.e., provide diagnostic information). Both Bock (1972)

and Thissen (1976) have found that for examinees with ability estimates in the lower half

of the ability range the nominal response (NR) model provided from one third to nearly

twice the information furnished by a dichotomously scored two-parameter model; there

was no difference in information yield between these two models for ability estimates

above the median 0. It should be noted that in an application to multiple-choice and free-

response items, Vale and Weiss (1977) found that the NR model provided more information

for middle ability examinees than that shown in the Bock (1972) and Thissen (1976)

studies. In CTT, the use of proper scoring techniques to assess this partial knowledge

yields increases in the reliability of multiple choice tests (e.g., Coombs, Milholland, and

Womer, 1956). Frary (1989), Haladyna and Sympson (1988), and Wang and Stanley (1970)

all provide a review of the literature on option scoring strategies. It is obvious that the
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dichotomization of the examinee's response ignores any partial knowledge that the

examinee may have of the correct answer and, as a result, this information cannot be used

for ability estimation.

Some research has explored the benefits and operating characteristics of CATs based

on polytomous IRT models (e.g., Dodd, Koch, & De Ayala, 1989; Koch & Dodd, 1989;

Sympson, 1986). Research on the use of polytomous IRT models in CAT has shown

promising results. For instance, Sympson (1986) found that adaptive tests based on a

polytomous model (Model 8) could be shortened by 15-20% without sacrificing test

reliability. In addition, these studies have shown that item pools smaller than those used

with dichotomous model-based CATs have lid to satisfactory estimation, that the use of

the ability's standard error of estimation for terminating the adaptive test is preferred to

the minimum item information termination criterion, and that the use of a variable

stepsize instead of a fixed stepsize tends to minimize nonconvergence of trait estimation;

the models under study were Masters's (1982) partial credit (PC), Andrich's (1978) rating

scale (RS), and Samejima's (1969) graded response (GR) models.

Bock's (1972) NR model is appropriate for items with unordered responses, such as

multiple-choice aptitude and achievement test items. In addition, the NR model may be

used with testlets (Wainer & Kiely, 1987) to solve various testing issues, such as

multidimensionality (Thissen, Steinberg, & Mooney, 1989), with items which do not have a

"correct" response, such as demographic items (e.g., to provide ancillary information), and

items whose alternatives provide educational diagnostic information. Moreover, innovative

computerized item formats may be specifically developed for use with polytomous models

and adaptive testing environments. Presently, CATs typically present simple paper-and-

pencil item formats.

The objectives of this study concerned the implementation of an NR model-based CAT

(NR CAT) and were three-fold. First, because the NR model is written in terms of slope

and intercept parameters, a form not typically used (cf., Hambleton & Swaminathan, 1985;

Lord, 1980; Weiss, 1983), formulae for the location parameters were derived in order to

facilitate understanding the model's formulation. In this regard, the NR model's

relationship with the dichotomous two-parameter logistic (2PL) model was presented.

Moreover, because of the importance of item information in CAT, the effect of varying the

location parameters on the distribution of item information was examined. Second,

paramount to CAT performance is the quality of the item pool. Two factors which

determine the item pool's quality are the locations of the item and their discrimination

indices. Because it is accepted that items should be evenly and equally distributed

throughout the 8 continuum of interest (Patience & Reckase, 1980; Urry, 1977; Weiss,
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1982) and there is no reason to believe that this would not hold for the NR model, this

factor was not studied. However, the minimum item information (i.e., the discrimination

indices' effect) which would allow reasonably accurate ability estimates by the NR CAT

was investigated. This investigation (referred to as Study 1) was limited to the 2-, 3-, and

4-category cases. Third, the comparative performance of the NR CAT and a CAT based on a

dichotomous (3PL) model was assessed (referred to as Study 2). Furthermore, because of

the existence of option information an exploratory simulation was conducted in which

items were selected on the basis of option information.

Model

The NR model assumes that item alternatives represent responses which are

unordered. The NR model provides a direct expression for obtaining the probability of an

examinee with ability 0 responding in the j-th category of item i as:
exp(cii + aijO)

Pij(0) = (1)

exp(cij + aijO)
h=1

where aij is the slope parameter, cij is the intercept parameter of the nonlinear response

function associated with the j-th category of item i, and mi is the number of categories of

item i (i.e., j = 1, 2, ..., mi). For convenience the slope and intercept parameters are

sometimes represented in vector notation, where a = (ai 1, ai2, ..., aim) and c = (cil, ci2,

cim), respectively. As an aide to interpreting these parameters a logistic space plot of the

(multivariate) logit (i.e., cij + ajj0) against 0 for a three-category (m = 3) item with a = (-0.75,

-0.25, 1.0) and c = (-1.5, -0.25, 1.75) is shown in Figure 1. As can be seen, the cij's value is

the y-intercept (i.e., 0 = 0.0) and aij is the slope of the category's response function. The aijs

are analogous to and have an interpretation similar to traditional option discrimination

indices. That is, a crosstabulation of ability groups by item alternatives shows that a

category with a large aij reflected a response pattern in which as one progressed from the

lower ability groups to the higher ability groups there was a corresponding increase in the

number of persons who answered the item in that category and for categories with negative

aijs this pattern was reversed. Moreover, it appears that, in general, large values of cij are

associated with categories with large frequencies and as the value of cij becomes increasingly

smaller the frequencies for the corresponding categories decrease.

Insert Figure 1 about here

tl
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The probability of responding in a particular category as a function of 0 is depicted by

the category or option characteristic curve (OCC). Figure 2 contains the OCCs

corresponding to the three category item presented in Figure 1.

Insert Figure 2 about here

The intersection of the OCCs can be obtained by setting adjacent category multivariate

logit equal to one another and solving for 0. Therefore,
c 1 c20=a2

a 1
.

In general, for any item with mi > 2 and because 0 and b are on the same scale:

b = 'c(in- ci'aj - a(j_i)
This formulation is analogous to that of the PC model in which step difficulties are

defined at the intersection of adjacent category characteristic curves.

In Bock (1972) the NR model is compared with a binary version (i.e., the item consists

of correct and incorrect categories). When mi = 2 then (1) becomes,
exp(c2 + a20)

P2(e) = exp(ci + al0) +exp(c2 + a20)

Given (4) and noting that the two linear constraints imposed on the item parameters,

Ea=0 and E c=o (to address the indeterminacy of scale), imply that in the two-category

case

(2)

(3)

(4)

al = -a2 and (5)

CI = -c2. (6)

Therefore, given (5) and (6) one obtains that for mi = 2

c'-ib = -
a2

. (7)

Solving (7) for c2 and substituting the equality into (4),
exp(-2a2b + a20)

P2(0)=exp(-2a2b + a20) + exp(ai0) (8)

By substitution of (5) into (8), and simplifying, one obtains

P2(0) = (1 + exp(-2a2(0 b ) ) )
1

. (9)

Therefore, if one casts the NR model's discrimination parameters in terms of the 2PL

model's discrimination parameter, a, and because a is typically positive:

a = 1-2a2I = 12ail ; ( 1 0 )

for mi = 2 the 2PL and NR models are equivalent. For example, Figure 3 shows the NR

model's OCCs for an item with a2 = 0.40, al = -0.40, c2 = 0.2 and ci = -0.20 and the item

characteristic curve (ICC) for the 2PL model with a = 0.80 and b = -
0 4

= -0.5.0.8



Insert Figure 3 about here

Information

For the NR model, the item information (Ii(0)) is equal to the sum of the option

informations, where option information may be defined as (Bock, 1972)

Iii(0) = aWa'pii(0) , (11)

and item information is
mi

Ii(0) = 1 aWa'piji(0) = aWa' . (12)
h=1

Where for a given item i,
P1(1-P1) -P1P2 -P1Pm

-P2P1 P2(1-P2) -P2Pm
W=

MEI

-PmPl -PmP2 Pm(1-Pm)

For the mi = 2 case, the location of maximum item information (Imax) is emax =a
2 - a 1

with Imax = 0.25(a2 - al )2. Due to the number of unknowns a formula for the location of

maximum item information cannot be determined for mi > 2. When mi = 2 and for a given a

changing the values of c forces the location of Imax to shift along the 0 continuum, but the

maximum amount of information remains constant.

For the mi = 3 case and for a given a, if the bs are in ascending order, then the item

information function becomes comparatively more leptokurtic as the difference between bs

become less extreme. When the bs are in descending order, then item information

function becomes comparatively more platykurtic as the difference between bs become

less extreme. In both cases there is also a shifting in the location of 'max.

For the mi = 4 case and for a given a, if the bs are in ascending order, then the item

information function becomes comparatively more platykurtic as the difference between

bs become less extreme. This pattern holds if one reverses the last two bs. When the bs

are in descending order, then relative to the item information function when the bs are in

ascending order, the function becomes more leptokurtic as the difference between bs

become less extreme. This is also true if one transposes the first two bs. For the other

two possible b patterns, the information function becomes comparatively more leptokurtic

as the distance among the bs decreases. Moreover, it is possible to obtain bimodal item

information functions. For instance, Figure 4 contains the information function for an

item where a = (1, 0.1, -0.1, -1) and c = (0.1, 2.4, -2.6, 0.1).

C 1 C2

7

6
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Insert Figure 4 about here

As (12) implies item information is a function of the magnitude of the elements of a and

the order of the elements of a (i.e., for a given c, a = (-0.25, 1.0, -0.75), a = (-0.25, -0,75,

1.0) and a = (-0.75, -0.25, 1.0) will produce three different Imaxs at three different Oma xs.

For a given a the signs of the elements are irrelevant as long as Ea=0 (and Ze=0). For

instance, given two items with the same c (e.g., c = (0.25, -0.15, -0.1)) but as which differ

only in the sign of the elements, such as a = (0.4, 0.25, -0.65) and a = (-0.4, -0.25, 0.65), the
items will have the same Imax = 0.245 but at different emaxs; specifically, ()max = 0.83985

for a = (-0.4, -0.25, 0.65) and for a = (0.4,0.25,-0.65) ()max = -0.83985. This is also true in

the four category case. Given the same c, two items whose as differ only in the sign of the

elements (and satisfy y, a=0), such as a = (0.55, 0.4, -0.35, -0.6) and a = (-0.55, -0.4, 0.35,

0.6) will yield 'max = 0.258679 at Amax = 0.059 and Amax = -0.059, respectively.

METHOD

Study 1: Determination of Minimum Item Information for use in NR CAT

Programs: A program for performing adaptive testing with the NR model was written (NR

CAT). The program used expected a posteriori (EAP) estimation (Bock & Mislevy, 1982) of

ability and item selection was on the basis of information. The adaptive testing

simulation was terminated when a maximum of thirty items was reached. Ability

estimates at test lengths of 10, 15, 20, 25 and 30 items were recorded. The initial ability

estimate for an examinee was the population's mean and a uniform prior with ten

quadrature points was used. An additional program for generating the data according to

the NR model was written and is discussed below.

Data: A series of item pools were created. The item pools differed from one another on the

basis of two factors, maximum item information, Imax, and the number of item alternatives, m:

2, 3, and 4 options. The item pool size was 90 items (cf., Dodd, Koch, & De Ayala, 1989; Koch

& Dodd, 1989).

Although Urry's (1977) guidelines for the discrimination parameter were stated in

terms of as magnitude, the importance of an item's a value is its effect on Imax. Because

when the number of categories is three or more different combinations of a and c can

produce the same Imax value, establishing guidelines in terms of the magnitude elements

of these vectors was not pursued. Rather, specified values for Imax were set a priori and

the a vector to obtain a specific Imax was determined. The Imax values studied were 0.25,

0.16, 0.09, and 0.04.
When mi = 2, the a vectors may be specified a priori. For the Imax values of 0.25, 0.16.

0.09, and 0.04, the corresponding as were (0.50, -0.50), (0.40, -0.40), (0.30, -0.30), and
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(0.20, -0.20), respectively. (For the 2PL model these as are equivalent to as of 1.0, 0.8, 0.6,

and 0.4, respectively.) Because Urry (1977) has recommended the use of items with a > 0.80

in CAT, for the mi = 2 condition the use of a = (0.40, -0.40) was expected to be equivalent to

the use of a = 0.80 with a 2PL model-based CAT. For each Iniax level of the mi = 3 and mi =

4 conditions the a vectors for the items were chosen through a trial-and-error procedure to

approximate the relevant Imax value.

A number of researchers have stated that the item bs should be evenly distributed

throughout the 0 range of interest (e.g., Patience & Reckase, 1980; Urry, 1977; Weiss, 1982).

Therefore, item b(s) were distributed at nine scale points between -4.0 to 4.0 in increments of
1 logit (i.e., for item 1 b = .4.0, for item 2 b = -3.0, etc.); for the mi > 2 conditions the average

location for an item was set at one of the nine scale points.

Once the a vector for a given Imax level was determined, then the c vector to locate the

items, in terms of its h (for mi = 2) or average b (for mi > 2), at the specified scale points

could be calculated. Therefore, these item sets consisted of 9 items with a constant

maximum information which were distributed to encompass the examinee ability range.

These 9 items were replicated to produce a 90-item pool for each of the 12 combinations of

the 4 'max levels crossed by the 3 mi levels. De Ayala, Dodd, & Koch (1990) found that

multiple items with the same parameters were administered to an examinee as the CAT

estimation algorithm approaches its final ability estimate.

Thirteen hundred examinees' abilities were generated to be evenly distributed

between -3.0 and 3.0 using a one-half logit interval between successive 0 levels (i.e., for

100 examinees 0 =-3.0, for 100 examinees 0 =-2.5, etc.). These true Os (0Ts) plus the 90

item parameters for each condition were used to generate polytomous response strings

with a random error component for each simulated examinee (i.e., 12 response data sets

were created). Generation of an examinee's polytomous response string was accomplished

by calculating the probability of responding to each alternative of an item according to the

NR model. Based on the probability for each alternative, cumulative probabilities were

obtained for each alternative. A random error component was incorporated into each

response by selecting a random number from a uniform distribution [0,1] and comparing it

to the cumulative probabilities. The ordinal position of the first cumulative probability

which was greater than the random number was taken as the examinee's response to the

item.

Analysis: The focus of Study 1 was to determine the minimum Imax value which would result

in a significant improvement in the estimation of ability. The accuracy of ability estimation

was assessed by root mean square error (RMSE) and Bias. RMSE and Bias were calculated

according to:

BE'T 1,14



RMSE(0) =
0\1 I (6'1( T ) 2

of

Bias(0) =
(4 -0T)

of
A

where 01, is the ability estimate for examinee k with latent ability 0T, and n is the number

of examinees at interval f (i.e., nf = 100).

The analysis of the 2-, 3- and 4-category cases were treated as separately. Therefore,

the basic design is a one-group repeated measures with two dependent variables, RMSE and

Bias, with 'max as the between subjects factor and test length as the within subjects

factor. The test length factor was included because the accuracy of ability estimation is

influenced by both the adaptive test length as well as the information content of the items

administered. Because the Bonferroni method was used to control for familywise Type

error, a was set at 0.008 (i.e., 0.05/6). Post hoc analysis was performed with the Scheffe

test using a critical F of 13.2595 1)F0.008, 3, 48). Descriptive statistics on the

adaptive tests were calculated.

Study 2: Comparative performance of the NR and 3PL CATs

Programs: The NR CAT program from Study 1 was used in Study 2; the NR CAT could select

items on the basis of either item or option information. An additional CAT program based

on the 3PL model (3PL CAT) was written. The 3PL CAT program estimated ability through

EAP and selected items on the basis of information. The adaptive testing simulation was

terminated when either of two criteria were met: a maximum of thirty items was reached or

when a predetermined standard error of estimate (SEE) was obtained (SEE termination

criteria of 0.20, 0.25, 0.30 were used). The initial ability estimate for an examinee was

the population's mean. Both CATs used a ten point uniform prior distribution.

A data generatign program based on a linear factor analytic model (Wherry, Naylor,

Wherry, & Fallis, 1965) was written and is discussed below. The linear factor analytic

approach for generating the data was used to minimize any bias in favor of either the 3PL

or NR model; this proCedure has been used previously (Dc Ayala, Dodd, & Koch, in press;

Dodd, 1984; Koch, 1981; Reckase, 1979).

Calibration: MULTILOG (Thissen, 1988) was used to obtain item parameter estimates for

the NR and 3PL models using default program parameters.

Data: Thirteen hundred examinees' abilities were generated to be evenly distributed

between -3.0 and 3.0 using a one-half logit interval between successive 0 levels. The

examinees' responses to 150 4-alternative items were generated according to the linear

factor analytic model:

(13)

(14)

10

zki = aiOTk + 1 - lqzek (15),

1,1
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where OTk was examinee k's latent ability, ai was item is factor loading, hi was item is

communality, and zeki was a random number generated from a N(0,1) distribution to be

the error component of examinee k and item i. All factor loadings were uniformly high

and ranged from 0.62 to 0.84. Subsequent to the calculation of zki, zki was compared to

pre-specified category boundaries to determine the category response for examinee k to

item i.

These data were submitted to MULTILOG to obtain item parameter estimates for both

the NR and 3PL models. Given the results of Study 1, item pools for the NR and the 3PL

CATs were constructed by identifying items with values of Imak > 0.16 and whose °mak

values were evenly distributed throughout the -2.0 to 2.0 ability range. These items were

replicated to produce item pools of 152 items.

Analysis: The focus of Study 2 was to determine whether there were any psychometric

advantages to be achieved by using the polytomous NR model as oppose to the dichotomous

3PL model, The quality of the ability estimation provided by the two CATs was analyzed by

calculating RMSE and Bias. Moreover, the number of items administered (NIA) in obtaining
A

0 was also used for comparing the two types of CATs. The design was a one-group repeated

measures design with three dependent variables: RMSE, Bias, and NIA; type of CAT (NR, 3PL)

was the between subjects factor and SEE termination criterion (0.20, 0.25, 0.30) was the

repeated measures or within subjects factor. Because the Bonferroni method was used to

control for familywise Type I error, a was set at 0.0056. Post hoc analysis was performed

with the Scheffe test using a critical F of 10.223 (= (ul)F0.0056, 1, 16).

Because of the item pool characteristics only examinees with -2.0 < < 2.0 were used

in the CATs. For each of these 900 examinees an adaptive test was simulated using the NR

and 3PL CATs, the relevant item pool and SEE termination criterion. Descriptive

statistics on the adaptive tests were calculated.

RESULTS

Study 1

Table 1 contains descriptive statistics on the NR adaptive tests. As would be
expected, there was a direct relationship between the fidelity coefficient, r^

eeT'
and Im ax

as well as between r^
eeT

and test length. For Imak = 0.25 there was a slight increase in

r A as the number of categories increased for a given test length: 10, 15, 20, or 25 items;
elEiT

this increase in r1^
°

tended to diminish with increasing test length.
T

Insert Table 1 about here
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The repeated measures analyses are presented in Table 2. As can be seen for the two

category condition (Table 2a) the average RMSE improved significantly as both test length

and Imax increased. Post hoc analysis of the Imax factor showed that for the two category

case there was a significant reduction in RMSE as Imax increased from 0.04 to 0.09 to 0.16

for tests of 15-, 20-, 25- and 30-items in length. Increasing the item information content

from 0.16 to 0.25 did not produce a significant improvement in ability estimation as

assessed by RMSE. For the 10-item test there was, in addition to the above finding, a

significant improvement in accuracy of estimation from 0.16 to 0.25. That is, for the

shorter test length of 10 items more informative items were needed than at longer test

lengths.

Insert Table 2 about here

For all Imax values there was a significant improvement in the accuracy of estimation

as tests increased in length from 10 to 15 to 20 items. As would be expected, at higher

item information levels (e.g., 0.16 and 0.25) increasing the length of the tests from 20 to

25 items or from 25 to 30 items did not yield a significant reduction in RMSE; for Imax =

0.09 estimation accuracy was significantly improved by increasing the test length from 20

to 25 items, but not from 25 to 30 items. In short, it appears that the use of items with

'max 0.16 (i.e., a > 0.80) provides reasonable ability estimation for tests of 20 (possibly

15) or more items. With shorter length tests more informative items are required than at

longer test lengths. Test length and Imax did not have a significant effect on Bias. This

is, in part, a function of the way Bias is calculated and the potential for cancellation of

negative Bias by positive bias. Figure 5 contains RMSE and Bias plots for selected NR

CATs; these plots are typical of all the NR CAT plots.

Insert Figure 5 about here

For the three category condition (Table 2b) and test lengths of 20 or more items the

results were similar to the two category condition. That is, there was a significant

reduction in RMSE as Imax increased from 0.04 to 0.09 to 0.16, but not from 0.16 to 0.25.

However, for the 10- and 15 -item test lengths the results were the reverse those of the two

category condition. In general, results for the four category condition (Table 2c) parallel

those of the two- and three-category condition. That is, there was a significant reduction

in RMSE as Imax increased from 0.04 to 0.09 to 0.16 to 0.25 for tests of 20 or fewer items.

There was no significant reduction in RMSE as Imax increased from 0.16 to 0.25 for tests

of 25 or 30 items.

1,s



13

Study 2

Table 3 contains descriptive statistics on the NR and 3PL adaptive tests. The results

for the NR and 3PL CATs tended to be comparable with the only meaningful difference in

reeT appearing at a termination SEE of 0.30. However, the NR CAT tended to administer

adaptive tests which, on average, were shorter than those of the 3P1., CAT.

Insert Table 3 about here

Table 4 contains the source tables for the repeated measures analysis. With respect to

RMSE and Bias there were no significant differences between the 3PL and NR CATS.

Although the NR CAT did administer, on average, fewer items than did the 3PL CAT to

achieve the same accuracy in estimation, this difference was not significant using the

Bonferroni criterion. That is, the ability estimation of the NR CAT was comparable to that

of the 3PL CAT.

Insert Table about here

Because with a polytomous model item information is the sum of the information

functions for individual responses (a.k.a., category or option information function) an

exploratory study selecting items on the basis of category information was conducted (i.e.,

which item provided the maximum information for the particular alternative chosen by the

examinee). It was believed that selecting items on the basis of category information would

be more consistent with the concept of polytomous scoring of examinee responses than

selecting items on the basis of item information which ignores which particular response

an examinee provided. (Of course, the likelihood function is a function of an examinee's

particular responses.) This exploratory study used the same simulated data and programs

as Study 2, except that items were selected on the basis of category information rather

than on the basis of item information. These results are provided in Table 5 and as can be

seen parallel those presented in Table 4. Specifically, the NR CAT which selected items

on the basis of category information provided ability estimation which, in terms of RMSE

and Bias was comparable to that of the 3PL CAT. However, unlike the NR CAT results

presented previously, selecting it ;ms on the basis of category information did result in

the NR CAT administering significantly shorter tests, on average, than did the 3PL CAT

for all SEE termination conditions. The post hoc comparison Fs for NIA were all

significant at an overall cc = 0.05 and were 12.074, 16.225, and 11.357 for the SEE

termination criteria of 0.20, 0.25, and 0.30, respectively. As can be from Table 6, despite

1 `f
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this reduction in test length the NR CAT yielded fidelity coefficients comparable to those

of the 3PL CAT.

Insert Tables 5 and 6 about here

DISCUSSION

In general, the distribution of information was affected by the distance between the

item's bs, whether the bs were in order, and the number of item alternatives. Study 1

showed that for two-, three-, and four-category items, items with an Imax value of at least

0.16 produced reasonably accurate ability estimation for test lengths of 15 or more items.

Shorter length tests required more informative items to maintain reasonable ability

estimation.

Results from Study 2 seemed to indicate that the NR CAT was able to produce ability

estimates comparable to those of the 3PL CAT. To achieve the same level of accuracy (e.g.,

SEE = 0.20) the NR CAT administered fewer items, on average, than did the 3PL CAT (e.g.,

12.393 versus 16.191,respectively). Although this latter result was nonsignificant, some

practitioners may still consider it meaningful because in an implementation the adaptive

test administered under the NR model would be shorter than it is under the 3PL model.

However, a plot of the difference in average NIA between the NR and 3PL CATs versus 0

showed that the NR CAT administered substantially fewer items, on average, primarily for

examinees with OT < -1.0 (see Figure 6). A relative efficiency comparison of the

information content of the item pools of the NR and 3PL CATs showed that although the NR

model provided slightly more information than did the 3PL model throughout the ability

range, the NR model began to provide substantially more information than the 3PL model

below 8 = -1.0. Past experience with dichotomous models has shown that item pools which

are more informative for the ability range below -1.0 than existed in the present study

can be constructed. Therefore, practitioners should not consider the NR CAT's shorter

average test lengths to necessarily be meaningful. This interpretation is also appropriate

for the significant NIA results when category information was used for selecting items for

the NR CAT.

Insert Figure 6 about here

It appears that an NR model-based CAT can provide ability estimation comparable to a
A

dichotomous model-based CAT. The NR CAT did not provide more accurate 0 for examinees

with 0 < 0.0, relative to the 3PL CAT, because a variable test length was used. That is, the

additional information provided by the NR model over a dichotomous model for the lower half
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of the ability distribution resulted in the adaptive test terminating sooner than it would

with the dichotomous model. For a given (reasonable) fixed length test, one would expect
A

that the NR CAT would provide more accurate 0 for examinees with 8 < 0.0 than would a

dichotomous model.

For those situations presented above (testlets, administration of items which do not

contain a correct response, such as, demographic items, innovative computerized item

formats or items which contain educational diagnostic information) it appears that the NR

CAT may be an viable CAT option. Given the exploratory results, the use of category

information for item selection needs to be more systematically investigated. The use of

category information for item selection may prove useful in certain situations.

16
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Table 1: Mean 0, standard deviation of 8 (SD), and rg
0

a.
1-

m 'max
10

Test Length
15 20 25 30

2 0.25 mean 0.021 0.010 0.002 -0.002 -0.003
SD 1.936 1.921 1.906 1.898 1.900
r 0.935 0.956 0.967 0.973 0.977

0.16 mean 0.027 0.007 0.001 -0.009 -0.009
SD 1.949 1.927 1.923 1.918 1.914
r 0.910 0.938 0.954 0.962 0.968

0.09 mean 0.052 0.006 -0.003 -0.140 -0.003
SD 1.952 1.948 1.948 1.950 1.937
r 0.863 0.905 0.926 0.939 0.949

0.04 mean 0.068 0.061 0.020 0.014 0.009
SD 1.875 1.908 1.932 1.945 1.956
r 0.759 0.818 0.855 0.880 0.900

3 0.25 mean -0.003 0.003 0.000 0.004 0.001
SD 1.951 1.936 1.929 1.924 3.670
r 0.936 0.958 0.968 0.974 0.978

0.16 mean -0.003 -0.014 -0.004 0.010 0.009
SD 1.959 1.951 1.952 1.942 1.938

r 0.918 0.939 0.956 0.964 0.971
0.09 mean -0.004 -0.006 -0.009 -0.008 0.000

SD 1.965 1.963 1.958 1.951 1.950
r 0.863 0.903 0.929 0.941 0.950

0.04 mean -0.0 20 0 0.000 0.009 0.015 0.003
SD 1.881 1.922 1.939 1.950 1.954
r 0.763 0.831 0.868 0.890 0.907

4 0.25 mean -0.007 -0.008 -0.013 -0.014 -0.016
SD 1.969 1.951 1.941 1.943 1.934
r 0.942 0.960 0.969 0.974 0.977

0.16 mean -0.034 -0.025 -0.028 -0.031 -0.035
SD 1.979 1.974 1.973 1.960 1.961

r 0.912 0.939 0.951 0.959 0.964
0.09 mean -0.015 -0.007 -0.006 -0.016 -0.017

SD 1.978 1.979 1.975 1.986 1.985
r 0.855 0.902 0.925 0.938 0.945

0.04 mean -0.034 -0.008 -0.001 -0.002 -0.009
SD 1.902 1.941 1.963 1.976 1.982
r 0.752 0.816 0.847 0.876 0.892

aPearson product-moment correlation coefficients between 0T and g.

Mean 8T = 0.000 and soT = 1.872.

t
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Table 2a: Accuracy analysis for for NR CAT: two category condition.

RMSE

Source SS df

Between Subjects

MS F p

'max 1 0.5 91 3 3 -10 167.500* 0.000
Subjects w/i Groups 1.012 48 0.0z1

Within Subjects
Test Length 4.237 4 1.059 553.451* 0.000
'max X Test Length 0.121 12 0.010 5.288 0.000
Test Length X Subjects 0.367 19 2

w/i Groups
0.002

Post Hoc Comparison Fs for Imax:

Comparison Test Length
10 15 20 25 30

110.25 vs 110.16 17.749* 13.005 8.998 7.270 6.561

110.16 vs 110.09 41.007* 30.926* 28.357* 24.213* 20.397*
11-0.09 vs 110.04 101.553* 104.288* 92.265* 79.169* 66.524*

Post Hoc Comparison Fs for test length:

Comparison 'max
0.04 0.09 0.16 0.25

1130 vs 1125 19.269* 9.831 6.009 4.943

1125 vs 1120 24.599* 14.157* 9.477 6.581

1120 vs 1115 45.253* 32.500* 28.109* 18.281*
1115 vs 1110 85.293* 89.557* 64.613* 49.169*

Bias

Source SS df MS

Between Subjects
'max 0.041 3 0.014 0.110 0.95 4
Subjects w/i Groups 5.964 48 0.124

Within Subjects
Test Length 0.074 4 0.018 2.237 0.067

'max X Test Length 0.017 12 0.001 0.176 0.999
Test Length X Subjects

w/i Groups
1.580 192 0.008

*significant at overall a = 0.05, critical F = 13.260 ( a = 0.008 per test).
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Table 2a: Accuracy analysis for for NR CAT: two category condition (continued).

Average RMSE: (2 categories)

'max Test Length
10 15 20 25 30

0.04 1.298 1.136 1.018 0.931 0.854
0.09 0.999 0.833 0.733 0.667 0.612
0.16 0.809 0.668 0.575 0.521 0.478
0.25 0.684 0.561 0.486 0.441 0.402
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Table 2b: Accuracy analysis for for

RMSE

CAT: three category condition.

Source SS

Between Subjects

df MS

'max 9.492 3 3.164 135.396* 0.000
Subjects w/i Groups 1.122 48 0.023

Within Subjects
Test Length 4.326 4 1.081 495.580* 0.000

'max X Test Length 0.168 12 0.014 6.407 0.000
Test Length X Subjects 0.419

w/i Groups
19 2 0.002

Post Hoc Comparison Fs for 'max:

Comparison Test Length
10 15 20 25 30

110.25 vs P.0.16 7.487 13.622* 7.400 5.694 3.891

l-10.16 vs P-0.09 52.625* 29.602* 24.008* 21.579* 21.284*
P-0.09 vs P-0,04 82.226* 64.287* 62.766* 54.019* 46.795*

Post Hoc Comparison Fs for test length:

Comparison
0.04

'max
0.09 0.16 0.25

1130 vs 1125 14.224* 8.163 7.840 4.232

1125 vs 1120 22.495* 13.796* 10.609 6.322

1120 vs 1115 48.601* 46.240* 33.972* 17.881*

1115 vs 1110 119.122* 81.515* 33.309* 56.036*

Bias

Source SS df MS

Between Subjects
'max 0.002 3 0.001 0.007 0.999
Subjects w/i Groups 5.114 48 0.107

Within Subjects
Test Length 0.005 4 0.0013 0.157 0.960

'max X Test Length 0.010 12 0.0008 0.091 1.000
Test Length X Subjects

w/i Groups
1.677 19 2 0.0087

*significant at overall a = 0.05, critical F = 13.260 (a = 0.008 per test).
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Table 2b: Accuracy analysis for for NR CAT: three category condition (continued).

Average RMSE: (3 categories)

'max Test Length
10 15 20 25 30

0.04 1.286 1.095 0.973 0.890 0.824
0.09 1.001 0.843 0.724 0.659 0.609
0.16 0.773 0.672 0,570 0.513 0.464
0.25 0.68? 0.556 0.482 0.438 0.402
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Table 2c: Accuracy analysis for for NR CAT: four category condition.

RMSE

Sr urce SS df

Between Subjects

MS

'max 11.713 3 3.904 135,736* 0.000
Subjects w/i Groups 1.381 48 0.029

Within Subjects
Test Length 3.731 4 0.933 556.861* 0.000

'max X Test Length 0.177 12 0.015 8.826 0.000
Test Length X Subjects 0.322 19 2

w/i Groups
0.002

Post Hoc Comparison Fs for Imax:

Comparison Test Length
10 15 20 25 30

110.25 vs P-0.16 20.337* 15.961* 15,008* 11.905 10.488
1-10,16 vs P-0.09 45.553* 29.024* 18.212* 15.720* 15.481*
110.09 vs 110.04 75.979* 79.718* 86.898* 67.274* 54.091*

Post Hoc Comparison Fs for test length:

Comparison Imax
0.04 0.09 0.16 0.25

1130 vs 1125 13.375* 4.232 4.000 2.560

1125 vs 1120 33.309* 13.375* 9.522 5.224

P-20 vs 11.15 28.242* 36.689* 15.546* 13.796*
1115 vs 1110 94.357* 102.299* 56.895* 43.184*

Bias

Source SS df MS

Between Subjects
'max 0.018 3 0.006 0.059 0.981
Subjects w/i Groups 4.888 48 0.102

Within Subjects
Test Length 0.004 4 0.0010 0.134 0.970

'max X Test Length 0.008 12 0.0007 0.078 1.000
Test Length X Subjects

w/i Groups
1.599, 19 2 0.0083

*significant at overall a = 0.05, critical F = 13.260 (a = 0.008 per test).
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Table 2c: Accuracy analysis for for NR CAT: four category condition (continued).

Average RMSE (4 categories):

'max Test Length
10 15 20 25 30

0.04 1.321 1.151 1.058 0.957 0.893
0.09 1.033 0.856 0.750 0.686 0.650
0.16 0.810 0.678 0.609 0.555 0.520
0.25 0.661 0.546 0.481 0.441 0.413



26

Table 3: Descriptive statistics for NR and 3PL CATs. Item selection on the basis of item

information for both NR and 3PL CATs.

CAT SEE Mean SD Mean Median SD rb
A

0 8 NIAa NIAa NIAa

3PL 0.30 0.168
0.25 0.152
0.20 0.171

NR 0.30 0.275
0.25 0.267
0.20 0.269

1.193 12.759 10.000 5.927 0.902
1.165 15.073 13.000 6.335 0.925
1.164 16.191 13.000 6.879 0.928

1.200 9.682 8.000 5.871 0.926
1.190 10.763 9.000 6.472 0.926
1.186 12.393 10.000 6.532 0.929

aNumber of items administered
bSpearman rank-order correlation coefficients between g and OT.

Note: O.I. = 0.000, soT = 1.292.

9.mil
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Table 4: Accuracy analysis for NR and 3PL CATs. Item selection on the basis of item
information for both NR and 3PL CATs.

RMSE

Source

Between Subjects

SS df MS F p

CAT Type 0.0 5 4 1 0.054 0.681 0.4 2 1

Subjects w/i Groups 1.267 16 0.079
Within Subjects

SEE Term 0.022 2 0.011 12.584* 0.000
CAT Type X SEE Term 0.004 2 0.002 2.527 0.096
SEE Term X Subjects

w/i Groups
0.028 32 0.001

Bias

Source SS df MS F p

Between Subjects
CAT Type 0.154 1 0.154 0.661 0.428
Subjects w/i Groups 3.736 16 0.234

Within Subjects
SEE Term 0.001 2 0.0005 1.4 9 2 0.24 0
CAT Type X SEE Term 0.001 2 0.0005 0.7 63 0.47 5
SEE Term X Subjects

w/i Groups
0.014 32 0.0004

NIA

Source SS df MS F p

Between Subjects
CAT Type 187.638 1 187.638 8.068 0.012
Subjects w/i Groups 37 2.0 95 16 23.256

Within Subjects
SEE Term 85.231 2 42.615 76.371* 0.000
CAT Type X SEE Term 3.455 2 1.728 3.096 0.059
SEE Term X Subjects

w/i Groups
17.856 32 0.558

*significant at overall a = 0.05, critical F = 10.223 (a = 0.0056 per test).
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Table 5: Accuracy analysis for NR and 3PL CATs. Item selection on the basis of category
information for NR CAT and via item information for 3PL CAT.

RMSE

Source

Between Subjects

SS df MS F p

CAT Type 0 .0 18 1 0.018 0.203 0.65 8
Subjects w/i Groups 1.4 5 0 16 0.091

Within Subjects
SEE Term 0.035 2 0.017 9.023 0.001
CAT Type X SEE Term 0.0 0 8 2 0.004 2.026 0.14 8
SEE Term X Subjects

w/i Groups
0.0 6 2 32 0.002

Bias

Source SS df MS F p

Between Subjects
CAT Type 0.196 1 0.196 0.767 0.394
Subjects w/i Groups 4.085 16 0.255

Within Subjects
SEE Term 0.004 2 0.002 1.206 0.313
CAT Type X SEE Term 0.007 2 0.004 2.416 0.105
SEE Term X Subjects

w/i Groups
0.048 32 0.001

NIA

Source SS df WS F p

Between Subjects
CAT Type 335.653 1 3 35.65 3 13.883* 0.0 0 2
Subjects w/i Groups 386.833 16 24.177

Within Subjects
SEE Term 102.072 2 51.036 74.531* 0.0 0 0
CAT Type X SEE Term 2.123 2 1.062 1.550 0.228
SEE Term X Subjects

w/i Groups
21.912 32 0.685



Table 6: Descriptive statistics for NR and 3PL CATs. Item selection on the basis of

category information for the NR CAT and item information for the 3PL CAT.

CAT SEE Mean SD Mean Median SD rb
A A

0 0 NIAa NIAa NIAa

3PL 0.30 0.168 1.193 12.759 10.000 5.927 0.902
0.25 0.152 1.165 15.073 13.000 6.335 0.925
0.20 0.171 1.164 16.191 13.000 6.879 0.928

NR 0.30 0.302 1.157 8.121 6.000 4.956 0.916
0.25 0.292 1.170 9.532 8.0,0 5.116 0.918
0.20 0.259 1.180 11.411 10.000 6.195 0.924

aNumber of items administered
A

Spearman rank-order correlation coefficients between 0 and 0T.

Note: 8T = 0.000, 50T = 1.292.

3U
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Figure Captions

Figure 1. Multivariate logit plot for a three category item, a = (-0.75, -0.25, 1.0) and

c = (-1.5, -0.25, 1.75), in the category selected and logit spaces.

Figure 2. Example OCCs for a three category item, a = (-0.75, -0.25, 1.0) and c = (-1.5,

-0.25, 1.75).

Figure 3. NR model's OCCs (a2 = 0.40, ai = -0.40, c2 = 0.2, and et. = -0.20) and the 2PL ICC

(a = 0.80 and b = -0.5).

Figure 4. Bimodal information function for an item where a = (1, 0.1, -0.1, -1) and c =

(0.1, 2.4, -2.6, 0.1)

Figure 5a, RMSE plot for NR CAT (mi = 3, NIA = 20).

Figure 5b. Bias plot for NR CAT (mi = 3, NIA = 20).

Figure 6. Average NIA for NR CAT minus average NIA for 3PL CAT.
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