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Editor's Preface

The theme for the 1991 PME-NA conference is "Theoretical and Conceptual

Frameworks in Mathematics Education." We are fortunate, indeed, to have plenaries

on this topic by Drs. Bauersfeld. diSessa and Eisenhart and reactions to the three

plenaries by Drs. Peterson, Thompson, and Lester, respectively. The Program

Committee expects that these six presentations andthe Saturday panel discussion of

the topic will create an atmosphere of reflection, examination and discussion on this

significant issue.
Three features of these two volumes were organized in such a way as to

maximize their usefulness to colleagues. First, Volume 2 was completed first so that it

could be mailed one month before the conference to preregistrants. Second, a Grade

(Age) Index was compiled and printed at the end of Volume 1 to help people identify

presentations aimed at further exploring concepts and research issues of learners of

particular developmental levels. And, third, all papers have been indexed by topic in

a Subject Index at the end of Volume 1; nearly all papers were indexed twice. The

Grade (Age) Levels and subject identifiers are also indicated on the upper right hand

corner of the first page of each paper. Because of printing costs and the

unavailability of many complete addresses, one address is given for tiscaaagier at

the end of Volume 1.
I would like to extend special thanks to the members of the Program Committee,

especially to my colleague Cathy Brown, for their assistance. I also am most

appreciative of the efforts of the many reviewers who helped evaluate proposals in a

timely manner and to Tom Hunt, Director of the Division of Curriculum & Instruction for

facilitating our work through secretarial and bookkeeping support. And, finally, I'd like

to express my sincere thanks to Paula Buchanan for her very able secretarial

assistance this year. My job has been ever so much facilitated by her hard work,

competence and good humor.

Robert G. Underhill
September 1991

Praarem Committee Local Oroanizino Committee
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Cathy Brown, Co-Chair, Virginia Tech Carl Grady
Paul Cobb, Purdue University Sue Hagen
Jerry Goldin, Rutgers University Bridget Arvold
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NA
Epistemology
Algebra Translation

THE COGNITIVIST CARICATURE OF MATHEMATICAL THINKING:
THE CASE OF THE STUDENTS AND PROFESSORS PROBLEM

David Kirshner Janet McDonald
Psychology Department

Thomas Awtry Elizabeth Gray
Department of Curriculum & instruction

Louisiana State University

,abstract
The Students and Professors Problem has been researched oxtersively for over a decade by cognitive
scientists, This paper examines some of the epistemological assumptions embedded in cognitive
science methods, and presents data to suggest that these assumptions are unproductive for
understanding the source of the reversal error.

Noddings (1990) distinguishes between constructivism as a cognitive position and as a methodological

perspective:

As a cognitive position, constructivism holds that all knowledge is constructed and that the instruments

of construction include cognitive structures that are either innate (Chomsky, 1968; 1971) or me

themselves products of developmental construction (Piaget, 1953; 1970a; 1971a). (Noddings, 1990,

P. 7)

Thus cognitive constructivism is a broadly inclusive movement admitting of divergent views as to the nature

cognitive structure. Methodological constructivism is more restricted:

As a methodological perspective in the social sciences, constructivism assumes that human beings a

knowing subjects, that human behavior is mainly purposive, and that present-day human organisms

have a highly developed capacity for organizing knowledge (Magoon, 1977). These assumptions

suggest methods -- ethnography, clinical interviews, overt thinking, and the like. (Noddings, 1990. p.7)

The cognitive science method of fine-grained analysis of clinical interview transcripts is the principal vehicle

for the now dominant constructivist psychology of mathematics (Schoenfeld, 1987). But this is the restricted

methodological constructivism that assumes "human beings are knowing subjects, that human behavior is

mainly purposive." Such assumptions help us to refabricate the psychology of mathematics as a

foundationaily rational domain, but they don't much help us to help children learn mathematics.

The case in point is the now lamous students and professors problem:

There are six times as many students as professors at this university. Write an equation to represent

this statement using S for the number of students and P for the number of professors (Clement, 1982).

The resulting reversal error (6S = P, instead of 6P 5) is one of the most highly investigated phenomena

- 1



Cognitivist Caricature

in the recent history of mathematics education research.

The cognitivist approach to understanding the reversal error has been to closely observe subjects,

successful and unsuccessful, as they grapple with the above (or similar) problems, Transcripts of the

sessions are minutely analyzed to track the problemsolving processes employed. For instance Clement

(1982) has identified three kinds of solving strategies. The word order match strategy is to "simply assume

that the order of the key words in the problem statement will map directly into the order of symbols appearing

in the equation" (pp. 18.19). The second errant strategy, static comparison, recognizes that the conceptual

content of the sentence must be accessed. But because of weak or immature notions of variable and

equation, the solver is unable to encode his or her concepts in correct algebraic symbolism. Finally the

successful solver uses the operative approach in which the conceptual content of the sentence is accessed,

and the solver understands that his or her role is 'not [to) describe the situation at hand in a literal or direct

manner; ...[but to) describe...an equivalence relation that would occur if one were to perform a particular

hypothetical operation' (p, 21).

The view of translation skill and its development that emerges from this and other studies can be

summarized as follows:

1) Translation from natural language into algebraic language is an inherently semantic/conceptual rather

than a syntactic task; hence it is semantic/conceptual difficulties that underlie the reversal error;

2) The syntactic translation strategies that novices apply to word order matching in part can be described

as an overextended application of the representational system of natural language to the formalisms

of algebra" (Kaput, & SimsKnight, 1983, p. 69); and

3) The standard curricular practices that support syntactic translation strategies by presenting techniques

of phrase-by-phrase matching (e.g. Brown, Smith, & Dolcianl, 1986) are fundamentally misconceived:

How is it possible for students with such weaknesses to survive high school and college science

courses? It appears that these students have developed special purpose translation algorithms

which work for many textbook problems, but which do not Involve anything that could reasonably

be called a semantic understanding of algebra. Many word problems are constructed so that they

can be solved through a trivial word-to-symbol matching algorithm.... While these techniques may

be partly successful In many classroom situations, they are too primitive and unreliable to be

trusted in any but the most routine applications. (Clement, Lochhead, & Soloway, 1980, p. 5)

There are several features of this cognitivist research program that give rise to concerns. Firstly the

selection for Intensive study of particular problematic translation tasks provides a means for obtaining a
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Cognitivist Caricature

snapshot, as it were, of the mind in action. But the cost of this single-minded attention is that the cognitive

context of such translation tasks embedded within a school curriculum of other translation tasks remains

unstudied (though not unanalyzed. as the above quotation attests).

Secondly, and more alarmingly, the clinical interview is an entirely inappropriate method fry

investigating phenomena that may be related to syntactic processes --well -known to be unconscious and

inaccessible to introspection. Think-aloud protocols only can reveal aspects of thought that are consciously

accessible to the informant (Ericsson & Simon, 1984, pp. 14.15). Thus the conclusion of cognitivist research

that semantic/conceptual rather than syntactic knowledge underlies successful translation is an artifact of the

methods used, rather than a bona fide implication of research.

A SYNTACTIC MODEL OF ALGEBRA TRANSLATION SKILL

For the vast majority of school word problems syntactic methods of phrase -by- phrase translation can

successfully be employed. In the simplest case the sentences are immediately phrase-order-matched (POM).

For example if J represents John's height, and M represents Mary's height, (John's height) (is equal to) (six)

(times) [Mary's height) can be translated by substituting the mathematical symbols J, 6, x, and M

respectively for the bracketed phrases, without accessing the conceptual content of the sentence,'

For a second class of sentences, certain within-phrase adjustments (WPA) must be made prior to

applying phrase-by-phrase substitutions. For instance the sentence The number of diskettes is four less than

the number of notebooks must first be adjusted to The number of diskettes is equal to the number of

notebooks subtract four before phrase-by-phrase translation can be done. We argue that such within-phrase

adjustments can be accomplished without accessing the conceptual content of the whole sentence.

A third class of sentences does require whole-sentence transformation (WST) to become phrase-order-

matched. The sentence The calf weighs four times as much as the pony has non-quantitative noun phrases

(e.g., the calf); the quantitative aspect residing in the verb (weighs). In order to achieve POM form, the

quantitative aspect of the verb must be parcelled out to the noun phrases, leaving the denuded to be verb

form: The calf's weight is four times the pony's weight. We argue that such "massaging" of the sentence can

be accomplished by syntactic means, without accessing the quantitative relationship between the variables

that underlies the conceotual structure of the sentence, and, thus, that these sentences, too, can be

translated by phrase order matching.

'Our position is not that translators read such sentences without understanding, but that their
knowledge of the meaning of the sentence is not utilized in the translation process.

3



Cognitivist Caricature

The Students and Profesiors problem is an exemplar of a fourth class of sentences that turn out to

be not phrase order matchable (NPOM). Attempts to adjust and transform such sentences fail. For There

are six times as many giants as professors attempts to make the noun phrases quantitative might result

in There are six times the number of students as the number of professors, but then no syntactic

transformations are available to relocate the verb between the noun phrases to enable phrase-by-phrase

translation. It should be noted that this sentence does have a POM counterpart, The number of students is

equal to six times the number of professors, but this form of the sentence cannot be achieved by syntactic

transformations; thus reference to the conceptual structure of the sentence is needed in translation.'

This analysis of NPOM sentences within a broader context of algebra translation tasks leads to two

possible hypotheses:

1) Either translation is inherently a conceptual task the syntactic correlates and their pedagogical

exploitation being nothing but incidental and vexatious distractions; or

2) Algebraic translation is inherently a syntactic task, and the competent translator avoids reversal errors

by being sensitive to the partial products of the (syntactic) translation process, abandoning syntactic

translation methods in favor of conceptual methods for NPOM sentences only.

Note that the second hypothesis is compatible with previous cognitivist observations of student protocols.

That the competent translator first attempts, and then rejects, a syntactic translation strategy might well be

Introspectively inaccessible information. Similarly the novice translator may fail, not because of immature

conceptual structures, but because of a lack of sensitivity to, or lack of security with, the partial products of

the syntactic translation process, and thus miss the cue to abandon syntactic processes in favor of conceptual

strategies. Following are data relevant to these hypotheses.

EXPERIMENTAL DESIGN, DATA, AND RESULTS

Our subjects in this study were 20 professors, 5 instructors, and 17 graduate students in the

Mathematics Department at Louisiana State University. We reasoned that if the syntactic model presented

above is correct then the amount of time required to translate sentences of the various types ieentified ought

to vary with the amount of adjustment and transformation required. In contrast, the conceptual model of

sentence translation does not predict that the different classes of sentences (controlled for word length)

should require different amounts of processing time.

'Actually we have discovered several types of NPOM sentences, each of which fails to be
transformable for different reasons.

rl
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Cognitivist Caricature

Following 6 warm-up sentences of the POM and WPA variety (to guard against speed up effects), a

random arrangement of 2 -POM, 2-WPA, 5-WST, and 5-NPOM sentences were presented individually on a

computer terminal to each subject (4 'fillers" and 1 additional NPOM sentence involving an extra operation

also were presented, but those data are not reported here). Preceding each sentence were definitions of the

two vanables to be used, and instructions to translate the upcoming sentence on the answer sheet provided

as quickly and accurately as possible, and then to press the space bar. Response times to read and

translate each sentence were automatically recorded by the computer.

Of the 1050 (25X42) answers given, there were a total of 61 errors, 46 on NPOM sentences, 2 on WST

sentences, 13 on the filler items. Of the NPOM errors, all but two were reversal errors. Over all items, only

16 subjects scored perfectly; 26 made at least one error. Table 1 displays mean response times by problem-

type for the 16 subjects with perfect scores (similar results obtain for more inclusive analyses).

Table 1

Mean Latencies (in Seconds) by Problem Type for the 16 Errorless Subjects

POM WPA WST NPOM

92 9.4 122 16.8

An analysis was performed by aggregating items within problem type, and then performing a within

subjects ANOVA on response latencies. Response times on the problem types differed significantly

(F(3,45) =18.6, p < .0001). Newman-Keuls post hoc analysis showed that NPOM problems took significantly

monger than WST sentences (0(2,45) = 5.6, p < .01), which took longer than WPA sentences (Q(2,45) = 3.4,

p < .05) and POM sentences (0(3,45) = 3.7, p < .05). Response times for WPA and POM sentences did

not differ significantly.

CONCLUSIONS AND IMPLICATIONS

In two respects these results provide support for the syntactic theory of sentence translation. 1) The

pattern of response latencies for the different sentence types matches the predictions of the syntactic theory.

There would be no reason to expect such response-time differences if translation were based on conceptual

analysis of sentences. 2) The high frequency of reversal errors by fully accomplished mathematicians and

graduate students makes it almost Inconceivable that translation is a purely conceptual task. There Is nothing

conceptually difficult about sentences like There are six times as many students as professors, even for

novices (Wollman, 1983). It Is much more reasonable to presume that some subtle, internal cue to access

- 5 -
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Cognitivist Caricature

the conceptual content of the sentence has been missed.

It might be concluded that the data reported here shed new light on the translation process that can

inform future research and theory. But This conclusion misses the major intention of the paper.

Mathematically competent people are able to accomplish a variety of translation tasks including NPOM

translations which require ultimate reference to the conceptual structure of the sentence, as well as simple

POM, WPA, and WST sentences which could (in principle) be dealt with by either syntactic or conceptual

means. But there is another class of complex (COMP) sentences involving multiple operations (the "filler"

sentences in the instrument described above) that are easily translatable, but which may be essentially

incomprehensible. For instance, sentence like John's weight in pounds is five more than two-thirds of three

more than twice the square of two less than half the cube root of Bill's weight in pounds are easy to translate

into algebraic notation, but it would probably be necessary to do the translation first, and then ponder the

resulting equation, in order to be able to conceptualize the relationship between the variables. Thus adopting

the position of previous reversal-error research that translation in algebra is essentially a conceptual/semantic

task requires disregarding obvious and ordinary facts about translation skill. This testifies to the

epistemologically-bounded nature of the theorizing that has informed reversal error research thus far, and,

as argued by the first author (Kirshner, 1989a, 1989b), is part of a more general program in the psychology

of mathematics to idealize algebra as a domain of rational intellection.

Pedagogically this is a matter of no small importance. Reflecting the influence of cognitivist research,

the recent NCTM Standards calls for decreased attention to routine word problems (NCTM, 1989, p. 127).

From a cognitivist perspective this serves to minimize the vexing influence of syntactic factors on the

acquisition of conceptual knowledge. But despite numerous attempts to remediate the reversal error by

attending to the conceptual deficits identified in cognitivist research, it has been found that "the reversal

problem is a resilient one and ... students' misconceptions pertaining to equation and variable are not quickly

'taught' away' (Rosnick & Clement, 1980, p. 6).3 If, as proposed in this paper, syntactic parsings and

matchings practiced in routine word problems are the foundations of translation skill in algebra, then the

disappointing results of cognitivist instruction will be replicated nationwide.

'An exception is the study by Clement, Lochhead, & Soloway (1980) of the effect cf translating word
problems in the context of writing computer programs. But they note the different functions of equal signs
and variables in computer languages as compared to algebraic language (p. 11).
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COGNITIVE OBSTACLES OF DEVELOPMENTAL-LEVEL COLLEGE STUDENTS
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West Long Branch, New Jersey 07764

Gerald A. Goldin
Center for Mathematics, Science, and Computer Science

Rutgers - The State University of New Jersey
Piscataway, New Jersey 08855

This paper examines qualitatively some problem-solving processes used by
developmental-level college students, in relation to the cognitive obstacles
(diagram-drawing, algebraic, and affective obstacles) they encounter.

In this paper, we focus on "cognitive obstacles" - i.e., conceptual blocks to student

understanding which can occur during problem solving, which are more than momentary

difficulties.

Through carefully structured, individual clinical interviews, we have been able to

describe in considerable detail the spontaneously-employed "heuristic subprocesses" used

by each of 22 students, when solving an algebra word problem that may entail drawing a

diagram. We also observed their responses to minimal structured suggestions, or "hints"

(Bodner, 1990; Bodner and Goldin, 1990, 1991). The interviewer's script was modeled

structurally on an earlier script developed for studying a different heuristic process,

"think of a simpler problem" (Goldin, 1985). It consisted of six sections: (I)

Introduction; (II) Understanding the terminology and concepts; (III) Presentation of

the problem (the dinician encourages free problem solving as much as possible, without

interruption):

The length of a rectangle is one inch greater than twice its width. The
perimeter is 26 inches. What are the dimensions of the rectangle?

(IV) Guided use of the heuristic process, "drawing a diagram" (the clinician offers

minimal heuristic suggestions, but only when the student cannot continue); (V)

- 8



Presentation of diagrams (a last resort, which was not in fact necessary for any of the

students); and (VI) Looking back. Such a structured script allows us to learn first about

each student's spontaneously-employed heuristic processes; when an obstacle occurs, we

provide just those minimal heuristic suggestions needed to ove.come the difficulty, and

learn more through observing the student's subsequent spontaneous behavior. The

interviews were videotaped, and all 22 protocols were transcribed and analyzed. Thus

we obtained for each student a detailed sequence of diagram-drawing and related

competencies exhibited (a) spontaneously, or (b) only in response to suggestions, or (c)

not at all.

As a result of the analysis of student protocols, we identified various kinds of

cognitive obstacles, among which three were particularly prevalent:

(1) diagram-drawing obstacles: failure to establish or monitor an effective
correspondence between decisions motivated from a diagram (possibly an
inappropriately labeled diagram), and the problem statement; this includes
use of tha diagram only to organize conclusions rather than to motivate
strategic decisions;

(2) algebraic obstacles: misconceptions about symbol meanings;
misunderstandings about relationships between variables and equations;
and algorithms memorized without understanding;

(3) affective obstacles and unproductive belief systems: emotional
interference; lack of confidence in the student's own ability resulting in
ineffective executive planning and control; beliefs about "what to expect"
that are unrelated to or counter to conceptual understanding.

Only a few representative examples and partial excerpts from protocols are cited here

due to space limitations. For the complete transcripts of all 22 students see Bodner,

1990.

Diagram-Drawing Obstacles

The calculation of a semi-perimeter (that is, setting the sum of one length and

one width equal to the numerical value of the perimeter) was the most frequently

occurring student error. Nine of the 22 students committed this error at some point in

their interviews. Those students who drew partially labeled diagrams may have been led
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to this error by their diagrams, in the absence of effective monitoring. Consider Alice's

response. Initially, she had calculated a semi-perimeter and when asked to explain how

she obtained her answers she replied:

Well first you read the problem aloud and try to get an understanding of it
and then if you can you try to draw a picture like to help you along. And
then I drew the picture and labeled the sides. i just labeled the width
'cause it gave me the length of the other side. So if it's twice the width
which is 2X and one inch greater than that is 2X plus one. Then I just
worked it out because if you take. the length and the width, it's like, let me
do it again... When I looked back and noticed that I did the problem
wrong, because I had only used, like, one side, one length and one side of
the width, when it was actually two sides. I forgot about this side and this
side. [She pointed to the unlabeled sides of the rectangle.]

Alice herself retrospectively detected her own failure to monitor the correspondence.

Millie's obstacle was that she did not spontaneously draw a diagram when solving

the problem. She, too, incorrectly calculated the semi-perimeter. After she had

explained her solution, the clinician asked her if she could draw a diagram for the

problem. She immediately recognized her error and responded:

I did that wrong. The perimeter would be the addition of all of these and
I only added one of each. The first time I did it, umm, like I told you, I
got the length equal to two times W plus one and the width is W and they
give you the perimeter, which is the addition of all four sides and I only
took one of the length and one of the width. But then when I, I thought I
did it wrong, but then when you asked me to write the diagram I really
realized what I did wrong, that I had to add two of each. If you have a
diagram in front of you, it makes you, you can think a lot easier about the
problem. I mean I did it without the diagram the first time and I wasn't
thinking right, but as soon as I looked at the diagram and I realized, I
mean it made me think right. I mean, I knew that the perimeter is the
addition of all four sides but when I just wont ahead and did the problem
and I didn't have the diagram, I wasn't thinking, I was just doing the
problem. And then when I did the diagram, I realized, you know, I just
said that the perimeter was the addition of all four sides and then I didn't
do it whey. I did the problem.

The initially unsuccessful students were eventually successful, and recognized their

errors either (a) spontaneously while describing to the clinician how they had solved the

problem (usually when referring to their diagrams), or (b) when prompted to draw a
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diagram or to label the diagram more completely. The labeled diagrams seem to have

focused the students' attention on what they were trying to accomplish, as well as

enabling them to accomplish it. Interestingly, none of the five students who labeled all

four sides of their rectangles made the "semi-perimeter" error. It appears that diagram-

drawing obstacles can be overcome fairly readily through suggestions and hints.

Algebraic Obstacles

One algebraic obstacle for several students occurred in interpreting the phrase

"greater than" in the first sentence of the problem statement. Mary repeatedly (four

times throughout the interview) wrote L = 1 > 2W, using the "greater than" symbol in

place of the "plus" sign. Later she realized

That is wrong. I don't know. I guess I should have a plus because if
they're just saying greater and I'm just thinking greater than, less than so..
I can put it in like that.

Other algebraic obstacles involved the writing of equations. Bill attempted to write an

equation for the problem by setting the sum of the four dimensions of the rectangle

equal to zero. When the clinician asked him about why he wrote this he replied:

The zero is just to keep the equation kinda' balanced. You just can't have
an equal sign without anything there... until you put something over there.

He knew that a number cf some sort was required, and zero seemed a logical "default"

choice to him (instead of the value of the perimeter). Initially Mary also demonstrated

considerable confusion over variable and equation usage. Her initial idea seems to have

been that one shouldn't have "too many W's". Here she corrects herself:

26 equals two plus 4W plus 2W. See, I'll have too many... oh wait a
minute, never mind. 26 equals two plus 6W minus two is 24 equals 6W. I
have a new one now.... I don't know why I left it out to begin with
because if I have the equation I should have used everything. To begin
with I just left that whole step out completely.... Because, I don't know it
was because I thought that there were too many, it's stupid but, too many
W's. Because there was you know what I mean? There was two of them
but I forgot it came back that you could add them together again because
you know they could be added together.



Mandy eventually wrote a correct equation, 2(1 + 2W) + 2W = 26; but she did not

believe she could solve the problem, that is find the values of the dimensions, using her

equation:

I have no ides 'ike how I could try to find a side like for the length or for
the width... S.. , I don't understand how like to use... I know how to use
equations but I just don't how to use an equation in this way, to find one of
the four sides.... I'm just not, it just doesn't seem like I solved it correctly
because I just took, I just guessed at how to write out the equations using
what I was given.... Like the way I was able to get hke a width out of
that... it just doesn't seem like I solved the problem because it should
have been easier than all these steps.

She had no trouble manipulating the symbols in the equation but she could not recognize

the connection between the equation and what the variables represented.

A few students were able to perform the algebra correctly, but their statements

evidenced algorithm memorization without full understanding of the underlying concepts.

As Vicky stated:

I took my 2X plus one and I did it times it by two, put parentheses around
it 'cause it... I don't know. That's what you're supposed to do... And
then I had a two left over which was with my variables and you can never
have variables and constants together so I had to bring the two to the other
side and since it becomes negative, I had to subtract it from 26 which gave
me 24 and then I took the 6X and divided into 24 and that gave me four.

Likewise, Jane expressed herself as following rules rather than understanding what she

was doing conceptually:

I was always taught that whatever, whenever an equation says "than"
whatever's after that goes first so since I know that the width is X, right?
And it says twice its width, X is representing the width so I put two in front
of the X which gives me... and I know that it's one inch greater than twice
its width so I p..4t 2X plus one for the length.... Then what I did I added
the like terms and in front of the X is always the invisible one so that's 3X
plus one equals 26. Now you gotta' get the positive one to the other side
and in order to do that you have to negative one to both sides. This
cancels out and it stays, 3X equals, you subtract here. which gives you 25
and you divide by the three. Now your result is eight over 1/3. The
reason why it's wrong is because it's a fraction.

Although the use of algebra is correct we still regard these students' "procedural"

21

- I 2 -



orientation as a serious cognitive obstacle.

Affective Obstacles and Unproductive Beliefs

Students' feelings about the problem, word problems, and mathematics in general,

were also sometimes obstacles. Jane commented:

I've always had problems with solving problems, these kind of things when
I first encounter them. But I don't know, I kind of get like, umm... like I
don't lama I get upset 'cause I see it as a competition. Every time I try to
tackle it I can't get through it. , . If I do some certain of problem and
it comes out wrong then I get discouraged and I guess that's one of my
weaknesses as well.

Naomi said the problem "wasn't hard but I was aggravated because I couldn't figure it

out." After solving the problem she said that she felt "relieved... A feeling of success, I

mean it's just a little problem, but me and math don't get along so when I get a problem

right then I just feel good."

Student expectations and beliefs could also become obstacles. Some of the

students verbalized what sort of processes they expected to go through and the sort of

answers they would find. For example, Mandy doubted her correct answers:

I don't think it's right... It just doesn't seem like I solved the problem
because it should have been easier than all these steps... from where I've
had things like this in school, it just seems to me as though there's always a
simple equation. Then you just plugged in numbers, but this one only gave
you one number.

Many of the students expressed themselves as expecting whole number answers to the

problem. As Roger explains:

I figure this is wrong because when I adds this up it does not come evenly
and because I had a mixed fraction here... When I seen the negative two
change the negative two to 26 and I knew the eight, the 8W would go into
24 evenly, three. At that point I knew it was going to be right. This
problem is going to work out right, because I figure in these kind of
problems that a fraction would not help, unless, you know it's really some
kind of significance within this problem.

Jane too (see earlier quote) thought a fraction had to be a wrong answer.
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Our results suggest that overcoming these specific cognitive obstacles should be a

more explicit goal in developing problem-solving ability in algebra.
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EVALUATION PRACTICES OF SECONDARY MATHEMATICS TEACHERS

Melvin R. Wilson 'Thomas J. Cooney Elizabeth Badger
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A written survey was used to investigate the evaluation practices and conceptions of 201
secondary mathematics teachers (grades 7-12). About half (48%) reported using
primarily tests provided by publishers to evaluate students. Over half( 57%) generated
computational or single step problems to test deep mathematical understanding. A
follow -up survey (N=102) and interviews (N=20) confirmed that many teachers
evaluation practices reflect a narrow view of what constitutes mathematical
understanding.

There is no question that teachers' evaluation practices influence the nature of mathematical

experiences in the classroom. Evaluation sends a powerful message to students, not only about the
content that is considered important, but also about the kinds of thinking that are valued. In his

review of the impact of classroom evaluation, Crooks (1988) cites the potent effect of students'

expectations of what will be tested on their studying and learning:

Examinations tell them our real aims, at least so they believe. If we stress clear

understanding ... we may completely sabotage our teaching by a final examination

that asks for numbers to be put into memorized formulas. However loud our

sermons, however intriguing our experiments, students will judge by that

examination - -and so will next year's students who hear about it. (p. 956)
The purpose of this study is to identify the evaluation practices of secondary mathematics

teachers and consider those practices in light of the vision set forth in the Curriculum and Evaluation

Standards (National Council of Teachers of Mathematics, 1989). Identifying teachers' conceptions

of evaluation can deepen our understanding of important psychological aspects of teaching and

learning by exploring what teachers think mathematical understanding consists of, what teachers
believe is important for students to know, and w'iat teachers believe students are capable of
understanding. This study aims to identify these aspects as evidenced by teachers' evaluation

practices and their conceptions about evaluation. Guiding the research arc the following questions

(1) What are teachers' conceptions about evaluation and how are those conceptions reflected in their

evaluation techniques?, (2) What is the nature of the mathematics that teachers evaluate?, and (3) Do

teachers feel comfortable responding to and using open-ended evaluation items and do they

appreciate the potential of such items for assessing students?

Influencing this project is a developmental theory proposed by Perry (1970) that suggests how
individuals typically view their worlds. It describes a classification of individuals' beliefs about the
nature and origin of knowledge and their responsibility toward those beliefs. Two of the general

cat ories discussed by Perry include dnalisia and relativism. Dualism suggests thatevery question
h s an answer, that there is a solution to every problem, and that those in authority should deliver
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these answers and solutions. A dualist conception of mathematics is reflected in the statement,

"mathematics is a fixed set of procedures to be mastered." Relativism on the other hand suggests

that observed data should be interpreted in terms of validity and internal consistency, and that validity

depends upon context. For example, one solution method to a mathematics problem might be

preferred over another because of its computational efficiency, while the first might be easier to

understand. An emphasis on mathematical processes such as problem solving, communication, and

reasoning reflects a relativist orientation to mathematics and mathematics teaching.

We have little information about what teachers actually consider when evaluating students or

what beliefs teachers hold about evaluation. For example, although there is a growing body of

literature suggesting that many teachers and students have dualistic conceptions about mathematics

and its teaching (Borasi, 1990; Brown, Cooney, & Jones, 1990), we do not know whether such a

view is reflected in teachers' evaluation practices. Until such information is available, we have little

basis for determining how the vision described in the Standards (NCTM, 1989) can be achieved.

This study attempts to provide such information.

METHOD

Sample and Instruments

Data about teachers' evaluation practices were obtained using two written surveys and an

interview. The surveys were designed by the authors and piloted by teachers at a local high school.

The first survey (Phase I) was completed by 279 mathematics teachers participating in summer

(1990) inservicc mathematics and mathematics education courses at colleges and universities across

the state of Georgia (USA). The survey was designed primarily for secondary teachers (grades 7-

12), so analysis was restricted to the 201 surveys completed by secondary mathematics teachers.

The sample included 45 males (22%) and 156 females (78%). Average teaching experience was 9

years. The majority of teachers (111, 55%) taught at traditional high schools (grades 9-12 or 10-12);

seventy-two (36%) taught in middle schools or junior high schools (any of grades 5-9) and 18 (9%)

taught in some other type school (e.g., grades K-8 or 6-12). The survey requested teachers to

respond to questions in a way that would describe their evaluation practices for their first period

course (1989-1990 academic year). Table 1 summarizes the number of teachers (and percent) who

reported about each of the various courses listed in the table.

Of the original 201 teachers, 102 (51%) completed a second survey (Phase 11). Teachers

responded to five non-traditional evaluation items (mathematics problems) that varied in open-

endedness; three required some explanation or argument and two asked for the generation of a

number. Figure 1 contains each of the five items. Teachers were asked to provide "ideal responses"

to the items and indicate both what they thought the items tested and how likely they would be to use

such items in evaluating students. A third phase of data collection (Phase Ill - -in progress) includes

interviews with 20 teachers that explore in more depth teachers' conceptions o mathematics and

U
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1 A researcher asked many students two questions:
"What was your grade on your last math exam?" and
"How many hours per night did you usually spend
on math homework?" The ininter then coned
students into groups according to how much umc
they spent on homework. Finally, the researcher
computed an average math grade for each of these
groups and plotted the averages in the graph below.

Write a plausible explanation to explain the data.

q, Math

(wow./ Q.*/

Tow Spent on Mtn
orn...warn

IMEap.)

Teachers' Evaluation Practices

2. Theo wants to fmd out which pond covers the larger
area, Parker Pond or Shelby Pond. He does rot
need to know the two areas, just which is bigger.
Theo claims that all he has to do is measure the
distance around each pond to find out what lte wants.

Will Theo's method work? Write a convincing
argument for your answer.

PARKER
POND

SHELBY
POND

\,) IS ONE UNIT OF AREA.

lJ

Given the unit of area shown above, what is the area of the larger figure?

4. Gwen was given the problem 2/5 <? <4/7. She said that 3/6 would be between 2/5 and 4n. The teacher asked

Gwen to explain how she got her answer and why she thinks her method works. Gwen said that she chose a

numerator of 3 because 2 < 3 < 4 and a denominator of 6 because 5 < 6 < 7. Gwen claimed her method always

works and gave the following examples:

i. The fraction 2/4 is between 1/3 and 3/5 became l<2<3 and 3<4<5.

ii. The fraction 4/9 is between 2/5 and 6/11 because 2<4<6 and 5<9<11.

Does Gwen's method always work? Explain you reasoning.

How far to the left should the picture be moved no that it is centered on the wall?

Figure I. Items from Phase II of Evaluation Practices Survey
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evaluation. One focus of the interviews is a discussion of a typical test used recently by each teacher

to evrluate students.

Table 1
Courses Taught

(N=201) MS PA BM Al G A2+
Number of
teachers(%) 41(20) 41(20) 27(13) 36(18) 26(13) 29(14)

MS= Middle School Mathematics (grades 7 and 8), PA=Prealgebra, BM=Basic/General
Math (grades 9-12), A1=Algebra 1, G=Geomeny, A2+-=mathematics courses at the
Algebra 2 level or above (e.g., Precalculus, Algebra 3, Calculus)

RESULTS
Phase I

Using data from the first survey we attempted to identify how teachers evaluated students, the

sources of their evaluation instruments, and what basis conceptions of evaluation teachers seemed to

have. Table 2 illustrates how the teachers' evaluation practices related to their grading procedures.

Table 2
Grading Procedures

Source Final
Exam

Percent 12.6

Unit Tests Quizzes Home- Notebooks Class Part-
work /classwork icipation

41.2 17.2 16.6 7.6 3.6

Other

1.3

Almost half of the teachers (N=97, 48%) indicated that the primary source for their unit or

chapter tests was textbook publishers. Further analysis led us to categorize two kinds of testers:

"external" and "internal." EXTernal testers relied exclusively on external sources (e.g., publishers,

local or state boards of education) for ttg and final examinations; INTernal testers relied exclusively

on tests created by themselves or peers. Of the 201 teachers, 39 (19%) were classified as external

and 64 (32%) were classified as internal. As indicated by Table 3, the external testers were

concentrated in the middle school courses (MS and PA--67%) while most internal testers taught high

school courses (BM, Al, G, A2+--80%).

Table 3
External and Internal Testers

MS PA BM Al G A2+ Total

EXT (N=39)

ENT (N 54

31%

8%

36%

12%

10%

11%

10%

25%

5%

19%

8%

25%

100%

100%

Refer to Table 1 for course abbreviation interpretation
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Using the survey in Phase I we also investigated how teachers conceptions of mathematical

understanding might be reflected in their evaluation practices. Specifically, we we terested in

finding out the meaning ascribed by teachers to the phrase "deep and thorough understanding" of

mathematics. Teachers were asked to write typical problems they believed would test (1) basic and

(2) deep and thorough understanding of a chosen mathematical topic. The problems were classified

according to the predicted level of student understanding necessary to complete the problem. The

levels used in analysis were (1) recognition or simple computation, (2) comprehension or one step
word problem, (3) application or multistep problem, and (4) non-routine or open-ended problem.

Each problem was scored independently by two people, disagreements (there were only 20) were

scored independently by a third person. Figure 2 illustrates some of the typical responses at each
level.

Topic Level 1 Level 2 Level 3 Level 4

Area

Find the area of a
rectangle with a width
of 4 inches and a
length of 2 inches.

Find the area of the
parallelogram

Find the surface area
Draw the floorplan
of a house and
determine the
number of square feet
in the house.

Millbli.
AW

8 4

Functions

I. Is the relation ((0,5),

(1,3), (0,7), (2,4). (3,9))

a function?

2. Graph y = 2x + 3

1. Find the equation of
the line containing the
points (2,3) and (-1,5).

2. Graph y = (x-3)2 - 2

Find the equation of the
line through (-2,3) and
perpendicular to the
line 2y + 5x = 5.

Write a quadratic

function f(x). Write the
function that would
translate f(x) vertically;
horizontally; dialate f.

Fractions

1.

2. What
rectangle

3
+

1

= ?
8 4

fraction of
is shaded?

the

Mary and Joe are
taking a trip of 80
macs. Mary drove 2/5

of the distance. How
many miles did she
drive?

Bob ate 1/4 of a
me...m(1i pizza, 2(3 of

a cheese pizza, and 1/2
of a sausagepizza.
How much of a whole
pizza did he eat?

Identify the activities
of a typical teenager in
a 24 hour period.
Graphically represent
the fractional parts of a
day spent on these
activities.ENE

Figure 2. Typical test items generated by teachers

To measure deep and thorough understanding, more than half the teachers (57%) generated

problems at either level 1 or level 2. These results were even more pronounced among the following
groups of teachers: (1) teachers with less than four years experience (48/69, 70%), (2) teachers of

below average students (24/33, 73%), and (3) teachers who generated problems dealing with
fractions (40/46, 87%).
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Phase II

Table 4 summarizes some of the interesting results from the second survey (Phase II),

includit.z teachers' performance on the problems and their indicated likeliness of using the problems

to evaluate students (likleliness of use was measured using a five point Liken scale).

Table 4
Summary of Phase II Evaluation Items

(N= 101) Item 1(0) Item 2 (0) Item 3 (S) Item 4 (0) Item 5 (S)

Possible Scores 0-3 0-3 0-1 0-3 0-2

Average Score 2.32 2.31 .95 1.80 1.97

Avg./Maximum .77 .77 .95 .60 .98

Likely or Very 54% 66% 79% 75% 85%
Likely to Use

S=single number requested, O=open -ended response requested

Phase III

To date we have conducted 16 interviews. Detailed analysis has not been conducted on the

interviews, but preliminary analysis seems to be confirming and expanding on survey results.

Examples appear in the discussion section.

DISCUSSION

Mathematical Understanding

The data suggest that many teachers test a rather limited or narrow range of possible

mathematical outcomes. To many teachers deeper understanding simply means solving problems

involving more steps, i.e., harder computation. Although most teachers agreed that providing

feedback and identifying students' misconceptions are important purposes of evaluation (86% and

88% respectively of the teachers agreed with these purposes), the problems teachers apparently use

in evaluating students do not suggest that the kinds of misconceptions identified or the substance of

the feedback provided are consistent with current definitions of meaningful mathematical knowledge.

These results were confirmed during the interviews in which teachers consistently conveyed the

notion that mathematics is a sequence of steps and implied that assessing deeper understanding

means providing problems that require more steps to successfully complete. None of the 16 teachers

interviewed thus far indicated that deep and thorough understanding could be assessed by asking

students to exhibit reasoning abilities beyond the production of a specific answer.

Open Ended Evaluation Items

Results from the second survey further indicate that teachers prefer to use single answer

problems as opposed to 0-,e open-ended ones to evaluate students (see table 4). Although teachers'
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Teachers' Evaluation Practices

perceptions about the nature of meaningful learning probably influences this result, teachers'

mathematical ability may also contribute to it. Teachers were less likely to respond correctly to the

open-ended items (as opposed to those requiring a single number) on the second survey. If teachers

find difficulty in answering items that require the construction of counterexamples or arguments,

then they will probably be less likely to engage their students in such activities. There were a variety

of reasons expressed by teachers concerning why they would hesitate to use the open -ended items in

testing situations, including lack of confidence in answering the questions themselves, and that the

problems were too difficult or otherwise inappropriate for their students.

Conclusions

There is a national consensus that assessment should be a vehicle for curriculum reform.

Although there is little doubt that tests exert a powerful influence on what teachers teach and students

learn, the tests themselves are incapable of carrying the burden of reform. Unless teachers

understand tio new forms of evaluation reflect a better vision of what it means to know

mathematics, these new forms will have little influence on curriculum change. The current study

indicates that teachers will not use tasks for evaluation if (1) the tasks do not reflect their own

understanding of mathematics, (2) teachers do not recognize the value of the tasks in measuring

significant mathematical knowledge, and (3) teachers do not value the outcomes the tasks claim to

measure. We do not know all of the reasons why the mathematics that evolves in many classrooms

is dualistic in nature. It may be due in part to circumstances, i.e., student expectations, issues of

fairness in grading, or the ease with which classroom activities can be managed. However,

regardless of the circumstances, as long as teachers choose to communicate a dualistic view of

mathematics, that is, primarily as a series of isolated steps to be applied in isolated contexts,

alternative methods of evaluation will be seen as peripheral to the "real" curriculum.
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A CHALLENGE: CULTURE INCLUSIVE RESEARCH
Patricia S. Wilson and Julio C. Mosquera P.

The University of Georgia

Currently a vast amount of mathematics education research has
completely ignored the cultural diversity of subjects and failed to recognize
implicit differences in treatments or contexts due to culture. Existing
literature in sociology, anthropology, psychology and mathematics
education is used to identify factors contributing to the problem and to
provide insights for future directions. In order to develop a culture
inclusive approach to mathematics education, researchers are challenged to
expand their psychology-based frameworks.

Culture is an integral part of ,nathematics, mathematics learning, and

mathematics teaching. In his presidential address to the fourteenth annual
meeting of PME, Nicolas Balacheff (1991) claimed that the relevance of the
psychological approach to mathematics education depends on researchers'
capacities to integrate the social dimension of mathematical construction into their

theoretical frameworks and research problems. We would like to add the
observation that the social intercourse that occurs in the classroom cannot be

separated from its cultural context. The social construction of mathematics

occurs in environments that are culturally organized. Therefore, culture is an
integral part of mathematics education phenomena and should be addressed in

both theoretical frameworks and research design.

The Problem
Currently a vast amount of mathematics education research has completely

ignored the cultural diversity of subjects and failed to recognize implicit
differences in treatments or contexts due to culture. Several major factors

continue to contribute to this problem:

1. Much of mathematics education research is grounded in psychology-

influenced frameworks which assume that a particular cognitive model explains

learning for all people. Examples can be found in research using constructivist,
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information-processing, or cognitivist frameworks. Piagetian research has been

replicated in a number of cultures, with the purpose of determining the
deficiencies of other cultures, rather than enhancing the theory or questioning

generalized application of the theory.

2. The demographic make up of the population in the United States is not

reflected in the samples used by mathematics education researchers. Researchers

appear to have easier access to white, middle/upper class, suburban populations.

Even in urban situations, individual, homogeneous classes do not reflect the
diversity that exists in the school as a whole. This situation creates a closed and

dangerous cycle. Research studies based on one particular segment of the
population drive the research frameworks which may be only qualified to inform

research related to that particular segment of the population. Secada (1988)
pointed out that research can end up legitimizing unjust social arrangements and

actually indirectly causing disparity in mathematics education between cultural

groups.

3. Mathematics education researchers are often not informed by related
research in other fields such as social psychology, sociology, and anthropology.

Equally important researchers outside mathematics education studying

mathematical understanding are frequently not informed by work done in
mathematics education.

4. Mathematics educators have not paid enough attention to what happens

inside the mathematics classroom. Even research on learning and teaching
mathematics has avoided the classroom and other social contexts. Influenced by

arguments of pure research coming from psychological quarters, mathematics

educators have not confronted social situations where the influence of socio-
cultural factors are salient.

We challenge researchers to address these problems by adopting a cultural

inclusive approach to research that is capable of capturing the wealth of
information available in mathematics classrooms. A culture inclusive approach to
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mathematics education research should include a focus on how culture, or socio-

cultural contexts, influence mathematics teaching and learning. This can be

accomplished only through changes in theoretical frameworks so that research

will progress beyond exclusively psychological tenets.

Insights from the Literature
A number of developmental and cognitive psychologists have recognized

that culture plays a fundamental role in human cognition. This notion applies to

the cognitive activity of the researcher trying to understand as well as the activity

of the learner. Scholars in fields such as anthropology, linguis....:s, social
psychology, and cognitive anthropology have also addressed the role of culture

in mathematics learning. Although these studies often lack a mathematics

education perspective, they do offer directions for confronting our problem. A

growing number of mathematics educators have acknowledge the importance of

culture in the development of mathematics, mathematics learning, and

mathematics teaching. They have been mainly influenced by new developments

in the philosophy and sociology of mathematics.

Developmental psychologists have been interested in cross-cultural studies

as a way of testing the universality of their theories elaborated in the context of

Western cultures. This approach has been challenged by other developmental

psychologists who argue that such studies do not help us to understand how
culture influences thought. Valsiner (1989) and Buck-Morss (1975) are among

those that have criticized that approach. Valsiner, for example, proposed the

creation of a cultural-inclusive developmental psychology. From his perspective,

culture should be regarded as a constituting part of child development. The point

here is that there are broad frameworks in developmental psychology that offer

theoretical and methodological elements that can be incorporated into a
framework for mathematics education in order to overcome the problems

inherited from classical psychological approaches.

Researchers working from a situated cognition perspective begin with the
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situation in which the cognitive activity takes place, and they investigate how the

situation influences individual cognition using methodologies employed in
anthropological research . Through the study of the situation, the relationship of

culture and cognition becomes clearer. For example, Saxe (1991) studied the
situation of candy selling by children in Brazil in order to understand how the

culture of candy selling organized the mathematical cognition of the sellers.
S^ribner (1985) was interested in how action guided the acquisition and
orgaization of mathematical knowledge. For her, the situation and related goals

regulated the action of the participant. Other researchers who have focused on

the situation or context as providing information about cognition include Lave

(1988), Cole and Scribner (1974), and Carraher, Carraher, & Schliemann
(1985).

Both the philosophy and sociology of mathematics are crucial for the
development of a culture inclusive mathematics education. Recent developments

in these areas have contributed to the revival of the conceptualization of
mathematics as socio-cultural phenomenon. It is important to consider how
specific forms of social organization influence the construction of mathematics

(Bloor, 1976; Restivo, 1983 Struik, 1942).

In mathematics education, some researchers have looked at mathematics as

a socio-cultural product and at mathematics education as a social process
(Bauersfeld, 1980; Bishop, 1988; Cobb,1989; Mellin-Olson, 1987; Walkerdine,

1990). In their works, these mathematics educators have called for broadening

disciplinary perspectives in mathematics education in order to move beyond
exclusively psychological frameworks. For Bishop mathematics is a panhuman

activity. He claimed that all cultural groups have the capacity to create
mathematics and, in fact, they engage in mathematical activities. There are six

key "universal" activities in which mathematics is elaborated in culture: counting,

locating, measuring, designing, playing, and explaining. Cobb postulated the
existence of three non-intersecting domains of interpretation in the study of
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mathematics learning and teaching: the experiential, cognitive, and

anthropological. These constructs, however, are complementary. For gaining a

better understanding of mathematics teaching and learning in the classroom a
coordination of these three interpretations is necessary. Me llin-Olsen argued that

the different uses of mathematics in various cultures can decisively affect how

members of those cultures learn school mathematics. He explained that in

discussion about personal and shared knowledge, notions such as conflict and
oppression are unavoidable. Therefore, he focused his work on the construction

of a general theory describing the politics of mathematics education. His general

theory is built on elements and assumptions borrowed from activity theory,
research on language, anthropology, symbolic interactionism, communication

theory, and mathematics education.

Future Directions
We are challenging all researchers to consider a culture inclusive approach

to mathematics education. While we think cultural influence is important for all

areas of investigation, it may be appropriate to consider different levels of
involvement. At a minimal level, researchers should include descriptions of the

ethnic, cultural, or social class composition of the sample even if cultural
influences are not reported. At more involved levels, researchers should include

culture as an independent variable in their designs, so that they can report the

interactions between culture and other factors as well as the composition of the

sample.

We hope that a significant number of researchers will move beyond
reducing cv .ture to an independent variable, and will address culture as an
integral par. of mathematics education (Valsiner, 1989; Stigler & Baranes, 1988).

We encoui age studies in which the primary goal is to investigate how culturally

organized contexts affect the learning and teaching of mathematics.

We challenge researchers to develop an interdisciplinary, culture inclusive

approach to mathematics education that borrows from current research in
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anthropology, philosophy, and sociology as well as psychology. Increased

attention to cultural diversity will allow researchers to more accurately inform

classroom practice.
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Problem Solving
Affect

INTERACTIONS BETWEEN COGNITION AND AFFECT

IN EIGHT HIGH SCHOOL STUDENTS' INDIVIDUAL PROBLEM SOLVING

Valerie A. De Dellis and Gerald A. Goldin

Center for Mathematics, Science, and Computer Education
Rutgers University

New Brunswick, New Jersey 08903 USA

In an exploratory study, we interviewed eight mathematically talented high
school students solving a pair of related non routine problems, and observed
interactions between their ccgnition and their "local affect". We cite some
instances of the influence of affect on executive decisions, and conjecture
an important role for such affect in problem-solving success.

Recently attention has been focused on the role of affect in executive decision-

making during problem solving (Goldin, 1988; McLeod and Adams, 1089).
In previous work, Goldin defines "local affect" to be the "changing states of

feeling during problem solving", and treats it as an internal 3 vim. of reproenta.
tson for problem sol-ing, on a par with imagistic representation, formal notational
representation, verbal representation, and a system of planning and executive con-
trol Global affect, in contrast, refers to general feelings and attitudes, reinforced by
belief structures, that solvers may bring to the problem situation but that are not
so readily modified. For example, a student who is generally fearful of mathematics

(global) may nevertheless, when engaged in a particular problem-solving situation,

experience a variety of feelings (local) ranging from anxiety (at the outset) to sur-
prise and satisfaction (on solving the problem insightfully). Thus, one envisions
local affect as a system of changing emotions; some affective states include cu-
riosity, puzzlement, bewilderment, encouragement, pleasure, elation, satisfaction,
frustration, anxiety, fear and despair. Major pathways involving local affect and
heuristics during problem solving may lead to positive or negative outcomes; and

it is suggested that (desirable or undesirable) long-term, global affect results when

such paths of local affect becoming well-established competency structures.
A similar distinction is made by McDonald (1989, p. 230), who discusses two

different ways in wl. cognitive and emotional processes are involved in learning:

"One is through the indi-idual representation of information that is tied to emo-
tional concerns-the emotional reactions that affect moment-to-moment conscious
processing." [The other] "has to do with sociocultural influences on individuals

-29-

tau



and the way that they see themselves or the information." Mandler (1989, p. 4)
suggests that a theory of emotion "should be of both general and specific interest
to cognitive psychologists", while McLeod (1989, p. 246) distinguishes "beliefs"
and "attitudes" (that are relatively stable and resistant to change) from "emo-
tions" that change rapidly. This important distinction has consequences for ef-
fective mathematics teaching. The NCTM "Professional Standards for Teaching
Mathematics" (National Council of Teachers of Mathematics, 1991, p. 104) -Es-
cusses the need for teachers to be able to promote a mathematical disposition b;'
facilitating students' confidence, flexibility, perseverance, curiosity, and inventive.-
ness in doing mathematics. The assumption is that fostering these (local) feelings
repeatedly in a variety of mathematical situations will foster construction of the
desired (global) disposition.

These background considerations motivated an exploratory study to look at the
interaction of cognition and local affect in a non-routine problem-solving situation.
We conjectured that local affect especially influences executive decisions, and that
it should be possible to observe and describe instances of such influence. We further

conjectured that successful problem solvers tacitly use local affect in selecting
particular processes, so that their affect might actually be guiding their strategies.
Ultimately we are interested in the idea that metacognitive awareness of local
affect can help individuals become more powerful problem solvers.

Subjects

Four high school women and four high school men from New Jersey were se-

lected randomly from the participants in a month-long "Young Scholars" institute
at Rutgers University in the summer of 1990. The students are mathematically
talented, and each identified himself or herself as extremely interested in taking
more science end mathematics courses at school. All had completed 11th grade.
with the exception of two women who had completed 10th grade. The students
returned twice to campus during the Fall 1990 semester for follow-up sessions, and

it was during the second of these sessions that the interviews took place.

A "Last Day Questionnaire" distributed during the 1990 summer institute
asked, "What kinds of personal traits do you think are involved in 'being good
at mathematics'?". The eight subjects had responded that one needs to have
"logic" or be "logical" (4), have "patience" (2), be "curious" (2), have "diligence"
or be "hard-working" (2), "possess understanding" (1), "have intelligence" (1),
have "ingenuity" (1), have the traits of "thinking widely", "thinking carefully",
"determination", and "not giving up" (1), have "the ability to accept failure"

'09
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(1), have "a good memory" (1), "a keenness" (1), "be open-minded" (1), "be
bullheaded" (1), and "be creative" (1). Five subjects thought they possessed all the
qualities they themselves mentioned. Overall, subjects' "global affect" in reference
to their self-perceived ability to solve mathematical problems was quite positive.

Method
In one-on-one interviews two problems were successively introduced, and the

subject encouraged to "think aloud". We used non-routine problems, unfamiliar to
these students, to minimize affective differences among the subjects that might be
due to previous emotional experiences associated with school mathematics or with
standard topic areas in mathematics. Two videocameras recorded each interview,
one focusing on the subject and the other on both the subject and the clinician.
All interviews were conducted by the same clinician (DeBellis).

First, Problem 1 was presented (orally); simultaneously the clinician placed
two bottles of Gatorade on the table in front of the subject:

Problem 1. Suppose you have two containers of liquid. Everything about
the one container of liquid is the same as the other, except for color-that
is, density and volume are the same. In this experiment we used Gatorade.
One container held red liquid, the other container held yellow liquid. Now
suppose you take one tablespoon of red liquid and drop it into the yellow
liquid and mix thoroughly. Then you take a tablespoon of this new mix-
ture and drop it back into the container that has the red liquid and mix
thoroughly. The question is, which container has more contamination in it?
Does the red Gatorade have more yellow Gatorade in it or does the yellow
Gatorade have more red in it?

The subject was left free to solve the problem, without hints or suggestions. After
a conclusion was verbalized, the clinician asked "Why?" The subject was again left
free to justify his or her answer. If a subject's justification used words suggesting
uncertainty or ambisuity, such as "almost", "probably", or "about", the clinician
probed further, e. g.: "What do you mean by 'almost' (or 'probably' or 'about') ?"
After the subject verbalized a justification, the clinician asked, "Do you think your

answer is correct?" The subject responded and the clinician again asked, "Why?" If

the subject concluded the amounts of contamination would be equal, and justified
this conclusion, the clinician asked whether that would always be the case. Finally
she asked, "What happens if we don't stir the mixture? Does that change your
answer?" When the subject expressed confidence or security in a solution (without
affirmation from the clinician), the second problem was pcsed:

Problem 2. Suppose you have two containers of M and M's. Each of these
containers holds one hundred fifty M and M's in it. Suppose you take a
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handful of red M and M's from the container and dump them into the
yellow NI and M's container and shake them up. Then suppose you take the
same size handful of M and M's from this mixture and dump them back
into the red M and M container. Which container would have more of the
other colored NI and M's in it? Would the red NI and M's have more yellow
M and M's in it or would the yellow NI and M's have more red in it?

The Gatorade bottles were replaced by two containers of M and M's, each holding
150 pieces. Note the direct correspondence between the Gatorade colors and the
NI and NI colors, and between the problem structures (with "volume measure"
replaced by the discrete "number measure"). The structure of the questioning for
'':oblem 2 paralleled that for Problem 1. The subject solved the problem freely;
-.hen a conclusion was reached, the clinician asked "Why?" When a justification
was offered, the clinician asked, "Do you think your answer is correct?" The subject

responded and again the clinician asked, "Why?" Some subjects spontaneously
experimented with the NI and M's: there was no guidance from the clinician as
to how to do this, except to indicate that "handfuls" had to be the same size.
Again the ques.ion, "Does stirring make a difference?" was posed. Whatever the
outcome, three final questions were posed: "Have you ever seen a problem like this
before?" "What did you like about this problem?" and "What did you hate about
this problem?" These questions elicited some retrospective expressions of emotion.

Observations and Interpretations
Four subjects correctly concluded for Problem 1 that there would be the same

amount of contamination in each container. Three of these (Subjects 2, 3, and 7)
justified their answers in a valid way, while the fourth (Subject 1) responded, "my
feeling just tells me." Of the other four subjects, all expressed the opinion that their
answers were correct, and provided justifications. The three with correct solutions
and valid justifications took far more time to achieve closure on this problem than

did the others (the clock began after presentation of the problem):

Subject 1 NI 2 minutes 13 seconds
Subject 2 NI 7 minutes 03 seconds [correct solution, valid justification]
Subject 3 NI 4 minutes 46 seconds [correct solution, valid justification]
Subject 4 NI 1 minutes 59 seconds
Subject 5 F 0 minutes 57 seconds
Subject 6 F 2 minutes 35 seconds
Subject 7 F 6 minutes 56 seconds [correct solution, valid justification]
Subject 8 F 2 minutes 32 seconds

In Problem 2, Subjects 1 through 7 ultimately concluded there would he the same
number of NI and M's of the wrong color in each container; all but Subject 4 offered

41.
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valid justifications. Subjects 2, 5, and 7 did not physically perform any experiments

with the M and M's; Subjects 3 and 6 performed one experiment before reaching
this conclusion; while Subjects 1 and 4 performed two experiments. Unfortunately
the videotape recording Subject 8 ran out; she had performed two experiments to
that point indicating equality, but never articulated this as a firm conclusion.

The following excerpts illustrate some representative instances of local affect
interacting with executive decision-making. We let "..." denote a pause by the
subject, and " ***** " an omitted portion of the transcript. In the first problem.
Sul)ject 2 has concluded the yellow bottle will have more red in it.

[Clinician:] Why? [Subject:] Because you take a teaspoon of this (points to red
Gatorade) and put it in there (points to yellow Gatorade) then when you ... dif-
fuses, then you take the amount back up. there will probably be a couple of reds
still in there ... so when you put it back in there (pointing to the red container)
you're only adding a certain amount of yellow and there will be couple of reds
still in there so there won't be quite as much yellow ... oh, I know what you're
saying ... you're saying it's equal ... (pause) [C:] Why do you think I'm saying
anything? [51 (ignoring the question, sits back in ,hair and smiles) Yeah ... it's
equal ... I understand what you're saying ... [C:) (gestures, shaking head) I'm not
saying anything. [5:] Ummm ... (points to the red container) see it's hard to think
out loud ... [C:] Yeah, I understand that ... but that's okay ... [S:] Uggen ... if you
put some of this (points to red Gatorade) in there (points to yellow Gatorade),
it's gonna diffuse and you take some of it back in there (points to yellow Gatorade
then to red Gatorade) ... no, all of it's going to go ... (pause) let's say this was ten
and that was ten (subject points to red, then yellow bottle), let's say hundred ...
***** ... so it would be equal. [C:] Do you think your answer is correct? [S:] Yeah.
[C:] Why? [S:] By my example of ... if this was a hundred and that was a hundred
... (pauses) oh ... oh ... it's not equal. Okay ... ***** ... Take back one eleventh of
it (points to the yellow), put it in here (points to the red) ... this would have ... [S
looks up at C and smiles], this is confusing ... I like it ... a hundred (points to the
red), ten in there (points to the yellow), so you would be leaving just over nine ...
take back ... ***** ... so it would still be the same ... I think ... see, you know, I
don't wanna look like a foul.

Noteworthy is the way this subject twice ignores the clinician while attributing
to her a point of view; this construct seems to help him express his first insight,
at which he smiles. His pleasurable affect then appears to cause him to reflect on
the insight; his expression "ugggh" suggests a letting go of anxiety, and marks his

strategic decision to try a special case, assuming particular amounts of red and
yellow liquid. His concern about "looking like a fool" also motivates him to retain
some tentativeness in his conclusions, and to monitor further their validity.
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Subject 7 has responded to Problem 1 by saying that the yellow bottle has
more red in it; the clinician has asked "Why?" and "What are you thinking?"

[S:] 'let's see ... the yellow would have more contamination unless the amount of
red that you took out was a half of tablespoon ... yeah ... 'cause if you took out
a tablespoon, the only .ray that they could be equal contamination would be ...
if you took out a half a tablespoon of red and half a tablespoon of yellow and
put it in there, and each would have one half tablespoon of contamination. But
since you shake it up, you can't ***** ... for some reason, it doesn't sit right,
though. (S stops, puts her hand to her mouth, sits back on her chair, speaks very
softly) A little bit of red that got out of there (points to yellow container) and put
it back in there (points to red container, mumbles under her breath) ... they're
equal. (smiles, looks at C) they're, yeah, no (squints her face and covers her mouth
again) ... if you take into consideration the amount ... I guess it doesn't matter
(pauses, looks at C) ... now I'm thinking they're equal, because ... ***** ... I want
to say they are equal. Is that right? (C shrugs, S appears frustrated, exclaiming
and sitting back in her seat) 'Cause I can't explain it! ... the amount of red that
you take out in the tablespoon ... part of it ... most of it ... is yellow. Okay, most
of what you take out is yellow ... and the yellow that you take out equals the red
that's remaining in there (referring to the contamination in the yellow container).

We observe the subject's puzzlement, soft speech, and smile as she reorients away
from her initial commitment that only a transfer of exactly half a tablespoon of
red liquid could achieve equality. Note also how this subject's frustration at her
difficulty in explaining her conclusion appears to have served her well, motivating
her to articulate an explanation.

Subject 5 had reached an erroneous conclusion on the first problem. When
Problem 2 was presented, she initially responded that that the container of yellow
M and M's had more red in it.

[C:] Why? [S:] This one (points to yellow container) if you stir, if you stir this
up perfectly, you would take back some of the red M and M's. ',stops) Oh! Okay!
(excitement) All of a sudden I ... (stops to think) [C:] What just happened there?
[S:] (S ignores C). If you take out a given amount ... a certain percentage of M and
M's that you added so ... urn ... okay! if you take the handful out (gestures as if
taking a handful out of the reds) and put it in here (mimics dumping it into the
yellow container), redefines problem) and shake it up (gestures as if to shake) a
certain percentage of the stuff you gave here ... ***** ... so it would be the same.
And the same goes for that! (S points to Gatorade bottles, displaying confidence).

The display of excitement accompanies the subject's "aha!" experience. Her pos-

itive affect, happy but not quite elated, appears to increase her determination
to regroup, to reorganize the problem, and to see her reasoning through to its
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conclusionnothing is going to stop her until she finally has it. And when she
does, she confidently transfers her analysis back to Problem 1.

But not all the affect we observed had consequences that were positive (from
a mathematical point of view). Subject 6, in solving the first problem, concluded

that there will be more red in the yellow Gatorade.

[C:] Why? [5:] (giggles) Because since you're taking the red first, and you're putting
in the yellow and mix it up, you have red and yellow mixed up. When you take
another tablespoon so then you're putting red back into the red, so it's not really
a full tablespoon of yellow. [C:] Do you think your answer is correct? [S:] Yes. [C:]
Why? [S:] Because I'm confident.

This subject's feeling of confidence substitutes for an analysis, rather than encour-
aging her to investigate further. Her executive decision, inspired by her affect, is
to stop considering the situation as a problem, and to cease to engage.

Conclusion

We have seen examples in which affect appears to guide problem-solving
choices, and where powerful problem solvers use it effectively. However, affect can
also have negative consequences, even in strong students. The goal of achieving
effective use of local affect for mathematical problem solving needs considerably

more research attention.
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This paper discusses the conceptual framework and methodology of a
longitudinal investigation of teacher change within the context of an
instructional reform project. It describes the aspects of the instructional
environment and teacher knowledge and beliefs that are being monitored as
well as the various data sources and perspectives from which information is
being garnered.

Over the past several years, recommendations for the reform of mathematics instruction have

been remarkably consistent (National Council of Teachers of Mathematics, 1989; 1991; National

Research Council, 1989; Silver, Kilpatrick, & Schlesinger, 1990). Reformers agree that

mathematics classrooms should be places where meaning making is paramount, where students

take an active role in constructing their own knowledge, and where mathematical communication is

as important as obtaining the correct answer. This vision is very different, however, from the way

in which most classrooms currently operate. A number of studies have reported that mathematics

lessons typically follow a predictable sequence of activities, most of which emphasize rules,

procedures, memorization, and right answers (e.g., Stodolsky, 1988). Moreover, the vision

represents a radical departure from the manner in which most practicing teachers learned

mathematics and learned to teach mathematics (Ball, 1988). Clearly, both teachers and their

classrooms will need to undergo some fairly profound transformations if they are to create new

instructional practices that answer the reformers' calls. The purpose of this paper is to present the

conceptual framework and methodology of a longitudinal investigation of teacher change within the

context of an instructional reform project.

The present research is part of QUASAR (Quantitative Understanding: Amplifying Student

Achievement and Reasoning), a large, multi-year project that shares the above vision of how

mathematics classrooms should be transformed. The goal of QUASAR is to foster and study the

development and implementation of enriched mathematics instructional programs for students

attending middle schools in economically disadvantaged communities. Toward that end, a set of

six geographically, ethnically, and intellectually diverse sites began developing and implementin?,

'Preparation of this paper was supported by a grant from the Ford Foundation (grant no. 890-0572) for the
QUASAR project. Any opinions expressed herein are those of the authors and do not necessarily reflect the views of
the Ford Foundation.
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unique approaches to teaching high-level mathematical thinking, reasoning, and problem solving in

the Fall of 1990. The programs at each site are school-based and involve a partnership between the

school faculty and leadership and one or more resource partners (typically faculty from a nearby

university). Implementation of these programs will continue and expand over the next several

years.

The QUASAR Documentation Effort

Instructional change is influenced by variables operating at a variety of levels within the

schooling environment (McLaughlin, 1990). As such, QUASAR's documentation strategy

systematically examines three interwoven components: the social and organizational context for

instructional change (e.g., the school climate, the collaboration between teachers and resource

partners), the development and implementation of the mathematics programs, and self

documentation produced by site-based participants (see Stein, 1990). This paper focuses on the

second component, the zl,lcumentation of the classroom implementation of the mathematics

programs.

Clarsroom documentation serves a variety of purposes within the QUASAR project. First,

observations and descriptions of mathematics lessons provide specific instructional instantiations

of the broad principles on which QUASAR is based. Although the project has provided a broadly

stroked picture of the kinds of instructional activities and conditions that should exist at project

sites, the development of specific instructional programs has been left to the individual sites.

Second, classroom documentation data complements other project data. For example, students in

QUASAR classrooms are periodically assessed with respect to their understanding ofa variety of

middle school topics and their performance on problem solving tasks. Descriptions of classroom

instruction contribute informatior. on the nature of the mathematical tasks and instruction activities

to which students have been exposed. Possible relationships between changes in student

understandings and instructional activities can then be explored. Similarly, the project is

systematically collecting data on staff development activities at each site. Hence, possible

relationships between staff development experiences and teachers' instructional practicescan also
be examined.

Finally, QUASAR classroom documentation expects to contribute to the extant knowledge base

on teacher change. Although teachers are the chief mediators of most school improvement efforts,

history suggests that helping teachers to alter their practice is not easy (Cuban, 1990). Moreover,

recent studies are beginning to document the difficult nature of teaching in a manner compatible

with the spirit of the mathematics reform movement (e.g., Grover, Gill, & Kaduce, 1991). All

teachers, of course, must struggle to overcome tendencies formed by the way they were taught

mathematics (Ball, 1988). New teachers can leant to experience mathematics and themselves as
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learners of mathematics in new and exciting ways; they fare less well, however, when they attempt

to create an appropriate instructional role for themselves, including how to deal with the often

unpredictable contributions of students (Schram, Wilcox, Lappan, & Lanier, 1989). Experienced

teachers carry the baggage of established practice and prior experience with reform efforts, many

of which have been diametrically opposed to the goals of the new reform (e.g., direct instruction

and the back-to-basics movement) (Cohen & Ball, 1990). QUASAR documentation research can

contribute to a small but growing body of work that examines the processes by which experienced

teachers' practice changes as they are confronted with new ideas about mathematics, about how

students learn mathematics, and about better ways to teach mathematics.

Conceptual Framework
The conceptual framework guiding the classroom documentition work is informed by recant

recommendations for the reform of mathematics education NCTM, 1989; 1991) and research

in a number of areas including ire cognitive aspects of teaching (e.g., Clark & Peterson, 1986;

Leinhardt & Greeno, 1986), teacher knowledge and beliefs (e.g., Brophy, in press; Shulman,

1986), and research on mathematics teaching and learning (e.g., Cobb, Wood, & Yackel, in press;

Fennema, Carpenter, & Lamon, 1988). The above recommendations and research suggest that it

is important to systematically monitor specific aspects of the instructional environment and of

teacher thinking that are expected to change as mathematics programs are implemented and

progress is made toward facilitating high-level thinking and reasoning.

Four main variables form the nucleus of our framework for describing changes in the

instructional environmetu: mathematical tasks, classroom discourse, intellectual environment, and

the nature of instructional formats. Mathematical tasks are a central feature because it is

through engagement with such tasks that students are provided with opportunities to think about

concepts and procedures, connections among mathematical ideas, and applications to other

domains and real world contexts. Mathematical tasks also implicitly carry messages about what is

worthwhile mathematical activity. Consequently, we attend to several features of the tasks that

occur in QUASAR classrooms including goals (implicit or explicit) for students' learning or

understanding, the degree to which the tasks focus students' attention on doing mathematics as

opposed to following preestablished procedures, and the kinds of communication that the tasks

foster. Recent research emphasizes the role of classroom discourse--the way that mathematical

ideas are exchanged-- in how students develop and refine their knowledge (e.g., Lampert, 1988).

Our framework includes attention to various aspects of classroom discourse including the extent to

which students are encouraged to explain and justify their thinking rather than simply supply the

"right" answer, the representations and technological tools that teachers and students select or

invent, and the extent to which students are encouraged to initiate problems and to question the

47

- 3 8



Changing Instructional Practice

teacher and one another. The framework's attention .o intellectual environment examines

hidden classroom norms that may influence students' ideas about mathematics and themselves as

learners of mathematics. It is based on the epistemological consideration of who possesses

intellectual authority in the classroom: Does task presentation suggest an outside author of

knowledge (e.g., teacher, text) or does it encourage students to view themselves as constructors of

knowledge? Finally, the framework incorporates descriptions of the instructional formats

(paired learning, small group work, whole-class discussion) used in QUASAR classrooms,

including attention to the assignment of roles to group members, teacher monitoring of group

work, and peer interactions.

Since the teacher is central to decisions made about the instructional environment, teacher

thinking constitutes another broad area for the systematic study of change. Our framework for

documenting teacher thinking includes the following variables: Teacher knowledge and beliefs

about mathematics as a discipline, beliefs about instructional practice, and beliefs about how

students learn mathematics. A host of findings suggest that teachers' own understandings of a

subject matter influences their instructional approach, impacting both what they teach and how they

teach it (Brophy, in press; Stein, Baxter, & Leinhardt, 1990). Teachers' beliefs about mathematics

and about how students learn mathematics are similarly influential (e.g., Thompson, 1984). Our

focus on teacher knowledge and beliefs explores both how they change during the course of she

project and how they act as a filter through which teachers interpret project goals and activities.

Methodology

A methodologically eclectic approach to classroom documentation is being employed.

Interviews, observations, paper and pencil instruments, and classroom artifacts form the data base.

In addition, we employ the qualitative research approach of triangulation which calls for gathering

information on a specific phenomenon from a variety of sources.

Instructional environment. The mathematics :classrooms are being documented from a

number of perspectives. The most visible and labor-intensive consists of three 3-day observation

sessions occurring in the fall, winter, and spring of each school year. The purpose of each of

these sessions is to gain a detailed understanding of mathematics instruction in a particular

teacher's classroom at a particular point in time. We are also collecting data to gain insight into

instruction over the course of the year. These data include teacher self-reports (paper & pencil) on

their instructional objectives, pedagogical techniques, and content coverage; and teacher-provided

classroom artifacts (e.g., teacher-made tests, student work).

The classroom observations include both an analytic examination of the mathematical content

and pedagogy of the lessons and an ethnographic-style investigation of what it is like to be a

student in the classroom. Two observers take detailed field notes, one focusing on the overall
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mathematics instruction, the other on two pre-selected target students. Both observers' fieldnotes

are guided by pre-designed observation guides. The mathematics observation guide consists of

qualitative questions grouped by the main themes: tasks, discourse, environment, and formats.

The target student observation guide consists of questions about the students' behaviors and their

level of engagement during the various phases of the lesson. The aim is to chronicle the

development of the lesson through the eyes of the student, thus "personalizing" the observations

and providing detailed information regarding how students are responding to the lessons. After the

observation, the observers write narrative summaries (of the lesson and the target students

respectively) and, using videotape and their fieldnotes as data, answer the questions on the

observation guides. In addition to these qualitative accounts, the observers complete a quantitative

evaluation of the lesson on a series of anchored rating scales.

The observers were selected on the basis of a set of qualifications that included a strong

background in mathematics education, psychology, or a related field, a demonstrated competence

in their ability to analyze instructional events from both pedagogical and mathematical content

perspectives, priot experience observing classrooms and conducting interviews, and their

understanding of the ethnic or multicultural nature of the community at the site (many of the

observers are residents of those communities). In some instances, Spanish-English bilingual skills

were also required because the population included a high percentage of students whose native

language is Spanish.

The observation reports are complemented by interview data from a variety of project

participants. The mathematics observer conducts a pre- and post-observation interview with the

teacher, asking questions about the teachers objectives for the 3-day sequence and his/her

;valuation of the lessons. The target student observer conducts a post-observation interview with

6 students from each observed class. The interview is focused on the students' perceptions of their

mathematics class in general (e.g., students brainstorm about "what it takes to get a good grade in

Mr./Mrs. 's math class") and of the 3-day observational period in particular (e.g., students

respond to the question, "What do you think was the main thing that you were supposed to learn

during these past 3 days?"). In addition, the target student observer conducts semi-structured

interviews with the principal, the resource partner(s), and the site facilitator. The interviews focus

on these individuals' perceptions of mathematics instruction in the observed classrooms. All of the

above data is organized to provide information on the four main variables outlined in the conceptual

framework.

Teacher thinking. Two inventories elicit information about the teachers' thinking. One

inventory, consisting of 30 Liken-style statements, focuses on teachers' beliefs about mathematics

and how it is best taught and learned. The second inventory consists of 10 problem situations and

focuses on the teachers' knowledge of mathematics and pedagogical skills in dealing with student
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responses to problem situations. Teachers are asked to provide examples of full- and partial-credit

student responses to five of the problems and to give a rationale for their assignment of points. On

the remaining five problems, teachers comment on how they would respond to students who have

answered the problems in a particular manner (usually exhibiting some misunderstanding). These

inventories are administered once per year during the course of the project. Additional information

about teachers' knowledge and beliefs is gathered from a variety of informal sources (e.g., teacher

journals, teacher-made or teacher-selected tests, lesson plans).

Expected Contributions
Given the relatively weak instructional specification of the reform's vision to date (Cohen &

Ball, 1990), grounded examples from QUASAR classrooms should be useful to the field of

mathematics education as it seeks to specify promising practices. Even with more detailed portraits

of exemplary insruction, however, the reform's recommendations will not be implemented unless

teachers undertake the complex, long, and often difficult process of creating a meaningful

instructional practice. The present research, combined with other longitudinal work on how novice

teachers learn to teach mathematics (e.g., Schram, Wilcox, Lappan, & Lanier, 1989; Jones,

Brown, Underhill, Agard, Borko, & Eisenhardt, 1989), should provide insight into the process of

becoming a skilled, knowledgable, and thoughtful teacher.
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Impact on Students

TOWARDS A CONSTRUCTIVIST PERSPECTIVE: THE IMPACT OF A MATHEMATICS

TEACHER INSERVICE PROGRAM ON STUDENTS1

Deborah Schifter, Mount Holyoke College

Martin A. Simon, Pennsylvania State University

A constructivist-oriented inservice program provided teachers of mathematics
(K-12) with intensive two-week summer institutes and weekly classroom follow-
up. Pre- and post-program data on student outcomes indicate that, along with
transformations in the nature and quality of mathematics activity in the
classroom, students' beliefs about learning mathematics changed and
elementary students' attitudes toward mathematics improved. Although
instruction focused more on conceptual understanding and less on
computational skill, standardized test scores assessing routine knowledge did
not drop.

The Educational Leaders in Mathematics (ELM) Project was an inservice

program that provided teachers of mathematics (K-12) with intensive two-week

summer institutes and weekly classroom follow-up during the succeeding academic

year. While the project predated the NCTM Professional Standards for Teaching

Mathematics (1991), its goals--to stimulate and support teachers' development of

instructional practices informed by a constructivist view of mathematics learning--were

consistent with the vision the Standards proposed. An instrument designed by ELM
staff to assess participants' classroom practice after one years involvement in the

program (Schifter and Simon, 1991) determined that 99% of them implemented new

instructional strategies and approximately half developed a practice informed by a

constructivist epistemology (Simon and Schiffer, in press). In general, students' rote

learning of facts and practice of routine algorithms was deemphasized; instead

students were encouraged to generate their own ideas and communicate them to one

another.
This paper discusses the impact of ELM on the students of these teachers. We

were interested in the effect of the program on: 1. students' attitudes toward

mathematics, 2. students' beliefs about mathematics learning, 3. students'

performance on standardized tests, and 4. the nature and quality of the mathematical

activity in the classroom.

1 This work was supported by the National Science Foundation, Grant No. TEI-8552391. Any
opinions, findings, conclusions, and recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the National Science Foundation.
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Many teachers engaged in innovative inservice programs such as ELM feel

what they perceive to be contradictory pressures. On the one hand, they are aware

that traditional instructional approaches do not promote the levels of understanding

and interest among their students that an alternative practice could inspire. On the

other hand, they feel that they are held accountable for students' scores on
standardized tests of computational ability and they must prepare their students for

those tests. Yet this study and others (Cobb et al, 1991; Carpenter, et al 1988; Held,

1988) are beginning to show that as teachers change their focus to student

construction of mathematical concepts--emphasizing problem solving, communication,

and reasoning--not only do assessments of attitudes, beliefs, and conceptual

understanding indicate positive change, but standardized test scores do not drop.

These results ought to allow more teachers, with support from their school districts, to

become involved in inservice efforts directed toward implementation of the NCTM
professional Standards for Teaching Mathematica without fear of diminished

computational skills and lowered test scores.

Methodology

In examining the program's impact on students, we employed qualitative and

quantitative methods that included both formal and informal approaches: data was

collected through surveys, standardized tests, and teachers' reports of student change

For the three cycles of instruction (1985-1988), surveys and standardized

mathematics tests were given to parallel classes (grades four and above for the

surveys) of participating teachers at the end of the academic year prior to entering the

program and again at the end of the following academic year. The students surveyed
were thus not the same individuals from one year to the next, but they were taking the

same course with the same teacher. As a consequence, surveys and tests were

included only for classes of teachers who taught the same course (e.g. third grade

heterogeneous, sixth grade remedial, honors precalculus, etc.) two years in a row.

Between pre-test and post-test, teachers participated in a two-week summer institute

and then received weekly follow-up visits (September to May) from ELM staff.

In April 1988, ELM teachers who had entered the program between 1985 and

1987 were requested to respond in writing to the following question:

What changes have you observed in your students as a result of your

involvement in the ELM Project? (Include all types of changes: positive,

negative, and neutral.)

Response items were consolidated and categorized.
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Results

Survey items about feelings toward mathematics and the importance of

mathematics were combined to calculate a general attitude score. Two-tailed Nests

were run to compare pre- and post-program survey responses.
Attitude scores for elementary students (grades four through six) calculated from

171 pre-program surveys and 179 post-program surveys showed a highly significant

increase (p.c.001). Looking at specific items that comprised the general score, the

following items changed at a level of p<.005:
It is fun to work math problems. I'd rather do math than any other kind of

homework. Math is one of my favorite classes in school. It is interesting to do

story problems. Math helps me learn to think better. I like to explain how I

solved a problem.
For secondary students responding to the questionnaire, there were 295 pre-

program surveys and 303 post-program surveys. The composite general attitude

scores indicated no significant change from one year to the next.

Beliefs about learning mathematics were assessed from survey items for which

students responded to the following question: To do well in mathematics, how

important are these? For elementary students, the following items increased in

importance at a level of p<.05:
Checking your own answers; being able to explain what you did; drawing

diagrams; luck; being creative; trying new things to see how they work, seeing

connections between things you've learned; trying different ways to solve

problems even if you're not sure how to solve them; opinions.

The following items decreased in importance at a level of p<.05:

Working problems quickly; reading the textbook; writing down what the teacher

says in class.
Survey scores for the following items indicated no difference between pre- and post-

program surveys:
Neatness; asking questions in class; memorizing; thinking logically

For secondary students, the following items increased at the level of p< 05

Being creative; trying new things to see how they work;

and the following items decreased at the level of p<.05:
Reading the textbook; writing down what the teacher says; thinking logically

Te&chers of all grades administered gandardized tests which evaluated routine
and computational knowledge of mathematics. Like most of the standardized tests
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available, they could not, in our view, adequately measure conceptual understanding
and problem solving abilities. Three hundred eighty pre- and 388 post-program
elementary students and 290 pre- and 303 post-program secondary students took the

tests. Two-tailed t-tests were used to compare pre- and post-program scores. No
significant differences were found for the total group, or for elementary and secondary

students analyzed separately.
To consider the nature and 'quality of mathematical activity in the classroom we

solicited observations of changes in student behavior from sixty-one ELM teachers.
The thirty-five responses included reports of both positive and negative effects, but the
former were overwhelmingly in the majority. Following is a list of the effects which

were reported by at least five teachers. The number of teachers reporting the

observation is noted in parentheses.

Students:
show greater ability to express mathematical ideas and to defend their point of

view (16); express more interest and/or enjoyment in mathematics (13); listen to

and respect others' ideas (9); show greater cooperation among themselves (9);

willingly use concrete manipulatives to solve problems (8); take risks/share their

strategies with the class (8); understand that there is more than one way to

solve most problems (8); depend more on each other and less on the teacher

(8); participate more in class (8); probe for understanding (6); are more
confident, competent problem solvers (6); understand more (6); are more

confident in math (5): and experience more frustration (5).

Discussion

Although teachers' observations of their students need independent

corroboration, when taken together with the survey data some tentative conclusions

may be drawn. We can categorize student change into three broad areas: cognitive,

affective, and social.
Cognitive change described by teachers involved greater facility with

mathematical ideas, greater ability to communicate about mathematics, and deeper
understanding of mathematical concepts. They reported that students were becoming

more competent problem solvers who understood that there is more than one way to

solve most problems.
These reported changes are consistent with survey responses concerning

beliefs about mathematics learning. Both elementary and secondary students' scores

increased for items such as, "It is important to be creative," and "It is important to try
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new things to see how they work." Rote behaviors such as "writing down what the

teacher says" became correspondingly less important.

Two !esults concerning student beliefs seem particularly puzzling: first, although

"luck" continued to be considered relatively unimportant (the mean remained low), it

increased in its perceived importance for elementary students. This may be

attributable to the change in the nature of mathematical activity in the classroom. If

pre-ELM assignments were largely computational exercises, then "luck" would have

played little or no role; success was dependent on careful repetition of a known

algorithm. But teachers participating in ELM gave non-routine problems where trying

out different strategies was appropriate, and some students might have identified

hitting on a successful strategy as a matter of luck. And second, while elementary

students' response to the item "It is important to think logically" did not change,

secondary students' response to this item decreased (althcugh the mean still

remained high). Perhaps this was due to the fact that it is generally held that

mathematics helps to develop and requires logical thinking. If, prior to their

involvement in ELM, teachers tended to emphasize this, students might have come to

identify "logic" with mechanical or routine solutions and it would be expected that the

pre-program measure for this item would be as high or higher than the post-program

measure.

Affective change. Teachers reported that their students now expressed more

interest in and enjoyment of mathematics, and that they demonstrated more

confidence in solving problems and in doing mathematics generally.

The attitude survey scores for elementary students supported the teachers'

observations. After their teachers had participated in ELM, elementary students more

frequently reported that it was fun to work mathematics problems, that they liked to

explain how to solve problems, and that mathematics helped them to think better.

Among secondary students, responses to the attitude survey did not change. A

possible explanation is that older students' attitudes toward mathematics were more

firmly set as a result of more schooling. Informal discussion among elementary and

secondary teachers indicates that school structure also effects the potential for

change. Elementary teachers, who have the same students for the entire school day.

report that after attending the summer institute, instruction changed in many of their

subjects. Thus, they were able throughout the day to communicate beliefs about

learning and to convey expectations of student behavior consistent with their goals for

their mathematics classes. To secondary students, mathematics classes taught by

ELM participants tended to be the odd experience.
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Social change. Among teacher-reported changes, it is interesting to note how

many of their observations concerned changes in social behavior. Teachers wrote

that students showed greater cooperation among themselves, listened to and

respected one another's ideas, and depended more on one another and less on them

Students were more willing to take risks and to share their ideas and strategies with

their peers, and in general more willingly participated in classroom activities.

These developments reflect changes in the social organization of the

classroom: students often worked in pairs or small groups and were responsible for

their own and each other's understanding. By listening to and valuing students'

mathematical ideas, teachers worked to shift the locus of authority from the all-knowing

instructor (or textbook) to students' reasoning processes.

Conclusions

Teachers participating in ELM tended to increase their attention to problem

solving and conceptual development, deemphasizing computation and memorization.

As a result, student beliefs about mathematics learning came to include an

appreciation for the values of creativity and experimentation. And elementary students

developed more positive attitudes toward mathematics.
Yet standardized test scores did not change. This result should help allay

concerns that greater attention to understanding and problem solving, particularly

considering the additional time allotted to conceptual exploration, will lead to a decline

in computational skill. The related concern that instructional changes of this

magnitude will result in lower test scores for the first year or two, as teachers learn the

ropes, has also been expressed. However, these test results indicate that even during

the initial change process, computational skill is not necessarily sacrificed. For

teachers and school administrators who wish to engage in teacher development

efforts along the lines of the NCTM Standards, this should come as encouraging news.

Aside from those shifts in attitudes and beliefs described above, the results of

our standardized tests could not tell us whether students were constructing stronger

conceptual understandings. That the future of educational reform is tied to the

development of ways of measuring such complex processes is increasingly widely

recognized.

In addition, many--perhaps crucial--questions arose for us which can only be

addressed through longitudinal studies. Does the teacher's, and her students',

enthusiasm wear off as more time passes? What happens to students who have

project teachers several years in a row? Do secondary students' attitudes begin to
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change after two or three years of constructivist-oriented mathematics instruction?

What are the differences between elementary and secondary schools that are
reflected in different responses to the project?

Finally, future research must more closely examii e change in teachers'

conceptions of mathematics, and of learning and teaching, and relate such change to

cognitive and sociological studies of students and teachers in classrooms.
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PROSPECTIVE SECONDARY TEACHERS'

SUBJECT-MATTER KNOWLEDGE ABOUT

FUNCTIONS AND GRAPHS

Christine L. Ebert
University of Delaware

This study deals with prospective secondary teachers' subject-
matter knowledge about functions and graphing. A set of tasks
was designed to assess the elementary knowledge that
prospective secondary teachers have about functional
relationships represented by verbal descriptions and by
graphs. The primary objective of this study was to document
evidence of the relationships between elementary knowledge
about functional relationships and constructing graphs that
represent these relationships. The findings suggest that the
pre-service teachers' knowledge of functions and graphing was
incomplete and particularly fragile with respect to certain
classes of functions.

CONCEPTUAL FRAMEWORK

The study of teacher subject-matter knowledge in the context

of functions and graphing is an important topic within the

conceptual frameworks dealing with research on teaching ( Brophy,

in press; Shulman, 1986) and research on functions and graphing

(Leinhardt, Zaslaysky, & Stein, 1990). Teacher subject-matter

knowledge has received a great deal of attention of late and is an

important component of the conceptual framework dealing with

research on teachers and teaching. Shulman (1986), who identified

teacher subject matter knowledge ai the "missing paradigm" in

research on teaching, has inspired such of this work. In order to

describe the relationships between teacher subject-matter knowledge

and instructional practices, it is necessary to examine the
elementary knowledge that teachers have about a particular

mathematical topic. The mathematical topic of functions, graphs,

and graphing has also received considerable attention of late

(Leinhardt at al., 1990). A significant amount of research

concerned with students' understanding of functions and graphs has

been completed and further studies dealing with instructional
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aspects have been suggested (Leinhardt et al., 1990). This study

may be located within the intersection of these two conceptual

frameworks - in the subset of teaching that deals with subject-

matter knowledge and in the subset of functions and graphing that

deals with verbal descriptions and graphs of functions.

The current reform movement in mathematics education suggests

that teacher subject-matter knowled4e is an important component of

the new view of mathematical competence. The emphasis is being

placed on examining various representations of a concept and

developing connections between those representations. :solving

multi-step problems and utilizing appropriate representations in

the solution process replaces the memorization of isolated facts

and displays of algorithmic dexterity. Classroom teachers are

encouraged to convey to their students the processes in which

mathematics is discovered and communicated.

It has been suggested (Ball, 1988) that this view of what it

means to know and do mathematics is very different from the

mathematics instruction of both current and prospect:me teachers.

Stein, Baxter, & Leinhardt (1990) suggest that " the subject-matter

knowledge necessary to support the instruction that will foster

this new view of mathematical competence remains underspecified"

(Stein, Baxter, & Leinhardt, 1990, p.641). They argue (Stein et

al., 1990) that the realization of this new view of mathematical

competence will not take place without systematic attention to

subject-matter knowledge and " how both current and desired levels

of teacher knowledge impact instructional practice" (Stein et al.,

1990, p.641).

The significance of a study on functions and graphs can best

be described in terms of the view that "graphing can be seen as one

of the critical moments in early mathematics" (Leinhardt et al.,

1990, p.2). They describe these "critical moments" as sites within

a discipline when the opportunity for powerful learning that is

different from other learning episodes takes place. Two key

features of the "critical moments" are that they are usually

unmarked in the curriculum and that they are fundamental to the

development of more sophisticated mathematical knowledge. The
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study of teacher subject-matter knowledge about functions and

graphs provides the opportunity to examine this critical site of

learning in the context of knowledge of the content and

organization of the topic.

Research Question

What relationships can be documented between elementary

knowledge about functional relationships and constructing graphs

that represent these relationships?

METHOD

Subiects

The data source for this study consists of six secondary math-

education majors. All of the prospective teachers were enrolled in

mathematics methods classes at a major state university located in

the south-eastern United State:. Three of the students were

scheduled to do their student-teaching during the upcoming quarter

and three of the students had recently completed ten weeks of

student-teaching at area high schools. The six students were

randomly selected from the class. There were 4 female students and

2 male students who participated in the study.

Tasks

A set of five tasks was designed to assess elementary

knowledge about functional relationships and graphs. The tasks

focused on documenting evidence of subject-matter knowledge that

prospective teachers have about functional relationships

represented by verbal descriptions and by graphs. The teachers

were asked to do the following:

1. Match a graph to a situation presented verbally;

2. a) Construct a graph from a situation and

b) Construct a situation from a graph;

3. a) Answer a series of questions dealing with a

specific situation and culminating in the

construction of a graph;

b) Do the same as (3a) but begin with the graph;

4. Choose a particular representation ( equation, table,

61
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graph) and use that representation to solve a

problem presented in the verbal description;

5. Task 5 is the same format as task 4 with the exception

that the set of problems were weighted toward a

particular representation in task 5 and neutrally

weighted in task 4.

Each of the first four tasks consisted of linear, quadratic,

and exponential functions. In task 5, the questions were

constructed such that a particular representation was salient and

the class of function ( linear) remained constant. In addition,

each of the teachers participated in a card-sort task based on

those described in the literature ( Chi, Feltovich, & Glaser, 1981;

Silver, 1979; Stein, Baxter, & Leinhardt, 1990). The set of tasks

was administered individually by the researcher. For each of the

tasks, the teachers were asked to "describe the relationship

between the quantities in your own words" prior to choosing or

constructing a graph or situation. They recorded these

descriptions on their paper. After completing the problems in each

task, the teachers described their strategies to the researcher.

These were audiotaped and later transcribed.

Data Analysis

The set of five tasks provide a variety of data sources to

assess the prospective teachers' subject-matter knowledge. The

first two task' may be characterized from the literature on

functions and graphing as either interpretation or construction

tasks. Tasks 4 and 5 provide the opportunity for the teachers to

use a variety of representations to solve problems about

situations. Of interest is the consistency of their descriptions

"in their own words" with the choice or construction of a graph;

the direction (situation-to-graph or graph-to-situation) that

provides evidence of greater understanding; the choice and variety

of representations used to solve problems; and the breadth and

depth of knowledge revealed by the series of questions in task 3.

The card-sort task provides the opportunity for the teachers

to categorize the cards based on a variety of criteria. There were

several dimensions in which students could sort the cards:
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representational format ( tables, graphs, equations, ordered-pairs,

arrow diagrams); the mathematical relationship depicted by several

representations (all representations of y=x); and whether or not

the mathematical relationships were functions. This task provides

a backdrop in which information from the other tasks may be

interpreted. The use of a variety of data sources is necessary to

triangulate subject-matter knowledge about functions and graphs.

SOME RESULTS

For the card-sort task, three of the prospective teachers used

the function vs. non-function distinction as an initial

categorization. Within these two classes they grouped all of the

cards that represented a particular mathematical relationship.

These were the teachers who had recently completed their student-

teaching in the area high schools. The other three teachers also

grouped together the cards that represented a particular

mathematical relationship. All of the teachers had a great deal of

difficulty deciding what to do with the arrow diagram that

represented a one-to-many situation. Everyone matched the one-to-

many diagram with the graph of y = x2".

Task 1 (interpretation) proved to be much more difficult than

task 2 ( construction). All of the teachers were able to correctly

describe the situation in their own words. However, three of the

teachers basically made all of the wrong choices for the graphs.

They chose a cubic graph for a linear situation and a linear graph

for an exponential situation. All of the teachers indicated a

degree of uncertainty between the two graphs that depicted position

vs. time and velocity vs. time. The axes were not labeled and the

graph of velocity vs. time was requested in the situation. In the

construction task (2), teachers were much better at constructing

the graph from the situation than visa versa. Although they could

describe the mathematical relationship depicted by the graph, in

most cases their situations were not very clear. While most of the

teachers performed well on the tasks dealing with linear functions,

almost everyone confused exponential and quadratic functions. In
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this regard they were fairly consistent across the first three

tasks.

Task 3 was designed as a series of questions about the

variables described in the situations or depicted by the graphs.

The teachers had the opportunity to " discover" the mathematical

relationship by answering the questions and noting the relationship

between the previous answer and the subsequent question. While

they were able to describe the situation in their own words, they

continued to rely on surface characteristics to answer the

questions and depict the graph. No one described the relationship

between the variables as " is a function of ".

Instead they focused on whether or not the dependent variable

increased or decreased as the independent variable increased ( my

words - not theirs). There was also no indication that they made

the connections between specific features of the situations and the

key points on the graph. In all of the situations, the initial

value of the dependent variable ( i of minks, area of a pizza, and

of lisrelites) was not identified as the y-intercept on the graph

of the function.

Tasks 4 and 5 were designed to provide the students with a

choice of representations for solving the problems. In these tasks

the students were very successful at solving the problems. Of the

three representations presented iconically to the students, the

tabular representation was chosen least often. The graphical

representation was used appropriately as a tool for problem solving

(maximum number in a quadratic situation, point of intersection,

and interval during which one quantity is greater than another

quantity). The equations or algebraic representation was also used

appropriately to determine specific values of the dependent and

independent variables.

CONCLUSION

The primary objective of this exploratory study was to collect

descriptive data about prospective teacher's subject-matter

knowledge as it relates to the topic of functions and graphs. The
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results of this study support the need for further research. In

particular, future studies should examine the relationship between

the subject-matter knowledge of prospective secondary mathematics

teachers and their instructional practices during student-teaching

and in their own classrooms. While it is impossible to predict

exactly how these prospective teachers will present functions and

graphing in their own classrooms, it is unlikely that their

presentations will reflect all of the conceptual connections and

powerful representations that characterize rich well-organized

subject-matter knowledge.
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A FRAMEWORK FOR FUNCTIONS: PROTOTYPES, MULTIPLE
REPRESENTATIONS, AND TRANSFORMATIONS

Sere Confrey and Erick Smith, Cornell University

Abstract. This paper summarizes several years of research culminating in an approach to
teaching functions which emphasizes: 1) families of prototypic functions with associated
actions in human activity; 2) coordinating the use of multiple representations in representing
and acting on functions; and 3) transforming functions with an emphasis on the consistency
in the actions of transformations across prototypes and representations. Animportant part
of this pedagogical approach is the use of a multi-representational software tool.

Intr oduction
The concept of function has been identified as central to the secondary mathematics curriculum

in several curricular reform documents including the Curriculum and Evaluation Standards for

School Mathematics (NCTM, 1989). This paper reports on an approach to the study of functions

that has been successfully used in a number of classrooms (Rizzuti, 1991; Vedelsby and Confrey,

in progress; Smith, 1991) and which combines several key features: 1) families of functions,

called prototypes, are described through characteristic actions and operations related to particular

human contexts and activities; 2) functions are represented through multiple forms including tables,

graphs, algebraic expressions and calculator procedures; and 3) students learn to fit these

prototypes to particular data through stretching, translating and reflecting. In this paper, eachof

these key features is discussed with brief examples. The discussion of multiple representations and

transformations is presented using Function Probe0 (Confrey, 1989; Confrey and Smith, 1988).

Functions Defined
Historically, two traditions in the development of functions were witnessed. Functions were

viewed as: 1) the covariation between quantities. As one quantity changes in a predictable or

recognizable pattem, the other also changes, typically in a differing pattern. Thus, if one can

describe how xi changes to x2 and how yt changes to y2 then one has described a functional

relationship between x and y; 2) a correspondence between values of two quantities. If one can

describe how to find y (or f(x)) given a particular value for x, then one has described a functional

relationship. Due to the heavy emphasis on algebraic expressions and manipulation in the

secondary mathematics curriculum, the correspondence approach dominates current presentations

of functions. However, we see both approaches as invaluable to the process of learning functions

and seek to develop a more balanced approach to the function concept in our curriculum .

Typical definitions of function describe a relationship between two quantities, one identified as

the domain and one as the range, such that each member of the domain is associated with exactly

one member of the range. We will accept such a definition in this paper. However, we believe that

the rejection one-to-many correspondences as functions is relatively arbitrary and is curricularly

overemphasized due to the tendency to select easily measured standardized tests items. In our
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teaching, we spend relatively little time on the distinction between relations and functions. Our

primary goal is to have students recognize and develop flexible ways to portray and act on a variety

of relationships between varying quantities. With this emphasis on operational and relational

concepts, we believe, for example, that it is more important to understand the reasons behind the

tendency of tudents to resist intuitively certain kinds of "monster" (Lakatos, 1976) functions

(discrete sets of points, constant functions, multiple rule functions etc. (Vinner, 1983)) than simply

to label this resistance as evidence of misconceptions. The constant function, f(x)=c is a

particularly interesting example of a "monster" function, for it defies students' intuitive sense that

quantities should be covarying. Such examples should be incorporated gradually as they become

useful in modelling applications or as the need arises to describe commonalties between well-

behaved functions (the ones they want to accept) and "monster" functions that distinguish them

from other kinds of relationships.

We place our work within a constructivist tradition, seeking to map and follow the construction

of students' ideas rather than imposing a more singular approach. This openness of constructivism

is often interpreted to mean that no curricular design can be offered. We take issue with such an

assumption. A well-designed curriculum will invite students to explore a variety of approaches to

functions, develop and expand their concepts in ways compatible with these experiences, and

encourage them to construct connections between their own experiences and the common usages of

these concepts by their larger community. However, we believe such a curriculum must be based

on an understanding of student methods. Although much of what we describe in this paper and

many oi the design features of Function Probe result from examining student methods, due to

space limitations few detailed descriptions of this work will be given. Descriptions of and

references to the supporting work are provided in the final section of this paper.

Prototypes
We introduce students to a variety of families of functions, called prototypic functions, each

having a range of identifiable operational characteristics. These families include: linear (including

absolute value, step functions), inverse, quadratic, high degree polynomials, exponential, and

trigonometric. Algebraically, these are: f(x)= x, f(x) = 1/x, f(x)= x2, f(x)= xn, f(x) = ax, etc.

To connect a prototypic function to characteristic operations and actions, we use contextual

problems designed to help student create and identify appropriate actions. For example, one way to

introduce the exponential function is to use the context of a cell splitting, building the relationship

between a constant splitting action and exponential growth. Alternatively, the idea of change

through the identification of a constant ratio can be investigated using a bouncing ball. Students are

asked to predict the height of a ball on the nth bounce when dropped from a given initial height. In

classroom situations, we often give them tennis balls and let them work in groups to create their

experimental data. Compound interest provides another approach. Students typically understand
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that the amount of growth is a constant proportion of the amount present (i.e. the interest rate).

They must deal with the issue of how this understanding of the magnitude of growth can be

transformed into a way to predict the total amount present after a given number of years. A fourth

approach builds on the idea of growth through similarity. A particular example we use is a nautilus

shell, where succeeding chambers are similar in shape and grow on each other.

Once a student can coordinate these varying types of experience and their associated actions

with the more generalized concept of an initial amount followed by repeated multiplicative growth,

s/he possesses the fundamental attributes of the prototype of exponential functions. We have found

that the careful exploration of several contextual problems which encourage the development of the

types of action appropriate to exponential functions gives students the power to recognize

situations in which these functions are appropriate. For example, students must learn to sense that

the act of splitting cells can be identified with the operation of repeated multiplication per iteration,

so that there must be an initial amount, a constant multiplier per iteration and a way to keep track of

the number of iterations (in this case, the exponent). These kinds of experience will lead to a need,

on the students part, for negative and fractional exponents, making their introduction both

meaningful and necessary (Confrey, 1991). Note that this treatment of the exponential also

parallels one possible treatment of the linear function prototype, that of an inid?1 value and an

action of repeated addition (or subtraction) using a constant value giving y= b+ x (m) where b is

the initial amount, m is the amount which is added per iteration and x is the number of iterations.

The Use of Multiple Representations
Becoming familiar with a functional prototype, such as the exponential,

requires one to develop generalized procedures that allow one to "recognize" its 0-0
appearance in diverse representations, to operate with these different \- O\
representations and to coordinate and contrast the actions across the O
representations. Thus in the cell splitting example, we would encourage students 0 1 2
to create a picture such as the one shown on the right as a legitimate functional

representation for exponentials. Many less standard representations have also been used.

In our teaching, we work extensively with four conventional representational forms: tables,

graphs, algebraic expressions and calculator keystrokes using the multi-representational software

tool Function Probe. Each representation yields its own insights into functions such that no one

can be subordinated to another. This is in contrast to typical secondary mathematics texts and most

cut-rent software programs which rely almost entirely on algebraic expression, subordinating other

representa'')ns to either secondary forms or merely displays of data.

1 We place "recognize" in quotations here to emphasize that functions are not In" a representation. rather that we
construct ways by which we associate various representations with those actions we associate with a prototypic function.

However, once we have constructed those connections, we will "see" the function in the representation.
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Tables, for example, are perhaps one of the most under-utilized resources for the exploration

and creation of functions, particularly in the rich environment they provide to construct and explore

covariation. If a student can fill two columns in a table, creating an arithmetic sequence in one

column and a geometric sequence in another and then describe the relationship as the change of xi

to x2 being constant addition while the corresponding change of yi to y2 being constant

multiplication, s/he is demonstrating a significant grasp of exponential functions. We have also

found the table window in Function Probe to be particularly appropriate for drawing attention to

such issues as rates of change, the rates of accumulation, the need for interpolation and

extrapolation, (See Nemirovsky's work (1991) on how these ideas can create a bridge to

elementary calculus concepts.), and the maintenance of functional relations (by linking columns)

during sorting and editing without the necessity of specifying a formal algebraic relation.

Emphasizing the independence of the various representations has allowed us to reconceptualize

now actions across multiple representations can be coordinated. For example, whereas most

graphical software is algebra-driven -- changes in graphs can only be made by changing the

algebraic parameters -- Function Probe allows one to transform a graph directly through mouse

actions. This direct graphical action allows two-way comm':nication between representations -- one

can change the algebra and observe the change in the graph ca one can change the graph and see the

change in the algebra. This flexibility tends to minimize some of the perceptual ambiguities

reported in Goldenberg, Harvey, Lewis, Umiker, West, and Zodhiates (1988). For example, the

graph for the equation y= 3x-6 [y= 3(x-2)] can be formed from the prototype, y = x, by:

1) stretching the graph until its slope reaches 3 then translating it down (vertically) until its y-

intercept is at -6; 2) translating it down until its y-intercept is at -6, then stretching it horizontally

until its slope is 3; 3) translating it horizontally until its x-intercept is at 2, then stretching it

vertically until its slope is 3; or 4) translating it down until its y-ir.tercept is at -2, then stretching it

vertically until its slope is 3. Predicting algebraic outcomes from graph actions, and graph

outcomes from algebraic actions becomes a significant and multi- directional undertaking. Using

such transformations with point-sets, in combination with the table, can contribute dramatically to

students' insights in this area and provides an example of how interactions among three of the

representations can be woven together.

A final example of using multiple representations comes from teaching inverses. Most students

leave secondary courses knowing that one can get an inverse of a graph by reflecting around the

line y=x and an inverse of an equation by reversing the x and y and solving for y. We have found

that the calculator on Function Probe, which provides a keystroke record and allows one to bel

buttons, can provide a unique contribution to this understanding. If a student builds a function as a

set of keystrokes, to create an inverse is simply to undo that set of keystrokes. For example, if a

student has evaluated the function y= 7(3x )+ 9 using 2 as the value for x, s/he would likely have
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entered: 2 03=*7 +9 = (getting 72 as the answer). Generalizing this to a button yields,

j 1: 903 =*7 +9 =, The inverse can be seen as undoing these actions: 72-9= +7 Fla 3=

(getting 2 back as an answer). Making this into an inverse button produces:

j1 inverse:0-9= + 7 fiTta 3= . Two results are significant 1) creating an inverse, becomes

identified with undoing a procedure; and 2) the log function in any base becomes seen as a way to

undo an exponential with the same base, i.e. the notational inverse of ax. The strength in this

example is amplified when students work such a problem using multiple representations, creating

from their outcomes a convergent and secure understanding of inverse functions.

Transformations
The development of multi-representational approaches to functions through contextual

problems can appear to make the study of each prototype overly independent. Functional

transformations are an important means of uniting these approaches. Algebraically, the

transformations we use can be coded as: y= A f( Bx+ C) + D; that is, as a linear transformation on

the variable x and followed by a linear transformation on f(x). Students learn that although all of

the prototypes behave quite similarly under these transformations, the uniformity of that behavior

is not necessarily obvious. This becomes a major issue to be explored in the course.

Transformations are initially introduced through vertical stretches and translations of the

identity function y=x, creating the class of linear functions. Because of the equivalence of vertical

and horizontal translations on lines, we use the absolute value function to introduce the distinction

between a vertical and horizontal translation, for example, whereas the graph of y = (x-2)+6 is

identical to y=x+4, it is not the case that the graph of y= I x -2 I + 6 is the same as either y = lx+41or

y=lx1+4. Although the distinction between a horizontal and vertical stretch can be seen in the

absolute value function, it becomes more apparent in the step function y=[x], particularlywhen

introduced in relation to an appropriate context. We have used a parking garage fee structure as an

example, showing that horizontal stretches (which affect unit time intervals), are clearly distinct

from vertical stretches (which affect costs per time unit). This context allows one to explore

separately the effects of each parameter in y= A f( Bx + C) + D.

Two approaches to transformations are used, each with its own strengths and weaknesses.

One, called "function building," starts with y=x and builds the final function, step-by-step.The

initial series of transformations creates the linear function: y= Bx +C. The action of the appropriate

prototype is then applied to this function, creating y = f(Bx+C). This is more straight-forward for

some prototypes than others. For example, taking the absolute value of Bx + C is simply a

reflection of the portion of the graph below the x-axis about the x axis. Squaring a linear function

involves a similar process. The effect of applying a trigonometric function to a given line is

considerably less obvious. For all functions, however, the final transformations, stretching

f(Bx+C) by A and translating Af(Bx+C) by D, occur in the vertical direction. Thos it is essential
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for students to build an understanding of how the x-intercept of the line y = Bx+C is transformed

under each prototype.

A second approach starts with A(f( Bx + C))+ D, emphasizing the importance of seeing C/B

as the horizontal translation, B as the horizontal shrink, A as the vertical stretch, and D as the

vertical translation. These individual transformations must be carried out in order. This approach is

typically emphasized for trigonometric applications where each of these factors has a differing

effect: phase shift (C/B); periodicity (B); amplitude (A); and (adjusted) initial position (13). If relied

upon too early, this approach may encourage students to memorize the ordered transformations

before building an understanding of their distinctions, stating, for example, that the horizontal

translation is C rather than C/B or failing to build the distinctions between when they can and

cannot combine vertical and horizontal stretch. It has the advantage that all prototypes can be

viewed in terms of their movements on the plane under to these four transformations. A powerful

outcome occurs when students learn to coordinate both approaches, developing a sensitivity to the

distinctions in the formula while being able to revert to function building from a line when in doubt

or when using a new prototype. The use of transformations has been repeatedly identified by

students as a major strength of the courses.

A final example illustrates that transformations need not depend on algebraic manipulation: A

student is given a problem where annual tuition at a university was, in some previous year,

$12,000 and has been increasing at a rate of 8% per year. She initially creates the graph of the

function, fl(t) = 12,000 * 1.08t. She is then asked to find two forms of graph actions that will

transform the graph of a new function, f2(t) = 6,000 * I.08t, into her previous function. She can

do this through either a vertical stretch by 2 [algebraically, fl(t) = 2 *(6,000*1.08t)] or a horizontal

translation by 9 [algebraically, ft(t) = 6,000 * 1.081+9= 6000* 1.08'. 1.089 = 6000* 1.089. 1.08'

= 6000* 2* 1.08t]. The equivalence of a horizontal translation and a vertical stretch provides an

important insight into the structure of exponential and logarithmic functions. A sign that the student

has understood the contextual implications of such transformations would be recognizing the

equivalence of seeing: 1) f2(t) as representing a halving of the initial tuition of fj(t); or 2) f2(t) as

representing an equation for the initial year being nine years earlier than the initial year for fi(t).

Conclusions
In this paper, we have described an effective framework for teaching functions. Although

the paper does not report on the specific research findings which led to the development of the

methods or to the design of the software, references are provided below. Research results,

however, are seldom sufficient to lead to the development of a complete curriculum but do provide

the conditions under which such development might be undertaken. The principles which underlie

this work include the need to: 1) allow students to develop concepts of function which support

both covariation and correspondence approaches and create the possibility of focusing on rate of
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change and accumulation per unit time; 2) develop families of functions built around prototypes

which are tied to human actions and operations; 3) encourage the use and exploration of multiple

representations in both traditional and non-traditional forms; and 4) value the integration of these

diverse families of functions through transformations. We do not wish to imply that with such a

framework, our investigations of functions are complete. We are currently engaged in an extensive

pursuit of the schemes which underlie each of these families of functions. In the case of

exponential functions, for example, we seek to understand its roots in a form of multiplication

which is not repeated addition (Confrey, 1991, 1990). For quadratics, we are finding schemes

about the ideas of symmetry, dimensionality and rates of change based in arithmetic progressions

(Afarnasaga-Fuatal, 1991). This work, combined with research on how teachers develop insight

into these ideas (Piliero, in progress; Vedelsby and Confrey, in progress), and how groups of

students interact around these ideas (Smith, 1991) leave ample room for further investigations.
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UNKNOWN AND VARIABLE IN ANALYTICAL METHODS FOR
SOLVING WORD ARITHMETIC/ALGEBRAIC PROBLEMS

EUGENIO FILLOY
(Secci6n de Matemdtica Educativa, CINVESTAV, IPN. Mexico)

GUILLERMO RUBIO
(C.C.H. de la Universidad Nacional Autonoma de Mexico)

The tensions that the concepts of unknown and variable

provoke in the students are the main focus of attention in

this experimental study. The use of algebraic symbols is

interpreted as an answer to the need for representing and

operating on the more and more complex unknowns that

(theoretically) the solution (through logical analysis) of

arithmetical word problems presupposes.

I. INTRODUCTION

This study forms part of a large project on the solution of

word problems in algebra. Relevant previous studies have been

presented in P.M.E.N.A. (see Filloy, 1987; Rubio, 1990a and also

Filloy-Trujillo Roshlander, 1987 and the now classical work of

Krutetskii, 1976, on general skills). In this study the

difficulties that appear in the teaching of strategies of logical

analysis for solving certain types of arithmetic-algebraic

problems are contrasted with Krutetskii's statement of the need

to have certain general mathematical skills.

II. THE STUDY

The study j commooA of the following stages:

1.- The classification of the problems according to their

difficulty of logical analysis.

2.- The design of the teaching sequence on the basis of 1) the

tensions that the concepts of unknown and variable provoke in

the subjects. Natural tendencies are used in considering
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unknowns as variables, producing what in other studies we

have called "polisemia" of the x (the unknown in a linear

equation -see Filloy PME- XIV-1990). The teaching strategy,

then, proposes varying the data in order to obtain a

multitude of problems that ale equivalent from the logical

point of view, and also, 2) to propose solutions that will

vary during a trial and error test (what we call arithmetical

exploratory analysis).

3.- Development of the strategy of teaching in a class with 16

year old pupils.

4.- Observation of this teaching strategy in the classroom.

5.- On the basis of the previous stage, all the teaching

procedures are refined in order to go on, firstly, to using

Spread-Sheets for carrying out the exploratory arithmetic

part and secondly, using clinical interviews to relate the

students difficulties with the difficulties of logical

analysis of word problems carried out theoretically in the

first point.

6.- Description and interpretation of the difficulties arising

from the logical analysis that either appeared in class or in

the clinical interviews.

7.- Description of the cognitive processes involved in the

exploratory, analytical and problem resolution phases.

Theoretical framework
The theoretical framework of this study is based on the

concept of local theoretical models (Filloy, 1989, 1990) in which

the object of study, in this case, the solution of word problems

in algebra, is focused or. through three interrelated components:

1) models of the teaching of algebra, 2) models of cognitive

processes, 3) models of formal competence.

In this study on the solution of word problems in algebra,

the local theoretical podel takes as the basic idea, the logical

analysis of problems. In turn, this analysis is taken as a

general model of reasoning for seeking the solution of

arithmetic-algebraic problems. The logical analysis shows the way
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to the solution presupposing the answer (the magnitudes or

quantities) is given, and deriving logical consequences from the

"gives" relationships between the "given" magnitudes or

quantities (the data of the problem), (see J. Klein, 1968 for his

description of the analysis). The logical analysis of the problem

shows the interrelationships implied by the relations between the

data and the unknowns.

In its teaching component, the local theoretical model takes

into account the analysis of problems through explorations of an

arithmetic type, be they 1) using a trial and error procedure,

Rubio (1990a, 1990b) (whose historical antecedents can be found

in the false position methods which use, in the case of certain

problems, are used spontaneously by some pupils), or else 2)

starting with a logical analysis that is directed straight at the

solution of the problem, focusing its interpretation and

representation in a basically arithmetic way; this

logical-arithmetic analysis is what allows the discovery of the

relations of the problem that lead to the solution.

In its cognitive component, the local theoretical podel

links the representation of symbols with the processing of

information and, '- with memory. On the processing of

classroom observation, it appears that the information processed

in the memory (short and long term) wheo a logical-arithmetic

analysis is carried out (in many typas of algebraic word

problems) requires adequate recovery, based on the installation

in the memory of the numerical facts produced by the exploratory

arithmetic analysis. In this way the path from STM to LTM, when

the problem to be solved is processed, tends to become less

saturated (Rubio, 1990c, Filloy, 1987) than when an attempt is

made to represent the problem algebraically from the outset. The

latter requires higher order processing of the information, as

more information is concentrated in less symbols rnd their

relationships, making comprehension of. the secondary unknowns

difficult, among other things. This c.an be seen in the studies

carried out on algebraic errors which show difficulties in

semantic interpretation, for example, Booth (1984), Trujillo

r

d o
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(1987), Rojano (1985), Rubio (1990). The first results of the

study show promising directions for further research on teaching

algebraic problems with verbal sentences constructing and/or

recovering algebraic concepts using arithmetic or logical methods

of exploratory analysis. On this basis, a model of formal

competence of an ideal user of the conceptual apparatus of

elementary algebra is generated, when the latter is employed to

solve the usual arithmetic-algebraic problems in high school
(Junior and Senior).

SOME RESULTS

1.- As a consequence of a teaching strategy that requires the

pupils to vary the solutions to the problems, 1) we observed

a tendency to thinking that any datum is possible. When asked

for the invention of various problems similar to the one that

has been solved, 2) the pupils tended to center on taking the

data to calculate solutions instead of proposing solutions to

calculate the data.

2.- Another tendency observed in the pupils when they were

carrying out the logical analysis of the problem, was that

they could not accept the operativity of the unknowns; that

is, when they attempted the analysis, they tended to employ

or to give values to the unknowns and could not manipulate

them as such. Even in problems with concrete objects, when--

they attempted the analysis, the pupils could not follow

through the corresponding process of thought (although they

could accept them separately without problem). This is due to

the fact that they cannot follow the logical implications

that derive from thinking about something unknown, such as a

number of children (syntactically this would be linked to the

incapacity to accept the uninterrupted operations that arise

when certain types of semantic errors are committed (Booth,

1984; Trujillo, 1987; Rubio, 1990).

3.- A natural tendency to handle a single unknown in problems

that can imply handling two or more unknowns was found, in
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contrast with the classical teaching strategies that tend to

use two unknowns in the solution of such problems (this was

also reported in Filloy, 1987).

4.- Great difficulty in being able to represent one unknown in

terms of another was observed, even in subjects who had

overcome the difficulty expressed in 2).

5.- The possibility of carrying out an exploratory, arithmetic

analysis makes it easier to show, and to make explicit if

desired, the relationships between the unknowns and the data,

making the logical analysis of the problem possible.

6.- We noted that arithmetic analysis led to easier access to the

algebraic interpretation of the problems and to giving it

meaning.

7.- By making the natural tension between the notion of unknown

and that of variable explicit, through teaching (in the

clinical interviews as well), various states of development

were observed, which depended more on the degree of progress

in the possibility of carrying out increasingly complex

logical analysis and not so much on progress in the

utilization of the symbolic elements of algebra and in the

exploratory arithmetic analysis.

FINAL DISCUSSION

The results of the exploratory phase of this study seem to

imply that the earlier concepts of algebra simplify the logical

analysis and make it possible for the learner to solve word pro-

blems that he or she wouldn't be able to solve just with a logi-

cal analysis based on the use of the Arithmetical Signs System.

But, it also shows that the learner needs to master late stages

of the arithmetic-logical analysis to be able to carry on with

latter phases of the mentioned algebrization programme. Further-

more, contrasting with its logical counterpart, (that generates

unsurpassable obstructions), arithmetical exploratory analysis of

word problems appears as a bridge from arithmetical to algebraic

competences.
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Small Group

AN ANALYSIS OF STEPHANIE'S JUSTIFICATIONS OF PROBLEM
REPRESENTATIONS IN SMALL GROUP INTERACTIONS

Amy M. Martino and Carolyn A. Maher
Rutgers University

This report describes one component of a three-year longitudinal study
involving Stephanie, a third grader, who has been observed doing
mathematics in small-group settings since grade one. Data in the form of
videotape transcripts of small-group problem-solving explorations,
indicate how Stephanie represents certain mathematical ideas in social
situations, and how 'her ideas, methods, and attitude change over time.

Studies over the last twenty years comparing male and female achievement

in mathematics have revealed that females do not participate in advanced

mathematics to the same extent as males and that achievement in mathematics is

higher, on average, for males than for females (Fennema, 1990). Currently,

researchers are acknowledging that before educators can know more about

mathematics and gender, they need first to know more about the characteristics

of learners who do or do not succeed in mathematics, as well as their schools

and classrooms (Leder & Fennema, 1990).

The predominant mode of analysis for much of the research on mathematics

and gender has been to focus upon the behaviors of teachers as they interact

with children. Koehler (1990) reports two studies that involve small groups

and gender differences (Webb, 1984; Webb & Kenderski. 1985). In these studies,

male out-performance of females was explained by three factors, with

relationship to student-student and teacher-student interactions in the

classroom: (1) males received more explanations than females; (2) females

did not receive answers for their requests for help; and (3) both males and

females asked for help most frequently from males.

The results of these small group studies suggest that the analyses

focused on the responses of teachers to student questions and students to each

other's questions. The setting seemed to be authority centered, that is,

the justification for correctness of solutions came from some authority within

the classroom rather than the logic of the situation. What is unclear from

these reports is the extent to which small group organization was usual

classroom practice. Cobb, Wood and & Yackel (1990) argue that in order tor

mathematical communication to be shared, the classroom norms must be -taken-

to-be-shared by all members of the community.
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Problem Representations

Clearly, there is a need for research to be conducted in classrooms in

which mathematical conversations and open sharing of problem-solving

strategies are regularly a part of the child's mathematical environment. In

particular, some questions emerge that have potential implications for gender

studies conducted in learning environments which encourage students sharing,

asserting and defending their mathematical ideas. Before addressing the

gender issue directly, research needs to take place which focuses on the

construction of mathematical knowledge for all individuals in learning

environments which value student discussion and sharing of solutions.

This report focuses on the study of a female student, Stephanie, who has

been observed over a three year period dealing with a variety of mathematical

situations in small-group settings. We encountered Stephanie for the first

time in March 1989 as a first grader. She and three other children were

working together on a mathematics problem. Careful viewing of the videotape of

this classroom episode revealed that Stephanie exhibited considerable

assertiveness (persistence in stating and defending her position) by insisting

that her solution be considered and calling for justification (the provision

of evidence to support one's position) for the solution presented by another

group member. What was particularly noteworthy about this episode was that

Stephanie was the only girl in this four member group. These preliminary

observations of Stephanie raised a number of interesting questions.

Guiding Questions

1. What criteria did Stephanie and the other children use to validate or to

reject their own ideas and the ideas of others?

2. What role did assertiveness, the ability to state and defend one's own

position, play in Stephanie's communication of her ideas?

3. Were there patterns of assertiveness and/or validation for children

engaged in these small-group explorations that emerged over time?

Theoretical Framework

The study is based on the view that children, given the opportunity to

be challenged by problem situations, cycle through various steps as they build

representations of those situations (Davis, 1984; Davis & Maher, 1990).

Careful analyses of videotape transcripts of children doing mathematics

enables a detailed study of how children deal with mathematical ideas that
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arise from the problem situation. By following these episodes over time,

researchers can learn much about how children's thinking has developed.

Design
The setting in which our observations take place is the Harding School,

a K-8 district which has participated in a mathematics teacher development

project since 1984 (Maher, 1988; Maher & Alston, 1990). This research was

conducted in classrooms where children have worked in small groups on problem-

solving explorations since their entry to grade one. In this environment,

children are encouraged to relate abstract or symbolic ways of working with

more concrete representations, using pictures or actual physical models.

This paper will present a fine-grained analysis of three videotape

transcripts of classroom small-group problem-solving activities, with the

accompanying student written work, spanning grades 1-3. Specifically, this

analysis will focus upon Stephanie's building of representations of problem

solutions as well as her ability to validate and reject her own and the ideas

of others. It will also explore Stephanie's patterns of assertiveness and how

these served to facilitate or impede her own problem-solving.

Results
The three small-group episodes will be presented in chronological order.

Grade One: Four children, Stephanie (St), Gerardo (G), Aaron (A) and Sean

(S), were working in a small group to solve the following problem:

The kangaroo jumped six times.If the rabbit jumps four more times, he will have jumped as

many times as the kangaroo. How many times has the rabbit already jumped?.

St: (to Gerardo) Listen! These two boys are going to have to figure this

one because you and me already figured this one out...0k? So I'm going

to read you the question and you're the two who are going to figure it

out. Aaron...you didn't answer a question and Sean you didn't...

Notice Stephanie's insistence upon fairness within the group. She asserts

that she and Gerardo have solved a problem, so the next problem should be

solved by Aaron and Sean. She is orchestrating a division of labor.

0: So it would be six...because the kangaroo jumped six times!

;erardo provides an answer with an explarstion that is insufficient for

Stephanie who now demands justification for the answer of six.

St: Wait a second buddy...you can't just say six!

0: It's gotta be six.

0 IL
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Problem Representations

Gerardo reasserts his answer with no justification for his choice. Therefore,

rather than pursue Gerardo's assertion, Stephanie decides to validate this

problem with her own concrete model.

St: WaitI think we should read this word (the word is already) Wait for

us buddy (Co Gerardo) remember, you can't just jump to conclusions like

'I know this'.., wait...let's just try these five...no six...jumped six

(Stephanie groups six unifix cubes and takes away four of them) six and

four...two! Put two over here...1,2. We did it. It's two! Do you want

to go over the problems and figure out if they're right?

In this episode, Stephanie asserted and justified her own solution with a

physical model. She was clearly searching for justification, but did not

actively pursue the reasoning of others. This and other observations made in

grade one formed the basis for further study of Stephanie's monitoring of

group problem-sclving and her need to justify all paths of solution. Stephanie

consistently demonstrated confidence in her mathematical thinking and refused

to accept solutions at 'face value.

Grad* Two: Four children, Stephanie (St), Dana (D), Michael (M) and Sean

(S), worked together to determine how many single units would be needed to

construct a base 4 cube (4 x 4 x 4 dimensions). The children were given a set

of base 4 blocks which included units, longs of four units, flats of sixteen

units and a cube of sixty four units. This excerpt begins with Stephanie

monitoring the selection of a solution strategy. Note the progressive

sophistication of her methods for choosing the group's solution strategy, and

her need to justify her method for the following problem:

HowtmmysmablecksdowemmAtoniakethebighlock?

St: Let's decide on a way we all want to do it.

D: Would you like to do it by tracing the sides?

Dana (Manned to trace all six faces of the cube to find the number of units.

St: (joining) Or would you rather do it like this...

H: Give me that! (referring to his cube)

3t: Wait A second. Trace the box and then you'd be able to fill the box and

figure out the picture.

Stephanie wanted to trace one face of the cube and rebuild the cube inside her

traced outline.

9: Yeah! Wouldn't that be easier?
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St: Let's vote, who wants to do it my wiy? (Sean raised his hand).

St: Who wants to do it Dana's way? (Mike and Dana raised their. hands).

D: It's two against two.

St: Two against two...so we'll have to do odds and evens. Evcis is mine,

odds is hers. Ready Dana...one,two...I won! We're doing it our way.

As they began to use Stephanie's strategy, she provided a more legitimate

means of justification for her method of solution.

St: You know Dana why you can't do it that way..because you have to work

around in the middle... in order to get in the middle...if you were

going to do it your way what would happen is you would be Joing the

outside and you wouldn't be doing the inside. What I'm saying is you

have to get all the blocks. (Dana nods) But what you were doing was

this...you were going around it (referring to the surface of the cube).

If you do that there is no way you can fit the blocks inside (referring

to unseen blocks at the center of the cube).

Stephanie used an explanation which compared surface area to volume, and

pointed out that Dana's method would not account for the blocks which were not

visible to the eye. Thus, she had replaced voting strategies and the 'odds

and evens' method for selecting the best strategy with a well conceived

explanation of her method of solution. This transcript indicates that

Stephanie was simultaneously monitoring her own construction of a solution and

those of her classmates, then judging which method was best.

Grade Three: Stephanie continued to refine her explanations and group

monitoring techniques. She (St) worked with Dana (D) on the following problem:

Stephen Insabluesbilt whiteshirtand yellow shin. Healsolusapairofbluejeansand

a pair of white jam How Lessor different outfits can bemake?

Note that Stephanie subtly monitored her
classmate's work as well as her own

by drawing a simple diagram to keep track of her outfit combinations.

D ...how many different outfits can he make?

it We.. why don't we draw a picture?

As Stephanie and Dana drew their
pictures (See Figures 1 and 2), we see them

focusing on the pieces of data that deal with numbers of shirts and pants and

their colors. In so doing, they searched for a way to map their knowledge

representation into the data representation of the problem.

D. Ok...he had a white shirt (The girls drew pictures of shirts).
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St: So I'll make a white
shirt..(Nocice that Stephanie was checking her

representation as she drew her picture to match the problem data).

D: A blue shirt...

St: I think I'll have to use the big marker for this one...you know color it

in blue (decided to color
the shirt blue to match the problem data).

D: And a yellow shirt (The girls drew another shirt).

Figure 1 - Stephanie's work
Figure 2 - Dana's work

At this point, Stephanie
suggested that the data be coded by assigning the

first letter of the color rather
than coloring the piece of clothing.

St: Why don't we just draw a Y, a B and a Y (sic) instead of coloring it in?

(Began to use a one letter code to represent garment color).

D. That's what I'm doing...

St: W, B, Y (she put a letter in each shirt to denote color). Ok, he has...

Stephanie indicated that she had begun to construct a representation of the

relevant knowledge and proceeded to draw two pairs of jeans, blue and white.

St: Alright let's find out how many
different outfits you can make. Well,

you can make white and white so that would be one...I'm just going to

dt,w a line...(connected each shirt/pant combination with a line and

attached a number label to each of these lines).

Later Stephanie and Dana were questioned by the instructor about their

purpose in using connecting lines. Stephanie replied, 'So we could know if we

already matched that (any shirt and pants combination). So we don't get more

that we were supposed to.'
For Stephanie, the connecting line strategy was a

way to check one's work by avoiding the repetition of
combinations as well as

a method for obtaining those combinations (Figure 1).

Concluding Remarks

Over the course of several years,
classrooms such as those at the

Harding School, which embody sharing ideas and providing explanations to

justify those ideas, are an important asset to children's construction of
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mathematical knowledge. In grades two and three, Stephanie continued to build

models to justify her solutions. She demonstrated competence in assisting

other group members as they pursued and refined their own strategies. One

pattern that manifested itself in grade two and was reinforced in grade three

was greater attention to multiple justification of arguments provided by

others. She listened to the ideas of others, and rejected or integrated them

into her representation of the problem solution.

In this longitudinal case study, Stephanie's criteria for the validation

or rejection of ideas seems to have been 'sense-making". Some ideas she was

able to accept because they mapped into her representation of the problem

situation, others did not and were rejected. This learning environment of

open sharing provided Stephanie with the opportunity to further develop her

own mathematical knowledge by allowing her to share her ideas with others. In

this forum, she demonstrated her ability to assert her mathematical beliefs

and justify them in a variety of ways (physical models, comparing strategies,

drawing diagrams). A modification and refinement of her approach was that in

pursuing her own problem-solving strategies, she simultaneously referred to

and monitored the strategies of other group members.

Re frnee
Cobb, P., Wood, T. & Yackel, E. (1990). Classrooms as learning environments

for teachers and researchers. In R.B. Davis, C.A.Mahet & N. Noddings
(Eds.),Constructivist Views on the Teaching and Learning of Mathematics
(pp. 140-168). Reston, Virginia: NCTM.

Davis, R.B. (1984). Learning mathematics: The cognitive science approach to
mathematics education. New Jersey: Ablex Publishing.

Davis, R.B. & Maher, C.A. (1990). What do we do when we 'Do Mathematics'? In

R.B. Davis, C.h. Maher & N.Noddings (Eds.), Constructivist Views on the
Teaching and Learning of Mathematics (pp. 53-69). Reston, Virginia:NCTM.

Fennema, E (1990). Justice, equity and mathematics education. In E. Fennema

& G. Leder (Eds.), Mathematics and Gender (pp.1-8). New York: Teachers

College Press.
Koehler, M. (1990). Classrooms, teachers and gender differences in

mathematics. In E. Fennema & G. Leder (Eds.), Mathematics and Gender
(pp. 128-148). New York: Teachers College Press.

Leder, G. & Fennema, E. (1990). Gender differences in mathematics: A
synthesis. In E. Fennema & G. Leder (Eds.), Mathematics and Gender
(pp. 188-199). New York: Teachers College Press.

Maher, C.A. & Alston, A. (1990). Teacher development in mathematics in a
constructivist framework. In R.B. Davis, C.A. Maher & N. Noddings
(Eds.), Constructivist Views on the Teaching and Learning of Mathematics
(pp. :47 -165). Reston, Virginia: NCTM.

Haher, C.A. (1988). The teacher as designer, implementor ald evaluator of
children's mathematical learning environments. The Journal of
Mathematical Behavior, 6(3), 295-303.

-76-

`' 5 BEST COPY iiViViiTiE



Elementary through College

Theoretical/Conceptual/Frameworks
Multiplicative Structures

A THEORETICAL-CONCEPTUAL
ANALYSIS OF U.S. AND SOVIET

STUDENTS' UNDERSTANDING OF MULTIPLICATION

Jean Schmittau
State University of New York at Binghamton

This paper reports on an assessment of conceptual structure

in two groups (from the U.S. and Soviet Union) whose formal

mathematics instruction differed significantly. The Soviet

group experienced three years of a curriculuum which was

explicitly designed to develop conceptual structure using a

Vygotskian psychological approach. Differences reflecting

that approach were found in the psychological structure of

multiplication, the concept investigated.

The Soviet research was conducted during the fall of 1990 in

cooperation with the Academy of Pedagogical Sciences of the USSR.

Results were compared with results obtained earlier in similar

investigations conducted in the United States (Schmittau, 1988,

1989, in press). Data from written instruments and clinical

interviews were obtained from 40 American and 24 Soviet subjects.

The Soviet subjects were drawn from the fourth, fifth, and

upper secondary forms of neighborhood public schools in both

urban and village settings. All had learned mathematics during

their first three years of schooling using experimental materials

developed by V.V. Davydov (1975), which were designed to promote

conceptual integration and the development of real number

concepts in measurement contexts.

The U.S. subjects were drawn from highly selective

university and from middle, class public secondary schools in the

eastern United States.
Seventy-five percent of the U.S

secondary students were identified as high achievers in

mathematics, fifteen percent as average, and ten percent as low

achievers. Soviet lower form subjects were evenly divided

between average and high achieving, and all upper form secondary

students were rated as average. Despite the age and achievement

rating disadvantages of the Soviet subjects vis-a-vis their

American counterparts, no disadvantages with respect to

conceptual structure on the part of these subjects were in

evidence. In fact, Soviet fourth and fifth-form school children
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often gave evidence of powerful relational understandings not

found in U.S. secondary and university students.

The investigations were designed to the psychological

structure of multiplication for real number instances.

Psychological structure is described by Ausubel as the

cumulative residue of what is learned, retained, and forgotten"

(Ausubel, Novak, & Hanesian, 1978, p.129). The psychological

structure of a concept which has been meaningfully learned

typically reflects a progressive restructuring of knowledge under

more general and inclusive higher order concepts.

Hence, the investigations sought to determine whether

knowledge structures were hierarchically integrated or fragmented

(indicating meaningful or rote learning, respectively), and

whether connections were established along formal, conceptual, or

prototypic lines. This latter consideration reflects the current

level of our understanding of category structure, which was

modified by Roach's (1973) challenge to the classical view of

organization according to genus and differentia. Numerous

studies have corroborated her findings of prototype effects in a

wide range of perceptual and semantic categories (Lakoff, 1987).

To for prototype effects, ratings instrument based

on the work of Roach and following the design of Armstrong,

Gleitman, and Gleitman (1983) was administered. Using a scale of

1 to 7, subjects were asked to rate instances of multiplication

for their degree of membership in the category, with a "1"

indicating a high degree or "best exemplar" and a "7" a low

degree or "poor exemplar' membership status. The ratings data

suggest that for U.S. subjects the instance "4 x 3" functir .'d as

an exemplar for the category. Organization around a cardina,

number prototype was confirmed by triangulation across two

additional data sources: a) subjects' explanations of the meaning

of multiplication and b) clinical interviews on the manner in

which the various instances were understood as riltiplication.

While all American ubje to rated the cardinal number

instance '1", no ucl. clear prototype emerged from the Soviet

ratings.

-78-

.-



RATINGS TASK -- Mean Ratings

U.S. Studies Soviet Study

Instance University Secondary 4th Form 5th Form

4 x 3 1 1 1.8 1.9
2/3 x 4/5 2,3 2.3 - 2.9

ob 1.9 1.7 2.3 2.5
(2e.y)(x.3y) 2.7 2.8 2.7 3.4
(-5) x 2 2.2 1.9 - 2.8
(-3)(-2) 2.6 2.2 - 3.1
12 ' r. 3.4 2.8 - -

1----1 2.3 2.3 1.7 1.8
A =7-151)

Indeed, for the lower fors etudents especially, the inatance of

rectangular area vox rated an more representive of multiplication

than the instance .4 x 3. In addition, every American subject

defined multiplication at the operational 2eve1 am the repeated

addition of positive integers, while the Soviet students

described it as an action which they flexibly applied across

numerical and algebraic dosaina, extended to lengths of line

segments. and expressed with rove or: immures whose repetition

generated rectangles. It seems probable that those differences

reflect, first of all, the influence of the theory of activity in

Soviet psychology; and second, cardinality emphases in

elementary education in the United States as opposed to the

Soviet emphasis on reasurement contexts in the development of the

real numbers (Davydov, 1975; Ninekaya, 1975).

Clinical interviewing confirmed that for the American

.9tudonts the conceptual structure of multiplication for real

number instances was not only organized around a prototype, but

that thin prototype functioned as rudimentary concept to which

other instances of the category were linked with difficulty or

not at all. For the Soviet subjects, however, the conceptual

structure of multiplication appeared to be highly integrated- -

lacking the prototype effects found in the U.S. studiesand

organized around a conceptual base of greater generality. The

expanded conceptual base promoted relational learning and allowed
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for the subsumptlon of other instances of the category and their

meaningful integration into cognitive structure. At the same

time, the understanding of multiplication as an action connected

with the children's action schemes and allowed their

understanding to develop to a high level of abstraction and

generalization - -to proceed, in fact to algebraization.

These differences were obvious, even in the case of those

instances, such as 'alp", which appeared to have meaning for both

the U.S. and Soviet subjects. Typically, the American students

substituted small positive integers for "a" and "b", thereby

effecting a reduction to the prototype. The Soviet children were

more likely to represent "ab" with a schema which constituted a

representational embodiment of the action of repetition

understood at an abstract level. The following schema, in which

a 'la = k is illustrated, was provided by Soviet children t.no

were beginning their fourth year of schooling.

b tames
Other differences between the two sets of subjects were

observed which related both to autonomy and to the use and

extension of the knowledge base. While American students

preferred easier tasks and small whole numbers, the Soviet

children dismissed these as uninteresting, choosing large numbers

and decimals and preferring tasks such as multiplying fractions

or binomials, which they had not yet encountered in the

classroom. Even the youngest students ware successful with such

tasks, consistently demonstrating their ability to extend their

knowledge in the zone of proximal development identified by

Vygotaky.

Space considerations preclude description of the many

differences which surfaced between the Soviet and American
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students' mathematical understandings. However, the following

incident illustrates the relational na'..ure of the Soviet

children's knowledge. A fifth-form girl, having successfully

accomplished all tasks connected with the proceeding instances,

stated that "(-5) x 2" was "the classic example" of a times b'

and that one 'could put any variant in as a and b." She

annour.ced that she was changing to "1" her rating for 'ab'. She

changed all of her other ratings as well, and proceeded to

diagram her understanding of multiplication,
explaining how it

was ordered u.der the general schema for 'ab'. The U.S.

subjects, by way of contrast, subordinated their understanding of

"ab' to that of the multiplication of two cardinal numbers.

Although apace considerations limit not only the reporting

of results, but the full development of the lines of inquiry of

the study as well, it is important to point out that the results

do not merely present yet another chronicle of American students'

misconceptions (vis-a-vis the more adequate conceptualizations of

their Soviet counterparts). Rather they reflect the

psychological oromnization of the category itself. The works of

both Vygotaky (1962) and Ausubel (1978) allude to the important

consequences of these organizational differences.

The first consequence concerns the difference between the

psychological and the logical structure of the concept under

investigation. We did not find knowledge connected at the formal

level for any of the subjects, whether Soviet or American. The

second concerns the fact that for U.S. subjects the psychological

structure was not only prototypic but organized around the most

conceptually restrictive instance in the category. given the

predominant tendency toward assimilation into the existing

cognitive structure (Ausubel, 1978), it was not advantageous for

the American subjects, that after 8 to 14 years of schooling

multiplication should remain for them at the most rudimentary

level of understanding, organized around conceptual base of

insufficient generality to support the subsumption of other

instances of the category. As one tenth-form Russian student

observed, multiplication as repeated addition of positive
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integers 'does not apply to [other instances much asl irrational

numbers; for irrational numbers you need to use area, and for

fractions it is easier to use area as well. In fact, the Soviet

students' relational understanding of both area and irrational

products was far superior to that of their U.S. counterparts, for

whom irrational numbers themselves often had no meaning.

Finally, given the stability of the conceptual framework,

once it is established, to function as a subsumer for new

knowledge (Ausubel, et al. 1978), the extent to which the

establishment of an inadequate conceptual framework limits

meaningful learning becomes obvious. The difficulty of

integratively reconciling later multiplicative understandings

based upon area considerations is reminiscent of similar

difficulties engendered by the Greeks' isolation of number from

magnitude, which extended historically throughout most of the

succeeding two millonia.

By structuring the elementary mathematics curriculum around

measurement rather than cardinality, Davydov has developed from

the very first veers of schooling a conceptual base of sufficient

generality to subsume other instances of the category. Rather

than being faced (as are U.S. children) with the necessity of a

total reorganization of psychological structure around newly

introduced ooncepts of greater generality ( Herculean cognitive

task), the Soviet children's pedagogical experiences work with

rather than against the prevailing cognitive tendency toward

assimilation.

As the Soviet results indicate, multiplication for real

number instances is not a category subject to an invariance of

natural development, but is instead modifiable through the

application of principles derived from the psychology of

learning. Davydov's curriculum materials reflect not only

Vygotsky's (1962) emphasis on the importance of the conceptual

framework, but his cognitive developmental theory of the

internalization of action as cognition.

In addition to developing and refining Vygotsky's ideas over

Mix decades of research, Soviet psychologists have also proved
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their applicability to the learning of mathematics. In so doing,
they have demonstrated a) that mathematics education can

profitably tap its foundations in order to inform its practice,

and b) that there may be, after all, nothing quite so practical

as a good theory.
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Primary
Representation
Multiplication

BUILDING A REPRESENTATION OF MULTIPLICATION: A DESCRIPTION AND
ANALYSIS OF ANGEL'S RECONSTRUCTION1

Carolyn A. Maher and Alice Alston
Rutgers University

This paper describes and analyzes the mathematical
activity of a fourth grade boy, Angel, as h develops
and explains pictorial constructions related to
multiplication. It focus., on his creative
reconstruction of a problem situation in which he
builds and maps his numerical to his pictorial
representation, developing a complex, multilevel
problem situation involving multiplication.

Davis (1984) describes th5lking about a mathematical situation as involving a

series of components that include constructing a representation of the input

data, building a representation of relevant knowledge that may be used to

solve, or attempt to solve, the problem, and mapping between the

representations of data and knowledge. According to Davis, checks are made

along the way as the learner attempts to develop this mapping and other

knowledge may be entered, causing certain representations to be modified or

rejected. When the learner is satisfied with what has been constructed,

various strategies and procedures associated with the particular knowledge

representation may be applied to carry out the solution to the problem at

hand. Examples of such constructions can be found in the problem solving

activity of Brian, as he is engaged in problem solving activities that

encourage the building of representations (See Davis & Maher, 1990 and Maher,

Davis & Alston, 1991). Studying in detail children's problem solving in

environments that provide the stimulus and tools for constructions, suggests

that children can develop meaningful understanding of mathematical ideas from

an early age (See, also, Maher S Martino, 1991; Maher S Alston, 1989; and

Landis i Maher, 1989). In the domain of multiplicative structures, Vergnaud'

(1953) suggests that children from an early age develop understanding through

engaging in meaningful problem activities. His position is that children's

problem solving should be carefully analyzed in order to facilitate this

development.

1 The research reported in this paper was supported in part by a grant from the EXXON
Foundation, An Assessment Model for Elementary Mathematics: Conceptual Understanding and
Problem Solving.
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The purpose of this paper is to describe and analyze, in detail, the

mathematical activity of a fourth grade boy, Angel, as he develops and

explains particular constructions.
In particular, the focus is on the process

by which he reconstructs a
picture of three fish tanks, each containing a

different number of sea creatures, to build a representation of a

multiplicative relationship.

Methods and Procedures

Angel's instruction in mathematics
in grades 1 through 3, as a member of an

urban, New Jersey classroom, had
depended almost entirely on memorizing number

facts and procedures. Lessons,
for tte most part, consisted of the children

working individually to complete sets of practice exercises. Two task based

interviews were administered to
Angel within a one-week period of time in

November. A variety of materials were
availaole during the tasks including

Unifix cubes, base ten blocks,
and paper and pencil. The interviewer was

guided by prepared protocols to
explore whether the student could accomplish

the following: (1) communicate procedural knowledge of multiplication; (2)

construct and explain ideas about multiplication using concrete materials

and/or pictures; and (3) select from a group of pictures those that seemed

appropriate to use in learning about
multiplication and to explain these

choices to the interviewer. As a part of each protocol, the interviewer asked

Angel how he would explain what the various problems might mean to a child who

had not yet been introduced to
multiplication in school.

Results

Augtl's Thinking about Learning Multiplication. In each interview,

when Angel was asked about how a young child learn about multiplication, he

immediately referred to procedures and learning fac w In the first interview,

Angel was asked how he would explain what 4 times 7 to a 2nd grade girl,

Nina.

Int She's probably heard some of the big kids talking about

times.... and she wonders.... 4 times 7...What does that mean;

Angel' I'd get my "trapper keeper" (matrix chart of multiplication

facts) and it's got all that stuff that will teach you. Four

(pointing down an imaginary vertical
side of a chart) and then

go seven (over) and then coma to (28 in the matrix cell)....
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Budding Representations

Angel was asked again at the beginning of the second interview how he might

teach multiplication.

Int: What would you do to help children first start thinking about
multiplication?

Angel: Write them some easy problems, with the ones or with the zeroes
and let them add it.

Int: And let them add it? Give me an example.
Angel: Like nine ... or one times one equals one ... Three times zero

is always zero. I'd do it step by step like that.

ipisodas from Interview One. Throughout the interview, Angel defended his

solutions by explanations based on addition and/or counting, often

constructing and reconstructing the numerical representation of the solution.

ftample One: Angel's response to the first question, That is 4 times

7?, was to immediately write out 4 x 7 28, apparently as a memorized fact.

When asked to defend thin, he spontaneously used the base-10 blocks, counting

out four groups of seven small cubes and then counting the total. He then

regrouped the cubes and traded the two sets of 10 small cubes for two "longs",

indicating that this also represented 28. The interviewer questioned Angel

about how he might explain 4 times 7 to Nina, the 2nd grade child.

Int: Is there any other way you could show her? What if she didn't
know how to read that chart (the "trapper keeper" matrix
referred to earlier)?

Angel: Count on your fingers. Can I write on here?
Int: Sure (Helping Angel reach a blank sheet of paper).
Angel: 14, two times (writing two 14's, one above the other), 8

(writing 8 below the two 4's). Two (writing 2 below the two
l's).

Int: Now what did the 14's stand for?
Angel: The 7's. Four 7's and that's this (pointing to cne 14) two

times. Make it like 7, 7, 7, 7 (writing the sevens vertically
with a plus sign before the fourth 7)...14... 14...28.

As the interview continued, Angel was asked to solve other problems, including

12 times 4 and 4 times 12. For each problem, Angel first computed the answer

numerically by adding.

!sample Two: For 12 times 4, after adding 12 four times fur a sum of

48, Angel was asked how he would explain the problem to Nina. He counted our

40 Unifix cube- and 8 small base-10 wooden cubes, grouping them as 4 stacks of

10 Unifix cubes and one group of 8 wooden cubes.
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Angel: I'd take all these apart (holding up a stack of 10 cubes) and

then I'd count them: 1, (pointing to each individual cube
in the four stacks of 10), 40... and then I'd say that these do

the same thing (placing the 8 wooden cubes on top of one of the

stacks of 10)....41, 42, 43, 44, 45, 46, 47, 48. She'd (Nina)
probably count on her fingers.

When the interviewer questioned Angel as to what these 48 cubes had to do with

12 times 4, he removed the eight wooden cubes and added 2 more Unifix cubes to

each of the four stacks of 10.

Angel: Twelve. Four 12's...and those are the 8 that I had...2, 4, 6,

8 (pointing to the wooden cubes and then touching the 2 cubes
that he had attached to each of the 4 stacks of 10).

Angel said immediately that 4 times 12 was "the same thing" as 12 times 4

When asked if there was any difference between the two, he first said 12

groups of 4, but then rewrote the addition as follows, whispering to himself

and counting on his fingers as he wrote vertically:

16
f 16

32
t 12

44

4$

Int: Well, that says 12 times 4, so why 167
Angel: I just made it different, but I come up to the same answer like

the four of these (pointing to the four 12's) together be 48

and I get two 16's out of that.
Int: OK, but how did you get the two 16's? That's what I don't

understand.
Angel: Off the 48. You make the same answer. [Perhaps indicating

successive subtractions of two groups of 16 from 48).

Angel seems here to be inventing a new notation to represent actions of

decomposition and partitioning of products from partial sums. When questioned

about how Nina would understand 4 times 12 from this, Angel wrote twelve 4's

on the paper and began to count.

Angel: 8 (placing fingers on two 4's)...16 (pointing to two more 4's
and then holding up four fingers) 17, 18, 19, 20.

He continued with this process, using his fingers to indicate each 4 in turn,

until he finally announced: "48... 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

(pointing to each 4). There's 12." In this Instance he seems to be

representing skip counting by fours.
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episode from Interview Two. In the second interview, Angel was asked to

select pictures from a set that he could use to help young children to learn

about multiplication. Among his choices was a picture of three fish tanks,

each containing a different number of sea creatures, which had been intended

to serve as a distractor. Angel's reconstruction of the picture along with his

numerical representations give us further insight into his thinking about

multiplication (See Figure 1).

Figure 1. Angel's reconstruction of sea creatures with his
numerical representations

How would you use this one for multiplication?
Have to count - 1, 2, 3, 4, 5. (Uses his pen to point to each
of the fish in the upper tank and then looks at the next
tank.) - 1, 2, 3, 4 - (pauses for a moment) 5, 6, 7, 8, 9.
(points to the fish in the lower left tank.) ... Can I draw
another box?
You can do anything you want to.

Angel drew a box at the bottom of the page, crossed out the five snails in the

bottom left tank of the picture, and drew five circles in his box. He drew a

second box. Using his pen, he pointed to the creatures in the bottom right

tank, appearing to count them. He marked three fish and one snail in the tank

and then drew four squares in the second box.

(Pointing to the second box) OK - Now tell me what this stands

The fishes.
Oh, so you took those fishes and put them down here?



Building Representations

Angel: Yes - (pointing to the upper tank and counting its contents to

himself) - five - (pointing to
unmarked creatures in the

original lower left tank ) - Nine - (moving to the tank on the

right and pointing to each unmarked
item) - 10, 11, 12, 13 -

(then pointing to each circle
in the bottom left box) - 14, 15,

16, 17, 18 - (finally pointing to
each square in the bottom

right box) - 19, 20, 21, 22.

Int: (Pointing to the right tank and
the box beneath it) So you put

these fish in this box? - And these ones? (Pointing to the

bottom left box) Where did these come from?

Angel pointed to the left tank, indicating that the circles represented

the creatures crossed out in the tank above. He then began to point to

the different tanks and to count
the creatures. He first wrote the

vertical addition of 9, 9, and 4 shown in Figure 1. After completing

the addition, Angel paused and then wrote 5 X at the bottom left side

of the page. He raised his eyebrows, paused
again, moving his mouth as

well as his head, eyes, and the
fingers of his left hand. After several

seconds, glancing at his addition problem, he finished writing the

symbolic statement as indicated in Figure 1.

Int: OK. Show me what you did. 5 times
4 (pointing to what he wrote)

Angel: And 2 plus that - a half of - a half of a 4.

Int: So 5 times 4 was what?
Angel: 20.
Int: And then you added?
Angel: 2....and you got 22.

When questioned by the interviewer,
Angel circled the single fish in the

top tank and the single circle in the left bottom box, explaining that

these represented the two that he had added.

Conclusions

In the first interview, Angel produced symbolic mathematical statements that

were remotely related to
multiplicative relationships. His re: onses were

based on numerical representations
of the solution. This is not surprising;

his experiences with mathematics
"n school were symbol driven. During the

second interview, in constructing his pictorial representation, Angel modified

a picture which included three fish tanks, each with a different number of sea

creatures. His new construction
contained two more tanks into which he

"transferred" some of the creatures in order to develop groups of four. He

then constructed a numerical
representation to accompany his explanation of

his production (five times four plus one half of four.) Angel's reconstruction

-89-

S
19



.r

Building Representations

of the pictorial representation of the fish tank problem was then mapped into

his representation of numbers of sea creatures. As he built his

"reconstructed" tanks, he modified his numerical representation to produce a

more complex multi-level problem. What is particularly interesting in Angel's

problem solving, is the process of his reconstruction. The symbolic

representation of numbers of fish and numbers of tank had meaning for him.

Angel, monitoring and building the representation, checked the input data and

how it mapped between the two representations of the problem situation.

The study suggests the power of a child's thinking when given an opportunity

to build task conditions in an open-ended problem situation. It provides

insight into the powerful reasoning of a child engaged in a task that provides

opportunity to create and connect different ..nodes of representation.
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UNDERSTANDING THE INTEGRATION CONCEPT BY THE TEACHERS
OF ENGINEERING SCHOOLS.

Francisco Cordero-Osorio
Centro de Investigacion y Estudios Avanzados

Mexico.

Thts document discusses the result of a research done

with teachers of ongLnefamng schools, by studytng their

ways of conceiving the integration concept when faced

with specific situations of continuous variation,

capturing their explicative model. :Led to their

notions, intuitions and practice that emerge in the

continuous variation.

INTRODUCTION

The problems in the transmission of knowledge in Calculus As

related to the explicative model chosen in the Scholastic

Mathematical Discourse (SMD) (41. This model respond more to the

demands of the Calculus formal system then the requirements of a

significations system, based on the notions, intuitions, and

experiences of the teachers and students faced with specific

situations of continuous variations.

This last system is practically absent in the SMD, aspect that

could damage the efficiency in the transmission of knowledge An

Calculus. This research is aimed at exploring the ways of

thinking the ideas in Calculus under the scheme of a

signification system, to r.ialize the explicative models that may

derive from them, to draw didactic situations that will allow,

given the case, an efficient transmission of knowledge of

Calculus.

We present here, the study of cases with mathematics teachers in

engineering schools under a controlled teaching experience
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focused on the concepts of integration. The study consists in an

epistemological analysis of integration concept associated to

the genesis of the concept, comprehended in two stages: the old

Calculus texts and the treatises on the movement of fluids.

Recognizing a construction pattern of the integral tied to

signification of the accumulation notion allows to view Integral

Calculus (IC) in two directions: based on a movement system,

where the most important aspect lies in the acumulation notion

and the accumulated value reconstructing elements of the

quantities that vary continuously, and, the other, based on the

theoretical system of IC, where the most important concept of

the general integration theory is the primitive function [2).

Both visions of IC are analyzed in the explicative models of the

teachers and students placed in continuous variation

surroundings.

SOME ASPECTS OF THE INTEGRATION PATTERN AND ITS SIGNIFICANCE.

The basic idea of the pattern consists in observing or rather

recognize the difference between an invariant state and its

adjacent states in the movement system of a particle or a

continuous fluid

pCX+dX)-pCX,
where p00 represents the invariant state and pCX.fdlO its

adjacent states. The difference expresses the last position of

the particle or the local acumulation of the fluid

%

pix) p:xidx
in out

x+dx

pcxdx)-pc x )=,. cx cbc

accumulate on
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The last position and the local variations are obtained by the

variation of in the whole system's process, which is recognized

by the difference pCX+d)(3-pCX); this difference represents, on

one hand, the displacement portion needed to reach its last

position and, on the other, the accumulated portion of the

fluid. If we join or integrate these portions we will find the

final position of the paricle and analogously the total

accumulation of the fluid at the end of the process. When

recognizing

p<x+dx3wf<x)+WCx)dx, we know lo(x)ww.Ca)+1: c*(x)dx and by

recognizing pCx4dx)-loCx)wp'Cx)dx,we know loCb)-pCa)wf: p'Cx3dx.

Within the mathematical analysis requirements,the model can be
reformulated for functions

F:M ----4(12 and functions of C, in the following

manner:

the function F(x) complies with
F(x+dx)=F(x)÷f(x)dx+0(dx), so that f(x).---F'(x), in the ra,b1
interval and o(dx), represent an infinitesimal order bigger than
dx, which is equivalent, in the limit context, to 0(dx)/dx---30
when dx----4). Hence the integral can be defined as

f:f(x)dx=F(b)-F(a) [2].

The ideal conditions of F(x) for the model to take place when

faced with different physical and geometrical situations are

that F(x) be of the type e or be analitical C2l.

An aspect to mention on the way of thinking about the
integration by the professors and the impact of this pattern on

the student activities for the comprehension of the integral in

regard to continuous variation situations, is that the

discussions on integration starts precisely with the "unknown'

quantity (primitive function) that has to be found, requiring
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this to recognize its vatriation (derivative function) in the

situation's context to finally know its integral (know

quantity). This symptom can be distinctive from the traditional

scholastic discourse on integral Calculus, in which, it is

normally asked about the integral of an arbitrary functions

starting from a definition of the integral. This matter leads

necessarily to a different discourse, that we will describe.

PLAN OF THE STUDY

We worked with 13 professors of engineering schools, in 4

sessions of 10 hours every 15 days, within the activities of the

Mathematical Teacher's Formation Program [4], in a controlled

teaching atmosphere with a clinical approximation of stidies of

cases.

The discussion on Calculus was based on the continuous variation

idea, comprehending a mathematical content recognized in the

study of fluids movement. Under this view, the outlining of

Calculus is defined as follows:

..we try to express an explicit form able to interrelate all
the variables involved in a movement system to study a fluid of
a specific nature, generally expressed by F(x,y,z,..,.)=U, but
by starting to recognize its local variations, that depend on
the specific situation of the system, expressed by
F'(F,dF,O2F,...)=0 ..." [4].

In that ense the important thing was to study the respective

variations FCX4H3-F00.13F4something, and from ',e DF variation

and from the integration or accumulation of the variation SW',

to establish the nature of the FCX)wU quantity.

The elements to explore in this surroundings, in the ways of

thinking of the teachers,were the regularities of the concepts

in regard to different situations, the common construction

patterns and using analogy to recognize a situation to know a

new one, all these with physical, geometrical, and analitical

attributes.

o3
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RESULTS OF THE STUDY.

The analysis was performed by interviewing the teachers, based

on reading their explicative models of integration, considering

their mathematical discourse generated by fluid, surface and

volume situation. It is important to mention that the need to

study integration in the ancient didactics, in the text of

Calculus, and in the original treatises on fluid movement, was

due to the fact that our investigation wanted to have a

reference to understand the ways of thinking of the teachers in

regard to integration when faced with the different situations

we have mentioned.

We will describe the results by means of two paradigmatic

packets, which present the following situations: the necessary

elements that have to be incorporated to the specific situation

to recognize an instrument of continuous integration in the

discrete of the continuous and from there the invariant of that

what changes. This packet relates to the second, the one that

describes the notion and the necessary intuitions to understand

the theorems of divergence and rotational, which consist of

thinking in a "principle" of continuity and conservation to

express the accumulation of the fluid and the work of its

displacement, all these through a notion of accumulation,

configurated in "Taking the differential element" (1 y 2].

The previous appreciations point out that the way of thinking the

integral are more related to the specific situation that to the

integration concept; either to the definition associated to the

Riemanniano apparatt., (3], or to the definition of the primitive

function, as it was seen in a parallel phenomenon between a

teacher (of the 13) and a student of a course in Calculus in

several variables - both persons do not know each other- but they

both established the same explicative model on the Fundamental

Theorem of Calculus. The explanation is as follows: "... when

considering an unknown quantity that varies
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in respect to a parameter F(x)=U, we need to recognized its
variation, which is possible with the lineal terms of the
Taylor Series, that is

F(x+dx)=F(x)-0-f(x)dx, where f(x)=F'(x)

then f(x)dx is the variation of F(x), which can have a
geometrical interpretation as follows:

x x.dxa

P

-r-dx dx dx
a

Each rectangle has dx as a base and F(x) as height, but as the
variation of F(x) is continuous, there are no space between the
rectangles, i.e., a region forms that is covered by the
rectangles f(x)dx, that is, F(b)-F(a)=2f(x)dx, but this sum is

continuous, that is it joins in continuous form the f(x)dx
quantities, from this region we can observe that height varies
in the f(x) form, if we choose one point on each height we can
draw a curve will be y=f(x)..."

Goth recognized the known expression

ItfCx)dx..FCb)-FCa), where fCx)wFCx) in ta,b1

its "construction is inverse" from how it is traditionally

explained.

CONCLUSIONS

Our research point out that holding on to these significances

could help to create a mathematical discourse that could make

the transmission of the knowledge of Calculus easier, a

transmission based on system of significations, captured from

the intuitions, notions, and experience from both the teachers

and students, in specific situations of continuous variations by

studying their ways of thinking and that in order to do this
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study it was necessary to create a background of thinking

through the genesis of the concept, its didactic in the ancient

texts and its significance in the treatises on fluids movement.

The investigation itself suggests didactics situations that

focus more an the specific situation of continuous variation

than on the concept, as it is in the accumulation notion and not

in the derivative function and/or "Riemann sum".
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College Undergraduates
Undergraduate's Math Performance
College Mathematics Curriculum

MATHEMATICAL PERFORMANCE OF NON-MATH MAJORS

AT THE COLLEGE LEVEL

Caroll..Qreenes, Boston University

Williamfitzgerall Michigan State University

In 1989, more than LS million students at colleges and universities in the United States were
enrolled in remedial mathematics courses. In 1990, the number of students enrolled in such courses'
had increased. The majority of these remedial courses review arithmetic computation and algebraic
manipulations, content with little applicability to other academic areas, and content with which
students have limited difficulty. Data from studies conducted at Boston University and Michigan
State University indicate that remedial courses are not targeting students' learning difficulties, nor
preparing !hem for further study of mathematics andlor mathematics-related subjects. What is needed
is a means of identifying specific difficulties college students have with mathematics, and providing
appropriate instruction that targets those difficulties.

The problem of inadequate preparation for college mathematics is pervasive. From 1975

to 1980, enrollment in remedial mathematics courses at colleges and universities in the United

States climbed 72%, while the total student population increased by only 7% (Chang, 1983;

Coleman & Shelby, 1982). A report of a survey of 500 institutions of higher education,
conducted by the National Center for Education Statistics, stated that enrollment in remedial

courses increased in 1983-84 at 67% of the colleges that offered such courses. Of the
freshmen in public institutions of higher learning, 27% were enrolled in remedial mathematics

courses; at private colleges and institutions, 15% were enrolled in remedial mathematics

courses; and at colleges with open admission policies, 30% of the freshmen were taking
remedial mathematics courses (Evangelauf, 1985). In 1984-85, 86% of all U.S. colleges and

universities offered courses in remedial mathematics and 35% of all college freshmen were

enrolled in such courses (Akst & Ryzewic, 1985). In 1985-86, there were more than 800,000

students in U.S. colleges and universities enrolled in remedial mathematics courses. In

1986-87, the number increased to more than a million. The 1989 report of the National

Research Council states that "each term nearly three million students enroll in post secondary

mathematics courses. About 60 percent study elementary mathematics and statistics below the

calculus level" (p. 51).

At the same time that there are growing numbers of students in remedial mathematics

courses, there are increasing demands on students to take more mathematics and/or
mathematics-related courses. These demands stem in part from the expanding number of

"...I

-98-



Undergraduate's Math Pei iormance

career options in technology fields that require additional study of mathematics, and the fact

that at comprehensive
universities, virtually all programs now require some university-level

mathematics (National Research Council, 1989; Akst & Ryzewic, 1985; Leirzel, 1983).

While more mathematics is being called for at the college level, there is limited help for

students who have learning difficulties in mathematics. Traditionally, remedial or basic

mathematics courses at colleges and universities arc one or two semesters in duration, and

focus on the reteaching of arithmetic and algebraic computational skills (National Research

Council, 1989; Akst & Ryzewic, 1985; Chang, 1983). Underlying this content focus is the

assumption that all students with low achievement in mathematics require review of the same

skills, primarily arithmetic computations and algebraic manipulations, to the same degree of

sophistication, and at the same instructional pace. For many students, much of the content is

review of skills in which they are already proficient (Greenes, 1987b). For other students, the

remediation is a duplication of high school instruction (Steen, 1986); instruction with which

they were previously unsuccessful k asch & Goodman, 1986; Kelly, Balomenos &

Anderson, 1986).

As a consequence of the
inappropriateness of the content, remedial and basic courses

have tended to be terminal mathematics experiences which, rather than restimulating and

preparing students for possibly pursuing mathematics-related careers, have effectively closed

off this option. What is needed is a better understanding of the difficulties college students

experience with mathematics in order to provide appropriateremedial instruction.

From September. 1985 to September, 1987, the Mathematics Education Department and

the Center for Assessment and Design of Learning of the School of Education at Boston

University, with support from the U.S. Department of Education's Fund for the Improvement

of Post-Secondary Education (FIPSE #G 00854104), developed the Probe Assessment of

Mathematical Abilities (PAMA). The mathematical concepts and skills that PAMA identifies

are those same skills that academicians in the natural and physical sciences, and the social

sciences, have identified as requisite to the successful study of mathematics-related subjects.

More than 2,200 students at Boston University, the University of New Hampshire, and

Pine Manor College (Chestnut Hill, Massachusetts), participated in the design of PAMA.

During the development phase, project staff gained greater insight into those mathematical

skills related to the topics of arithmetic, algebra, graphs, and applications (problem solving)

with which college students have little or no difficulty (scores of 80% or better on test items),

moderate difficulty (scores between 60% and 80%), and great difficulty (scores of 60% or

less). These topics arc identifed below.
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Little or No Difficulty
Arithmetic

Compute with whole numbers.
Multiply and divide integers.
Add and subtract decimals.
Find the percent of a number.

Algebra
Substitute values for variables.
Solve equations with one variable.

Graphs
Identify the coordinates of a point that lies on the intersection of grid lines.
Interpret bar graphs.

Applications
Read. understand, and obtain data from prose.
Solve word problems with action sequences.

Moderate Difficulty
Arithmetic

Multiply decimals.
Add and subtract integers.
Compute with fractions.
Convert whole number percents greater than l00 or less than 10 to decimals.
Compute with measurement units.

Algebra
Use a variable to express a direct relation.

Graphs
Distinguish between two lines given a prose description of the relation.
Recognize the function of the scales and title of a graph.

Applications
Solve special case word problems taught algorithmically (e.g., mixture, distance-rate-time)

Great Difficulty
Arithmetic

Divide decimals.
Convert percents with fractions to decimals.
Find the number when the percent and percentage are known; find the percent one number is of another.
Compute with percents.

Algebra
Use a variable to express an inverse relation.
Write equivalent equations.
Solve proportions.
Write equations to express relations.
Solve equations with two variables.

Graphs
Interpolate.
Extrapolate.

Applications
Solve word problems for which data must be obtained from a graph by interpolation or extrapolation.
Solve variations of special case word problems taught algorithmically (e.g., break-even analysis).
Solve word problems in unfamiliar settings.

1 g. 3
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Based on the PAMA study, most college remedial mathematics courses do indeed reteach

concepts/skills with which students have least amount of difficulty, and give little or no

attention to moderate or most difficult topics. PAMA was designed to assess student

performance on topics of moderate and great difficulty.

PAMA (Greenes, 1987a), a computer-presented assessment, consists of two parts. Part

A contains Sections I-V: Compute with Integers, Fractions and Decimals; Compute with

Percents; Solve Equations; Interpret Graphs. and Translate Words to Symbols. Part B contains

Sections VI and VII: Solve_Nical02kma and Solve Word Problems with Graphs. The

problems in Sections I-V are independent of one another. The problems in Sections VI and VII

are grouped by applications setting. Each setting has a target problem and a set of related probe

questions. Probe questions explore understanding of the solution process and are only

presented when the target problem is not solved correctly. All items are multiple choice with

five-choice response formats. At the conclusion of either Part A or Part B, a Student's Report

is presented immediately. Students leave the assessment with knowledge of their mathematics

strengths and weaknesses.
Despite the fact that college students study algebra in high school, they appear to have

difficulty with equation solving, graph interpretation, and words to symbols translation,

concepts and processes basic to an understanding of algebra and presented early in the

traditional Algebra I course. The performanceof undergraduate students at Boston University

and at Michigan State University on PAMA sections III, IV, and V, provide additional

evidence of this continuing difficulty.
Section III: Solve Equations is a 15 -item section that assesses various equation solving

skills. Students must recognize equivalent equations, solve equations with one variable, and

solve systems of two equations with two variables. Section IV: Interpret Graphs is an 8-item

section with two graphs. One graph is a linear function that does notcontain the origin; the

other graph is a pair of linear functions in which the lines do not contain the origin and do not

have the same slope. Students must read and interpret the graphs, interpolate, and extrapolate.

Section V: Translate Words to Symbols is a 16-item section that assesses students' abilities to

identify symbolic representations (expressions) of mathematical relations presented in prose.

The relations assessed in this section are: I) maximum, minimum, at most, at least; 2) less

more than; 3) n times as many as; and 4) n times with more than, less than, or n times.

Both direct and inverse relations are presented.

PAMA is administered to all undergraduate students enrolled in the Introduction to

Education course in Boston University's School of Education each academic year at the

beginning of the Fall semester. The majority of students in thn course are freshmen. In
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1988-89, 1989-90 and 1990-91, all students enrolled in the course had completed Algebra I or

its equivalent (e.g., an accelerated, advanced algebra that combines Algebra I and II), one-third

of the students had completed Algebra II, and two-thirds of the students had completed
Geometry in high school
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Table 1 shows the distribution of scores on Sections III, IV and V by gender for the three

years, 1988-89, 1989-90, and 1990-91. The total number of items on the three sections is 39.

The means and standard deviations are given for the totals for each of the years.

Of note is the consistency of performance from year to year, and between males and

females. What is perplexing is the item difficulty. Graph interpretation items were the most

difficult: translation items, least. Item difficulties for the line graph items that required

interpolation and extrapolation were in the range 0.21 - 0.69, with the most difficult item
requiring both interpolation and extrapolation. While graph interpretation was expected to be

difficult, because of little or no instruction on this topic at the high school level, little difficulty

with translation was unexpected. Algebra programs do not provide much instruction in words

to symbols translation. Yet, the item difficulties in Section V. Translate Words to Symbols,

were in the range 0.69 - 0.91.

Table II shows results of administration of PAMA Sections III, IV, and V to 16

undergraduate students enrolled in College Algebra (an Algebra II course that uses the Casio

FX 7000g graphing calculator) at Michigan State University in the winter of 1991. All 16

students had completed a remedial mathematics course focusing on Algebra I content at the
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University prior to enrolling in College Algebra. ?fifteen of the 16 students had completed

Algebra I, 12 had completed Algebra II and 12 had completedGeometry in high school.
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The mean for the Michigan State group is similar to the means of the three Boston

University groups, despite the fact that the Michigan State group had the remedial course in

mathematics. The smaller standard deviation for the Michigan State group may be attributable

to the small sample size and/or to the fact that theMichigan State group is more homogeneous

in mathematics experience (i.e., all students took the same remedial course and were enrolled in

the same college algebra course).
Mathematics education faculty at Boston University and Michigan State University are

investigating further college students' understanding of mathematical relations presented in

graphical form (lines and curves), how this understanding develops, and why college students

who are able to recognize expressions of mathematical relations presented in prose, have great

difficulty recognizing the same mathematical relations in equations.

Concurrently, attention will be paid to the degree of continuing need for students to

perform the essentially algorithmic tasks in Section III, Solving Equations, as we watch

symbol manipulating utilities becoming increasingly available. Also, one might expect the level

of students' performance in interpreting graphical information to increase as their experience

with graphing utilities becomes more commonplace.

As demonstrated by the Michigan State group and others, students frequently exit
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remedial courses with no greater skill in mathematics than they had prior to the course, and no

confidence in their abilities to reason mathematically (National Research Council, 1989). What

is needed is an instructional program that provides in-depth development of only those

concepts and skills with which students demonstrate difficulty.

In 1989, the PAMA development group was funded by FIPSE for three years to develop

mathematics instructional materials for college students in remedial courses. Seven modules

are being written, each using an "active" fill-in format, and focusing on a specific mathematical

concept and related skills as identified in PAMA. The modules are being designed to engage

students' interest, to encourage them to read analytically for relevant information, and to
enhance their understanding of the mathematical ideas by demonstrating application of the

mathematics to the solution of problems. Applications have been selected from the physical

and natural sciences, the social sciences, and the arts. Each module is designed to be used

independently of the others, and may serve as the content focus of a short-term mini-course, or

to support existing remediation programs. Students will be assigned to modules that target

their specific deficits. An Instructor's Guide will summarize the content of each module,

identify common student misconceptions, suggest implementation techniques, and provide

additional information related to the applications. The modules are: 1) Graphs and Their

Interpretation, 2) Decimals and Decimal Computation 3) Integers and Integer Computation, 4)

Rational Numbers, 5) Proportionality 61 Variables and Equations and 7) problem Solving.
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Age Level: Adult
ID #1: Naturalistic Inquiry
ID #2: Data Analysis

NATURALISTIC INQUIRY OF EXISTINGVIDEOTAPED/TRANSCRIBED
DATA SETS: A PROCEDURE FOR ANALYSIS

Deborah H. Najee-ullah
Georgia State University

The secondary analysis of a naturalistic inquiry will be examined. The study, a

secondary analysis of videotapes and transcriptions, examined teacher attributions

of success and failure and other beliefs exhibited while solving mathematical

problems. A detailed procedure developed for constant comparative analysis of
videotaped/transcribed data will he described and its effectiveness in generating

emergent themes will be discussed.

Introduction

Often data collected for a particular study arc not looked at as a source for

examining additional research questions. However, when research is designed using

existing data beneficial outcomes can occur. Among them new questions can be posed

with the old data or original questions can be re-examined using alternative methods of

analysis (Glass, 1976).

This paper will describe a naturalistic inquiry employing secondary analysis. A

bnef description of the purpose and design of the "parent" study and a rationale for using

secondary analysis in a subsequent inquiry follow.

Data Source and Rationale

The Problem Solving and Thinking Project (PSTP; Schultz, 1991), the primary

research for the study being examined, was designed as a naturalistic inquiry of middle

school mathematics teachers for the relationship between their metacognitive activity and

knowledge and their problem-soiving ability. PSTP thus adhered to the basic

assumptions of the naturalistic paradigm which in turn established the paradigm for any

inquiries conceived from this work. The decision to conduct a secondary analysis on

PSTP data grew out of an interest in teacher beliefs and the prospect of examining them

emerging out of teachers' actions and comments rather than professed beliefs solicited in

response to self-report instruments. Teacher beliefs were viewed as central to

understanding teacher instructional behaviors and were believed to be the motivating

forces for them. Attributions of success and failure were considered to be critical in
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influencing teachers' disposition toward mathematics and were believed to be related to

other beliefs regarding their personal perceptions of themselves as problem solvers. The

research design was compatible with the author's perspective and the data offered

opportunities to explore research interests. This research direction would also enhance

the primary study by elaborating on the aspect of metacognitive knowledge through its

focus on a specific set of beliefs.

The resulting study, a naturalistic inquiry, involved the secondary analysis of data

generated by PSTP, in the form of videotapes and verbatim transcriptions of two

teachers engaged in individual and small group problem-solving protocols. The

investigation examined a specific set of beliefs as one aspect of metacognitive knowledge,

including attributions of success and failure and related beliefs about value of task,

persistence, goal expectancy, and competence (Najee-ullah. Hart, & Schultz, 1989).

Naturalistic Inquiry and Secondary Analysis

The advantages and limitations of secondary analysis have been discussed at

length by many (Burstein, 1977; Boruch & Reis, 1980; Miller, 1982). Its virtues and

limitations have however, been examined primarily for the quantitative analysis of

massive data sets such as national samples. Many of the virtues and limitations can be

applied to all research regardless of design or paradigm. However adherence to certain

-characteristics fundamental to the naturalistic paradigm becomes difficult if not

impossible for a number of reasons.

Naturalistic inquiry is characterized by a number of inherent features (Lincoln &

Guba, 1985) which, due to the use of secondary analysis, may be addressed in a limited

manner or may be impossible to address at all. This was the case with the secondary

analysis of PSTP data.

Using the PSTP data meant that data selection was limited to what was collected

by the primary study. Within those limitations however, data selection was purposive.

Respondents were selected who seemed to represent the best source of information

related to the set of beliefs being examined. There was less latitude in deciding the most

useful and relevant form of the data. That too was determined by the primary

investigation which included videotape and verbatim transcription data The most

J.
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significant infraction of naturalistic inquiry requirements was that data collection and

data analysis could not be simultaneous. Instead, these activities were separated by time

and most importantly the inability of the researcher to interact with the respondent;

therefore findings are devoid of concurrence with respondents. Despite these

constraints, the overwhelminj advantage was that the researcher was able to devote

essentially all energy and resources to the transformation and analysis of the data. A

detailed procedure developed to process videotaped/transcribed data using the constant

comparative method will be described below.

Procedure for Analysis

The study used the constant comparative method of analyzing data (Lincoln &

Guba). This method involves the examination of data for categories of emerging

patterns and themes. Categories are further divided into groups. As these thematic

incidents emerge during analysis, they are coded. The code defines the incidents and

identifies its group membership. The constant comparative method requires that the

coded incidents be compared to incidents within the same and different groups within

the same category. It is this process that begins to generate theoretical properties of that

category. The constant comparison process motivates the thinking leading to describing

and explaining categories (Lincoln & Guba), categories that the investigator has

constructed and those that have emerged as categories used by the subjects.

In the study being examined the category of "beliefs" was identified. This category

was further divided into three groups of "task", "strategy", and "self'. Any belief

emerging during analysis was coded and grouped, not merely the set of beliefs of

interest.

The procedure for analysis included ten phases: videotape selection, viewing

sequence, initial coding, characterization, summarization, transcript correction,

intermediate coding, classification, translation, and synthesis. The essence of each phase

will be extracted and described, referring to the study to provide context and

clarification. The procedure is characterized by recursion and repetition to identify

incidents and themes and to clarify their significance. Within each phase, analysis

activities are and should be exhaustive, clarifying previous impressions,
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revealing relevant information, and continuing until no additional information is

revealed.

Videotape Selection

Videotapes were defined in categories according to their purpose. It was then

determined which videotapes would provide the information most relevant to the focus

of the inquiry. Thus, videotape selection served as a process which refined the focus of

the inquiry. The selection of tapes was dependent on whether the focus of the inquiry

would be the relationship between teacher beliefs/problem-solving ability and

performance or an investigation of the relationship between teacher beliefs/problem-

solving ability and mathematics instruction.

Viewing Sentience

Those factors which influence the order of viewing tapes should be considered

and established. A chronological order by respondent was established for reviewing

videotapes having the same definition (i.e. individual problem-solving protocols; first pre

then post for respondent 1) to reinforce changes occurring over time. Respondent order

was considered arbitrary, yet once established was maintained throughout the analysis.

Initial Coding

All incidents observed in the tapes which appear to relate in any way to the broad

focus must be identified. These will be refined and perhaps discarded over the course of

analysis yet it is necessary to include them at this stage. Tapes should be viewed several

times to obtain a sense and an atmosphere of what has transpired. Viewing while

following the transcripts will then help to begin to clarify and define critical incidents.

Notes can be jotted in the transcript margins. This viewing is necessary to begin to sort

through the data for relevant information. Reading the trar,cripts without the

distraction of the tapes may reveal relevant incidents that simultaneous viewing may

miss. Previous impressions are then checked by viewing tapes and transcripts

simultaneously.

Characterization

By this point in the process, certain types of incidents will be found to recur.

Therefore there is a need to develop a method for recording similar incidents. A chart

1-17
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of cells with headings broadly defining the incidents can be constructed. The cells would

include a list of line numbers and a tape code to keep track of where within a transcript

and for which tape it occurred. For instance, a cell headed "persistence including lines

219.239A meant that a belief related to persistence occurred within lines 219 to 239 of

the transcript for the pre interview problem-solving protocol. Such a chart was created

for each respondent.

Summarization

A summary of the general activity relating to the focus should be prepared for

each tape. The summarization phase is necessary to provide a cohesive picture of the

incidents as they occur within the tapes, for up to this point the emphasis has been on

incidents in isolation. Summarizing can also help to make similarity among incidents

apparent. It was at this stage of the analysis that the properties of the broad belief

groups of "task", "strategy', and "self" emerged and belief definitions began to replace the

more intuitive judgements of previous phases.

Transcript Correction

Transcript errors may be found that are critical. Entire sections may not have

been transcribed or misinterpretations may have occurred which alter the tone or intent

of certain statements. Many of these corrections may have been "penciled in" during

previous viewings but need to be included. These may change line numbering. If

original un-numbered transcripts were typed using a standard word processing software

the Ethnograph (Seidel, 1987), a data management software program, can be used to

convert, number, and print corrected transcripts.

Intermediate Coding

This phase is similar to the initial coding phase in its steps, yet the observed

incidents are more refined, more specifically than broadly defined. Concurrent viewing

of the tape and reading of the transcript is performed with notes being jotted in margins.

Notes define specific incidents and can be written to identify the group they fall within.

Again, reading transcripts alone may reveal additional incidents otherwise obscured by

the rapid dialogue of the videotape. The final set of transcript codes should now be

reviewed with the tape for confirmation.
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Classification

Now that incidents have been defined a method for recording them must be

developed. Incidents can be recorded in a manner similar to those in the

characterization phase except the charts will contain more specific information. For

instance, each page of cells identified a group (task, strategy, or self) and each cell was

headed to define the beliefs that were listed within. Thus a page headed "strategy" may

include a cell defined "usefulness" and include 613-639D meaning the belief about the

usefulness of a strategy occurred within lines 613 to 639 of the post small group protocol.

A separate set of charts would be created for each respondent.

Translatt

At this point, coded transcripts must be synthesized to generate more specific

patterns and themes. This process began by translating the coded incidents to ih

Ethnograph software (Seidel). Codes from each transcript and the classification charts

were used to transfer this information. Blocks of transcript text are marked by the

program using beginning and ending line numbers headed by abbreviated codewords of

up to 10 letters or less that include a group and incident definition designation. Blocks

of texts which define different incidents may appear nested within another block.

Synthesis

Coded transcript segments similarly defined may now be used to generate patterns

and themes. The Ethnograph (Seidel) facilitates the search for codes. Specific transcript

files are selected along with the codewords. The program will then print all segments

corresponding to the codewords and these segments can be further examined for patterns

and themes. The constant comparative method of analysis requires that the coded

segments be compared to segments within the same and different groups of segmen:s for

the same category. In this study, beliefs was the only category and the incidents falling

under the groups of task, strategy, and self were the specific set of beliefs being

investigated.

Summary

Despite the limitations expressed regarding a naturalistic inquiry using secondary

analysis, it clearly has its advantages. Such analysis allows for new questions to be asked

1 1 0 -
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THE STUDY OF COMPLEX SYSTEMSAPPLIED TO MATHEMATICS EDUCATION

Elfriede Wenzelburger Cuttenberger
Maestria en Educacidn en Matemiticas

UNAM

A complex system as an organized total can be studied by means of a research
methodology with an epistemological background. The starting point is a
leading question, then a scale of phenomena and a time frame is defined.
Data, observables and facts are clearly distinguished. A system as such has
limits, elements and structures and its own dynamics which are studied at
different levels of analysts according to different levels of processes.
Given the leading question: "hac are the major trends in mathematics educa-
tion in 1991l. a first analysis of mathematics education as a complex system
has been attempted.

PART I: THE STUDY OF COMPLEX SYSTEMS A RESEARCH. METHODOLOGY

1. Introduction

Garcia (1986) proposes a basic research methodology for the study of complex

systems. If we suppose that mathematics education and related areas have

characteristics of a complex systems, this methodology could be relevant for a

better understanding of our academic endeavours.

In the first part of this paper, a brief description of Garcia's methodology is

presented. In the second part, it is applied to explore mathematics education

in the light of the leading question: "What are the major trends in mathematics

education in 1991 ? ".

2. Epistemological Background

According to Garcia (1986), a global or complex system is a set of elements

together with constitutive factors, interrelations and interactions with other

systems in what he consideres a first aproximation of a definition. The study

of such a system is interdisciplinary work, done in a conceptual framework with

epistemological foundations. The term "system" here is not used in the same

way as in engineering, econometrics or computer science and is not related to

system analysis as commonly used in these disciplines. The models developed in

those contexts are not applicable here, because a complex system is much more

than a mere set of related elements.
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A complex system is not given or defined a priori, but it can be defined in

the context of a leading question. The proposed methodology is antlempiri-

cits, but not antiempirical, because observations nre interpreted and observ-

ables at, not considered the basis of all knowledge, accessableby pure, neu-

tral perception. Hanson (1965) affirms that all experience is charged with

theory and Piaget showed in the light of his genetic psychology from an

epistemological viewpoint that there are no "pure observables" -there is

always a previous cony,-ruction of relations in the observer and "observables"

are toms of organized data. Knowing means establishing relations between ---

data in a social, intersubjective environment.

From this antiempiricist viewpoint we have to distinguish data, observables

and facts, whereby observables are interpreted data, facts are relations

between observables. The interpretation and organization of observables and

facts requires previous conceptual schemes or theories. The term "theory" is

used in a very broad sense as a set of affirmations and assumptions in which

a researcher establishes hypotheses and makes or refutes inferences. This

way the researcher sets up an empirical field with an epistemic frame and an

empiric domain (Piaget, Carcfs, 1982) in which he selects data and interpre-

ten them to establish observables and facts. For example, rn educational

researcher which studies learning will select or interprete data according

a learning theory.

3. Components of a complex system

A complex system is a piece of reality which can be investigated in its diffe

rent aspects. As a point of departure, a leading question is asked. Then

the limits, elements and structures of the system which will be studied and

eventually make up the components of the system, are selected.

3a. Limits

Real complex systems often lack limits -they have to be drawn more or less

arbitrarily. If what is left out influences the "inside" of the system, we

speak of su7rounding or contour conditions.
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3b. Elements

Elements of systems are generally themselves complex subsystems which interact.

They are selected according to a spatial scale of phenomena which determines

the location and extension of events which coexist or interact-and a time

frame as a temporal scale for the study.

3c. Structures and processes

The structures of a system are given by the relations between its elements as

an organized total which is kept in a state of stationary fluctuation by means

of dynamic regulation processes. The main objective of the proposed method of

analysis of complex systems is primarily the study of these processes, not the

states of a system in any given moment. This emphasis in processes is some-

times referod to as "genetic structuralism".

The processes describe changes in the system and occurr at different levels

which again require different levels of analysis.

Three levels of processes can be differentiated:

Level one processes are observed and measured on a local, regional basis by

means of polls, interviews, explorations in a merely descriptive way All

observations are made within a conceptual frame. At the second level, there

are metaprocesses which explain level one processes and third level processes

are of a more predictive nature and determine the processes at the lower levels.

Associated to levels of processes are the corresponding levels of analysis with

local, national or international dimensions.

In the study of the dynamics or evolution of a global, complex open system

without clearly defined limits and affected by surrounding conditions, the

imbrication or overlapping of structures is a basic approach. For example, the

learning of mathematics can be studied at an individual, classroom, local

regional, national or international level. Each structure at a given level

becomes part of a subsystem at superior levels.
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PART II: MATHEMATICS EDUCATION AS A COMPLEX SYSTEM, A FIRST ANALYSIS

As a leading question we chose: %What are the major trends in mathematics

education in 1991?". This will enable us to apply the methodology of

studying complex systems to a "metaresearch" problem about the nature of

mathematics education. To begin our research we have to restrict ourselves

to a limited portion of reality in order to be able to establish a system

with its elements, internal relations and contour conditions. We limit our-

selves to consider mathematics education as dealing with teaching and

learning mathematics.

This definition of limits of the system, requires a selection of a scale of

phenomena we will study. This scale could be as follows:

Teaching Learning

One-to - one basis (individual learner)
1 _ 1st. Level

Group - one teacher (-classroom situation)

Local school system

Regional education system J 2nd. Level

National education system

International comparison 1 3rd. Level

The temporal scale is determined by the question itself, the present time,

even if some of the subsystems could have a different time scale, specially

if we use the analysis of developments over a period of time to explain the

"state of the art".

Elements of the complex system may be special problem areas considered sub-

systems like the individual students, the teachers, the mathematics curricu

lum, the researcher in mathematics education,all of them in different, but

related domains.

Our scale of phenomena is applicable to all subsystems since we can study the

role of an individual student in a teaching-learning situation on a one-to

one basis, in a group situation and so on. We can also study on the way the

mathematics curriculum is affected by each phenomenon of the scale or bow
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each phenomenon affects the mathematical contents. Structural relationships

go very often both ways.

It is now possible for example, to make observations, within the subsystem

"teachers", of a level 1 phenomenon, -a classroom situation. In order to

convert the collected data into "observables", our theoretical predisposition

will affect the interpretation of the data. We would make observations about

teaching techniques, contents, student-teacher interaction, selfperception of

teachers and so on.

If we adapt a constructivist point of view, the teacher is no longer conside-

red as the main actor in the classroom, he is a guide or monitor of the cons-

truction of a student's mathematical schemes based on previous knowledge.

Teaching is not the transmission of knowledge, but a guidance in the recons-
truction of concepts by the learner, taking into account the epistemological

obstacles which have to be overcome (Herscovics, Bergeron, 1989).

If we make an analysis from the standpoint of activity theory, observations

would focus on the role teachers play in the human activity within the social

group "classroom". The zone of proximal development (Vygotsky, 1978) can be

interpreted as a location in the interaction between teachers and students in

which new understanding can arise. Teachers and learners work together on

problems which students alone could not solve. Sometimes the term construction

zone is also used in this context as a mediator between the thoughts of

teachers and students or a shared activity in which interpsychological proces-

ses occur (Newman et. al. 1989).

We can also adapt an information-processing paradigms (Mason, Cooper, 1888).

The teacher takes the role of a disseminator and facilitator of learning, as

well as a diagnostician and an introspective professional who analyses and

evaluates his behavior continuously, but most of all he would conceived as a

scientist who understands how each student processes the information being

taught.

If wa believe in the metaphorical nature of thinking Nenzelburger, 1991), we

put special attention totbe teacher's discourse in the classroom and use of
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metaphors to initiate thought processes and to communicate knowledge. We

have to take also into account the basic underlying metaphors teachers use to

describe the teaching-learning of mathematics -"education is like growing

plants" or "the mind is a muscle", the "conduit" metaphor or the "teacher as

a builder of knowledge" metaphor.

Each theoretical frame will provide us with an apparently different collection

of observables and facts to identify structures within the subsystem and the

global complex system "Mathematics education". A complimentarity principle

(Pathee, 1982) may be applied in order to avoid false dichotomies (Hilton,

1977). Such a principle requires simultaneous use of descriptive modes that

are formally incompatible-contradictions are accepted as an irreducible aspect

of reality.

The leading question makes possiblea.6oroughanalysis of each suggested sub-

system according to the scale of phenomena and time frame. This requires the

efforts of a research team with an interdisciplinary approach. The research

methodology we discuss here puts special emphasis on interactions of phenomena

from different domains. It is not intended to discover "given" facts and list

data produced by isolated groups of specialists -rather a systemic view is

adopted, more appropriate to complex phenomena from an interdisciplinary stand

point. Researchers in mathematics education would work together with teachers,

administrators, psychologists, historians, mathematicians, in order to complete

the picture of the major trends in mathematics education at the present time.

The systems approach discussed here, applied to a meta research question in

mathematics education, is in accordance with tendencies in modern science to

search for relations, interactions and structures in order to move away from

"dissecting" phenomena into isolated parts. A general awareness that the

"whole is larger than the sum of its parts" is a consequence of the general

theory of systems (Bertalanffy, 1972) on which Garcia's work is based.

To think of mathematics education as a complex system of interrelated elements

with limits and structures is potentially useful to reach a better understan-

ding of our discipline.

,5
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OF CHILDREN'S EARLY ARITHMETIC

Gerald A. Goldin Nicolas Herscovics
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and Computer Education Concordia University

Rutgers University Montreal, Quebec

New Brunswick, N. J. 08903 USA CANADA

We explore the interface between two models: the two-tiered
extended model of understanding, developed by Herscovics and
Bergeron; and the unified model of problem-solving competence
based on cognitive representational systems, proposed by Goldin.
The context for the exploration Is children's early arithrn

Research on the construction of conceptual knowledge, and research on mathematical

problem solving, have both advanced significantly in recent years; in part, through the

development of more sophisticated theoretical models. In the study of conceptual development.

several models of understanding have been proposed, based in large part on observation of

children's early arithmetic through numerous structured, individual interviews (Herscovics

and Bergeron, 1983. 1984. 1988). In the study of problem solving a unified model of

competence was proposed (Goldin, 1983. 1987. 1988), based mainly on observations made in

more advanced mathematical domains. with the goal of providing a framework for detailed

descriptions of mathematical problem-solving processes. Here we explore the interface

between the two-tiered extended model of understanding of Herscovics and Bergeron (1988).

and the unified model of problem-solving competence proposed by Goldin. The context for our

exploration is children's early arithmetic. We are interested in whether ideas drawn from

problem-solving research can help characterize conceptual development at this early stage.

Two Cognitive Models

When children construct basic mathematical concepts such as 'cardinal number', 'ordinal

number, 'addition', etc., the complexity of the different aspects of understanding they achieve

is difficult or impossible to describe using classical concept - formation theory based on

exemplars and non-exemplars. The idea of a conceptual scheme proves more useful. This is

defined (Bergeron and Herscovics, 1990) as a network of related knowledge, together with the
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problem situations in which the knowledge can be used. The extended model ofunderstanding of
Herscovics and Bergeron is designed to identify systematically the components involved in the
construction of conceptual schemes for early arithmetical concepts. It involves two tiers; one
referring to the preliminary physical concept, the second to the emerging mathematical
concept. The model may be viewed schematically as follows:

Understanding of the physical pro-concept

intuitive understanding procedural understanding -4 logico-physical abstraction
of a logico-physical nature

procedural understanding
of a logico-mathematical logico-mathematical 44

nature abstraction

The emerging mathematical concept

formalization

This framework, while not claimed to describe the development of understanding of all
mathematical concepts, proved adequate for the analysis of many aspects of children's early
arithmetic. For example in discussing the concept of number, on the first tier 'intuitive
understanding' would include qualitative visual approximation/estimation (by the child) of
whether one set of objects contained 'more", 'less', or 'the some as another set;
logico-physical procedure? would include activity such as piecing physical objects from two
sets into one-to-one correspondence; and logico-physical abstraction would Include the mental

operations Wading to conservation of quantity (or more precisely in this context, of plurality).
Symbolic representation comes Into play in the second tier, with the advent of
'logico- mathematical procedure?. These involve steps such as counting, taken with
number-words or symbols rather than (or at the same time as) physical objects. On this tier,
the results of abstraction include conservation of quotity (which refers to number-words or
symbols) as opposed to the first-tier conservation of plurality (which refers to physical
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amounts). On this level we also have the ultimate formalization of mathematical ideas

involving 'number', making use of symbol-systems for numeration (and for arithmetical

operations); ideas for which prior procedural understanding has developed to some extent.

Formalization also includes axiomatic properties of 'number', and concepts involving

mathematical justification (or at a more advanced level, mathematical proof).

The model for competence in mathematical problem solving of Goldin is based on the idea

of cognitive representational systems internal to problem solvers, as distinct from (external)

task variables and task structure (Goldin and McClintock. 1979). Such a cognitive

representational system is comprised of a (not necessarily well-defined) class of signs or

characters, together with ways of combining these into configurations, and higher- level

structures which can manipulate and transformation configurations. Five kinds of internal

cognitive representational systems are proposed: (a) a verbaUsyntactic system, involving

words, grammar, and syntax: (b) imagistic systems, including internal visual/spatial,

auditory/ rhythmic, tactile/kinesthetic, and other non-verbal representation of objects,

attributes, and relations; (c) formal notational systems, involving mathematical symbols and

rules for manipulating them; (d) a system of heuristic planning and executive control, which

encompasses strategic competencies as well as capabilities that are often termed

'metacognitive; and (e) an affective system, making possible the changing states of feeling

that occur during problem solving that can influence decision-making. An important feature of

the model is that representations of any one kind can stand for or symbolize those of any

other - -for example, words can symbolize visualized objects, or mathematical notation can

stand for kinesthetically-encoded sequences of physical procedures. Systems of these five

types are seen as developing over time through three stages of construction: (1) inventive-

semiotic, in which characters in a new system are first given meaning in relation to

previously-constructed representations: (2) structural developmental, where the new system

is 'driven" in its development by previously-existing system, which functions as a kind of

*template' for growth of the new system; and (3) autonomous, where the new system of

representation can function independently of its precursor.

The model was motivated by the desire to describe complex mathematical problem-

solving processes; but it would appear to contain features that are helpful in describing the

development of conceptual understanding. If we take children's early number concepts as an

example, we can regard qualitative visual approximation/estimation by the child (e.g., of

whether one set of objects contained 'more'. 'less', or 'the same' as another set) as a

complex, problem-solving process involving (a) verbal representation (making use of the
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terms 'more', less', etc. and symbolizations for these terms previously constructed); (b)

considerable internal visual/spatial processing; (c) at least some elements of executive

control and decision-making; and (d) an affective component reflecting the child's pleasure (or

lack thereof) in the task, the child's interaction with the investigator, etc. These processes can

then be analyzed into subprocesses. in a manner analogous to that which is possible in studying

problem-solving strategies: we can discuss the (visual) separation between the two sets of

objects, the mental construct of a 'measure' of their size (e.g., in terms of a portion of the

visual field), and the act of (visual) comparison of such 'measures'. Likewise, the ability to

carry out procedures such as placing physical objects in one-to-one correspondence, involves

the construction of complex, internal kinesthetic configurations, which eventually enable

abstraction to take place.

We see that the two models, though developed for different purposes, are capable of

addressing some of the same phenomena. Our long-range goal in beginning the present

investigation is to achieve a full synthesis between the models for understanding and the model

for problem-solving competence. This would enable us to describe the learning of more

advanced mathematical concepts, as well as to understand the constructive learning process in

greater detail; it would assist us in understanding why some problem solving results in the

construction of important new knowledge, while other problem solving (though perhaps

equally successful in reaching the problem goal) does not.

In our examination of what is known about children's early arithmetic, we have

identified some key points of contact between the two models.

1 The relationship between the physical pre-concept tier, imagistic systems of

cognitive representation, and developmental sequences:

First we distinguish carefully between external representation (a structured

environment with which the child is interacting that may include, for example, actual physical

objects to manipulate), and internal imagistic representation (a theoretical construct to

describe the child's inner cognitive processing). This is reminiscent of Piaget's term

Interiorization", which refers to the child's ability to re-enact mentally a sequence of actions

or operations. Next we ask, why is the physical tier a pre-concept? The answer is that in

order for the child even to ask the question that leads to a meaningful construction (i.e., for the

situation to be a problem), it needs to have constructed certain internal, imagistic

representations. Consider for example, in the case of addition, the question 'How many do we

have all together?' In order that 'How many' be meaningful (i.e., for the words to represent

something), there must be initially imagistic configurations for sets of discrete objects, and
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for counting operations. For 'all together' to be meaningful, the needed representations may

include physical partition (the two separate sets under discussion), physical transformation

(the act of moving the objects), disjoint union (the joining of the two sets into one set), and so

on. The construction of such imagistic representations requires interaction with external

physical objects. Thus the physical tier serves as a praconcept because, for concepts of early

mathematics, conceptual understanding necessarily involves imagistic configurations as

precursors, which in turn require external, physical configurations for their construction.

Furthermore, the young child does not yet have an elaborate formal notational system of

cognitive representation. Thus during the semiotic and structural-developmental stages of

representational development, it is necessary to build on imagistic configurations if anything

at all is to be built on; formal configurations cannot substitute for the imagistic.

For more advanced mathematical concepts, imagistic representation can be, but is not

necessarily, a precursor to formal representation. This is a crucial difference between early

mathematics and later development. For example, multiplication can be meaningfully

introduced as repeated addition (logico-mathematical procedure), using the formal notational

system of cognitive representation (for addition) as a precursor to construct new kinds of

formal configurations (the notation and accompanying procedures for multiplication).

Physical models (such as rectangular arrays) can follow later. We emphasize that we are not

saying this is the best way to introduce multiplication; only that it is possible from a cognitive

point of view. Indeed, we would argue that an important goal of mathematics education should

be the development of powerful imagistic systems of representation; never- tholes', the use of

formal representation as the precursor to further formal representation In mathematics

Inevitably becomes more frequent aa the mathematics becomes more advanced.

2 The relationship between the emerging mathematical concept, formal systems of

cognitive representation, and heuristics:

We noted above it is possible to engage in problem solving with or without constructing

significant new mathematical knowledge. Thin; we would like to characterize when it is that

problem solving results in such construction. Even in children's early arithmetic, we believe

it it possible to identify the emergence of complex heuristic strategies such as trial and error,

subgoal decomposition, etc. The 'counting on' strategy for addition, when meaningfully

construch.d, Involves subgoal decomposition. In certain didactic situations, as discussed by

Broussesu (1981), such strategies are invented or assimilf fed and brought to bear when the

problem goal itself provides a reason for the constructior of new knowledge. Formalization

(formal representation) occurs meaningfully when It assts 4 in achieving such a problem goal.
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However, it is also possible for children to use what seem to be heuristic strategies
non-meaningfully. In work on addition (Bergeron and Herscovics, 1990), children were

shown a cardboard strip on which were glued 11 chips in a row. In front of their eyes, 6 chips

were covered at one end. While these were hidden, the children were told, We are hiding 6

chips. Can you continue counting from here on?' All of the children counted '7, 8, 9, 10, 11:

When they finished counting, they were asked. 'How many chips are glued on this cardboard?'

Most said they did not know. In response to the question, 'Why don't you know? We just

finished counting,' the answer was forthcoming, 'We didn't count those [the hidden ones]." In

this context. 'counting on' was something the children could do. but only as a meaningless

procedure [more precisely, as a verbal procedure rather than a heuristic procedure to solve a

problem]. The starting point of counting had not been established as the cardinality of the

initial hidden subset: the children thus learned 'reciting on', but did not associate what they

were doing with cardinality. The task was not a didactic situation, in the sense of providing a

learning outcome.

3 The role of affect:

In general, children like to play with the physical objects that serve to assist in the

construction of imagistic representations. Using the term 'affect' in its broadest sense, we

conjecture that affect serves an imporlaia role in both tiers of the extended model of

understanding, facilitating and guiding the construction of cognitive representations. To

provide just one example (Herscovics and Bergeron, 1986), Montreal kindergarten children

were observed counting sets of objects 'visually' (with the eyes, or nodding with the head),

without physically partitioning the objects or touch-counting. When asked why they did not

use these other methods, some of them answered, 'C'est trop WWI' (It's too babyish.) Having

the choice of several counting procedures, they purposely chose the more difficult one--even

though they made more mistakes with visual counting. They selected procedures they felt were

more sophisticated, making the problem more challenging, as a way to enhance their

self-image. This illustrates how affect can actually be a determining factor with respect to the

'heuristic planning/executive control' system of cognitive representation (I.e., with respect

to what are commonly called 'metacognitive processes).

Conclusion

This initial exploration of two theoretical models has found several important points of

contact in the domain of children's early arithmetic. The theory based on cognitive
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representational systems proves helpful in lending precision to, and elaborating on. learning

processes described by the components of the extended model of understanding.

The authors have also begun a theoretical discussion addressing more advanced

mathematical concepts, in the context of exponentiation and the exponential function (Goldin

and Herscovics, 1991). The goal of achieving a synthesis between models of understanding and

of problem solving appears to be deserving of further effort.
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High School
Communication
Function

CONTECI` AND =DEW TALK AECUr FUNCTIONS IN A HIGH SCHDDL
ADVANCED MATHEMATICS CLASS

Georgianna T. Klein
Grand Valley State University and Michigan State University

This paper reports part of an ethnographic etudy in an high schoal
precalculus class where students used materials designed to foster
communication. It reports the nature of student talk during instruction
on mathematical functions and how talk differed in each of two distinct
instructional contamess.

Introduction

The NCTh Curriculum and EValuation Standards (1989) lista learning to

camomicate mathematically as one of five primary goals for all students.

Spoken language, an essential part of coomication, is used for opreuntirkg

mathematical ideas (Janvier, 1987; Leah, Fort, & Bahr, 1987), and as a vehicle

for instruction. TO date, very few studies address the role of talk in

mathamatics classrooms. This paper, which is part of a larger ethnographic

study, is about the nature of talk during instruction of mathematical

functions and how talk is influenced by two distinct instructional contexts.

The study was conducted in a mdburban high school pre-calculue class of

24 students in which the teacher integrated materiels from The Wsamo of

Eirctiggyuindjamtg (Swan, 1987) into the stamiard, textbook driven (Dolciani

et al, 1980) curriculum. In the functions and graphs activities (IFIG)

students created and interpreted solutions to problems about functional

relationships that were represented by verbal descriptions of situations,

Cartesian graphs, and tables. Students, work in gull groups was followed by

full-class discussion. In 'book math' the taadher, Mk. Dennis (rot his real

name), preeentad 'ataxia' through posing problems on a topic, by questioning,

and by eliciting appropriate answers to guide students to solutions. Mr.

Dennis used the um style to go over atm/ant-select/0 problems from the

tams/ado.

Data and Analysis

Data were fialdnotes and audio-recording of 10 weeks of claseroas

oteervations, written work of students, audio-rwordings of teacher and

student interviews, written pre and post taste, and an anonymous

questionnaire.

Three general ostegcrias were used as a teamwork to analyze talk in this

classroom:

1. the focus of talk during discussion of problem
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2. the extent to which talk was oriented to a group purpose, and
3. aspects of students' knowledge that were exeeplified.

Triangulation of multiple sources of data were used to support or disconfirm

assertions that developed during data analysis.

Results

I will use two instances of full-class talk, Picking Strawberries, an

activity from 11C, and a problem to identify the domain and range of a

function defined by its graph (See Fig. 1) froze the standard oariculum, to

illustrate how talk differed between these two contexts. Picking Strawberries

shows a man in a field. A balloon says, "The more people we get to help, the

sooner we'll finish picking these strawberries." Students were to sketch a

graph of the time it takes to pick the patch as a function of number of

people.

5.

Figure 1.

Dmitslilats
Problem played a central role in talk in both contests as almost all

di4n,csion of mathematics took place in the framework of working problems.

Yet the focus of talk about problems differed between contexts. In LEG, talk

was on the problem, while in book math, even though talk was about problems

and their solution, it focused on correctness of definitions, learning a

specific method of working problems, and a specific way of thinking about the

topics.

In LFG students usually spent considerable time defining the problem

situation. In Picking Strawberries, students talked mainly at how to

define the picking situation and implicitly at the match between the

problem and the graph. Initially they offered five potential graphs and

explained their reasoning. As the dimo,esion continued, they refined their

definitions of the problem situation. They discussed whether the fluster of

people should be a whole number, whether the marker of people or the time to
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pick could ever be zero, Whether they must consider people to pick at a

constant rate or Whether their rates could be averaged. They discussed

whether the graph should tooth eadh axis, ,.tether it Should be curved or

straight, wtethwr it Should consist of dots, and to a lesser extent, the

validity of notation used to represent their ideas m the graph.

In book math students talked =out problems, but talk focused on

correctness and 'getting it'. When students called out answers to questions

posed by the ter while he presented new material or went over homework,

they appeared to be 'filling in the blanks'. At other times, they tested the

correctness of their understanding by asking the teacher specific questions,

such as how to write a specific set description or whether to use "and" or
noes

Sometimes students posed highly specific variations to prOblems, whidh

when answered, could provide insight into whatever they were puzzling about.

For exasple, after it had ben established this graph represented a function

and the domain and range had been determined, Alex decked his taxierstanding

cf open circles.

Alex: Uh, the open circle's mean that it's (pause). If those were
closed circles right there and you do the vertical test, do you
get a function? (both circles are open)

Tdhr: No.
Alex: It wouldn't be a function?
Tdhr: No.
Alex: It's a function 'cause they're open?
Tthr: Yes.

Alex seemed to be checking that he heard correctly 1.-d '.**then he had 'got it'

in dealing with open circles.

Sometimes students asked what eight be conoeptual goestions, but seemed

satisfied with short respormes from the teacher. john mike:what maned to be

a question about multiple functions defined on the same domain. He asked, "

If you have that domain and range, can't you end op with a different graph

scuahow?" When Mt. Denis suggested John was simply uncomfortable because he

didn't know the specific rule for the function, Jelin said, "Okay," and didn't

pursue it further. When students chose homework problems to be discussed in

class, it is likely they were cher-kin:I the mower or the solution process.

Infrequently they asked about concepts, and very rarely students posed

problem that were an extension of that under discussion.
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Most full-class discussions centered around working proble=ms, but

students had a different .mtation to the group in each context. In LTG

talk seared oriented toward a group outcome of resolving the problem. They

focused on investigating and discussing their ideas about a ommon problem.

At one point Doug, prompted by Med's =weft that one was the smallest number

of people possible, said you couldn't have .2 people either. Several students

agreed. Later in the discussion, Doug returned to the issue and said:

If we are just connidering 1.2 and all that, it could be that if you just
had 0, 1, 2, 3, 4, 5 people, rd the time. It could be just be the dots,
It would go on and off in a curve or in a straight line down. It
would just be dots, the rr 0:or of people.

When Mr. Dennis asked him why he said curve or a straight line, and Doug

said he believed it would go down in a straight line. John said he had

sarething to add and that it should be curved because if you had one person

and it took ten hours, then two people would take five hours. A lot of

students began to talk at once; with at least same dissenting. Jcbn continued

with a new argument, comparing the differences in the relative increases in

total time when adding an additional person to 1 picker and to 100 pickers.

The students' talk was often directed to other students, and they seemed to be

engaged in a joint effort of solving the problem at hard.

In book math, talk was directed from indivieb,,ls toward the teacher, and

less frequently toward each other than in LPG. Students asked for specific

hosework problems to be worked, sought answers to highly specific questions on

how to do a process or on the correctness of an answer. They posed

alternative problems to test their understanding, and the queried the teacher

about concepts they did not understand. Students' talk was oriented to

meeting individual needs. Students seemed to have :in common the purpose of

'getting it', tut not to be engaged in a canon group purpose.

&beets of Students' Knowledoe Exemplified

In general, talk in these two contexts was oriented to exemplify

different aspects of students' knowledge. In LFG talk was focused on what

students knew, whe:771as in book math, it was oriented to display what they Ito

vet EUQW.

In Picking Strawberries, students made conjectures about the solution,

explained their reasoning, and defended or debated the merits of solutions or

suggestiorm made about the problem under di.mmsion. For example, five

students gave their graphs for the strawberry problem: each was different in

-128-

r.,-1
tl $



same aspect. All were asked to explain some part of their graphs. Giving

their views on the problem at hand was a common feature in each activity from

LEG. When students defended their positions, as John did in the example

above, or debated the merits of a position, such as the role of average rates,

their differences were viewed more as disagreements about how to proceed since

talk seemed focused on the solving the problem rather than on whether students

understood a process.

Tentative solutions, even when incorrect, contributed to the resolution

of the problem. Three of the first graph, offered for Picking Strawberries

were linear. Yet talk about these three graphs and their three different ways

of handling end behavior of the function resulted in a rich dice' lion of many

points, such as John's justification of curvature of the graph. Ned's

description of how he left a gap at zero because the smallest number of people

was one led Doug to raise the issue of a discrete domain. Because ill-formed

conjectures contributed to solving the problems, they were view positively as

constituting knowledge rather than illustrating the lack of it.

In book math, however, the situation differed. Filling in the blanks, of

course, displayed what the students knew, and many students participated, but

often several would call out answers and a chorus of the correct answers would

gradually strengthen while other responses dropped out. It seemed that some

students listened for the trend before participating. Since the talk focused

on correctness or a single way of doing things, it oriented students to focus

on what they did not know, so that participating incurred a risk of exposing

their failure. Tb ask for a homework problem to be worked was to announce it

was not fully understocd. Questions checking their solutions or finding out

how to fill in the gape in their understanding focused on what students did

not know. While it could be argued that students saretimes asked questions to

show off, it appeared that only one student engaged to any extent in this

behavior.

Accounting for the Difference

I account for the differences in student talk between the two

instructional contexts by the nature of the curriculum, the source of the

tasks, and to a lesser extent, the teacher as a novice in using the materials

of the Landuaae of Functions and GTalchS.

Nature of CArd.culum

The materials in LEG contributed to the difference in students' talk.

They were specifically designed to be used in a collaborative way. Students

-129-

.0.



worked in small groups and were asked to ccme up with a =mon solution. The

materials included sggestiais, which Mr.
Dennis followed, about how to run

full-class diemmeions to facilitate sharing without devaluing any student's

ideas. Students were asked to express their ideas and to justify their

reasoning. The tasks were inherently open- ended.

In book math, the activities were heavily dependent on the text. The

tasks set forth by the text were highly coepartmentalized. Problems had

single correct answers. Connections between sections were implicit. The

tasks students were given were individual. Each student turned in their own

harework, and all work on tests and quizzes was carried out individually.

The social organization inherent in the tasks as defined in these two

contexts was important since students camidered workirq together irportant.

On an anonymous questionnaire
given at the end of my time there, students were

asked "How important or unimportant was working in a group? Why and in what

way?" Nineteen of the 24 students answered
"very important" or "important" to

the question, and 11 cited the value
of collaboration as a reason.

Source of Activities

Differences in student talk between =texts night be explained by the

source of the activities.
I had provided the LEG materials to Mr. Dennis, and

while he was careful to speak to students
of their value and role in class,

both he and the students considered them mine. Several students indicated on

the questionnaire that the activities were 'add-ons' to the class. Since all

grading depended on book math, surely
students were more likely to foals on

correctness and to engage in getting
"answers" that might prove useful on

quizzes and tests than if they considered them as reczeation.

Finally, the teacher was using IIG for the first time, but had taught

book math from this text for several years. As in any new situation, neither

of us kreerwhat to expect from the students in 1FG. Sometimes Mr. Dennis (and

I) was very surprised by the richness of students' responses. On such

occasions, Mr. Dennis responded by simply
repeating each phrase the student

had just said, a style of replying that very
effectively praopted students for

more of their ideas. Sims this kind of rem:ceding occurred more f2equently

when he seemed puzzled or surprised by students' responses, his use of it may

be a result of his inexperieroe with these kinds of materials.

In book math, on the other hand, Mt. Dennis was an experienced teacher'

who had used this text for several years
and knew what he wanted for the
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students. Thus, Mt. Dennis gave students more nues and much more direction.

Discussion

Students' talk in this class raises important issues related to learning

mathematics: what it contributes to teaching, what is their urderstandirq of

what it means to study mathematics, and how they feel about doing mathematics.

Students' talk is important as a diagnostic tool for the teacher. Talk that

focuses on that they do not know can provide a teacher with useful information

about how confused students are, but when students explain their reasoning, as

in LEG, the teacher can learn both the nature of their difficulties and the

richness of their thinking.

Focusing on tentative solutions and wrestling with partially formed

possibly incorrect ideas is closer to that those engaged in mathematical

problem solving do and might provide students with a more accurate picture of

what it means to do mathematics.

If classes dielms 'conjectures' rather than 'answers', even students

traditionally perceived as poor in math can participate without risk to their

self-esteem since there is less risk in exposing their thinking. If students'

responses, even though not completely correct, are viewed as valuable, and if

other students provide support through joint efforts at final resolutions of

the problems, all students might feel that they are succeeding. More students

might participate in mathematics.

Finally, working in groups or orienting the class toward a group outoare

migi:t help students =coed at math. On the questionnaire, several students

gave the need for support as one reason why they felt working in groups was

important. One student added, "and the 'smart' kids were not always right,"

a powerful argument for how orienting the class toward groups contributes to

students' self-esteem:and possible success in mathematics classes
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Middle School Teachers
Questioning
Inquiry

OPEN TO QUESTION: AN EXAMINATION OF TEACHER QUESTIONING

Linda Davenport and Ron Narode
Portland State University

This study examines the questioning practices of three
mathematics teachers attempting to adopt an inquiry approach
to mathematics instruction. Analyses of classroom
transcripts and teacher Journals suggest that although
teachers may ask many questions during instruction, their
practice remains traditional in many ways.

Ushering in a new paradigm is never an easy task (Kuhn, 1963,

Confrey, 1988) Although reform efforts in mathematics education abound

(NCTM, 1989; NCTM, 1991; NRC, 1989), the transition from the traditional

classroom which presumes a transmission view of knowledge to a

classroom where students construct knowledge from genuine

mathematical inquiry and discourse is exceedingly problematic.

The constructivist view of mathematics learning (von Glasersfeld,

1983) asserts that discourse is a universal and critical feature of concept

development in mathematics. For discourse to occur, there must first

develop a "consensual domain' (Maturana, 1978) whereby discussants

implicitly acknowledge shared assumptions.

Richards (In press) describes communities In which qualitatively

different mathematical discourse occurs. This discourse Includes

research math, or the spoken mathematics of professional

mathematicians and scientists; Inquiry math, or the mathematics of

"mathematically literate adults'; journal math, or the language of

mathematical publications; and school math, or discourse consisting

mostly of "Initiation-reply-evaluation" sequences and 'number talk". The

distinction between Inquiry math and school math Is fundamental in the

appraisal of the success of present reforms In mathematics education.

This research was supported by the Center for Urban Research In Education at Portland State
University and the Ford Foundation.
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Open to Question

Research Framework

Because the inquiry approach presumes an emphasis on questioning

as the impetus to dialogue, we have chosen teacher questioning as a focus

for the current study. Our framework for describing types of questions

originates with Brousseau's (1981) description of educational social

situations and their corresponding cognitive functionings. These

situations Include action, formulation, validation, and

institutionalization (as described in Balacheff, 1990; Laborde, 1989,

and Cobb et al., in press). We see Brousseau's situations initiated in

questions of the type which promote the milieu.

In the table below we identify each of these question types, describe

the type, and offer sample questions. As we found many different types of

formulation questions, we differentiate among them using sub-types:

formulation/what, formulation/how, formulation /different, and

formulation/thinking.

Question Description
Tvoe

Action Poses problems for
students to solve.

Formula-
tion

Asks that students
make their
interpretations and
conceptual izations
explicit
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How long would his
property be? Could you
use your base 10 pieces to
show ...?

(a)What What can you
tell me about ...?; What
does parallel mean?
(b)How. How did you do
that?
(c)Differently: Did anyone
see It differently?
(d)Thinking How did you
decide...?; How did you
know...?; What were you
thinking when...?

3. `:. 4



Open to Ouest)on

Validation Asks students for
justifications for
their solutions.

Institu-
tionaliza-
tion

Asks students to
recognize or confirm
an official truth.

Can you go up to the
overhead and prove
that it's a hexagon?

Did you notice that the 2nd
train was the same as a
hexagon ?; Can we use
another word to describe the
area around (a rectangle),
how about distance',

In addition to the above categories of questions, we identified factual

recall questions wnich ask students if they remember information

discussed earlier, repeat questions in which the last teacher-spoken

question is repeated, repeat student response questions in which the

teacher repeats the last spoken student statement with inflection;

general assessment questions which ask how well students are

understanding generally, and management questions which pertain to

classroom management and organization.

Research Methodology

The subjects in this study are three middle school mathematics

teachers who are part of an on-going project Involving an effort to

implement many of the recommendations contained In recent documents

such as the NCTM Standards (1989). They were videotaped for three

consecutive days in October of 1990, January of 1991, and May of 1991 as

they taught a 6th-grade lesson. They also kept journals throughout the

year.

Two sources of data are examined in this study: (1) transcripts of

the first two lessons videotaped in the Fall and Winter, and (2) teacher

journals. Transcripts were analyzed in committee by two researchers and

two graduate students as to question type, with independent judgments

for selected segments compared until close consensus was reached
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Frequencies were summed over the two days In each cycle for each

teacher. Journals were examined for teacher reflections about their

questioning and pertinent passages were identif led.

Results and Discussion

Transcript analysis shows that all teachers asked many

formulation/what questions and institutionalization questions and
few formulation/how questions, formulation/thinking questions, or
validation questions. All teachers also repeated questions often,

repeated students responses with inflection often, and asked relatively

few action questions. There are comparatively fewer factual recall

questions and general assessment questions. The number of management

questions varies among teachers and reflect differences in the degree to

which classroom discipline was a problem. Most apparent is the

observation that the teachers asked many questions. Total number of

questions asked by each teacher over the two lessons for Fall and Winter

ranged from 254 to 109 questions.

School Mathematis

With regard to formulation/what questions, an average of 39% for

all observations were questions of this sort. These questions tended to be

quite leading and typically required one -word responses. They seemed to

be used as a vehicle for calling student attention to what the teachers

saw as relevant information, such as in 'What would the 100th train look

like?" Repeat questions tended to be formulation/what questions also.

Institutionalization questions comprised 13% of all questions asked,

tended to be rhetorical, and generally served as a technique for teachers

to transmit information In a question form.

It Is interesting to note patterns in the sequence of questions in the

discourse. The sequence often began with an action question followed by

-135-



Open to Question

an extensive series of formulation /what questions and then brought to

closure with an institutionalization question. This sequence Is

reminiscent of the traditional discourse In which teachers initiate,

students respond, and then teachers evaluate and summarize for closure.

Inquiry Mathematics
Teachers asked very few questions that attempted to probe student

thinking Formulation/how questions account for only 2% of the total

questions, formulation/differently questions are 45% of the total

questions, and formulation/thinking questions are 0.8% of the total

questions Validation questions in which students are asked to Justify

their solutions using either formal or Informal proof consisted only of

0.8% of the questions asked. There were few changes in the numbers of

these questions asked from Fall to Winter Overall, the questions which

one would associate with genuine mathematical discourse are

conspicuously absent.

Probing questions posed many challenges for teachers. In their

journals, teachers discuss a number of issues which make asking such

questions problematic Teachers felt that students were not well-

prepared for open-ended questions which probed their thinking:

It makes it tough when you move to a setting that allows for a
more open-ended approach... I think I am discouraged from
asking these kinds of questions from the poor quality of
response I get on them... Once tne kids have success, they
will try harder and it won't have to be structured the same
way.

Teachers used student lack of preparation and classroom management

issues to justify a need for greater structure In the activities and

explorations. Structure was often interpreted to mean the use of

questions which were "set up" for students success. One teacher, towards

the middle of the year, expresses a concern about such structure:
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I need to make sure I'm not structuring too much It is easy to
be too leading and feel ok about It because the kids seem
happy.. ti see) how hard it is to ask questions and wait in
silence and how easy it is to fill the silence with direct
Instruction.

Other teachers, over the year, show increasing awareness of the

limitations of their questioning:

I was asking lots of questions. But as I wrote down the
questions it seemed that almost none of them were probing
student thinking. Rather, on many of them I had a specific
answer in mind.

Analysis of the most recent cycle of classroom observations will indicate

the extent to which these teachers' Insights are associated with changes

in classroom practice.

Conclusion

It is our observation that Inquiry-based curriculum and teacher

questioning do not necessarily result In inquiry math discourse. In spite

of the efforts of curriculum developers and teacher educators to

encourage teachers to foster such discourse, Instruction still bears many

of the characteristics of school math. Although the teachers in our study

religiously eschew the didactic approach to instruction in favor of teacher

questioning and student problem-solving, an analysis of the frequency and

types of questions asked indicate that the ensuing discourse is -school

math". We maintain that unless teachers change their fundamental

epistemologies, they will continue to negotiate classroom norms in which

the teacher is the director and the students passive players in a theatre

where the pose Is the problem.
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Elementary
Spatial Visualization
Video Games

SPATIAL LEARNING IN ONE VIDEO GAME

Susan Williams, University of Houston

George W. Bright, University of North Carolina at Greensboro

Mathematics can be learned in out-of-class activities. Video games
are examples of highly stimulating environments that might be
exploited for mathematics instruction if we knew what
mathematics is used, and how that mathematics is used, by game
players. This study is a beginning investigation of that question.

Children of all ages choose to play video games of many types. Do video

games merely provide recreation or do some offer enjoyable training that

supports mathematics learning? This study of one child as he played TETRIS

was aimed at conceptualizing important research questions.

Theoretical framework. The evolution of spatial learning proceeds at two

different levels: perceptual and conceotual. Perception refers to a situation in

which the senses gather static information from the environment and transmit

that information to the brain, analogous to a camera taking a picture. However,

perception is not simply transmission of a copy of an object (e.g., Del Grande,

1987). Instead, perceptions of static space are constructed. Thus, development

of perception seems to require the organization and coordination not only of the

activity involved in gathering that information but also of coded and stored

sensory information from prior experiences.

Conceptions involve mental operations which consist of transforming what is

observed (Montangero & Smock, 1976). Representations of transformations are

possible only when conceptual development interacts with the perceptual image,

clear progress in representing transformations can be found around 7 years of

age. Generally speaking, learning spatial concepts seems strongly related to

attempts at representing spatial transformations.
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Spatial ability is a cognitive skill which involves the ability both to perceive

spatial relationships and to manipulate visual material mentally. McGee (1979)

identified two distinct factors of spatial abilities: orientation and visualization.

Spatial orientation tasks rotate or translate an entire object. These activities

require a person to see that the pattern arrangement of a structure is

maintained even though the direction or angle of inspection has been changed. A

visualization task requires an understanding of how the parts of a structure can

change position in relation to each other and yet not violate the way the pattern

connects. A classic example is the visualized paper folding task in which a

person must anticipate what a pattern will look like when it is folded.

Game description. TETRIS is a puzzle video game in which different

geometrically shaped game blocks fall down, one after theother into a 10 x

unit game field. The shape of the block that falls is randomly selected by the

computer. Each block is formed from four small squares (i.e., tetrominoes),

analogous to the well known pentominoes. For our purposes, the shapes will be

called by the following names: 4-bar, 4-square, L, reverse L, T, Z, reverse Z.

The object of the game is to keep the blocks from piling up to the top of the

game field. To do this, one can (a) translate a playing block left or right and (b)

rotate it as it falls. As horizontal lines are filled, those lines are erased from

the playing field and points are awarded. A bonus is given for completing four

rows (the maximum possible number) simultaneously. Play continues until the

blocks pile up to the top of the game field.

At all times during the game two playing blocks are visible, the one that is

currently in play and the one that will appear next at the top of the playing field.

To become expert, one must visualize the placement of the current playing block

in order to plan for the placement of the next block. As players plan the

placement of both the current piece moving down on the screen and the piece

which will appear next at the top of the screen, changes in the board must be

0-1 rI
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mentally cor structed for various placements of the pieces (i.e., visualization).

Since there is not time to generate physically all possible transformations on a

piece falling down the screen, players need to generate at least some of those

transformations mentally (i.e., orientation) in order to use their time

efficiently. Mental imaging of the placement of the current playing block in the

playing field is necessary in order to "plan ahead' for the positioning of the next

block (i.e., spatial visualization). Thus, TETRIS requires the development of a

metacognitive skill, 'planning ahead," as well as both spatial orientation and

spatial visualization skills. Because TETRIS has a built in time factor, players

are rewarded for their ability to plan ahead in the placement of pieces. This

looking ahead" strategy can be considered analogous to the looking back"

strategy frequently mentioned in discussions of problem solving.

Procedures

aukhict. Carl, a seven-year-old Caucasian male, was interviewed and

videotaped twice for approximately two hours each time. Sessions were held in

August and January. Carl had been playing TETRIS for about six months prior to

the first session. During the observations, he received no training on either the

game or transformational geometry terminology or concepts.

Method. At the beginning of each session, Carl was asked a variety of

questions concerning his understanding of the game rules and the seven game

blocks. During the first session, Carl first played the game four times by

himself. Then he *played" one game by telling one of the researchers where to

place the pieces. This change in Carl's role was selected to determine if his

strategies changed when he was relieved of the burden of the r. Aysical

manipulation of the control device and when the time factor was not as critical.

At the beginning of the second session, the Figure Rotations Test from NLSMA

was administered. This test was chosen because it matched the orientation

aspects of the game. Carl then played two games by himself, with one of the
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researchers watching and asking additional probing questions. He began a third

game by telling one of the researchers where to place the pieces. After placing

54 pieces, his frustration level at the speed of play was so great that he was

allowed to complete this game (191 additional pieces) by himself.

First Session

pre-game Questioning. Carl drew five of the seven playing pieces correctly.

He described the Z and reverse Z blocks, but he was unsuccessful at drawing

them. While drawing, he asked if he should "draw the blocks that could be

changed around." Additional questioning revealed that Carl seemed to view the

same block oriented in two different ways as two separate figures. He was

aware that the shapes had been turned, but once they were turned, he no longer

recognized them as the same shape. Thus, he was unwilling to use a common

descriptor for a block in different orientations.

Observations. Carl always placed the first block against the left wall and

then positioned the next 2 or 3 blocks from left to right. During play, there were

cases when Carl appeared to mentally select a position for the playing block,

rotate and translate the piece so that it would fit into that position, and then

rotate the piece again through a complete 360° turn. As he rotated the piece, he

would observe other openings in the lower portion of the playing field and

occasionally reevaluate his original decision and move the piece to a new

position. Carl regularly performed this ritual with the L. reverse L. and T blocks.

Carl used only the B button on the control device (for counter-clockwise

rotations) during the first two and one-half games. Then, for no apparent

reason, he switched in the middle of the third game to the A button (for

clockwise rotations) and continued to use that button through the end of the

fourth game. During his explanations of the rules Carl had said the "button A

moves the block to the right and button B moves the blocks to the left.' Though

he did not use the more conventional terms, rotate or turn, Carl did make the

131.
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appropriate clockwise and counter - clockwise turning motions with his hands to

illustrate these concepts.

When Carl assumed the role of direction giver for the placement of pieces, he

gave directions in terms of what a figure would look like once it was turned. For

example, Carl's explanation on how to orient the L block was to leave it as be (no

turn), put it in the L position (90° counter-clockwise turn), put it in the hangman

position (90° clockwise turn), or put it in the body or bed position (180° turn).

He described turns of the T block with similar everyday terms, but he realized

that the Z and reverse Z blocks had only two possible positions and did not

generate icon's descriptions for their placement.

Second Session

Testing. Carl's responses on the figure rotations test were very good. On

each of the 14 items, there are 8 figures given; each figure must be classified as

a rotation or non-rotation of the item stem. Of the 112 responses, Carl

correctly classified 107.

Pre-game Questioning. Carl easily drew the seven blocks, though he continued

to use different descriptors for each position of a block. His explanations of the

directions for the game were clear and complete.

Observations. Carl used only the A button on the control device throughout

the second session. He explained that 9 only need one button."

During the game in which Carl told the researcher where to position pieces,

his explanations were clear, to the point that the game did not need to be paused

to ask for clarification on where a particular piece should be placed. When Carl

was probed about why he placed a piece in a particular position, he sometimes

said that it was because 'the next piece goes here." During similar questioning

in the first session he never mentioned accommodation of the next piece.

Relative frequencies of pieces that Carl rotated through 360° were similar in

the two sessions. In session one, 70% of these pieces were L, 10% were T, and
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20% were Z; in session two, 63% were L, 13% were T, and 25% were Z.

Conclusions

Carl's insistence on creating iconic descriptors for different orientations of

most of the blocks has potential implications for instruction. In particular, if

Carl's behavior is indicative of that of other children, then it is possible that

young children who are just beginning to develop operational understanding have

not built connections that will allow them to view, for example, a rectangle as

still a rectangle once the figure is rotated. Dual-coding theory, which proposes

that visual representations may be generated from verbal cues as well as visual

cues corresponding to objects or events, suggests that the use of verbal

connectors in conjunction with visual connectors might assist a child in

developing stronger images of object transformations.

Carl's explanation that he positioned one piece in preparation for the next

piece seems to support the notion that Carl had begun to plan ahead. Although

this strategy does not seem to be developed well in school mathematics

instruction, it may be one that mathematicians utilize regularly (a strategy that

may allow them to become expert in the field). The instantaneous feedback that

is provided in electronic games such as TETRIS provides a dynamic learning

environment for the practice of such a strategy.

Carl's tendency to rotate a figure through a complete 360° turn, even after he

had apparently decided where to place the block suggests that he was utilizing

both perceptual and conceptual reasoning while playing the game. This might be

important if other children also demonstrate similar reasoning.

Although the patterns observed in Carl's play are idiosyncratic to one child's

organization of schemata, the importance is that organizational patterns appear

to have been formed. For example, more frequent rotation of the L block

suggests that this piece was more difficult for him to visualize. It is our

opinion that continued study of additional subjects might reveal groups of
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organizational patterns that might have significant pedagogical implications.

Hypotheses raised. A variety of questions are suggested from these data. Do

most children begin by placing the first block against a wall? Do other children

initially position pieces across the bottom of the playing area? Will players

choose to use both rotation buttons? Are there groups of children who prefer

one type of rotation over the other? If so, what characterizes these groups?

Will older or more experienced players interchange the use of the A and B

buttons more frequently? Does the asymmetrical shape of the L and reverse L

blocks cause equal placement difficulty for players who are developmentally

more mature? Do many children use real-world objects to describe the rotation

of the blocks? If so, does this have implications for geometry instruction? Will

the repetitive visual exposure to rotation and translation of blocks in this game

provide a sufficiently rich setting that will enhance the acquisition of spatial

concepts? Does TETRIS help students learn to plan ahead? If so, is there payoff

for performance in content such as solving equations, performing geometric

constructions, or creating and organizing the steps of a mathematical proof?
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ON TEE UIND6RSTAITING OF VARIATION

A TEACHING EXPERIENCE

Ricardo Cantoral and Marla Trigueros
INSTITOTO TECNOLCGICO ALM:WOW DE NIEXICO

MEXICO

This paper deals with research that pretends to explore the
strategies that favor the understanding of the representation of
parametric curves in the plane. We report the results of a three
years long teaching experience with college students where we
explore and explain the difficulties and strategies that students
have when faced with problems that involve parameterization.

§ I. ABOUT THE RESEARCH PROBLEM

Students at college level have difficulties with understanding and

graphing curves, specially when they are given in a parametric

representation. Because of the importance of this material for the

understanding of other mathematical concepts as area, curve length and the

solution of differential equations and their use in application problems, we
tried in the present study to find out why they have such a difficulty.

These difficulties can arise from situations related to different kinds

of representation In several contexts, with problems in the transfer of

Information from one kind of representation to another or with the

understanding of the concepts of variable and variation.

In dealing with parametric representation, students are usually faced
with three different situations: They can have the parametric equations of a
curve and be asked to graph the curve, or they can have two different curves

for each dependent variable and be asked for the curve's graph or they face

a verbally stated problem that can be solved using parametric equations. We

are Interested in finding out the strategies that students use In all the

situations and In differentiating between the strategies that are

r--IL
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independent of the context in which they face the problem and those closely
related to the context.

§ 2. ABOUT THE TEACHING EXPERIENCE

We worked during three semesters with Mathematics students who are
taking a mandatory course in Analytic Geometry. We chose this population
because they have already taken a precalculus course where emphasis is

given to the handling and graphing of one variable re:A valued functions, so
they know how to graph.

We designed a small questionnaire to try to find out what they thought
when faced with parametric equations and what they did with problems that
require parameterization for their solution. We studied the answers to this
questionnaire and then interviewed the students about their difficulties.

We then gave them two lessons on parametric curves, particularly in how

to graph them and on some methods to deal with problems. After the lessons

we gave them another questionnaire where we found that most of them still
had problems. We gave them four more lessons emphasizing the qualitative

reasoning associated with the construction of the graph of the curve and
some methods to deal with problems. After these lessons a new questionnaire

was given to them and we found that most of them were able to graph the
curve but still were not very successful in dealing with the problems.

After a year, because we wanted to analyze what they had assimilated
from the teaching experience, we chose a male student and a female student

who had been successful in solving the problems after the teaching sessions,

and by means of a new questionnaire and a clinical Interview, we analyzed

the strategies they used to solve the problems and we tried to isolate the
different episodes in their reasoning.

First we found that when faced with parametric representations of
curves, students can graph each of the dependent variable with respect to
the independent variable, but cannot find the graph of the interrelated
dependent variables, unless they are able to eliminate the parameter, and
they do not perceive the Interrelation of the dependent variables. They
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think of them as two separate equations not dealing with the same problem
and they do not understand why they have to put the information in a single

graph. We also found that when faced with problems that require

parameterization they cannot break them In components, even the simple ones;
they always try to find a relationship between the two variables involved in
the problem. Even if you tell them to separate the problem, they are not
able to find a third variable on which the other two depend.

In the first questionnaire we asked the students some general questions
about what they think when they find the word parameter and how can they

explain In words what a line Is and particular questions dealing with the
graph of a curve when the parametric equations are given in a problem.

Some typical answers were,

'A parameter is:
a) a way to measure something ,

b) something that relates one thing with another',

c) a constant that can take any value, or

d) something that you can change and as you change it you find
different points on a line'.

"A line is:
a) 'algo qua va derechtto derechito', (It is something that goes

straight).
b) Something that connects two points

When they have the parametric equations, all of them eliminated the
parameter and graphed the curve. When they could eliminate the parameter
they didn't graph the curve. When they have two curves, most of them tried

to find out and explicit relationship in algebraic terms, and then they
eliminated the rrameter. For example when given

-4
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They write x = tz, y = t3 then t = t . s o yso y = t x3/2 and graph the
curve.

In a first discussion session about their answers we confirmed the
difficulties already mentioned.

In the second questionnaire we tried to force them to think about the
problem in an essentially geometrical context, so we asked them to graph a
curve from two arbitrary graphs for which no algebraic expression could be
found. For example, we gave them

and found that most of t'aem read some points from the graph, and made a
table showing some important points:

x y

and they showed them in the x-y diagram. But If the curve was not easy, as
in the example given, they c"dn't know how to Join those points.

In the last questionnaire we wanted to find out If the qualitative

techniques had been learned. However, we recognized that although some of
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them could graph the curve, they only applied the techniques without any
understanding of the strategies.

Once we recognized these problems we designed a research protocol to
Isolate the main strategies.

§ 3. ABOUT THE STRATEGIES AND THE LEARNING EPISODES

Since our objective was to analyze the representation strategies. in

the recent interviews we searched for elements to explain why the students
cannot build graphs of parametric curves.

We found a sequential order in their strategies shown in the following
scheme.

Formula

Elimination
of

Parameter

Function

Construct ion of a table I

Graph

[dent i f !cation
of formula for

the complete curve
or for parts of it

Graphing the Points I

Construct ion of the curve
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As we see there are two kinds of general strategies: one is of

algebraic nature, the other Is of geometrical nature, but both of them are
based on a numerical and quasi numerical approach.

We observed that students feel more confident if they can find a

relationship between the variables. For example one of the students thought
that it was always possible to eliminate the parameter from the equations,
and that given a difficult curve one can always break it in parts so one can
find piece wise relationships and eliminate the parameter from each of them.

The other student could not tell for sure if a point was part of the x-y
graph if he didn't have a formula for it.

The qualitative or geometric strategy was not present until we talked
about movement of a point. So it seems that the numerical strategy is

independent of the context, the algebraic depends on the context but works
In two different ways: as a resource for the numerical strategy and as a
tool that is self sufficient to solve a problem, and the geometric is not

spontaneous and Is closely related to the idea of movement.

The interrelation of the dependent variables was not evident for them
until we made explicit reference to the idea of movement, and even then, one
of the students couldn't see It. It may be that the understanding of
parametric curves Is made easier when it is closely associated with the
concept of movement.

After an analysis of their answers we think that although they can deal
with one variable problems, they do it mechanically. They do not have a
clear concept of variable, and this difficulty Is made more evident when
several variables are involved. We are trying now to explore the student's
response when dealing with these kind of problems when they are directly
related with concrete physical problems and to relate the results with their
understanding of the concept of variation within a computer environment.
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Math Life Histories

Teachers
Life Histories
Vygotsky

A VYGOTSKIAN FRAMEWORK FOR EXAMINING MATHEMATICAL

ATTITUDES AND THE NCTM STANDARDS THROUGH LIFE HISTORIES
Lyn Taylor, University of Colorado-Denver

Life histories are used to explore attitudes toward mathematics and the NCTM
Standards (1989). This methodology has been a valuable tool in exploring attitude
development. The conceptual framework for this research is grounded in
Vygotsky's (1930.4/1978) social interactionist theories and mathematical attitude
research. A model of mathematical attitude development is presented and discussed.

In this PME paper [will demonstrate how life histories can be used to study mathematical

attitudes and how these relate to the NCTM Standards (1989). Vygotsky's (1930.4,1978) social

interact ionist theories and mathematical attitude research, especially Fennema (1989) and Reyes

(1984), provide the conceptual framework for this work. This framework and the analysis of

mathematical life histories guided the creation ofmy model of mathematical attitudedevelopment 'see

Figure l). Directly or tangentially, the framework and the analysis support the idea that studc...s'

attitudes develop when they interact with other persons and their environment. This constructivist

(actively creating knowledge) view also appears to be part of the framework supporting the

Standards (1989).

Vygotskian conceptual framework. Vygotsky's emphasis on how culture influences
learning, provides a broad conceptual framework that can take us beyond a strictly cognitive focus

and challenge us to examine the learning and teaching of mathematics in the context of cognitive,

affective and social dimensions. His Zone of Proximal Development (ZPD), the region between a

person's current and potential achievement, is very helpful in gleaning relevant information from life

histories.

Attitude. I see attitude as a "way of thinking, feeling and behaving." This broad multi.

dimensional definition goes beyond most definitions and suggests affect is only one part of attitude.

When attitude is viewed simply as liking or disliking, the cognitive and behavioral components of

attitude are frequently overlooked. The formation of an attitude is a complex process involving the

interaction among many factors such as family, socialization, schooling experiences, and

relationships with mentors (see Taylor, 1988 & 1990 for further discussion).

Life histories and the S tender*. My work researching the mathematical life histories

of twelve outstanding teachers, I believe illuminates the essence of theSfandarcfs, as well as the

context in which teachers apply the Standards. I found many of the goals and sped fie areas for

increased and decreased attention recommended in theStandards to be complementary with events in

the participants' lives and with Vygotsky's theories.

For example, Curtis told of a negative fourth grade math experience that affected his

mathematical development, especially his attitude. He remembered "multiplying two six digit

numbers... and I never could get all the rows straight! It was just terrible. I got bored with it, and

- 1 5 3 -
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While learning multiplication was an experience which was fun and exciting for Karen,

Bill, and Tom, it was not for Curtis. It concerned Curtis that in his elementary mathematics classes

the product or answer was overly stressed, rather than understanding the process. This concern is

also discussed in the Standards; a processorientation is strongly emphasized.

Like Curtis, Joe's earliest schooling memory with mathematics was not a pleasant one. "I

remember being embarrassed in the third grade, b ng at the chalk board, trying to do one of the

very simple addition carrying problems, and I just, for some reason, could not do it. It was not a

very good experience, [but] a humiliating one. I'll always remember that, always! That may have

set the whole tone for the way I viewed math. I don't know. That really sticks out in my mind."

Joe also remembers his elementary mathematics as "a lot of memory work, a lot of computation on

paper, and not a whole lot of application, I'm afraid." He further feels the mathematics that was

stressed involved "the mechanics of doing things, as contrasted with understanding why you are

doing things." When Joe became an elementary teacher, his negative elementary experiences

motivated him to provide his students with useful math experiences with concrete objects. He

stressed understanding the processes involved and the usefulness of mathematics.

Bill's elementary arithmetic experience also affected his development as an educator. "I

still have a real clear image of something I use today in my own teaching. The image is looking at

a page of exercises in a text book, this could be in a fourth or fifth grade book, seeing on the page

at the top a whole lot of arithmetic problems that are written out explicitly, add two numbers,

multiply two numbers. Then at the bottom lower quarter of the page are the story problems;

suddenly you don't see numbers, but you see words... I know my own feeling at that time was

that the problems at the top were the easy ones; you were just asked to do some manipulation on a

couple of numbers. The hard ones were at tl bottom; you had to read the words, formulate the

problem mathematically and then solve the problem. Those were the story problems."

Students are often able to do rote lower level tasks as was emphasized in Bill's elementary

class, yet when they are challenged to apply their mathematical knowledge to solve problems they

often have difficulty. In Bill's words, "I know that in my own classes today it is the very same

way. People are good at working math problems when they are just stated mathematically, but it's

the problems with the words in them that the people just shuddered about. I realize this was the

outlook I had back then. I see it in my own students today and I try to dispel it. I give them a lot

of word problems and I tell them this is what math is all about. It's not multiplying two or three

digit numbers together, but it is taking the problem in the real world that's given to you in English,

visualizing that problem, what is being asked, casting it in a mathematical form, and then solving

It. That is a completely different process! Some people can multiply four digit numbers in their

head, but when it comes to translating story problems they may be useless. Conversely, some

people are good at the modeling aspect but are very slow at doing calculations. That's my own

attitude about math. It is not there to just simply do manipulations on numbers and symbols; it is

r)
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you never get the right answer if the rows are not straight!" Curtis felt that he and many of his

"classmates got turned off to mathematics at that point." Yet, he remembered that before he was

"taught" multiplication in school it intrigued him. "I actually figured out what multiplication was on

my ow's when I was in third grade... I thought that was neat! I used to play marbles and I remember

putting them in rows of four and I figured it out by looking at the rows." The Standards (1989)
would not support assigning a tedious six digit multiplication problem. In fact, they suggest teachers

place decreased attention on "complex pencil-and-paper computations" and isolated treatment of such

computations. The purpose of computation is to solve meaningful problems. Therefore, we are

challenged to reduce the computational emphasis so often used and focus more on "the thoughtful

use of operations and number relationships" (p. 47).

Developing an understanding of the underlying concepts of multiplication is important.

Curtis's marble story illustrates his conceptual understanding of multiplication. The Standards

(1989) also emphasize the importance of linking concepts to the paper-and-pencil procedures. This

was not "taught" in Curtis' class.

While the Standards challenge us to demphasize drill, it is important to keep this

recommendation in perspective. Some students are particularly fond of drill activities and even

find them "exciting" and "meaningful." For example the earliest mathematical memories for three

of the mathematicians in my study involved basic arithmetic drills Karen's memory was a

pleasant one. "I remember standing up and having to say 9 x 1 - 9, 9 x 2 - 18, etc.... Utast

thought it was so much fun doing that. I never thought it was boring. I never thought it was dull,

even though I know that a lot of kids [now and then] think it is boring. I just thought It was fun!

Exercising the memory."

Bill remembered learning the multiplication tables in fourth grade. "I can clearly remember

learning the multiplication tables. There was a big bulletin board in the comer and down one side

were all the students names. and across the top were the multiplication tables from I to 12. As

soon as students passed a test in the multiplication table they put an X up on the board. I can still
len that... It was something everybody had to do and some people finished sooner than Other!. I

can't really picture any tasks we had to do. I guess it was an exciting challenge to be working on

fours table and see way down at the end the table of 12s, and to realize that there was a sort of

unknown territory out there was kinda exciting to me. It was that kind of thing that motivated me,

seemed to be a good incentive to keep going and get to the end of the tables as quickly as I could

Tom also felt that it was fun doing basic arithmetic. His earliest mathematical memory wa.:

during the addition, subtraction, multiplication, and division "era", but it took place at borne

working with his dad and a slide rule. He enjoyed doing basic mathematics with his dad and a

slide rule. "I could usually come up with the right answer most of the time. Maybe that is why it

was fun." One wonders if the basic facts wordd have been so much fun for Karen, Bill, and Tom

if they weren't so successful.
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not valuable unless you are taking real problems given to you in English, perhaps by a non-

mathematician, and using math to solve it." Today, Bill is an applied mathematician. It seems

clear his interest in applying mathematics developed more strongly over time. Possibly his early

experience during his elementary school days triggered this development. Bill's emphasis on

applications and problem solving is advocated in the Standards.

Priscilla's response, when asked "what would you say is your earliest memory regarding

math?", involved a detailed description of an influential teacher and some of the activities in her

class. "That's an interesting question. Let me think. I don't think I have any real memories about

it until I was in junior high, seventh grade. I really don't have a lot of memories of anything until

junior high.... When I was in seventh grade I had a wonderful math teacher. His name was Mr.

Sweat. We played after school and at lunch time. We would sit around with him and do things

like discover unique patterns with numbers, like the nines, and tricks for getting the multiplication

done faster or division faster, and all those really fun things. Those were puzzle solving, but it

was still eminently obvious how it [the experience) could be used in real life and how it described

real things." Mr. Sweat appeared to be a teacher who was "ahead of his time andwho was

teaching a curriculum advocated in the Standards.

Seeing the usefulness of mathematics was very important not only to Priscilla and Bill, but

also to the other ten participants. In fact the four social scientists in the study all elected to not

pursue math when they did not perceive it was useful. Fennema (1981) and the Standards (1989)

have documented the importance sf the perceived usefulness of mathematics. Some students stop

taking mathematics when they do not perceive it as useful to them (Sells, 1979; Fennema,1981).

In the Standards usefulness is exempli tied bymathematical connections and applications.

Concern over the way "school mathematics" is, and has been, taught is not unique.

Tausicky-Todd (1980) enjoyed studying and using mathematics on her own, yet was not very

interested in the "school math" she was studying as a secondary student after World War I. In her

words "The work at school was really not that difficult if one applied oneself to it, but it was so

uninteresting that you could not wish to apply yourself. I felt there was another mathematics" (p.

313). This other mathematics was the one that she was pursuing on her own and with her father at

his vinegar plant; it had meaning and relevancy for Olga Tauskky-Todd, and it was connected to

her life.
Nancy, a mathematician in my study, also found the math she studied at home to be

especially interesting. Her father was a "jack-of all trades, like many laborers. His primaryjob

was sheet metal. He was always laying plans on the metal, and I was always tagging along with

my Dad and he would fold the up and come up with these nice boxes like an air conditioner

box. rd see it laid out, then I'd try to ..:4tualize what it would look like when he finished with ft.

He was always planning this out on paper and I always thought that it was neat! So, I would

duplicate that behavior with cardboard and stuff like that. Being that we were not(tom a welko-

,
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do family we had to invent our games.... If we wanted to play anything we would have to build

our own objects." It is clear that Nancy's interest in spatial visualization and geometry developed

at home as a young child helping her father.

It is not uncommon for children to develop an early interest in an -za through their active

involvement with a parent or relative. For Nancy, Tom, and Olga Tauskky-Todd, interactions

with their fathers facilitated their mathematical interests. John-Steiner (1985) and Vygotsky (1930 -

34/1978) have discussed the importance that a relationship with a significant adult can play in the

development of a person's interests. These adults may or may not be family members. For

Priscilla, her teacher facilitated her mathematical interest. Each participant in the study had

significant mentors.

Einstein's early interests were encouraged by his family and a friend of the family. His

Uncle fake introduced him to mathematics and his mother introduced him to music and literature.

Max Talmey, a poor Jewish medical student who came to dinner at the Einstein home in Southern

Germany when Albert was twelve, brought with him a number of books on science which he

showed to Albert. "And more significantly Max followed up Uncle Jake's teaching of algebra with

a book on geometry. With Talmey's assistance Albert worked through Speiker's Plane Geometry

and later went on to teach himself the elements of calculus" (Schwartz, 1979, p. 30). The

interaction with older people fostered Einstein's early interest in mathematics and science.

Not all children develop an interest in an area through their active involvement with a person.

Some children, such as Curtis with his marbles, may have an experience that facilitates their

mathematical interest.

Model Presentation. My working model of attitude development emerged from the life

history research and is, I believe, very much in line with the five essential goals of the Standards.

These goals assume that students' should not only be able to solve problems and reason

mathematically, but also to become confident and value mathematics, communicate it effectively.

make connections and become aware of how mathematics has impacted their lives. I believe these

goals illuminate the importance of and the connections among thoughts, feelings and behaviors (the

components of attitude). Therefore, the goals of the Standards suggest we be concerned with

attitudes.

It appears that attitude change, specifically mathematical attitude change, is often a function

of significant social interactions. Below is a model that provides the underlying conceptual

framework that illustrates the attitude development process. Elements of this framework include:

attitude which is viewed as a complex construct including thinking, feeling, and behaving; and the

ZPD which is defined as "the distance between the actual development level as determined through

independent problem solving and the level of potential development as determined through problem

solving under adult guidance or in collaboration with more capable peers" (Vygotslcy, 1930-

4/1978, p. 86).
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The double arrows in the model are needed to show the complex interactions. In accordance

with Vygotsky's emphasis on the importance of the environment, particulatly the culture and other

persons within the environment are depicted as shaded areas surrounding and affecting attitudes.

Thus, a person's attitude is affected by his/her environment. This includes experiences within the

environment as well as the culture of the environment itself. Other persons are also a part of the

environment.
This model emphasizes the larger cultural context

within which an individual's development occurs, first on a

social level, between people, then on an individual level as

internalization occurs. The arrow through the ZPD depicts

the meta-awareness an individual develops when s/he

bridges his/her ZPD. Meta-awareness involves reflecting

on one's thoughts, feelings, and behaviors. Arrows are

included from meta-awareness back down to attitude to

represent the continual interactions people experience.

Therefore, an individual can repeatedly bridge histerZPD

to a meta-awareness state and then have an attitude that is

further developed. For an individual such as Curtis,

Nancy, and the others discussed, this means that their

attitudes toward mathematics, including their feelings,

thoughts, and behaviors have changed.

Educational Implications and Conclusion. Vygotslry has been called a "genius"

who lived ahead of his time. A Vygotskian perspective presentsan integrated theoretical

framework which looks at the whole rather than dwelling on the parts. In this age cf fragmentation

and specialization it is important to keep the complex picture in mind. This view is one which is

complementary to the Standardsemphasis on the importance of mathematical connections,

usefulness, communication, reasoning, problem solving, and attitudes.

In Frye's (1989) words implementing the Standardsimplies the use of: "Words like

explore, communicate, construct, use, and represent, stress the involvement of students on the

active "doing" of mathematics. Words like collaborate, question, express, value, share, and enjoy,

bring a new flavor to the work of the students. Words like reflect, appreciate, connect, apply, and

extend, build a new attitu ward mathematics and its uses" (p. 59).
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Figure I - A model of mathematical
attitude development depicting the
components of anitude, bridging the
ZPD to meta-awareness and factors
influencing this process.

Further, a Vygotskian perspective supports the importance of alternative teaching strategies

such as using cooperative groups, providing opportunities for significant peer interactions, and

posing problems beyond students' understanding. This maximizes learning and facilitates students

bridging their zones (ZPDs). Vygotslcy believed that "creative imagination grows out of the play

of young children" (Williams, p. 117). This perspective also stresses the importance of play and
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ourcuhuralenviroarnentinsaidentedevelopmen Itistheinterandonsamongonestboughm,

feefings,andbehsAiors(ankude)enaemedinculturethatissigreicant.

The stories, model and thoughts presented in this paper offerways of extending Vygotskian

thought to mathematics education and theaffective domain. Mathematical life histories can be used

as a tool to explore mathematical attitudes and theStardarrig as well as in alternative classroom

assessment.
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THE MATH TEACHER AS RESEARCHER: A CHANGE IN
PERSPECTIVE WHICH IDENTIFIES THE MATH TEACHER'S
PSYCHOLOGY OF LEARNING AS A NEGLECTED AREA FOR
MATHEMATICS LEARNING

Egon Mermelstein Ingrid Thompson
College of Aeronautics

Abstract

A case is presented for the teacher-researcher.
As researcher, the teacher is made aware of his/her
psychology of learning. The narrative is the method
used to promote an understanding of the teacher's
psychology of learning. Two narratives, one by a writing
teacher, and one by math teacher, are examined by the
technique of phemonological exegesis. The findings
indicate that their psychology of learning, the exploration
of error, influences the course content and the students
learning of of that content.

That university researchers should collaborate with
elementary and secondary school teachers has been suggested by
Noddings (1988) and others. More recently, the National Council
of Teachers of English has awarded its 1990 David Russell Award
for distinguished research in the teaching of English to Nancy
Atwell, a former 8th grade teacher, for her book In the Middle:
Writing, Reading, and Learning with 1,riolescents. In her
acceptance speech, Ms. Atwell descriu,1 her award as representing
an acknowledgement that "observations and reflections of classroom
teachers count as research" (Rothman, 1990). Implicit here is the
notion that teachers can and should be the generators of classroom
research.

Indeed, with the increased interest in teacher
professionalism, a growing number of teachers are undertaking
critical analyses of classroom practices. In many cases,
according to Education Week reporter Rothman (1990), these
teachers are also writing up and reporting their findings. These
efforts, teachers say, have given them a deeper understanding of
how students learn and how teachers can contribute to learning.
Led by such interest, a number of organizations such as the A.F.T.
and the N.C.T.E. have created grant programs to sponsor teacher
research. As Rothman notes, research should be seen as part of
the teaching act.
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The issue of teachers' perspectives toward knowledge, their
view of themselves, and their students as knowers has recently
been acknowledged as important to pedagogical thinking (Lyons,
1990). The method employed for understanding the teachers'
perspective is the narrative: narratives produced by teachers
promote an understanding of the psychology of learning that may be
missed in more analytical forms of research. Indeed, as Tappan
and Brown (1989) note, the authorship of narratives (stories)
provides a new vision of the relationship between developmental
psychology and education.

Individuals give meaning to their experiences by representing
them in narrative form. In fact, narratives play a role in
helping us to understand human acticns, both the actions of
oneself and the actions of others. That is, learning how you work
helps you to see how others work. It is in the awareness of one's
own biases toward knowledge, learning, and education revealed in a
narrative that objectivity can be found and understanding
communicated. In this way, teachers may be restored to the role
of "reflective practitioners" (Rothman, 1990). When they are
reflective practioners, part of the "content" must be the
teachers' psychology of learning, not an aspect usually recognized
by traditional non-teaching researchers.

This presentation will take a developmental approach. First
we will look at the work of teacher-researcher Mike Rose, whose
narrative Lives on the Boundary (1990) provides a model of a
teacher's 1-537EHoIZIgy of learning. The next step will be to look
at the ongoing narrative of a Piagetian researcher (supported by
federal and university funds), who is also a mathematics teacher,
and more recently, a mathematics teacher-researcher.

'The method for pursuing such a developmental approach is
phenomenological exegesis, that is, a line by line reading of a
text that encourages "asking the right question." The key idea
behind this approach is two-fold: first, the setting forth of
details allows the voice of the text or narrative to come through
(which doer; not happen so clearly with the act of abstraction);
second, the process of working through the text by accurately
describing it allows for an understanding of text (and not
explanation, which is often the end result of analytical
criticism). Therefore, first the readers let the text speak; then
the readers dialogue with the text so that understanding may
emerge.

To illustrate, we have selected passages from three chapters
of Mike Rose's Lives on the Boundary. In the first "text", Rose
is himself a student in an urban, economically disadvantaged
school; in the second "text", he is a new teacher in a non-
traditional setting (instructing Vietnam War veterans); in the
third, he is a more mature teacher working in a university
remediation program.

An exegesis of the first "text" (see Narrative 1 ) reveals
Rose in the "role of mediocre student, the survival mechanism he
has developed in an academic setting which seems to be alien and
perhaps hostile territory. In this foreign terrain he understands
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that he does not know how to do some things and does not know how
to do some thing "the right way" (error free). He believes he is
responsible for these academic deficiencies; he is the author of
his own "faulty and inadequate ways." As a result, Rose's defense
is to construct his own ignorance by the self-concocted "magic" of
using only half of his mind's capabilities. He sabotages himself
to conform to the expectations made of him: he lives down to
those expectations and in that way renders himself "average."
Therefore, at this stage of his development, Rose's psychology of
learning is that of limitation as survival, not growth. Certainly
that kind of thinking is a non-national, induced magic, as all
living organisms generally survive by growth.

In the second "text", Rose as a new teacher has now become
part of an academic authoritarian system which decrees what
constitutes acceptable levels of learning. In this system, errors
constitute a rational scientific explanation of students'
deficient performances. However, a nagging sense tells Rose that
mere mechanics that are either "right" or "wrong" cannot truly
indicate a received education. The standard "proofs" of
educational acceptance - being free from error -may not be true
indicators and may in fact restrict students' true abilities.
Thus, Rose's psychology of learning has started to shift. He
still feels the burden is on him, as he did as a student, but now
he is in the position of both imposing and lifting the burden.
Indeed, he would blame himself if his notion of learning remained
that of making students "free of error," for his students would be
doomed to failure. It is here that he must try to restore or
reclaim expectations more appropriate to a true learning
environment.

In the final "text", as Rose works with his adult remedial
students, his perceptions about the notion of mistakes shift even
further. Rather than regard them in a pejorative way as
indicators of deficiency, he sees mistakes ls forms of
communication which render his students' worlds and expectations.
This allows a dialogue of understanding between teacher and
students to develop: it isn't just the teacher telling them what
they need to know to be acceptable but the students educating the
teacher through their texts about the stories of their lives. As
Rose suggests, mistakes are a map through the landscape of their
lives; like life itself, mistakes are just part of an ongoing
process. If so, students can begin to feel like they have some
control over their learning. In this way, errors provide
understanding for both students and teachers. With these
boundaries between teacher and student lessened, their worlds may
intersect so that a shared academic community may emerge.
Consequently, the next stage in Rose's psychology of learning is
based upon collaboration: he listens, helps, and facilitates as
students try to achieve modest but desired goals.

A developmental seise of the psychology of learning also can
be gleaned by tracing Mermelstein's narrative (see Narrative 2).
Like Rose, he has constructed a psychology of learning from his
classroom experiences. Also, as with Rose, it is ongoing.
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In the first "text," (see Narrative 2, paragraph 1)
Mermelstein while teaching students mathematics and employing the
lecture method, at the same time makes use of Piaget's clinical
method of questioning on conservation of quantity tasks. On the
one hand he tries to explain mathematical content to the students
and on the other hand he attempts to understand the students'
quantitative thinking. Mermelstein's psychology of learning
vacillates between the reduction of error illustrated by his
explanations of mathematical content and his exploration of error
with the clinical method of questioning on Piagetian quantitative
tasks.

In the second "text" (paragraph 2), Mermelstein
demonstrates the role of trial and error in his conservation
research to resolve problems in the conservation tasks. Thus, his
psychology of learning now represents trial and error as a method
for understanding.

In Mermelstein's third "text" (paragraph 3), it is the
presence of non-aggressive humor in the mathematics classroom
which encourages trial and error learning. At this stage of
Mermelstein's thinking, the importance of humor to relax students
is explicit while the importance of errors or mistakes as vehicles
for understanding is yet to be made explicit.

In the fourth "text" (paragraph 4), after a period of
reflection, Mermelstein integrates non-aggressive humor, mistakes,
and a sense of community. Humor takes the worry out of being
mistaken and communicates a sense of caring, thereby creating a
feeling of community. These reflections have been shared not only
with students but with other colleagues at professional meetings.
Mermelstein has progressed from where he used trial and error
learning in a mathematics classroom only with Piagetian
conservation experiments to trial and error learning in his own
conservation research, and to finally focusing on trial and error
(mistakes) in a mathematics classroom while using this classroom
as source for research problems. Clearly, Mermelstein's
psychology of learning views the making of mistakes as central for
learning of mathematics.

In the final "text" (paragraph 5), Mermelstein generates a
research problem in which his college students are collaborators.
These college students, in an attempt to understand the source of
their math anxiety as well as the anxiety of elementary school
children, tutor 5th grade students in an neighboring elementary
school, thereby enlarging the scope of the caring community.

In summary, Mermelstein's psychology of learning provides a
sense of community in which teacher and student have "listened" to
each other and learned each other's point of view. Not only are
one's own mistakes accepted and examined in this context but
others' as well. In this way an understanding of mathematical
ideas may be provided.

When a teacher's psychology of learning stresses the
students' "understanding" or discovery, it emphasizes exploration
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of error or mistakes. On the other hand when a teacher's
psychology of learning stresses explanation, it seeks to minimize
students' error and thereby precludes understanding. Yet
understanding provides the global context in which an explanation
makes sense.

Therefore, what a mathematics teacher-researcher uncovers
is that there is an interaction between his psychology of learning
and the mathematical context, that is, mathematics content is not
independent of the observer presenting that material. Teachers
can discover this important perception only by observing and
recording their own development of a psychology of learning. As
we encourage students to be the foremost interpreters of their own
experience, so should we allow teachers, in the role of
researchers, to be amongst the foremost voices in the complex
arena of educational psychology.
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NARRATIVE 2

After conducting Piagetian research on quantitative thinking
in children and teaching at the college level, I returned to
teaching mathematics to elementary and junior high school children
in two inner New York City schools. In addition to the
traditional mathematics, many of the children were provided with
Piagetian conservation experiments: conservation of quantity,
length, and number. My purpose here was to provide them with an
understanding of the foundations for mathematics reasoning. The
clinical method of questioning used for the Piagetian conservation
experiments provided an opportunity for a dialogue between
students and myself.

After two years of teaching (1973-75), a government grant for
continuing conservation research led me to further explorations
regarding conservation of liquid quantity and liquid volume. It
was while examining the children's responses to these experiments
that questions arose regarding the appropriateness of the existing
Piagetian conservation of quantity experiments. My research at
this time was punctuated by trial and error experimentation. I

would try one approach, discuss it with a colleague discard it,
and then try another approach. As a result of such trials and
errors slowly an understanding of the conservation problem
emerged. What was implicit for me was that mistakes were
necessary ingredients for understanding.

After four years of research (1975 - 1979), I returned to the
mathematics classroom in a private school (grades 6-12). Many of
these students had learning difficulties in mathematics or "hated"
math. I noticed that humor seemed to relax them and free them to
concentrate. Nonsense humor seemed to relieve their tension and
make it easier for them to learn. During my time at the school I
sensed the students' reluctance to put their work on the black
board. They needed to be correct or right. Unless there were
guarantees of correctness they refused to show their work, only
their answer.

In 1983, after four years at the private school, I taught
students who also had difficulties in mathematics at the College
of Aeronautics. At the college of Aeronautics I had more time to
reflect on my activities in the classroom. The writing about
humor in the classroom forced me to articulate a relationship
between humor, the making of mistakes, and learning. The conflict
generated by society's need to curb mistakes and the individual's
need to make mistakes I defined as math anxiety. Further, because
mistakes are "I" openers and because humor takes the worry out of
being mistaken, mistakes are "all right." This liberating notion
promotes a caring relationship among students themselves and
between teachers, thus enhancing learning.

Most recently this attempt to relieve math anxiety in college
students as well as in elementary school students has resulted in
a 5th grade class from a neighboring school "to be tutored" by the
college students in my math class. The eagerness with which both
groups interacted with each other holds forth considerable
promise.
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Age level: Undergraduate
Identifier #1: Randomness
Identifier #2: Statistical Thinking

NOVICES VIERS ON RANDOKNESS

Clifford Ronold, Jill Lohmeier, Alexander Pollatsek, Arnold Well

University of Massachusetts, Amherst

Rum Falk Abigail Lipson

Hebrew University of Jerusalem Harvard University

Novices and experts rated 18 phenomena as random or non-random
and gave justifications for their decisions. Experts rated
more of the situations as random than novices. Roughly 90% of
the novice justifications were based on reasoning via a) equal
likelihood, b) possibility, c) uncertainty, and d) causality.

Much of the prior research on randomness has focused on people's ability

to generate and identify strings of random characters (Falk, 1981;

Wagenaar, 1972). The major finding has been that people hold non-

normative expectations about the production of random strings. For

example, a random sequence of heads and tails typically contains longer

runs than people expect would occur by chance. These studies have

recently been criticized on a variety of accounts, including the argument

that since a random sequence cannot be rigorously defined, it makes

little sense to speak of people's inability to generate one (Ayton, Hunt,

fi Wright, 1989).

"Randomness," in fact, comprises a family of concepts. In this

study we explore in particular the use of the word as it is used in the

phrases, "random phenomenon," "randomizing device," and "random sample."

In this sense, randcyness is a collection of abstract models which can be

applied to various situations. Scmetimes we identify these models

closely with some physical system, like a coin toss, or blind drawings

from an urn filled with balls. In actuality, such physical systems are

imperfect instantiations of some "ideal" randam-generating system that is

only realized in the abstract. Thus, we don't talk about flipping a

coin, but flipping a "fair" coin.

Randomness, as an application of an ideal model to some phenomenon,

is best thought of an an orientation we take toward, rather than as a

quality that belongs to, the phenomenon. This meaning is inherent in the

notion of a model. When we apply a model to some situation, we do not

regard the model as isomorphic to the target situation as a whole, but
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only to certain aspects of the situation. This view of randomness

explains why most experts are not bothered by the idea of "psuedo-random"

numbers. These numbers are produced in perfectly determined ways, yet

remain unpredictable to those who do not know the seed and multiplier

used to produce a particular sequence. Such a system is not random,

except in regards to the orientation adopted by the observer.

While admitting that the notion of randomness is ambiguous and

complex, we maintain that variants of the concept are nevertheless at the

heart of probabilistic and statistical thinking, and that people's

beliefs about randomness must be figured into attempts to teach these

topics (Falk, 1991; Falk & Konold,in press; Pollatsek & Ronald, 1991).

In this article we present preliminary results of an exploratory study of

people's subjective criteria of randomness. We asked both novices and

experts to categorize a variety of situations as either random or not

random, and to give rationales for categorizing each situation. Our

primary objective was to identify, in the justifications of the novices,

defining features of random and non-random situations.

Some potentially critical features of randomness for the novice

have been suggested by Nisbett, Krantz, Jepson, and Kunda (1983), who

found that subjects are more likely to employ statistical reasoning to an

event when it a) involves a repeatable process with a finite set of

symmetric outcomes (e.g., rolling a die), b) consists of outcomes that

are produced via a mechanism that is associated with chance (e.g.,

blindly drawing from a set of well-mixed objects), and c) has been

identified within the culture as largely unpredictable and capricious

(e.g., the weather).

Method

TWenty subjects (twelve women and eight men) were recruited from

undergraduate psychology courses at the University of Massachusetts.

Subjects were given 18 cards on each of which was written a brief

description of some situation (see Table 1) and were asked to sort the

cards, one at a time, into "random" and "non-random" piles. After

placing a card in a pile, they were asked to give a brief justification

for their categorization. The sessions were videotaped. The same

sorting task was given fa five experts, four of whom teach graduate-level

statistics in psychology departments; the other is a statistician.

Y .1 /
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Results and Discussion

Randomness Judgments

A basic question is whether salient features of the items were predictive

of subject categorizations. Table 1 shows the percentage of novices and

experts that categorized each item as random. Experts categorized more

items as random than the novices (62% compared to 53%). The largest

differences occurred with situations involving real-world phenomena. For

example, 80% of the experts judged Item 12, which involved occurrences of

earthquakes, as random compared to 20% of the aovices.

Item Group

1. Whether or not a planted seed germinates.
2. The number showing up on a die that has already been

rolled but that you can't see.
3. The number of tomatoes you get in your serving of

tossed salad at a restaurant.
4. The winner(s) of next week's megabucks state lottery.
5. Selecting one of a variety of available flavors of

ice cream given that the stranger in the line in
front of you is doing the selecting.

6. Selecting one of a variety of available flavors of
ice cream given that you are doing the selecting.

7. The number of heads that occur in 100 tosses of a
fair coin.

8. Dividing a group of players into two basketball
teams such that one team is not obviously better than
the other.

9. The next gear a car with 5 speeds is shifted into
given that it is currently in 4th gear.

10. Whether or not it rained in Amherst on April 3, 1936.
11. Whether it will rain tomorrow in Amherst.
12. Whether a large magnitude earthquake occurs in Boston

before one occurs in Los Angeles.
13. Picking a white marble from a box that contains 10

black and 10 white marbles.
14. Picking a white marble from a box that contains 10

black and 20 white marbles.
15. Saying the first thing that comes to your mind.
16. Whether or not you get the flu in the next month.
17. Whether or not you get exposed to the flu in the next

month.
18. The outcome of the fifth flip of a fair coin that has

landed with heads up on the previous four flips.
Table 1. Percentage of novices and experts who rated each item as random.

Novice Expert
35 40

95 80

35 40
95 100

80 40

5 0

85 100

0 20

20 50
45 50
35 60

20 80

100 100

70 100
30 40
40 80

65 40

100 100

The items can be grouped into "real" (Items 1,3,5,6,8-12,15-17), and

"stochastic" situations. The stochastic items correspond roughly to

those that Nisbett et al. (1983) would rate high on their three features
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as summarized above.

type that were rated

subjects. As can be

Views on Randomness

Table 2 shows the mean percentage of items of each

as random, along with the standard deviations over

seen in Table 2, a higher percentage of stochastic

items than real it were classified as random by both experts and

novices. This is not surprising given that many of the real items were

chosen because they seemed characteristically non-random.

Item type

Group
Novice Expert

Mean% SD Mean% SD

Peal 37.3 22.4 43.3 33.0

Stochastic 90.8 14.8 93.3 9.1

Symmetric 97.5 11.2 95.0 11.2

Non symmetric 77.5 34.3 90.0 22.4

Table 2. Mean pr....Lcentage of randan ratings by experts
and novices as a function of item type.

The stc-hastic items were further broken down into those with

symmetric outcomes (2,4,13,18) and non-symmetric outcomes (7,14). This

feature seemed to make little difference in tt categorizations of the

experts. However, the novices were more likely to rate a stochastic

situation as random when its outcomes were symmetric (97.5%) than when

they were non-symmetric (77.5%). This finding is born out in the

analysis of subjects' justifications.

Analysis of Justifications
Subject justifications were transcribed from the videotapes, and various

response categories were developed to capture basic rationales that were

used repeatedly by novices. Table 3 shows the number (and percentage) of

justifications of the various types for both the novices and experts.

Below we describe these categories and provide examples from the

transcripts.

Justification Group

Novice Expert

Equally-likely 64 (17.2) 3 (3.3)

Possibility 63 (16.9) 1 (1.1)

Uncertainty 82 (22.0) 25 (27.2)

Causality 128 (34.4) 20 (21.7)

Model 11 (2.9) 17 (18.5)

Other 24 (6.5) 26 (28.3)

Table 3. Number (and percentage) of
of novice and expert justifications.
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Eouallv likely. According to the "equally-likely" justification, a

phenomenon is random only when each of its outcomes have the same

probability. This reasoning, which mirrors early historical development

(Zabell, 1988), is exemplified by responses of Subject 9 on Items 13 and

14. Brief item descriptors appear in parentheses.

13. (10/10) "Random. You have an equal chance of getting white or black."
14. (10/20) "Not random. You have a greater chance that you'll pick white."

This reasoning, used rarely by the experts, was used by novices to

justify 17% of their categorizations, and was not limited to stochastic

items. For example, Subject 6 categorized Item 1 (Seed) as random

because, "Each seed has an equal chance of growing or not growing."

Subject 13 categorized Item 9 (Gear) as not random because: "Usually you

are going to go to a 5th or a 3rd. First and second don't have the same

chance."

Multiple possibilities. According to the justification of "multiple

possibilities," a phenomenon is random when there is more than one

possible outcome and is not random when there is only one possible

outcome. In justifying a "random" categorization, subjects typically

noted that any of the multiple outcomes were possible. Responses by

Subject 6 are shown below as examples.

9. (Gear) "Not random. Has no choice it has to go into 5th gear."
11. (Rain tom.) "Random. It may or it may not."

Justifications based on possibili'y were rare in the case of the

experts (only one instance). This reasoning, as well as the equally-

likely rationale, may be related to an informal interpretation of

probability that has been described as the "outcome approach" in prior

research by Konold (1989a; 1989b).

Uncertainty. According to the "uncertainty" justification, a

phenomenon is random when there is no prior knowledge about the outcome,

and thus no ability to predict. When prediction is possible, the

phenomenon is non-random. This justification, exempliefied below by

responses of Subject 20, was used in 221 of the novice and 27.2% of the

expert categorizations.
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10. (Rain '36) "Non random, because there is a way to predict the

weather."
18. (5th flip) "Random. There is just no way to determine what is going

to happen."

Causality. According to this justification, situations are random

when no causal factors can be identified, and thus there is no potential

to control the result. If causal factors are present, and/or control is

possible, the situation is considered non random. For the novices, this

was the most commonly-used justification (34.4%), and was also used

frequently by the experts (21.7%). The examples below are statements

made by Subject 18:

1. (Seed) "Not random, because it depends on soil and all kinds of

other things."
7. (# Heads) "Random, because I have no control over what the coin is

going to do."

The four categories of justification described above were developed

on the basis of analyses of the novice justifications, and for this

reason account for a higher total percentage of the novice than the

expert justifications (90.6% vs 53.3%). Based on a separate analysis of

the el:pert justification, we added a fifth rationale, as described below.

bliAg, By this reasoning, the randomness of a situation is

establisl,ed by comparing it to some standard model of randomness. In the

case of Expert 3, situations we e frequently compared to a "box model."

4. (Lottery) "RAndor. It is determined by a random device, or a

pre,cy good approximation of one."

5. (Stranger ice) "Non random. He does it by some kind of rule, unknown

to yoe, but you don't have any serious box model."

As might be expected, the experts used this rationale more

frequently than the novices (18.5% compared to 2.9%). However, even with

the addition of this response category, roughly 28% of the expert

justifications did not fit into any of the five categories. Several of

the experts expressed their dissatisfaction with having to categorize

items as either randok or not random. They tended to view randomness as

an entity that can be present in degrees, rather than as a categorical

attribute, and described several of the situations as consisting of both

random and non-random components.
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Indeed, an important idea in statistics is the notion that scores or

measures can be decomposed into two sources of variation: systematic

(explained), and random (unexplained). One of our objectives in future

analyses of these data is to identify aspects of novice thinking that

present barriers to the development of this "component" view of

phenomenon. Subject reliance on "possibility" and "equal-likelihood" are

two possible barriers that we are currently exploring. Seeing randomness

in terms of possibility might lead students to overgeneralize the

concept, viewing any situation as random as long as there is more than

one possible outcome. on the other hand, reliance on equal-likelihood

restricts the notion of randomness. Introducing students to a wider

range of probabilistic situations, including ones in which outocmes are

not equally likely, is an approach we are currently testing which may

help students develop probabilistic intuitions that can be successfully

transferred to statistical thinking.
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Black & Math
Math Failure

TOWARD A FRAMEWORK FOR ANALYZING THE UNDERACHIEVEMENT OF

AFRICAN AMERICAN STUDENTS IN MATHEMATICS

SUNDAY A. AJOSE

EAST CAROLINA UNIVERSITY

Disparate results of research on the issue of Blacks and mathematics are
synthesized. A comprehensive framework for analyzing the
underachievement of African American students in mathematics is
presented.

Few, if any, would deny that current mathematics education programs do not

work for the African American (black) students. One consequence of this failure is

the long-standing and continuing under participation, underachievement, and

underrepresentation of Blacks in the mathematical sciences (Anick et al., 1981;

Matthews, 1984). Many attempts have been made to explain why black students

have not had much success with mathematics, but these efforts often suffer from the

use of false assumptions, faulty logic, or the lack of a comprehensive framework for

examining the issue. The purpose of this paper is to propose a comprehensive

framework analyzing the performance of African American students in

mathematics.

Research And Speculation Concerning Blacks and Mathematics:
One "explanation" for the relatively poor performance of Blacks in

mathematics stems from an old opinion, still widely held, that Blacks are an inferior

race, with low intellect; scarcely capable of abstract reasoning or learning. This

belief is further reinforced by data from tests of "intelligence" such as ID tests.

Because Blacks usually score lower than Whites on these tests, some researchers

conclude that Blacks are less intelligent than Whites, and that the lower scores for

Blacks must be due to inferior genes (Jensen, 1969). Set in this belief, some

teachers and school officials lust attribute the difficulties that black students

encounter in any academic task or subject, like mathematics, to low intellectual

endowment, genetic handicaps (Jensen, 1969), or innate learning difficulties

(Coleman et al., 1966).
A major weakness of tnis explanation is that it ignores or belittles -ijnificant

t,nvironmental and school-related factors which affect learning and intellectual

performance. Scarr and Weinberg, (1976) demonstrate the paramount importance
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of environmental factors in the development and performance of African American

children. Flynn's (1987) analysis of the data compiled from a major study of 10, also

reveals the influence of "potent", "unknown environmental factors" on 10 test

scores. According to Flynn, "the hypothesis that best fits the results is that DO tests

do not measure intelligence but rather a correlate with a weak link to intelligence"
(p. 171)

Thus, granted that 10 may indeed influence mathematical performance, to

understand why many black students do poorly in this subject, one would have to

look far beyond speculations based on race.

Apart from race, other factors have been blamed for the underachievement

of Blacks in mathematics. Matthews (1984) referred to "three clusters of variables"

pertaining to parents, students and schools, that are believed to influence black

participation and achievement in mathematics, Factors within the parent cluster

include parents' levels of education, attitudes towards mathematics, beliefs about

their children's ability in mathematics (McBay, 1990), child-rearing practices (Bell,

1975), socioeconomic status (Bond, 1981), home language, and culture (Orr,

1987). It is still unclear how much each of the factors contributes to

underachievement because there are minority groups who face similar barriers,

whose children nonetheless do very well in school (Ogbu, 1990).

Within the student cluster, the major factors are attitudes towards

mathematics, self-concept with respect to mathematics, and perception of the

usefulness of mathematics. There is evidence of positive correlation between self

esteem and mathematical achievement ( Reyes, 1984). Self-esteem is also a

strong predictor of whether a black student will take advances math courses in high

school (Griffin, 1990). Some studies show that, for the past twenty years or so,

black adolescents have been registering "moderate to high levels of self esteem"

(Graham,1988). Yet, neither achievement nor even course taking patterns in

mathematics match the levels of self esteem found among African American

students! More research is needed to determine whether the observed disparity

between performance and the level of self esteem is a sign of "self-delusion", or,
perhaps, an index of unrealized potential in mathematics.

In the third cluster of factors are the mathematics curriculum, teacher

attitudes toward black students, teacher expectations of black students, and

classroom processes. Each of these is very important because each by itself can
significantly influence learning outcome. Take teachers' expectations for instance.

It is well known that many teachers have low expectations of black students.
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(Oakes, 1985). Because of this, black students are often tracked into non academic
classes, where they are taught less material, at a slower pace, in ways that are not

conducive to the development of the intellect (Braddock II and Mc Penland, 1990).

Cs :lain classroom processes can also limit the attainment of black students

in mathematics. Some studies suggest that black students, like their white

counterparts, start school with the cognitive skills they need to succeed in
mathematics (Ginsburg and Russell, 1981: Enstwisle and Alexander, 1988). By the

end of the first grade, however, black and Hispanic students are already falling

behind white and Asian students. Although the reasc;ns for this phenomenon are

not yet known, findings from the study by Entwisie and Alexander strongly indicate

that teachers' judgement of Blacks' "personal maturity' and "conduct" may be

critical factors in the students' mathematical performance.
There have been some notable attempts to integrate the disparate findings

concerning the mathematical performance of Blacks. In two related papers, Reyes

and Stanic (1985, 1988 ) present a model to explain differences in mathematics

achievement based on the race, sex, and the socioeconomic status (SES) of
students. They attribute the differences to (1, scncol factors - teacher attitudes,

mathematical curricula, and classroom processes (2) student attitudes and

achievement-related behaviors and (3).societal influences that send different

me sages about the aptitu.: es and expected levels of achievement for students

based on race, sex and SES
Clark (1988) points out how important student behavior and attitude are to

school success. Citing the results of his research on home and community

influences on school achievement, Clark asserts that a disadvantaged student will

succu,d to the extent that he or she spends about 35 hours a week engaged in

"constructive learning activity."
Cummins (1986), critically explores why minority students fail in school. and

why various attempts made in the United States to reverse the trend have been

unsuccessful. He concludes that minority students fail because they are disables

by school/minority student and school minority community relations that are

exclusionary rather than collaborative, a transmission-oriented pedagogy that

confines students to a passive role, and assessment processes that do not serve

the interests of minorities
Gentile and Monaco (1088) use a psycholog.cal construct "learned

helplessness" - to shed some light on the nature of mathematical
underachievement. Learned helplessness sometimes develops in people who

4
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have been exposed to "uncontrollable failure experiences". In their study (Monaco
and Gentile, 1987), the two scholars show how frequent exposure to uncontrollable

failure in mathematics creates conditions that tend to produce more failures.

Powell (1990) also proposes a model, based on learned helplessness

theory, to explain the low achievement of African Americans in mathematics and

science. Many young African Americans, she asserts, learn early in life that they

just don't do well in mathematics and science. As a result, many blame themselves

when they fail in math, and attribute their lack of success to low intelligence,
thereby paving the way for learned helplessness syndrome.

From cross-cultural research comes the assertion that even though IQ, SES,

language and culture may influence school achievement, none of these factors can

explain the poor performance of African American students in mathematics (Ogbu,

1978, 1989, 1990). Ogbu states that Blacks, like involuntary, maltreated minorities

in other societies, develop "ambivalent or oppositional social identity vis-a-vis the

social identity" of the dominant group. This can make adjustment to the school

culture and success rather difficult for black students.

All these factors are taken into account in the framework presented below.

A Framework for Analyzing Black Underachievement in Mathematics

The structural elements of the framework are:

The Society at Large (SL) The African American Community (AC)

The School System (SS) The African American Student (AS)

The relationships among these elements are represented by the

multidimensional variables A. B, C, X, Y, Z, as follows:

A between SL and SS
B between SL and AC

C between SL and AS

X between AC and SS

Y between AC and AS

Z between AS and SS

Each of these relationships may be strong or weak, and may have a positive or

negative effect: one may strengthen or weaken another. When the cumulative effect

of these relations is positive, it is enabling to the African American student and, as a

consequence, produces good educational outcome in mathematics (E0).

Otherwise the student is disabled, resulting in poor educational performance.

Variable A includes (1) societal "theories" about the cognitive capability,

"educability" and "inferiority" of black students: and (2) differential school funding
based upon race and/or SES.
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B includes: (1) racism in the social, economic and political arenas; (2) societal view

of Blacks in world history, and especially African Americans in U.S. history; (3)

societal view of black culture, and (4) status of Blacks.

Figure 1
A Framework for Analyzing the Underachievement of African American

Students in*Mathematics

SL

IA

AC 1

I

AS

X

Z.
S S

C includes: (1) media images and messages concerning African Americans in

general, and black males in particular; (2) racism

X includes: (1) schoottlack community relations
Y includes: (1) "entry behavior': (2) "effective entry characteristics" (Bloom, 1971, p

14) of black students.
Z includes: (1) curriculum (2) quality of instruction; (3) teacher expectations; (4)

teacher/black student relations; and (5) opportunity to learn.

Discussion
Variables A,B, and C exert a powerful influence on black students' learning

and achievement even though Blacks have very little control over them. They pose.
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for the black student, a formidable barrier to learning and educational attainment by

attacking his self concept and confidence. Thus any attempt to enhance black

achievement in mathematics has to find a way to neutralize the effects of these
variables.

Within this framework, Cummins' empowerment model involves only the
variables A, B, X and Z. Variables A, C, and Z incorporate the model developed by

Stanic and Reyes, while C and Z addresS Powell's learned helplessness".

The model also suggests possible paths to successful mathematics

education of African American students. Cummins (1986) implies that black

students will succeed in academic work if X and Z are positive. This implication is

supported by the work of Hilliard (1990), who describes instances of successful

learning that occurs when individual teachers ignore the negative messages of A,
B, and C, change the way they relate to black students and communities, and

institute good curriculum and instruction. In fact , when school effects (Z) are

strongly positive, black students succeed in spite of the negative effects of all other

variables. Ogbu's research, cited earlier, also shows that black students can
achieve academic success, if they , like many immigrant minorities, rise above the
negative effects of A,B, and C, and develop behaviors and characteristics, (+Y), that
facilitate adjustment to school culture and learning.

It is clear from the foregoing discussion that it is erroneous, or at least far too

premature, to ascribe the current underachievement of black students in

mathematics to anything but the intolerably difficult circumstances under which

they have to learn. Black:, are, perhaps, the only people whose cognitive abilities

are routinely questioned and ridiculed even in the popular press. The assaults on

their self esteem are relentless; so much so that even representatives of foreign

governments get in on the act, and denigrate black people with impunity, without a

formal protest! It is remarkable that African Americans achieve as much as they do

under these hellish circumstances. Perhaps, this is why Anderson (1990)

confidently asserts that "if minority (black) students were encouraged to attain

scholarship and achievement in mathematics as widely as they are encouraged to
attain stellar achievement in sports, their performance in mathematics would shock
this country" (p. 265)
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STIMULATING ACTION RESEARCH ON TEACHING
MATHEMATICS

THROUGH THE USE OF EXPLICIT FRAMEWORKS:
TEN YEARS OF OPEN UNIVERSITY EXPERIENCE

Presenters: David Pimm and John Mason

Since 1982, the Centre for Mathematics education has supported the
professional development of teachers of mathematics at all age levels from
Kindergarten to Tertiary through the provision of undergraduate course
materials, videotapes of classrooms and mathematical and didactic packages
designed to stimulate teachers' thinking and awareness.

Producing materials for study at a distance, or for use by other tutors, is
relatively easy. What distinguishes our materials is the underlying approach:
the provision of initial frameworks to stimulate teachers to become nore
aware of opportunities in their classrooms for altering their behaviour.

The format will be a participatory-workshop with time for discussion, and will
i lude as much of the following as time permits. Reference will be made to
ways in which frameworks have been used by teachers taking our courses in
order to research their own practice, and to develop their teaching.

THE USE OF FRAMEWORKS

Language frameworks focus on the particular affinity of language with
mathematics in both expressing thoughts, meanings and images in order to
communicate with others, and in the linguistic nature of much mathematics
in creating the reality of which the language then speaks.

A framework such as See, Say, Record focuses on an implied temporal
ordering of images and perceptions, spoken utterances, and written records,
and carries with it messages about relative priority and sequence in
mathematics teaching. Conversely, focus on the nature of language patterns
illustrates the importance of gaining access to the mathematics register as a
critical component of learning mathematics, with teachers attending to the
particular discourse patterns that pupils have to acquire in order to
participate in particular mathematical areas.

This dual, but shifting, emphasis on both symbol and referent (related to the
persepctives labelled as 'metonymic' and 'metaphoric' in the language of
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Roman Jacobson) marks an important interplay for a teacher in working in
any of the main mathematical areas of number, algebra or geometry.

Mathematical Frameworks
Specialising, Generalising and Conjecturing are fundamental processes in
mathematical thinking, which have been isolated and promoted by many
authors. They are introduced via short mathematical questions, and related to
past experience, particularly of getting stuck, in order to constitute a
framework which activates the corresponding activity for teachers and pupils.

Mental imagery acts as a mediator between written/spoken mathematics and
mathematical ideas. It is illustrated through mathematical activity, and
invoked in our methodology for personal action research into teaching.

Psychological Frameworks
The psychological divisions of psyche into cognitive, affective and enactive
dimensions reflects two thousand years of informal and formal psychological
research. We have found it useful to recast these for use in a fresh framework
for use by teachers to study their teaching, to provide a structure for preparing
oneself to teach a mathematical topic. Attention is drawn:

to the language patterns which pupils will be expected to have
integrated into their thinking, and connections to language with
which they are already familiar, and to techniques which they need
to master (and ones which they tend to construct for themselves),
complete with inner incantations which drive those techniques;

to the original questions which people wanted to answer and which
gave rise to the topic as we now know it, and to a variety of contexts in
which that topic appears;

to images and fuzzy 'senses of one would like pupils to associate with
the topic, as well as confusions and obstacles which pupils
encounter.

Through mathematical activity, the use of the distinction between giving an
account of something and accounting for it will be demonstrated and reference
made to applications bath in mathematics it elf and to the conduct of personal
action research into teaching.
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ANALYZING AND DESCRIBING STUDENTS' THINKING IN
GEOMETRY: CONTINUITY IN THE VAN-HIELE LEVELS

Michael Shaughnessy and William Burger--Oregon State University

Angel Gutierrez and Adele Jaime -- Universidad de Valencia

David FuysBrooklyn College

This Symposium is dedicated to our colleague Bill Burger, researcher,

mentor, and friend. We all miss him very much.

While the results of first efforts In van Hie le research generally confirm the vaicity of the
model for describing students reasoning processes In geometry, several unanswered
questions have emerged. Is there a way to describe a students' progress through thevan
Hie le levels as a continuum, so that the model accounts for students whoare acquiring more
than one level at a given point in their geometric development? Can some combination of
clinical and traditional methodologies be used to devise a reiabie, yet flexible and vaid, test for
measuring students' van Hie le levels? This symposium will be a research-workshop on some
new approaches to assessing van Mole levels. Participants will actialty become co-researchers
with the presenters, investigating these two questions during the symposium.

Overview

The van Hie le model has provided a framework for Investigating children's and
adolescent's thinking in geomtry (the levels), and also has suggested a pedagogical
model for teaching geometric concepts (the phases). Within the past decade,
research based on the model Indicates that the description of thought processes in
geometry is a fertile area for the interaction of psychologists and mathematics

educators alike (Usiskin, 1982; Mayberry 1983; Shaughnessy & Burger 1985; Senk
1985, 1989; Burger & Shaughnessy 1986; Crowley 1987, 1990; Fuys et. al. 1988;
Wilson, 1990; Gutierrez et. al., in press). Thus, the van Hie le model provides a
particularly useful framework to investigate the crossroads between theory and
practice in teaching and learning geometry. There is concurrent interestamong both
teachers and researchers on the potential usefulness of the model for providing both
diagnostic information about students' thinking In geometry, and also prescriptive
information about how to redesign the geometry curriculum to facilitate students'
geometric development.

The first early work on researching the van Hie le levels focused on attempting
to identify the existence of these reasoning levels In students, to validate the model, to
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describe level indicators of reasoning, and to use the five pedagogical phases in

teaching experiments to help move students through the levels of reasoning. In all of

this work, tasks were developed to allow students to reason in a geometric
environments. Some of these tasks were purely paper and pencil tasks, some were

interview tasks of a more open ended nature. The results of these first efforts generally

confirmed the validity of the model for describing students reasoning processes in

geometry (Usiskin, 1982; Burger & Shaughnessy, 1986; Fuys et. al. 1988). However,
several unanswered questions emerged from this first series of research efforts.

Among them are two that we wish to address in this symposium.
First, the van Hie le levels do not appear to be entirely discrete. Several of the

researchers mentioned above found that students often flip-flopped between levels

from one task to another, or even within the same task. Also, many students seem to

have a "preferred level of reasoning" on certain tasks. That is, they may prefer to

respond in an analytical way when they are perfectly capable of verifying some
argument by deduction (second Level preferred over higher levels), or they may

respond purely visually when they could just as well have talked about properties of
shapes or relationships among those properties had they been required to do so (first

level preferred over higher levels). Thus, the process of determining a students' van

Hie le level is much more complicated than just assigning a single level on a few tasks.

There are also task variables and content knowledge variables, so that students who

reason at a level on one task do not necessarily exhibit that same level of reasoning

on a subsequent task. This raises the question: Is there a way to describe a students'

progress through the van Hie le levels as a continuum, so that the model accounts for

students who are acquiring more than one level at a given point in their geometric

development? This view presupposes that their are passages between the levels, and

that students can reason partially at one level, and partially at another.

A second question that has been researched more recently is the problem of

devising a suitable test to assess van Hie le levels, the development of valid, reliable

tasks. Both pencil and paper tests and clinical interview tasks have demonstrated

certain strengths and weaknesses in van Hie le research. The former may sacrifice

detail and/or reliability for convenience and speed. The latter while lending itself well

lo detailed probing can prove cumbersome and time consuming to administer to large

numbers of students. Perhaps some combination of both methodologies is needed to

devise a reliable, yet flexible and valid, test for the van Hie le levels.
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In this symposium we will focus on describing the continuous development of

students' passage through the van Hie le levels. Gutierrez and Jaime (in press) have

developed a method of analyzing students' written responses to geometric tasks that

includes a first attempt to quantify the passage between levels. After an introductory

phase which recaps the attempts of several projects (both in the USA and in Spain) to

identify students' van Hie le levels, the participants in this symposium will be put to

work in a research-workshop. Participants will be given the opportunity to analyze and

discuss students' responses on tasks, both pencil and paper tasks and audio taped
tasks, while teaming about and using the analysis approach of Gutierrez and Jaime.

After group discussion, the presenters will share their own interpretations of the

task results with the participants. The symposium will conclude with suggestions for

merging the best parts of both methodolocial approachesinterview and paper and

pencilfor researching students' continuous passage through the levels. This

approach has recently proved quite valuable in obtaining a more accurate picture of a
students' van Hie le levels.

Conduct of the Symposium

The symposium will evolve in three phases.

phase 1

Mike Shaughnessy and Bill Burger

Shaughnessy and Burger have planned the introdu( do and overview for the

symposium. Prototype instances where students are between van Hie le levels on

certain tasks will be presented. Sample student responses to particular tasks will be

used to introduce the dileiima one faces when a student appears to be between

levels. Responses to tasks presented in taped interviews (developed in the USA) and

pencil and paper tasks (developed in Spain) will be considered. The interview tasks

are similar to the pencil and paper tasks, but not all are identical. Some general

comparisons of the two different methodologies for determining van Hie le levels will
be mentioned. (Time: about 30 minutes)
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Angel Gutierrez and Adel?. Jaime

Gutierrez and Jaime will provide a brief background on their research, and

des'ibe their scheme of levels and types" for quantifying the passage of students
between van Hie le levels. In this scheme, a students' response to a particular task is
assigned both a van Hie le level and a "type" of answer. The types reflect both the

strength and clarity of the predominant van Mete level on that task, and also the

mathematical completeness and accuracy of the response. The types are quantified to
indicate how complete a student's aquisition of a level is. This scheme will also makes
aliowances for task variables and the potential range of thinking levels that may be
used to answer a particular question. Each task can be pre assigned a potential
"range of levels" of response. Thus, a question could be answered at, say, van Hie le
levels 2,3, or 4 (using 1-5 numbering), and if a student answers it at level 3,a complete
aquisition of level 2 is assumed, a partial aquistion of level 3 (depending on the "type"
of answer) is assumed, and no aquisition of level 4 is inferred on that task. Using the
"types"it becomes possible to quantify a students responses and to talk about a
student's "degree of aquisition" of each of the four (1-4) van Hie le levels.

Gutierrez and Jaime will give specific examples of students' responses that they
have coded by levels and types, and the corresponding degree of acquisition of the
levels, in order to provide the necessary Information for the second phase of the

symposium in which the participants themselves will "do" some van Hie le research
using this scheme. (lime: about 30 minutes)

phase 2

Participants will be given taped responses of a student's work on a geometric
task(s). The participants will be asked to evaluate the "type and level" of thestudent on
each task. The participants will work in pairs on this activity, first noting their own
responses, and then interacting with their partner.
(Time: about 30 minutes)

In the second part of phase 2, the participants will share the results of their pair-

wise analysis with the large group. The symposium organizers will also share their
own analyses of the same task(s). (Time: about 30 minutes)

phase a
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David Fuys

David Fuys will play the role of reactor. His remarks will be partly devoted to
methodological considerations, with special attention to a "marriage* of certain aspects
of the interview and paper & pencil methodologies. When post hoc structured
interviews are administered to students after they have answered paper and pencil
van Hiele tasks, the in depth probing allowed in the interview format may help to clarify
a students' true acquisition of the van Hie le levels. Fuys will discuss examples of
students where this was indeed the case. He will also reflect on the process of
attempting to quantify the passage between van Hie le levels, and in particular, the
process in which the participants have engaged during phase 2.
(Time: about 30 minutes)

The final part of the symposium will be devoted to open discussion about the
process of researching van Hie le levels, focusing on the method of quantifying a
student's passage between and through the continuum of levels. (Time: abut 30
minutes)
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Grade: N/A
ID #1: Teacher Education

School Division Expectations: How are they communicated?
What kind of responses do they elicit?

Bob Underhill, Virginia Tech, Organizer and Presenter
Pat Agard, Virginia Tech, Presenter
Kari Cox Beaty, Virginia Tech, Presenter
Doug Jones, University of Kentucky, Presenter
Hilda Borko, University of Colorado, Moderator

Untangling the complexities of learning to teach necessitates a
deeper understanding of communications networks among central
administrators, principals and teachers. In this symposium, wo
will examine the styles of two central administrators and follow
the chair of reactions and impressions of subordinates as goals
are translated and implemented at subsequent levels in two
elementary schools.

As social institutions, schools create and sustain patterns of

professional culture and social organization. Leaders at each level attempt

to influence behavior at lower levels and persons on lower levels interpret

those influences through their unique personal and professional filters.

Individuals will behave in ways which reflect their commitments to shared

goals by seeking to implement the letter or the spirit or both. They may also

do what is minimally required so as to look okay (Lacy, 1977; Desforges &

Cockburn, 1987). Eisenhart, Behm, & Romagnano (1991) have explored some of

these issues within two frameworks for training professional teachers, and

Goodman (1985) and Britzman (1986) have explored some of these issues in the

process of becoming teachers.

In this symposium, several members of :Ale NSF Learning-to-Teach

Mathematics research team will examine two central-level administrative styles

and examine how the perceptions and actions of administrators influence

ultimate classroom behaviors and perceptions of teachers in two elementary

schools. The following format will be used:

10 minutes - Doug Jones - Overview of NSF project/broad context

20 minutes - Bob Underhill - Division level context

10 minutes - Pat Agard - Elementary School Context 1
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10 minutes - Kari Beaty - Elementary School Context 2

10 minutes - Hilda Borko - Comments

Remainder - Audience Discussion

Project Context - Doug Jones

The Learning to Teach Mathematics project (NSF: MDR 8653476) was

designed to investigate the experiences of a small group of teachers as they

were learning how to teach. The researchers studied four beginning middle

school mathematics teachers for two years, their senior year in a K-8

certification program (Year 1) and their first year as full-time teachers

(Year 2). During Year 1, each teacher had four 7-week long field placements,

3 of which were in the middle grades; all placements were in the same school

system. In an effort to understand the teachers' orientations and possible

influences on their development as middle school mathematics teachers, a wide

range of data concerning background, university experiences, and classroom

experiences were gathered during both years of the study (see Jones et al.,

1989 and Bork° et al., 1990 for details concerning data collection and

analyses). This symposium focuses on data collected during Year 1 and

examines possible influences on beginning teachers of administrative styles

and the ways in which goals are expressed and implemented at the central

administrative level, the building level, and the classroom level. Interviews

concerning the sociocultural climate of the schools and social organization of

mathematics teaching that were held with the beginning teachers, their

university supervisors, their cooperating teachers, mathematics department

chairs, building administrators, and central administrators were supplemented

with artifacts from the teacher education program, the schools, and the school

system.

School Division Context - Bob Underhill

In the elementary schools, there were two line-and-staff tracks as

follows:

Mathematics Non-Mathematics

Assoc. Supt. Dir. of Personnel and Staff Dev.
Math Supervisor Dir, of Elem. Admin.
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Principal Principal
Teachers Teachers

The leadership style of the Associate Superintendent could best be

described as "persuade, coax and support." And the leadership style of the

Director of Personnel and Staff Development could best be described through an

"accountability" model.

The Associate Superintendent had a mathematics background. He really

wanted to improve mathematics teaching and learning. He worked closely with

the mathematics supervisor to provide considerable in-service and resources;

their shared goal was to motivate teachers to change.

The Director of Personnel and Staff Development believed that the way to

get change was to mandate it. If you want a particular approach to teaching

(a variation of the effective teaching model), train the teachers and require

evidence of its use in administrative evaluations. The follow-through was

provided through the office of the Director of Elementary Administration.

School No. 1 - Pat Agard

The principal viewed himself as an instructional leader. He sought to

understand division-level administrative and teacher perspectives and to

provide resources and support for implementation. He valued the use of

manipulatives to teach mathematics, so he purchased many manipulatives and

encouraged teachers to requisition and use them. He accepted the effective-

teaching mandate, believed in the value of the model, and included evaluation

of its components in his teacher evaluations.

The classroom teacher at the 6th grade level used virtually no

manipulatives. She believed the effective teaching model to have considerable

merit and used it in h,- daily instruction.

School No. 2 - Kari Beaty

The principal viewed himself primarily as a manager. He thought

manipulatives were mainly for use with primary grade children, so the message

from 'downtown" was lost for the intermediate grades. On the other hand, he

was well aware of the effective-teaching mandate and carried through with its
required use in his administrative teaching evaluations.
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The classroom teacher used virtually no manipulatives. He valued the

effective teaching model and used it in most of his lessons.

Reaction - Hilda Borko

The trends within the school division on the selected set of issues

presented will be summarized and attention will be drawn to the probable

impact of leadership styles, how expectations are communicated, and how the

perceptions of principals and teachers effect implementation at the school and

classroom levels. A discussion will ensue concerning the power and importance

of these issues in teacher education research and, as time permits, in teacher

education program design.
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THE NATURE AND PURPOSE OF RESEARCH IN MATHEMATICS
EDUCATION: IDEAS PROMPTED BY EISENHART'S PLENARY ADDRESS

Frank K. Lester, Jr.'

Indiana University - Bloomington

It is an honor for me to have been afforded the opportunity to react to Professor

Eisenhart's ideas concerning the value of conceptual frameworks for educational research. She

has established herself as a leading advocate for the research tradition of ethnography and its

application to education in general and, in particular, to mathematics education (Eisenhart,

1988). Indeed, in her earlier writings as well as in this paper, she has added some much

needed clarity to the ongoing discussion of the underlying assumptions, goals, and methods of

ethnographic research. But in my opinion her contribution extends far beyond this. She is

(implicitly at least) forcing us as mathematics educators to come to grips with two fundamental

questions: What should mathematics education research be about? and How should we go
about the business of doing research in mathematics education? As the incoming editor of the

LC) i u r i h I will be faced with questions such as these

when: choosing reviewers, assessing their comments, responding to authors and, ultimately,

deciding to accept or reject manuscripts. Thus, it may not be surprising to learn that these two

questions were uppermost in my mind when I began to think about the sort of reaction paper I

would prepare.

Knowing that I hold her views in high regard, it should come as no surprise that this paper

does not offer a counterpoint to the positions and arguments she puts forward. Rather, I intend

to do two things: (I) discuss several issues raised by Eisenhart about which I agree almost

completely, and (2) pose two questions generated by her ideas.

POINTS OF AGREEMENT

Among the several issues Eisenhart discusses, four are central to my interest in the nature

and purpose cr mathematics education research. These issues relate to: (1) the nature of

frameworks for research, (2) the constraining nature of theoretical frameworks, (3) the nature

of conceptual frameworks, and (4) the importance of interdisciplinary research. Each issue is

discussed in turn in the following paragraphs.

The Basic Nature of Frameworks

Eisenhart insists that some kind of framework (i.e., "skeletal structure") is essential to the

research process. I agree wholeheartedly and wish to suggest that the extremely slow pace at

I am indebted to my colleagues, Peter Kloosterman and Diana Lambdin Kroll, for their
helpful comments on a draft of this paper.
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which we mathematics educators have been able to move our field forward may be due in large

pan to the lack of clearly described frameworks, conceptual or otherwise, in much of our

research. During my nineteen years of university teaching I have had the pleasure of working

with many very good doctoral students. It is no exaggeration to say that as they begin their

doctoral dissertations almost all of them have very little, if any, understanding of what it means

to have a conceptual or theoretical framework for their research. Of course they are not at fault

for this condition since they are rarely taught anything about frameworks in their classes and

seminars, and they only very infrequently see evidence of explicit frameworks in the published

research papers they are asked to read. I attribute this unfortunate state of affairs in large part

to the fact that there is no well-defined research tradition within mathematics education to guide

them in conceptualizing their studies. Further, I suggest that over the years the best doctoral

research has been conducted at those universities in which the mathematics education programs

have been willing to ground their research in traditions that have been clearly established in

other disciplines. (By and large, it is at these same institutions that the best faculty research is

done.) I will add a bit more about the importance of research traditions in the discussion of the

next point.

The Constraining Nature

In her argument against the appropriateness and usefulness of theoretical frameworks,

Eisenhart points out that such frameworks often are "used by academics to set a standard for

scholarly discourse that is not functional outside the academic discipline" (p. 6). I agree with

her to some extent, but the issue at hand may really be a matter of research tradition, not one of

the appropriateness or usefulness of theoretical frameworks. For quite a long time (at least

since the days of Thorndike), mathematics educators have looked to the research traditions

established in experimental psychology (and more recently to its offspring, cognitive

psychology) for guidance in determining what the important research questions are and how

they should be studied. In my view, the frameworks used by psychologists have often not

been functional for studying questions of fundamental interest to mathematics educators (cf.

Kilpatrick, 1985). But this is not a shortcoming of frameworks! Rather, it is a problem of

perspective. As I have noted elsewhere, "a researcher who has taught mathematics and studied

it seriously will necessarily have a different perspective about the nature of mathematics

than someone who has neither taught nor studied mathematics in any depth. It is natural that

non-mathematicians would introduce views about the nature of mathematics that are quite

different from those held by mathematicians or mathematics teachers" (Lester, 1988, p. 116).

Thus, when a theoretical framework becomes non-functional, the problem may actually stem

from the researcher having adopted a research tradition that has a very different way of looking

at problems related to mathematics learning and teaching than is customary.

Id'.JJ

-194-



Reactions to Eisenhart's Address

That mathematics educators borrow frameworks from elsewhere is both natural and

inevitable because mathematics education itself is not a discipline. Rather it is a field of inquiry

that borrows freely from well established disciplines such as history, philosophy, psychology,

anthropology, and sociology, among others. We mathematics educators, then, must take care

to give ample attention to the perspectives and assumptions underlying a particular discipline

before we decide to use it to investigate questions of interest to us.

Justification vs. Exolanatioa

Eisenhart describes a conceptual framework as "a skeletal structure of justification, rather

than a skeletal structure of explanation" (p. 10). Furthermore, it "is an argument including

different points of view and culminating in a series of reasons for adopting some points.. .
and not others" (p. 10), I think this distinction can be an extremely useful one for mathematics

educators inasmuch as it suggests that justification should (for now at least) be of paramount

importance to educational research. Heretofore this has not been the case. It may be the case

that researchers in our field have been too concerned with coming up with good "explanations"

and not concerned enough with Justifying why they are doing what they arc doing. In my
experience reviewing manuscripts for publication and advising doctoral students about their

dissertations, I have consistently found that the most glaring weaknesses in the research are

often lack of attention to clarifying and justifying why a particular question is proposed to be

studied in a particular way and why certain factors (e.g., concepts, behaviors, attitudes,

societal forces) arc more important than others. Eisenhart's discussion of the nature of

conceptual frameworks and the advantage of them over theoretical or practical frameworks (see

pages 10-14) is quite lucid and almost compelling (my reservations are raised in the last section

of this paper).

But there is more to what Eisenhart is suggesting than simply recommending that

researchers devote more attention to providing good arguments to support their research
studies. In fact, she is arguing that the very purpose of our research efforts needs to be
reconsidered. I have a bit more to say about this later in this paper.

The Importance of Interdisciplinary Research

In her plenary paper and elsewhere (Eisenhart, 1988), Eisenhart argues convincingly for
collaborative, interdisciplinary research efforts in mathematics education. If her
recommendation is taken seriously, it could have far-reaching implications for doctoral

programs in mathematics education. As I see it, since mathematics education has borrowed,

borrows now, and will continue to borrow liberally from several disciplines, it seems essential

that the training graduate students receive must include direct and substantial attention to the
research traditions of several disciplines (anthropology, psychology, and sociology are the

most prominent examples, but history and philosophy wouild also need to be considered).
But, it is unreasonable to expect graduate research programs in mathematics education to
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provide adequate preparation in conducting research based on so many different traditions.

Consider the case of ethnographic research, which has arisen largely from anthropology. I

become very worried when one of my students announces to me that her dissertation will be an

ethnographic study. It is worry enough that I know so li e about doing this sort of research,

but this is not the source of my concern. Rather, it stems from the likelihood that the student

will have had at most one seminar related to conducting ethnographic research. Is she an

ethnographer and can she be expected to do a truly first-rate ethnography? I think the situation

is very much the same as calling someone a carpenter based simply on the person having read

about what carpenters do, having an interest in carpentry, and (possibly) having hammered a

few nails into some boards. "True" carpenters are trained in the traditions of carpentry by

working for long periods of time (usually years) with other carpenters; that is, by serving as

apprentice carpenters. Our doctoral students rarely serve any kind of real research
apprenticeships and so they have no opportunity to develop a sense of any legitimate research

tradition, much less multiple traditions. In his thoughtful discussion of the nature of
ethnographic research in education, Wolcott notes, it is "useful to distinguish between
anthropologically informed researchers who do ethnography and educational researchers who

frequently draw upon ethnographic approaches in doing descriptive studies" (Wolcott, 1988,

p. 202). The former types of individuals would expect to be interested in a broad cultural

context, an expectation arising :rom having been trained in a research tradition that too often is

alien to the latter types2.

Another concern is that even being reasonably well-versed in the techniques of a research

tradition does not make an individual an ethnographer, a historian, a philosopher, or a
specialist in whatever discipline is being drawn upon. Much more is involved. For example,

familiarity with the special language that often is associated with a tradition and awareness of

the underlying assur iptions and purposes of research within the tradition help define what it

means to do research based on that tradition (cf. Eisenhart, 1988; Wolcott, 1988).
Consequently, unless the researcher has developed a good sense for these kinds of things,

there is the danger that the research will not be particularly well-informed. In a review of Alan

Bishop's recent book Mathematical Enculturation: A Cultural Perspective on Mathematics

Education (Bishop, 1988), Jeanne Connors points out that problems often arise from
uninformed interdisciplinary dialogue. In particular, she notes that when researchers in one

field borrow ideas from another, the results are often unsuccessful. She suggests that the lack

of success often stems from the fact that:

2 A similar situation also develops when mathematics educators attempt to use research
methods borrowed from disciplines such as history, philosophy, sociology, etc.
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A researcher in one field is not always aware of the issues surrounding, or the current

status of, a particular paradigm in another. Every discipline is dynamic. A theoretical

framework is posed, examined by scholars, elaborated upon, and then may be discarded

in favor of newer ideas. Unless the "borrower" is aware of this disciplinary debate, the

result can be the application of an outmoded idea to a new field, where it may very well be

accepted, and perpetuated, by naive readers (Connors, 1990, p. 462).

Connors goes on to suggest that Bishop used a largely discredited anthropological theory

to inform his analysis (viz., Leslie White's science of culture) and that "anthropology has

moved away from the 'easy' answers of the first half of the century and is beginning to realize

that the 'rear world is messy, complex, and impossible to model as simplistically as White had

hoped" (p. 462). Does this mean that Bishop's conclusions are wrong or misguided?
Perhaps, perhaps not. The point is that when researchers borrow theories from another
discipline, they should be aware of the status of those theories within that discipline. Thus, my

enthusiasm for interdisciplinary inquiry is tempered by my concern that, however well-
intentioned, the inquiry may be naive and ultimately fruitless.

I suspect that Eisenhart would not disagree with my concerns about interdisciplinary
research. In fact, her remarks in her paper make it clear that she is calling for collaborative

interdisciplinary research of the sort that apparently is taking place in the "Learning to Teach

Mathematics" project. This collaboration involves a team of researchers, each with her or his

own special expertise, working together to try to better understand the changes that take p'ace

in the process of moving from being a prospective mathematics teacher to being a certified

mathematics teacher.

SOME QUESTIONS

In the preceding section I have discussed several areas about which I am in basic
agreement with Eisenhart. It should be clear that instead of attacking her ideas and positions,

for the most part I have simply elaborated upon them. In this section I raise two questions that

seem central to the theme of her paper.

What Role Should Theory Play in Research?3

At the beginning of this paper I suggested that Eisenhart's ideas should cause us to think

seriously about what it means to be a mathematics educator and to engage its research in

mathematics education. Central to this deliberation is the concern about the role of theory in

research. I am a bit worried that some readers of Eisenhart's paper will interpret her remarks

against the use of theoretical frameworks as meaning that it is acceptable, perhaps even a good

3 I am grateful to my colleague at Indiana University, Thomas Schwandt, for sharing with me
his ideas about the role of theory in educational research. These ideas served as the basis for
this section of the paper.
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thing, for research to be atheoretical. Consequently, I think it is reasonable to make a few

comments about the role theory should play in research in mathematics education. For a start, I

don't think Eisenhart is suggesting that good research can (or should) be completely
atheoretical4. Instead, she is arguing against the sort of rigid, blind adherence to a theory that

characterizes much theory-based research. In an indirect way she is also arguing for having

theory play a different role in educational research than it has played historically. Martyn
Hammers ley, an ethnographer, insists that it is the duty of sociologists "to attempt the
production of well-established theory" (Hammers ley, 1990, p. 109). Furthermore, he argues

that this "gives us the best hope of producing effective explanations for social phenomena and

thereby a sound basis for policy" (Hammers ley, 090, p. 108). Thomas Schwandt, a

philosopher of education, argues that Hammers ley is suggesting that theory development "is

the raison d'etre for the practice of social inquiry" and "to talk of theory is not simply to talk of

some feature of scientific investigations, but to talk of a pervasive and dominant intellectual

orientation to social . .. inquiry" (Schwandt, in preparation). Moreover, this view has been

the dominant position among educational researchers for some time. Thus, to question, as

Eisenhart does, the importance of theory development in mathematics education is tantamount

to questioning the very purpose of research in the field.

The debate about the role of theory should be a lively and interesting one as tne community

of researchers interested in issues and problems related to mathematics education begins to

think seriously about the nature of research in the field. It is clear that some notions will be

discarded in favor of others this is after all one way that progress is made. But, let us hope

that when the debate is settled we are not left with the feeling that the baby has been thrown out

with the bath water.

Do Eisenhart's Notions about Frameworks Apoly to Traditions Other than Anthropology?

In an essay about the relations between the history and philosophy of science, Thomas

Kuhn writes:

The final product of most historical research is a narrative, a story, about particulars of the

past. In part it is a description of what occurred ... . Its success, however, depends not

only on accuarcy but also on structure.... In a sense to which I shall later return, history

is an explanatory enterprise; yet its explanatory functions are achieved with almost no

recourse to explicit generalizations. . . . The philosopher, on the other hand, aims

principally at explicit generalizations and at those with universal scope. He is no teller of

stories, true or false. His goal is to discover and state what is true at all times and places

4 Garrison (1988) provides an interesting and somewhat compelling argument that it is
impossible for scientific research to be atheoretical. A similar, if not the same, argument might
be made for educational research.
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rather than to impart understanding of what occurred at a particular time and place (Kuhn,
1977, p. 5).

Later in the same essay, Kuhn comperes and contrasts the processes involved in writing

research articles in physics, history, and philosophy. He states that "I have myself, at various

times, written articles in physics, in history, and in something resembling philosophy. In all

three cases the process of writing proves disagreeable, but the experience is not in other
respects the same" (p. 8).

A part of Kuhn's message is that a particular discipline can be distinguished from others in

some fundamental ways. It seems to me that disciplines differ with regard to:

The nature of the questions asked within a discipline.

The manner in which questions are formulated.

The way the content of the disciplines is defined.

The principles of discovery and verification (justification) allowed for creating new

"knowledge" within a discipline.

With this in mind I begin to wonder about the applicability of Eisenhart's ideas to various

research traditions. For example, it seems quite possible that as appropriate as Eisenhart's
ideas may be for research conducted in the tradition of anthropology, they may not apply to
some other traditions. In order to stimulate discussion about this question, I will end this
reaction paper by identifying four broad types of research questions for mathematics education.
Four Types of Research Ouestioas

When we consider seeking guidance 7mm experts, like Margaret Eisenhart, in other
disciplines, in order to pursue answers to the important questions in our field, it may be useful
to think of four types of questions: What was? What is? What would happen if? and What
should be?

Type I: What was? Questions of this type night be addressed by means of historical
inquiry, a research tradition that has been all but ignored in mathematics education. Illustrative

of the sorts of questions that might be addressed are What, forces led to the creation of the

NCTM Standards documents? and What was the place of mathematics in the development of

the public school system in the United States? Individuals interested in historical inquiry will

find Kaestle's discussion and the readings that accompany it quite useful (Kaestle, 1988).
Type II: What is? There are at least two sub-questions associated with this question:

What is going on in ? and What is the state of affairs with respect to ? A number
of research methods developed within several different traditions seem appropriate for
investigating type II questions; notably, ethnographies from anthropology, case studies from
psychology (among other traditions), and surveys from sociology. But Type II questions
should not be limited to these traditions alone. Philosophy, for example, might be drawn
upon as well. Recut research by Cobb, Wood, and Yackel (1991) is a case in point. They
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used analogies from the philosophy and sociology of science to help them understand students'

motivations, emotions, and beliefs as they develop in the classroom.

Type III: What would happen if? Quasi-experimental research methods developed in

experimental psychology (as well as in other "behavioral and social science') have been used

for quite a long time to study questions of this type. Oftentimes questions of this type arise

from efforts to identify different (e.g., more effective, more efficient) ways to offer various

aspects of instruction (e.g., What would happen if students worked together in small groups?).

In particular, questions involving the standard comparison of treatments are of this type (e.g.,

Which is better: treatment A or treatment B?). It is clear that quasi-experimental methods are

not the only ones suitable for addressing questions of this type; ethnographic techniques,
which are referred to throughout Eisenhart's paper, as well as other methods can also be

useful.
Type IV: What should be? Philosophical methods can be of great value for questions in

which an attempt is to be made to make a case for a particular position. For questions of this

sort, arguments from analogy and the method of examples and contrasts, two fundamental

tools of the philosopher, would be invaluable (Scriven, 1988). For example, the philosopher's

tools could be used to argue for or against the statement, "Problem solving should be the focus

of school mathematics."

Mathematics education, then, is a field of inquiry concerned with a very wide variety of

types of questions, and to a certain extent these types determine the nature of the research that

can be conducted. Mathematics education researchers should not be expected to become

experts in the use of all, or even many, of the daunting array of research methods available.

However, it is vital that we: (1) recognize that our field needs to draw upon many research

traditions; (2) acknowledge that the most effective research programs are likely to be those

characterized by applications of "disciplined eclectic" (Shulman, 1988, p. 16); and (3) actively

seek to collaborate with researchers who have been train vi in traditions different from our

own.
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CULTURALANTHROPOLOGIST; IMPLICATIONS FOR MATHEMATICS EDUCATION

RESEARCHERS

Margaret A. Eisenhart
University of Colorado, Boulder

Paper to be presented at the Psychology of Mathematics Education - North Amenca
Meeting, October 16-19, 1991

Some of you are probably wondering: What is a conceptual framework and why all

the fuss about whether you have one for your research project? Is it simply pohtically

correct to have a conceptual framework or is there more to it? Perhaps some

interpretivists out there are wondering whether concerns about conceptual frameworks

aren't just another means for positivists to reassert their way of doing things in educational

research. And you closet positivists are secretly hoping it's so.

I am a qualitative researcher, an anthropologist of education, an ethnographer, and

someone firmly committed to the value of explicit conceptual frameworks for educational

research. In this paper, I hope to give you some idea why I feel this way and what
difference conceptual frameworks, particularly those informed by some recent work in

cultural anthropology, might make in mathematics education research.

What is a Framework?
According to my dictionary, a "framework" is defined as a "skeletal structure

designed to support or enclose something" (The Random House Dictionary of the English

J anguaire, 1979). As used metaphorically by researchers to "support or enclose" their

investigations, frameworks come in various shapes and sizes; may fit loosely or tightly, are

sometimes made explicit, sometimes not. In this paper, I will compare three kinds of

frameworkstheoretical, practical, and conceptual. I use the comparison to suggest the

special potential of conceptual frameworks. In the second part of the paper, I will argue

for the importance of including particular elements in conceptual frameworks for current

research in cultural anthropology. The elements I focus on are derived from a set of

issueswhich I refer to as the "structure/agency problem"that is at the center of current

debates affecting all the social sciences and philosophy. In the third and final seed( in of the

paper, I will suggest how these elements might also be valuable for conceptual frameworks

in mathematics education research.
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A Note on the Research Process

Before beginning the main part of my discussion of frameworks, I need to say a few

things about how I conceive of the research process, so you can understand how I think

frameworks fit into it. As I see the research process, it has three primary governing

conceptual stepsby which I mean key steps that demarcate the study and require
considerable mental planning.' First, a researcher must decide what is to be explained by

the study (establish the research problem). In mathematics education, the range of
research problems in need of explanation is broad: Why do girls eschew mathematics in

greater numbers than boys? Why do U.S. students score lower than those from Japan or

Hong Kong on international comparisons of mathematics test scores? What is the best way

for students to learn and appreciate mathematics? What kinds of instructional changes can

be stimulated and supported with policy initiatives, what kinds with site-based (locally-

specific) initiatives? It's unlikely that a researcher would attempt to provide explanations

for all these research problems in one study; instead, he or she selects one problem to
concentrate on.

Deciding on the research problem does not automatically determine the perspective,

or angle, from which the investigation will proceed. Each problem listed above could be
investigated from numerous perspectives. For example, the researcher might choose a

discipline-based perspective, e.g., one from psychology, sociology, or anthropology; a

practice-oriented perspective, e.g., a formative or summative evaluation; a philosophical

perspective, e.g., a positivist, interpretivist, or critical epistemology; or a pedagogical

perspective, e.g., a constructivist or foundationalist approach. In the second conceptual

step of the research process, the researcher must decide what perspective to use. At this

point, an explicit framework becomes important: It is the (metaphorical) structure that

defines the perspective taken and thereby guides the data collection for the study. The

framework is composed of ideas or "concepts," i.e., abstractions, such as self-esteem,

interactive thinking, culture, social organization, or pedagogy. These abstractions and their

assumed interrelationships stand for the relevant features of a phenomenon, as defined by

the perspective. In selecting a perspective /framework, the researcher is deciding upon the

abstractions and relationships that will be used 'to enclose or support' the study and, in

I have identifies' .he steps separately and in a chronological order for the sake of clearly describing
them, sot because they w or must proceed in wetly this way.
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turn, the data that will be collected.
To sum up the second step by way of example, a researcher might select a

perspective from psychology that focuses on self-esteem as a framework for studying the

research problem: Why do girls eschew mathematic- in greater numbers than boys? For

the same research problem, another researcher migh. select a framework from sociology

that focuses on peer group socialization. In making the first selection, the researcher has

decided to rely upon the abstraction, self-esteem, and to collect data about self-esteem and

its differential impact on boys' and girls' attitudes and achievement. By choosing peer

group socialization instead of self-esteem, the second researcher has decided to focus on

such things as differential peer group norms for boys and girls and their influence on

attitudes and achievement (cf. Shulman, 1988). In broad strokes, this is how frameworks

"work" in the research process.

The third conceptual step in the research process begins when data analysis begins

At this point, the researcher must decide how to reduce the empirical data collected into

meaningful categories, how relationships among categories of findings will be specified, and

what form the explanation for the empirical data will take. Depending on the

epistemological perspective chosen in step two (e.g., positivist or interpretivist), the
originally specified research framework may or may not continue to serve as a guide for

data analysis and explanation, but some frameworksome coherent way of thinking about

how to organize and interpret the datamust.
Recent critics of research practice have argued that an adequate explanation for

empirical results must convincingly show that the data occur as they do because of the

processes described by the explanation, and not accidently or coincidently (Liston, 1988).

To meet this requirement, the researcher cannot simply describe or identify data in terms

of a framework, nor unquestioningly accept a predetermined framework, as either would

be to assume, rather than to demonstrate, that an explanation derived from the framework

is adequate.

In brief then, I consider some kind of framework basic to both the second and third

conceptual steps of the research process. With this background about the research process,

I'd like to turn to the three kinds of frameworks: theoretical, practical, and conceptual.

What are they and how are they used?
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Kinds of Frameworks

Theoreticalframeworka

A theoretical framework is a structure that guides research by relying on a formal

theory; that is, the framework is constructed by using an established, coherent explanation

of certain phenomena and relationships, e.g., Piaget's theory of conservation, Vygotsky's

theory of socio-historical constructivism, or Newell and Simon's theory of human problem-

solving. In the second step of the research process (described earlier), the research
problem would be rephrased in terms of the formal theory selected for use. Then research

hypotheses or questions would be derived from the research problem oua theory, relevant

data would be collected, and the findings used to support, extend, or revise the theory. In

selecting a theory as the basis for a research framework, the researcher is deciding to

follow the programmatic research agenda outlined by advocates of the theory. That is, she

or he is choosing to conform to the accepted conventions of argumentation and
experimentation associated with the theory. This choice has the advantage of facilitating

communication, encouraging systematic research programs, and demonstrating progress

among like-minded scholars working on similar or related research problems. Researchers

testing the applicability of Piaget's theory of conservation in different settings and with

different people, for example, work together with a shared set of terms, concepts, expected

relationships, and accepted procedures for testing and extending the theory.

However, there are some disadvantages associated with the programmatic use of

theoretical frameworks. Howard Becker, a fieldwork sociologist and ethnographer, has

recently summarized the value of relying on theory and one of its drawbacksthat

important information may be omitted or ignored when researchers rely too much on
formal theory to guide their work:

Whenever scientists agree on what the questions are, what a reasonable

answer to them would look like, and what ways of getting such answers are

acceptablethen you have a period of scientific advance...[at] the price, Kuhn

is careful to point out, of leaving out most of what needs to be included in

order to give an adequate picture of whatever we are studying, at the price

of leaving a great deal that might properly be subjected to investigation, that

in fact desperately needs investigation, uninspected and untested. (1991, p.3)

Dan Liston (1988, p. 324), a sympathetic critic of radical theories of schooling and a

teacher educator, has argued (following Crews, 1986) that scholars who use Marxist
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theories of schooling (e.g., Bowles and Gintis, Apple, Carnoy and Levin), tend to address

and explain research problems by theoretical decree, rather than with solid evidence to

support their claims. John Van Maanen, another fieldwork sociologist and ethnographer,

has lodged the objection that data collected under the auspices of theoretical frameworks

have to "travel," by which he means that (unfortunately, from his point-of-view) data must

be stripped of their context and local meaning in order to serve a theory.

Events must be specified, simplified, patterned, and to a large degree
stripped of their context if they are to travel well and serve as fodder for

formal theory. Such is true for all description, of course, but theory itself can

be a formidable taskmaker. (1988, p. 131)

Another difficulty with the use of theoretical frameworks is the tendency for them

to be used by academics to set a standard for scholarly discourse that is not functional

outside the academic discipline. Conclusions produced by the logic of theoretical discourse

about educational practice, for example, are often neither practical nor helpful in day-to-

day practice. House (1991) makes the following pertinent observations about the
relationship between the concerns of academic disciplines and those of practitioners.

A discipline is composed of groups and subgroups of scholars linked together

through common communicationjournals, meetings, associations, informal

contacts, e-mail....At the center...are the leading authorities of the disciplines,

the Cronbacits and Campbells, if you will. Those at the center are the
gatekeepers who influence the others. The discipline changes as people in

the field argue and debate new ideas...All [theories] in the field are subject

to change over a period of time, subject to the critique of the group, so there

is no certain foundation of knowledge, just the continual debate, dialogue,

and argument, the disciplinary [theoretical] discourse.

So we end up with disciplines in which there is theory which is often

irrelevant to the experience of practitioners. Some of this theory is...necessary for

[academic] legitimation. [But, if] or.: waits until all the debates are over to do the

work, then one will wait forever. (pp. 3-5)

Practical Frameworks

It is just this kind of irrelevance for practitioners and practical matters that has led

some researchers, like educational evaluator Michael Scriven, to object to theoretical
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(disciplinary) research as the model for educational research and to suggest practical

frameworks as an alternative. Scriven's low regard for the value of theoretically-driven

social science research to educational practitioners is clear:

...practical problems are defined by reference to several parameters

concerning which the basic scientist gathers no data and rarely has any

competence. These include the not-entirely-independent parameters of cost,

ethicality, political feasibility, the set of practicable alternatives, system

liability, and overall practical significance. (1986, p. 54)

Scriven's alternative is what he calls a "practical research approach" that would focus

research efforts on "problems that really pay off for practitioners," and relegate "the search

for...theoretical understanding...to a secondary position by comparison with the search for

improvement" (p. 57). He further compares theoretical and practical research as follows.

Let us consider...the difference between the ivory-tower research

approach to [a] particular problem and the practical research approach. The

problem...is...how to improve the teaching of handicapped children....I have

frequently posed this problem to groups of educational researchers....In all

cases, the results are about the same. What one must do, they suggest, is

find out--from the literature or by developing a theorywhich variables

control the outcomes in question and then modify those variables. I ask: Is

there any way to find that out besides the ways that researchers have been

trying for decades? Well, basically, No, they say; except to do it better: the

literature search, the design, the run, the data crunch. But there is a much

better way, and the fact they do not think of it immediately shows how far

we have come from commonsense. You must begin by identifying a number

of practitioners who are outstandingly successful at the task in question; you

must then use all the tricks in the book to Identify the distinctive features of

their approach...; you then teach new or unsuccessful practitioners to use the

winning ways and retest until you get an exportable formula. (pp. 58-59)

A practical framework, then, guides research by using "what works" in the
experience or exercise of doing something by those directly involved in it, e.g., in the case

of educational research: by using "what works" in teaching, administering, trying to change

schools, being the helpful parent of a school-aged child, as a "kernel" idea or action that,

if extended to other teachers, etc., could help to alleviate some educational problem. The
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study is structured to determine key features of the practice, and whether, or in what

circumstances, a practice (behavior, technique, strategy, way of thinking, style of teaching,

etc.) works as expected or envisioned. This kind of framework is not informed by formal

theory but by the accumulated practical knowledge (ideas) of practitioners and
administrators, the findings of previous research, and often the viewpoints of politicians or

public opinion. Research hypotheses or questions are derived from this knowledge base,

and research results are used to support, extend, or revise the practice. In selecting

practice as the basis for a research framework, the researcher is deciding to follow

conventional wisdom as understood by people who are stakeholders in the practice.

Although this approach has at least one obvious advantage over a theoretical
frameworkthe problems and the discourse are those of people directly involved, it shares

some of the same drawbacks. Like the work based on a theoretical framework, the

existing knowledge basein Scriven's example, the accumulated wisdom of practitioners and

interested lay persons--will constrain the topics of study, the data collected, and often the

conclusions drawn. Again, there is the danger that conclusions will describe the data in

terms of preexisting practitioner knowledge rather than provide convincing evidence that

a particular teaching practice is best, all else considered. Further, results obtained from

research based on practical frameworks are expected to "travel," as Scriven indicated. This

is another dangerous situation. in the absence of theory, there is no systematic way to

think about how well, or tinder what conditions, the results might or might not travel; there

is also no readily available discourse to explain why the practice works or why anyone else

should adopt it. Proponents would be in the position of imposing a practice on the (slim)

grounds that it worked somewhere else.

Another more serious and perhaps more subtle difficulty with practice-driven

research is one shared with research guided by a theoretical framework of extreme
interpretivism.2 Like extreme interpretivism, practice-driven research depends on the

insiders' perspective--in Scriven's example, the insiders' perspective would be constituted

by the views of various stakeholders in educational practice. Whereas insiders know the

behaviors and ideas that have meaning to people like themselves who regularly participate

in the practice, they are unlikely to recognize the patterns of group life of which their

2 is used here, following Eisenhart, 1988, Howe & Eisenhart, 1990, and Howe, in
press, to refer to the epistemological position that privileges the 'insider's perspective' on the meanings and
implications of social events and arrangements.
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actions are a part (Eisenhart & Borko, 1991, p. 147). Insiders rarely consider the structural

features and causes of social practices or the norms which they unwittingly internalize and

use in communication and action (Howe, in press, following Fay, 1975). These features,

causes, and norms are part of the taken-for-granted backdrop of insiders' lives. Because

insiders take these constraints for granted, practical frameworksbuilt up as they are from

insiders' perspectives - -tend to ignore macrolevel constraints on what and how insiders act

and how they make sense of their situation. I will return to this point when I take up
cut-rent issues in cultural anthropology.

A conceptual framework is a skeletal structure of justification, rather than a skeletal

structure of explanation based on formal logic (i.e., formal theory) or accumulated
experience (i.e., practitioner knowledge). A conceptual framework is an argument
including different points of view and culminating in a series of reasons for adoptingsome

points--i.e., some ideas or concepts--and not others. The adopted ideas or concepts then

serve as guides: to collecting data in a particular study, and/or to ways in which the data

from a particular study will be analyzed and explained.

Crucially, a conceptual framework is an argument that the concepts chosen for

investigation or interpretation, and any anticipated relationships among them, will be

appropriate and useful, given the research problem under investigation. Like theoretical

frameworks, conceptual frameworks are based on previous research and literature, but

conceptual frameworks are built from an array of current and possibly far-ranging sources.

The framework may be based on different theories and various aspects of practitioner

knowledge, depending on exactly what the researcher thinks (and can argue) will be

relevant to and important to address about a research problem, at a given point in time

and given the state-of-the-art regarding the research problem. For example, researchers

developing a conceptual framework might build an argument for assessing the power of
several different theories or explanations for an important research problem, such as why

U.S. minority students are, as a group, less successful in school mathematics than their

mainstream counterparts. In this case,3 a list of currently relevant theoretical propositions

3 My ideas here arc adapted from Denzin who calls this approach 'theoretical triangulation' (1978, pp.
297-301, following Westie, 1957).
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and practitioner explanations would be compiled; their strengths, weaknesses, and

appropriateness described and assessed; and an argument built for making some subset the

focus of emrrical investigation. Then, data would be collected to determine which

propositions could be supported by empirical evidence. Finally, a record would be made

of those propositions that passed and failed the empirical tests, and a theoretical system

reformulated based on all the findings of the empirical tests.

The arguments of a conceptual framework also must be timely; that is, they should

reflect the current state-of-affairs regarding a research problem. For this reason,
conceptual frameworks may have short shelf-lives; they may be revised or replaced as data

or new ideas emerge.

To illustrate the preceding points: In the NSF-sponsored study, "Learning to Teach

Mathematics," that I am conducting of novice mathematics teachers with Hilda Borko,

Cathy Brown, Bob Underhill, Doug Jones, and Pat Agard, we have developed a series of

conceptual frameworks that draw on specific ideas from cognitive psychology, mathematics

education, and educational anthropology (see especially Brown, et al., in press). To build

our first framework, each of us consulted the literature in our respective fields (Borko-

psychology; Brown, Underhill, Jones, and Agard-mathematics education; Eisenhart-

anthropology) end wrote position papers on the concepts or ideas we considered most

relevant to the research problem (which is: What kinds of changes occur as mathematics

education students become mathematics teachers and what or who influences the
changes?). As a group we read each others' papers and debated the merits of each idea

for our study. We discarded some ideas (we couldn't study everything) and, for those

retained, tried to organize them in a coherent way. The resulting framework guided the

data collection during Year 1 of our two-year project (see Brown, et al., in press, and

Eisenhart & Borko, 1991, for more information about the content of our framework). At

the end of Year 1, we reconsidered the framework, revised and refined it in light of the

data we had collected and new ideas that were emerging in our respective fields. The

(temporarily) "chosen" ideas were then categorized into the six boxes represented in Figure

1 and, in their present incarnations, are serving as guides for the data analysis in which we

are presently engaged.

Conceptual frameworks then, like the one represented in Figure 1, intentionally are

not constructed of steel girders made of theoretical propositions or practical experiences;

instead they are like scaffoldings of wooden plank that take the form of arguments about
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what is relevant to study and whyin our case, about novice mathematics teachersat a
particular point in time.4 As changes occur in the state-of-knowledge, the patterns of

available empirical evidence, and the needs with regard to a research problem, used
conceptual frameworks will be taken down and reassembled.

Relative to theoretical or practical frameworks, conceptual frameworks facilitate

more comprehensive ways of investigating a research problem. By coordinating concepts

from anthropology and psychology in the conceptual framework for our Learning to Teach

Mathematics project, for example, we were able to investigate a broader range of potential

influences on novice teachers than would have been possible using a theoretical framework

from either discipline alone (for more information on our collaboration, see Eisenhart &
Borko, 1991).

Similarly, and unlike either theoretical or practical frameworks, conceptual

frameworks routinely accommodate both outsiders' and insiders' perspectives. Because

conceptual frameworks (merely) outline the kinds of things that are of interest to study

from various sources, the argued-for concepts and their interrelationships--regardless of

their source--must ultimately be defined and demonstrated in context in order to have any

validity. Users of conceptual frameworks, then, must adopt what Norman Denzin (1978),

another fieldwork sociologist, refers to as a "sensitizing approach":

If I choose a sensitizing approach to measuring intelligence [for example],

will leave it nonoperationalized until I enter the field and learn the processes

representing it and the specific meanings attached to it by the persons
observed. It might be found, for example, that in some settings intelligence

is measured not by scores on a test but rather by knowledge and skills

pertaining to important processes in the group under analysis. Among

marijuana users intelligence might well be represented by an ability to

conceal the effects of the drug in the presence of nonusers. (p. 16)

This sensitizing feature of conceptual frameworks encourages the researcher to tack

between the concepts advanced or assumed and the meanings given or enacted in context.

4 It is also important to note here that our analysis strategy depends on some additional decisions
not reflected in Figure 1. For example, we decided to focus on 'critical incidents' as a maw to identify the
sources of influence on the novice teachers. We also decided to focus on 'case profiles' as a means to identify
changes in the novice teachers over time. These methodological decisions and the way they have been
integrated with the substantive elements of our conceptual framework arc described in Borko, et al., in press,
and Jones, et al, in preparation.
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In this way, outsiders' and insiders' presuppositions, as well as their respective

interpretations, have a place in the research project.

The inclusive and sensitizing features of conceptual frameworks also make it less

likely that researchers who rely on them (compared to those who rely on theoretical or

practical frameworks) will draw unwarranted conclusions or offer unsupported explanations

for their empirical results. Westie summarized the advantages of these features as follows,

[Use of a conceptual framework] minimizes the likelihood that the
investigator will present to himself [sic] and the world a prematurely coherent

set of propositions in which contradictory propositions, however plausible, are

ignored. (1957, p. 154, quoted in Denzin, 1978, p. 300)

In other words, it minimizes the likelihood that empirical evidence will be explained by

decree, cornention, or accident. In sum, then, I find conceptual frameworks better suited

than theoretical or practical frameworks for research in applied areas such as education,

at least at this point in time. Because of the various perspectives and disciplines that can

be brought to bear on educational issues and the seriousness of educational problems,

research frameworks that outline and enable comprehensive, inclusive, sensitive,

appropriate, useful, and timely approaches to the problems of the day would appear to be

especially valuable. In the next section, I turn to one potentially useful conceptual

framework that is currently being constructed for research in cultural anthropology.

The Structure/Agency "Problem" as a Basis for One Conceptual

Framework in Cultural Anthropology

Epistemology

At this point in historical time and space, many social scientists, including cultural

anthropologists, are grappling with what is sometimes referred to as the "structure/agency

problem," where "structure" is defined as constraining or enabling macrolevel forces

outside individuals but affecting what they doand "agency" as (microlevel) individual

intentions. The structure/agency problem derives from the insights of postpositivist and

postinterpretivist epistemological debates. The root of the current debate is the definition

of human nature and is described in broad strokes by Howe (in press) as follows:

...a theory of human nature specifies the kinds Of beings that a theory of

social scientific explanation has for its subject matter. Positivism, with its

"spectator view" of knowledge [e.g., humans as molecules in motion] and
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Humean conception of causation [where causes and effects have no
conceptual connection], encourages a view of humans as passive and
determined by exogenous causes; interpretivism, with its constructivist [self-

created] view of knowledge and intentionalist conception of causation [where

human intentions can "cause" things], encourages a view of human as active

and self-creating....The correct view, or so I shall argue, acknowledges

elements of truth in both of these views but rejects each as one-sided.

Intuitively, human beings are neither wholly passive and determined nor

wholly active and self-creating. Instead, they exhibit these two characteristics in

varying degrees...."[H]uman nature" is partially determined by how humans see

themselves and partially determined by things of which they are unaware and over

which they have no control. Accordik 1y, insofar as interpretivism remains trapped

within the first perspective and positiviim, within the second, neither view can give

an adequate account of human nature. (p. 10)

Later in the same article,

(A new "compatibilist "] conception of human nature...concedes to the

natural science model mechanistic (e.g., structural-functionalist) accounts of

human behavior, preserving a place for the self-determined, "active" side of

human nature. On the other hand, it concedes to interpretivism intentionalist

accounts of human behavior, preserving a place for the self-determined,

"active" side of human nature...[and] insofar as human behavior is an
admixture of active and passive ingredients, a conception of [social science]

explanation should capture both. (p. 12)

Following Howe then, an adequate social science explanation should (now) aim to account

for both structural forces (positivism's 'exogenous causes') and human agency
(interpretivism's 'self-created constructions'). To develop such an explanation with empirical

evidenceas required in (empirical) research, frameworks for research must accommodate,

and guide investigations and interpretations of, both structure and agency.

CalIzalladzapsaggx
In cultural anthropology, the structure/agency problem can be phrased as: How is

it possible to represent the embedding of richly described local cultural worlds (including

individuals' intentions and a third concept, "culture," the anthropologists' favorite) in larger
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impersonal systems of political economy (Marcus & Fischer, 1986, p. 77)? In summarizing

recent trends in anthropologists' experimentation with ethnography, Marcus and Fischer

explain the "problem" further:

...one trend of experimentation is responding to the imputed superficiality or

inadequacy of existing means to represent the authentic differences of other

cultural subjects; the other is responding to the charge that interpretive

anthropology, concerned primarily with cultural subjectivity [insiders'

perspectives], achieves its effects by ignoring or finessing in predictable ways

issues of power, economics, and historic context. While sophisticated in

representing meaning and symbol systems, interpretive approaches can only

remain relevant...if they come to terms with the penetrations of large-scale

political and economic systems that have affected, and even shaped, the

cultures of ethnographic subjects almost anywhere in the world. (p. 44).

Later, Marcus and Fischer suggest why the task is difficult:

This would not be such a problematic task if the local cultural unit was

portrayed, as it usually has been in ethnography, as an isolate with outside

forces of market and state impinging upon it. What makes representation

challenging and a focus of experimentation is the perception that the "outside

forces" in fact are an integral part of the construction and constitution of the

"inside," the cultural unit itself, and must be so registered....(p. 77)

In other words, processes of communication and meaning are thought to be constitutive

of structures of political and economic interests and these interests, in turn, both enable

and constrain individual intentional processes.

At the present time, debates among anthropologists about these issues are self-

consciously taking place in the absence of grand theories. As in other social sciences,

literary criticism, architecture, and even the natural sciences to some extent:

[the] authority of "grand theory" styles seems suspended for the moment in

favor of a close consideration of such issues as contextuality, the meaning of

social life to those who enact it, and the explanation of exceptions and

indeterminants rather than regularities in phenomena observed....(Marcus &

Fischer, 1986, p. 8)

The need for conceptual frameworks that can more adequately address "structure,"

"agency," and "culture," and guide research including these elements, in cultural

4. air
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anthropology is exemplified in the limitations of many familiar works, including Shirley

Brice Heath's educational ethnography, Ways with words (1983).5 In the book, Heath tells

a story of literacy teaching and learning in three Southern (U.S.) communities. Her study

was framed by an implicit theory of cultural difference; that is, consistent with cultural

difference theory, she expected that reasons for children's differential performance in

school could be found in differences in the ways of life and speaking (the cultures) they
learned at home. By revealing the many ways in which the cultures of the three
communities were different and how cultural elements learned at home matched (or did

not) those expected at school, she intended: a) to explain the sources of children's early

school success and difficulty: and b) to help teachers find appropriate ways to bridge the

home-school gaps she found. Heath achieved both her goals, but in the book's Epilogue

she acknowledged that the understandings and changes she helped produce were not
sustained by the teachers for very long. She noted that the focus of school district policy

changed, apparently eliminating the opportunities and rewards for teachers that had
enabled their involvement in the kind of work she (and they) had begun and believed in.

By ending the book with this discussion, Heath seemed to recognize some role for
structure in the explanation of her findings, but it was a role that the theory of cultural
difference had not prepared her for and could not account for. Heath's theoretical
framework also was not able to account for individuals who did not fit the school

performance profile predicted by her cultural difference analysis, nor for subgroups within

each community that might have constructed an oppositional culture or resisted the
dominant position within the group. Finally, she used "culture to mean "tradition," as if
"culture" had no dynamic or emergent characteristics. In Ways with words individuals were
always following their community's traditions (culture), as if tradition fully determined their
intentions and actions. Use of this kind of cultural difference or cultural determinist theory

is very common in educational anthropology and is analogous to the economic determinism

of "structuralist correspondence theories such as Bowles and Gintis' (1976), in which

individuals are always following the dictates of their class position (see also Foley, 1991).

(In work inspired by psychology of course, there is a corresponding tendency to focus on
the processes of individuals as deterministic.)

5 I find Heath's book very powerful and wish to acknowledge its considerable contribution to educational
research. I use it here for illustrative purposes because so many people in education are familiar with it.
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The special contribution of Paul Willis' ethnography of schooling, Learning to labor

(1977), for educational anthropology was his conceptual framework in which "structure,"

"culture," and *individuals" were conceived of and investigated as separate though
interrelated phenomena. For Willis, "structures" are relatively fixed, enduring, and broadly

constraining features of a societyfeatures such as class stratification or patriarchy;
"individuals" are viewed as semi-autonomous from structure (i.e., capable of considering or

reflecting upon structures) and thus potentially able to choose (actively produce) their own

"cultural" response to structures, where "culture" is conceived of as a medium in which

individuals act and interpret the world as given and, simultaneously, as the medium through

which structure passes in and out of individual lives (see also Foley, 1990; Holland &

Eisenhart, 1990).
The relevant implications of this work, for my purposes in this paper, are that an

adequate conceptual framework for research in cultural anthropology, including educational

anthropology, must now include: 1) some conception of the structures that exist and have

existed over time, recognizing that they act both to constrain and to enable the actors

situated within their influence (these structures might include class and racial stratification,

patriarchy, and the social organization of academic disciplines, e.g., mathematics); 2) some

conception of the cultures that serve as mediums within which individuals and subgroups

respond :o the structures surrounding them (these cultures might include class culture, peer

group culture, the culture of teaching, the culture of being a student, or the culture of

school subjects or (specifically) mathematics; and 3) some conception of the meanings and

actions of individuals (including individual "voices," individual intentions, and subjectivities).

Implications for Mathematics Education Research

Conceptual frameworks that direct attention to structures, cultures, and agency in

this way have some important implications (I think) for research in mathematics education.

For example, the activities and discourse through which children (and teachers, parents,

etc.) construct their understandings of mathematics would have to be viewed and
investigated as deeply embedded with historical and social contradictions and inequalities.

If structures, e.g., class stratification, patriarchy, or academic disciplines, are conceived of

as enduring constraints on and resources for the activities and discourse of individuals, then

it is not adequate to study classroom teaching and learning in isolation or without reference

to these structures. Although individual actions will be much more fluid and variable than
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the surrounding structures, they will always be affected by them. I think we would also be

asking our research programs to help us to understand how teachers and students rely,

often inadvertently, on these structures in teaching and learning mathematics. In addition,

we might ask: How are teachers and students (as groups or individuals) responding to

these structures? What cultures of mathematics or of schooling are their mediums for

interpreting the mathematical school work they are doing? To what extent ,re novice

mathematics teachers learning that judgments of their competence as teachers depend on

acquiring the characteristics of existing (conservative) teacher culture (cf. S thite, 1989)?
And, to what extent are studer.. qrning that assessments of their school competence

depend on acquiring the characteristics of existing (conservative) student culture?

Related questions might include: To what extent are "active" (enthusiastic,

conscientious, well-intentioned) mathematics teachers merely "making do" (merely tinkering,

or doing what Hatton, 1989, has recently referred to as bricolage, following Levi-Strauss)

with what is available within a limited and fixed structure of schooling and curriculum (see

also Kutz, 1990)? To what extent are mathematics teacher educators doing the same

thing within the context of their university or college work (cf. Eisenhart, Behm, &

Romagnano, 1991)? To what extent do these conservative learnings (constructions), along

with enduring structural features of schools, constitute teachers' and students' "resistance"

to (decisions to refuse to act in accord with) innovations such as those proposed by the
NCTM standards? Is there any potential or some "language of possibility" (Giroux &

McClaren, 1986) in these constructions that would enable the desired changes?

It would also be important to discover why individual students are doing the

particular work they are doing in school, e.g., do they have worthy motives in doing it?

Do teachers have worthy motives in guiding it? Who is advantaged or disadvantaged in
the process?

I believe these questions are very important ones for mathematics educators to
answer. I also believe that answers to these questions can be obtained, at least in part, by

using ideas from cultural anthropology to build conceptual frameworks to guide the work

that mathematics education researchers do.

. 2 1 7 -

BEST COPY AVAILABLE `;



Acknowledgements I would like to thank Hilda Borko and Catherine Brown for their help

with this paper.

References

Becker, H. (1991, April). Theory: The necessary evil. Paper presented at the annual

meeting of the American Educational Research Association, Chicago, IL.

Borko, H., Eisenhart, M., Underhill, R., Brown, C., Jones, D., & Agard, P. (in press). To

teach mathematics for conceptual or procedural knowledge? A dilemma of learning

to teach mathematics in the 'new world order' of mathematics education reform.

Journal for Research in Mathematics Education.

Bowles, S. & Gintis, H. (1976). Schooling in capitalist America. New York: Basic Books.

Brown, C., Underhill, R., Borko, H., Eisenhart, M., Jones, D., & Agard, P. (in press). A

conceptual framework for research on learning to teach mathematics. Educational

Studies in Mathematics.

Denzin, N. (1978). The research act: A theoretical introduction to sociological methods.

New York: McGraw Hill.

Eisenhart, M. (1988). The ethnographic tradition and mathematics education research.

Journal for Research in Mathematics Education, .12, 99-114.

Eisenhart, M., Behm, L, & Romagnano, L. (1991). Learning to teach: Acquiring

expertise or rite of passage? Journal of Education for Teaching, 12, 51-71.

Eisenhart, M. & Borko, H. (1991). In search of an interdisciplinary collaborative design

for studying teacher education. Teaching and Teacher Education, 2, 137-157.

Foley, D. (1990). Learning capitalist culture: Deep in the heart of Te'as. Philadelphia,

PA: University of Pennsylvania Press.

Foley, D. (1991). Reconsidering anthropological explanations of ethnic school failure.

Anthropology and Education Quarterly, 22, 60-86.

Giroux, H. & McClaren, P. (1986). Teache education and the politics of engagement.

Harvard Educational Review, id, 213.238.

Hatton, E. (1989). Levi-Strauss's bricola e and theorizing teachers' work. Anthropolozy

and Education Quarterly, 2Q, 74-96.

Heath, S. (1983). Ways with words: Language. life and words in communities and

classrooms. Cambridge: Cambridge University Press.

Holland, D. & Eisenhart, M. (1990). Educated in romance: Women achievement and

gollegesul=1. Chicago: University of Chicago Press.

r -

4;

- 2 I 8 -



House, E. (1991, April). Response to Howard Becker's 'Theory the necessary evil."
Paper presented at the annual meeting of the American Educational Research
Association, Chicago, IL.

Howe, K. (in press). Getting over the quantitative-qualitative debate. American Journal.
of Education.

Howe, K. & Eisenhart, M. (1990). Standards in qualitative (and quantitative) research.

Educational Researcher, 19, 2-9.

Jones, D., Borko, H., Eisenhart, M., Brown, C., Agard, P., & Underhill, R. (in

preparation). Profiles of novice teacher change. Manuscript.

Kum E. (1990). Authority and voice in student ethnographic writing. Anthropology and

Education Ouarterly, j, 341-356.

Liston, D. (1988). Faith and evidence: Examining Marxist explanations of schools.
American Journal of Education, 92, 323-350.

Marcus, G. & Fischer, M. (1986). Anthropology as cultural critique: An experimental

moment in the human sciences. Chicago: University of Chicago Press.

Shulman, L. (1988). Disciplines of inquiry in education: An overview. In R. Jaeger (Ed.),

Complementary methods for research in education. Pp. 4-17. Washington, DC:
American Educational Research Association.

Scriven, M. (1986). Evaluation as a paradigm for educational research. In E. House
(Ed.), New directions in educational evaluation. Pp. 53-67. London: Falmer Press.

Van Maanen, J. (1988). Tales of the field: On writing ethnography. Chicago: University

of Chicago Press.

White, J. (1989). Student teaching as a rite of passage. Anthropology and Education
Quarterly, n, 177-195.

Willis, P. (1977). Learning to labor: How working class kids get working class jobs. New

York: Columbia University Press.

-219-

4.,



If We Want to Get Ahead,

We Should Get Some Theories'

Andrea A. diScssa
Graduate School of Education

University of California
Berkeley, California 94720

September, 1991

.1 am "borrowing" the essence of the title from the justifiably well-known paper by Karroiloff-
Smith and Inhelder (1974/75).

;
1..' 47,

-220-



Abstract
In education, or in the learning sciences generally, theory is in a poor state. We have not reached
deep theoretical understanding of knowledge or of the learning process, and it is important that
we recognize this. Even more importantly, our community does not seem particularly intent or
armed to change the situation. This paper is aimed at raising the issue of intent, arguing for new
dedication toward theory. It is also aimed at a modest contribution to our toolkit for a more
theoretically attentive practice of education research.

Introduction
I view the educational research community as demonstrating only minor concern for Theory and
its development. That should not be so. Minimally, I hope with this paper to spur discussion of
the issue; at best, I hope to participate in building a consensus about the importance of theoretical
thinking to our goals, and about what kind of theoretical thinking makes most sense.

My approach will be personal and more than usually assenional for two reasons. First, I hope to
raise issues provocatively and relatively sharply. Second, there are deep and complex
epistemological issues here that I simply cannot enter into in any great detail. I recognize I will
mostly be staking ground rather than uncovering, explicating or settling the issues involved.

Theory has a somewhat deservedly bad reputation in educational circles. The relation of theory
to practice is problematic. Many times the best practitioners don't have any explicit theory at all.
Alternatively, it may not be at all clear that the theory they espouse "does the work" in their good
practice, as opposed to their practical expertise. Others with the same theory may not be nearly
as good at teaching. Some of the best, or at least, best known theories, such as Piagetian stages,
have often seemed to put a straightjacket on instruction rather than offering many productive
suggestions. To practitioners, and all too often for researchers as well, "in theory" is more a lazy
lament that some expectation has gone awry rather than an appeal to some felt-to-be necessary
and well-elaborated set of ideas.

Along the same lines, theoretically inclined researchers seem often to ignore the most obvious
common sense. They do "silly things," if they do anything at all, and discover those things don't
work. Or they do clever things and hide their cleverness behind theoretical claims that just do
not seem refined or appropriate enough to catch their own cleverness.

I want to claim that whatever might all both theory itself and its relation to practice is not
incorrigible. For many enduring reasons, theoretical development is a principal hope for the
future. An uncertain relationship between theory and practice should be viewed as an indicator
of too little and insufficiently sharp theoretical thinking rather than an indicator that theory is not
useful.'

I advocate cultivating community skills and predilections for theory. In this I am certainly not
alone, although I feel I am in the minority.

I begin assuming that there is face value in having good theory, and assess the current situation
in that light. Then I examine in more detail the standards by which my judgments are made. At
that point, I will briefly return to buttress the assumption that theory is valuable and not just an

1. There was no sharp boundary between Aristotle's cLucs and his physics. After Newton
sharply formulated his physics, it is clear to us that it helps specifically with designing
effective and efficient automobiles, but it should not be expected to decide whether it is our
right to pollute.
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annoyance. Finally, I turn to how we might pursue being more theoretical. These last
suggestions are particularly important as they help define the practice of being theoretical as I see
it, and also provide some doable steps short of directly inventing deep and excellent theories.

The State of the Art
Baldly, I think the state of the art with respect to theory is, indeed, quite poor. There are two
sides of this. First, there is no general agreement at the level of theories of learning or
instruction. There just aren't any strong, broadly respectable and workable theories around.
Tom Romberg commented on one of the most thoroughly researched areas, children's arithmetic,
in a collected volume that represented the state of the art in 1982:

This copious literature has lacked an implicit body of intertwined theoretical and
methodological beliefs that permit selection, evaluation, and criticism. (p. 1)

His hopes that the situation was imminently to change, on the "route to normal science," have not
been realized. As evidence, I note that several of the contributors to that volume have moved
strongly away from their orientation at that time, and the rest have not converged into anything
like the common frame Romberg hoped would emerge. In areas closer to my own, like
"misconceptions" and conceptual change in science, I am willing to be even more aggressive in
asserting the theoretical backdrop is fragmented, diverse, and, if for no other reason than that,
unsatisfactory.

I strongly believe that there were theoretically interesting threads in 1982, as there arc now.2
Several of the participants in the volume noted above had and have what I judge to be insightful
theoretical frames. Case and Steffe, et al., have, in their particular areas and in their own ways,
done Piaget one better. Vergnaud's theoretical work on conceptual fields and "theorems in
action" is related to some of my own thinking, and appeals to me. The computationally - oriented
VanLehn and Greeno (Greeno, vintage 1982!) bridge to another powerful community of
theoretical thinkers who deserve attention and respect.

Yet, the list is awkwardly long if it is to represent strong and broad theoretical lines. The list is
also labelled mostly by individuals who, for the most part, are the only ones pursuing their
theoretical lines. There is enormous diversity of styles and aesthetics evident, even if I limit
myself to what is represented in that one volume. All these facts show severe limitations in what
the research community can claim about its theoretical state.

Rather than theories, there arc broad communities with similar and, arguably, strong meta-
theoretical commitments. Certainly there is an unmistakable family resemblance among
"Pittsburgh school" computationalists, although you must chose among ACT, SOAR, etc.
Closer to home, many call themselves constructivists these days. However, constructivistn is not
a well-developed theory, or even a class of theories. It lacks specificity, to take one obvious and
important measure. It never really comes down to saying, as far as I can tell, exactly what and
when people will learn. That is why Case, Steffe, von Glasersfcld, myself and others who arc, in
some ways, dyed-in-the-wool constructivists all pursue different theoretical lines.

Social constructivists, who are increasingly visible in the cognitively oriented education
community, or those who advocate a situated view of cognition, also share meta-theoretical
commitments. Yet there is precious little that even claims to be a compactly articulated theory,

2. Looking at the contributions, it's striking how little, in some sense, the situation has changed
in 9 years.

j
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as opposed to an elaborated point of view, and I am skeptical about the well-formedness and
clarity of these views.

So, we have precious little in the way of "hard core" theory. I am not demeaning pre-theoretical
or "mere" meta-theoretical points of view. As a matter of fact, I expect that theories can only
emerge as elaborations of these points of view, so we need to cultivate them as a means to better
theories. But they are not the theories we need.

There is no shame in the fact that we do not have broad and deep theories. I believe theory
development about learning and instruction is among the deepest and most difficult topics of
contemporary investigation. That anyone has only paltry theories to offer is disappointing, but
not surprising.

The second feature of the contemporary landscape of theory development is less cosmic than the
inherent difficulty of understanding knowledge and its development, and our current "pre.
Galilean" state with respect to this. That feature is, therefore, perhaps more something about
which we can and should immediately do something. The general level of theoretical awareness
and concern in education and learning-oriented communities is quite impoverished. In the
extreme, investigators don't know or care that they have no systematic framework to guide their
work, let alone a theory. They feel the most schematic principle deserves the name "theory."

I have been particularly struck with both the lack of theory and the lack of concern and critical
judgment with respect to theory in the context of reviewing papers for journals. The influence of
experimental psychology is strong. Experimental methods are well-developed, and there are
good criteria for having adequately earned out an experiment. Reviewers are attentive to the
aptness of particular statistical tests and general experimental design principles. Even most
standard paper organizational formats derive from what is needed to present an experiment
coherently. Or course, this is not troublesome except in contrast to the way theoretical ideas are
handled. Ad hoc criteria abound, if any are applied at all. As I suggested, I think quite
incoherent or simply unclear points of view are proposed as theories. Almost anything may get
past reviewers theoretically, while experiments are thoroughly vetted for cultivated community
practices and standards. Experimentally, confounds in experiment 1 are acknowledged and
tnevitably lead to a revised control in experiment 2. Theoretically, I long for the day that we
similarly acknowledge familiar gaps in our positions and invoke standard repair strategies for
future work.

I can cite a couple of other points at which the lack of concern for theory is vexing to me. I find
it amazing that graduate school requirements are filled with "methodology" courses, while I've
not yet heard of one that focused on the development of theory. That indicates a feeling that
theory is either too easy to deserve attention, or else it is hopeless, at best an art that only the
tiniest fraction of researchers will develop.

I also find that the way literature a cited betrays a deeply empiricist and a-theoretical bent.
Articles are cited as "X showed that Y," where Y is some easily statable fact. My own reading of
these articles is almost always full of nuance. They might have suggested terms for analysis and
interpretations of data, but it is hardly ever compellingly clear that their terms of analysis are
optimally appropriate, or that very different interpretations might not be as apt. Almost all the
work in providing other interpretations and, more important, pursuing the meanings of terms,
their integrity and general utility is left to the theoretically reflective reader. Similarly, much
research provides phenomena without explanations. Experts do this; novices do that Any
theoretically inclined reader wants to know why?

In a nutshell, not many people care much about theories. Standards of practice are sorely
lacking.
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How Do We Know Theoretical Work When We See It?
Given the diversity of standards of theory, I feel obligated to elaborate mine. All my educational
training was in physics, which may be the best developed empirical science in terms of theories.
There is danger in sayi' 'ny social science should be in any respect like any physical science,
but standards do not arise oy fiat.

I take three things from my experiences with physics. Each of these provides a "place to look"
and a "judgment to make" with respect to the state of theory in an empirical science. The first
has to do with the "texturr" of theories, their scope and structure as complex systems of
knowledge. The second concms how the quality of theory may be judged by the quality of data
that is acquired in it service. The third concerns some signs that indicate genuine theoretical
progress over common sense.

Theories are richly interconne-:,1 collections of ideas and are substantial precisely because of
their unusual integration. I from physics how much it takes to create an adequate
theoretical frame. This is .'one in a day of thinking or in a flash of insight. It is not
explained in a paragraph or two. When scientists seem to have flashes and create revolutions,
usually it is easy to see how much his/her own work and that of the community has gone into
preparing for the "flash." It is trivial, I think, to understand how even Einstein's stunning "de
nova" creations were tied in many and deep ways to cumulative work. And filling out the system
or cleaning up the foundations has typically taken at least decades, if not generations.

Fundamental physical theories are as rich and compelling (to those who hold them) as world
views. They are intricately connected to a stunning degree. There are many ways to present
them, yet there is such a solidity in their interconnected nature that, among adherants, some
experiments at least have entirely unambiguous interpretation and cleanly prescribed results.3
Every Newtonian knows the outcome of billiard ball collisions.

That kind of clarity sometimes allows decisive experiments within the general theoretical frame.'
Consider that so many scientists can agree that a little quiver of a meter reading can mean a
theory of stellar evolution has been substantially confirmed. Here, I'm thinking of the detection
of less than a score of neutrinos which has recently contributed vital substantiation to hypotheses
related to stellar evolution and super novas. That "little quiver" (metaphorically) represents the
detection of a neutrino, a massless particle that travels at the speed of light and can easily
penetrate the earth. The quiver rests on a strong fulcrum consisting of a stunningly reliable
understanding of the contexts of quivering, a transparent understanding of so many
interconnected, invisible but theoretically sensible ideas (like neutrinos), and a web of thousands
of experiments in which basic facts of quantum mechanics, relativity and particle physics have
not given us enough pause for concern that one would ordinarily think the experiments were
even about those fundamental theories. The fulcrum is so strong that it can be leveraged to
confirm a theory about stars, where we have never been. How remarkable!

3.I am not talking about paradigms being overthrown (or confirmed) by critical experiments.
Instead, I am more referring to experiments whose outcome are so obvious that no practitioner
would bother performing them except to illustrate a fundamental point to a student. It would
be extritnely unlikely that a competing theoretician would bother trying to upset a theory on
these core grounds.

4. Again, these are decisive within the paradigm.

r.
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I will be critical of learning theories until they have some similar integrity. As a consequence,
for a long time to come we will be able, if we chose to, to critique the adequacy of given and
proposed theories. We should chose to do so as a means of advancing our understanding.

A practical implication of this position is that it should be natural and acceptable, if not expected,
that those advancing theories should spend as much time explaining the limits of their ideas as
expounding them. Much more than where the theory is empirically weak (e.g., what experiment
should be done next), this means exploring where it is conceptually weak, where it is unsharp,
hard to articulate. in danger of incoherence, and so on. Only if we lower our standards
substantially do these critical pursuits not seem worthwhile. Only if we pretend we are much
farther along than we are can it be seen as a sign of weakness to discuss these issues with respect
to our theoretical proposals.

There is no data without theory. As much as science involves experiment, it is not a purely
inductive enterprise. This is so obviously true in contemporary physics that it hardly bears
remarking on. If one didn't have a very well-developed notion of what those invisible neutrinos
were all about, the "data" of meter twitching I remarked on above would not be data at all. The
whole ratichale for the experiment and set of observations would not exist, nor would the fabric
of reasoning that makes the observations informative. Nobody would have been looking for the
quiver, and it would have been incomprehensible if they had accidentally seen it.

There are two things that tend to undermine the influence of the above observation. First,
scientific formulations in physics look like empirical generalities that one could stumble on by
doing a lot of measurements and finding a pattern in the results. One just has to measure a bunch
of forces, masses and accelerations and find out that, reliably, F = ma. Or you make a bunch of
resistors and "discover" Ohm's Law. Why can't we Cad the laws of learning by correlating
parameters? I have only space for a "one-liner": It made no sense and would have been
impossible to measure forces or mass before at least some features of the theoretical framework
of which they were part existed. Measuring X requires a lot of commitments about the nature of
X, the very first, but highly non-trivial part of which, is to believe X exists.5

The power of intuitive or commonsense knowledge also undermines the appreciation of how
important and necessary theoretical frames are in the production of data. That is, common sense,
or some slightly refined species, can substitute for a theoretical frame so easily that we just don't
notice it. Every one of us is full of intuitions about the mind and learning. Some of these are
cultivated by the language we inherit -- "concepts," "beliefs," even "to know" and "knowledge" --
that have adequate purchase on the world to justify their everyday use. Some roots of these
frameworks arc probably more private, extrapolations of our own experiences in thinking and
learning, or extrapolations of what we observe in others. We can, in these intuitive frames,
"observe things" and draw fairly adequate conclusions under some circumstances. For example,
we are not outstripping the power of common sense when we say with conviction, He doesn't
know I went out with his girl friend."

It is common to say any observation implies a theory. Observations certainly imply a framework
of ideas, but not at all a deep theory by the standards implied above. (Hence a-theoretical
empiricism does not mean without a framework, but without an adequate scientific one.) The
problem is that intuitive frames are not powerful enough to constitute sufficient theories of the
mind in general and of learning in particular. We should draw them out when we rely on them,
and critique and refine them to produce more scientifically adequate frameworks.

5. See diSessa, 1991 -b, for an articulation of what might be involved in thinking to measure a
quantity and carrying that process out.
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Since theory, in some respects and on some occasions, defines data, we can sometimes judge the
quality of theory by the quality of its data. I provide a brief and clearly elliptical example where
I judge the problem with learning data is in the theory on which the data depends. In this case,
the problem seems to me to be both the clarity and integrity of the ideas themselves, and also
hidden intuitive presumptions that, when brought to light, seem dubious.

Some "theories'. of learning provide hat learning occurs when the learner is disequilibrated by
new ideas or observations that compete, in some sense, with old ones. I think the commonsense
roots of such ideas are evident. Everyone knows the feeling of being presented with
"destabilizing" information that doesn't jibe with our current take on the world. We all, also,
sometimes follow that feeling with a consideration of the circumstances of our knowing what we
think we know, and we sometimes "resolve" the difficulty by realigning our existing "beliefs."
Some likely inadequacies of this kind of theory (as sketchily as I've presented it) are not hard to
find. First, it is drawn from a particular class of experiences where we have reflective access to
our epistemic state: We are aware something is wrong. I take it as the right minimal assumption
that this awareness is only possible in certain circumstances where our meta-awareness of
knowing processes is above a certain threshold. Second, we must also consider the generality of
the processes by which we "decide" to reorganize our beliefs, and the means by which "we"
carry out that reorganization. Indeed, the sense of self that is indisputable in commonsense
thinking about thinking is hardly something we can, to be theoretically self-conscious, take for
granted. Sometimes we can act as an agent on our thoughts in a semi-reflective way.
Sometimes, I am quite sure, we cannot. More technically, we could ask what exactly constitutes
the state of disequilibrium. If we deprive ourselves of the common sense that says "I've had that
feeling!" how do we describe in any generic terms what constitutes that feeling, especially in
such a way as to apply to every event of learning? I could also enter into discussion of the
empirical limitations of such theory. To put it crudely, there are such a host of details about
learning that depend on the specifics of the knowledge to be learned and the individual as he/she
comes to the learning context, that it seems unlikely that disequilibration can possibly account
for them. If disequilibration uniformly exists, I believe there must be hundreds of different kinds
of it. At least, this is a thing to be seriously worried about.

Respectable theory, when we get it, cleanly transcends common sense. My last point of
extrapolation from physics to our expectations for theory in education really follows from
discussion of the above two points. Unless we can unam:Aguously point to how we have
transcended -- in generality, precision, clarity, and justifiability -- the intuitive sense of
mechanism we all build in daily life observing and thinking about psychological matters, we just
won't have adequately prepared theoretical ground. I'll pick one focus for this exposition, but I
think the point is much broader. Commonsense vocabulary just won't do the job of providing
the technical terms of a theory of learning. When we stop with "beliefs," "knowledge,"
"concepts," and so on, even with a few phrases of elaboration, we are on extremely shaky
ground.

To put an edge on this, physics theorizing has always involved ontological innovation. The
"force" in Newton's theory is a new entity that simply does not exist in common sense. Even
mass took on a much refined interpretation to make sense in that theory. More evidently,
quantum wave functions did not exist before quantum mechanics. My presumption is that we
will not have adequate theoretical purchase on learning until concepts, facts, beliefs, skills, and
all the rest of our common sense about knowledge and learning become reinterpreted within a
fabric of more precise and less intuitively loaded terms. Please, do not mistake: I'm not
appealing for obscure language, or for proliferation of new words. I'm appealing for the clarity
that can come with ontological innovation.
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Defending Against "Social Science Is Different"

I have three defenses against the claim that the above is simply an unwarranted extrapolation
from physical to social sciences, which I can only briefly pursue. First, I believe all of those foci
are epistemological, not just saying "cognition should be like physics." That is, they can be
given motivation independent of their appearance in physics. I don't think, for example, that the
theory dependence of data is at all unique to physics. I do believe that transcending
commonsense frameworks is an important task to pursue, and a reasonable measure of success
for any empirical science.

Second, let me demonstrate the care involved in selecting these points to extrapolate by listing
characteristics I do not extrapolate.

1. Mathematics. I deliberately did not pick mathematization as a core characteristic to
extrapolate. In the first instance, I believe explanation is a higher priority goal than
mathematization. As well, I don't believe the mathematics of mind descriptions will be
very much like the mathematics of physics; I expect it will be more like the formalisms of
computation. This is, of course, a long story of its own, but it at least means
simpleminded expectations about the form of knowledge and learning theories are to be
guarded against.

2. Sense of mechanism. I don't believe the basic sense of what terms and forms are
explanatory can be imported from physics. In particular, I don't expect that reductionist
accounts, for example, a purely "brain science" approach to mind, will prove successful.
The distinction between correlation and explanation is fundamental to any science, and
deciding which is which is not a matter to prejudge on the basis of other sciences. My
advocacy of theory in this paper is precisely to say we must do this for ourselves.

3. Methods. Every science needs its own methods adapted to its own theories and to the
observational circumstances available to it. We can't blindly appropriate empirical
techniques that work for sciences that have much more theoretically sound, or simply
different, ontologies. In contrast to physics, I believe "empathetic techniques" that use
(carefully and with many qualifications) our ability to sense our own thinking, and react
instinctively to aspects of others' may be quite helpful. We don't have recourse to this in
most areas of physics (though we do, in some degree, in our kinesthetic senses for the
case of Newtonian mechanics).

Third, I explicitly recognize the many arguments against expecting theories in social sciences to
be at all like those of physical sciences: "Social sciences are too complex and contingent to
admit of theories of the sort we find in physical sciences." Or, "Social sciences are and must be
fundamentally interpretive, not predictive." Without pretending to argue the points, I note that I
simply have not found the arguments compelling for reasons like the following:

1. Such claims are too often simply assertional, without providing a theoretical basis for the
meaning of the "fundamentally differentiating attribute," or how it opposes its supposed
antithesis in the physical sciences.

2. Even if the distinctions turn out to be well founded, one has the obligation to explain why
they bear on the possibility of good theories. I don't see why the observer's being like
the observed means that there can be no clean conceptualization of the observed.

3. Claims of intrinsic difference between social and physical sciences often are drawn from
caricatures of physical science, far from what I experienced as a physicist. My
experience of physics was of highly integrated explanatory systems that involved
important ontological innovation. It was not of "narrow and mechanized prediction."
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Similarly, to think that physical systems are easy to observe simply does not jibe with the
fact that the appropriate thing to "observe' may be a wave function! There was plenty of
argument and "interpretation" around in the early stages of any of the foundational
physical theories.

Physical theory deals with systems of 10n particles and chaotic systems that are, in some
ways, strictly unpredictable. How, exactly, is the complexity of human systems
fundamentally different so they are intractable by theory that resembles, only in some
basic epistemological senses, physical theory?

4. Many of these claims seem to be simple restatements of the fact that we don't have good
theories, drawing the conclusion, somehow, that we can't have such theories. "History
shows that learning theory has had a poor track record in its application, in education."
Of course it does. It also shows this has been true of every field of inquiry before it
developed deep scientific foundations.

I've explained and, to some extent, justified my standards and judgment that we don't have
excellent theories yet, but that they might be achievable. It is possible to think we are so far from
that kind of theory that applying such standards to educational or psychological theory is
ludicrous. I think, in contrast, that we may develop a tremendously helpful set of at least interim,
if not absolute, standards and heuristic moves to advance our understanding out of the realization
that we are not done yet. Realism is almost always the best policy. Although it is exciting to
believe we're on the edge of really major breakthroughs, if we have not made them already, it is
probably more important to have a cultivated sense of how far we have actually gone, and how
far and in what directions we need to move. I prefer to avoid accepting "wimpy" epistemological
standards that claim social sciences just won't ever and shouldn't strive to meet at least some
strong standards in some respect like those physics has achieved.

As I have indicated how difficult I believe it is to achieve deep theoretical understanding, I am
quite sure we will never achieve it if we don't set our minds to it. This is a kind of Pascal's
wager I'm prone to accept: Unless there are compelling reasons to abandon searching for deep
understanding that is in some ways like what we have in physics, we ought to pursue it.

Do We Really Need Theory?
I've treated, however briefly, claims that we can't reach the kind of theory in social sciences that
has been achieved in physical sciences. In this section, I consider what we get from theory to
bolster our resolve that it will be worthwhile before getting on with the program. Much that can
be said about this will sound familiar and commonsensical. Yet I believe it bears reviewing in
view of the apparent undervaluing of theory in the educational community. Of the many things
that could be said, I'll select only a few.

The Scientific Power Principle.

Theoretical scientific understanding reliably yields capabilities that far surpass what we can
attain by experience or intuitively-based empirical methods. Physics (lasers, nuclear energy),
biology (recombinant DNA techniques), medicine (controlling viral and bacterial infections),
technology (materials engineering, semiconductors and computer technology), and so on, all
repeatedly show that theoretical advance is the linchpin in spurring practical competence. Even
when a great deal of experiment and much engineering musibe done, theoretical advance defines
the parameters of experimenting (e.g., the terms of materials science), and establishes entire
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engineering domains (e.g., modem electronics emerged out of the basic quantum and materials
principles that suggested the transistor could woric).6

It is true that many aspects of our lives are entirely adequately handled by experiential or "purely
empirical" approaches. You don't need Euclid's Axioms or General Relativity to navigate your
house. Reading Consumers Reports and finding there a statistically reliable correlation between
the measured reliability of a car and its brand is probably all you need to figure out which car to
buy to have the best chance at getting a durable product.

Sometimes things are not so easy. Generating adequate power for our planet is not so easy.
Building machines that fly is not so easy. I strongly believe designing for human competence,
ranging in my immediate concerns from designing instruction to designing information machines
for comprehensibility and effective use, is not so easy. I don't think it even needs argument that
getting the most from our intelligence is a worthwhile pursuit. There is plenty of value, hence
motivation for spending the time and effort to understand learning well.

"Because It's There"

One needn't be so practical about pursuing deep understanding. I believe our field is dealing
with almost timeless questions. Physics approaches questions like: What are space, time and
matter, and what accounts for their structure? Does the universe have an end; how could it?
How did this all start? In the same way, I believe we all deep down want to know things like:
How do we know? What arc the limits of human knowledge? Why are people different from
other animals; what does it mean to be intelligent, and are there fundamentally different types of
intelligence? Such questions deserve deep answers. These are grand enough pursuits to make
me very happy when I feel I've taken a small step. Realizing the scope of one's goals give
meaning to the enterprise beyond the limits of present understanding.

Cuntulativity in Science and Overcoming Barriers.

I have suggested already that theory is important to the infrastructure of science independent of
implications for practice. "There is no data without theory." I suggested that developing
standards and being critical of our explicit or implicit theoretical commitments is a prime method
of improving our scientific understanding. I wish to point to two general and important
infrastructural issues here.

The first is cumulativity. I hear echoes of Allen Newell's (1973) "You can't play 20 questions
with nature and win."7 His sentiments strongly parallel mine. One can't simply collect ad hoc
hypotheses about what might influence what, and it is boringly non-cumulative to identify one
after another little experimentally valid "phenomenon." Science needs a broader woof and warp.
It needs breadth in order to supply focus. One simply must take stabs at overarching views so
that the pieces fit into a larger context -- or don't, in which case we need another theoretical stab.

My reference to neutrino detection above can make another point. The "strong fulcrum of well-
elaborated theory" I described in that story can disconfurn as well as confirm. For example,
scientists might measure a tiny shift in the orientation of an orbit to (possibly) disconfirm
Einstein's theory of relativity. It has to be that way, if Einstein is right, no ifs or buts. In a sea of
"phenomena," of correlations without rigid underlying causal mechanisms, of heuristic but

6. diSessa (1991-a) describes some details of how the engineering context of learning theories
might relate to the theories themselves.

7. Or see the first chapter of Newell, 1990.
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commonsense ideas about knowledge and learning, no such disconfirmations are possible. There
are always exceptions and extenuating factors. We don't know when exactly our hypotheses
must apply, nor exactly what they predict. To take a case I introduced above, I believe that
current disequilibration theories of learning are not disconfirmable. (Perhaps they are
tautological, which is not the worst status possible.) Until we know exactly what disequilibration
is, what processes generate it, and what processes are available to "select" a new view, and
"change beliefs," we will always be able to fiddle with our characterization of a learning event to
make it look like disequilibration.

Problems with a Theoretical Approach
I hear a couple of "Well, OK, but..." reactions to my line of argument to which I would like to
respond. The first is the feeling that only special individuals, the Einsteins, Newtons, maybe the
Piagets and Skinners, and so on, create theories. I am comfortable that grand moves might
always be associated with individuals. Still, a field is not all grand moves. As I suggested, I
believe almost every paper I have reviewed for journals could have been improve and clarified --
putting its results and non-results in clearer relief -- by some hard thinking about its hidden or
missing theoretical commitments. I think small steps at clarity, generality, even to better fix
present state of the art, can accumulate. This may be more plausible to those who habitually see
theory as always coming in identifiable, "world shattering" chunks after I make some
suggestions (in the section on Some Almost-Practical Steps) about small things we can do on the
way to more adequately addressing the theoretical side of the requirements of science in our
community. Even if we accept the grand move hypothesis about theory, our community has a
much better chance of cultivating or attracting individuals who can make those moves if we are
more theoretically aware and intent. Perhaps we would be better at noticing and judging
important theoretical moves in the making.

I anticipate one other reaction. It is easy to imagine that if theory-building becomes a more
popular sport, journals will be filled with incomprehensible jargon and unsubstantiated
speculation that now tends to characterize "theoretical" work. But I'm advocating "better" as
much as "more." Future theorizing should be constrained by significant advances in a critical
sense, which would prune away idle speculations. Indeed, as I suggested, the first signs of a
more theoretical orientation will much more likely be self and other criticism and recognition of
limits rather than just more theory.

Cultivating a Theoretical Turn of Mind: Some Almost-
Practical Steps
The premise of this section is that the pursuit of theory is an excellent thing to do short of
producing encompassing and revolutionary theories, as usually catch our attention. I've
collected a short, ad hoc list of steps we can take toward becoming better theoretical thinkers.
Many of these reflect things I've said above.

These heuristics for the development of theory are actually a fairly critical part of this essay.
First, this is really the place I begin to define what I mean by theoretical thinking, short of
standards for "having arrived." I hope it is evident that I have a broad interpretation of
theoretical thinking, and I would argue that is appropriate. Second, if appeals to be better-
oriented theoretically are to have any effect, they had better have particular, doable moves
associated with them. I hope to get from this section reaction from colleagues on what they think
constitutes theoretical work, and whether it is important and doable (or done!).
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Some of these suggestions, especially the later ones, specifically single out students. I don't
mean to imply that those suggestions are only for students, or that students shouldn't expect to
get anything from the other suggestions. I do mean to emphasize the importance of Ludents'
training in changing a field, and also to point out some steps toward theoretical thinking that I
think are either particularly easy or particularly important.

4lmost every proposition we car formulate these days is as false as it is true. Try to understand
why and when they are both true and false. This is a heuristic I've cultivated myself in
reviewing journal submissions. It helps us discover the hidden contextual dependencies of our
ideas, hence helps to define their real generality. It combats "confirmation bias." In addition, it
asks us to be more explicit about what we mean so that one can make sure we have: explained
what our terms mean, rather than relying on inarticulate instincts that apply ideas only where we
know already they work. The heuristic can be also used to be clear on the contexts in which our
ideas have their intuitive roots. Armed with that, we can understand both a bit more about why
and when our claims might be valid and adequately specified.

Is learning always best done in groups? Almost certainly not. Is cognitive apprenticeship the
right method to learn any material? Can't be. Are novices always concrete and experts always
abstract? Not. a chance. For all the social roots of individual cognition, I am confident there are
also individual roots of social cognition.

If you can' t decide, take a line and push it until it breaks. I frequently tire of papers that list all
the possibilities of how the world might be configured to explain a phenomenon. Sometimes,
anyway, we should be able to make good guesses that cut away broad ranges of possibilities and
hence have important consequences. These are guesses that are worth pursuing in an extended
way, in contrast to meandering among the many possibilities. For example, in my work with
intuitive physics, I have quite deliberately made the decision to assume that such knowledge
comes in identifiable bits, "atoms of cognition" if you like. I am quite aware I have precious
little evidence to establish that fact, but I expect only to know whether or not, and in what way, it
is true if I develop an elaborate theoretical scheme that defines precisely what "knowledge in
pieces" means, and can draw extensive implications.

A complementary heuristic is to understand when you have made such a commitment, as
opposed to believing every aspect of your thinking is justified by the weight of evidence. Many
of our working assumptions are simply not justified in this way. It's worth our taking
cognizance of that fact.

Arrange your work to be thematic, cumulative. I don't think it happens without effort that each
of us (and, perhaps, communities of researchers as well) plots a coherent line. I think it is
particularly easy to have an empirical program that does a little of this, a little of that, and moves
on. Experimental Methods seem much more transportable than theory. Yet, if we are to develop
theory, we shall have to work coherently at it.

I see too much opportunism in the way research topics arc approached. Mental models,
"misconceptions," or collaboration become "hot topics," and many jump in. But they are also as
likely to leave in a year or so as to make a deep mark. Of course, we must all decide when a line

8. I've applied this heuristic systematically in thinking about differences we instinctively apply
to naive versus expert knowledge. This has become articulated criticism of some of the
"expert/novice" literature. See, for example, sections on "concrete and abstract" and on
"generality and specificity" in Smith, diSessa & Roschelle (in preparation).
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is progressing and where the new opportunities lie. But we should also select our foci carefully
enough that we believe an extended effort will be rewarded,9

Question ontologies; refine categories. I've transplanted my suspicion that deep theoretical
advances are always accompanied by seeing the world in new and different terms into this
heuristic. What are "concepts" or "entrenched (or any other kind of) beliefs"? What is
"metacognition," "a community practice," "an educational activity"? Questioning the analytic
and empirical meaning and adequacy of these categories expresses skepticism about the
precision of nearly commonsense ideas that substitute in much current work for what should be
technical terms in well-developed theory. Questioning meanings also expresses a feeling that a
pursuit of what we instinctively mean by these words can be clarifying. Of course, this could
become an armchair game. The enterprise works best in the context of empirical study that tests
the work more refined terms might do for us.

I find myself questioning my instinctive categorization of instances all the time. It would be a
worthwhile enterprise to catalog strategies for making these tests. Such questioning episodes
turn frequently into pursuing clearer meanings for terms operationalizing them or framing
them better in order to afford both easier classification of instances and also clearer import of
classifications that have been made.

Make the most of "what we know for sure." Physics has a few things that it knows for sure.
Symmetry considerations are among them. As well, it knows that all physical interactions must
be local in space and time. Although things "we know for sure" may seem general and bland, in
the hands of the best physicists they have proved amazingly powerful and particular. They seem,
especially in combination, nearly to "deduce" particular physical laws.1° Surely we must have,
or should be looking to find, similar principles in education or learning psychology. What are
they? I'll leave this heuristic open as a good litmus test concerning how we think our field is or
will ultimately be organized. It might be that most readers will simply not know what I am
talking about. Or, alternatively, they have their list, or believe there can be no such list.

Let us think what appropriate empirical work, data collection and analysis, might be like to serve
theory building. I am convinced that our arsenal of empirical methods are skewed tremendously
toward confirming or disconfirming hypotheses that are assumed to be well-formulated rather
than toward building an adequate basis for making hypotheses, or testing the well-formedness of
our ideas in contrast to testing their truth or falsity. I believe empirical work can play a vital role
in developing theory, but this role and methods that fit it are undervalued and underdeveloped. I
would love to see a good course and text developed around empirically grounded theory
developmentli

9. Early in my professional formation, I was influenced by Howard Gruber's concept of a
"network of enterprise" (Gruber, 1981) to describe how creative individuals manage to pursue
a sufficiently diverse yet cumulative, and mutually reinforcing set of lines of inquiry. I sat
down and designed my near-future network. I believe, in retrospect, that was an important
step for me.

10. Feynman (1965) wrote a beautiful little book on this. I have also been tremendously
impressed by the work of scientists like E.P. Wigner, and Einstein in this regard.

11. Perhaps I am defensive, but I believe some of my empirical work has been misunderstood as
not-so-good theory confirmation, when I view it as more-than-usually-conscientious data
sensitivity for the purpose of theory motivation, specification and development.

iwe
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Cultivate a sense that explanation is the name of the game. When people begin to play the game
of science, their first glimmers of understanding it are that science is about finding the way
things are. Science finds "that" X or Y. More deeply, I take it that science is explaining "why
and how" things can be the way they are. Of course, there should be a few "thats" in science,
that F equals ma, for example. But these "thats" must have thousands of "and therefoms"
following them. In general, observations must be carefully placed in an explanatory web.

I think versions of this primitive "that" orientation are insidious and long-lived. As I mentioned,
many too many papers talk about the existence of a phenomenon without pursuing underlying
mechanism. In education, prescription substitutes to an amazing degree for adequate
understanding of underlying mechanisms. To parody, "We know that to teach well, one should
do X." I find this in some degree even in some of the best work in the field, or at least in the
field's (if not the investigator's) take on the work. Reciprocal teaching inappropriately becomes
a principle rather than a technique.

Taking instructional prescription as mechanism is essentially a category error. Instruction is an
area of complex design. I don't expect deep principles of learning will often if ever show
themselves on the surface of an effective design. Of course, this fact makes our job harder -- we
must both understand the principles behind instructional interventions, and we must understand
the contexts of application of those principles well enough to know that the principles are truly
involved and do the central work we might claim for them.

I've been struck by a characteristic of most of the most creative and deep thinkers (of course, in
my judgment) I have known. They are constantly on the alert for interesting phenomena, where,
perhaps, a fundamental piece of the world breaks through its mundane presentation, or, as
interesting and likely, where we find a deep intuition confounded. They take the time to look
again, recreate, modify, and make a proposal for both an explanation and for why the
phenomenon is puzzling in the first place.

In some respects, this behavior seems unprofessional. It is amateurish because these individuals
frequently have no specialized interest or knowledge about the phenomenon at issue, why bottled
water fizzes in a particular way, or how geological formations of a particular sort might have
come into existence. But I have come to feel that these entertaining little escapades are both
telling and important. They tell us that being alert to the odd moments when nature reveals
herself to us is a high priority enterprise. It is an enterprise of observing, reflecting and
explaining, which some people cultivate or do naturally. These people have likely acquired
some generally useful skills with respect to this enterprise, and probably find it both entertaining
and profitable to exercise even away from their domain expertise.

I find the instruction in cognitive science and education unusually devoid of such spontaneous
pursuits. Too often students are expected only to be "library indices" to sanctioned data,
knowing the results of the field, thinking to observe and comment on only things others have
declared comprehensible or empirically tractable. Students don't think much about their own
experiences in learning, or what they make of others', except as filtered by the sanctioned state
of the art. Though the focus of this little, perhaps dubious, indicator of a more general
theoretical orientation may be misplaced, I find similar indicators again and again in deep
thinkers. These are almost never reflected in our training.

Create Mini-Theories. There is a slightly more professional version of the activities described
above. That is to formulate little mini-theories about important issues in the field, and use them
to accumulate and refine ideas about what must or might be true. The criteria for these mini-
theories are not ad hoc. First, they ought to be about important things, so the time spent on them
is worth the effort specifically concerning conclusions (as opposed to the process orientation,
above). It also helps a lot if they are counter-intuitive, to test the strength of our "knee-jerk"
dispositions that arise from implicit theoretical orientations. Frequently, mini-theories occur to
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me in the process of thinking, "That seems strange, but there's something appealing about it, and
it might explain some very puzzling phenomena."

I find these are the kind of things from which programs and theoretical ideas grow. For example,
my own "theory" of intuitive physics arose from two at the time counterintuitive (to me) mini-
theories. One was that cognition is radically unsystematic. As I put it to myself, every idea is a
different form. The second was to presume that we could identify a large set of what appeared to
me at the time to be a few cute little intuitions you could trick people into displaying, and that, in
fact, causality was constituted of a whole body of such entities, rather than being localized in
general principles of cause. The latter seemed particularly counter-intuitive at the time, but I
could not see how to dismiss it out of hand. And since causality had proved so elusive, maybe
people were looking in the wrong place. These mini-theories developed into a fairly elaborate
theoretical and empirical program, of which they are still good motivators or hooks to explain the
gist of the program (diSessa, in press-a).

A recent mini-theory of mine is that the robustness of scientific "misconceptions," which is
touted in the literature about them, is mostly constructed in encounters that are intended to
expose and overcome them. This contrasts with presumptions that misconceptions are inherently
stable, and hence must be attacked. Instead, people may only formulate positions when asked to.
But once asked, they can build rather resilient ideas out of what might otherwise be fleeting
impressions. We may then be doing exactly the wrong thing in "attacking" misconceptions. I
wouldn't pretend to defend this statement scientifically at this point, but it will orient some of my
thinking, and I believe it might turn into a collection of defensible claims. One of the properties
of this mini-theory is that it challenges some of my own presumptions, as well as those I feel
others have inappropriately taken up in their work. So now the game is: What could this mean?
Could we demonstrate that it is definitively false, thus simply drop it?

Formulating and pursuing mini-theories strikes me as not only a reasonable practice for
professionals, but, with guidance, a good and tractable finger-exercise for students.

Redescribe, redescribe, redescribe. Students particularly suffer from the feeling that the world
presents itself directly to them, that intuitive characterizations define exactly the circumstances in
which we can use those terms and descriptors. This is profoundly false. Our future colleagues
need to understand this and need to play a better game of formulating and judging descriptions as
soon as possible. I am especially fond of redescribing educational practices that students find
instinctively repellent in terms that they use to describe good practices. We propagate attitudes
rather than clear conceptions about instruction by only using words that sound laudable (or the
reverse) to describe particular practices. Of course, redescription is not only to get students to
rethink judgments and their bases, but to articulate and refine the meanings of the terms that
seem clear and apt, but may not be either well-defined nor apt.

Cultivate a sense for the "big issues" in the field, I've underlined how difficult yet central I
believe theoretical considerations are, and how important it is to generate a coherent program to
make advances. Students especially need to know where the field is, how to measure the latest
fads, and how, in general, to calibrate progress they or others might make. It is often "schoolish"
and vapid to announce what a field is about. The first chapter of textbooks that explain "what
physics is," or psychology, are usually crushingly boring and uninformative. Yet the
responsibility of keeping track of our advances on a large scale is critical, and we should not
shirk it.

Identify, practice (and give students opportunities to practice) basic theoretical moves. The
subproblem here is a particularly interesting one. What are.basic theoretical moves? This is the
parent problem of several of the above suggestions. Identifying basic theoretical moves not only
defines the practice of being theoretical, but it also explains in a more explicit way what is or
should be meant by theoretical work and what are central as opposed to peripheral parts of it.
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For example, the heuristic "redescribe" tells us that the terms in which we describe the world are
as important an object of study as finding the "right" propositions using the terms we already
have. Heuristic strategies of evolving more precise and powerful descriptions arc thus a central
set of moves in making theoretical advances, of which "do it" (redescribe) is the crudest.

A basic move I find myself rehearsing explicitly and self-consciously for students embarked on
their theses might be called the "characterize, systematize, re-examine loop." Typically, one
immerses oneself in data, using whatever initial predilections for analytic frameworks one has at
one's disposal. Usually one comes out having found a number of critical phenomena --
happenings that can be somewhat effectively characterized in available terms and seem also to be
critical in one way or another. Then, one takes the terms of description, categories, and implied
or conjectured relationships among them and tries to complete and systematize the story. What
could a generic characterization of such knowledge be? Why might this relation hold? Is it an
example of a more general relation, or what co-requisite (but undescribed) circumstances might
make the relation more comprehensible and "necessary"? With a more articulated, complete and
more evidently causal story to tell, we need to return to the data. Can we see the differentiation
of contexts implied? Is there, in fact, only one critical feature, or is the phenomenology of our
data much more diverse than we presumed? Do the new categories developed in the second
phase help make better sense of the data?

The second phase is one students especially need coaxing to do. It's not an obviously workable
tactic in an empirically dominated world view. It seems rather rationalist -- how can we find
ambiguity in terms, extend items to "a full list," and so on, without looking at the data? Yet, this
is where theory originates or is iteratively improved. We not only can, but we must be analytic
and systematic in reordering existing perceptions and observations, in sharpening the meanings
of categories that define how we see things, in completing fragmentary patterns, which gives us
new eyes to check the data.

Summary
Theory is a tough goal to maintain in the face of the state of the art in learning and instructionally
oriented investigation. It would be easier if we could just "bail out" and think we were more like
"literary critics" of practice, or artisans fabricating all-the-time better, but unprincipled artifacts.
I think we should face up to the fact that it is very likely we could, if we chose to, be a science in
the making, however limited our present powers. If we do not critique our work by high
standards, then we will certainly delay obtaining the kind of power deep scientific understanding
might bear.

I have tried to advance an image of theory building that is incremental and heuristic as much as it
is a set of simple, hard standards by which we will know when we are done. In fact. I've really
avoided the "standards" view for the most part, except to give a sense for why I judge we are not
fax along on the path to excellent theory. The heuristic view of theory building is especially
important given that no one can say with much certainty how much future learning theories will
look like the excellent theories we know in other domains. It is also simply more important to
know how to move things forward than it is to know when you are done. So, theory-building can
be hard-nosed in its goals, but at the same time generous and truly exploratory in its active parts.

As a community, I am arguing we should exercise more effort in and attention to theoretical
matters. We should cultivate a critical capacity to understand modest advances at the same time
we recognize the many types of limitations of existing theories. I think we should share and
systematize methods to improve our frameworks. Most especially, I urge we scrutinize,
articulate and refine the theoretical moves we've all intuitively developed and found powerful.
We should do this for the benefit of our students, for our colleagues, and, especially, for
ourselves.
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Appendix: A Theoretical Orientation
I deliberately avoided discussing particular theories or theoretical orientations, for the most part,
in the body of this essay. This was to avoid contentious detailed issues that could easily obscure
the main points. But, theory-building is not a "meta" exercise. Scientists must take on or
develop an orientation toward theory, and find the classes of theorizing they believe appropriate
to the subject matter they arc investigating. I am advocating that we articulate and -advocate
particular lines. I wish to do a little of that here.

Every researcher develops a particular "sense of mechanism" about what the basic principles
operating in a domain are like. I believe this is a precious personal and community resource that
guides observation and generalization, but it needs explicit consideration. If you think theories
will look like prescriptions, that's what you will develop. If you think "thick descriptions" arc
explanatory, you won't develop other kinds of explanations. If you believe that a particular
social relationship can define learning, or that no description of knowledge "in the head" is
relevant to learning, you won't pay attention to the structure of content domains.

My instincts are that we must develop mathematical-computational theories of mind and
learning. I am drawn to current attempts to do this on several accounts. First, there are at least
languages of analytic precision in play. This also builds in some strong mechanisms for testing
the ambiguity or sufficiency of the ideas involved, and for surpassing reliance on intuitively
attractive, but "magical" ideas about the way things may work that common sense provides us in
abundance. There is plenty to criticize about most present computationally formulated theories,
but I don't see the sense in denying the ways in which they are attractive.

On the other hand, I don't yet insistently couch my own ideas in these terms. This is a judgment
that we haven't got the mathematical-computational foundations quite right yet. Most directly,
the best developed theories in this area (and they are better formed by many standards than
"theories" belonging to many other traditions) just don't, in my judgment, reach the issues or
touch the empirical phenomena I am most interested in pursuing, mainly those dealing with
conceptual change and long-term conceptual and intellectual development.

The crux of this lack of contact, I believe, is that current theories just do not get to the heart and
power of knowledge. More specifically, I believe there is a tremendous diversity to the kinds of
knowledge and systems of knowledge that one can find. Essentially all computational theories
are much too "flat" and uniform, to my taste, suggesting much more uniformity than I believe
exists. I believe I perceive many different subsystems of human knowledge that have very
different properties, which properties I don't know how to describe in the terms of these theories.
(Or better, I don't see how the precision of the theories improves the apparently looser
descriptions I make outside of them.)

This leads directly to a general program for studying thinking and knowing. It is roughly at the
level of knowledge itself, though one needs to have at least a minimal sense of computational
mechanism in order to see how pieces of knowledge relate to one another, and how the system
functions dynamically. The basic plan is, roughly, to develop a sense for the grain size of
knowledge elements and of their rough individual properties, but then the real business is to
describe the system properties of these elements. How "densely" are the elements interrelated?
Are they tightly interconnected and used almost always in contexts of the same other elements,
such as elements of a skill that are activated only in patterned sequences of that skill
deployment? Or are they very loosely interconnected and fluid in their composition in particalar
thought contexts? Can we describe the functions of the particular system at issue and how they
join with other systems to perform more complex functions? Are there mechanisms that produce
levels of systematicity other than those that ha a to do with performance? For example, do some
core set of ideas in some sense derive the rest, though derivation is not the usual mode of
operation of the system?
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I've developed two exemplars of knowledge system analysis. The first is my analysis of
intuitive ideas in physics. Roughly, my claims are the following. Intuitions about causal
mechanism reside in a large system of fairly simple elements that are only loosely connected.
The function of the system is to provide judgments of how adequate a description explains why
one should expect a particular thing to happen. The elements are configurations of
circumstances that "just happen" and need no further explanation. Trying to figure out how a
physical system works or what will happen is trying to find an optimal description of the
situation in terms of these causally primitive elements, and one that best matches the conditions
under which each of the elements is understood to apply.

This knowledge system does "judgment." It does not solve problems per se, or even specify very
much about how an individual improves his current best decomposition of a problem situation
into causal primitives. As for levels of systematicity, the system is mostly ad hoc, consisting of
individual abstractions that are particular to some class of situations and just don't apply to
others. Typically, only a few primitives apply to a problem situation, and connections of the
elements are also mostly ad hoc, determined by the situation instead of general patterns of use of
multiple elements.

On the other hand, there are some higher level systematicities that are useful to know. There are
a few families of primitives that share a "base vocabulary" of descriptive terms. In some cases, a
family of causal primitives share a central common abstraction, for example, one abstracted from
agentive interaction: a "willful" (in some sense) agent, a patient, and a legitimized, but always
directed "influence type." Pushes and pulls are canonical examples. Some of these families are
important in identifying problems in learning, such as the need to undermine an entire class of
primitives and support a new class.

This knowledge system analysis has educational implications. The principal one is that
conceptual change is a system issue. It is hopeless to believe you have found the core of intuitive
"misconceptions" and can argue the core away for students, leaving the conceptual field free for
new conceptions. Instead, the whole problem must be conceived as an elaborate reorganization
(not replacement). One must attend to system issues in learning, not just "one-at-a-time concept
learning." In addition, knowing the existing intuitive primitives constitutes knowing the basic
resources that must be reorganized, and establishes particular targets of difficulty, but also
opportunities to build on some particularly apt corners of the naive system. "Engineering" is an
appropriate metaphor for instructional design, since the richness, generativity and diversity of the
naive system means there will likely be many opportunities and possibilities, no one "right way
to construct the new system."

The knowledge system of causal judgments I have described is really a system of problematic
descriptions. They are problematic because they prescribe the "deep causal structure" of a
situation, which may frequently net be immediately evident. On the other hand, people also have
"strong and reliable" descriptive capabilities, for example, in the area of spatial organization, and
possibly dynamic spatial configurations. This is a different kind of system that may be the
intuitive base of more mathematical ideas rather than physical ones. It is one I intend to study in
future work.I3

The second area in which I have developed a knowledge system analysis coni.ems understanding
complex computational artifacts -- programming languages. In this context I claim to have

12. A quick sl-etch of these ideas is available in diSessa, (1983) or diSessa (1988). A thorough
treatment will appear in diSessa (in press-a).

13. See diSessa (1989) for some very preliminary results conceming dynamic spatial reasoning.

41'
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developed a short taxonomy of systems, which I describe as types of mental models, that have
complementary structures, strengths and weaknesses, different learning trajectories, and to some
extent also complementary functions. Learning a programming language is viewed as building
and articulating properly all of these systems. Designing a comprehensible system is creating
one that has good properties with respect to all of these systems.

In this area of mental models, I believe it is important to understand not only the structure of the
systems involved, but their properties in several different modes in which they may be used
That is to say, the system may be complicated enough that it may configure itself in several
rather different patterns.''

Most recently, I have tried to extend knowledge system analysis into a general view of the
evolution of knowledge systems. I've tried to define a general scheme of causality by which one
system may transform into a different one. This work is, at present, very speculative While it
might prove to be very general and possibly powerful theoretically, connections to empirical
work are weak. In contrast to the work with intuitive physics and mental models of
computational systems where the knowledge system analysis followed as a systematizing phase
of a "chara-,terize, systematize, re-examine loop" (see text, in the section on Cultivating a
Theoretical 'rum of Mind), I am attempting this work more top down. Thus, I've tried to "build
the theoretizal system" first, to some extent, rather than doing a more bottom up first pass
through data relating to an approachable example.ls

14. diSessa (1986) gives a brief introduction to this kind of analysis. diSessa (1991-b) gives a
thorough treatment.

15. diSessa (in press-b) presents the program describe briefly here. diSessa (1991-b) toes to
bring it a step closer to empirical development and test.
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Getting Ahead: With Theories*
I Have a Tneory About This

Pxick W. Thompson
Center for Research in Mathematics and Science Education

San Diego State University

"Don't paint the material of the
sleeve. Become the arm! Get your
love into it." (Newell Wyeth to his
daughter, Carolyn. In [Meryman,
1991, p. 100].)

Andy has developed a formidable challenge. He wishes mathematics and science

educators to develop a predilection toward theory and theory building. To understand what

Andy means by this is not simple. I suspect that the more familiar you become with his

work the deeper will be your appreciation of what Andy has in mind. I encourage all to

become concretely intimate with Andy's point of view. There is much to be gained.

When Andy spoke of theories he referred to theories in the social sciences. I feel

uncomfortable speaking so generally, so I will confine myself to theories of learning

mathematics.' This is not overly restrictive if we take broad views of learning and of

mathematics. To learn mathematics is to learn ways of reasoning, so we automatically

include mathematical reasoning. Children do not learn mathematics in isolation of a social

context, so automatically we include teachers and teaching. Teachers learn (and often re-

learn) the mathematics they teach, so automatically we include teachers' learning.

Explication is part of mathematical reasoning, so automatically we include communication,

and thus we include teaching. This is the context in which I frame my remarks.

I will address three questions in discussing Andy's paper 1) What is theory for? 2)

What is theory about? and 3) When is theory useful? In many respects these questions cut

across the issues Andy raised instead of building on them. My defense is that I hope

addressing them increases the dimension of the discourse instead of being irrelevant to it.

I want to make clear that my first paragraph is more than laudatory. It opens a theme I

want to develop. Andy's ideas about theorizing in mathematics and physics education stem

from his strong, personal image of doing mathematics and physics creatively. On one hand

Preparation of this paper was supported by National Science Foundation Grant No. 90-96275.
Any conclusions or recommendations stated here are those of the author and do not necessarily
reflect official positions of NSF.
1 From here on I will say "mathematics" when I in fact I mean "mathematics and science'.

ti
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this is hardly surprising. Anyone's theorizing about understanding stems from their images

of what understanding is like. On the other hand, Andy's thinking about the goals of theory

are textured by his highly principled knowledge of mathematics and physics.2 i admit that

technical knowledge of a subject matter is insufficient to guarantee insight into matters of

understanding. But I do not hesitate to claim that studying a subject deeply and

conceptually3 provides an experiential basis for studying what it means to understand. If

Andy's wish is realized, I suspect that the theorizing he envisions will be done by people

who have built deep conceptualizations of the subject matter of which the theories pertain.

Finally, I will follow one of Andy's heuristics: Take a line and push it until it breaks.

I will state my thinking about theory and theory building forcibly and await the crash of

hammers.

What is theory for?
We are in the business of improving people's learning of mathematics. We focus

sometimes on the learner, sometimes on the teacher, and sometimes on both. But our

ultimate aim is to improve learning. This is the activity from which we draw our problems.

It is an article of faith that insightful solutions to problems begin with understanding the

problem. Principled understandings are the most productive, for they allow us to solve

problems larger than the one we faced. We become theoreticians once we orient ourselves

to developing principled understandings of learning and understanding.

Here I make my radical constructivism explicit. When we theorize about mathematics

learning and understanding, our theories must aim to account for mathematics learning and

understandingincluding our own (mine and yours, whether pedagogue, researcher, or

practicing mathematician). If they apply only to children, then the mathematics of our

theories is impoverished, and is probably the mathematics of schools (at least as they exist

now). Skemp (1979) made the observation that his model of intelligence was more

powerful than Skinner's behaviorism, for it had the potential to account for Skinner's and

Skemp's activities as theoreticians, whereas Skinner's behaviorism did not. Children grow

up. They become adults. They become us. We are never blank slates, and our theories

must be sensitive to this. Here I address the mathematics education community. Our school

mathematics curriculum is conceptually incoherent, and so is mathematics instruction in the

majority of school classrooms. A minority of students do learn something of value, but it is

2 I especially encourage you to read Abelson and diSessa (1981). Here you will not see theorizing
on mathematics or physics learning. Rather, you will gain insights into Andy's image of doing
mathematics and doing physics.
3 Here I must remain vague. By °studying a subject conceptually' I mean at least that one comes to
envision techniques, conventions, and methods in relation to goals and motivations.
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not because of any systematicity in the curriculum. A practical aim of our theory-building is

to re-conceptualize the curriculum so that it is at least conceivable that someone can learn it.

To re-conceptualize the curriculum, however, we need to have principled understandings of

the learning we wish to happen in the children experiencing it.

Andy doesn't say so, but in reading his work it seems evident that he operates under

the constraint that adult science must be explainable as an outgrowth of children's science.

He operates under a strong constraint of coherence in his theorizing about learning physics.

We must also operate under the constraint that our mini-theories (to use Andy's phrase) of

learning mathematics be coherent with each other and with what we personally understand

about mathematics. If we make this coherence operative in our theorizing, we might make

disconfirmable theories.

What is theory about?
Andy alluded to Alan Newell's article "You can't play 20 questions with nature and

win" (Newell, 1973b) when speaking of the necessity of theories. In that same year Newell

published an article on distinctions between process and structure (Newell, 1973a), noting

that whether we consider something to be process or structure depends on our grain of

analysis.4 In this same regard, the texture of our theories of mathematics learning will be

dependent upon our grain of analysis. Our grain of analysis will be influenced heavily by

two considerations: the learning we wish to explain and the community with which we

wish to communicate, Learning as a neurological phenomenon is at one extreme; learning

as exhibited behavior is at the other. The chasm between gives ample room for widely

varying grains of analysis. I won't pretend to know why, in principle, anyone might

choose a particular grain, but I suspect it has something to do with the community to which

we make a commitment. If we commit ourselves to a community that values detailed

functional explanations, then we should find value in Andy's orientation to computational

theories. If we commit ourselves to a community that values imagery and metaphor, then

Andy's orientation might feel too constraining. If we commit ourselves to a community that

values immediate, practical action, then Andy's orientation might seem irrelevant.

What a theory of learning is about is also dependent on our vision of what is to be

learned. If we think that mathematics is applying rules for making marks on paper, then we

will end up with Buggy-like theories of learning (Brown & Burton, 1978; Brown &

VanLehn, 1981; Lewis, 1981). I have said enough about the small educational value of

4 For example, from one perspective teeth are structures; from another perspective teeth are
processes of calcium formation. The two views differ by whether we take time into account. Even
then, if we take time into account our unit of measure will affect how we think of teeth.
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such theories (Thompson, 1989). I must say, however, that there is a cultural heritage in

the United States of which we must become reflectively aware, and this is the heritage that

elementary mathematics is ultimately about calculating. Our theories of mathematics

learning will be hamstrung if we incorporate this heritage unthinkingly.

Finally, I take issue with one matter in Andy's paper. Theory-building in the physical

sciences differs categorically from theory-building in education, and the difference has

implications for how we respond to Andy's call for determining "what we know for sure."

Physicists don't ever suspect that nature acts intentionally. Mathematics educators almost

always assume learners act intentionally. We could say that intention is a natural

characteristic of self-regulating systems, and thus kids differ from atoms only in their

magnitude of complexity. We could, but it doesn't help. I sec no way to theorize about

learning without somehow framing the activity within personal experience. The trick is to

reflect on where personal experience frames one's theories. Andy's suggestion to try

finding why and when our propositions are true and false seems a promising mechanism

for such reflection.

When is theory useful?
Andy alluded to how we often hear "theory" denigrated as if it has nothing to do with

practical life. This may be most true of school teachers and undergraduate education

majors, and it may be true of a larger number of our colleagues than we would like to

admit. I have asked more than a few generalists who teach Theories of Learning courses to

prospective teachers if they (the generalists) could teach algebra, or calculus, or differential

equations given what they know about learning. "Algebra, perhaps, but not calculus and

what is differential equations?" The teacher must rely on personal expertise in the subject.

But what of the students sitting in this course, who do not have subject-matter expertise?

Can we expect them to have a high sense of relevance of the course's content for their
future lives as mathematics teachers?

In many respects I fail to see how theory can be useful to one who views "theory"as
something out there, to be studied as an object in and of itself. If theory is to be productive

for you, it must be your theory. This does not mean that you must construct it from

scratch, or in absence of conversation. It means that the principles by which you observe
and reflect are of necessity your principles. They cannot be propositions outside of your

thinking. The distinction I have in mind is the same as the distinction between simile and

metaphor. To think 'simile-Iy' you have two things in mind, relating them analogically. To

think metaphorically, you have one thing in mind, and you see it having characteristics

which under other circumstances you wouldn't see. Theoretical thinking is metaphorical.
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Put differently, you have a theory when you assimilate the domain of interest to it. That's

the way you see the world. Useful theory is "a light to the eye and a lamp to the feet ... an

organ of personal illumination and liberation .... [it's value] consists in provision of

intellectual instrumentalities to be used by an educator" (Dewey, 1929, p. 29).

Perhaps it is a matter of orientation as to what makes a theory useful. My orientation

has been influenced by Les Steffe, who makes a strong distinction between mathematics

for the learner and mathematics of the learner (Steffe, 1988). If one of our axioms is that

we start where the learner is and build from there, then it follows that we must be able to

think as if we were the learner. Thus, a theory of mathematics learning is useful to me

when I can follow a paraphrase of Wyeth's exhortation: "Don't describe the child. Become

the child!" This act of becoming, this attainment of coherent empathy, is only possible

through theory. Without theory we are constrained to see children only as we see them;

without theory we are constrained to hearing them only as we hear them.We can reflect on

our mathematics to make it coherent, but without theory we cannot reflect on nor make

sense of the coherence of children's mathematics. Reflective empathy is theoretical; theory

building in mathematics education is the construction of reflective, analytic empathy.

Whence theory?
We sometimes hold the counterproductive view that theory come., from theoreticians.

We all make theory. But of what do we make theory? Not from data, as Andy has already

said. We have the freedom not only to build theory of practice, but to build theory from

practice. Here I defer to John Dewey:

The sources of educational science are any portions of

ascertained knowledge that enter into the heart, head and hands

of educators, and which, by entering in, render the performance

of the educational function more enlightened, more humane,

more truly educational than it was before. (Dewey, 1929, p. 76)
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Inttoduatien.
Although recent calls for reforming mathematics curriculum and teaching

in the United States hold forth a fairly consistent vision of desired changes in mathematics

instruction - -less emphasis on practice of isolated computational skills, more emphasis on

understanding, problem solving, and flexible mathematical reasoningthey fall

considerably short of providing descriptions of what successful mathematics instruction

might actually look like in elementary school classrooms (e.g., National Council of

Teachers of Mathematics (NCTM), 1989; National Research Council, 1989). Teachers are

being encouraged to shift their teaching from an approach based on "transmission of

knowledge to a student-centered practice featuring ''stimulation of learning" (National

Research Council, 1989e). The Curriculum and Evaluation Standards for School

Mathematics (National Council of Teachers of Mathematics, 1989) describes the changes

needed in instructional practices in elementary mathematics as involving decreased

emphasis on rote practice, one answer and one method, written practice, and teaching by

telling; and increased emphasis on use of manipulative materials, discussion of

mathematics, justification of thinking, a problem-solving approach to instruction, and

writing about mathematics. However, these desired changes might be enacted in multiple

ways by teachers in their mathematics teaching practice. For example, in a recent survey

of self-reported goals and practices of elementary mathematics teachers in three states in

the United States, Peterson, Putnam, Vredevoogd, and Heine's. (in press) found five

completely different clusters of teachers, based on their patterns of responses regarding

these instructional practices.

How and why are elementary mathematics teachers making certain

called-for changes in their instructional practices and not others? Through case analyses

of the thinking and practice of five elementary teachers, a group of us at Michigan State

University have come to recognize the complexity and dhvraity of ways that teachers are

interpreting ongoing mathematics education reform efforts (Ball, 1990; Cohen, 1990;

Peterson, 1990; Wilmer., 1990; Wilson, 1990). We saw multiple ways in which teachers

enacted in their practice the changes that were hoped-for by reformers and writers of the

state-level Mathematics Curriculum Framework in California (California State

Department, 1985), a document that extolls many of the same themes as the Norm
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Standards. In addition, our cam of teachers reveal the important roles that teachers

thinking, beliefs, and understandings play in how teachers interpret the called-for

mathematics education reforms and how these reforms influence their practice. An

important finding was that although some teachers had made slight surface level changes

in their mathematics practice, such as using of cooperative learning, employing

manipulative., and incorporating word problems into their teaching, none of the teachers

had changed or even reconsidered their views of how children learn mathematics or what

it means to "knew" mathematics. These findings are particularly important in light of

the fact that, although not always stated explicitly, most of the rhetoric of the current

mathematics education reform has as its basis a shift in assumptions away from

traditional views of learning and knowledge toward "constructivist" views of learning

and non-traditional views of mathematical knowledge. Although obvious to most

scholars in the mathematics education research community, such assumptions are not

always apparent to teacher. who have their own theories, beliefs, and frames within which

they work. More often than not, in the United States elementary mathematics teachers tend

to fall into one of two groupseither they have do not have a coherent, consistent view of

mathematical learning and knowledge that is reflected in their practice, or their practice

reflects an implicit behavioral view of learning and a "transmission" view of knowledge.

One problem it that teachers often see the "surface level" features of the reforms

being advocated, such as the changes in instructional practices, without seeing the

assumptions and theoretical frames of the persons who have constructed the hoped-for

changes in instructional practices including the researcher, the reformer, the textbook

writer, or the expert teacher. Thus, the teacher interprets the new instructional practices in

terms of his or her own assumptions, beliefs, and understandings.

A second possibly more serious problem is that although much of the current

mathematics reform rhetoric in the United States is couched in terms of "constructed

knowledge" (National Research Council, 1990) or learners constructing their own

mathematical understandings (National Research Council, 1989, pp. 58-59), visible

differences continue to emerge between scholars in the mathematics education community

with regard to what these terms mean and the underlying views of mathematics,

knowledge, learning and teaching that are being promulgated (Sowder, 1989; Peterson and

Fenneme, 1991). In a recent study by our Center of university experts' and teacher experts'

view of the ideal curriculum in each of six elementary subjects, we found that virtually

every expert premised their statements on curriculum and teaching by asserting that they

took a "constructivist" view of learning. Similarly, Bauersfeld (1991) has suggested that

"The initial statement 'I am a constructivist' has become a kind of academic lip service"
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(p.3). If so, one might ask, Is "constructivism" destined to join the ranks of education

reform terms such as "school restructuring" that , as Kirst (1988) pointed out, "means

everything and nothing simultaneously" (p.7)?

A third problem that is exacerbated by the first two is what Bauersfeld (1991) has

called the "pragmatical consequences" of constructivist approaches for mathematics

education. What would a constructivist approach to mathematics education look like in

practice? In this paper we address this question by examining three actual cases of

"constructivist" mathematics teaching in practice. Through examination of these cases,

we attempt to identify similar themes as well as to pinpoint what seem to be important

differences. We conclude by using these cases to raise questions about possible issues for

indepth analyses and further discussion as well as points for departure and further

exploration.

Three Cases of Con triictivist Mathematics T hing

We consider first, the case of teachers who have been involved for five years in an

approach called Cognitively Guided Instruction (CGI). The approach derives from the

findings of Thomas Carpenter and other researchers on how individual children

construct mathematical knowledge (see, for example, Carpenter and Moser, 1983; Riley

and Greeno, 1988) and from a constructivist view of learning that takes a cognitive

perspective and focuses on the individual learner (Hiebert and Carpenter, in preu). Then

we move to consider the typical Japanese mathematics teacher as portrayed by researchers,

James Stigler and Harold Stevenson who have spent more than a decade studying

Japanese, Chinese and American elementary classrooms (see, for example, Stigler and

Stevenson, 1991). Finally, we consider the case of Deborah Ball who, as a researcher and

professor of teacher education at Michigan State University, attempts to reflect her own

continuing developing knowledge of and thinking about mathematics and children's

mathematics learning in her practice as a third-grade mathematics teacher, (see, for

example, Ball, in press; Ball and Lampert, 1991).

The Expert col Teacher - -A Cognitive. Individual Construetivist View

In a year-long experimental study, Thomas Carpenter, Elizabeth Fennema, and I

recruited forty-two experienced first-grade teachers to work with us. The teachers spent

twenty hours per week for four weeks with us during the summer of 1988 teaming about

children's thinking in addition and subtraction. During the summer workshop, we

shared with teachers a framework for addition/subtraction problem types and related

children's solution strategies derived from Thomas Carpenter's findings from interviews

with young children on their solving of addition/subtraction word problems (Carpenter

and Moser, 1983). We pre- and posttested children in the CGI and control teachers' classes,
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and we observed these teachers' mathematics teaching on a regular basis during the 1986-

87 school year. We also assessed the teachers' knOwledge and beliefs about teaching

mathematics both before the workshop and at the end of the school year We compared the

instructional practices, beliefs, and knowledge of the CGI teacher, and the learning of CGI

students with the control group of teachers t d their students. (For a complete description

of results, see Carpenter, Fennema, Peterson, Chiang, and Loef, 1989; Peterson,

Carpenter, and Fennema, 1989).

When compared to control teachers, the CGI teachers spent significantly more time

on word problem solving in addition and subtraction, and they spent significantly less

time drilling on addition and subtraction number facts. In comparison to control teachers,

CGI teachers encouraged their students to solve problems in many different ways, listened

more to their students' verbalizations of ways they solved problems, and CGI teachers

knew more about their individual student's problem solving strategies. CGI students

outperformed control students on written and interview measures of problem solving and

number fact knowledge, including a measure of complex word problem solving on the

Iowa Test of Basic Skills, and they reported greater understanding and confidence in their

problem solving abilities. Although CGI teachers spent only half u much time es control

teachers did in teaching number fact skills explicitly, CGI students demonstrated greater

recall of number facts than did control students. Those teachers who believed more in the

ideas of CGI and had more knowledge about their children listened more to their

children's verbalizations of their thin! ,ng, and they implemented CGI more then did

those teachers who had 1 knowledge and weaker beliefs. These latter teachers can be

characterized as the more expert. CGI teachers (i.e., the "case study teachers" described by

Carpenter and Fennema, in press; and the Group 1 teachers described by Knapp and

Peterson, 1991).

Although each CGI classroom 13, in some sense, unique, Peterson, Fennema, and

Carpenter (in press) have pointed out three key themes that all CGI classrooms have in

common. First, nralilemankinglaielcaue of all CGI classrooms. Teachers careffilly

write or select problems to be appropriate for their children, and they have children

construct their own problems and pose them to each other. Problems are constructed to be

relevant to the children's real lives in school and out and to integrate mathematics with

different subject areas including literature, science, and social studies. A second

important element is that multigkaabgicuutzatazioliumabluaiusuagnized.
AncorligiLanjzolgtred as children describe their solution strategies and make their

thinking visible within the context of solving problems. A third key element element of

CGI classrooms is that teachers have an ernanaive view of children's mathenlitille,

r-
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jtnnwledge and thinking. CGI teachers believe that all children know something about

mathematics and that as teachers, they need to figure out continually what children know

about mathematics and then use this knowledge to plan and adapt their mathematics

instruction.

Carpenter and Fennema (in press) provide an analysis of the cases of expert CGI

teachers. An excerpt from their analysis is provided in Appendix A including an example

of one teacher's (Ma. M's) discourse with a small group of children about a mathematics

problem.

The "Typical" Japanese Mathematics Teacher Constructing the Crafted Polished Lesson

In summarizing what they have learned from their research over the last decade on

elementary mathematics classrooms in Japan, China, Taiwan, and the United States,

Stigler and Stevenson (1991) assert as important that "Asian teachers subscribe to what

would be considered in the West to be a 'constructivist' view of learning. According to this

view, knowledge is regarded as something that must be constructed by the child rather that

as a set of facts and skills that can be imparted by the teacher" (Stigler and Stevenson, 1991,

p. 20). Stigler and Stevenson describe the typical elementary mathematics classroom as

characterized by several features. The lessons have a coherence and are typically

organized around one or two interesting problems that the teacher poses to students and

follows up throughout the lesson with provocative questions. Japanese teachers routinely

make use of real-world problems and objects and concrete representations. During the

course of classroom discussion, students construct multiple solutions to the problem posed

by the teacher. Japanese teachers handle diversity of students' mathematical knowledge

and abilities by making effective use of studetti errors.

Stigler and Stevenson(1991) described a fifthgrade Japanese teacher's "effective

use of errors" in introducing the problem of adding fractions with unequal denominators.

This example also appears on the videotape entitled, "The Polished Stones" by Stevenson

and Lee (1989). I have transcribed the videotaped excerpt from this Japanese teacher's

classroom, and the excerpt is presented in Appendix B. In this excerpt, the teacher poses the

problem to the whole class and writes it on the board: 1/3 + 1/2 = . Then the teacher

calls on three different students one a time to give their solutions to the problem she has

posed. Students raise their hands to respond. As each student is called upon by the teacher,

he stands and states his solution to the problem. The teacher writes the solution on the board

as the student states it. The following different solutions are proposed by three different

students:
1/3 + 1/2 2/5
3.1 + 2.1 = 5.2
1/3 = 2/6 and 2/3 = 3/6 'The answer is five sixths."
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Interestingly, here my interpretation of what happens on the videotape differs from

the interpretation offered by Stigler and Stevenson (1991). In the tape the announcer's voice

suggests that the teacher then calls on the first student to explain his solution. The student

begins an explanation, than pauses looking puzzled. With Buie wait time and no further

questioning of the student, the teacher launches into an explanation, which according to the

announcer, was intended to clarify what was wrong with the first method given by this

student. In contrast, Stigler and Stevenson (1991) gave the following interpretation.

The teacher returned to the first solution. "How many of you think this
solution is correct?' Most agreed that it was not. She used the opportunity to
direct the children's attention to reasons why the solution was incorrect.
"Which is larger, two-fifths or one-half?" The clue agreed that it was one-
half. "It is strange, isn't it, that you could add a number to one-half and get
a number that is smaller than one - half?" She went on to explain how the
procedure the child used would result in the odd situation where, when one-
half was added to one-half, the answer yielded is one-half. In a similarly
careful, interactive manner, she discussed how the second boy had confused
fractions with decimals to come up with his surprising answer (Stigler and
Stevenson, 1991, pp. 44-45).

In contrast, I failed to hear or see the teacher pose the above questions to the class nor

did I observe the teacher attempt to determine whether or not the students agreed or disagreed

with this solution. Questioning of the students and seeking to determine how they think

about the solutions (in terms of their agreement or disagreement with other students'

solutions) is a critical feature of expert CGI teachers' practices and also, as we shall see, of

Deborah Ball's teaching. Similarly, on the tape the question, 'Which is larger, two-fifths

or one-halfrappear to be asked as a rhetorical question which the teacher then goes on to

answer herself in her subsequent explanation. All in all, the overwhelming impression

that one gets from viewing this segment is not so much one of an "interactive" elasaroom

experience, but rather one of a smoothly orchestrated and planned, teacher-directed lesson

in which the teacher plans to and does surface several student misconceptions through her

questions so that she can proceed to use these to demonstrate what is wrong with certain

methods and to show what is correct about the right method.

Y. 3 3.. I 1. I

As a third-grade teacher who has taught for twelve years at an elementary school

near Michigan State University, Deborah Loewenberg Ball aims to develop a 'practice that

respects both the integrity of mathematics as a discipline and of children as mathematical

thinkers" (Ball, in press, p.3). Like her colleague, Magdalene Lampert (1990a; 1990h).

Ball strives to create classroom environment in which the norms of discourse are

informed by patterns of discourse in the mathematics community as well as by the culture
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of the classroom. Further, she strives to shift authority for mathematical knowledge from

the teacher and the "text" to the community of knower* and learners of mathematics in her

classroom. While Ball and her students engage in extensive discourse in the whole-class

setting, they also work in small groups She tries to select and create mathematics tasks

that engage students in learning the content of mathematics as they learn the ways of

knowing. Ball (in press) provides an example of discourse from her third-grade

mathematics class in which students discuss the problem: 6 + (-6). Ball and her students

spent over thirty minutes discussing solutions for that problem. At one point, a student

gave the correct answer, but the student's explanation was problematic. Students gave two

other solutions that received 'equal air time.* Bail explains that she did not 'tall or lead

the students to conclude that 6 + (-6) equals zero-by pointing them at the eommutativity of

addition or at the need for the system of operations on integers to be sensibly consistent.

Ball thinks that the time that students spend *unpacking ideas' is time will spent. Too

often she has seen evidence of students who fail to understand even though they have been

*taught' the mathematical procedure.

Lice the expert CGI teachers, Deborah Ball's practice reflects a coherent point of

view. However, teachers' practice reflects a cognitive, individual

constructivist view, Deborah Ball's practice reflect, a social constructivist perspective.

Bauersfeld (1991) has argued that, taking a social constructivist perspective, the following

would clearly exist in a teachers' classroom practice:

L Periods in the classroom designed for self-organized
problem solving, for small group work on 'new tasks for
eliciting children's inventions...There will be also
intensive 'negotiation' of different ways and solutions, of
bow to come across different ideas, of argumentation and
defending.

2. Polishing of the students' verbal production and taking
care of adequate descriptions, drill and rehearsal, even
under self-controlled time limits-ea:OW furthering of the
process of constructing itself, promoting reflection on just
finished tasks, discussing alternatives...

3. Written tests, homework and *debugging" procedures
related to results_taking 'mistakes' and 'errors' as
necessary concomitant phenomena of an active
participation and engaged construction-a positive sign for
'being on the way' -- rather than as accidents which have to
become erased promptly.

4. The teacher's inescapable role of an expert, of an agent of
the society. Teachers also have to be exemplary, a living
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model of the culture wanted with transparent modi of
thinking, reflecting, and self-controlling...the teachers
themselves have to live' the relevant norms (Bauenfeld,
1991, pp. 19-20).

In Deborah Ball's teaching, we see clearly these four themes,

including invention, argumentation, active construction and reflection.

For example, in the attached excerpt from Ball's own analyses of her

thinking and practice, we can see how she strives to make transparent her

own thinking and reflecting ( See Appendix C). In her work Ball tries to

provide some perspective on the ''tensions" inherent in "constructivist"-

based pedagogies. We see how Ms. Ball allows Shea and the class to pursue

new mathematical idea and subsequently invent a new number, but she

also expresses the uncertainties and tensions she felt during the

discussion. Through thoughtful orchestration of the classroom discourse,

Deborah Ball facilitates Shea's invention of a new kind of number - -which

the class names "Shea numbers"--"numbers that have an odd number of

groups of two" (Ball, in press; Ball, 1991). In reading through some history

of mathematics after her class had discussed and invented this new kind of

number, Deborah later discovered that mathematicians in ancient Greece

had also discovered and played around with this same kind cf number.

Further, Ball (in press) reports that when she later gave her students a quiz

on odd and even numbers, 'the results were reassuring. Everyone was able

to give a sound definition of odd numbers, and to correctly identify and

justify even and odd numbers. And, interestingly, in a problem that

involved placing some numbers into a string picture (Venn diagram), no

one placed 90 (a Shea number) into the intersection between even and odd

numbers. If they were confused about these classifications of number, the

quizzes did not reveal it" (p. 25).

: .

What we observe about the instructional practices in the three cases? Do we see

any similarit., . ? One striking similarity between the cases of the mathematics teaching

of the expert CGI teachers and Deborah Ball is that , in each case, the teacher has a coherent

view of mathematics learning that is reflected in her mathematics practice. But do typical

Japanese teachers actually have a coherent constructivist point of view that is consistently

reflected in their practice as Stigler and Stevenson (1991) suggest or, in fact, do wide

variations exist in Japanese teachers' knowledge and beliefs about mathematics learning
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as well u in the ways in which these views are represented in practice? Indeed, we have

found the latter to be the case for CGI teachers, and that is why we focus here only on those

we refer to as "expert" CGI teachers (Peterson, et al., 1989; Knapp and Peterson, 1991). Yet

if the typical Japanese elementary teacher does have a coherent view of learning and

knowledge that is reflected in her practice, then in addition to the observed differences in

instructional practices, such coherence may be the most important way that the typical

Japanese teacher differs from the typical American teacher (cf., Richardson, 1990;

Sosniak, Ethington, and Varelas, 1991; Peterson and McCarthey, 1991). In addition, if

Japanese teachers do have a coherent view of learning and knowledge that is reflected in

their practice, that coherence constitutes an important commonality that they share with

the expert CGI teachers and with researcheriteacher, Deborah Ball.

Second, in each of the three cases we see three common features in the teachers'

instructional practices. In contrast to traditional elementary mathematics teaching in the

United States, the instructional practices in these cases show greater emphasis by the

teacher on: (1) posing mathematical problems; (2) expecting and exploring a wide variety

of students' solutions for mathematical problems; and (3) listening to students describe

their thinking and problem solving processes. Similarly, in our initial yearlong

experimental study comparing CGI and control teachers, our behavioral observations of

teachers' classrooms revealed these to be the significant features that distinguished CGI

teachers instructional practices from control teachers instructional practices. In

addition, COI teachers knew more about individual students' problem solving processes,

and COI teachers students showed greater problem solving achievement than did control

teachers' students (Carpenter, Fennema, Peterson, Chiang, and Loot; 1989). From these

findings, we might infer that all three cases of constructiviat teaching descrilied in this

paper embody thus three instructional themes that have been found to be significantly

related to the development of students' abilities to solve mathematical problems.

Do we see any differences? Indeed, getting dearer about the differences between

the eases we have descrilad may be more crucial to advancing researchers' knowledge

and understandings of "constructivist" mathematics teaching than extolling the virtues

or the similarities. One important difference lies in the perspective that the teacher takes

on children's mathematical knowledge. Deborah Ball and the expert CGI teachers assume

that children bring to mathematics lesson significant mathematical knowledge and

understanding, and the role of the teacher is to understand how children are thinking

about a mathematical problem, and to build on, encourage, and facilitate that thinking.

Thus, these teachers ask questions and probe students' thinking in order to figure out and

make visible how students, individually and as a group, are making sense of a
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mathematics problem. The assumption is that students are making sense. In contrast,

Asian teachers are portrayed as surfacing students' problem solving methods and

listening to student: thinking on the assumption that students have major

misconceptions that need t o be corrected. In the example of the addition of fractions with

unlike denominators, the Japanese teacher herself attempted to corrected the two student

"misconceptions" that she had uncovered by explaining the correct way and thereby

reinforcing the correct solution given by the third student. In this way, the Japanese

teacher seemed striking reminiscent of our less expert CGI teachers. In a within group

analysis of our CGI teachers, we examined the relationship between teachers' knowledge

of their students' mathematical understanding to teachers' mathematics instruction and

to their students' mathematics problem solving achievement (Peterson, Carpenter, and

Fennema, 1989). We conducted correlational analyses of the data of twenty teachers

supplemented by use analyses of the teacher whose students did best on problem solving

and the teacher whose students did worst. We found that teachers who students had higher

problem solving achievement were those who were more knowledgeable about their

students' problem solving knowledge. Teachers with more knowledge about their

students' mathematical understanding tended to question students about problem solving

processes and listen to their responses, while teachers with less knowledge were more

likely to explain problem solving processes to students or to merely observe students'

solutions. From the classroom practices of the Asian teachers represented on the 'Polished

Stones" videotape, we are given to think that the typical Asian elementary teacher is like

the less knowledgeable CGI teachers than the more knowledgeable ones in terms of their

understanding of their individual children's mathematics understanding.

However, although Deborah Ball and the expert CGI teachers share a common

'positive" view that children have mathematical knowledge and understanding rather

than lack it, they differ in the extent to which teachers' knowledge of children's

mathematical knowledge is specified and constrained. (See also, Lampert, 1988, for an

analysis of this issue). Working within a research-based framework which they were

given to interpret and think about children's addition/subtraction problem solving, CGI

teachers are inclined to think within that framework for children's mathematical

knowledge while Ball thinks within the frame she has developed for children's

mathematical knowledge, and she continues to expand and develop her knowledge of

children's mathematical understanding. Yet expert CGI teachers speak often about their

continuous amazement at what their children can do, how their children think, and how

their student/ are capable of solving complex mathematical problems that the teachers

hadn't previously thought first graders could solve. As result, some CGI teachers have

,

-256-



ventured to give their first-grade students multiplication and division problems as a result

of learning" from their students, and as a result, they have expanded their knowledge of

children's mathematical knowledge (Knapp and Peterson, 1991; Peterson, Fennema, and
Carpenter, 1991).

A second important difference among the three cases lies in the teacher's view of

mathematical knowledge. In her teaching, Ball strives to give her students a sense of the

dynamic nature of the way mathematical knowledge develops, grows, and changes. She

has her students, conjecture, experiment, invent and make arguments, justify and defend

them. In contrast, expert CGI teachers have a more constrained and bounded view of

mathematical knowledge. While expert CGI teachers challenge students to explain and

justify their thinking, and they attempt to shift authority for what is "right" to the

individual student himself or herself or to the students in the class, they affirm that in

mathematics there are "right" answers and solutions. Expert CGI teachers would be

unlikely to let students leave a particular day's class sessions without it having become

apparent which of the children's solutions that were discussed are right or wrong. On a

continuum moving from mathematical knowledge as changing/unbounded toward

mathematical knowledge as fixed/constrained, the Japanese teachers seem to be furthest

toward the fixed end with Deborah Ball more toward the changing/unbounded end, and the

CGI teachers in the middle. Further, for Asian teachers not only does mathematics

knowledge seem fixed, but the authority for knowing seems to still rest with the teacher and

not with the student or students. The very metaphor of Asian teachers "polishing each

lesson to perfection" lace a polished stone implies the notion of knowledge as fixed and

determinedlike a stoneincapable of undergoing fundamental change, invention, or
reconstruction. In contrast, constructivist teachers, Bull and Lampert, have used the

metaphor of teaching a mathematics lesson as "traversing a territory" with an "eye to the

mathematical horizon." In the Ball and Lampert metaphor, there exists no fixed path

through the territory, and in a sense, each trip will be one in which the travelers learn

something new.
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Appendix A: The Expert CGI Teacher ( as partrayed by Carpenter and Fennema (in press)

Note: The following was excerpted directly from Carpenter, T. C. & Fennema, E. (in
press). Cognitively guided instruction: Building on the knowledge of students and
teachers. In W.G. Secede (Ed.), IlessaishingeducalignALrefut=Thraalenfichnid
raathpm etiea in the United Staten. (Special issue of the International
Ednsathanalilesearch). The words in italics are those of Carpenter and Fennema.

The following protocol of a teacher working with a group of five students illustrates
how a COI teacher gave children an opportunity to discuss alternative solutions.

Ms. 'The African elephant ate 37 peanuts. The Indian elephant ate 43
peanuts. How many fewer peanuts did the African elephant eat than the
Indian elephant.

The children worked on the problem for about two and a half minutes. Some of the
children used stacking cubes that had been joined together in stacks of ten cubes. Others
did not use any materials. After a minute and a half several of the children had raised
their hands. After two minutes, only one child, Ubank, was still working on the problem.
Ms. M asked him if he was done. When he shook his head, the told him to keep working
After another half minute, he raised his hand.

Ms. If: "Got it? How many fewer did the African elephant eat, Ubank?"

Ubank: "Six.'

Ms. NI: 'Does everyone agree with that? . . . How did you figure it out, Ubankr

Ubank: "Well, I had 43 hare (pushing out 4 stacks of tan cubes and 3 additional
cubes joined together), and I had 37 here (pushing out 3 stacks of ten cubes
e nd a stack of I put 30 on top of these 30. I took 3, and I put them here.
There were 4 left, so I took 4 off, and there were 6 left." As he descriled
what be did, be took 3 of the ten Pleas from the collection of 43 and put
them on top of the 3 tan stacks in the collection of 37. Then he took the 3
e inee cubes from the original set of 43 and put them on top of the 7 cubes in
the set of 37. Then be took the remaining stack of ten cubes from the
original 43 and broke off 4 abet He put thew 4 cubes on the 4 cubes in the
set of 37 that were not covered. He was IA with 6 cubes from the set of43
that did not match up with cubes in the set of 37.

Ms. II: 'Did be do it a good way? . . Did anyone do it a different way?"

Moroi: 'I took 37, and I needed 43. So I *coated up 3 more. That was 40. Then I
took 3 more to 43.'

Ms. IA: 'Good. Does bee way work well? . . . (Children nod in agreement) It
sure does. Did anybody do it differenUyr

Linda: 'Well first I got 37. Then I got 43 (pushes out collections 01.37 and 43 cubes
joined together in stacks of ten, with the extra cubes also connected
together). See, I know it couldn't be 10, because if you had 10 it would be 47
instead of 43. So I realized that it had to be less than 10. So what I did was I
imaginal 3 more cubes here (points to the top of the stack of 7 cubes in the
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set of 37), and I imagined 3 more right here (pointing to a space next to the
collection of 37 that corresponds to where the 3 cubes are in the collection of
43)."

Ms. Id gave each child in the group time to complete the problem, and she gave each
child who had a different solution an opportunity to explain his or her solution. The
children all listened attentively to other children's solutions, so the children had the
chance to learn from each other. Ms. M also learned what each child could do, and she
learned more than whether a child got the correct answer. Th.: different solution strategies
reflected quite different levels of understanding. Ubank had to model the problem
directly, whereas the solutions of Mani and Linda reflect more flexibility in operating
with numbers. While the children were working on the problem, Ms. M made notes about
the solution processes she observed. This is how Ms. M gains information about her
students. In this classroom assessment is an ongoing part of instruction.

Because the research base the teachers [including Ms. M.1 studied provided a
coherent framework for organizing problems and the processes that children use to solve
them, the teachers had a rationale for selecting problems and a context for interpreting the
students' responses. Consequently they knew what questions to ask and what to listen for
They could attend to important variations in students responses and did not have to keep
track of a vast array of unrelated details.
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Appendix B: A"rypicaI" Asian Teacher's Mathematics lemon (from Stevenson and Lee,
1989)

Note: The following excerpt was transcribed verbatim by Penelope Peterson from the
videotape entitled, " The Polished Stones: Mathematics Achievement Among Chinese and
Japanese Elementary School Students" by Harold W. Stevenson and Shin-ying Lee, 1989.
The words in italics were added by me to provide additional information on the context as
it appears on the videotape.

The setting: Students are sitting at desks lined up in rows and columns facing a
blackboard at the front of the room. During this whole-class lesson, the teacher calls on
students one a a time to give their solutions to the problem she has posed. Students raise
their hands to respond. As each student is called upon by the teacher, he stands and states
his solution to the problem. The teacher writes the solution on the board as the student states
it.

Announcer. Rather than using errors as an index of failure, errors are used as an
indication of a need for more understanding and practice. In this classroom, students are
working for the first time with fractions that have different denominstors. In the course of
solving one problem, the students suggest several incorrect methods. The teacher puts
these errors to good use in clarifying the meaning of fractions. She presents the problem:
to add one half and one third. The teacher has written on the board: 113 + 112-

First boy: One third plus one half equals two fifths. The teacher write: 113 + 112.215
under the problem that she has written on the board.

Second boy: Three point one plus two point one equals five point two. The teachers writes:
3.1 + 2.1.6.2 under the first solution.

Teacher: Please listen to him until he finishes.

Second boy: If I change it into a fraction, it's two fifths. The teacher writes:. 215 atter 5.2
in the student's solution that she has written on the board.

Teacher: Now I understand how you get this answer. OK, how about someone else who
solved it in a different way? The teacher calls on a third boy by none.

Third boy: I reduced the numbers to the least common denominatorsix. One third
equals two sixths; one half equals three sixths. The answer is five sixths. The teacher
write 113.216 and 2/3.3/6 on the board as the third solution.

Announcer. The teacher points out that they now have three ways to solve the problem. She
asks for an explanation of the first method.

First boy: One third means one whole is divided into three parts. One half means that
something is divided into two parts. The denominator is different so if you add....The boy
pauses.

Announcer: Seeing that the child can't explain the method, the teacher clarifies what was
wrong:

Teacher: Which is biggerone half or two fifths? As she asks this, the teacher circles 112
and 215 in the first solution on the board. One half, isn't it? Even so, some of you added one
third and one half and mysteriously got an answer that was smaller. Let me explain. She
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writes on the boor.': 112 + 112 . Two plus two equals four. Teacher writes 4 in the
denominator of the sum. One plus one equals two. You get two fourths. Teacher writes 2 in
the numerator of the sum so she now has 1/2 + 112= 2/4 written on the board. Now lets
reduce this. Teacher crosses out 2/4 and writes 112. One halfis that correct? Can I use
this equals sign here? No, that's wrong. Takihitokun, you're a little mixed up here. You
confused three point one and one third, didn't you? She writes 113 3.1 on the board. Well,
(she calls the student by name), one third is a part of one whole, and three point one means
that there would be three whole things so the second solution is confused, isn't it? I will
find the least common denominator. After you get the least common denominator of three
and two, you must multiply the numerator by the same number as the denominator so that
you get two sixths and three sixths. She writes 113 + 112 /6+ /6. If you add, you get five
sixths. She fills in 2/6 + 3/6 = 516 as her solution. And now, you've successfully solved the
problem.

Announcer: By allowing students to come up with their own solutions and then having the
students explain them, a teacher can clarify some common misunderstandings and show
why these solutions will not work. The announcer concludes by referring to these
"interactive classroom experiences" as one of the reasons why Japanese and Chinese
students achieve at higher levels.
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Appendix Q The Case of Deborah 13e11'a Teaching ( as portrayed by Ball, 1991)

Note: The following was taken from Ball, D. L. (1991, May). Materials from presentation
at the annual meeting of the National Council of Teachers of histhematics (NCTM), New
Orleans, LA. The words in italics are Ball's description of her thinking and her teaching.

At the beginning of class on this particular day, I was trying to have a brief discussion with
the students about a meeting we had had the day before. After this I was going to have them
work a little more in their groups on the conjecture about adding even and odd numbers
(such as the ones I told you about above)--and then, hopefully, begin having some
discussion about some of these. The point at which the tape begins, class has been
unr-'enuay for about 7 minutes. A boy named Benny has just made the obstruction that euen
numbers can be -made" from two other even numberse.g., 8 can be "made from" 4 + 4; 12
can be made from 6 + 6. The segment opens with my asking if anyone has any other
comments and I call on a boy named Shea, who figures prominently in the events of this
particular day.

I think it is important for you to know that Shea is a student who, on some days,
seemed to be totally tuned out. On some days, he would write nothing in his notebook, say
little or nothing in class, and would not work in a small group. Sometimes he say under
his desk instead of at it. But Shea was unpredictable. Sometimes when he seemed most
tuned out, he would suddenly burst .-tto a discussion with an important point. Shea, despite
this, was making reasonably good progress in mathematics. Buy my ongoing concern for
finding ways to engage him productively was undoubtedly a factor in my thinking on this
particular day.

So, you will see, when I call on Shea, he says he has no comments about the meeting
we had yesterday, but he has noticed something special about the number six. lie claims
that it could be even or it could be odd The segment you will see centers on my efforts to
understand what he is thinking and my struggles in deciding what to do.
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INTEGRATING THEORIES FOR MATHEMATICS EDUCATION

Heinrich Bauersfeld, Bielefeld, Germany

Author's Note

The present text is a preliminary version; the formatted view
misleads. At many spots I have to give more details,
replace examples, some paragraphs will have to become
erased etc. Anyway, it gives an Idea...
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1. An actual historical perspective

"It is not at all true that concepts, even when constructed
according to the rules of science, get their authority uniquely
from their obJectNe value. It Is not enough that they be true to
get believed. If they are not in harmony with the other beliefs
and opinions, or, In a word, with the mass of the other collective
representations (the concepts taken for granted by most people
in a given time and place', they will be denied; minds will be
closed to them; consequently it will be as though they did not

E.Durkhelm 1912, ertgl. translation 1965, p.4861

It is quite surprising that the growing difficulties with computer
simulations of human communication and cognition combined with the strong
actual interest in adequate solutions have led to the development of new and
challenging models for these processes. Obviously, computer science,
education, and philosophical discussions are nearer to each other than ever
before Even more interesting I find the relative convergency of these
technologically oriented approaches with a few older and more developed
theoretical approaches from different disciplines, where thery have been
formed mostly aside of the mainstreams, e.g (pragmatic) linguistics,
(radical) constructivism, ethnomethodology, social (or earlier symbolic)
interactionism, history and theory of sciences, and last not least new
perspectives on mathematics itself (see the very detailed overview in
(Ernest 19911)

Limited to "the contributing r lel Os to the Science and Technology of
Cognition STC," Francesco Varela has recently described this development
as three successive waves ((Varela 1990], p 26/8)2,.moving
* from "representation" and -symbol processing", where symbol processing

is both based upon sequential rules and is located within the system, "so
that the loss or malfunction of a part of the symbols or rules of the
system results in a serious tmalfunction" (p 56/271 --" the cognitivist
paradigm" (p.27/9)

* towards "emergence alternatives to symbol manipulation" (p.27/9), where
meaning is with the function of the whole state of a network rather than

1 The quote is taken frcm (Leary 19901, p.359
2 Though the original Is written in English, "Cognitive Science A Cartography of Current

Ideas", the text obviously has not been published in English yet. My quotations, e g. p 26/8,
refer to both the German translation (0.26) and to tne English manuscript (p8). Varit,la
announces in the English manuscript the publication as "Les Sciences Cognitwes: Tendences et
Perspective Actueles" with Editions du Seuil. Paris

r .-,
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H.Bauersfeld: Theories ...

localizable in certain symbols--the "connectionist paradigm" (p.79/41)
or "subsymbolic paradigm" ((Smolensky 1988], quoted on p.79/41)

* towards "enaction: alternatives to representation" (p.27/9), where the
phenomenon of interpretation is "understood as the circular activity
linking action and knowledge, knower and known in an indissoclable circle.
... with the dominance of usage, instead of representations"--the
"enactive approach" ((Varela 19901, p.91/49).

Varela has organized his overview In a "polarized map" (p.1 19/66) in which
each following wave includes the preceding one like a set of "Chinese boxes"
(see Laura I). "The centrifugal direction is a progressive bracketting of
what seems stable and regular," or "one can go from enaction to a standard
connectionist view by assuming given regularities of the domain where the
system operates." Whilst in the centripetal direction .one goes from emerge
to symbolic by working with symbols at face value and bracketing the base
from which symbols emerge." Varela 'Insists, the notions in the table
"should not be seen as logical (or dialectical) opposites. They represent more
the particular and the general, the local and the more encompassing
category." (p. I 20/66)

insert here about Figure I

From a philosophical perspective Richard Rorty has recently3 pointed at the
drastic change which the idea of language and the potential use of It has
undergone, from treating language as an limited object and words as carriers
of meaning towards a pragmatic "bottomless" stance, a view from which has
been abandoned

the idea of language "as a clear and common structure which users
Internalize and apply to single cases" (Donald Davidson, quoted by (Rorty,
19911, p.69); It was this idea which Wittgenstein had in mind in his
preface of the "Tractatus": "What can be said at all, can be said clearly."
((Wittgenstein 19721, p.3), and which he was to abandon in his later
"PhllosophIcal Investigations" (Wittgenstein 19741

the concept of "meaning,' as there Is no chance for to use language as an
instrument for transcendental and objective reductions; Rorty quotes

3 At the symposium on the 100th anniversary of Wittgenstein death at the Unlversitat
Frankfurt/Main 1989 Richard Rorty has hold a lecture on 'Wittgenstein, Heidegger and die
Hypostasierung der Sprache. Published In the German translation only fRorty 19911. My
quotations are taken from the English original.
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Hacking's notion of the death of the concept of meaning" [Hacking 1975],
though he himself prefers to speak of a "naturalization of semantics"
((Forty 1991], p.69 and 74), pointing at the specifity of "meaning" to the
actual situation, and

the discrimination between "schema" (or "form ") and "content"; Varela
has called this invention "the bright idea which has created the cognitive
paradigm." ([Varela 1990], p.78)--because a manifold of forms of
experiences or of forms of consciousness do not appear to be much
different from a manifold of realities ((Party 1991], p.74).

On the other side Rorty accepts that

* "whether a sentence makes sense or not depends upon the truth of another
sentence, one about the societal practice of people;" in other words.
"Language Is not a limited whole with presentable borders, It is merely a
boundlessly expandable set of societal practices" ((Party 1991), p 79/80),
and related to language use he adds "every exactness, in particular, has a
social practice as prerequisite" (]Rorty, 1991], p 85)

there is access to something 'given' only via something ready at hand, in
Heldegger's notion: "das Vorhandene ist nur Ober Zuhandenes zuganglich",
(in order to see or to 'realize' something one has to have a more or less
developed expectation of what one might come to see; compare [Ror ty
1991), p 85), a convi' ..ion which the late Wittgenstein has shared4

We come to the core point: These positions indeed are very near to radical
constructivist' statements as well as to pragmatic linguists' or social
interactionists' theses and to findings from Discourse Analysis. One can not
expect to identify clear borderlines for the area of convergency at this level
of abstractness. But it appears to be possible to enlist a few shared core
corn,ictions in this area (The descriptors will present a mixture, just
because it is impossible to describe the defecitary parts of an approach with
the specific "language game" of this very same approach.):

4 Rorty discusses a striking similarity between the pragmatism of the young Heidegger ("Time
and Being') and the late Wittgenstein ("Philos Invest igat ions")--" there are no final analyses
of and through language"-- and, the other way round, between the early Wittgenstein's and the
late Heldegger's (oyer)estimat Ion of language Whereagainst their related ways of theoretical
development have taken opposite directions and have crossed half way Mbetween.
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1.1. Learning is a process of personal life forming, a process of an
interactive adapting to a culture through active participation (which in
parallel also produces and develops the culture itself) rather than a
transmIssal of norms, knowledge and objectlfyed items

1.2. Meaning is with the use of words, sentences, or signs and symbols
rather than in the related sounds, signs or pictures

1.3. Languaging (the French "parole" as different from "langage" /language)
is a social practice, serving In communication for pointing at shared
experiences in the same culture rather than as an instrument for the
direct transportation of sense or as a carrier of attached meanings

1.4. Knowing something denotes more an actually fixed and uttered status
of a sense producing system rather than a storable, treatable, and
retrievable object-like issue, named knowledge

1.5. fiathemafizing (According to (Davis & Hersh 1980] I could say as well
Mathematics, is a practice based on social conventions rather than the
applying of an universally applicable set of eternal truths.

1.6. Using visualizations and embodiments with the related intention as
didactical means depends on taken-as-shared social conventions in a
classroom culture rather than on a plain reading or discovering of
inherent or inbuilt mathematical structures

1.7. Teaching is

In the following I shall speak of the "integrating perspective' when I refer
to these common core convictions

What is all this for? A few months ago 5 ! Mier and M.Fredericks stated in
the Educational Researcher [Miller & Fredericks 1991]. "The major concepts
of the new philosophy of science are, at best, only marginally relevant to
many of the issues studied by educational researchers." (p 3). Moreover, and
somehow funny to read after the above notes, they lament about "the related
problem of ambiguity on how these terms are to be applied exactly to the
field of educational reset ch" (p.2, my emphasis) My conviction is with the
opposite position It seems to be difficult to overestimate the importance of
fundamental orientations, because they function as part of the researchers'
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"epoche of the natural attitude" (H.SchOtz), i.e. they are implicitly subsumed,
they are taken as granted, and are never questioned5. It may be useful,
therefore, to consider consequences which arise from an integrating
perspective. In the interest of students and teachers at least such an
attempt appears to be as necessary as the violent discussions of
compatibilities, of the drawing of border lines, and of the dominance of one
model over the other one are.

2. The Culture of a Mathematics Classroom

"Explicit rules might play a part in learning to think, but (as
suggested by the long nistory of failure of instruction in logic to
improve thinking) a very limited one."
The rule-based -family of instructional theories has produced
an abundance of technology on an illusory psychological
foundation.'
(Bereiter 19911, p.14

It is neither by chance nor an act of keeping neutrality only, that N CT M6 did
not produce more detailed criteria for the recommended actions of teachers
than: "... In ways that facilitate students' learning," "... providing a context
that encourages ...," and "... necessary to explore sound mathematics But
how to decide about the facilitating of learning without a pragmatical
theoretical model for it? What is an encouraging context? And what Is
necessary to explore mathematics? Among mathematics educators, I think,
there is an increasing awareness for the need of more developed theoretical
bases for the teaching and learning of mathematics. And this is an
international phenomenon. The thematic orientation of many conferences
across the last few years--not at least of this PME/NA meeting -- speaks for
the assumption. In the following I will try to draw some general inferences
from the integrating perspective for mathematics education. Clearly, the
outcomes can not represent more than tacit and preliminary working
hypotheses.

The radical constructivist principle says in core, that every cognitive
construction is not passively received but (a) a person's individual

5 --with rare exceptions, admittedly. In his 'Structure of Scientific Revolutions', 1970, Th
Kuhn has pointed to the fact, that whenever the first doubts come uD the natural attitude as a
matter of course is already broken and the revolution has begun.

6 In their "Executive Summary' of N.C.T.M.s 'Professional Standards for Teaching
Mathematics', issued !larch 1991, which Just has reached my hands.

r; (-)
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construction, and (b) in adapting to constraints and acting upon challenges
[von Giasersfeld 1987 and 1991). Accordingly, as a prerequiste of schools'
adequate functioning the student will have to find him/herself In a situation
which inspires and promotes engaged personal activities, which enacts an
effective--and not necessarily overt--Interactive control over the
adaptation, and which potentially goes beyond the already available.

Further let us take into account the key concerns of connectionism. What the
"symbolic connectionist" (Holyoak) models can do best is "what people do
bestrecognize patterns and similarities. They work in the messy, bottom-
up way that nature seems bound to They approximate rather than embody
rationality. In a very natural way, they model the gradual transition from
vagueness to clarity, from uncertainty to decision, that characterizes much
of human thought and understanding. Whereas rule-based systems tend to be
helpless when presented with situations where their rules do not fit,
connectionist models exhibit humanlike abilities to make best guesses and
to capitalize on partial information" ([Bereiter 1991], p.13).

Of particular interest for the organisation of the mathematics classroom is
the question of /low rationality develops with student.: "That private
thought conforms to public standards of rationality is conventionally
conceived of as Internalizing a set of rules From a connectionist viewpoint,
this concern errs on both sidesin assuming that public rationality Is based
on rules and that individual cognition is as well. The development of personal
rationality is better conceived of as the tuning of a massive network so that
its outputs achieve an increasingly fine fit to what is publicly justifiable."
((Bereiter 1991], p.I 4). From this, it should be clear, that single lessons on
the objectivated and isolatedly thematized issues can hardly provide for the
necesszry support of related learning. Which chances do students have to
develop argumenting, inferences and adequate decisions in mathematics if
such issues are not an integrated part of the regular classroom processes 9

The general possibility for taking into account the whole affective domain
as well as the experience of the own body marks another advantage of
connectionism "The ability of connectionist models to incorporate feeling
into cognition may eventually prove to be decisive in their competition with
rule- based models." ([Beret ter 1991], p 13) This indeed, is an essential
extension, since learning is a wholistic process. In each situation all of the
senses are involved They cannot be switched off deliberately. One never
learns cognitively (or physically or . I only The cognitivists' growing
interest in "enbodied cognition" (Johnson 1987) indicates the realized
deficits in this direction.

-275-

BEST COPY AVA1L1M 4



H.Bauersfeld: Theories ...

The metaphor of "tuning in" again points at the crucial role of something
outside of the person what cognitivists may name "environment", "context"
etc., but what can be described more adequately from sociological
perspectives. In ethnomethodology and social interactionism concepts are
used like "social interaction," "negotiation of meaning," the
"accomplishment of taken-as-shared norms", the "emergence of regulations
and structures of common actions,".the "reflexivity" and "indexicality" of
the interactive processes in the classroom (see e.g. [Mehan, 19751, [Erickson,
1986], and [Cobb, 19901), and the "language game" which is more or less
specific to each classroom, even in mathematics.

With all this we are very near to form an analogy between classroom
realities and the functioning of a subculture. Both concern the person as a
whole. Both are permanently changing and developing microworlds,
intimately interrelated and intertwined with the change and the mutual
development of their participants. Both are under the impact of more
powerful societal forces, and both are limited in time. Therefore, I like to
speak of the culture of a mathematics classroom.. This concept of "culture"
is very near to the one described by Michelle Rosaldo, a student of the
anthropologist Clifford Geertz: "A matter less of artifacts and propositions,
rules, schematic programs, or beliefs, than of associative chains and images
that tell what can be reasonably linked up with what.... Its truth resides not
In explicit formulations of the rituals of daily life but In the daily practices
of persons who in acting take for granted an account of who they are and how
to understand their fellows' moves." (in [Bruner and Haste, 19871, p.90).

I do prefer the notion of culture for the processes under discussion, not at
least because of the connotatively related dimensions of time and history.
Cultures are permanently developing, reproducing and renewing Jointly. One
can become a member of a culture through active participation only; it is a
processual adaption and cooperation. Most of what is learned in terms of
acceptability, validity, norms, languaqing, and even personal identity is
learned on the way, implicitly, emerges in the interaction. The ever
historical result is on the person's side something like a "habitus" (see
(8ourdieu 1990], specializing his notion I speak of the school mathematical
habitus of a student), and on the social side the practice of a living culture,
the structures and regulations of which a member lives but rarely reflects
upon and which only an informed observer can describe.

Finally, school is a place where students learn to know of but not to know
about. School cannot replicate or even substitute ordinary and professional
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life. School has to use simulations. and all too often simplified or
elementarizecr versions only. The most powerful simulation (m Is)used in

schools is language, is talking of things rather than actively work on them.
And if things are done at school; the structure is different from doing it
under everyday Ilfe conditions, because failure can pass without the
obligation for taking the responsibility, and without having to bear the
consequences. With very rare exceptions school simulations suffer from
being as if's, though it is a practice or reality of its own. In first grade
classes already students begin to understand, that in the classroom real
things, actions, words are used for something else, have to be taken as
means for different purposes. The crucial point with the qualities of these
situations seems to be the nature of the related teacher x student
interactions, the "social climate", or the culture of the classroom. How
serious does the teacher her/himself take the matter taught? To which
extent does the teacher "live" the virtues wanted like a model for any other
serious member of the (school) mathematics society? Students, I am very
sure about this, have a very sensitive perception of the teacher's concerns
and thoroughness. It depends upon the teacher's aptitudes and the whole
person's engagement to which extent this as-tf microworld becomes a
culture of prime importance for the mathematical development of the
student.

3. Characteristics of Alternative Classroom Cultures

'I am fully convinced that a mere mechanical facility in
manipulating figures, sufficient though it may be for the
calculation necessity In everyday life, Is in no way conducive to
a healthy development of the reasoning faculty.'
(Chakvavartt 18901, p.1, preface to I st edition)7

What are possible particular and more concrete consequences and inferences
drawn from the outlined fundamental changes towards a more integrated
theoretical basis in Mathematics Education? The following characteristics
are noot at all new. But their combination, I think, may mark another design
of what mathematics education can be and how alternative approaches may
look like. According to the main field of my own empirical work I shall limit
the examples to the early years In school:

3.1. Fundamental Attitudes.

7 t owe this quote to Ernst von Glasersfeld.

-277-



11.Bauersfeld: Theories ...

If the mental development rests upon the students's repeated and engaged
own activities on the one hand, and on the potential oower and richness of
the culture of the mathematical classroom on the other hand, then the
permanent support of an attitude of curiosity, of inquisitiveness, of
searching for pattern and regularities, of expecting to find surprising Issues,
appears to be helpful.

Let me give an example of how to challenge such attitudes. My classe Is
accustomed to an opening of each math lesson with mental arithmetic and
geometry One day early in grade 3 I started with a series of "number
houses" with two given numbers in the first floor of the first house. Their
sum Is to appear in the bottom and their difference in the roof. And these
two results make the first floor of the next house, and so on (see figure 2)'

insert here about Figure 2

The students soon caught uo with the simple procedure, began to f ill the
houses and a few tried new starting numbers already Once the teacher
intervened and asked for predictions about the next house's roof and bottom
numbers -w ithout doing the required calculations, students swiftly came to
see the 4, 6, 8 sequence in the roof and expected 10 to be the next result. The
surprise "12" lead to different assumptions, in particular when the bottom
numbers were taken into consideration too. In the following, the doubling in
each overnext house became obvious the more of the houses were completed
Marion Walter's and Stephen Brown's excellent book on the variation of
problems [Brown & Walter 19831 made me ask for other types of completion,
e.g. (see Figure 3):

insert here about Figure 3

The students took this idea up and tried other patterns to start. They did a
lot of trying out and calculating with these houses, also at home, coming up
with different ideas in the next lessons as well: "I got a new one!" etc. Over
a week or so they were keen to find new patterns, especially also in the
quite different situation of routinely solving the rather boring sets of
calculation tasks in their textbook. So we found ourselves tempted to invent
other new tasks and to maintain the movement Within each next piece of

8 If I speak of-my class" then the children are meant, with whom I am working in their math
lessons at an Elementary school in a project since August 1988 The final responsibility is with
an experienced woman teacher (an excellent specialist in arts and crafts), we 'share' the
teaching.
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mental arithmetic, in consequence, but soon with geometry also, the
students searched for sim I la. phenomena and pattern. The quicker students
were the first ones to try their developing attitude in other situations as
well, which we appreciated and encouraged as creative insertions.

What is different in comparison with earlier "discovery" approaches? It is
the shift from a rare exceptional situation towards a permanent and
integrated process as part of the life.in the mathematics classroom:

Discovery approach
In explicitly defined situations the
student researcher starts off from
an introduction to working on
prepared material, and finally to a
discussing and clearing of the
findings in a whole class session.

Integrated (Culture) approach
In every classroom situation the
students are expected to search for
pattern, to assume regularities,
and to relate developing or
contrasting ideas, as well as to
give reason and arguments for the
Issue under discussion.

Aside of that there are fundamental doubts, which are not to be discussued
here in detail, about what "discover" can describe at all from a
constructivist perspective (see l8auersfeld 19911 for details).

3.2. Language, languaging, and the teacher. In a narrow interchange
with the described attitudes the view on language will have to undergo
change also. 'Learning how to use language involves both learning the culture
and learning how to express intentions in congruence with the culture."
((Bruner & Haste 1987), p.89) And "one has to conclude that the subtle and
systematic basis upon which linguistic reference itself rests must reflect a
natural organization of mind, one into which we grow through experience
rather than one we achieve by learning." (Bruner, ibid., p.88; emphasis in the
original).

For many teachers the strength and the generalizability of mathematics is
inseparable from the strictness and the precision of the related verbal or
other symbolic representations. Similar to priests who celebrate the
esoteric language game of their caste, many mathematics teachers
permanently insist on saying things as sharp as possible. An observer may
find, the teacher insists on this technical language. For the students the
force functions as to say it sxactly "as he said it.'

One may suspect that many teachers do not "have it' in any other way. That
is to say, they know how to talk about "it" in the terminology of the
accepted language game. But there seems to be not much more beyond, as the
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limited availability in other 'contexts', the difficulties and shakiness with
the use in other situations, and the Inability of metaphorizing the issues
adequately, indicate. Nobody has trained them to speak about the matter
meant in everyday language, to "point at" similar Issues etc. (Cognitivists
may prefer descriptions like: they cannot "translate," or "say it in other
words," they cannot "embed" or "visualize," or "refer it to", thus treating
the matter meant as an object rather than as something emerging from the
actually situated processes). in consequence many mathematics teachers are
quite rigid in their verbal aspirations and their related evaluations of
students' utterances. But they are quite permissive with the social
organization of their class. Under the changed integrating perspective the
other way round appears to be more promising: to accept and encourage
students' mathematical utterances within very wide limits for the how it is
said, as long as a serious background (reason, argument etc.) can be
identified with It; but to be absolutely rigid in the insisting of listening to
other's inventions and explanations, in keeping turn-taking order, in taking
serious the others' serious contributions, etc.9

The analyses of many videotapes have convinced me of the all too general
poverty of classroom communication under this view. If the culture the
Students live in at the classroom is poor in languaging and in presenting
models of the wanted, if it is lacking incentives and challenges, if it is more
a nontransparent celebration of technical language rather than a
participation in a scaffolding10 culture, and if It Is neither providing
resistance for the critical mind nor further orientation for the keen minded,
what then are we to expect from our schools'?

A counter-example may demonstrate what I speak of here: Many years ago,
during teaching practices with my teacher students, I observed a lesson in
which a young teacher tried to Introduce 6th graders into the characteristics
of reflections, in particular the relations between original and image
elements. He had followed recommendations for to use a vertically fixed
glass pane In a dark room and a lighted candle placed in front of It. He asked

9 The "Executive Sump ary" (see footnote 6) explicit ly recommends an "encouraging for)
students to take Intellectual risks ... by formulating conjectures But there is no mentioning
of the Intellectual risks which the teacher has to take in classroom communication and,
consequently, has to be trained for.

10 See Jerome Bruner's use of the concept of 'scaffolding" related to language learning in early
childhood (Bruner 1983) What are possible analogies in terms of little communicative games,
which children can take over and which give children the chance to take the active part In
mathematical discourse, not only to Join it, but also to contribute to It?
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two students for support. One to move an second lighted candle behind the
pane, following the directions of the other student who was placed in front
of the arrangement. The latter had to try to make the second candle move in a
position, where both the image of the first candle and the original second
candle would come into coincidence.
The pity was, this teacher calked about the arrangement but had not prepared
for doing it. The students ran into difficulties. They would not believe, that
one can see three candles, the two originals and the image of the candle in
front: "This is impossible! Either you can look through the glass, then there
is no image! Or you can't look through the glass, then there is no candle
behind!" The poor teacher ended the situation, shrugging his shoulder in
desperation and saying: "0.k., mathematicians use to say so in order to
visualize the relations!"

3,3. Problems as developing processes. Teachers usually treat
mathematical tasks and problems like objects, like carriers of a more or
less well defined enigma to be solved Most'v tasks are "given" tasks (with
the exception of the few problems the students get a chance to define by
their own). The students are expected to unoerstand the text problem,
transform it into a mathematically tractable form and solve it. What happens
in many cases, is, that in an obscure and weakly controlled process prima
f&t:ie associations lead directly to calculations and to results, both through
following frequently used paths of related activities anti applying related
procedural skills Consequently the students learn to treat the tasks as
"given" ones, everything one needs to know is "in it" Tasks fall Into two
classes. "known" and "unknown" problems it becomes a case of
"application" of methods ready at hand rather than a case of an active
production of possible ascriptions of sense, of selecting among possible
alternatives, and then of calculating and checking.

If the individual student's adaptation to the approach favoured by the teacher
comes to happen only across the frequent "right" or "wrcng" evaluations and
remains restricted to merely a discussion of the technica; solution
procedures (operations, order, writing schemes etc.) then st...ir ',its will have
no chance to develop better strategies, a more sophisticated ...elf-
awareness, and self-control over their fundamental processes of ascribing
and formating mathematical meanings. The technical solution procedures
dismiss the vulnerable tacit pn,Juction of helpful ideas and in the end they
replace them by the drilled fluency of current solution techniqueS. But these
techniques

are bound to narrow classes of "problems" and to the specifities of the
"presentation" of the tasks
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- get lost if not trained permanently, and
resist transfer and generalization.

The often bemoaned mathematical "Inferiority syndrom" (or complex)--"I
wasn't good in Math's!" (nobody would admit that for his mother tongue!)-
may have parts of its origin here.

The process-oriented integrated view realizes problems as always problems
forming "Precisely the greatest ability of all living cognition is ... to pose
the relevant issues to be addressed at each moment of our life. They are not
pre-given, but enacted or brought forth from a background, and what counts
as relevant Is what our common-sense sanctions as such." ([Varela 19901,
p.90, emphases In the original). According to the radical constructivist.
principle the student develops her/his own sense related to the symbols,
texts. or pictures offered by the teacher or the textbook during the solution
process. And every step and every decision taken in the process of dealing
with 'the problem' changes the issue. What in the end the problem has been
for the Individual is open to an interpretative reconstruction from step to
step in retrospect only. It is a kind of a biography of this 'problem' related to
this specific 'solver'. (I do not speak here about the set of "number facts" or
other routinized operations which everybody has available by heart.)

These tacit and obscure processes of creating and selecting are developed
across--or better: emerge from-- the related classroom interactions. During
the first years at school already students' participation In the classroom
culture leads to the emergence of a typical school P./ethernet/cal habitus (by
analogy with Bourdleu's concept of "habitus" as a structuring, "structure
generating mechanism"), which enables them to produce somehow acceptable
solutions. But obviously, in regular classrooms these covert processes are
very rarely touched and redeveloped explicitly.

It may be useful to pay more attention to these tacit and usually covert
processes. They should undergo more overt demonstration In the classroom,
and--as far as possible- discussion and negotiation, thus opening and
developing another language game, rich of metaphors and open to a manifold
of supportive associations and analogles.To avoid misunderstanding and to
withstand the easy reproduction of the usual instructional methods applied
to new content only: I do not speak of 'teaching" such ideas and alternative
constructions here. The enacting of principles and decisions, the living of a

The notion Is taken from Hugh Mehan's statement: 'Forms of life are always forms of life
forming. Realities are always realities becoming.- aMehan & Wood19751, p.205).

j
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culture, appear to be helpful alternative models rather than the talking into.
Every communication functions only over a shared practice. Likewise
effective enculturation in the classroom functions across active
participation, realizing others in doing "It", doing it yourself, and
communicating about the "It" and the "doing," negotiating ideas and what
one thinks one has just learned. Insight will emerge from a practice only.

Let me give another example from my.class. L2te in grade I the textbooks
begin to present pictures from everyday scenes as story problems. They are
treated as the first steps of an introduction into the solution of text
problems. Usually such "picture problems" appear right after an elaborated
section on addition or subtraction. And teachers Invest much effort to make
students "read" the expected number sentence into such pictures . All
students around the world encountering a picture with three birds sitting on
a roof and two others approaching them flying will (in a math lesson!) react
with 3 2 = 5. Or, in case the two birds are flying away the answers will be
5 - 2 = 3.

That this one-to-one relation between a pictorial presentation and a number
sentence is merely a social convention (and not an objective truth) becomes
clear, when, before such 'introductions' come to deform the minds, students
get the chance to comment on the pictures (see for more details (Bauersfeld
1991)). With my class I have tried to organize a certain training for the
creation of more serious and reflected mathematical interpretations--
"mathematizing" --of a picture. And once the floor was open a rich variety of
number sentences and related reasons (no acceptance without reason!) came
about for the same picture. Most helpful. the students Interactively varied
each others interpretions. They competed with new relations (number
sentences) and new arguments. It became very clear, that each
mathematization of a picture, of a text etc depends on the analysing
person's actual interests: What do you want to do or to know?' This, I find,
has helped a lot with the later interpretation of text problems, when
students on the way to produce acceptable solutions also discussed the
sense of exotic intepretations and the quality of others' arguments and
ideas.
I am happy to realize that my students have begun recently to turn my
permanent "How'd you come to think that?!" against myself.

3.4. Taboos and Theory. Classroom taboos are among the least discussed
issues in mathematics education. But they belong to the most effective
forces in classroom realities. "Never tell a student what he can find by
himself" is anchored as a guiding principle in many German syllabi, the state
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regulations for mathematics instruction at school. Also in-service teacher
training institutions disseminate this principle, presumably In the US as
well. There is a clear relation to the suspected Issue of "discovery" (see 3 I
and (Bauersfeld, 1991]).

A correlative Issue is the conviction that students' mathematical errors are
mostly caused by a strategy or a rule. (As linguists say: "In human
communication nothing comes to happen by chance.") The usual attempt for
repair Is to replace the faulty rule by the adequate one. From a Connectionist
perspective, "the computational algorithms, the things that generate
thought, are not anything like rules of logic They are, rather, algorithms for
constraint satisfaction." ([Berelter 19911, p 14). In other words: If a student
acts In a specific situation as if he followed a rule, then this will be an
Indicator for a developing network functioning towards the fluency of
repeated common action rather than an outcome of the conscious knowing,
selecting, and applying of a rule. Since there is no explicit rule in the game,
and since there Is no chance for a direct adoption or "Internalization" of
another rule the idea of repair--even If the invention seems to end up
successful--appears to be an Illusion.

Berelter points at several examples from research on Instruction "Indicating
that the rules students learn are not the same as the rules they are taught
and he asks consistently: "If rules are useful In teaching but are not what
students actually learn, how are we to make sense of their function'?"
([ Berelter 1991], p.14). Referring to experiments from Magalene Lampert
[Lampert, M., 19881, his answer, is very near to my notion of classroom
culture: 'Instead of concentrating on getting rules into the minds of the
students, the teacher uses rules as a way of representing and talking about
mathematics and encourages the students to do likewise." ([Bereiter1991],
p.15; my emphases).

What functions as hint for a necessary change on the students side mainly
will be the experienced constraints and the negative sanction. Only the
student's repeated activity under similar but varying conditions and the
interactive participation in a challenging classroom Culture, in which the
teacher functions like a model of the wanted may support a process of
reformatting the individual's network and lead to a kind of changed
productions, that an observer then can describe as a satisfying
approximation to the rule wanted.

Related to his earlier writings Carl Berelter himself has changed his
position quite radically: "The classical rule-based view of rationality enjoys
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Figure 2 Sum-and-difference-houses for men al arithmetic

Figure 3 : Can you complete this sequence of houses forward and backwards?
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such prestige that when we think of actual thought as an approximation, we
tend to assume it is an inferior approximation. Although this is surely true
on some counts, the opposite may be true on the whole." He demonstrates the
case through an analogy , using the relation between recipes and actual
cooking performance: "With a novice cook, Actual performance is an Inferior
approximation to the recipe; with an expert cook, the recipe (even if written
by the expert) is an inferrior approximation to actual performance."
(fBerel ter 1991], p.14).
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Statistical Reasoning Assessment

Age Level: Secondary and College
Identifier #1: Statistics
Identifier #2: Assessment

EVALUATING STUDENTS' UNDERSTANDING OF STATISTICS:
DEVELOPMENT OF THE STATISTICAL REASONING ASSESSMENT'

Joan B. Garfield
University of Minnesota

This paper describes the development of the Statistical Reasoning
Assessment, an instrument designed to assess students' understanding of
probability and statistics for the purpose of evaluating the effectiveness of
new curricular programs and materials. A review of the literature related to
assessment of statistical knowledge was used to determine the components
and framework for this instrument.

Probability and Statistics in the Secondary Mathematics Curriculum
As part of the reform movement in mathematics education, probability and

statistics have been given an important place in the K-12 mathematics curriculum.
The NCTM Standards (1989) state that students should learn to use probability and
statistics to solve problems and evaluate information in the world around them.
Additionally, these standards recommend which topics in probability and statistics
should be included at different grade levels and how these topics should be taught.

For example, the standards suggest using hands-on activities to teach data
collection and organization using technology for representing and modeling data.
The standards also emphasize verbal and written communication of statistical ideas
(such as distribution, randomness, and bias) and in helping students to gain
experience choosing appropriate measures, methods, theoretical distributions in
data analysis. The standards for teaching probability include use of simulations to
estimate probabilities, creating and interpreting discrete probability distributions,
and understanding and applying the idea of a random variable.

Because these topics and techniques are new to the high school mathematics
curriculum, several projects were funded to develop curricula and software to help
implement the NCTM standards (e.g., the Quantitative Literacy Project, the
Reasoning Under Uncertainty Project, and the Chance-Plus Project). These projects
offer curriculum materials and flexible, easy-to-use software for representing,

'This research was supported by NSF Grant No. MDR-8954626, Chance-Plus: A Computer Based
Curriculum for Probability and Statistics, Clifford Konold, Principal Investigator.
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exploring, and analyzing data. The new software packages in particular offer unique
opportunities for students to explore data and build models, and are also designed to
facilitate the development of probability and statistics concepts.

The Need for Common Assessment Methods
One problem that these projects share is lack of appropriate tests to use for

determining how well the new materials helps students learn probability and
statistics. Although tests were constructed for two of the projects to assess students'
knowledge and skills, items were written to reflect the specific skills taught rather
than to test for more general conceptual understanding and higher order reasoning
skills.

In his forthcoming chapter on research on learning probability and statistics,
Shaughnessy (in press) describes the need for some standard, reliable tools to assess
students' conceptions of probability and statistics. If fact, he lists the development of
assessment instruments as the first item on his "wish list" for future research in this
area. Although a variety of items aid tasks have been used by researchers or
evaluators in the past, it is difficult assemble these items and tasks into a test because
of their different purposes and formats (e.g., paper and pencil, clinical interview).
Shaughnessy stresses the need for new instruments which incorporate and build on
the ideas of previous research but which have greater applicability. Ideally, these
instruments will help us determine if the new standards for learning probability
and statistics are being achieved.

Acknowledging the lack of a general instrument for assessing students'
understanding of statistics and probability, the NSF-funded Chance-Plus project (at
the University of Massachusetts, Amherst) is developing such a test. Assessing the
reliability and validity of this instrument is crucial in order for the instrument to be
used in further research and evaluation studies. To develop the test, a review of the
literature related to assessment of statistical understanding was conducted. This
review is summarized below, followed by a description of the Statistical Reasoning
Assessment and its intended validation plan.

Research Related to Assessing Statistical Understanding
A review of research by Jolliffe (1990) organizes the relevant literature in the

categories of classification schemes for assessment tasks, newer methods of
assessment, attitude scales, and studies of understanding. A modification of these
categories yields five grc ns of studies relevant to the assessment of statistical
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understanding: 1) students' attitudes and anxiety towards learning statistics, 2)
students' computational skills in using probability and statistics, 3) students'
misconceptions of probability and statistics, 4) conceptual frameworks for assessing
statistical learning, and 5)methods of assessing mathematical learning and problem
solving. Each is described below.

Student Attitudes and Anxiety. The Statistics Attitude Survey (SAS) scale
(Roberts & Saxe, 1982), the Attitudes Toward Statistics test (ATS) (Wise, 1985), and
the Statistical Anxiety Rating Scale (STARS) (Cruise, Cash, & Bolton, 1985) are
Likert-type scales written for college students in statistics courses. The SAS was
designed to assess various components of statistical attitudes, such as students'
perceptions of their own statistical competence and the usefulness of statistical
analysis. The ATS was developed specifically to measure attitude changes during
statistics courses and is designed to be given as a pre- and post-test. Two scores are
calculated: attitudes towards the course and attitudes toward the field of statistics.
The STARS measures students' attitudes towards six areas: worth of statistics,
interpretation anxiety, test/class anxiety, computation self-concept, fear of asking for
help, and fear of statistics teachers. None of the three instruments assess student
understanding of and beliefs about what the field of statistics is, what it means to
"do" statistics and solve statistical problems. Instead, they deal with the more
specialized attitudes and anxiety faced by college students.

Students' Computational Skills. Tests written to accompany commercial
textbooks are the most common form of assessment for measuring students' ability
to perform statistical calculations. Items on standardized tests and the National
Assessment of Educational Progress (NAEP) tend to be of this type. One example
from the NAEP asks students to calculate the mean, median and mode for a set of
data consisting of inches of snowfall (Brown & Silver, 1989). Although these items
typically test whether or not students can use formulas and come up with a single,
correct answer, they do not assess w tether or not stwients understand the concepts
and can use them to analyze and interpret data. For example, students may be able to
correctly calculate the median and mean but not know when one is a better average
to use than another. This type of skill is best assessed in classes through assignments
and quizzes, and does not need to be on a general test of statistical understanding
and reasoning.
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Students' Conceptions and Misconceptions about Probability and Statistics. The
only test written and used on a large scale to assess students understanding of
probability concepts was developed and administered by Green (1983) to 3000
students in Great Britain. Some of these items and other items appearing in the
research literature have been found to be useful in detecting misconceptions and
helping researchers to understand how student think about probability and statistics.
Research reviews by Garfield and Ahlgren (1989) and Shaughnessy (in press) refer to
many of these studies. Items used are often open-ended and many have been used
in clinical interviews to probe students' beliefs. Many have been used with adults or
college students and involve a substantial amount of reading. Although these
items are good at detecting student conceptions and misconceptions, many need to
be revised and adapted for high school students.

Frameworks for developing assessment tasks. There have been at least two
attempts to design frameworks for developing tasks for assessing statistical learning.
Chervaney, et al., (1977) used a model of the problem solving process to develop a
three stage model of assessment (comprehension, planning and execution, and
evaluation and interpretation). These three stages contain 10 different steps in
statistical reasoning which can be used to guide item development. Although this
framework was designed to evaluate innovative college courses and was
successfully used to design tests for a college level course (Garfield, 1981) it does not
appear to have been used in other studies. Nitko and Lane (1990) also designed a
framework for generating assessment tasks that provide a richer description of
students' thinking and reasoning than just giving them problems to work out. This
framework was developed for college and graduate level statistics courses and can be
used to assess relationships among knowledge and whether or not important
principles and concepts are understood by students. Three interrelated categories are
used to classify statistical activities: problem solving, modeling, and statistical
argument. Although developed for students at a level higher than secondary
school, these models are useful in providing frameworks for organizing statistical
knowledge and skills.

Assessment of mathematical learning and problem solving. There are 13 standards
for evaluation included in the NCTM curriculum standards. These standards
describe the assessment of students' mathematical knowledge, conceptual
understanding, procedural knowledge, problem solving, reasoning, and

310,,
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mathematical disposition. Assessment is viewed as the process of understanding the
meaning which students give to mathematics; it should be dynamic and involve a
variety of approaches (Webb & Romberg, 1988). Recently, more attention has been
given to assessment of higher order mathematical thinking (Kuhn, 1990). Educators
are encouraged to move away from using single number summaries to represent
students' knowledge, and using two dimensional frameworks for developing
assessment measures, to instead explore alternative models of assessment and ways
of building on more recent models of learning mathematics.

Development of the Statistical Reasoning Assessment
The Statistical Reasoning Assessment currently under development by the

Chance-Plus project, is designed to assess students' beliefs about statistics, their
understanding of basic concepts of probability and statistics, and their ability to use
these concepts in interpreting information, reasoning, and solving problems. After
reflecting on the the research literature reviewed, prev!--us tests and test items,
teaching experience, and much group discussion, the ChancePlus project team of
psychologists, educators, and statisticians outlined a framework of important beliefs,
ideas, concepts, and reasoning skills. Components of the instrument were then
collected, revised, or written from scratch to assess these ideas and skills. Although
some parts of the instrument look like traditional test items, others appear unique
in their format and ability to capture students' thinking and reasoning. Four parts of
the test were created to be used at various times and in various combinations:

Part 1 assesses general beliefs about the nature of statistics and statistical work. Two
formats are used for these items. One part contains statements about statistics and
statistical work (e.g., there may be more than one way to correctly solve a statistical
problem). The other part asks students to rate the skills that someone would need to
have in order to analyze and interpret data (e.g., types of communication and
mathematical skills).

Parts 2 and 3 assess general ideas about probability and statistics students would
have before a course of instruction. These items do not use specialized vocabulary
with which a student might be unfamiliar. Items are designed to see how students
interpret information and make judgements about different situations. Items are
also designed to assess students' intuitions and misconceptions about probability
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and statistics that interact with or are resistant to instruction. An example of a

probability item is:

Jim, Barb and Rebecca are playing a game and need to decide who should go

first. Barb suggests rolling two dice to determine who will start. If both dice

come up odd, Jim will go first. If both dice come up even, Barb will go first. If

one die is odd and one is even, Rebecca will go first. Do you think this is a fair

method of determining who should go first? Why or why not?

Part 4 assesses students' ability to reason about and solve probability and statistics

problems. In order to develop realistic contexts for solving these problems, a

research study conducted by a high school class is described. All questions are based

on the analysis of this project. One version of this test describes results from a

survey of how students spend their money. Questions involve a decision,

interpretation, or conclusion about some aspect of the data analysis. A sample

question is:

Jack says that because the distribution of money spent for entertainment is

skewed, a median is a better measure of average money spent by students on

entertainment. Sarah says that a mean is always the best average to use
because more people know how to calculate the mean. Do you agree with

either Jack or Sarah? Why or why not?

Validation Plan
The four parts of the test were sent to a variety of people for first-stage

evaluation. Raters were asked to evaluate how well each item measured the

designated concept or skill, to revise items as needed, to indicate whether the item

should stay in the test, and to indicate if any additional items should be added. After

the indicated revisions are made, the next stage will be to give these stems to

students, to assess how they interpret them and how able they are to answer the

questions. Again, a set of revisions will be made. A third stage will be to code

student responses to open-ended ques:ions so that they may be transformed into a

multiple-choire format. A fourth stage will be to administer the test to different

groups of students, to establish scoring rubrics, and to determine the reliability for

different components of the test. A fifth stage will be to identify different measures

of student performance, such as tests and class projects, and to correlate these with

the instrument. These five stages will be completed by summer of 1992. At that

time the Statistical Reasoning Assessment should be available for general use.

-6-
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Age Level: NA
Identifier #1: Teachers' conceptions, beliefs
Identifier #2: Teachers' conceptual change

THE DEVELOPMENT OF TEACHERS' CONCEPTIONS OF

MATHEMATICS TEACHING*

Alba G. Thompson
Department of Mathematical Sciences

San Diego State University

A framework of the development of teachers' conceptions of mathematics
teaching is proposed for consideration of its viability. The framework is based
on reflections from work carried out with twelve preservice and inservice
teachers over the past 5 years.

The ideas presented in this paper took shape upon reflecting on work
conducted over the past five years in collaboration with preservice and experienced
mathematics teachers involved in two research projects. It is on the basis of that
work that I offermore in the spirit of a hypothesis than of a theoretical modela
description of what I have come to see as a fairly consistent pattern of development
in teachers' conceptions of mathematics teaching. For lack of a batter word and at the
risk of being judged pretentious, I use the term framework to describe that pattern

The framework is offered for consideration and investigation of its viability.
The issue of its potential usefulness for teacher educators, staff developers, and
otherswhether used as a frame of reference against which to gauge the progress of
their work or as a means of facilitating communication among themis open for
examination.

The development of a given teacher's conception of mathematics teaching is
influenced by the personal experiential background of that teacher, including his
professional and educational experiences, and how those are interpreted and
Internalized by the teacher. Insofar as there are commonalities across teacher
education programs that are designed to effect change in teachers, one might expect
to see patterns of thought and commonality of themes in their development

* Preparation of this paper was supported in part by National Science Foundation
Grants No. TEI-8652037 and MDR-89-50311. Any opinions or conclusions expressed
are those of the author and do not represent an official position of NSF.
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However, exposed to the same experiences, teachers will come away with different
conceptions, as our own experiences can attest. Much of what a teacher makes of a
particular experience depends on the conceptual schemas available to the teacher
into which the experiences are assimilated or on the accommodation of schemas
that takes place. It is with these ideas in mind that I propose the framework for
examination of its viability.

In the limited space available it is impossible to include descriptions of the
experiences afforded the teachers on whom the description is based. Nor is it
possible to include anecdotal excerpts from the data to substantiate the statements
and clair,s made. Support for the framework can be found in detailed accounts of
the development of individual teachers' conceptions described in case studies by
Thompson and Bohn (forthcoming) and Thompson and Boyd (forthcoming).

The paper is organized in two parts. The first is a description of the
framework which consists of three levels. The features that characterize teachers
conceptions of mathematics teaching at each level are described. The second part
includes a discussion of issues related to the restructuring and development of
teachers' conceptual schemas.

The Framework
The proposed framework consists of three levels in the development of

teachers' conceptions of mathematics teaching. Each level is characterized by
conceptions of:

1. What mathematics is.
2. What it means to learn mathematics.
3. What one teaches when teaching mathematics.
4. What the roles of the teacher and the students should be.
5. What constitutes evidence of student knowledge and criteria for judging

correctness, accuracy, or acceptability of mathematical results and
conclusions.

Level 0

Conception of mathematics is based on perceptions of common uses of
arithmetic skills in daily situations. This translates into instructional practices that
focus on developing students' arithmetic skills through memorization of collections
of facts, rules, formulas, and procedures with little or no consideration of their
origin, validity, or logical relations among them. Mathematics instruction is

- 9 -
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conceived as progressing through a sequence of topics and skills specified in a
textbook. Because of the hierarchical organization of topics common to most
textbooks, each of these topics and skills is viewed as prerequisite for the next and all
are viewed as equally important. Thus, an undifferentiated view of topics in terms
of their relevance or mathematical significance characterizes this level.

The role of the teacher is perceived as that of demonstrator of well-established
procedures which are viewed as constituting the core of mathematical knowledge.
The students' role is to imitate the demonstrated procedures and to practice them
until they become habituated. Obtaining accurate answers via the prescribed
procedure is viewed as the goal of mathematics instruction with little or no
consideration of mental processes. Authority for correctness or accuracy lies in the
teacher or in the book (i.e., it is external to the learner; experts are the ultimate
judge).

Problem solving is viewed as tantamount to getting answers to "story
problems" by applying a prescribed procedure that the students are presumably adept
at using. Thus, instruction in problem solving is construed as helping students
identify the procedure or sequence of procedures necessary to get the answer to the
problem. To accomplish this, the teacher may resort to any of a number of
techniques. One such technique may be to call students' attention to "rules of
thumb" or to "key words" in the problem statement that the teacher deems
suggestive of the desired procedure. A characteristic of the techniques used at this
level is that they all circumvent discussions of the problem's quantitative
relationships and of the appropriateness of alternative mathematical operations and
procedures in light of those relationships.

Level 1

Conception of what constitutes mathematical knowledge is broadened from
rote, procedural proficiency to include an emerging appreciation for understanding
the concepts and principles "behind the rules." Rules, however, continue to be
perceived as predetermined and as governing all work in mathematics. There is an
incipient distinction between "meaning" and "skill" triggered perhaps by exposure
to the use of "manipulatives" in teaching mathematics.

Conception of mathematics teaching is characterized by an emerging
awareness of the use of instructional representationsphysical and pictorialof
mathematical concepts and procedures to help students develop meaning and
understanding. But teaching for conceptual understanding is viewed as requiring

316
d



Conceptions of Teaching

the teacher to possess a collection of unique pedagogical techniquestypically
involving the use of concrete or pictorial representationsfor explaining isolated
concepts, procedures, algorithms, and formulas. There is little generalization or
adaptation of these techniques to teaching other topics for which specific techniques
have not been encountered.

The use of manipulatives in instruction is highly valued, but more for their
potential in helping achieve attitudinal goals than in achieving cognitive objectives
of instruction. A perception that negative attitudes towards mathematics are
widespread among students, feeds an overriding concern to engage students in
activities that will ensure a view of mathematics as "fun." Because many
manipulatives are colorful and can be used to involve students actively in a lesson,
they are regarded as ideal for promoting the view that "math is fun." Thus,
manipulatives are valued primarily for their potential in helping achieve this
attitudinal goal.

Conceptions of teaching at this level are characterized by a rather narrow
view of the possible uses of representations for achieving cognitive objectives of
instruction. Manipulatives and pictorial representations are viewed as useful in
providing some sort of empirical justification for standard mathematical
procedures. But the connections between the actions performed on objects or
diagrams, the verbalization of those actions, and their representation in
mathematical notation are not explicitly discussed in instruction. Rather,
connections are typically left for the students to make on their own.

There is an emerging appreciation of complexities in mathematical content
previously perceived as unproblematic. This appreciation emerges from conceptual
analyses of content domains and from reflecting on the abstract nature of familiar
concepts (e.g., number, rate, variable) and the subtleties inherent in them.
Instructional implications of such analyses begin to take shape.

Except for attending to the "reasons behind the rules," the role of the teacher
is still perceived much as in Level 0. Views on the role of the student are somewhat
broadened to include some understanding of the justifications for the standard
procedures of the curriculum. Authority for correctness or accuracy still lies with
experts.

Problem solving is accepted as important in the mathematics curriculum, but
it is viewed as a separate curricular strand to be taught in isolation from the
"traditional content." Integrating problem solving into the curriculum is construed
as interspersing routine and non-routine problems amidst ordinary lessons.
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Problems presented are unrelated to mathematical topics currently being studied
and are generally viewed as unrelated to the mainstream curriculum. The
dominant view is one of teaching "about" problem solving (i.e., phases and
strategies), as distinct from teaching "with" problem solving (i.e., as an instructional
approach). This view leads to problem-solving instruction that tends to be
prescriptive in nature, focusing primarily on the selection and use of strategies, and
bearing little connection to what is regarded as the mainstream curriculum.

A characeristic of this level is the absence of cognitively-based principles that
are corsciously used to guide instructional decisions or of well-articulated criteria
for judging cognitive effects of instructional actions. Pedagogical decisions regarding
instructional actions and activities are often based on perceptions of what a
community of experts (e.g., staff developers, school district personnel, teacher
educators, professional organizations) deem to be desirable practices. Novel
instructional ideas are embraced and implementer with little critical consideration
of their suitability given the mathematical content of a lesson or of important
details concerning their implementation.

Level 2
Conception of how mathematics should be taught is characterized by a view

that students must engage in mathematical inquiry if they are to make sense of
mathematical ideas. The development of students' mathematical reasoning in the
context of investigating and constructing mathematical ideas is viewed as being as
important a goal of instruction as their understanding of the ideas themselves.
Thus, the view of teaching for understanding that begins to develop at Level I is
replaced at Level 2 with a view that understanding grows out of engagement in the
very processes of doing mathematics. Processes such as specializing, conjecturing,
refuting and validating conjectures, and generalizing are viewed as integral to
learning and teaching mathematics.

Physical and pictorial representations are regarded as providing contexts in
which students can engage in tasks that have been carefully designed by the teacher
for exploring ideas and generating procedures. The legitimacy of non-standard
procedures generated by students is judged in terms of whether they meet the
purpose or need for which they were generated and whether they make sense.
Students' competence in making such judgments is viewed as an important
cognitive objective.
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An understanding on the part of students of how different concepts,
procedures, and representations are interconnected in sets of problems and
situations, and student recognition that the same or similar mathematical ideas
arise from seemingly different situations are viewed as major long-term goals that
guide and help shape instruction. Distinctions concerning the relative importance
of various topics are based on the centrality of the mathematical ideas inherent in
the topic to various areas of mathematics.

The role of the teacher is perceived as steering students' thinking in
mathematically productive ways. Questions are posed with the intent of
stimulating, guiding, or focusing students' thinking rather than for the sole purpose
of eliciting answers. Instructional decisions are informed by concerns about the
quality of students' reasoning inferred from their work and discussions. There is an
increasing awareness of subtleties inherent in mathematical ideas that pose
cognitive obstacles for students and lead to common misconceptions; careful
consideration is given to shaping instruction so that it helps students make those
subtleties explicit to themselves. Opportunities for students to express their ideas
and for the teacher to listen to and assess their reasoning are viewed as essential to
the quality of a lesson.

The hallmark of this level is the presence of cognitively-based principles that
are explicitly used to guide instructional decisions. Cognitive objectives of
instruction are also explicitly used in selecting and designing instructional activities.
Criteria for judging the soundness of instruction are stated in terms of student
outcomes consistent with broad goals that drive instruction.

Discussion
Of the twelve teachers (five experienced and seven preservice) with whom

we have worked over the past five years, none can be said to have developed
conceptions of mathematics teaching that fully fit the Level 2 description. All of the
preservice and three of the experienced teachers had initial conceptions at Level 0.
Only two of the experienced teachers were judged to have initial conceptions at
Level 1. All of the teachers starting at Level 0 showed change to Level 1 with some
evidence that aspects of Level 2 conceptions were beginning to take shape. The three
teachers starting at Level 1 have shown little evidence of growth to Level 2
conceptions over a period of eight months. This is despite a genuine desire on their
part to teach in ways that are consistent with such conceptions and efforts on our
part to help them do so.
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There are plausible explanations for the relative ease with which teachers
moved from Level 0 to Level I conceptions and the relative difficulty observed in
moving from Level 1 to Level 2 conceptions. Growth from a Level 0 to a Level 1
conception can occur without major restructuring of conceptual schemes. The ideas
at Level 1 can be assimilated into structures that support Level 0 conceptions by
merely expanding or broadening them, but without the need for restructuring those
schemas, i.e., without the need for the reconceptualization of fundamental ideas
that is necessary to progress from Level 1 to Level 2. The restructuring necessary to
advance to Level 2 requires that a teacher experience numerous occasions to become
aware of and question his deeply rooted ideas and unexamined assumptions about
what it means to know, learn, and teach mathematics. Furthermore such occasions
must take place in the context of experiencing alternatives to their pre-conceived
notions about mathematics teaching and their second nature instructional habits.
The kind of restructuring necessary calls for a concerted and sustained effort. Indeed,
our experience cautions us not to underestimate the resilience of teachers'
conceptual schemas. This resilience was noted by Skemp (1978) when he stated the
following as one of four factor:, contributing to the difficulty of teachers changing
their instructional practices:

The great psychological difficulty for teachers of
accommodating (re-structuring) their existing and
longstanding Ahemas, even for the minority who
know they need to, want to do so, and have time for
study (p.13; emphasis in original).

Studies of teachers' conceptual change that provide detailed and insightful
analyses of such changes are necessary to improve our understanding of the
mechanisms that bring about the restructuring and development of teachers'
conceptual schemas. A better understanding of those mechanisms is critical to the
design of strong and truly successful teacher education and enhancement
programsprograms that go beyond raising the level of enthusiasm of the
participating teachers. The need for such an understanding is particularly critical at a
time when federal, state, and local agencies are investing considerable funds in such
programs in the United States.
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Ago level:
Identifier #1:
Identifier #2:

5-9 years
Whole numbers
Word problems

CHILDREN'S SOLUTION STRATEGIES FOR DIVISION
PROBLEMS

Alwyn Olivier, Han lie Murray and Piet Human
Research Unit for Mathematics Education

University of Stellenbosch, South Africa

This paper reports some of the effects of a classroom teaching experiment on
young students' understanding of division and their ability to solve division-type
problems. The experimental curriculum is built around students' construction
of their own conceptually-based algorithms as a problem-solving activity,
supported by a classroom atmosphere of discussion and negotiation.

Introduction

Verbal problems involving division are generally seen as difficult for children to solve. The
difficulty resides mainly in children's predicament in choosing the "correct" operation. This
situation may be the direct outcome of conventional school programs that formally first
teach all the "prerequisites" for solving "division" problems (the meaning of division, the
division facts and a standard division algorithm) and then require the children to apply this
knowledge to the solution of word problems.

On the other hand, researchers generally agree that young children enter school with a wide
repertoire of informal mathematical problem-solving strategies that reflect and are based
partly on their understanding of the problem situation and partly on their existing concepts
(Olivier, Murray & Human, 1990; Carpenter & Moser, 1982). Instead of ignoring or even
actively suppressing children's informal knowledge, and imposing formal arithmetic on
children, instruction should recognize, encourage and build on the base of children's
informal knowledge. Steffe and Cobb (1988) state: "In those cases where adult teaching is
in harmony with the child's methods, the generative power of the child is extremely exciting
and is unchartered (sic)" (p. 26).

Our research group is engaged in an ongoing research and development project on the
mathematics curriculum in the first three grades of school, trying to build on children's
informal knowledge and studying and facilitating the development of their conceptual and
procedural knowledge (Murray & Olivier, 1989; Olivier, Murray & Human, 1990). In this
paper we focus on children's construction of increasingly sophisticated meanings of division
and solution strategies for "division" problems in a curriculum that is radically different
from traditional classroom practice.
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Theoretical Orientation

Our theoretical orientation and research base have been outlined elsewhere (Olivier,
Murray & Human, 1990), but its main characteristics are summarized briefly.

Our theoretical framework is based on a constructivist theory of knowledge in which
children actively build up their knowledge based on their own experience. Our approach
is further inspired by socio-constructivism: Learning mathematics is as social activity as
well as an individual constructive activity.

Our baseline study indicated that the majority of children invent powerful non-standard
algorithms alongside school-taught standard algorithms; that they prefer to use their own
algorithms when allowed to (or even when forbidden to!); and that theirsuccess rate when
using their own algorithms is significantly higher than the success rate of children who use
the standard algorithms or when thf '--mselves use standard algorithms. Our research
also identified a model specifying the coi...eptual (and related procedural) advances that
children make and the processes by which they make them.

Our theoretical framework, research base and the availability of calculators which necess-
arily leads to a re-evaluation of objectives for computation, has led us to formulate a
teaching approach with the following main features:

The development of the meanings of operations and solution strategies through true
problem solving, i.e. meanings and strategies are not taught, but the teacher poses a
word problem to a group of students and expects them to solve it in whatever way suits
them individually. This is followed by a general discussion and comparison of methods
used. The teacher does not suggest a method, and mistakes are identified and
corrected by the group.

A mixture of types of word problems are posed from the very beginning of grade 1,
and are not classified as "addition" or "division" problems, since students select those
operations that suit their strategies. For example, we believe that presenting students
with both partitive and quotitive division-type word problems and requiringthem to
construct their own solution methods in response to the structure of each particular
problem will firstly prevent discontinuities between the student's procedures and his
concepts (Steffe & Cobb, 1988), and secondly enable him to construct an integrated
meaning of division which makes possible eventual problem transformation. The idea
of progressive schematization (Treffers, 1987) is implemented: The teacherstartswith
a general problem which the students solve by means of crude methods, and then
creates a series of situations which will encourage students to refine their methods.

Mathematical notation is only introduced when students have trouble in documenting
their solutions logically.

Strong emphasis on number concept development by helping children to construct
increasingly sophisticated concepts of different units, especially ten, and to build these
concepts on children's counting-based meanings by encouraging increasingly abstract
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counting strategies and child-generated computational strategies. There are no num-
ber barriers, i.e. a particular teacher and her students can operate inany number range
within the students' conceptual development.

Objectives and Methodology

The objectives of the study as it relates to division, includes the description and analysis of
children's solution strategies, analysis of the relationships between strategies used and the
semantical structure of the problems, the mechanisms of transition to more sophisticated
strategies, and analysis of the role of classroom social interaction in the construction and
evolution of children's division schemes.

Our data is gathered by qualitative research methodologies, including observation and
interaction with small groups of children in the classroom setting and interviews with
individual students. The mathematics lessons of 40 project schools were regularly observed
by a team of seven researchers and three education department supervisors. Additional
data sources include video-taped lessons, protocols of clinical interviews of several case
studies with individual children, and copies of all the children's written work.

We describe below some typical strategies for division-type problems in more or less an
order of increasing sophistication in terms of its mathematical representation and the
(implicit) underlying properties of operations (theorems-in-action).

Different Strategies

Direct representation Although informal writing materials as well as counters are always
available, it seems that students seldom use counters to model a problem. Rather, the
problem context is drawn in greater or lesser detail, and then solved by further drawing in
the actions needed. For example, Leans (grade 1) divides 18 cookies among three children
one at a time, and Conrad (also grade 1) two at a time:

Leans Conrad

The solution is found by a double count: c iunting the number in the dividend and
(afterwards) counting the number in each g .oup (partitive division) or the number of
groups (quotitive division). This double-count strategy, in increasingly sophisticated form,
underlies all the strategies.
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Numerical representation In this strategy students model

the structure of the problem using numerals, without em-
Yolanda

ploying arithmetical operations in their representation.
For example, Yolande (grade 1), divides 24 balloons
among four children as shown.

Although children choose the number of objects to be
dealt out per round according to the size of the iterable 5A 51, St
units they are able to cope with in that context (Steffe &
Cobb, 1988), this accelerated dealing out strategy is op- ( k 14,

timized by sound estimation. There are two estimation-
based strategies in this particular context: The first is a 6 66 6
repeated-estimation strategy (trial-and-error). For
example, to share 70 cookies among five children, a first
estimate of ten turns out to be too low, a second estimate of 15 is too high but almost there,
and the third estimate of 14 is just right. The second estimation strategy may be called an
"estimate-and-adjust" strategy, where the first convenient estimate is corrected not by a
new estimate, but by dealing out the remainder if the estimate was too low. Moana (grade
2) does the following:

6e + 3 =
20 20 20
2 2 2

This estimation dealing strategy is quickly formalized by writing it as subtraction, addition,
or multiplication sentences (see the following sections). It also forms a conceptual basis for

applying the distributive property as illustrated in the section on transformations, for
example, 70 + 5 is solved as 50 + 5 + 20 + 5.

Subtraction Subtraction as a strategy for division can represent three different concep-
tualizations:

estimation dealing out for partitive problems. For example, Emmerentia (grade 3)
divides 81 apples equally among three boxes as follows:

80- 20- 20-20 -.20-6- 6-6 2 + 1-.3-1-1-1-.0 81 + 3 =27

subtracting the number of objects dealt out in each round to solve a partitive problem.
For example, Estelle (grade 1), divides 18 sweets among three children as follows,
explaining that she was "getting rid of three sweets during every round of dealing

out:

16--3. =-' 5 -12_4 12,

6

- I 8
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solving a quotitively-interpreted problem by
repeatedly subtracting the divisor. For

example, Antoinette (grade 3) finds how many buses are needed to transport 350

children if there are 70 children per bus, as follows:

350 70 70-- 210-70-. 140-140-.0 350+ 70 = 5

Addition and multiplication Double counting occurs in two closely-related forms, e.g. to

compute 27 + 3, the student may write down 3 + 3 + 3 + ... until the running total reaches

27. and then count the number of threes he had written down, or he may mentally count in

threes, saying the running total or writing it down, and keep track of the number of threes

on his fingers (both quotitive interpretations).

Addition and multiplication can be used for both partitive and quotitive interpretations of

division. Stephen (grade 2) divides 18 sweets among three children by repeated estimation:

4 + 4 = 8 5-+-5 18 6 + 6 + 6

Students progressively formalize such strategies, eventually expressing them as multiplica-

tion. An estimation dealing out strategy can also terminate in multiplication, for example

468 4- 12 = 39:

initial %.cfsion 30 4- 30 + 30 + 30 + 30
7 + 7 + 7+ 7+ 7
2 + 2 + 2 + 2+ 2

final version 12 x 30 = 360
12x7 =84
12 x 2 24

+ 30 + 30 + 30 + 30 + 30 + 30 + 30 = 360

+ 7+ 7 + 7 + 7 + 7 + 7 + 7 = 84

+ 2 + 2 + 2 + 2 + 2 + 2 + 2 = 24

Henriette (grade 3) uses multiplication in the repeated-estimation strategy she employs to

solve 278 + 12:

6 x25
120 + 120 240 + 60 = 30() too many.

6 x 23

240 + 36 = 276 23 and 21eft over.

Transformations This method indicates the ability of the student to reconceptualize a

number as the sum of multiples of iterable units. The strategy also includes a fair amount

of estimation and thi, use of known number facts. For example

for 51 + 3: 30 + 3 = 10; 12 + 3 = 4; 9 + 3 = 3; 10 + 4 +3 = 17 (Gerhard, grade 21

for 70 + 5: 12 x 5 = 60; 2 x 5 = 10; 60 + 10. 70 + 5 =14 (Jean Pierre, grade 2)

Transforming a number in order to apply a multiple as a known number fact is extremely

common. Here follows a slightly more complex transformation: To compute 76 ÷ 4 the

following change and compensate method is frequently used:

80 + 4 = 20 4 + 4 = 1 20 - 1 = 19 76 + 4 = 19

Division by four, accomplished by two successive halvings of the dividend, is common.

Division by five by doubling the dividend and then dividing by ten is less common, as is

Mario's (grade 3) strategy of dividing by 15:

- 1 9
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105 + 15: 105 + 5 21 + 3 7

Both strategies indicate the use of quite advanced theorems-in-action (Vergnaud, 1988).
We have found that children easily progress towards using thesetheorems-in-action to cope
with larger numbers. We give two examples from a grade 2 class who had been asked to
compute 4158 + 11:

Bernie: "I first did 300 x 11 in my head. That gives 3300. The I took 80 x 11 because I wanted it to
be 880 but then I saw it was too muck. So I decided on 78 x 11 which was right. So the answer
is 300 + 78 378"

Sheryl: "300 x II 3300
50 x 11 - 550
Then I decided to use 25 x 11 because I have just now used 50 x 11 and Ican halve 550. Then
I added 3 x 11. So 300 + 50 + 2.5 + 3 gives 378."

Discussion

Children's strategies to a large extent correspond to those identified by Kouba (1989), but
our subjects seem to use additional sophisticated strategies in working with larger numbers.
Following we briefly discuss matters related to the frequency ofstrategies and the evolution
of strategies.

Implicit models We find that young children can solve both partitive and quotitive
problems at an intuitive level prior to any formal instruction. This refutes Fischbein et al's
(1985) conjecture that "initially, there is only one intuitive primitive model for division
problems the partitive model. With instruction, pupils acquire a second intuitive model
the quotitive model" (p. 14).

Contrary to Fischbein et al's notion that the implicit model forquotitive division is repeated
subtraction, we find that very few children naturally use subtraction they rather use
building-up or addition strategies, and if they use subtraction they quickly change to other
strategies.

Evolution of strategies Although we have only anecdotal evidence at this stage, we are
beginning to form a clear picture of the interrelated variables affecting students'
development towards more sophisticated strategies and are now engaging fine-grained
research on each of these variables. First, students' numberconcept development inform
their strategies. As children develop increasingly abstract iterable units and can decompose
numbers into convenient units, so their strategies evolve. Second, students' solution
strategies are initially clearly determined by the semantic structure of the problem; they use
different strategies for partitive and quotitive problems, illustrating two independent
conceptions of division. They gradually develop a unified meaning and strategy as the
separate meanings and strategies become more abstract, allowing them to transform
between problem types and to divorce their strategies from the semantic structure of the
problem ("distance from problem"). Third, students' soh.' ''m strategies are paralleled by
their level of awareness of the properties of operations or theorems-in-action (Vergnaud,
1988). Intuitive awareness of the commutative property of multiplication helps them

326.,
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transform between different context (e.g. from 3 groups of 5 to 5 groups of 3) and the
distributive property underlies many sophisticated strategies.

On the other hand, we have evidence of how students' strategies are not merely based on
conceptual understanding, but simultaneously also inform their number concepts and
awareness of theorems-in-action, showing that conceptual and procedural development go
hand in hand.

The Role of Discussion A crucial aspect of the experimental approach is the role of
discussion among students to promote reflection (compare, for example, Cobb, Yackel &
Wood, 1988), leading to the improvement of strategies by reflecting on one's own and
others' strategies, and the prevention of misconceptions taking root and the clarification
of errors.

The following serves as an example of how quickly strategies can be improved: Agroup of
ten second-graders were asked to share 27 sweets equally among three children. Eight
students drew a direct representation and shared out the sweets one at a time, whilst two
students dealt out five each during the first round and two each during the next two rounds.
After explaining their thinking to each other, they were asked to divide 37 sweets among
three children. This time, only one student shared out one at a time, whereas the other nine
students used either two rounds of five each or one round of ten each, followed by a round
of two each.

Conclusion

Our results show that it is viable to base the teaching of division on word problems and
children's own solution strategies in an instructional approach compatible witha socio-con-
structivist view of learning. Children do not experience the solution of division-type
problems as more difficult than any other problem types, but find them interesting and
stimulating.
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Age Level: Adult
ID #1: Constructivism
ID #2: Teacher Educat

PROBLEM SOLVING AND THINKING:
A REPORT OF FINDINGS

Karen Schultz
Georgia State University

This paper presents the Problem Solving and Thinking
Project's framework and results of researching a
constructivist view of learning. The goal of the project

was to advance our understanding of the psychological
aspects of teaching and learning mathematical problem

solving.

The Problem Solving and Thinking Project (PSTP), 1986-1990,

sponsored by the National Science Foundation, investigated the

relationship between middle school inservice teachers'

metacognitive activity and knowledge and their problem-solving

ability. We assumed a relationship between metacognitive

activity and mathematical problem-solving performance;

specifically, that the monitoring and regulation of one's

knowledge, beliefs, and strategies could favorably influence

problem solving. Improvement of teachers' problem-solving

abilities occurred through a metacognitive/constructive teacher

education process (Schultz & Hart, 1991). The purpose of this

paper is to present the PSTP research experiences and results

which are serving the current Atlanta Math Project (AMP) (1990-

1994) teacher enhancement grant.
Method

We originally asked if a teacher's metacognitive activity

could be increased through instruction if it focused on

metacognitive experience and knowledge. And, we asked if

problem-solving success could be improved through increased

metacognitive experience and knowledge. The research approach

was overwhelmingly qualitative, grounded in naturalistic inquiry

(Lincoln & Guba, 1985) and relying on the technique of episodic

parsing of protocols (Schoenfeld, 1983). The one exception was

an exploration of techniques to quantify beliefs to study their

directionality and magnitude, where principal component analyses

and multiple regression analyses were used (Lee, 1990).
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For 10 weeks, 15 teachers from four Atlanta area school

systems participated in an Institute on Problem Solving and

Thinking, a Georgia S. 'e University graduate course on the

teaching of middle school-level mathematical problem solving,

developed by and for the project. The Institute centered around

modeling and facilitating activities by three groups: the teacher

educators (Schultz & Hart, the researchers), the classroom

teachers, and the teachers' students. Videotaping was liberally

used to reflect on the problems- solving protocols of each group.

Data were collected fv,I.cU the teachers in the form of: (a)

pre and post videotaped problem-solving protocols of individuals

and small groups, (b) pre and post videotaped problem-solving

lessons taught by the teachers to their mathematics students, (c)

videotaped segments of teachers' respective individual

problem-solving, (d) written reflection logs, (e) pre and post

problem-solving tests, and (f) problem-solving sort tasks.

Similar data were collected from the teacher educators.

During the data analysis, which occurred side-by-side with

data collection, we identified belief systems (Hart, 1987), a

highly charged, salient factor associated with metacognition,

problem-solving performance, and construction of mathematical

knowledge. It was impossible to sort this single factor out

completely, so we studied it in relation to others, putting on

hold the original question of the study. Nine of the 15 data

sets were used for the analysis reported here.

The evolution of our research focus (Schultz, in press),

techniques of data collection, data analysis, and data

interpretation occurred through a series of negotiations with

other people. Thr project involved five research consultants

from other institutions for brief or long-term consultation

depending on what stage our work was in; collaborative graduate

student research internships; three educational specialist

scholarly papers; two doctoral dissertations; and negotiation

among the researchers and, very importantly, the teachers in the

project. We called the PSTP "constructivist research," where new
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knowledge was constructed through the interpretive frameworks of

all PSTP participants.

Results and Outcomes

Opposite directional beliefs were found in practice in nine

teachers, which we called productive and nonproductive (Lee,

1990; Lee & Schultz, in progress). The beliefs found were

similar to those reported by others, e.g., Garofalo, Frank,

Schoenfeld, Lesh, Lester, Silver. Included are beliefs related

to memorization versus thinking, time, exactness of answers,

teacher versus student as authority, number of ways to get an

answer, number of answers, solving problems alone versus with

others, neat versus messy mathematics, and size of numbers. For

example, a nonproductive belief expressed by a teacher during a

problem-solving protocol, using the think-aloud technique,

concerned an inability to recall a formula in order to solve the

problem. The alternative to that would have been to rely on

thinking the problem through.

In general, it was found that before the Institute teachers

exhibited more nonproductive beliefs than productive beliefs

during individual problem-solving protocols. Moreover, it was

found that in the brief 10-week course, beliefs were

reconstructed. Interestingly, all of the commonly-held beliefs

were nonproductive before participating in the teacher training

with a positive correlation between nonproductive beliefs and

problem-solving ability. However, the number of teachers who

expressed productive beliefs increased after the Institute with a

higher correlation with successful problem-solving ability. It

appears that beliefs can be reconstructed through training and

that productive beliefs can increase problem-solving performance.

Hart (1987) conducted an in-depth study of Jill, one teacher

who repeatedly verbalized references to not having enough time to

solve the problems assigned even though no time restriction was

ever given. She experienced unsuccessful attempts at the pre and

post problem-solving sessions. It appeared that Jill's belief

may have incapacitated her to the point of failure. "I could

figure it out if I had more time" (p. 240) was Jill's account of
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her performance. This, we feel, is a classic case of beliefs

driving one's problem-solving behaviors.

Two other teachers, Gail and Marsha, were the focus of a

study on beliefs of attributions of success and failure related

to achievement and performance outcomes (Najee-ullah, 1989;

Najee-ullah, Hart, & Schultz, 1989). These two teachers taught

high school basic skills mathematics courses to students

experiencing repeated failure in mathematics. It was thought to

be particularly useful research to facilitate speculation on

teacher influence of student beliefs.

The most common attribution offered by Gail and Marsha was

ability, which was most often offered when explaining their

problem-solving performance failures rather than their successes.

Gail's explanations for her successes and failures had to do with

internal and stable factors. Gail's internal attributions might

suggest that she takes responsibility for her performance. Her

stable attributions might suggest that she would expect similar

results at problem solving--whether they be successful or

not--and in case of failure might avoid similar situations or

avoid putting effort into similar situations. For example, when

trying to solve a problem while not meeting much success, Gail

said, "...I don't feel like, I think I've probably intelligently

explored all my options. I haven't really gone crazy on it yet.

There is a depth to which I will sink on these things"

(Najee-ullah et al., 1989, p. 281). The sense was that this was

a typical response to a problem-solving effort gone bad--she knew

she was not trying as hard as possible, nevertheless she decided

to give up. It was her decision and she took responsibility for

it. Monitoring this belief and corresponding behaviors during

the Institute gave Gail an opportunity to question whether she

might be modeling this belief and behavior in her mathematics

classes.

Marsha's attributions of success were primarily external and

unstable, suggesting that she does not take responsibility for

her successes. Factors attributed to her failures were stable

and sometimes external. ?or example, when she indicated that the
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camera was distracting her, she said, "If I had longer and the

camera...I don't know...I probably could have solved it"

(Najee-ullah et al., 1989, p. 282). The implications--that

Marsha could have low expectations to succeed and high

expectations to fail in mathematical problem solving--are serious

for the population she teaches.

Analysis of the teacher educators' beliefs in practice were

studied in light of our espoused beliefs, vis-a-vis having

designed and implemented the Problem Solving and Thinking

Institute. The analysis of Hart and myself (Schultz, 1988) was

done through a series of reflective interpretations of data by

Hart, Ropp (a PSTP teacher), and myself, where Ropp took the

teacher-as-partner-in-research perspective. Ropp (1988)

replicated the study renegotiating her perspective to that of

student-in-the-class with reflective feedback from Schultz and

Hart.

One activity from a four and a half-hour Institute class was

chosen for analysis. The purpose of the activity was for Schultz

and Hart to model constructivist teaching to be applied in the

teachers' classrooms. This particular activity was chosen for

its recursive significance in the Institute. We were to model in

our teaching the very subject of the lesson. Learner outcomes

would determine the subsequent lessons. To conduct the analysis

as well as to model it was of particular significance in the

spirit of the Institute. The results of this analysis are

reported formally here, but were reported informally, as a part

of the class instructional experiences in the Institute. "It is

our view that telling teachers what they should do is no longer

enough... We need[ed] to model this--we need[ed] to model how to

reflect, how to listen, how to construct our own understandings

of mathematics, of teaching mathematics, and of what mathematics

education is all about" (Schultz, 1988, p. 8).

Through review of videotapes, transcriptions, and class

notes, it was determined that 70% of the opportunities to be

"constructivist" were, and that good judgement was exercised in

deciding when to "tell" in contrast to facilitating the teachers'
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thinking through questioning techniques. However, an alarming

number of instances were identified that clearly violated the

hallmark of a constructivist classroom. In all 14 instances of

non-constructivist teacher educator behaviors were found in a 1
1/2-hour class activity. These instances can be classified

according to ourselves as teacher educators disregarding teacher
responses, not giving teachers a chance to talk, rewording

teacher responses, cutting teachers off, and talking too much.

Though some of these behaviors might be classified as infractions

of good manners, nevertheless good manners respects the needs of
others to speak and to use the choice of words they so choose.

It seems that a person (teacher or teacher educator) with good

manners (constructivist view) accepts, though may not always

agree with, others' ideas, bui: allows those ideas growth and

development in a supportive exchange of thought-provoking and

meaningful discourse. We did not anticipate "slipping up" at
all, much less, so much. However, it was better to reflect back

on this model lesson to see our counterproductive behaviors and

to contemplate being more attentive next time, than to not have

reflected back at all and missing the rich opportunities for our
own growth and development as mathematics teacher educators.

Finally, a teacher education model evolved out of the
Institute. In our approach, the metacognitive component of our

teaching kept us honest since we reflected weekly with the

teachers at the beginning and ending of each class about the

general direction of their experiences, our teaching practices,

and their sense of how much they were gaining by participating in
the Institute. We've described what is now called the

Experiential Teacher Education Model for Reflective Mathematics

Teaching repeatedly in print, with the most comprehensive

description in Schultz and Hart (1991).

Very briefly, the model includes a heterarchy of learners

engaging in a recurring cycle of modeling, experiencing, and
reflecting. Learners include teachers and teacher educators

along with students--they are all "learners;" they are all
"teachers." It is in this mode that we serve the mathematics
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teachers now in nine school systems through the Atlanta Math

Project. And so this brings us full circle with our efforts to

improve middle school teaching and learning. But now our circle

is bigger.
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13-14 years
Learning and Teaching of Algebra

Translation Habilities

TRANSLATING FROM NATURAL LANGUAGE Ig THE MATHEMATICAL

SYSTEM 2E ALGEBRA, g SIGNS AH2 vicEvERsA

(A CLINICAL STUDY WITH CHILDREN IN THE PRE-ALGEBRAIC STAGE)

EUGENIO FILLOY & TERESA ROJANO

Section de MatemAtica Educative. CINVESTAV-IPN. Mexico.

This paper deals with the translation, in both directions,

of natural language (NL) into the mathematical system of

signs (MSS1) generated by previous learning during the

arithmetical and pre-algebraic training of the pupils in

primary school and the first grade of high school (12-13

years of age). This translation between NL and MSS1 is one

of the central features of classical teaching strategies

for the solution of word problems by means of algebraic

Mathematical Sign System (MSS2).

BACKGROUND TO THE STUDY

This study is part of a more extensive research project

entitled "The Acquisition of Algebraic Language". All the other

studies previously reported under the overall title "Operation of

the Unknown" (Filloy and Rojano, 1984-85-89; Filloy, 1986;

Rojano, 1986) also form part of this same research project. The

study deals with the same issues found in the work of Leslie

Booth (Booth, 1984) and D. Ktichemann (1981), concerning the

different meanings of literal symbols and, in that of Matz (1982)

regarding errors in the interpretation of syntactic rules when

algebraic expressions are used. The study is also related to the

research on learning strategies in which the solution of

algebraic problems is one of the principal components (see

Rojano, 1986; Trujillo, 1987). Other studies which have bearing

on the subject can be found in Gallardo and Rojano (1988), where

an analysis of difficulties in reading algebraic expressions

among children with low pre-algebraic performance levels and of

the same age as those studied here (13-14 years).
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THEORETICAL FRAMEWORK

The overall theoretical framework of this article ca,- be

found in Filloy (1990). In this case, the model of teaching

developed during the clinical interview is composed of a sequence

of questions related t) the translation NL MSS1. The

majority of the questions are taken from the usual text books.

The moment of observation (13-14 years) and the grade are both

selected so as to observe the tensions existing between the

meanings attributed to the elementary algebraic concepts that are

on the point of developing (greater operativity in linear

equations, solution of word problems, introduction of algebraic

expression, etc.), based on the arithmetic and pre-algebraic

conceptual field constructed up to that moment (MSS). The

tension is a result of the need to give the new operations and

concepts a new sense (given by the new uses) that, in turn, will

attribute new meanings to algebraic expressions represented by

the same signs or more elaborated versions of them.

READING AND WRITING ALGEBRAIC EXPRESSIONS: OBSERVATION

The observation of the way that children read and write

algebraic phrases was carried out by means of videotaped clinical

interviews in a school called "Centro Escolar Hermanos Revueltas"

in Mexico City. The children interviewed (12 in all) had already

received instruction in pre-algebra an had been introduced to

elementary algebra with the theme of solving linear equations and

the corresponding word problems. But the teaching they had

received had not yet been systematic regarding the use of :pen

expressions and on the equivalence of algebraic expressions

(tautologies like (a + b)2 = a2 + 2ab + b2), nor had they dealt

with the solution of simultaneous equations.

Children of three different levels of performance in

mathematics were selected for the interviews: high, medium and

low, that worked with a basic sequence of four blocks of items:

Block 1 The reading of equalities corresponding to geometric

formulae, expressed in algebraic symbols, like A = nr2,

A = 12, etc.
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Dlock 2, The reading of open algebraic expressions like (a+b)/2,

ab, 3ab, a2.

Block 2, The reading of algebraic equivalencies (tautologies)

like (a + b)2= a2 + tab + b2.

Block j. The interpretation of sentences expressed in

natural language and their translation to mathematical

symbols. For example, "the double of a", "a increased

from two". "a decreased from two". Only in some cases of

children with high and medium performance did we apply a

fifth block consisting of systems of simultaneous

equations of the type

x = a x + y = c
y = bx + c

and ax + by = d

with a, b, c and d particular whole numbers.

SOME RESULTS

I.- In Block 1 we found three levels of the interpretation of the

formulae:

a) Textual Reading in NL of the expression without reference

to any context.

b) Reading as in a), accompanied by a verbal reference of the

elements of the expression to dimensions of a geometric

figure, without specification of the latter by the

subject.

c) Reading as in b), accompanied also by the association of a

specific geometric figure (circle, square) and of the

corresponding attribute (area, perimeter); this was not

always done in a correct way. These three interpretative

levels appeared both in a partial and in a total manner,

depending on the level of pre-algebraic performance of the

subject.

II.- A) With respect to Block 2, the textual reading in NL of

expressions like (a+b)/2 was accompanied by: a) a reference

to the dimensions of "ideal" geometric figures (heights,

bases); b) the need to assign specific values to the letters

in order to obtain a result and "close" the expression
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thought 11.2 by the subiects themselves (a not quite so

complete behaviour has been reported by Booth (1984) and

Collis (1975); c) the elaboration of an equation or equality

starting from the expression and the numerical substitution

for some of the literals.

B) In some cases in Block 2, in the numerical substitution,

the election of the values by the subject appeared to be

arbitrary; however, in expressions such as a-b, identical

values for a and b are not immediately accepted, since the

association of different values with different letters and

viceversa is present (Collis, 1975). In children with a low

pre-algebraic performance, it was observed a resistance to

assigning a higher numerical value to b than to a, given the

imminence of a negative result.

C) Furthermore, within the same Block 2, it was observed a

tendency to give meanings to the open expressions in the

context of word problems. This was found very clearly in the

case of a mid-level girl in the following way:

Open Expression --b Posing a Problem --+ Formulating an

"Equation" (the expression is closed) -4 Obtention of a
Result.

III.- The interpretation of "composite" expressions like (a + b)2

and of algebraic tautologies like the development of the
squared binomial (Blocks 2 and 3) presented a high level of

difficulty and the majority of the subjects did not get

beyond the most primitive level of reading in NL. The reading

in NL of (a + b)2 gave the typical error of a2 + b2, this

being a counter-example of the explanation given by Matz
(1982).

IV.- A) In the translation NL > MSS1 we observed difficulties in

elaborating the corresponding expressions in MSS1, especially

because in the direction NL --) MSS1 the meanings attributed

to the terms used in NL predominate and terms like tg.

increase and to decrease are not spontaneously identified

with operations like + and -.

B) Here also it was found the need to create expressions by
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means of assigning specific values to the letters mentioned

in the initial text.

V.- It was also observed the creation of personal representations

corresponding to the verbal sentences given and the need to

create conventions for a unique reading of these invented

"personal" representations. In these cases, symbols from

arithmetic (numbers and operational signs) are accepted as

unambiguous expressions of the verbal sentences involved.

FINAL DISCUSSION

Eleven Cognitive Tendencies which are present when learning

more abstract concepts are described in "Cognitive Tendencies and

Abstraction Processes in Algebra Learning" (Filloy, E. 1991).

Results I to V of this study which are related to the passage

from NL and MSS1 to MSS2, are below analyzed in terms of such
tendencies:

I.- The three different interpretation levels detected in Block

1 (Reading Formulae) can be described through Tendency

Pleven: The peed tg confer senses to thg networks gl ever

more abstract actions until converting them into operations.

But, the obstruction to pass from one level to the other can

be described through Tendency FIVZ: Focusing gn readings made

in language strata that will not allow solving the problem

situation.

II.A.- A reproduction of the interpretative levels mentioned in

the results of Block 1 was observed in Block 2, when students

were asked to read open expressions. In this case, such

levels can be described in terms of Tendency THREE: Returning

to more concrete situations upon the, occurrence AL An
analysis situation, since these kinds of expressions belong

to the algebraic realm and interpretation levels (where

geometric referents are associated with them) correspond to

the so called "more concrete situations".

II.B.- When children don't accept that a and b in a-b can have

the same numerical value, it can be noticed the manifestation

of Tendency SEVEN: The. presence Q acoellative mechanisms

- 3 3 -
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which focus attention an thg unchainment 2/ wrong solving

processes and Tendency EIGHT: The presence 21 inhibitory

mechanisms (in this case, the avoidance of zero or negative

results or the unacceptability of assigning the same value to

different letters inhibits the possibility of dealing with

this sort of expressions at an upper level of generality,

where a and b can have arbitrary values).

II.C.- Connecting open expression with word problems or equations

is a manifestation of Tendency NINE: The presence 2f

obstructions arising from the influence 2f semantics an

syntax and viceversa.

III.- Behaviours described in part III of the Results have a

description based on Tendency FIVE (mentioned above) and

not in Tendency SIX: The articulation of erroneous

generalizations, which would correspond to Matz's

explanation.

IV.A.- Tendencies THREE and LIVE (mentioned above) are present

when predominance of meanings attributed to words in the

Natural Language obstructs the translation to MSS2.

IV.B.- The same kind of behaviour reported in the reading section

(Block 1, 2 and 3) was detected in the writing section (Block

4), when children tried to assign specific values to the

letters mentioned in the text written in NL (Tendency THREE).

V.- When children displayed the creation of conventions to read

their own symbolic representations (translating a text

written in NL to symbols), Tendencies THREE, SEVEN, NINE and

TEN: The generation at syntactical errors due, t2 the

production gf intermediate personal codes in order t2 confer

senses to intermediate concrete actions are present, not

necessarily related to syntactical errors but to the need of

producing unambiguous expressions.

It seams that future studies should be focused on the use of

more elaborated Cognitive Models for the learner in which the

cognitive tendencies described in this paper and in (7) will be

natural manifestations of the abstractions processes produced

when the subject is learning to be a competent user of the
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different strata that can be (theoretically) recognized
in the

different MSS (NL, MSS1, MSS2, ...) socially produced, whose

codes the subject under observation have to master through the

usual Teaching Models.
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Age Leuel: Teachers

Identifier 1: Frameworks

Identifier 2: Epistemology

EPISTEMOLOGICAL FOUNDATIONS
FOR FRAMEWORKS WHICH STIMULATE NOTICING

John Mason,
Centre for Mathematics Education

Open University, UK

ABSTRACT

This paper outlines succinctly' the epistemological foundations of the
Discipline of Noticing2, which is concerned with change: not with
researchers and educators changing teachers, which I believe to be
ethically unsound and doomed to failure, but with attracting teachers to
the enterprise of changing themselves. It focuses on the development
and use of frameworks (Freudenthal (1988) called them condensation
kernels.) for helping people to notice opportunities in the moment. The
paper ends by suggesting that noticing is the core of everyone's
functional (as distinct from theoretical) epistemology.

BACKGROUND

Most of the time, students, teachers, educators and researchers react to
stimuli. Their actions are the working oui or unfolding of decisions made
hours, months or years earlier. Occasionally there is a moment of awakening,
a moment when an opportunity presents itself, or more accurately, when
there is fleeting awareness of alternative possible behaviour. Such a moment
is a moment of noticing. The word noticing has its etymological roots in the
making of a distinction, in stressing some perceived features and consequently
ignoring others.

For an opportunity to exist in the moment, there has to be a convergence of
recognition of some typical situation, with awareness of alternative action or

1 The page restriction makes it impossible to do full justice, or to refer explicitly to the many

par,llel ideas to be found in the Upaniuhads, Plato, Chuang Tau, St. Augustine, Da Vinci,

Montaigne, Dewey, James, Mead, Vygotaky and Gattegno, not to say Von Glasersfeld,

Kilpatrick, Schoenfeld, Cohen, Bond, Sch6n, Gates, and Jaworski, to name but a few.

2 Drawing pa. titularly on vivid expression of it by ray late colleague, Joy Davis (1990).
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Frameworks in Noticing

behaviour. Thus there is no opportunity when you become starkly aware of the
unstoppable flow of events in which you are embroiled (awareness alone is not
enough); there is no opportunity if you have prepared a dozen different
strategies, but none of them occur to you in the midst of an event (alternative
actions are not sufficient). The two have to come together.

The Discipline of Noticing is an attempt to outline a disciplined form of
personal and collective enquiry into how to sharpen moments of noticing so
that they shift

from the retrospective "I could have ..." o.. "I should have ..."

to the present `spective' "I could ...",

by means of the descriptive but non-judgemental postspective review: "I
did .. .", and the prospective preparation of "I will .. . ",

by imagining oneself in a similar situation in the future, entering that
moment as vividly as possible, and mentally carrying out each of the actions
amongst which you wish to choose in the moment.

UNDERLYING ASSUMPTIONS

Construal

Per'ple try to make sense of events in which they become involved. That sense
making is partly cognitive, partly affective, and partly enactive, and all three
feed and support each other. Thus the practices of a group produce behaviour,
emotion and belief, which in turn sensitise people to particular practices.

Each person has a multiplicity of selves constructed or formed in response to
social and psychological forces in order to defend the core emptiness from
exposure to the outside world. Personality is the many layered shell which
shields that emptiness form everyday awareness. Multiplicity evolves because
each social context involves a collection of practices which define participation.

Experience is not enough to promote learning. One thing that people fail to
learn from experience is that they do not often learn from experience alone.
Some action is necessary, whether it be based in cultural practices, in
cognitive reconstruction or in some combination.

-37-
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Frameworks in Noticing

Attention
When you think back to past events, they come to mind in fragments, not in
complete detail. Experience recalled is fragmentary. Fragments begin with
moments of noticing, and slide into unaware, mechanical behaviour which is
eventually overlaid by a fresh moment of noticing initiating a new fragment.

At any given time there are aspects of our world to which we are sensitised,
and aspects of which we are oblivious. Certain aspects of an event or situation
stand out and are attended to, while other details are not even noticed. The
aspects of an event or situation which make it stand out are aspects resonant
or dissonant with past experience and present expectation.

DISCIPLINED NOTICING
. . . is it not rather what we expect in men, that they should have
numerous strands of experience lying side by side and never compare
them with each other? (George Eliot, Middlemarch).

The full discipline of noticing involves a number of overlapping phases. More
than one phase can be operative, at the same time, and there is a great deal of
recycling and revisiting, not just a simple linear development.

Systematic Reflection

Systematic postspective review is essential. Brief but vividly descriptive
accounts of salient moments that are readily recalled are collected and
paralleled by memories of similar moments from other lessons, all without
judgement or criticism, that is without accounting for them.

The accounts of moments of noticing provide a record of the threads of
experience which are most salient for that teacher at that time. Once a corpus
of accounts begins to accumulate, it is possible to look back over the accounts,
say once a week or so, and to seek common threads.

SYSTEMATIC REFLECTION

344
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Frameworks in Noticing

There is a back and forth process of keeping accounts of moments, and looking
for threads in those moments. Accounts provide data for detecting threads,
and threads detected will tend to influence the subsequent moments which are
noticed. In this way, the reflective practitioner begins to work on strands of
their experience.

Recognising Choices

Decisions are about choices. By laying the strands of recent experience
alongside the strands of past experience, you gain access to some possible ways
of behaving in similar situations. You can choose to respond in a different
way. You can also get ideas about alternative responses from reading other
people's accounts, both practical and theoretical, and by watching colleagues
in action, or imaginatively entering their descriptions of moments of noticing.

RECOGNISING CHOICT_S

Distinguishing -41Ik C
Choices

Accumulating
Atternatives

Identifying and Labelling

New behaviour patterns will only be attractive if they conform with attitudes
and beliefs, and their manifestation will be guided by those attitudes and
beliefs. That is why you cannot deliver a strategy to a colleague, since any
strategy is intimately bound up with the user's own awareness of possibility.

In this phase of the discipline, your own strands are being juxtaposed with
those of colleagues. By describing significant moments to each other, and then
following up with moments jogged into memory as the result of someone else's
descriptions, a collection of related accounts can be accumulated and labelled
as a short hand for such incidents. The labels act as a framework to stimulate
further noticing.

The search for resonance, for others to recognise similar moments to your
own, part of the validation process. What is being validated is the incident, the

-39-
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vividness of description, and the similarity of what several people are attuned
to notice. Comparing accounts of moments with colleagues enables
negotiation of precision in what is noticed and what is possible.

Preparing and Noticing

When an alternative behaviour pattern is identified postspectively for a typical
situation, mental imagery is very useful for prospectively preparing to use that
strategy in the future.

PREPARING and NOTICING

Imagining Noticing
Possibilities Possibilities

Validating With Others

As with any group endeavour, there are dangers of self-complacency and
idiosyncraticity. A disciplined mode of enquiry, and an effective epistemology
must provide safeguards against being carried away by individual or corporate
delusion. If you do find something which seems to inform your teaching,
which seems to offer you opportunities to behave in fresh ways, then you have a
personal tool. But you could also be deluding yourself. Validation in disciplined
noticing is twofold. There is personal validation, laying the strands of your
own experience alongside each other and comparing them, and there is
validating with colleagues, by juxtaposing your own and their experience.

You cannot get someone else to have your experience. All you can do is look for
resonance in their experience. You can describe briefly-but-vividly some
salient moments which illustrate your new found awareness in action and
your use of particular strategies in that moment, and you can construct
activities and exercises for colleagues which you think will highlight and focus
attention on what is for you a potent distinction. In this way you hope to help
others to notice, to distinguish, what you notice. Whether they do, and
whether they find it possible and helpful to act upon such noticing is a matter
for them to explore. The whole cycle goes around again.
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Popper's fallibilism requires theories to be falsifiable. The Discipline of

Noticing requires theories to be sufficiently resonant to inform future practice,

but this may take work. Lack of resonance falsifies the theory only at the given

time and under the given conditions, since resonance may arise later. By

maintaining a questioning attitude, seeking recognition of salient moments

and resonance with the experience of others, you act against a tendency to

become fixed in your new ways.

VAUDATING WITH OTHERS

Describing Refining

Moments Exercises

THE PRACTICE OF FRAMEWORKS

To develop professionally, as student, teacher, educator or researcher, it
behooves us to extend our sen: itivities and to extend our moments of
metacognitive awareness. One way to do this is through frameworks. On the

surface, a framework is a collection of words, such as

Do, Talk, & Record;

Conjecturing
Atmosphere;

Directed, Prompted,
Spontaneous;

These are just words.

See, Say and Record;

Specialising and
Generalising;

Noticing and
Marking;

They become frameworks

Know and Want;

Manipulating, Getting
a Sense of, Articulating

Account Of and
Account For.

only when they come to

summarise, conjure up, and label recent experience which itself is resonant of

past experiences. With effort, frameworks can become triggers to sharpen

awareness and to release momenta in which real choices can be made. A
framework has validity for you, for a time, it it serves to inform your practice

by stimulating moments of noticing in which choices can be made.

Epistemological Roots

How does sensitivity to notice certain things arise? When in the midst of some

event, whether reading, talking, dreaming, or listening, it may happen that
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something suddenly strikes a chord. There is resonance with some aspect of
past experience. A latent sensitivity has been activated. It needs strengthening
and modification, and especially useful is some sort of tag or label which in
turn will trigger the sensitivity in the future.

How then do latent sensitivities arise in the first place? This question is
critical to educators and teachers who want to awaken sensitivities in their
clients. Undifferentiated experience provides the subsoil: systematic reflection
(through making distinctions) generates soil, and intention waters that soil
and makes it fertile.

The combination of framework labels richly resonant of past experience,
preparation for the future by imagining yourself in a typical situation
activating some fresh response that you wish to try, and a supportive network
of colleagues dedicated to building a disciplined approach to professional
development, can lead to real growth. Furthermore, exactly the same process
is what a teacher aims for in their pupils: real growth in awareness,
conatrual, comprehension and understanding.

CONCLUSION

Ultimately validity is an individual matter, supported by a community
practice, to the extent of resonance of description with experience, moderated
by predisposition to other epistemological positions, and mediated by the
strength of intention brought to bear upon the enterprise.

The extent to which you found resonance with your own practice provides a
measure of validation for you, now. Resonance may arise later through the
development of a corresponding bed of experience. I suggest that noticing
describes how most people actually operate, whatever their avowed
epistemological and methodological stance.
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Age Level: primary /secondary

Identifier I: symbols

Identifier 2: language

METAPHORIC AND METONYMIC DISCOURSE IN
MATHEMATICS CLASSROOMS

David Pimm
Centre for Mathematics Education

The Open University, UK

ABSTRACT

This paper explores a tension between an erstwhile concern with
'meaning' on the one hand (often confused with simple reference) and
the development of fluency and automaticity of symbol manipulation on
the other, as desirable goals of mathematics education. The theoretical
discussion is illustrated with a brief account of a secondary algebra
lesson where the focus is more on metonymic rather than metaphoric
discourse as an approach to symbol generation.

The real problem which confronts mathematics teaching is not that
of rigour, but the problem of the development of 'meaning', of the
'existence' of mathematical objects. Rene Thom

Civilisation advances by extending the number of important
operations we can perform without thinking about them.
Alfred Whitehead

There is a current tension in discussions of the teaching of mathematics,
which has been polarised into a conflict ostensibly between 'understanding'
(adopting a so-called 'meaningful' approach) on the one hand, and automation
and fluency at 'doing' on the other (usually perjoratively labelled 'rote'
methods). One current view is that pupils should always understand before
being asked to do a task or carry out a calculation, for instance.

Such a reaction is very understandable, in response to a history of
mathematics teaching in schools which resulted in distressed, sometimes
frantic pupils on the one hand, and in concerns about the level of mathematics
learned on the other. However, one question which this view leaves
unanswered is how to work on gaining fluency in handling mathematical
symbols, in automating and consequently 'forgetting' what you are doing, so
that conscious attention can be freed up for places where it will be needed in
the future. The following quotation expresses a similar view.

-43-
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Metaphor and metonymy

We do not pay enough attention to the actual techniques involved in
helping people gainfacility in the handling of mathematical symbols. ...
in some contexts what is required eventually is a fluency with
mathematical symbols that is independent of any awareness of current
'external' meaning. In linguistic jargon, 'signifiers' can sometimes
gain more meaning from their connection with other signifiers than
from what is being signified.

Linguists have called the movement 'along the chain of signifiers'
metonymic whereas the descent to the signified' is metaphoric. ... The
important point is that there are two sharply distinguished aspects
(metonymic relations along the chain of signifiers and metaphoric ones
which descend into meaning) which may be stressed at different times
and for different purposes. Dick Tahta, 1985, p. 49

We can choose to offer our pupils Cuisenaire rods, for instance, in order to
supply a more tangible referent for number. We can also choose to offer pupils
number-word games and rhymes, where there is no such appeal to physical
materials, where the activity is almost entirely linguistic. Classroom decisions
need not be an either / or, and both activities alluded to above contribute to a
sense of number, to the meaning of number. Neither is it a transparent
question as to which should come before the other.

Meaning comes about from associations and connections (for example, the
play on words which links 'pie' charts to 'pi'), as well as a more direct sense of
reference, of knowing 'what the fraction 2/7 refers to' in some particular
context. Meaning also comes from images, and from the creative use of
language. Why do we use the same word, multiplication, for different
operations between whole numbers, negative numbers, fractions and
matrices? Why do we call the first three entities 'numbers' and not the last?
Naming is an important aspect of doing and learning mathematics, and far
from being 'arbitrary' as some people would have us believe it, is directly
concerned with the creation and expression of mathematical meaning.

The 'fahta quotation above employed Roman Jacobson's fundamental
between the meta: horic and metonymic axes of language in his

of how language 'works'. To the extent that it is productive to explore
the linguistic aspects of mathematical discourse as a means of gaining greater
insight into the phenomenon known as 'doing mathematics', what
perspectives does Jacobson's distinction offer? (For further discussion of
metonymy, see Pimm, 1990.)
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In The Mastery of Reason,Valerie Walkerdine (1988) explores the complex
significations that occur on relatively commonplace mathematical terms and
draws attention to the creation of meaning within practices. She comments:
(pp. 93-6) "The same signifiers may exist across practices, but this does not
mean that the same sins are created. ... Formal academic mathematics, as
an axiomatic system, is built precisely on a bounded discourse, in which the
practice operates by means of suppression of all aspects of multiple
signification". (For further discussion of this book, see Pimm, in press.)

Walkerdine also poses a key (general) question right at the beginning of her
book: "How do children come to read the myriad of arbitrary signifiers the
words, gestures, objects, etc. with which they are surrounded, such that
their arbitrariness is banished and they appear to have the meaning that is
conventional?" (p. 3) It is this question, with regard to beginning algebraic
symbolism, that I start to address in this paper.

In a chapter entitled The achievement of mastery, Walkerdine offers an
episode from a top infant class (6-7-year-olds) where one pupil, Michael,
comes to grips with the possibility of working with signifiers (the numerals)
alone when doing two-digit additions, despite the teacher using bundles of
matchsticks as erstwhile signifieds for the procedure. What sort of discovery
has Michael made? It is not about action with objects. His discovery is a
linguistic one about the mathematical writing system, which allows him to
operate with the symbols as if they were the objects of mathematics. This
acting 'as if is one of the powerful practices of mathematicians.

Walkerdine's minutely-detailed analysis of this episode illustrates the
complexity and mutability of signification in the area of mathematics, as well
as giving the lie to much of what is claimed about the 'concreteness' or
'transparency' of so-called concrete materials. She attempts to document some
of the subtle, linguistic ways in which the teacher (through a combination of
talk and gesture) creates mathematical meanings in classroom settings. She
is also pointing to experience with symbols as a necessary part of learnitg
mathematics, even with the youngest children: foi c 3cm. rtuthemat-,
signifiers form part of a system whose properties can be :ploretl, as signifiers
per se rather than as signifiers of something.
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AN ALGEBRA LESSON

Algebra is not what we write on paper, but is something that goes on
inside us. So, as a teacher, I must realise that notation is only a way of
representing algebra, not algebra itself. Dave Hewitt, 1985, p. 15

I illustrate this theoretical discussion with an instances from a secondary
mathematics classroom, one where the teacher is concerned with pupils
gaining facility with the manipulation of algebraic symbols. Specifically, I
shall describe and present some transcripts of a lesson (involving use of
algebraic expressions as forms, both naming and generating the referents)
where there is considerable metonymic focus, although at certain points in the
lesson, a switch into metaphor ('the descent into meaning') occurs. I am
particularly interested in those momenta of transition.

Before going on, here is an brief instance where such shifts can be seen at
work. In working on 'Think of a number' problems, the focus can be on
'undoing' equations like 11(6(x + 4) -5) = 100 (perhaps built up by a rigmarole of
"I think of a number, add four, multiply by six, ... and my answer is a
hundred"). By staying with the form of matched pairs of operations, each
undoing the other, a solution of x = ((100/11) + 5) / 6 - 4 can be obtained. At this
point, a choice occurs: the teacher may decide to evaluate this number (say,
offering calculators to the class) and then check that the number obtained does
indeed satisfy the conditions of the problem. This would be a descent to the
signified. Or the teacher can stop at the previous solution, and work on
discussing with the class why this has to be a solution, focusing on the links
between sets of symbols. Even descending to the signified can loosen the sense
that x is a number that the teacher has thought of, when computation
produces recurring decimals (as well as raising the problem that back-
substitution may not exactly solve the equation).

Dave Hewitt has also developed a class activity which he calls 'Rulers'. It
involves developing a relative positional number line on a blackboard which
leads to the generation of equivalent arithmetic or algebraic expressions,
documenting different sequences of moves ending up in the same place. He
uses a ruler to focus attention. Movement (indicated by banging the ruler) to
the left moves down a number and to the right moves up a number, and the
starting number is announced anew at the start of each sequence. So, "This is

352

-46-



Metaphor and metonymy

16, [three bangs to the right] 19". Tasks can be set concerning moves and start
or finishing positions and a notation developed first to record (the language is
descriptive) sequences of moves and later produce them (the language is
generative). Further complexity can be introduced by adding a second row
where each number is the double of the one above it. (Further rows for higher
multpiles may be added too for more detail, see PM647H, 1991.)

Because the link between number and position is relative, it is possible to
generalise and not work with particular numbers, but rather some name for
the number in order to act as a trace. "Did I tell you what number I started
with? No. Let's call it something." Now, moves can be made and the notation
develops to record anew at each stage. It is possible to take different routes and
end up at the same box, thereby generating different expressions which must
be equivalent (because they 'name' the same box). This is similar to the fact
that finding multiple expressions (arising from different 'seeings' of certain
situations) suggests the possibility of algebraic transformations because they
all represent 'the number of ...'. One aim of the activity is to give pupils
experience of generating equivalent expressions, yet where the overt focus is

not the expressions.

At one time, I introduced the equals sign and I didn't actually say
anything about it and explain it at the time. Because at the time, we
understood that this and that have the same effect. With both of them,
I started here and ended up there, so there was a sense of the
equivalence between the two. Since we were talking about equivalence
at the time, by me putting the equals sign whilst we're talking, the
two get associated. The implicit meaning gets taken up in this way
and it becomes the written language through which we record what
we've just said to each other.

There is a deliberate blurring in the activity as to whether the algebraic
expressions developed are names of locations or instructions as to how to
move. (When going from expressions to moves, they clearly have to be
interpretable as moves.) There is a similar structure of state then operation
giving rise to a new state to ordinary arithmetic expressions (e.g. 6 + 7 = 13),
interpreted as state (start with 6), then do something (add 7) to give a new state
(13). So it is possible, for instance, to write y - 2 = y - 2 as a result worth
recording: namely, start at the box labelled y, go back two squares, resulting in

- 47 -

3 5 3



Metaphor and metonymy

being at the box labelled y - 2. The teacher commented in an interview
afterwards on how he works on symbols by avowedly not attending to them:

I deliberately don't want to have the emphasis on the symbols because
then they become an issue and I can imagine people getting quite
worked up about what is x, what is y, which they do to some extent
anyway, but with the attention on the operations, then you realise that it
doesn't matter what's being said and they can be introduced and taken
on board because that is not what I am attending to.... So very
deliberately I shift their attention to the process that's involved and not
on the symbol. At one time I introduced the equals sign and didn't
actually say anything about it and explain it at that time. ... There was a
sense of equivalence between these two [expressions], and so since we
were talking about equivalence at the time, by me putting the equal sign
while we are talking, the two get associated and the implicit meaning of
the equal sign gets taken up in this way and it becomes the written
language through which we record what we've just said to each other.

As for images supporting the development of meaning, he commented:

Offering images is a very important part of teaching mathematics. I
have to say though that really I don't ... I can't give them images, I can
only offer an activity. It will be up to each individual pupil to create their
own image for what is actually taking place ... and the activity contains
implicitly the mathematics I want to work on.

With regard to one of the metonymic foci of the lesson, namely the uses of
certain noises consistently for different operations, as well as body images
related to the symbolic forms (e.g. large hugging gestures with bis arms when
indicating the scope of brackets), Dave added:

Well, I use noises at times because they're a form of getting attention to
a particular thing, so I might use a particular noise as I'm going along
a dividing line, and the fact that I'm using a noise means that I want
some attention here, and they can provide an image for whatever it is. ...
Sometimes the image stays with them and when they're writing, they
have been known at time s to be making noises and the [aural] image
helps them to recall how things are written.

CONCLUSION

In my talk, I hope to illustrate through video and discussion of this lesson how
a particular mathematical practice can establish certain broad meanings for
working on symbols and give particularity to Dick Tahta's comment (cited
earlier) about how to work on fluency and automaticity of manipulation of
mathematics symbols.

354
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Metaphor and metonymy

With regard to the purposes of mathematics teaching, the following discussion
was offered as part of the second world conference on Islamic education (1980):
it offers quite a different view from those customarily couched in terms of
pragmatic societal 'usefulness'.

The objective (of teaching mathematics] is to make the pupils implicitly
able to formulate and understand abstractions and be steeped in the area
of symbols. It is a good trai -ling for the mind so that they [pupils] may
move from the concrete to he abstract, from sense experience to
ideation, and from matter-of-factness to symbolisation. It makes them
prepare for a much better understanding of how the Universe, which
appears to be concrete and matter-of-fact, is actually ayutullah: signs of
God a symbol of reality.

A mathematician, David Henderson, has said, "I do mathematics to find out
about myself". One reason for teaching mathematics may be so that our pupils
may develop this way of finding out about themselves, as well as offering them
access to their shared inheritance of mathematical images and ideas,
language and symbolism, and the uses to which humans so far have put it.
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TEACHER EMPOWERMENT IN MATHEMATICS:
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This paper uses a theoretical framework developed from the literature on teacher

empowerment to describe changes in the discourse process engaged In by six

elementary teachers and four researchers participating in a mathematics study group.

The purpose of this collaborative effort is to try to move toward a more conceptually

based approach to mathematics instruction, curriculum development, and student

ment.

For the past two years, participants in a Math Study Group (MSG) have been meeting on a

weekly or biweekly basis to explore various aspects of teaching for understanding in mathematics.

This project, which involves four researchers and six teachers, is part of a larger effort initiated by

the Michigan Partnership for New Education to prepare students for the 21st century. The

partnership sponsors Professional Development Schools (PDS); this effort is consistent with

recent attempts to redefine the nature of universityischool relationships in the context of a

restructured school environment (Holmes Group. 1990). Teachers and other practitioners

collaborate with university faculty to improve teaching and learning for K-12 students, improve the

education of new teachers and other educators, and make supporting changes in both the

schools and the College as organizations. The MSG is one of several projects at the

ElliottMichigan State University PDS. The purpose of this collaborative effort is to try to move

toward a more conceptually based approach to mathematics instruction, curriculum development,

and student assessment.

During weekly meetings the MSG has examined several important elements of teaching for

understanding including a wide range of curricular and instructional options have been examined.

The assui -tons that underlie this collaborative work can be summarized as follows: First, the

vision of mathematics instruction outlined by reformers (National Research Council, 1990: National

Council of Teachers of Mathematics. 1989, 1991; Mathematical Sciences Education Board,

1990). is at variance with what one is likely to observe in most classrooms. As Stodolsky (1988)

explains, 'While many math educators are proponents of problem solving and analysis, most

instruction Is geared to algorithmic learning" (p. 7). Second, changing existing practice involves

more than adopting better curriculum materials, or increasing teacher accountability. Increasingly,

teachers are being viewed as the agents of school ,Joticy rather than as its "dumb instruments"

(McDonald, 1988, p. 471). Thus, there is a shift in reform strategy from topdown control to
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approaches that are more consistent with the notion of teacher 'empowerment" (Porter,

Archibald. & Tyree, in press).

Teacher empowerment is a popular but difficult concept. It encompasses both political and

epistemological agendas (Prawal, 1991). From a political perspective, the most important

empowerment goal is to increase teachers' professional authority, particularly as it relates to issues

of curriculum and instruction. From an epistemological perspective, the purpose is to stimulate

teachers' thinking about teaching and learning. By focusing on the possibilities for empowerment

inherent in the school setting one creates new opportunities for teacher growth and change. A

further complication in the empowerment concept is the fact that some theorists stress the

importance of the personal context (i.e.. 'conversations with self"), while others assume more of an

outward perspective, attempting to change the nature of the "conversations' teachers have with

their settings. The press here is to expose teachers to new and more effective ways of construing

and structuring the classroom and school environment (Prawat, 1991). These various aspects of

empowerment are depicted in Figure 1 (see p, 7).

The framework presented in this figure informs the present study in two ways: First, it

suggests that participants in any empowerment-oriented, educational reform effort are apt to be

pursuing multiple--and often conflictinggoats. University participants, for example, may focus on

the epistemological agenda; the intent. from this perspective, might be to get teachers to

reexamine their traditional. hierarchical views of mathematics (Cell 3 inFigure 1). Teachers, on the

other hand, may be pursuing a type of political 'conversation with setting" (Cell 4), seeking more

autonomy and control as a way to better address the needs of the "clients" they serve. These two

purposes connect in various ways, but they also eivergeal least at the strategic level.

The framework presented in Figure 1 has been useful in another way as well. It has helped

the Math Study Group evaluate past progress and plan more intelligently for the future. A look

backward in time is the focus in the present paper. We will present case study data illustrating how

the nature of discourse in the Math Study Group has changed over time. Hopefully, this study will

demonstrate the usefulness of bringing a broad conceptual framework to bear in thinking about

issues of teacher empowerment. It is our contention that math educators often fail to attend to the

sorts of issues discussed in this paper. There is a tendency to overlook "process' related

concerns in our work in schoolsconsidering such issues to be tangential to the main thrust of

changing teachers views about the teaching and learning of mathematics. This may reflect the tact,

in part, that we lack the conceptual tools necessary to judge the qualityof discourse in collaborative

efforts. The present study attempts to address this need.

METHODS

Each MSG meeting was tape recorded and minutes were taken. Data sources for this paper

include transcnpIS of two MSG sessions and additional documents relevant to the focus of discourse
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throughout the project's existence (i.e., meeting agendas and minutes). The meeting minutes were

subjected to an informal analysis. These documents were carefully reviewed, noting separate issues

raised on each occasion, and grouping them into two broad categories: resource and implementation

issues. Within each of these general categories more refined distinctions were made as necessary.

Complete transcripts of the two sessions were coded. Total tries of transcript as well as a range of lines

per turn were determined for university and teacher participants. Categories were constructed which

reflected the variations in the focus of discourse during the meeting. Turn-taking counts for university and

teacher participants were determined within each category.

RESULTS

Meeting Minutes

According to these data sources, a host of issues were raised during the two years that the MSG

has been deliberating. Analysis of meeting minutes reveals an early preoccupation with "resource"

issues (i.e., availability of calculators for students, overhead projects, maniputatives). Included under this

rubric were a host of more complex concerns relating to teacher time. While teachers grew more

appreciative of the need for additional planning time as they became more committed to the concept of

teaching for understanding , they also became more dissatisfied with the typical way of dealing with

absence from the classroom. That is, a reliance on "busy work" administered by substitute teachers was

increasingly viewed as being contradictory to project's overall thrust. Interpreting this in terms of the

framework, it appears that teachers were wrestling with issues that reflected the interaction between

epistemological and political issues (i.e., cells 3 and 4 ). Over time, "implementation" issues predomiyated

in the meeting minutes. An examination of this data source reveals that the implementation category

includes a wide range of issues. It encompasses practical issues such as how one manages cooperative

groups, as well as complex instructional and curncular issues having to do with problem selection and topic

focus (i.e., being able to appreciate the power of certain mathematical ideas).

Meeting Transcripts

The second main data source used in the study is the verbatim transcripts of two particularly

important meetings. The first, which took place March 14, 1990, represented an initial effort to -mar the

conceptual domain for a measurement unit. Although measurement topics are commonly dealt with at the

elementary school level, instruction frequently occurs in a way that is inconsistent with the reform

recommendations put forth by various educational groups . Thus, one of the goals of the MSG was to

develop creative new ways to conceptualize and teach this content. The intent was to use the ideas

identified during this meeting as the basis for planning a common unit, which would include similar

activities and that would span grades K-5.

The second meeting took place nine months later, on November 13, 1990. The agenda

was similar to that of the March meeting in that the purpose was to identify key ideas in an important

mathematical domain -- namely that of place value. This conceptual map guided lesson planning but
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did not result in a common unit. In this sense, the goal was different from thatpursued in the earlier

set of deliberations. The intent was to draw on the key ideas in place value andapply them to

teaching grade related content (e.g., subtraction, division, fractions, numeration). These key ideas

underlie much of the elementary curriculum. In this sense, planning for teaching place value

became a broader, more ambitious agenda for teachers than a self-contained unit such as the

measurement unit.

One of the most important assumptions underlying the current school reform effort is that

teachers will be equal participants in the dialogic process that promotes innovative practice.

Therefore, the quantity and quality of individual contributions to this process should beof concern

to the reform community. In the present study, the former has been operationalized in a global

way: 'Turn taking" represents occasions in which participants both initiate and respond to

discourse. To provide further insight about the nature of this discourse, researchers have

developed a coding scheme which attempts to characterize the various purposes that may

underlie a turn taking occasion. A complete analysis of both transcripts indicates that tumtaking

purposes can be categorized in the following ten ways: (1) sharing information (e.g., building wide

professional development school issues, upcoming PDS events); (2) facilitating group process

(e.g., offers to schedule meeting rooms, taking minutes, fostering a climate for discussion); (3)

discussing dissemination (e.g., negotiation of MSG products, planning presentations, reflecting

on dissemination efforts); (4) discussing mathematical ideas; (5) characterizing and connecting

important ideas; (6) raising questions about the mathematical ideas (e.g., questions to generate

discussion and to probe mathematical understanding, questions to clarify individual mathematical

knowledge); (7) referring to students as a context for discussing ideas; (8) formulating student

interview questions; (9) referring to outside authority (e.g., textbooks, standardized tests, district

guidelines, NCTM Standards, research articles, university participants): and (10) requesting

resources.

In presenting results on changes in the nature of the discourse process in the

collaborative project, two further distinctions had to be made in the data source. Both meetings

began with a consideration of procedural issues. Included in this general category is discussion of

dissemination issues, updls from representatives concerning building wide issues, and

information about upcornii ,g PDS events. Both in the March, 1990, and November, 1990

meetings, procedural issues occupied approximately 30% of the total meeting time. During the

procedural portion of both meetings, most rums were taken in the first three of the ten categories

and were distributed equally between university and teacher participants. Other concerns--those

centered on curricular and instructional issues--constitute the second major component of each

meeting. Approximately 49% of the March, 1990 meeting was devoted to this category of

concern. In contrast, 69% of the November, 1990 meeting time dealt withthis set of issues. In the
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March, 1990 meeting, a third, closely related issue was addressed: how can teachers assess

student knowledge in the measurement domain? Due to time constraints, this issue was not

addressed in the November, 1990 meeting.

The focus in the remainder of this section will be on the curricular/instructional portion of

each meeting. Here, some interesting contrasts between the measurement and place value

discussions are evident. For example, in the earlier meeting 62% of the discourse turns were

coded into categories 4, 5, or 6. These categories deal with the raising and questioning of

mathematical ideas and the development of connections among different ideas. Thus, these

three discourse categories lie at the heart of the collaborative exchange aboiit mathematics among

MSG participants. In the second meeting, dealing with place value, a higher percentage (81%) of

the contributions were of this sort. While it may be useful to consider these three categories as a

whole for purposes of characterizing the quality of discourse in this portion of each meeting, there

are some important distinctions within these categories -- particularly as they relate to differences

between the university and teacher participants. In both the early and late meetings, the majority of

"connecting type' contributions (category 5) were made by university participants. Given the

backgrounds and experiences of the university participants, this is not surprising.

There was an interesting shift between the early and late meetings in who took primary

responsibility for raising questions about the mathematical issues being discussed. 16 of the 19

question-raising comments in the March, 1990 meeting were initiated by teachers compared to

only 13 of 34 in the November, 1990 meeting. While there is a decrease in the number of

questions asked by teachers, further analysis reveals that this reflects an increase rather than a

decrease in teachers' wiliingness to examine knowledge claims (cell 1). Even though the teachers

asked more question's during the first meeting, most of these questions were directed at university

'experts' in order to clarify individual mathematical knowledge. For example, during the March,

1990 meeting, one teacher pressed a university participant to tell her whether or not she should

teach the metric system. Other teachers joined in the effort to push the university participant to

make a judgment about this.

In contrast, during the November, 1990 meeting, when a teacher raised a question about

the position of zero in relation to the decimal point, it was directed to the group. Both university

and teacher participants took part in a lengthy discussion to generate ideas in response to this

question. During the second meeting, the responsibility for question asking was more evenly

distributed between university and teacher participants: furthermore, there was less reliance on

the 'university source' of expertise in answering these questions It is our contention that the

MSG itself has increasingly become the source of knowledge for participants.

The hypothesis that there has been an important shift in the basis of authority within the

group is supported by the pattern of turn taking responses coded as category 9. Nearly 10% of
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the curriaJlarfinstructional comments in the March, 1990 made reference to outside authority (I.e.,

district guidelines, NCTM Standards, research articles) as the source for claims about the

mathematics curriculum. The overwhelming majority (i.e.. 86%) of these responses were made by

teachers. In contrast, only 1% of the contributions made by participants of the MSG during the

November, 1990 meeting were of the "outside authority variety. The insignificance of this amount

is a testament to the group's willingness to test ideas among themselves.

One final aspect of the data is worth mentioning. During both meetings, university and

teacher participants made reference to students. Teachers frequently referred to students as a

means for both making sense of and contributing to the mathematical discourse. Interestingly, the

teachers discourse turns tended to be longer when they were talking about students than their

turns during other portions of the mathematical discussions. In much of the literature on teacher

-voice (cell 2), reliance on personal experience is regarded as the key to gaining entry into

unfamiliar discourse domains. It is not surprising. therefore, that teachers rely heavily upon their

experience with students in contributing to mathematical discourse. The tact that there was less of

that on the latter occasion may suggest that teachers feel more comfortable dealing with the

mathematical content on its own terms.

CONCLUSIONS

The empowerment framework presented in this paper is a useful heuristic for examining

changes in the nature of collaborative discourse over lime. The need to evaluate the success of

such a process will grow in importance as reformers and teachers become increasingly involved in

long-term, school-based projects. This, however, will require a more complex repertoire of

assessment techniques. Short term projects, in contrast, will continue to lend themselves to more

traditional, outcome-oriented modes of evaluation. Broad conceptual frameworks of the type used

here will undoubtedly play a role in helping to generate these new techniques.
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Age Level: College
Identifier #1: Rational Numbers
Identifier #2: Multiplicative

Structures

MULTIDIMENSIONAL SCALING OF RATIONAL NUMBER CONCEPTS

Laura Coffin Koch
and

Xiaoming Li
University of Minnesota

The purpose of this study was to investigate students'
ability to perceive similarities among basic rational
number problems. Multi-dimensional scaling was used
to determine how the students organized their
thinking about the problems. This was done by
estimating the parameters and assessing the fit of
various spatial distance models for proximity.
Results show that college students enrolled in
developmental mathematics are unable to determine
the relatedness of basic rational number problems.

One goal of mathematics education should be the integration of
mathematical concepts. This is particularly important in the learning of
rational numbers. Mathematicians and mathematics educators have been
able to form their own structure of rational number concepts, but this
structure eludes many students.

Research in the area of rational numbers has shown that students
invent strategies for dealing with rational numbers (Post, Behr and Lesh,
1986 and Koch, 1987). Furthermore, Post, Behr and Lesh suggested that it
would be inappropriate to tell learners when certain schemata are
appropriate: "children need to learn how to make such a determination on
their own" (p. 345). Vergnaud (1983) suggested that multiplication,
division, fractions, ratios, rational numbers and linear functions are not
mathematically independent of one another and referred to this unified
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framework as the conceptual field of multiplicative structures. He did
not, however, consider how this conceptual field is viewed by individual
learners.

Current national reports are critical of students' performance in
mathematics at all levels. Most attention is devoted to the pre-college
curriculum, with reforms being mandated and research being designed to
revolutionize the way mathematics has traditionally been taught. Less
attention, however, has been paid to college-level students whom the K-12
system has failed. Currently, about 25 percent of all students entering
public and private colleges and universities enroll in remedial courses in
arithmetic and algebra (Hall, 1985). However, few of these college-age
students achieve levels of higher competence in mathematics or gain the
analytical thinking skills required for success in college-level
mathematics. Little is known about why many of these students do not
succeed and others do.

Lochhead (1981) stated that for students who have had difficulty in
learning mathematics, particularly older students, poor learning and
thinking habits can lead to misconceptions. This may be the result of
memorizing procedures and focusing on the answer, as opposed to trying to
comprehend the problem situation. Confrey and Lanier (1980), in their
study of ninth grade general mathematics students, found evidence that the
students' primary objective was the answer. They further posited that
students lack of flexibility and their persistence of a single method often
led to incorrect generalizations. The inability to see beyond the answer
and make correct generalizations regarding arithmetic procedures may get
students through a course in arithmetic, but can be detrimental to them in
future courses such as algebra and calculus. This is especially true with
problems relating to rational numbers. Difficulties that students have in
algebra are often related directly to problems with arithmetic (Kieran,
1982).

It appears that students have been attending to the development of
isolated skills rather than focusing on building the of concepts,
relationships and understanding. The distinction between skills and
understanding, or conceptual knowledge and procedural knowledge, is
germane to problems related to those who have had difficulty learning
rational number concepts. Results of the Fourth National Assessment of
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Educational Progress (Kouba, Carpenter and Swafford, 1989) found that

"many students appear to have learned fraction computations as procedures

without developing the underlying conceptual knowledge about fractions"

(p.79). Furthermore, approximately 33% of the seventh graders and 25% of

the eleventh graders had limited knowledge of these procedures.

Unfortunately, mathematics can be, and often is, taught without the

necessary conceptual foundation. Silver (1986) suggested that procedural

knowledge is limited unless it is accompanied by the appropriate

underlying conceptual knowledge. He contented that researchers can

increase their understanding of "complex relationships among elements of

a student's conceptual and procedural knowledge base" by investigating

students' perceptions of problem relatedness (p.186).

Multi-dimensional scaling is one technique that can be used to

determine students' perceptions of problem relatedness by making

similarity judgements among specific concepts and/or problems (Diekhoff,

1983; Fenker, 1975). This study used multi-dimensional scaling to analyze

students' ratings of similarities to determine their perceptions of rational

number problem relatedness.

Method

5ubiects The subjects involved in this study were twenty students

enrolled in a developmental arithmetic course at a large mid-western

university.

Instruments. Two instruments were developed for this study. The first

was a ten-item rational number test (RNT). Each item on this test was

chosen from the rational number concept of order, the concept of

equivalence or operations with rational numbers. The second instrument,

the Rational Number Rating Scale (RNRS), developed for this study was

based on the same ten problems. Each problem was paired with every other

problem. The problem pairs were each placed on a five-point scale. The

final instrument consisted of these forty-five randomly ordered items.

Procedures. Prior to the administration of the instruments, all subjects

received instruction in rational number concepts and operations. The

Rational Numbers
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subjects were then given the RNT to determine whether or not they had
procedural knowledge of rational numbers. All subjects received greater
than or equal to 80 percent on the RNT. The subjects were then given the
RNRS.

Results

Analyses. The results of the RNRS were analyzed using ALSCAL to obtain
the dimensional solutions. The measure of fit, both stress-by-dimension
and RSQ (R2)-by-dimension show that the group model represents a good
fit for this group. Table 1 shows the Stress-by-dimension and the RSQ.

Table 1

DIMENSION STRESS R2
4 0.027 0.987
3 0.117 0.852
2 0.206 0.723
1 0.382 0.565

Although the fit measure-by-dimensionality in Table 1 above
suggests that the appropriate solution would be a four-dimensional
solution, it was impossible to make meaning of each of those four
dimensions. The fit for the two-dimensional solution is not as good as the
fit of the four-dimensional solution, but it is still acceptable and the only
solution in which meaning could be attributed to the dimensions. Figure 1
shows the configuration of the two-dimensional solution. The two-
dimensions identified in this configuration are operation type: simple to
more complex (horizontal axis) and number type: whole numbers to
fractions (vertical axis). In this configuration, there appears to be some
agreement between the ordering of the points around a helix line and the
ordering of the corresponding items with respect to "face' item difficulty.
Face item difficulty refers to the item difficulty superficially assigned by
students.
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Discussion

When students try to make connections or generalizations on their
own they often focus on irrelevant information such as units of
measurement, problem format and problem context (Gliner, 1989).
Students' attention to the surface structure of the problem and not the
mathematical structure, can lead to the development of misconceptions
and prohibit students from future success in mathematics. It is evident
that this study supports and extends the notion that students focus heavily
on surface structure and not on mathematical structure and are unable to
see the relatedness among rational number problems. When the RNRS
instrument was administered to fourteen university mathematics
instructors, the clustering around the concept of order, the concept of
equivalence and operations with rational numbers was evident. The results
indicate that the students viewed each item as though they were unrelated
to each other. This implies that although the students have developed the
procedural knowledge, as demonstrated by their success on the RNT, they
have not developed the underlying conceptual knowledge that is necessary
to carry them through college level mathematics.

This study provides evidence that some students who have taken
eleven or twelve years of mathematics, including two years of algebra,
before enrolling in college, are still unable to grasp the mathematical
relatedness among basic rational number problem types that is necessary
in the learning of higher levels of mathematics.

References

Confrey, J. and Lanier, P. (1980). Students' mathematical abilities: A focus
for the improvement of teaching general mathematics. School. Science
Arid Mathematics: 549-556.

Diekhoff, G. (1983). Testing through relationship judgments. ,Journal of
Educational Psychology, 75(2), 227-233.

Fenker, R. (1975). The organization of conceptual materials: A methodology
for measuring ideal and actual cognitive structures. Instructional
Science, 4, 33-57.

Rational Numbers -62-

368



Gliner, G. (1989). College students' organization of mathematics word
problems in relation to success in problem solving. School Science and
Mathematics, 89(5), 392.404.

Hall, R. (1985). Indicators of Educational Status and Trends. Washington,

D.C.: United States Printing Office.
Kieran, C. (1982). The learning of Algebra: A teaching experiment. Paper

presented at the Annual Meeting of the American Educational Research

Association. New York City.
Koch, L. (1987). Strategies used by college students enrolled in

developmental mathematics to solve proportional reasoning problems.
In J. C. Bergeron, N. Herscovics, and C. Kieran (Eds.), Proceedings of the
Eleventh International Conference for the Psychology of Mathematics

Education. Montreal, Canada, 296-302.
Kouba, V., Carpenter, T. and Swafford, J. (1989). Number and operations. In

M. Lundquist (Ed.), Results from the Fourth Mathematics Assessment of
the National Assessment of Educational Progress. Reston, Va: National
Council of Teachers of Mathematics, 64-93.

Lochhead, J. (1981). Problem Solving for Rote Learners. Unpublished paper.

Amherst: University of Massachusettes.
Post, T., Behr, M. and Lesh, R. (1986). Research-based observations about

children's learning of rational number concepts. Focus on Learning
Problems in Mathematics 8(1), 39-48.

Silver, E. (1986) Using conceptual and procedural knowledge: A focus on
relationships. In J. Hiebert (Ed.) caragatualandElogeduralliagwiedge;
The Case of Mathematics. Hillsdale, N.J.: Lawrence Erlbaum, 181-198.

Vergnaud, G. (1983). Multiplicative Structures. In R. Lesh and M. Landau
(Eds.), Acauisition of Mathematics Concepts and Processes. New York:

Academic Press, 127-174.

Appendix A: Sample Items

Rational Numbers Test

1. 3/5 - ?/20

5. Which is larger? 4.29713 or 4.297129

10. 3/5 + 6/7

Rational Number Ratina Scale
.,Jry different very similar

1. 3/5 7/20 1 2 3 4 5
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Age level: 16-18 years and teachers.
Identifier 01: spatial visualization/

imagery.
Identifier 12: Krutetskii.

KRUTETSKI1: A VIABLE THEORETICAL FRAMEWORK FOR
RESEARCH ON IMAGERY IN MATHEMATICS EDUCATION.

Norma C. Presmeg
The Floriaa State University.

The paper describes part or the cneoreticat framework under.:ying
a comprehensive study whi. involved three years of full-time
research. Krutetskii (1969 and 1976) distinguished between level
of mathematical abilities in schoolchildren, determined largely by
a verbal-logical component of thinking, and type, determined
largely by a visual-pictorial component. This distinction was
confirmed in the study of 54 grade 12 visualizers and 13 teach-
ers in interaction in mathematics classrooms.

Although studies of spatial ability abounded in the psychological

literature (and these were mainly factor-analytic in nature), prior to

the research the theoretical foundations of which are the subject of

this paper, very few studies had examined the preference for using

visual imagery when learning mathematics, and none had focused on the

psychological implications in the high school mathematics classroom of

various preferences ot teachers and learners in this regard, as they

interact in high school mathematics classrooms. Krutetskii's writings,

published in English in 1969 and 1976, provided a viable theoretical

and cognitive basis for this research. Researchers such as Lean and

Clements (1981) had worked on the assumption that methods of solution

of mathematical problems could be placed on a continuum between the

poles analytical and visual 3ut as Krutetskii argued strongly, these

are separate dimensions: an individual may be strong or weak on

either or both of these independent dimensions.
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The division of schoolchildren into three types with respect to mathe-
matical abilities ("analytic", "geometric" and two types of "harmonic" in
Krutetskii's case) antedates Krutetskii's work. Hoses (1977) quoted
such a study by Hacker and Zienen in 1931. The importance of
Krutetskii's research, however, lies in its distinction between level of
mathematical abilities, determined largely by a verbal-logical
component of 'thinking, and type of mathematical abilities, determined
largely by a visual-pictorial component. It is to the latter, the type
of abilities, that preference for using visual Lmagery in mathematics
relates.

Hoses (1977) in the U.S.A. and Suwarsono (1982) in Australia had both
done psychometric research which embraced Krutetskii's framework, and
both studies confirmed Krutetskii's distinction between ability and
preference. For instance, Suwarsono (1982) concluded from his data,
"Individuals who have the ability to generate and manipulate visual
images it required to do so might not prefer to use visual imagery in
solving problems if the use of such imagery is voluntary" (p.261). All
three studies (i.e., Krutetskii's, Hoses' and Suwarsono's) provided the
groundwork for the research described in this paper. The following
sections describe how Krutetskii's theoretical framework grounded each
of the stages in the research. Some of the results of the research
have been published elsewhere (Presmeg, 1986 a and b); this paper will
focus on some aspects of its theoretical framework. Key terms such
as visual image, "a mental .cheme depicting visual or spatial informa-
tion", and mathematical vlsuality, "the extent to which a person
prefers to use visual methods when attempting mathematical problems
which may be solved by both visual and nonvisual methods" have also
been described in these publications. The research was carried out
between 1982 and 1985 in Cambridge, England, and Natal, South Africa.
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Rationale for the methodology.

Suwarsono (1982) nad developed a test and questionnaire whicn he used
to measure preference for diagrams and imagery in the mathematical
thinking of grade 7 stuaents in Victoria, Australia. Moses (1977), on
the other hand, was concerned with spatial aoility rather than prefer-
ence, and this was reflected in ner test, whicn was designed for grade
5 students in the U.S. Krutetskii (1976) devoted one series or his
experimental problems to spatial ability, and he wrote, "The ability to
visualize abstract mathematical relationships and the ability for
spatial geometric concepts showed a very high intercorrelation in our
experiments. In every instance we observed a correspondence of the
one with the other" (p.31b). One gains the impression, however, that
spatial ability as such lay on the periphery of his interests, whereas
use of visual imagery was a central construct in his analysis of
types of mathematical abilities. Perhaps as a result of the fact that
the research of Suwarsono and Moses was grounded in the "Western
tradition" as exemplified by Macfarlane Smith (1969), spatial ability
played a central role in the psychometric research designs of both
these investigators, although both made use of Krutetskii's con-
structs, experimental problems and results, and built on these.

The writer worked with students approaching the end of their high
school mathematics career, and with their mathematics teachers. (For a
full rationale for this choice, see i'resmeg, 1985.) Thus the tests of
Suwarsono and Moses were not suitable: amongst other considerations,
the perceived level of difficulty of problems might have influenced the
need for visual imagery (Kaufmann, 1979; Paivio, 1971). It was realized
that for depth of understanding of the thought processes of students
and teachers, Krutetskii's case study methodology based on task-based
interviews involving think-aloud procedures over an extended period
(months or years rather than weeks) was a viable methodological
framework. The research study was thus hermeneutic in nature (Eisen-
hart, 1988). Case studies were based on observations in classrooms
and clinical interviews conducted over an eight month period with
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students and teachers. Transcripts from 188 audiotaped interviews and

108 lessons provided the database for the study, which involved

progressive focusing rather than pre-ordinate design (Hartnett, 1982).

A further year was spent analyzing these data. Krutetskii's case

study methodology was found to be an effective vehicle in the quest

for depth of understanding.

However, there are difficulties associated with think-aloud proce-

dures, as Krucetsxil (1176) notea ana as the present study confirmed.

He wrote that the study of promem solving is greatly complicated

because the process is not always expressed objectively enough; many

links in the mental process of solving a problem escape the investiga-

tor" (p.92). Two basic disadvantages may be summed up as follows:

CO students may not be able to verbalize, and in fact may not even be

aware of their solution processes;

(2) the presence of an observer might unsettle and distort the

process of solution (ibid.).

In a recent study of imagery used by children in primary school,

Ow=ns (1991) fond similar difficulties.

These considerations influenced the writer's decision to use a test

and questionnaire for the initial choice of teachers and students for

the stuay, as, too, did the practical advantage of being able to

administer such an instrument in group format to a relatively large

number of stu6en.1 :. The .nstrument provided a rough measure of

mathematical visualit w)-.Acn was adequate for the initial choice of

both teachers and students. More refined categories and constructs

emerged in the case studies later (Presmeg, 1985). The tests and

questionnaires which followed Suwarsono's (1982) format and extended it

for teachers, involved three sections'of progressively more difficult

word problems, some of which were taken from Krutetskii's (1976) series

XXIIL No diagrams were provided, since it was realized that the

presence of a diagram or any instructions to use imagery or diagrams

might distort the natural preferences of teachers or students. Sec-

tions B (i2 problems) and C (6 problems) were done by teachers and
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sections A (6 problems) and B by students. Comparison of scores or
teachers and students on section B suggested that teachers have far
less need for visual processing than do students on problems such as
these: a median test yielded a significant difference between teachers
and students. There was no significant difference between median
scores of boys and girls (sections A and B).

Data collection and analysis.

After validation of the instrument described in the previous section,
13 high school mathematics teachers or a range of mathematical viscal-
ity scores were chosen and the appropriate sections were then admin-
istered to students in their grade it classes. (in South Africa tnere
is one integrated mathematics curriculum for grades 11 and 12 and
these years are usually taught by the same teacher. It would then be
possible to follow these grade 11 students into their final year with
the same teacher.) Although Krutetskii (1969 and 1976) had classified
students into types with regard to their "use of visual supports in
problem solving" (1976, p.318), it is clear from his writings that he
considered this dimension to be a continuum; cutoff points are thus
an arbitrary decision. In this fieldwork, then, visualizers were taken
to be those individuals whose mathematical visuality (MV) scores
exceeded the median MV scores of the sample from which they were
drawn. 54 visualizers of a range of mathematical aptitudes, from low
to high, were chosen in the classes of these 13 teachers.

During the eight months of intensive interviewing with these 54 visu-
alizers (now in grade 12), one of the many surprises was that the
difficulties experienced by these students could be classified accord-
ing to the structure or mathematical abilities wnich Krutetskii (1976)
worked out from his studies of students who were mathematically
gifted. Briefly, his categories were as follows.
1. Obtaining mathematical information: grasping the formal structure of

a problem.
2. Processing mathematical information: logical thought, generalization,

curtailment, flexibility, economy and reversibility.
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3. Retaining mathematical informatior.; generalized mathematical memory.

4. General synthetic component: mathematical. cast or mind (197b, p.351).

In addition to confirmation tnat the nine categories represented

above are viable not only for girted students, evidence was also

found that Krutetskii's "non-obligatory" categories are not essential
for high achievement in school mathematics. Whether this finding ap-

plies at the of university or research mathematics is another story.
Krutetskii's non-obligatory components were as follows.

1. Swiftness of mental processing.
2. Computational ability.
3. A memory for symbols, numbers and formulas.

4. An ability for spatial concepts.
5. An ability to visualize abstract mathematical relationships and

dependencies (19'16, p.351).

Conclusions.

Amongst other areas, the research project yieideo conclusions about

the difficulties and the strengths associated with visual processing
in high school mathematics, about teachers' mathematical visuality in
relation to the way they actually teach in the classroom (not neces-
sarily consonant), about teachers' and students' attitudes towards and

beliefs about mathematical visuality, and about the intricacies of

interactions between teachers and students with regard to these
matters. "Visual" teaching was not in all cases optimal for these

visualizers! Suffice it to say here that Krutetskii's structures and
categories, and his analysis of types of mathematical abilities in

schoolchildren, provided a very viable theoretical framework on which

to build and extend this research into visualization in high school
mathematics, in all these areas.

ACKNOWLEDGRIMIT.The researcn described in this paper, for a Ph.D. deoree at the Uni-
versity of Cambridge, England, was supported in part by grants from
The Ernest Oppenheimer Memorial Trust, the Human Scien-,:s Research
Council, Pretoria, and the Overseas Research Student iund of the

United Kingdom.

-69-

3"5



REFERENCES.

EISENHART, M.A. (1985). The ethnographic research tradition and
macnematics eaucacion research. Journal for Research. in.
Mathematics Education, 11(2), 99-114.

HARTNETT, A. (ed.) (195z). The Social Sciences in. Educational Studies:
elective Guide IQ, the Literature, London: Heinemann.

KAUFMANN, G. (1979). liaual its_agery and its_ Relation 54 problem
Solving, Oslo: Universitetsrorlaget.

KRUTETSKII, V.A. (1969). In J. Kilpatrick and I. Wirszup (eds) Soviet
Studies in the Psychology 9.1 Learning and Teaching 'Mathe-
matics. Vol. I Tag_ L'tructure pt. Mathematical Abilities.
Chicago: University of Chicago Press.

KRUTETSKII, V.A. (1976). The psychology' pt. Mathematical Abilities in.
Schoolchildren. Chicago: University of Chicago Press.

MACFARLANE SMITH, I. (1964). Spatial Ability: its, Educational and Social
Significance, London: University of London Press.

MOSES, B.E. (1977). The Nature pl. Spatial Ability and lts_ Relationship
Mathematical. Problem Solving. Unpublished Ph.D. disser-

tation, Indiana University.

OWENS, K. (1991). When Uualitative an) Quantitative Analysis are Com-
plementary: An exumole tne, Use, at. Visual imagery
Primary School (..tuldren. Occasional paper # 281, University
of Western Sydney, Macarthur.

PAIVIO, A. (1971). imagery And verbal, processes,. New York: Holt,
Rinehart and Winston.

PRESMEG, N.C. (1985). The Role pi Visually Mediated Processes in High
School Mathematics: II Classroom Investigation. Unpublished
Ph.D. dissertation, University of Cambridge.

PRESMEG, N.C. (1986a). Visualisation and mathematical giftedness.
Rducational Studies in Mathematics, U(3), 297-311.

PRESMEG, N.C. (1986b). Visualisation in high school mathematics.
For the Learning 91 Mathematics, .5_04 42-46.

SUWARSONO, S. (1982). Visual Imagery in. the Mathematical Thinking
p_t. Seventh Grade Students. Unpublished Ph.D. dissertation,
Monash University, Melbourne.

-70-

37 6 BEST CON AVAICLE



Kloster and Dawson

Age level: NA

Identifier #1: Philosophy of Mathematics Education

Identifier #2: Psychology of Mathematics Education

ENSTEMOLOGICAL UNDERPINNINGS OF PSYCHOLOGICAL APPROACHES

TO MATHEMATICS INSTRUCTION

by

Aldona Kloster & A. J. (Sandy) Dawson

Simon Fraser University

ABSTRACT: A review of representative major works in mathematics instruction written over the last

20 years from a psychological perspective reveals a shift frombehaviorist to cognitive to constructivist
views of teaming. Current research employs the terminology ofconstructivism quite loosely.
Mathematics is implicitly viewed as a body of true knowledge that students can discover. Learning

mathematics Is treated as constructing the ritt-'1- knowledge.

Psychological research into learning and teaching has a longstandingtradition of using mathematics as the

content domain for its investigations. Ultimately, the findings of this research seem to make their way into the

practice of mathematics instruction through the design of curricula and textbooks, and as prescriptions for

how mathematics should be taught. However, prior to the question ofhow mathematics should be taught is

the question of what k means to know mathematics. This question is actually an amalgam of two separate

categories of epistemological questions - questions about the nature of mathematics itself and questions

about the nature of knowing and tear .g. Positions on these questions form the epistemological

underpinnings of research into mathematics instruction. They are onlysometimes explicitly stated, and are

not uniform, as we will establish later in this paper. The goalsof mathematics instruction have their roots in

epistemological positions, as do the prescriptions of Instructional techniques to meet those goats. Rene

Thom points out "all mathematical pedagogy, even it scarcely coherent, rests on a philosophy of

mathemat,^s` (Thom, 1973, p. 204). It rests also on conceptions oflearning.

In this paper, we first survey the most common distinct positions about the nature of mathematics and the

nature of learning and knowing. We then examine, in relation to this scheme, the epistemological positions

contained in a sample of representative major works in mathematics education written from a psychological

perspective and specifically concerned with instructional issues. We consider in reicular Lauren Resnick's

The Psychology 0 Mathematics Instruction (1981), Richard Skemp's The Psychology of Learning

Mathematics (1971), and Alan Schoenfeld's Cognitive Science and Mathematics Education (1987).

Three views of the philosophical basis of mathematics are extant today. From a Platonic viewpoint,

mathematical object:, like the line, the circle, the triangle, we real. They exist Independently of our

knowledge of them, although their existence Is not physical. They are Plato's perfect immutable forms.

Mathematical knowledge consists of truths about these abstract structures. Mathematicians do not invent

mathematical knowledge; they discover it intuitively. Nevertheless, insight alone is not enough;
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mathematical truths must be demonstrated to be true by a formal proofby deduction from a set of

definitions, axioms and postulates (Comford, 1945, p. 223).

According to formalism, mathematical objects are not real; they have no existence either in the physical

world, or any other. Formalism turns mathematics into a game of playing with symbols and formulae.

Everything is invented. The starting assumptions are inventions and make no claim to match any external

reality. Doing mathematics is manipulating symbols according to some set of invented rules (Davis and Hersh,

1981, p. 319). Any notions of truth or falsity pertain to the physical interpretation, not to the mathematical

formula.

Both positions outlined so far have connotations of infallibility. In Platonism, mathematical knowledge is

infallble because it is a true description of real mathematical objects. In formalism, the infallibility comes from

the reliance on internal consistency and the inapplicability of truth value. But, whether the objects are real or

not, whether the rules are real or not, as long as one defines the objects, specifies the rules, and follows

them faithfully, one cannot go wrong. Critical fallibilism removes this sense of certainty from mathematical

knowledge. In this view, first described by Lakatos, mathematics is quasi-empirical (Dawson, 1971; Lakatos,

1976). It starts from a problem or conjecture and proceeds by the same kind of criticism and correction that

scientific theories are subject to. Mathematicians seek both proofs and refutations. The proofs are

'explanations, justifications, elaborations which make the conjecture more plausible, more convincing, while

it is being made more detailed and accurate under the pressure of counterexamples' (Davis & Hersh, 1981,

p. 347). The strongest claim that one could make about a mathematical system would be that it is well-

corroborated, but not that it is true. However, the missing element in Lakatos' view of mathematics is an

answer to the question of what mathematics is about.

These three perspectives of the nature of mathemates differ along two interrelated dimensions. One is

the polarity of mathematical knowledge as 'discovered' vs invented". The second is the polarity of

"infallible" vs 'uncertain'. Let us see how these questions are played cut in the psychology of mathematics

education.

The classic behaviorist view entirely avoids the question of mind and thought. All human actions are

interpreted in terms of behavior a particular stimulus evokes a particular response. A person can be taught

to produce the desired response by conditioning, that Is, through a pattern of giving positive reinforcement

for desired behavior and/or negative reinforcement for undesired behavior. A striking feature of the

behaviorist approach is the reductionist view of knowledge. Learning tasks are treated as discrete and atomic

stimulus-response pairs.

Where behaviorism is redudionist. Gestatlisn S holistic. In many respects, Gestaltism is the antithesis of

behaviorism, Gestaltists believe in rich ment'l structures that allow one to understand a situation as an

indivisbie whole. They hypothesize the existence of organizing principles in the human mind according to

which all incoming sensations and experiences are interpreted. Thus there is no such thing as pure

reception of information. Rather, there is recognition of pattern or structure insight. Gestallists urge
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instruction to promote the development of insight, but do not provide guidance as to how this goal might be

accomplished.

Cognitive models of (earning and knowing invoke a computer metaphor. The information-processing

model of the mind describes cognitive processes in terms of flow and storage of Information. Incoming data

are Initially stored in a short -term working memory which has a limited capacity both in quantity and time. Items

of previously learned knowledge are activated and brought into short-term memory as well. Old and new

information are compared and linked (or not, if learning is unsuccessful) and the new relations are stored in

long-term memory. Thi learning involves the formation or extension or change of cognitive structures in

long-term memory. Thee.. cognitive structures are typically imagined as networks of relations and may consist

of both declarative (propositional) knowledge and procedural knowledge. One could view the formation of

cognitive structures as essentially a process of accretion, where newnodes are added to existing branches in

a deterministic fashion. This image is consistent with a 'transmission' model of teaching, one In which

information is believed to be received and stored by the student just as it was sent. The student's role is

passive.

This view of the student as a passive recipient of information has been replaced by a constructivist view

that assigns an active role to the learner in gaining knowledge. Knowledge is not transmitted. Each person

constructs an understanding of his/her experiences. Thus, two people who participate in the same lesson

will construct their own unique cognitive representations orschemata . Nevertheless, the underlying

metaphor of the mind is still a computer metaphor.

References to teaming as construction of knowledge are found in psychology, and also In philosophy

(e.g., radical constructivism) and sociology (e.g., social construction of knowledge). The same words are

used in different senses in the three contexts. As a result thesurface similarity of positions that one Infers

from the use of common terminology can dissipate when the positions are examined more closely.

The constructivism that is coupled with the information-processing model seems to be essentially the

position that the learner is an active agent in the process of teaming. The learner makes interpretations and

connections to build or transform cognitive structures into new forms. In this context, the claim that

knowledge is 'constructed' does not commit one to any particularclaim about the nature or the truth of the

knowledge. It seems to refer entirely to process, and more specifically, to the distinction between passive

storage and active -construction

Social constiuctionism denies that the warrant for what is commonlyaccepted as knowledge is

observation, but rather that knowledge is a social artifact, resultingfrom the interactions of people In

relationship with each other. What counts as intelligible is the product of negotiation and agreement within

the operative community. Thus the warrants for 'truth" (if the term can evenbe used in this Context) are

constantly evolving and free to change. Both radical constructivism and social constructionism deny the

possibility of attaining objective knowledge of the real world. A critical aspect In which they differ Is in the role

that each position assigns to experience of the world. VonGlasersfeld (1984), in his view that the test of the

viability of knowledge is its fit with the world, lakes an empirical stance. Social constructionism Is more
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extreme, positing that the very notion of what 'fitting the world' entails is culturally determined, that the ways

in which people experience the world are not innate or stable, but socially constructed and variable.

We proceed now to look at the interplay of epistemological positions about the nature of mathematics and

psychological traditions of learning. In her book, The Psychology of Mathematics for instruction, Lauren

Resnick surveys the predominant bodies of psychological research In mathematics education, from

Thorn:Res associationism with its emphasis on drill and practice, through Gagne's cumulative learning

theory with its emphasis on rational analysis of skills into component subskills, and Dienes' learning cycle

model with its emphasis on free play and manipulatives, to cognitive psychology with its emphasis on

constructed knowledge structures. While the cognitive paradigm is now a dominant one in research, the

others are still evident in practice.

Thorndike (1922) applied behaviorist principles (he called it associationism) to mathematics instruction.

Associationism Wilds that knowledge is built of simple connections or associations between stimuli and

responses. Learning consists of establishing and strengthening these bonds through positive

r3inforcement. The fundamental instructional prescription arising out of Thomdice's associationism is drill

and practice. For teaching arithmetic, for example, one would begin by analyzing and breaking down the

subject matter into its most primitive processes. Next, one would draw up well-organized lists of all possible

bonds or associations that constituted the subject matter to be taught. The goal is to habituate the child's

mind to carry out the procedures quickly and accurately.

Gagne's cumulative learning theory is another model based on a reductionist view of mathematics. He

proposed the existence of learning hierarchies which consist of skills which can be decomposed to simpler

component subskills. In order to learn a complex skill, a chid would first have to learn, in the hierarchical

sequence, all the component subskills of that task. The instructional principles that arise out of Gagne's work

are the necessity of rational analysis to develop the learning hierarchy prior to instruction, and then providing

experiences for the child through which (s)he can learn the component subskills. Although empirical studies

have generally supported Gagne's theory, they have also indicated that the hierarchies are not quite as

precise or deterministic as they appear (Resnick, 1981, p. 48).

Both of these models contain the implicit belief in mathematical structure as a property of the discipline

itself. Resnick argues that these views do not claim absolute truth for mathematics; the truth could be

decreed by consensus. For all practical purposes, however, mathematics could be treated as a fixed, true

body of knowledge (Resnick, 1981, p. 98).

The curriculum reform movements of the 1960's led to a change of stated emphasis from learning as

performance of procedures to learning as understanding of mathematical concepts. This in turn, raised the

question of what it means to 'understand" mathematics. The common elements In the way that the term Is

used are Insight (note the GestaNist influence), recognition of interrelationships and reorganization of

elements to see them in a new way. (Resnick, 1981, p. 105 & p.132)

The structural view is based on a view of mathematics as a conceptual and evolving discipline (Resnick,

1981, p. 105). This view of mathematics seems to be an eclectic blend of Platonism and formalism with a just
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a touch of empiricism thrown in. Understanding the structures of mathematics means understanding both

the interrelationships among mathematical concepts and the rules by which they may be manipulated.

Developing this kind of understanding cannot be accomplished by the drill and practice approach that

focuses on disconnected Individual mathematical procedures. Structural teaching approaches emphasize

the use of concrete materials and multi* representations from which children can abstract mathematical

concepts. The works of Montessori, Bruner, and Dienes are all examples of structure-oriented approaches to

teaching mathematics.

Anothsr constructivist approach to knowledge and learning is Piaget's. Piaget is ''a realist of a rather

special kind- (Sinclair, 1987, p. 29). While absolute knowledge of reality is impossible, theories can be

constructed that are successive approximations of this reality. In The Psychology of Learning Mathematics,

Richard Skemp outlines his psychological theory of children's learning of mathematical concepts. Skemp

holds a Piagetian constructivist view of learning. Learning is the acquisition of schemata. By 'scheme.

Skemp seems to mean the cognitive structure that represents a mathematical concept or set of concepts
(Skemp, 1971, p. 25). Implied in Skemp's work, is the notion that there really is mathematical truth. He

generally refers to mathematical knowledge as a hierarchy of concepts, similar in tone to Gagne's learning

hierarchies. There is a presupposition that mathematical knowledge can be mapped out ina way' at reflects

its innate structure, with connotations that this structure is fixed, unchanging and true. Whether it is truth by

matching an objective reality, or truth by consensus among mathematicians, Skemp clearly holds the position

that mathematical knowledge is true and has some sort of existence outside the mind of the individual

thinking about it.

Cognitive psychology has become the dominant paradigm in the psychology of instruction. In 1984,two

conferences were held in Rochester, New York to examine the implications of cognitive science for

mathematics instruction. The papers generated as a result of these conferences represent a shift in views of

learning mathematics (Schoenfeld, 1987, p. xiv-xv). Learning and understandingare interpreted as the

construction of particular kinds of representations of information. Greater stress is placed on the praanizallon

of knowledge and the role of metacognition, on the acquisition of problem-solving schemata and strategic

knowledge. Silver (1987, p. 52-3) emphasizes the constructive nature of learningthat new information is

not just added to an existing store, but is actively connecteo to 'old' knowledge, and that entirely new

relationships are invented. The information-processing model of the mind is the fundamental principle

underpinning theories of how mathematics is learned. Learning however is interpreted muchmore broadly

than before. Tne view of knowledge in genera:, and therefore, of mathematical knowledge inparticular,

presented by Silver is most like Lakatos' quasi-empVal view of mathematics. It encompasses a view of

mathematical knowledge as dynamic, as having mutliple -answers-, and emphasizes making sense of the

world. A similar view is contained in KiPatrick's writing about problem-solving. He introduces the importance

of problem formulation as well as problem solution and sees problem formulation as both a goal and a means

of mathematics instruction (Kilpatrick, 1987a, p. 123). Statements like these illustrate a constructivist

perspective of learning and imply a quasi-empirical view of mathematics.
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In the writings examined, there Is a close tie between the views of learning held by the authors and the

Instructional advice that they offer. There is less evidence of an explicit connection between their views of

mathematics and the instructional prescriptions. Positions about the nature of mathematics are rarely made

explicit and are not treated as central to instructional Issues.

In one of the few exceptions to this pattern, Nether specifically addresses the relationship between the

nature of mathematical knowledge and approaches to the teaching of mathematics. She takes a pragmatic

approach to the epistemological questions (Nesher, 1989, p. 188). Her approach is to avoid the controversy

between different philosophical views of mathematics, and to adopt an epistemological position for the

purpose of instruction. She opts for treating mathematics as real and mathematical statements as verifiable in

terms of their correspondence with this real mathematical world. The teacher's task is to set up learning

experiences for the child that will ensure 'That the child's knowledge of mathematics will converge on the

standard conventions- (Nesher, 1989, p. 197). Here is yet another example of the predominant pattern - a

view of learning as an active, interpretive, constructive experience, coupled with a view of mathematics as a

true body of knowledge. In other words, learning mathematics means constructing the right knowledge.

We see the changes over the past twenty years as three stages in the evolution of psychoiogica' theories

of mathematics education. The first stage is behaviorist - viewing mathematics as a set of algorithmic

procedures, mathematical knowledge as the ability to perform these procedures quickly and accurately, and

learning as reinforcing particular stimulus-response pairs through drill and practice. The second stage Is

viewing mathematics as an accepted set of concepts or structures, mathematical knowledge as

conceptual understanding and problem-solving, and learning as construction of knowledge representations,

with an emphasis on the role of metacognition. Both stages are evident in current practice in matnematics

education.

A third stage, emerging in research and prescriptive literature Ike the NCTM Standards documents, is the

situated cognitive view. Cognitive psychologists are paying increasing attention to the Importance of context,

of belief systems that learners have as they come to team mathematics, and of the actual situation in which

the mathematics is to be practiced. With this increasing awareness of the influence of context and social

factors, as in the work of Jean Lave (1988), for example, new models of learning and instruction am likely to

emerge. Some models, like 'collaborative knowledge construction- (Brown & Palincsar, 1989) and

'cognitive apprenticeship* (Collins, Brown, & Newman, 1989) from other content domains may be

transferable to mathematics Instruction.

Simple con structivism seems now to be firmly established in psychological views of mathematics

Instruction. What seems much less clear is the extent to which radical constructivism is an epistemological

position held by either psychologists or mathematics educators. In the reviewed literature, the distinction

between simple and radical constructivism is very rarely explicitly made. The term "constructivism' is used

quite loosely and seems to function more as a legkimizing label than as any helpful description of an

epistemological position. Moreover, the ways in which the term, -constructivisnr, is used imply that

constructivism is compatbe with both Platonic and quasi-empirlcal (and maybe even formalist) views of
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mathematical knowledge. The three views of mathematics considered here appear to be mutually exclusive

positions. It would therefore be remarkable for all of them to be compatible with a constructMat view of

learning. There appears to be at least a surface similarity between the radical constructMst view of knowledge

and Lakatos' (Dawson, 1971; Lakatos, 1976) quasi-empirical view of mathematics. This apparent relationship

needs to be explored (Kilpatrick, 1987, p. 20).

Three underlying Issues in further psychological research in mathematic instruction must be attended to.

The first is an explicit statement of researchers'view of mathematical knowledge. The second is a more

responsible use of the term 'constructivism-. Authors need to specify the particular sense inwhich th...1 use

the term so that readers have a better chance to interpret their intended meaning accurately. The third is an

examination of the relationship between
constructivIsm and the prevailing views of mathematics. Productive

research into mathematics learning and teaching must be based on coherent and compatible views of both

learning and mathematics.
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Age level: Inservice teachers
Identifier #1: constructivism
Identifier #2: teacher education

ASSESSIN" TEACHER CHANGE
IN THE ATI-eiNTA MATH PROJECT

Lynn C. Hart
Georgia State University

The Atlanta Math Project (AMP) is implementing a constructivist pedagogical model
that supports the NCT,M (1991) teaching standards. This paper presents the theoretical
and conceptual frameworks for assessing teacher change over the four years of the
project and briefly presents data collection sources.

The complex environment of the mathematics classroom provides a tangled web of factors

that interact and impede an easy explanation of why the mathematical performance of school

children in the United States is not noticeably improving. Recommendations for change come

in the form of standards for curriculum and evaluation (National Council of Teachers of

Mathematics, 1989) and standards for teaching (National Council of Teachers of Mathematics,

1991). These documents suggest learning environments that are quite different from the lecture

dominated mathematics classroom that many teachers and students have experienced.

The Atlanta Math Project (AMP), a four-year National Science Foundation sponsored

project in the first year of operation, is implementing a teacher education model which assists

teachers in constructing new knowledge about the teaching and learning of mathematics which is

consistent with the recommendations mentioned above and will study how these teachers change

their instructional practices over the four years of the project. The project involves 3 teacher

educator/researchers, 11 mathematics supervisors, and 22 teachers (in year onemore teachers

will be added each year) in nine school systems in the metro-Atlanta area.

The teacher education model was developed as part of an earlier research project

(Metacognition, Teachers and Problem Solving; Schultz & Hart; NSF, MDR 865-0008). It is

based on the belief that researchers, teacher educators, mathematics supervisors, classroom

teachers, and students are all teachers and are all learners in the mathematics education

process. There are times when each individual will need to communicate or teach his or her

mathematical understandings to another and when each individual will need to learn the

mathematical understandings and thinking of another. For the purpose of this paper, however,

teacher will be used to mean researcher, teacher educator, mathematics supervisor, or classroom

C4.( 4
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teacher. The project is attempting to facilitate and study change in all teachersourselves as

researchers included. This paper will describe the framework for studying teacher change.

Theoretical Orientation

The theoretical orientation of the Atlanta Math Project is framed by our view of learning

and our understanding of cognitive processes. The following discussion will describe our

perspective.

Construcriv Ltm and Teacher Learning

Our work is informed by a constructivist theory of learning (Van Glaserfeld, 1983) that

suggests that acquiring knowledge is a process of providing structure and organization to the

world in an effort to "make sense" of experience. Since several interpretations and organizations

of an experience may be possible, it follows that the knowledge acquired by any one individual is

unique and compatable with his or her pre-exisiting framework. Knowledge is modified in the

face of problematic situations in order to remain viable, i.e., learning occurs. When applied to

learning to teach mathematics or the acquisition of new or different pedagogical knowledge, this

theoretical perspective suggests that teachers will reconstruct or modify their currently held

knowledge and beliefs about learning and teaching if it is problematic. Further, what is learned

by an individual teacher about alternative pedagogical practices will be unique to that teacher.

How that knowledge is applied into practice in individual classrooms could look quite different.

Metacognition and Teacher Learning

Additionally, the theory of metacognition (Flavell, 1979; Schoenfeld, 1987) provides a

perspective for our research. Metacognit' m theory consists of (at least) two components,

metacognitive activity and metacognitive knowledge. The former consists of the monitoring and

sub<equent regulation of what you know, and of what you do with what you know. This "ability

of the mind to observe its own operations" (Van Glaserfeld, 1983) is a critical component in

productive mathematical thinking. It takes the individual beyond rote or algorithmic behavior to

rationally controll d choice. The second component of metacognition, metacognitive knowledge-

-often referred to as beliefs (Flavell, 1979)exists as information about ones cognitive processes

and knowledge. Individuals hold beliefs about such things as the mathematics, about learning

mathematics, about teaching mathematics and about the mathematical strengths and weaknesses

of themselves and others. These beliefs motivate much of mathematical behavior. Both aspects
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of metacognition, metacognitive activity (monitoring and regulation) and metacognitive

knowledge (beliefs) are important components for studying change.

Change in metacogtitive activity. Individuals often do not monitor and regulate their

cognitive processes during mathematical experiences or they do so infrequently . Change,

however, may not follow the more is better' philosophy. The frequency of monitoring behavior

does not necessarily correspond to productive mathematical experiences. On the contrary,

excessive monitoring may hinder productive processing. The quality and substance of what is

monitored appears to have more impact.

Change in beliefs. Ir order to acquire new beliefs or change existing beliefs learners need

to have problematic experiences that are contrary to what they believe about themselves as

problem solvers or the nature of mathematics. For example, if learners believe there is usually

one right solution to a mathematical problem and only one way to arrive at that solution, then

in order to alter that knowledge they need experience with problems having more than one right

answer and numerous solution paths. Applied to learning to teach in a manner consistent with

the current recommendations, a teacher who believes learning occurs best when material is

presented through lecture in an orderly, careful way, must encounter a problem with that

approach. In order to motivate change in teaching behaviors, beliefs that are consistent with a

traditional lecture-dominated rote-learning environment must be replaced with beliefs that are
consistent with current recomendations for reform.

The Role of Reflection in Change

Since much of metacognition is unconscious, the process of becoming aware is a critical

component of change. Learners are frequently not aware of the beliefs they hold that are

motivating their mathematical behavior or their teaching behaviors and thy are not aware of
when or if they are monitoring and regulating their thinking. The coordinario; _of new

knowledge, whether it be cognitive or metacognitive, with already existing knowledge structures

is facilitated through reflection. When learners are conscious of and get control over their

beliefs, understandings and procedures they are more likely to change or alter their knowledge.

In addition, the process of constructing new knowledge, whether by students or teachers, is

facilitated through reflection on the experiences that are motivating the change. Teachers need

the opportunity to look back on their teaching strategies--to reflect on the outcome of their

behaviorsand to learn from the experience. In turn, teachers need to assist students in

reflecting on their mathematical experiences so that they also can learn from them.

0

-80-



AMP Teacher Change

The Teacher Education Model

In an effort to influence change in teacher knowledge we have designed experiences that are

consistent with our theoretical perspective and with the recommendations mentioned at the

beginning of this paper. In particular we provide experiences where the teachers role is to

facilitate the conceptual organization of experience in their students rather than to provide

information to them. We have designed experiences (1) that provide opportunities for teachers

to develop beliefs that are productive for mathematical learning from a constructivist

perspective; and (2) that model and encourage monitoring and regulation of behavior.

The most powerful vehicle for facilitating this change has been through the use of

videotaping. It not only allows teachers to reflect on their personal problem-solving

performance, it also allows them to observe how they teach and model problem solving, how

students think about the mathematics they are learning, and how other teachers teach. In

addition, it allows us as teacher educator/researchers to reflect on our mathematical

performance and on how we model the teaching process.

Studying Teacher Change - The Conceptual Framework

For many, teaching from a perspective consistent with the NCTM (1989, 1991)

recommendations requires a new set of assumptions about learning and requires the acquisition

of new knowledge. This paradigm shift requires that the learning environment be radically

altered. AMP is studying this change within the following conceptual framework which has

three primary components: (a) teacher knowledge, (b) the learning environment, and (c) the

project. Each will be discussed below.

Teacher knowledge. Our thinking in the area of teacher knowledge has been impacted by

Shulman (1987). In particular we are interested in change in teacher metacognitive knowledge,

pedagogical content knowledge and mathematical content knowledge. Our thinking in this area

has been influenced heavily by our own work on metacognitive knowledge or beliefs as well as

that of others (Cooney, 1985; Thompson, 1984). As teachers make a paradigm shift toward a

constructivist view of learning, we raise the following questions:

(1) teacher beliefs

How do teacher beliefs about learning mathematics change over time?

How do teacher beliefs about teaching mathematics change over time?

How do teacher beliefs about the classroom environment change over time?

How do teachers beliefs about mathematical tasks and content change over time?

To what do teachers attribute success and failure in mathematical performance?
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(2) pedagogical knowledge

How do teachers pfan for instruction?

What do teachers consider as they do lesson planning?

What influences instructional choices during a lesson?

What do they "see" as they observe teachers teach?

(3) content kncwledge

What problems do teachers have with the content they are teaching?

How does teaching from a constructivist perspective effect teacher content

knowledge?

The learning environment. Our research on the nature of the learning environment as well

as that of others (Cobb, Wood Yackel, Nicholls, Wheatley, Trigatti & Perlwitz, 1991; Lampert,

1988), has assisted in the development of our thinking in this area. The following questions are

raised.

(1) the nature of classroom discourse

Whose ideas are being explored?

What types of questions are being asked?

How is conflict resolved?

How is student thinking encouraged?

Is mathematical thinking modeled?

Who are students talking to?

(2) the nature of the mathematical tasks

Are the tasks problematic for the learners?

Is the mathematics sound?

What types of representational systems are employed?

The project. A difficult aspect of this project is the role participation in the project has

on teacher change beyond the obvious and intentional experiences we are providing. It is clear

that interaction with the researchers and participation in the project will have an impact as well

as exposure to other sources of knowledge such as professional meetings and journals. We are

concerned about such things as

(1) what changes do teachers see about themselves professionally as a result of

participating in the project?

(2) what "ripples in the pond" are apparcnt?
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It is important to note that we are making every attempt to not let our conceptual

framework restrict what we find. We will remain open to the data so that we are not limited to

our expectations.

Methods

Data are currently being collected from all participants in the project. The data are in the

form of videotapes of teachers teaching in their own classrooms, of project directors and

mathematics supervisors teaching in classrooms and in staff development sessions, of oral

reflections, of unstructured interviews, and of lesson planning sessions. Written data in the form

of written lesson plans, of field notes made during classroom observations, samples of student

work and of teacher made tests, of framing questions and of written logs are also being

collected

Since we are only six months into the project, the analysis and assessment is in the

preliminary stages. It is being facilitated by our project participants--our partners in research.

The participants in the project reflect over their own teaching experiences as well as the

teaching experience of other project participants, be they supervisors, teachers or researchers.

They begin to identify change for us--frequently in areas we have not considered. For example,

a teacher at a school where all the teachers participated in a pilot study for the Atlanta Math

Project recently commented that for her one of the most valuable aspects of change had been in

the communication established
between teachers in her department. Teachers are now talking

about mathematical ideas to each other. They are talking about how these ideas could be

explored in the classroom. They are planning and reflecting on lessons together. They are

observing each other teach. She has made our project aware that communication outside the

classroom may be just as powerful toward teacher change as the communication within the

cla,sroom! Are we seeing ripples in the pond? This type of information is critical as we assess

the impact of our work in the school systems and begin to descibe the nature of change in all

the teachers who are participating.
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TEACHING AND LEARNING ABOUT DECIMALS IN A FIFTH-GRADE
CLASSROOM

Ralph T. Putnam
James Reineke

Michigan State University
This paper examines the teaching and learning in one fifth-grade classroom
during a two-week unit on decimal fractions. The teacher holds goals of
wanting her students to enjoy and understand mathematics,but student
learning data show mixed success in reaching these goals. Analysis of
classroom instruction and interaction point to possible reasons for students'
limited learning.

Objectives
This study is part of a series of case studies of mathematics teaching and learning

being conducted by researchers of the Center for the Learning and Teaching of
Elementary Subjects, focusing on classrooms in which teachers are consciously trying
to make their instruction focus less on isolated computational skills and more on
students' understanding, mathematical thinking, and problem solving. This paper
focuses on the teaching and learning of decimals in the classroom of one teacher,
Elaine Hugo, providing insights on the difficulties of teaching mathematics for
understanding and on relationships between instruction and learning.

Conceptual Framework
Although recent calls for reforming mathematics curriculum and teaching in the

United States (e.g., NCTM, 1989) hold forth a fairly consistent vision of desired
changes in mathematics instruction--less emphasis on practice of isolated
computations skills, more emphasis on understanding, problem solving, and flexible
mathematical reasoning--they fall considerably short of providing descriptions of what
successful mathematics instruction might actually look like in elementary school
classrooms and providing a research basis for understanding the learning that takes
place as various changes are made in instructional strategies and materials. We have
taken as our goal in this research to better understand the teaching and learning in
particular classrooms in which teachers are trying to move toward the kinds of
teaching described in various reform documents, bringing to bear a variety of research
perspectives. We combine the focus on teachers and instruction in classrooms that
has been the hallmark of research on teaching (e.g., Wittrock, 1986) with cognitive
psychological perspectives on the learning of individuals (e.g., Resnick, 1985). In

-85-

391
-A r .



addition, like many psychologically oriented researchers, we are increasingly trying to

pay more serious attention to the social contexts of teaching and learning, both in

considering mathematical knowledge to be a social and cultural construction (e.g.,

Stigler, 1988) and in viewing the social structures and interaction patterns of the

classroom as key aspects of the learning environment. We seek to develop rich and

useful understandings of classroom teaching and learning of particular mathematical

topics, including analysis of the structure of classroom lessons, the role of the

teachers' knowledge and beliefs--of mathematics, of teaching, of learning--and of the

understandings that students construct or acquire as a result of instruction.

Methodology & Data Sources
Data for the study come from a variety of sources collected over the course of the

school year. Providing evidence for the general context for the teaching and learning

in this classroom are: fieldnotes and audiotapes from weekly observations of

mathematics lessons; interviews with students (conducted at the beginning and end of

the school year) dealing with key mathematical content, knowledge, beliefs,

dispositions, and problem solving; and ongoing interviews throughout the year with

the teacher concerning her goals, strategies, and reflections on her mathematics

teaching and the learning of her students. The more intensive analysis of the teaching

and learning about decimals draws on: videotapes of all the mathematics lessons

during a two-week unit focusing on decimals; student work samples; and in-depth

interviews about decimals conducted with six target students before and after the unit.

The target students included males and females identified by the teacher as being

high, middle, or low achievers in mathematics.

Results
In describing this classroom, we first discuss Hugo's goals for instruction and her

pedagogical and subject-matter knowledge. We then briefly characterize what target
students learned during the decimals unit. Finally, we consider features of Hugo's

instruction that might help account for student learning.

Hugo's lnstructloaal Goa; and Knowledge
Through interviews focusing on what she wants students to learn, Hugo revealed

her instructional goals. We provide only a sketch of these goals here; they are

explored in greater detail in a previous paper (Putnam & Reineke, 1991). Hugo's

goals for her students are in many ways consistent with the NCTM Curriculum

Standards and other reform documents. She wants students to learn arithmetic with

understanding, not through rote memorization and drill. She wants to instill an
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enjoyment of mathematics and a desire to learn more, as well as understanding or

arithmetic concepts and when to use them. This entails not ignoring important

computational skills, but placing the emphasis on understanding and being able to

construct or reconstruct reasonable procedures for solving problems, rather than

carrying out memvized computational procedures.
Elaine's relatively strong subject-matter knowledge enabled her to think critically

and creatively about the instructional representations and activities she used to teach

particular mathematical concepts and procedures. She read research and other

writing dealing with the teaching and learning of decimals and thought carefully about

what representations to use to best capture important aspects of decimal fractions and

building on representations with which students were already familiar, settling on a

variety of activities using base-ten blocks. Elaine also worked hard to incorporate

research-based techniques, including cooperative learning and writing about

mathematical Ideas and solutions.

Student Learning
Evidence from student interviews suggests that students' learning during the

decimals unit fell short of Elaine's expectations. In general, two students, John and

Melody (both identified by Hugo as strong students), showed evidence of learning a

fair amount about decimal numbers as a result of Hugo's instruction. In contra;. to

their relatively poor performance on the early interview, both of these students were

able to identify the larger of two decimal numbers, identify, draw a picture of, and

explain a decimal number, write a decimal and fraction that corresponded to a

rectangular representation of the number, correctly line up like parts and add decimal

numbers, and order decimals, fractions andwhole numbers. The other four students,

Janet, Nancy, Richard, and Rob, performed much like they did on the early interview

Aside from improvement in correctly identifying a shadod rectangle as .3 and

knowledge that .7 means 7 out of ten parts, these students showed little improvement

They continued to be unsuccessful at choosing the larger of two decimals or making a

coherent ordering of the set of numbers. The errors these students made on the end-

of-year interviews were often the same errors they made on the early interview.

Thus Hugo's instruction seems to be working for some students but not others. In

the following section, we take a closer look at th" instruction during a lesson on

decimals to explore why this might be.

-87-

J V 3



Classroom instruction
Several noteworthy features of Hugo's instruction emerged during the decimals

unit. These features both supported the importance Hugo placed on fostering student

understanding and illustrate ways in which the instruction hindered--or at least failed

to support--students' developing the desired understandings.

Focus on understanding. In her interviews, Hugo talked a lot about the
importance of students understanding the mathematics they were learning, not just

memorizing rules and procedures. This emphasis on understanding was evident in

her classroom, both through explicit statements that Hugo made in framing classroom

tasks for students and through the content of the lessons. When introducing small-

group tasks, for example, Hugo said, "I need these worked for understanding." She

talked at length in some lessons about making sure that everyone in the small group

understood the solutions of the group and could explain them. One requirement of the

group task was that each student in the group sign their jointly completed paper to

indicate tneir understanding of what was done. Throughout the unit, Hugo focused on

having students represent and talk about decimals with base-ten blocks. Comments in

a stimulated-recall interview support the notion that her goal was to focus on student

understanding. For example, referring to having students show .8 she said she was

trying to see "who's making sense of eight tenths and isn't at that point" (stim. recall

3/5/90).

Opportunities for students to express their thinking. Consistent with her
beliefs about the importance of verbalization--of giving students opportunities to talk

about mathematics--Hugo structured the class to allow this to happen. She often

structured lessons to include small-group activities, in which students were

encouraged to talk through their solutions to the problems being solved. She

evaluated the groups performance publicly in terms of how well they were interacting

with one another and working together on the tasks.

During whole-group instructions, Hugo elicited explanations and justifications

from students. For example, in a lesson focusing on having students represent various

decimal fractions with base-ten blocks, she asked students to explain how their

physical representations did or did not show the desired decimal. In another part of

the same lesson, Hugo wrote the words Fractions and Decimals on the board and had

students talk about the similarities and differences between these two kinds of

numbers, providing them with the opportunity to talk about what they knew and

understood about fractions and decimals.
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In other lessons, Hugo had students write explanations to make their thinking

visible and explicit. For example, on March 12, groups were to write a description of

the procedure for adding decimals along with an explanation of why it is Important to

do it that way (i.e., why It Is important to line up the decimal points).

Addresses important ideas. Through the questions she asked and tasks she
posed, Hugo clearly brought up important ideas related to understanding decimals.

For example, during the lesson in which students represented decimals with base-ten

blocks and discussed fractions and decimals, the following potentially Important ideas
were at least touched on:

equivalence of ten tenths to one whole;
equivalence of one tenth to ten hundredths;

discussion of whether 2 is a decimal and/or a fraction;

whether one can have negative decimals (raised by a student) and if so, how
to represent them with base-ten blocks;

whether all decimals can be expressed as fractions and vice versa;

with fractions, thinking of shaded circle as 1/8 or 7/8 depending on whether

you are talking about the shaded or unshaded portion;

with decimals, must divide the whole into 10 parts, or 100 parts....; this Is
powers of ten;

the difference between 5 tenths and .5 tenths.

Interaction routines. In spite of Elaine's attempts to focus on important ideas
and to get students thinking about mathematics through the use of such pedagogical

devices as cooperative groups and writing, the interaction routines and lesson

structures in her classroom often failed to make students' solution strategies and

mathematical thinking sufficiently public to allow many opportunities for teacher and

students to reflect upon and discuss students' ideas. Much of the discourse in class

continued to be highly structured and focused on the production of single correct

answers and solutions, rather than on more open-ended reflection and discussion that

might make students' understandings and misunderstandings more focal. In addition,

Elaine tried to cover much material in a given lesson, resulting in a rapid-fire

succession of problems for students, often precluding much thoughtful reflection on

any given problem. Here is one episode from the class to illustrate some of these

features of Hugo's interactions with students around potentially important ideas. The

students had just displayed .8 with the base-ten blocks by placing eight longs on their

mats and on the overhead and talked about this being eight of the ten parts that would

make up a whole. Hugo then asked what eight of the small squares would be:

- 8 9 -
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What are the little ones, if you had 8 little white ones, what would that be?

Mitch?

Mitch: eight tenths?

T: No, eight tenths is what I have up here (points to 8 longs on overhead)

Mitch: No, I mean eight, uh ones

eight--?

(some one says, "Oh, I know, that would be hundredths")

T: Sandra?

Sandra: one hundredths

T: eight hundredths. It would take one hundred of those little white ones to

make one flat

T: Ok, there's eight tenths. Would you show me nine tenths.

The problem here, which seems endemic to Hugo's interaction with students, is

that the important ideas are brought up or touched on, but it is the correct

understandings that get most of the attention. Hugo is fairly convergent about whore

she is going; she wants students to say a particular thing, In this case "one

hundredths." When Mitch does not say that, Hugo keeps asking, finally turning to

someone else. She seemingly ignored Mitch's response that the little squares would

be "eight ones," and, although Mitch's response might be interpreted as "fishing for the

correct answer," eight little squares was eight ones when the students were using

base-ten blocks to represent whole numbers. Once the "correct" interpretation is

brought to the table by Sandra, Hugo essentially repeats it and goes on. Where Mitch

is left at this point--what sense he's making of it--is not clear and possible explanations

of his responses are left unexplored. This kind of episode repeats itself again and

again in Hugo's class: An important idea comes up (often raised by a student, so it is

not the case that Hugo ignores students' contributions or is unwilling to take time to

explore ideas that students raise). But once the Idea comes up, the discussion is fairly

convergent toward the way Hugo is thinking of it, so students do not seem to have the

opportunity to connect the "correct" idea to what they are thinking.

Instructional representations. Although Hugo thought carefully about what

instructional representations to use, she may have underestimated the complexity and

difficulty for students in working productively with these representations. Analysis of

instructional discourse revealed aspects of teacher and student talk about the

representations that may have been confusing. For example, in the episode described

above, students represented .8 with 8 longs from the base-ten blocks. This is the

same way the students earlier in the year represented 8 tens, or 80, when using the

3 6
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blocks to represent whole numbers. There is nothing in this use of the base -ton blocks

or the way the teacher and student talked about them to draw attention to the longs

representing tenths rather than tens. That students may have been confusing the use

of the base-ten blocks to represent decimals with the way they had been used with

whole numbers was supported by Mitch's response that eight of the smallest blocks

would represent "8 ones." Hugo seemed unaware of ths confusion, even though in a

stimulated-recall interview for this lesson she pointed out that she was concerned that

students might find the use of base-ten blocks for decimals confusing after having

used them in different ways previously.

Conclusions
The teaching and learning in this fifth-grade classroom represent an important

case of a teacher trying very hard to move instruction beyond the mechanical and

computational focus that dominates much of current elementary school mathematics

teaching. Hugo has goals that are consistent with current reform efforts--she clearly

wants students to enjoy and understand mathematics. But, as this case illustrates,

having the right goals is not enough; teaching mathematics for understanding can be
elusive and difficult. This case illustrates how difficult teaching for understanding can
be, even for a knowledgeable and committed teacher. In particular, it seems that

teachers like Hugo need to continue to work toward classroom interaction routines that

make students' mathematical thinking--how they are making sense of the instruction

and the instructional representations--play a more prominent role in instruction.
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CLASSROOM NORMS AND EXPECTATIONS: DO THEY HINDER
MATHEMATICAL COMMUNICATION?

James W. Reineke
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Recent calls for reform in mathematics education suggest students should
assess situations mathematically, apply appropriate tools, and justify their
responses. Students, however, bring with them a well developed set of
interactional norms from their previous classroom experience. The research
presented here investigates some of the difficulties encc-intered when trying.to
change how students talk about mathematics in one elementary classroom.

Recently mathematics educators and researchers have called for radical revisions
in how mathematics is taught in elementary school classrooms. Reformers argue that,

rather than learning isolated computational skills, students should learn to recognize

the mathematical elements in situations, flexibly apply appropriate mathematical tools,

and engage in mathematical rea3oning such as conjecturing and justifying. All these
goals suggest the importance of making students' mathematical thinking more

prominent in instructionmaking students' thinking public. Students need
opportunities to communicate, either orally or through writing, their thoughts about

particular mathematical situations or problems and develop a willingness to reflect
upon and discuss their own thinking and that of others. According to Polya (1.954),
students involved in such communication need to develop three traits: Intellectual

couraaebeing willing to revise one's thoughts; intellectual honesty- -being willing to
change their thoughts when it is warranted; and, Wise restraintrefraining from

changing one's beliefs when it is uncalled for or prior to serious inspection. One

portrait of mathematical communication, then, has students sharing and commenting

on alternative ways of solving rich mathematical situations in an attempt to clarify their
mathematical knowledge.

Students, however, bring to school well developed motivational sets (Dweck,

1989); norms of interaction (Heath, 1982); and, ways of knowing what problems are

worth solving and what constitutes a good solution in various out-of-school situations

(Go, Idnow, 1990). Furthermore, as students gain experience in a school setting they
grow accustom to certain patterns of interaction.

The research presented here focuses on how the beliefs, norms, and expectations
brought to the classroom by the students or the teacher facilitate or hinder attempts to
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change mathematics instruction in one classroom. In doing so we attempt to address

the following questions: What interactional norms existed in this classroom? How do

these norms either facilitate or hinder the development of mathematical discussion?

What might teachers be able to do in order to promote the development of interactional

norms that reflect Polya's three dispositions?

We investigated these questions in a mathematics class of 25 fourth- and fifth-

grade students during the 1990-91 school year. Alice Smith, the teacher in this class,

was an experienced teacher. Throughout our investigation, we observed and
audiotaped ongoing classroom instruction weekly and interviewed the students and

the teacher. With Alice, we discussed and developed problems and pedagogical
techniques that might facilitate mathematical discussion in the classroom. Each of

usthe teacher and the two researchers tried these activities and problems with a
small group of students. Following each small group session we met with Alice and
engaged in lengthy discussions to identify problematic aspects of the problems and

difficulties enlisting the participation of the students. These discussions, too, were

audiotaped and became a part of our data.

Existing classroom norms

During our early visits to this classroom, the interactional norms we observed fit

with traditional views of classroom instruction; that is, the content of the lesson was

presented by the teacher at the front chalk board and the students worked quietly at

their desks. During the presentation Alice asked 'teacher questions" (Edwards &

Mercer, 1987) and her students responded with what they believed to be the right

answer. If, by chance, their answer was not correct the teacher would inform them of

its incorrectness and tell them what they had done wrong. The students would repeat

the problem at their desks until they solved it correctly. Once the right answer was

announced the other students would look to see if they had computed the problem

correctly. Following the presentation, the students would be given an assignment

which often included many problems of the same type. This usually occurred twice

during each lessononce for the fifth-grade students and once for the fourth-grade

students. While the teacher was addressing students in one of the two grade levels,

the other students would work independently at their desks.

Alice began one lesson by drawing a series of examples on the overhead

projector at the front of the room. Each drawing consisted of a row of ten boxes with

some of the boxes shaded in to represent a specific decimal number. For example

three tenths was drawn:
111111111
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For each drawing Alice asked her students how the number being represented

was written and spoken. For three tenths, one student suggested that it should be

written .3 and spoken 'three tenths." Alice responded 'good' and tried to go on.

Another student, however, thought he knew another way to write that number. He

suggested it could be written -IT) . Alice responded that the class was talking about

3
decimal numbers, not fractions, so To- would not be correctat least not in this

situation.

The next example, five tenths, was drawn on the overhead and the teacher asked
a student to come to the front and write and say the number. The student wrote 51.0

and the class objected to what the student had written. Alice stopped the class from

commenting on the student's work saying "Just be quiet please. This is a learning

experience... everybody gets a chance to show how they are understanding and if
you don't understand, that's quite all right." The student told Alice that the number

should be read "fifty-one and zero tenths." Alice asked if he had shown 51 wholes in

the drawing and the student said "No." Alice told the student he was reading it right

when he said "zero tenths" and used that as a way to help the student with the
problem. She wrote . on the overhead and asked the student to fill in the

blanks. She asked him what place in the drawing represented the tenths place. When

the student had difficulty identifying the tenths place, Alice turned back to the numeral
the student had written earlier and said "you said this was 'zero tenths' so how could

you write 'five tenths' in these spaces?" After a short discussion the student wrote '5"
in the blank just to the right of the decimal point and Alice summarized saying 'Good,

whatever number is just to the right of the decimal point is the number of tenths."

The lesson continued with a series of these examples. For each example Alice

drew a picture to represent a specified decimal number. For each picture she called
on a student to write and say the number. After the student responded, she would
evaluate the student's response by either praising them or by walking the student
through the problem until he or she could answer the problem.

Students like those in Alice's classroom are faced with a difficult task. Along with

trying to make sense of the content being presented, students need to determine what

actions the teacher deems appropriate in specific situations (Leinhardt & Putnam,

1987). These "rules of conduct" then become the norms of interaction in the

classroom. But knowing what behaviors are appropriate covers only part of what
needs to be considered. Students need to understand acceptable ways of interacting
among themselves and with the teacher. In the example presented above, the
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students in Alice's class easily participated in the discussions Alice initiated. They

seemed to understand when it was appropriate to speak and when they should listen.

When her students spoke at an inappropriate time, Alice reminded them of what is and

isn't an acceptable way of talking.
Edwards and Mercer have suggested that classroom conversation is an instance

of talk in general" (Edwards & Mercer, 1987, p. 42). As such, classroom interaction is

framed by local versions or instantiations of the co-operative principle (Grice, 1975).

This principle holds that people involved in a conversation will (a) contribute only what

they have evidence for and believe to be true, (b) provide only the amount of

information that is necessary, (c) make their contribution relevant to the conversation,

and (d) make their contribution intelligible. What each of these maxims actually mean

in practice is dependent on the particular social situation in which they are used; that

is, what these maxims look like in a given classroom emerges through participation in

classroom discourse.
The norms of interaction Alice and her students had constructed in her classroom

reflected the I-R-E (Initiation, response, evaluation) pattern identified by educational

researchers (Cazden, 1988; Edwards & Mercer, 1987; Mehan, 1979). In this pattern

the teacher presents the class with a problem and elicits a response from one or more

students. Following the students response, the teacher evaluates what they have said,

either praising them for being correct or pointing out a mistake and working to correct

the error. After learning this pattern of interaction, the students, it would seem, would

construct an instantiation of the co-operative principle that reflects the pattern and

anyone attempting to restructure the norms of interaction would be seen as violating

this principle.
Speaking Mathematically

Interrupting the students patterns of interaction was exactly what we intended to

do. All three of us brought to this project the goal of getting elementary students

talking and thinking about mathematics. The students had grown accustom to

interacting in specific ways and we were asking them to change those ways. The

existing instantiation of the co-operative principle had students providing only a

numerical answer for which they did not need to provide evidence. We were asking

them to tell .us how they had solved the problem and why they thought their solution

worked. In the existing version or the co-operative principle, the intelligibility of the

students' responses was not problematic, we wanted them to convince their

classmates that their solution worked. The instantiation the class constructed, we

hoped, would be informed by the discipline of mathematics; that is, students would
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develop an intuitive understanding of the problems we posed, make conjectures about

the mathematics involved in the.problems, and attempt to refute the solutions

presented by the group members. Trying to develop norms of interaction where

students were actively engaged in assessing mathematical situations and possible

solution strategies, however, proved difficult.

At the beginning of this project, the students seemed to expect similar interaction

when working on the problems we developed. They had difficulty attending to what

was being said by other members of their group. They did not see this as a necessary
part of doing mathematics ,or a couple of reasons. First, in the past the teacher had

decided which response was correct and there was only one right way? They were

not familiar with the responsibility of assessing a solution for its value in solving the
problem at hand. Second, they were not used to talking among themselves. During

their previous classroom instruction, interaction occurred between the teacher and the
student responding to the problem posed. The only interaction between students was

surreptitious discussions of things not associated with the mathematics being

discussed. Furthermore, some students were rather unwilling to think about problems

in a way that was different than what they had done in the past. Students who could

compute mathematical algorithms with little or no difficulty saw little utility in drawing a

picture or deriving a way of convincing other people in their group that their solution
worked.

During one of the small group sessions the students were discussing the number

of sundaes a store owner could make with a specified number of ice cream flavors and

toppings. In the first part of the problem, the store owners had four flavors of ice cream

and three toppings. The students were asked to find out how many different types of

sundaes the store owners could make and to formulate a way of convincing their

fellow group members. Many students immediately said the store owners could make
12 different types of sundaes because 4 x 3 = 12. Once the students agreed that 12

was the correct response, some of them no longer attended to what was being

discussed. Any further discussion violated the co-operative principle the students had

constructed during their previous mathematics instruction. To provide a justification for
their interpretation of the problem was not part of the normal interaction routines

developed in this class. In the past the students became accustom to a set of ground
rules where they needed only to tell what answer they had calculated for a given
problem. The teacher then told them if their answer was right of wrong and, if wrong
how they could correct it. As evidence for their solution, needed only a record of their
computation. Discussing the problem beyond deciding what was the correct answer
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seemed to be providing information that was not, to the students, relevant to the

current situation. They saw no reason to provide an intelligible explanation of their

interpretation; of the problem.

Difficulties associated with mathematical discussion in the classroom are not

limited to the students. The traditional forms of teaching that characterized Alice's

classroom have recently been characterized as being authoritarian and impoverished

(Putnam, in press; Romberg & Carpenter, 1986). Traditional teaching methods, it is

argued, over emphasize isolated computational skills. Getting students to discuss

mathematical ideas in the classroom, it is hoped, will provide a more thorough

understanding of mathematical concepts. The recent calls for reform suggest that

teachers need to transfer the authority for assessing what is right or wrong to the

students. But, like other teachers we have talked with (Peterson, Putnam,

Vredevoogd, & Reineke, in press), Alice was concerned about the importance of

covering the curriculum. She felt that getting students involved in discussions of

mathematical concepts might hurt the algorithmic competence they would need for the

district wide mathematics test that was administered each fall. Alice felt that she could

ensure the students familiarity with the algorithms if she continued to systematically

stress computational skill during her mathematics instruction. As a consequence of

this belief, Alice, at times, reverted to direct instruction of algorithms. At other times,

however, Alice followed the ideas brought out by students. Her reaction to these

conversations was mixed. On one hand, Alice expressed interest in what her students

were thinking and, consequent'', enjoyed these discussions. On the other hand, Alice
was often concerned that the conversations were wasting valuable instructional time.

Indeed, the conversations we, as researchers, found exciting, Alice often found
problematic.

Summary and Implications

The goal of our project was to get students to take part in "serious mathematical

discourse." But what constitues mathematical discourse, we found, is difficult to

discern. While classroom discourse ought to, in some way, be informed by the

discipline of mathematics, teachers also must remain sensitive to the communication

norms already established in the classroom. In large part, getting students involved in

mathematical discussions is directed toward developing their ability to assess

mathematical situations and solutions. In traditional forms of teaching, the teacher has

been charged with the responsibility for assessing their students' responses.

Transferring this authority to the students was problematic for Alice. Her concerns for

efficiently covering the curriculum need to be taken seriously. The notion that teachers
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need to give authority to students in constructing and assessing mathematical

knowledge. like the development of mathematical discourse, needs to be thought of

within the constraints of classroom teaching (Putnam, in press). Consequently, it

seems suspect to say that teachers can simply believe that getting students to think

and talk among themselves about mathematics is a good idea and start teaching in a

way that reflects this belief. To hold to this position would require that teachers change

their entire belief system and teaching practice. Rather, teaching in a way that reflects

the calls for reform does not mean giving up everything that has been done in the past

(Reineke. 1991, April). Teachers need to strike a balance between existing classroom

norms, their professional responsibilities, and the discipline of mathematics and where

this balance can be found, it seems, will vary from classroom to classroom.
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Abstract
Theoretically, engaging students in mathematics disc sion is a powerful way to
learn mathematics. The analysis of a discussion episu ,t underscores the essential
role of negotiating social norms in making possible the negotiation of meaning.

In his book 'Proofs and Refutations" Lakatos (1976) demonstrates that a mathematics

theorem does not carry objective truth beyond a set of assumptions and methods which a group

of mathematicians agree upon. A mathematics "truth" is established through conjecturing,

investigating, proving, refuting, and revising/rejecting, and the truth status of an assertion is

always subject to further scrutiny. This view of mathematics is compatible with a constructivist

view of knowledge. From a constructivist perspective, knowledge originates in a learner's

activity as they attempt to give meaning to their experiences (Wheatley, 1991; Johnson, 1989).

Accepting Lakatos' view that mathematics knowledge is created through proofs and refutations,

engaging students in mathematics discussions should promote learning. But the conditions for

these intellectual exchanges described by Lakatos requires that a consensual domain (Richards,

in press) be established. This paper describes an attempt to establish an atmosphere for

negotiation of mathematical meaning in a grade three classroom.

Many potential learning opportunities exist in a mathematics class discussion conducted

after small group problem solving (Lo, Wheatley, Smith, 1990). The main goal of class

discussion in problem centered learning (Wheatley, 1991) is to provide students opportunities to

present their solution methods to their peers and to compare/contrast different mathematical

ideas. There are at least two tasks a presenter must accomplish in order to make an effective

presentation. First, she needs to reflect on her problem solving activity and reorganize it for

verbal presentation. The act of reflecting increases the individual's awareness of their thought

process, thus creating the potential for revision and elaboration (Barnes, 1976; Bruner, 1986;

Duckworth, 1987). Second, in order to make a mathematics explanation communicable, the

presenter has to 'create a reader' (Sless, 1986) which means slr, has to consider peers'

expectations. Cobb and his colleagues (Cobb, Wood, Yackel & McNeal, in press) illustrate the

complex nature of mathematics communication by identifying the negotiation necessary for two

students to agree on what counts as an explanation. Problematic situations are more likely to

occur in achieving these two tasks, thus creating the potential for learning.

Potential learning opportunities also exist in a class discussion for non-presenters. In this
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instructional model, when a solution is presented, all students have either solved or attempted to

solve the task. Thus it is natural for them to compare and contrast their ideas with the presenter's

explanation. or more accurately, their construction of the presenter's explanation. They also have

the task of 'creating an author' (Sless, 1986). That is, they reflect on the speaker's beliefs,

intentions and stance. The situation becomes even more complex when there is a disagreement

among students. Not only what counts as a justification must be negotiated, but a set of social

norms must be negotiated for students to communicate mathematics ideas.

Technically speaking, a 'discussion' occurs when the need arises to negotiate differing

opinions. The mode of justifying and refuting is different from the presenting mode. In order to

respond to a request for negotiating mathematics meaning, a presenter has to understand the

reason why others are voicing disagreement or lack of understanding. She must then fashion an

explanation based on her interpretation of the queries. This is certainly not an easy task. Quite

often other students will join the discussion to help negotiate meaning. The need for negotiating

social norms is greater when there is more than two or three persons involved.

The focus of this paper is an analysis of one episode in which students' attempted to

communicate mathematical ideas in a classroom discussion setting. This episode occurred in a

third grade classroom on September 6 which was the fourth mathematics lesson of the school

year. These students had experienced problem centered learning as a primary form of

mathematics instruction during the previous school year when they were in two different second

grade classes. The third grade teacher also used this type of instructional model for a year with

another group of students. The goal of this study was to analyze the social dynamics and the

potential learning opportunities in this particular type of mathematics class discussion. No

attempt is made to evaluate the effectiveness of this instructional strategy. Even though having

the learner become actively engaged in mathematics learning has been called for (National

Research Council, 1989), having students justify their assertions has not become a regular

feature of mathematics instruction.

A classroom episode and analysci

Becoming a presenter was the most common way to participate verbally in class discussion.

At the beginning of the school year, students appeared to have difficulty presenting their ideas

and to understand other student's explanations. Even though students had previously participated

in problem centered learning, the social norms of these 27 students and teacher had to be

negotiated. The teacher recognized the need to negotiate the social norms of the class. Prior to

September 5, the class had two discussions about what presenters could do to help other students

understand. Various suggestions had been offered by students. Our initial analysis of these
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suggestions indicated that they were of two types. The fast type dealt with issues like, speaking

clearly, talking to the class, drawing a picture if it would help, letting other students see the

board, all of which were related to the fomi of the presentation. The second type dealt with

issues like, explaining to the class, recording what your group did, planning together before

raising your hand, all of which were related to the preparation and the sphvance of the

presentation.

On September 6, after three groups of presenters failed to provide explanations which the

majority of students felt they could understand, the teacher had the third discussion about what a

presenter could do to help other students understand. Items similar to the previous list were

again interpreted and elaborated by various students. Then the teacher asked, "Does anyone

believe at this point that they can do a strong, sharp, effective way of explaining the problem to

us?" Peter raised his hand and was confident he could give a clear explanation. He and his

partner was asked to explain their method. Peter, a bright student, had formatted with his partner

a sophisticated 'solution method. He understood what they had done and was thus quite

confident.

After some confusion about which problem Peter and his partner Jeff were going to

explain, Peter gave a lengthy and complex description of what he and his partner did to solve the

following task.

Figure 1. Task explained by Peter and Jeff

Peter's explanation included not only how they solved this task but also two unsuccessful

attempts he made before a satisfactory solution was obtained. First he thought 40 and 52 was 62,

then they thought the sum of 40 and 52 was the answer to this task. In his explanation, he tried to

re-construct his problem solving process for other students. Because Peter recognized that the

two in forty-two could 'cancel out' the two in sixty-two, the only thing he needed to do was to

figure out the difference between ninety (sum of forty and fifty) and sixty which he then solved

by counting tens. Therefore, after he said "50 and 40 was 90.. and then um you add 2 on um that

60, um em, 2 takes care of the 2 and it takes care of some 60 pan.", he spoke as if this task was

about fifty, forty and sixty; rather than fifty, forty-two and sixty-two. He said, "I counted, I got

60, no I got 9, no, yeah, I got 60 and I um and I, I then I went, then I went from went 70, 80, 90.

There was 3, and then, um em, just put a 30 there." Most of the students were unable to give

meaning to his explanation.
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Peter's speech was full of repetitions and hesitations and the solution was indeed complex

and difficult for some students to understand. Our data showed that at the beginning of the

school year, many students had not constructed ten as an abstract composite unit (Steffe and

Cobb, 1988). These students might expect to see counting-up-by-one, or using unifix cubes to

solve this task. Even though for those students who had constructed ten as an abstract composite

unit, few of them could mentally transform "62+?=92" to the equivalent sentence "60+?=90."

For example, Jenny, one of the better students, insisted that Peter had to do something about

those twos. The unusually critical attitude toward Peter may have been influenced by the

conceptual gap between Peter and the other students but other factors were likely more

influential.

As Peter finished his explanation, he was surprised when some students began raising a

series of type one issue about his presentation. The student responses to Peter's presentation are

shown below.

I Casey: Peter, / don't understand.

2 Jenny: I don't understand it at all.

3 Brad: He went from 60 to 90, that was 30.

4 Ann: But he didn't explain it right.

5 Jenny: What about these (...)

(Jenny's question could not be discerned because of the talking in the classroom)

6 James: Raise your hand if you want to talk.

(Students were quiet down.)

Initially, Casey indicated to Peter that she could not understand his explanation, there was an

implicit request for Peter to clarify his explanation. Jenny concurred with Casey and emphasized

that she could not understand it at all, However, it became clear on line 5 and Jenny's later

statement, "You are not saying anything about the two in the sixty. You are not taking about the

2 in this side. You are just talking about the sixty." that she was able to understand a larger

portion of Peter's explanation then she indicated. Brad tried to help Peter clarify his explanation.

Ann made five statements during this episode. Her first statement on line 4 and other statements

which followed, indicated that she was not pleased with the form of Peter's presentation. It

seemed as if she had an image of a "good presenter" in her mind and any presentation which did

not fit this image would be considered unacceptable. James took a legalistic stance and tried to

maintain the turn taking.

Even in such a short exchange, it was evident that some students tried to negotiate meaning

while others felt that it was more important to negotiate the rules of discussion and the correct

way to make a presentation. Not all students in the latter group had the negotiating of
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mathematics meaning as their goal. For example, Ann had decided that there was nothing Peter

could do to make his explanation understandable to her. There were also students who had no

intention to negotiate social norms or mathematics meanings, they made one or two statements

but did not expect them to be taken seriously. Certainly, there were other students who were

confused by these rapid exchanges.

How did Peter react to these comments? Because of the transcript limitations, we will

include only those parts which relate to the above questions. The number in front of each

statement is the number in the complete transcript.

Responding to James insistence on hands being raised before speaking, Peter called for hand

to be shown but was clearly insincere.

7 Peter: (in a funny voice) Raise your hands. You have a hand.

(Some students laughed)

James' comment was seen by Peter as a distraction. He wanted to talk about the method and was

not concerned about the teacher imposed rules. This intention was clear by his next statement.

9 Peter: Okay, this is how we did it, see. Do you want us to start from the

beginning?

Peter attempted to direct attention back to his method. Because some had indicated that they

could not understand, it was natural for Peter to ask which part of his explanation needed to be

clarified. Peter was upset by this accusation, because he felt he was communicating his ideas but

other students were overly critical.

12 Peter: I am mumbling. Urn.. Oa... ununmmmmm

Even though Peter was disturbed by Ann's accusation, he still made two more attempts to explain

his method.

16 Peter: Okay. (pause). Be quiet... I'll explain if you'll be quiet, okay?

19 Peter: Okay. I'm trying to share. (Pause) I'll explain how we did it. Okay?

Peter was pleading with the class to forget the bickering about rules, so they could continue

talking mathematics. Unfortunately, both attempts were interrupted. Casey suggested that Jeff

should explain, and Ann concurred with that suggestion. However, Jeff refused.

23 Peter:

24 June:

25 Peter:

(. ) want me explain it. It's not my fault.

You raised your hand. You raised your hand ( . . not right) and Mrs.

Smith picked you (. . . ).

I can't see to the future, June,

When Peter raised his hand, he believed his explanation would be a good one. He never

anticipated the possibility that students would not understand what he said. He felt it was unfair

when he was of accused of being dishonest in volunteering.
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26 Hillary: June, if you let them speak, I think they will.

27 Peter: Okay, this is how we did it.. First of all we thought that it was um.. (spoke

to Jeff) what did I say it was?

28 Ann: A zero, You just said the sane thing you had last time.

It was clear from the complete transcript that this was the first time Peter was able to talk about

his method. After the numerous distractions, it was not unreasonable for Peter to forget where he

began. Ann's response further supported our interpretation of her position. Ann did not feel

Peter was capable of making an understandable explanation. Her accusation distracted other

students. It was even more difficult for Peter to explain when he was accused of repeating

himself. Yet remember that on line 9, Peter did not get any response to his question. It was

natural for him to assume that other students wanted him to start from the beginning. He made

two more attempts before he finally gave up and went back to his seat in frustration.

Conclusions

Our analysis showed that a "clear explanation should not be taken for granted. According

to Richards (in press) the first step toward communication is to establish a "consensual domain"

which means an agreement on how participants will interact with each other. A consensual

domain was not established in this instance. The class responded negatively to Peter because he

was over confident and the explanation he gave was beyond their comprehension and judged to

be presented in an unclear matter. Because of the previous attention to "clear explanations," the

class was particularly sensitive to violations of their inferred rules of discourse. The students

were anticipating a "clear explanation (Type one) and felt Peter's explanation was not clear.

Peter failed to consider whether his explanation was appropriate for the class; it was clear to him

so he assumed it would be clear to everyone else. Nonnegotiatory positions were being taken by

both Peter and students.

Our analysis showed that a fruitful mathematics class discussion requires the negotiation of

social norms. In any group it is not unusual for there to be a transition period during which the

discussions does not proceed smoc A supportive atmosphere with a facilitative set of social

norms is crucial for the development of student-to-student exchanges. Students learn how to

discuss mathematics in a group as they negotiate the classroom social norms and have

opportunities to discuss and make sense of different expectations.
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THE CONSTRUCTION OF ABSTRACT GEOMETRIC
AND NUMERICAL UNITS

Grayson H. Wheatley and Anne Reynolds
Florida State University

ABSTRACT

The identification of a unitizing operation in a geometric setting suggests
that the operation of constructing abstract units may play an important role
in mathematics learning. Classroom activities which encourage the
construction of units in a variety of settings are likely to be useful to
students in coming to act mathematically.

As we build models of children's mathematical activity, it is useful to identify
the cognitive operations used. Piaget (1980) has contributed greatly to our
understanding of the epistemologies of children. Particularly important here is
the insight that learning involves a series of reflective abstractions rather than
being a process of empirical abstraction or imprinting. Children's actions are
seen as meaningful to them in their attempts to make sense of their world,
regardless of how those same actions might appear from the adult perspective.

Cobb and Wheatley, (1988), investigated children's initial understandings of
ten in second grade students as they completed tasks involving increments and
decrements of tens and ones. There was evidence, which agreed with the
findings of Steffe (1983), that the unitizing operation was central in children's
construction of ten as a mathematical object. Students constructed ten as an
abstract unit at several levels. At the first level ten was constructed as a
numerical composite in which the meaning given to ten was no different from the
meaning given to other number words at the abstract stage - as ten ones, or
sometimes as a single entity that can be called "ten", but it is not both
simultaneously. The child may be able to distinguish those items which can be
counted using the sequence 10, 20, 30, (ten as an abstract singleton) from those
to be counted using the standard number word sequence but does not see one ten
as composed of ten ones. At the second level ten was constructed as an abstract
composite unit when ten can be taken as a single entity while maintaining its
tenness Finally ten became for the child an iterable unit where the unit of ten
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could be used to "measure our tens as in adding ten to 37 to get 47.

Unitizing
A thesis of this paper is that the unitizing operation is not restricted to

numerical settings but can be observed in geometric activity as well. In this paper
we describe the mathematical activity of grade three children as they use a given

shape to make a tiling of the plane. Particular attention is given to the
construction of abstract units in this activity. In conjunction with this we
describe the same children's methods and thinking strategies as they engaged in
tasks requiring addition and subtraction of whole numbers.

The unitizing operation is an important mathematical activity. Much of
mathematics involves the construction of abstract units, whether it be with whole
numbers (taking six as an abstract unit), fractions (units of one-third), decimals
(units of one tenth) or measuring (using a liter as a unit of capacity). In this
study, we noted a relationship between a child's ability to construct abstract
gestalt units from nonrectangular shapes and their use of ten as an abstract unit
in adding and subtracting whole numbers. The parallel between constructing
units of geometric shapes and using these to make a tiling closely parallels the
construction of ten as an abstract unit and using it in computation (Cobb and
Wheatley, 1988). We conjecture that constructing abstract units (Steffe and Cobb,
1988) is a quite general and significant mathematical operation which transcends
number.
The tiling task

Square dot paper was provided with a particular shape drawn on it. The
child was asked to draw a plan for tiling with that particular shape so that a
pattern was developed using only that shape. The activity presented allowed for
the construction of abstract units as students tiled with the shape and attempted
to form an extendable pattern. In presenting the task, it was important to
negotiate the conventions of interpretation so that the child attempted the intended
task. The child was asked to draw a plan for a tile master to use in laying the tiles
in her kitchen using only the given shaped tile.

Data
The tiling task was first presented to a class of grade three students over a

period of several days. Field notes were made during and immediately after each
class. Each day their work was collected and analyzed. Subsequently, six
students from this class were identified for clinical interviews which investigated
their tiling activity as well as their number constructions. Each session of one
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hour each was video recorded for later analysis. A second interview was
conducted three months later with two of the students to test conjectures and
generate additional data. Detailed analyses of three of these students' tiling and
number activity are presented below.
Analysis

In analyzing the responses of the 27 grade three students to the tiling task, it
became apparent that the task involves the coordination of several components.
The child must construct an image of the shape, develop a production plan for
drawing the shape on dot paper, make a covering, and plan a pattern using that
shape. In attempting to draw a tiling with a given shape it was possible for the
child to construct a larger unit that would facilitate the coordination of each of
these components. For example, in tiling with a given shape (Figure la), Betty
immediately constructed a rectangular unit with two of these shapes and
proceeded to fill the page with this new unit, L. bdividing it to form the given
shape (Figure lb).

. . .

[Eiji
: E7.

. . . .

(a) ( b) (c) (d)
Figure 1. Tiling shapes.
Prior to drawing the tiling, Betty described her action plan, indicating that she
could anticipate the use of the composite shape in tiling. Thus Betty performed a
unitizing operation in constructing a rectangle by combining two of the given
shapes; she constructed the rectangle as an abstract composite unit. The
rectangle was a mathematical object of her creation. Betty's intention in making
this shape was to form a gestalt which would be easy to work with, that is, a
shape which would fit together nicely in covering the plane. This action was
possible only because she could distance herself from drawing the shapes and
reflect on her activity.

Betty's const:uction of number also reflected this unitizing action. Betty has
constructed both tens and hundreds as jterable units. For example, in computing
536 - 258, she changed the problem to 500 - 258, setting aside the 36 to be added back
later while indicating that 500 was an "easier" number to work with. She then set
aside the 58, subtracted 200 from 500, then subtracted the 50 followed by the 8, and
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finally added back the 36. Her geometric and numeric activity showed evidence of
using iterable units flexibly.

In contrast to Betty's sophisticated activity, is the way Laura completed the
same tiling task. In the process of drawing the shapes (see Figure la) to form a
tiling which repeated, Laura made rectangles from two of the shapes but showed
no evidence that she formed the intention of constructing a composite shape. At
no time did she draw the rectangle first and subdivide it as did Betty. The
rectangles resulted from her production plan for making the given shape rather
than being intentionally drawn.

(a) (b)

Figure 2. Laura's tiling activity.
In attempting to tile with a right triangle (Figure 1c), Laura experimented

with a variety of positions before developing some regularity in her placement of
the triangles. Her placement formed rectangles but they were unplanned. There
was no evidence she formed the intention of drawing a rectangle as a composite of

shapes. She began by reproducing the shape as in Figure 2a. At this point she
closed the space between these two triangles and immediately drew another
triangle below this shape (see Figure 2b). She had now constructed a large
triangular shape which formed a closed gestalt. Laura paused for some time
deciding where to place the next triangle, finally deciding to draw a triangle back
to back with her first triangle (as i..,. Figure 2c). This activity of drawing triangles
back to back was repeated twice more before she began to form rectangular
patterns (Figure 2d). Once again the rectangle resultee, from her action - an
action which she subsequently repeated. However she did not at this stage reflect
on her actions. She appeared to be "in the action" and unable to reflect "on her
action." (Schon, 1983).

In her number activities, Laura appeared to be in the process of constructing
ten as an abstract composite unit. To find the sum of 37 and 48 she made 37

(c) (d)
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strokes on paper and counted by ones. On occasion these strokes were grouped in
tens but her counting procedukes did not suggest she had constructed ten as an
abstract unit. She did not spontaneously use ten as a counting unit. When I
suggested to Laura that it might be possible for her to use these units of tens that
she had made, she was able to do so effectively. However, consistency in the use
of units of tens was not evidenced. Here, as in the tiling activity, Laura appeared
to be in the action of creating units but not yet able to take her construction of tens
as an object of reflection.

A third child we interviewed had not yet constructed ten as an abstract
composite unit. Her attempt at tiling was characterized by difficulty in drawing a
copy of the shape (Figure 1d). In order to make a shape the child must develop a
production system, that is a series of actions which result in the desired shape.
Donna first looked at the shape drawn, made exploratory motions with her finger
and then slowly and hesitantly drew the shape segment by segment, stopping
after each move to plan the next. She could not anticipate where to draw the next
segment. As she repeated this act she created a sequence of actions which she
came to use more easily. This is not unlike a child making four from one, two,
three, four. For each shape, a new sequence of actions must be constructed.

Donna drew the shape only in its given orientation. To draw the shape in an
inverted position, she turned the paper. Donna was not able to draw the shape in
a rotated position. In one case a 90 degree rotated position of the shape was
needed to fill a space. Donna made several attempts at drawing the shape to fill
the space but was unsuccessful. Each of her trials resulted in a shape quite
different from the given tile. Also Donna was so intent on drawing the shape that
she did not always achieve a covering and at times drew non-congruent shapes.

Drawing a right triangle on the dot paper also proved challenging for Donna.
In attempting to tile with a one by two right triangle (Figure lc), Donna paused for
15 seconds before beginning to draw the shape. When she began to draw the
shape she pamed after drawing each segment, deciding on the next move only
after completing the previous one. She could not anticipate the sequence of
actions before beginning.

Donna's numerical activity was characterized by the same hesitancy,
proceeding one step at a time. When asked to find 23.6 she sat thinking for 50
seconds and said she could not do it. I asked, "Tell me what you were trying."
She said she was thinking 22, 21, .. 19, 18, 17, 16. In repeating the numberr
backwards she had to figure out what came next after she had said the previous
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number name. As she was saying the number word sequence backwards, she
kept track of the counts on her fingers. That is, she counted to six on her fingers
as she repeated 22, 21, .... She obtained 16 as the answer because she skipped
over 20 in the number word sequence. There was a close correspondence between
her drawing of shapes on dot paper and computing the result of a subtraction
task. She could not anticipate which segment to draw next just as she could not
anticipate which number to say next in counting backwards. One might say that
she did not construct the shape as a composite of segments but "counted by ones"
(drew one segment at a time). In another instance Donna quickly gave the
answer to 6+6 as 12 . However, when next asked 6+7, she used her fingers to keep
track as she counted on in ones from 6 to determine the sum. Donna did not use
her previous knowledge (6 +6 =12) to determine 6+7; the second problem was a new
experience for her, which she solved by counting on, just as the tiling task had
been for her one in which each tile needed to be constructed segment by segment.
Once again, the relation between the construction of units in geometric and
numerical settings was striking. Instances from other students' tiling activities,
when compared with their construction of ten in number activities, also reflected
this relationship between constructing an abstract geometrical unit and an
abstract numerical unit.

The tiling task was presented to a group of sixth grade students and the
construction of units was a common occurrence. The students designed many
ways of tiling with the given shape, many of which were composed of units of
units. Thus the formation of abstract composite units facilitated their tiling just
as construction of units contributes to abstract thought in many other areas of
mathematical reasoning.
Conclusion

The identification of unitizing in a geometric setting suggests that the
operation of constructing abstract units may play an important role in many
mathematical settings. Classroom activities which encourage the construction of
units in a variety of settings are likely to be useful to students in coming to act
mathematically. Tiling is a rich source for developing the unitizing operation.
Students are likely to benefit greatly in their mathematical development from
opportunities to construct tilings of geometric shapes. Further investigations of
the use of units in mathematical reasoning are planned.
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Age level; 6-10

Identifier #1: Measurement

Identifier #2: Length

CHILDREN'S READINESS FOR MEASUREMENT OF LENGTH

Constance Kamii

The University of Alabama at Birmingham

To determine the grade level at which instruction in measurement of length
Should be introduced, 383 children in grades 1-5 were individually inter-

viewed with a transitivity task and a unit-iteration task. Seventy-two

percent of the second graders demonstrated transitive reasoning, and 55%

of the third graders engaged in unit iteration. It was, therefore,

concluded that children are ready for measurement of length late in third

grade. The children were also asked to measure lines with a ruler and

were found not to understand the meaning of zero on the ruler even in

fifth grade.

Piaget, Inhelder, and Szeainaka (1948/1960) gave blocks to young children

and asked them to build a tower as tall as a model. The model MRS on a table 3

feet higher than the one for the copy, and it was built with larger blocks so

that neither direct comparison of the two towers nor one-to-one correspondence

of the blocks would be possible. The Children were given long sticks and a ruler,

but young children before the age of approximately 7 found them useless. They

used perceptual estimation or their body parts to decide how tall the copy should

be. The reason for this preference is that preoperational children do cot have

transitivity.

Transitivity refers to the ability to deduce a third relationship from two

other relationships. For example, Piaget presented young children with two

sticks, A and B (see the figure below), and noted that they could all say that

A:PB. He then hid A, brought out stick C, and asked children whether or not B

and C were the same. Upon ascertaining that they could say that B > C, he asked

Whether A (which could not be seen) was just as long as C, or one was longer than

the other. Preoperational children replied, "T can't know because I didn't see

them together." When children become able to leduce that A is longer than C,

they are said to have constructed transitivit.

In the "towers" task, children who had transitivity (and could, therefore,

use a long stick to determine the equality o.' the two heights) could not always

think of a way to use a short block that was offered as a possible tool for

comparing the height of the two towers. Around age 8, however, they became able
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to think about the length of the block as part of the total length and to use the

block as a unit to iterate.

Piaget'a research and theory thus demonstrated that two logico-mathematical

abilities are necessary for children to become able to measure length

transitivity and unit iteration. However, he did not provide norms about the

ages at which children construct these abilities. Therefore, this study was

undertaken to collect normative data to know the grade level at which measurement

of length becomes developmentally appropriate in the curriculum. Measurement of

length is now introduced in textbooks in first grade (and sometimes in kindergar-

ten). Knowing when to introduce this topic should make it possible to correct at

least in part phenomena such as those reported in Table 1 by the National Assess-

ment of Educational Progress (Lindquist, 1989, p. 39).

IIIIIIIIII
2 3 4 5 6 7 8 9 10 11

Table 1. Responses to an MEP Item

Percent Reepondinga

Grade 3 Grade 7

How long is this line segment?

3 an

5 am

6 cm

8 am

11 am

I don't know.

b

4 1

14 49

31 37

30 9

6 2

15 2

aThe response rate was .80 for grade 3 and .97 for grade 7.

b
An actual centimeter ruler was pictured.

Method

A total of 383 children in grades 1-5 attending two public schools partici-

pated in this study. The schools served a lower-middle to middle - middle -class

community near Birmingham, Alabama, and the number at each grade level varied

f-om 75 to 79.

The materials used were the following:
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Sheets of paper, 11 inches z 17 inches, each with an inverted T )

photocopied on it. Both lines of the inverted T were 8 inches long

but created the illusion that the vertical line was longer.

strip of tagboard 0.5 inch wide and 12 inches long

5 plastic blocks (1.75 inches long, 0.9 inch wide, and 0.25 inch thick)

A yardstick cut down to 27 inches, with the units numbered 0-25 on one side,

and 1-26 on the other side as shown in the figure

A pencil I 0 1 2 3 4

The following five questions were asked in
t 1 2 3 4 9

individual interviews in January and February,

1990. All the interviews were videotaped.

1. Perceptual judgment. The interviewer asked, "Do you think this line (vertical

line) is as ion? as this line (horizontal line), or is this one (vertical)

longer, or is this one (horizontal) longer? The purpose of this question was

to motivate the child to be involved in the task and to give him or her reasons

for answering the subsequent questions.

2. Transitivity. With the tagboard (12 inches long) in hand, the interviewer

asked, "Can you use this to prove (or show) that this line is longer than the

other (or whatever the child had said)?" This question was asked to determine

if the child could demonstrate transitivity with a third term that was longer

than the 8-inch-long lines being compared.

3. Unit iteration. Offering one of the blocks (1.75 inches long) to the child,

the interviewer asked, Can you use this to prove (or show) that this line is

longer (or whatever the child thought at that time)?" The purpose of this

question was to determine if the child was able to compare the two lengths by

using a small third term an a unit to iterate. Each 8-inch line was about 4.5

blocks long.

4. Transitivity (second attempt). This question was posed only to the children

who were unsuccessful with the strip. The remaining four blocks were introduced,

and the child was asked, "Can you use these to prove (or show) that this line

is longer (or whatever the child thought at that time)?" This question was

asked to determine if the child could demonstrate transitivity after having

had an opportunity to think about the preceding questions.

5. The use of the ruler. The child was given the ruler with the end that showed
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the 0 and asked, "Can you tell me in inches how long this line is (vertical

line)?" The other end that began with 1 was then offered, and the child was

asked the same question about the horizontal line. Follow-up questions were

asked depending on the child's responses. For example, if the child knew that

the two lines were the same length but got 7 inches for the vertical line and 8

inches for the horizontal one, he or she was asked why a difference was found.

Results

The findings concerning transitivity are summarized in Table 2. In columns

3-5 (labeled "with strip"), the data show the degree to which children were able

to use the strip to compare the length of the vertical and horizontal lines.

Column 3 (labeled "-") includes children who said that the strip could not be used

to prove that one line was longer than the other. Column 4 (labeled 1.")

indicates children who partially demonstrated transitivity, for example, by using

the strip without precision. Column 5 (labeled "+") indicates children who clearly

demonstrated transitivity with the strip. The sixth column (labeled "with blocks")

shows the percentages of children who did not use the strip but utilized the five

blocks with transitivity. It can be seen from the last column that children cons-

truct transitivity gradually and that most (72%) have constructed it by second grade.

Table 2

Percentages of Student Responses on Transitivity Tanks

Grade With strip With With

P + + blockaa strip

+

or blocks

+

1 78 73 6 21 8 29

2 79 40 4 56 16 72

3 75 21 1 77 8 85

4 75 17 0 83 1 84

14;

*Percentages of children who were unsuccessful (- or ±) with the strip but
successful (+) with the block,

b
Percentages of children who were successful (+) either with the strip or with
the blocks

Table 3 summarizes the findings related to unit itovation. As can be seen in

the last column of this table, children construct unit iteration gradually, too,
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and the majority (557) have constructed it by third grade.

Table 3

Percentages of Student Responses on Unit Iteration Task

Grade

1 78 90 0 10

2 79 60 7 33

3 75 40 5 55

4 75 16 8 76

76 17 5 78

Children's ways of using the ruler are summarized in Table 4. The third colun:

(labeled "0") indicates the percentages who used the 0 on the ruler correctly and

said the vortical and horizontal lines were both 8 inches long. It is disappointin.

to note that only 11% of the oldest group, fitth graders, could use the 0 on the

ruler correctly. The percentage of 9 in third grade is about the same as the 147

reported by MEP (see Table 1). The most frequently found response (column 4

labeled "end of ruler") was to align the end of the ruler with the end of the line

and to say that the two lines were, respectively, 7 and 8 inches long.

Table 4

Percentage, ents Following Rules in Oiling the Ruler

Grade g Oa End of

rulerl)

10
First Total

number
d

following

rules

1 78 2 34 16 14 66

2 79 1 63 8 5 77

3 75 9 53 13 3 78

4 75 7 75 9 0 91

5 76 11 74 5 7 97

aTheae students reported that both lines were 8 inches long.

b
These students reported that one line was 7 inches long and that the other line

was 8 inches long.

These students reported that both lines were 9 inches long.

6These students reported that one line was 8 inches long and that the other line

was 9 inches long.

- 1 I 7 -

423



Measurement of length

Discussion

Since transitivity was found in 72% of the second graders, and unit iteration,

in 55% of the third graders, it can be concluded that measurement of length should

be introduced late in third grade. Measurement of length is now introduced pre-

maturely and taught merely as a technique. Authors of textbooks recommend that

teachers sake children go through certain behaviors ouch as laying out paperclips

in a line along a pencil and counting them to know how many paperclips long the

pencil is. This procedure is neither measurement nor unit iteration. Unit

iteration requires being able to make part-whole relationships mentally and to be

able to think, about the length of a paperclip as part of the length of the pencil.

When authors of textbooks introduce a ruler, they also give advice under headings

such as "Correcting Common %Irrors." Their advice is that teachers correct children

who do not place the end of the ruler on the edge of the object being measured.

Such an error is a manifestation of the absence of transitivity.

Authors of textbooks should make the distinction Piaget made among three kinds

of knowledge according to their ultimate sourcesphysical knowledge (such as the

fact that a paperclip is metalic and shiny), logico-mathematical knowledge (such

as transitivity and unit iteration), and social (conventional) knowledge (such as

inches and centimeters). Children construct logico-mathematical knowledge from

within, and instruction becomes successful only when it meshes with and extends

this development from within.

The conclusion from this study cannot be generalized to groups belonging to

higher and lower socioeconomic strata. Further research is necessary to determine

when measurement of length should be introduced to children in other socioeconomic

groups.
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Age Level: Elementary teachers

Identifier 11: teacher beliefs

Identifier 12: beliefs-in-action

TEACHER BELIEFS AND PRACTICES: A SQUARE PEG IN A SQUARE HOLE

Rochelle G. Kaplan
Willaim Paterson College

This study examined the consistency between beliefs and practices of

two elementary mathematics teachers through an analysis of interviews and

classroom behaviors. Beliefs and practices were described on two levels

and each level was coded as empiricist, maturstionist, or constructivist.

Findings suggest that when defined in these terms, beliefs are generally

consistent with practice, but that surface beliefs tend to be more con-

sistent with superficial ps,rices while deep beliefs tend to be more

consistent with pervasive .alviors. Implications of the findings for

teacher education are discussed.

Introduction

The issue of whether teacher's beliefs are reflected in their practices

is a critical one for evaluating teacher education programs and is of partic-

ular concern for those wno try to promote change in the use of constructivist

teaching practices in the mathematics classroom. The literature that exists

on relationship of beliefs to practices, however, has been inconsistent. On

the one hand, it suggests that teachers' beliefs and self-report statements

of behavior are not necessarily reflected in their practices (Clark 4 Peterson,

1986; Good, Grouws, c Mason, 1990) and on the other, it reports that teachers'

beliefs are observable in teaching practices, particularly when the beliefs

studied focus on pedagogical content (Bolin, 1990; Brickhouse, 1990; Kidder;

1990) or examined as belief clusters (Pearson, 1985).

These inconsistencies may in part be due to the fact that beliefs are

often assessed in terms of relatively superficial self-report measures that

lack a theoretical framework for linking behaviors to belief systems. In

addition, belief data are rarely collected along with direct observations of

teaching performance, but rather with behavioral data gleaned from self-

reports describing future plans or retrospective events. Even when behavior

is measured directly, it usually is analyzed in term.; of predetermined outcome

categories ratner than based on observations of teachers' spontaneous behaviors.

The case studies described here are an attempt to offer one approach to

resolving the apparent differences in the research findings by setting up a

model for investigation that includes a) a method for evaluating both stated

beliefs and observed practices and b) a dual-level structure for identifying

-119-
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beliefs and practices within three theoretical frameworks.

Theoretical Perspective and Definition of Terms

This study utilizes the three main philosophical orientations associated

with the study of'human development and learning and assumes that these per-

spectives can be used to define both teachers' beliefs and practices in the

mathematics classroom. These orientations include a) empiricism (E) which im-

plies a passive learner, b) maturationism (B) which suggests biologically de-

termined abilities, and c) constructivism (C) which regards learning as an

active process.

The dual levels of beliefs and practices describedin this study refer

to:

o Surface beliefs. These are defined as self-reports of seemingly object'fe

statements from tcNchers about their philosophies of learning and instruction.

They represent isolated relatively decontextualized samples of teacher's view-

points.

o Deep beliefs. These can be described as a personal philosophy of education

to which a teacher is both intellectually and effectively committed. This kind

of belief would be strongly defended if challenged and not easily shaken even

in the face of discorroborating evidence. Any particular deep belief would be

embedded in a structural whole or system of related beliefs.

o Superficial practice structures. These refer to the organization or form

of the learning task consciously planned by the teacher. It includes aspects

of the instructional setting such as whether students work in small groups or

sit in rows or whether students use concrete hands-on materials suitable for

problem solving and self discovery explorations or work only with pencil and

paper.

o Pervasive behaviors in the classroom. These refer primarily to the verbal

communications the teacher directs toward the students. These communications

define the classroom by prescribing the roles that are acceptable for both

teacher and students. They include how teachers give instructions, how they

ask and answer questions, and how they communicate their formative assessment

of instructional goals to students.

Hypotheses

The thesis of this study was that surface and deep beliefs often reflect

different orientations and that these different orientations will manifest

themselves in particular aspects of teachers' educational practices. It was

expected that teachers' surface beliefs would be more closely associated with
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the superficial aspects of classroom structures, rather than with teachers'

pervasive verbal communications. Conversely, it was expected that deep be-

liefs would impact on pervasive classroom behaviors and that, therefore, they

would be more closely associated with the kinds of questions and comments

made by the teachers to their students than with the particular structure em-

ployed for classroom activities.

Subjects and Procedures

To develop this thesis, two elementary suburban, private school teachers,

one from third grade and one from second grade, were clinically interviewed

about their views on a) children's conceptions and misconceptions of school

mathematics content, b) how children develop mathematical knowledge, and

c) the best methods for teaching mathematics. All areas covered were discussed

in the context of the grades they taught. Each interview lasted for about 45

minutes. After the interviews, the teachers were videotaped conducting a math-

ematics lesson utilizing one of the methods they recommended for instruction.

The interviews and lessons were then transcribed and coded according to their

compatibility with one of the philosophical orientations mentioned above and

outlined in detail for coding purposes.

Indicators of surface beliefs included all general statements made dur-

ing the interviews about overall pedagogical philosophy or principles of math-

ematics education. Deep beliefs expressed by each teacher were identified

through the holistic evaluation of the interviews. In this process, responses

were looked at not in isolation from one another, but as a group of comments

taken in the context of others relating to a single issue or question.

The classroom behavior data obtained from transcriptions of the teachers'

lessons were examined in terms of superficial oractice structures based on an

analysis of how the overall lesson was organized and the role that students

'Jere supposed to have had in the context of this structure. The teachers'

pervasive classroom behaviors were identified by examining the questions,

comments, and directions the teachers provided for their students.

Results

After coding teachers' responses, the results of these codings were rep-

resented as the percent of responses in each philosophical category by task

condition for each of the teachers.

Joan's Surface Beliefs: In her interview, Joan, the second grade teacher,

made 24 isolated statements that reflected her surface beliefs about mathematics

education and learning in general. These were about evenly distributed with

- 1 2 1 -
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approximately one third of these responses in each philosophical category.

Joan's Superficial Practices: Joan presented a lesson in which her stu-

dents were divided into two homogeneous groups, a high group and a low group,

with the low group given what the teacher considered a simpler task to do.

This division was categorized as maturationis aecause it was based on a

notion of fixed ability. The groups were engaged in parallel tasks using chip

trading materials in an activity that was supposed to be run by the student

groups. This setup was categorized as constructivist (C). Based on this as-

sessment, the approximate percentage values attributed to the structure of

Joan's superficial practices was C = 50%; M = 50%; E = 0%.

Joan's peep Beliefs: When Joan's interview statements were taken in con-

text, the empiricist position seemed to dominate her deep beliefs (C 12.%;

M = 7.3%; E = 80.5%). Typically she made statements such as,

"OX but I can honestly say that she has no understanding whatsoever of the
whole process of addition or subtraction. I mean the whole idea - why do

we have to know that the bottom - why does does a child have to be told
if that number is bigger than this number, then we have to do something?!'
The whole idea is to get them to understand if you have six, you're taking

away nine."

In this example, we see that Joan insists that the child has absolutely no

understanding "whatsoever" and that it is the teacher's job to make the

child understand. In this vignet, an active teacher structures the exper-

ience for passive learners and conveys the case for an empiricist orienta-

tion (E).

Joan's Pervasive Practices: In the analysis of Joan's verbal communica-

tions to the students only 15 percent of her comments were of a constructivist

variety, while 85 percent were categorized as empiricist. They tended to be

directive and even though the children were engaged with manipulative materials,

they were often not allowed to work with them independently. Rather, they were

instructed very specifically about what they were to do with the materials.

Typically her comments to the children were statements such as,

"Give him one blue chip and he gives you four yellow." "No, you're going
to throw it over again and you're going to throw it right this time."

Nomi's Surface Beliefs: In terms of the results of her interview, Nomi

made 43 statements that reflected her surface beliefs about mathematics educa-

tion and learning in general. Her statements, like Joan's were fairly evenly

distributed in each category, although they tended to be dominated more by

maturationist and empiricist orientations than a constructivist one (25.6% = C;
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39.51 = M; 34.91 = E).

Nomi's Superficial Practices:
The desks in Nomi's class were set up in

four long rows with the teacher in the front of the room. The type of problem

presented was a simple two-step translation
problem that had a single correct

answer. The children worked only with pencil and paper. This aspect of Nomi's

classroom structure was considered to be consistent with an empiricist (E)

approach to mathematics education.
The setup, however, is not indicative of

the type of activity in which students were supposed to engage, i.e., work-

ing independently using any solution strategy that they thought would be appro-

pr.ate for the problem. This aspect of the lesson focused on process, indivi-

dual approaches, and active personal engagement and was categorized as con-

structivist (C). Therefore, in total, the approximate percentage values attri-

buted to the structure of Nomi's superficial
practices was C = 50%; E = 50%;

M = Ot.

Nomi's Deep Beliefs: Unlike Joan, when Nomi's interview statements were

taken in context, they did not look very different from when they were viewed

as isolated statements. She maintained
relatively equal proportions of comments

in each philosophical orientation, although
in the measure of deep beliefs, com-

ments of an empiricist nature tended to dominate (C = 25.4%; M = 30.2%; E = 44.41).

Nomi's Pervasive Practices: In terms of her verbal communications to the

students representing her pervasive practices, 20 percent of Nomi's comments

were of a constructivist variety, while 80 percent were categorized as empiricist.

Like Joan, but to-a lesser extent, Nomi's comments
to the class tended to be

directive and even though the children were instructed to be thoughtful and

come up with unique solutions, she seemed to have in mind the kinds of solutions

and answers that would be acceptable. Typically her comments to the children

were statements such as,

"Let's focus our attenr;,n on number 93 ,,hich is the third problem in the

set, which is a multiple-step problem." (Tells students what kind of prob-

lem it is) or "How many steps did you need to figure out this problem?"

(Here there was a single two-step correct method to use).

Discussion and Conclusions

In general, the analysis of the two case studies presented here tend to

support the expectation that when they differ, teacher's deep belief systems

are better predictors of pervasive
classroom practices than are surface beliefs,

but that surface beliefs may be better predictors of superficial classroom prac-

tices than of more pervasive classroom practices.
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In the case of Joan, the teacher whose surface and deep beliefs sharply

differed, her isolated interview statements and the basic structure of her les-

son presented a picture of a more constructivist-oriented teacher than did her

interview statements taken in context or her verbal communication with students.

In both her deep beliefs and her pervasive classroom practices she was clearly

presenting herself as an empiricist. Thus, her communication with the children

in class demonstrates how her deep-rooted empiricist core and not her surface

constructivism is linked to pervasive practices. This was as predicted and

suggests that surface beliefs are more easily modified to accomodate new ideas

although they are not necessarily consistent with classroom practices.

Nomi's case presents a somewhat different picture of the relationship of

beliefs to practices. Her profile, in general, was more consistent across all

conditions. For Nomi, the trend in the interview data toward empiricism was

consistent with her superficial classroom practices in the way she physically

set up her classroom as well as with her deep beliefs as reflected in her com-

munications with students. In addition, the relative proportion of observable

constructivist behaviors was consistent with both her statements of deep and

surface beliefs. In fact, Nomi did not seem to be that much of a proponent of

constructivist learning, even though her choice of a divergent problem solving

process was designed for this framework. The result was that the task she

proposed was not carried out in the spirit of constructivism and instead took

On the flavor of an empiricist classroom. In general, then, it can be con-

cluded that when surface and deep beliefs are consistent with one another, as

they were with Nomi, both types of beliefs are essentially equivalent, if not

completely accurate, predictors of practice.

The findings of these case studies have some important implications for

planning and evaluating the impact of teacher education programs. Both teach-

ers tended to be empiricists in their pervasive classroom practices. This

finding is not terribly surprising given the general tendency of traditional

educational practices in this country (O'Laughlin i Campbell, 1988). However,

both teachers were also trying to infuse constructivist approaches into their

students' mathematics experiences. These approaches, however, were not con-

sistent with their deep beliefs about learning and education and so they sim-

ply did not succeed, but rather were played out as empiricist lessons. These

teachers, though, like many others, are under the mistaken impression that

they have made significant adaptations in their standard curriculum and teach-

ing methods and that they are actually executing construcivist kinds of lessons.
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Given this situation, the question then is what kind of experiences would

teachers need in order to alter their deep beliefs so as to bring about real

changes in their teaching practices? Consistent with Pearson's (1985) find-

ings about belief clusters and McLaughlin and Campbell's (1988) work on re-

flective inquiry in teacher education, it is suggested that the first steps

in bringing about real and consistent changes toward constructivist education-

al practices, are a) to help teachers become aware of their own deep beliefs

about learning and instruction and b) then to examine the role of their own

philosophies on their pervasive educational practices - prior to any inter-

vention procedures. With this awareness, it is possible to begin to make some

changes. Without this awareness, we can only find that our courses and work-

shops at best are preaching to the converted and at worst are perpetuating

exactly the kind of education, albeit under the guise of a new name, to which

so many of us are opposed.
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Age Level: Adult
Identifier #1: Spatial Skill
Identifier #2: Computer Games

A STUDY OF COMPUTER GAMES AND PROBLEM SOLVING SKILLS

Leah P. McCoy, Wake Forest University

Ray Braswell, Auburn University at Montgomery

This study examined the problem solving and mathematical skills
involved in playing the computer game, TETRIS. Because it Involves a
dynamic activity which includes characteristic problem solving strategies
such as Guess and Check, TETRIS provides a different aspect of spatial
skill. This "dynamic spatial skill" was described and compared by gender
and high vs. low scores.

Spatial ability has traditionally been distinguished as either spatial

visualization or spatial orientation. In spatial visualization tasks the student is

expected to imagine moving a geometric object by rotating it or transforming it in

some way. The second category, spatial orientation, is where the geometric

object remains stationary and the student's orientation changes. The process of

playing TETRIS is a dynamic representation of spatial visualization; the player

sees the next "piece', visualizes where it might fit, manipulates the piece by

turning or sliding it, constantly evaluating its position and continuing this process

until it "falls" to the bottom. This use of a computer model of spatial visualization

includes visualization and manipulation and systematic guess and check. We

call this type of spatial exercise dynamic spatial skill.

The computer game TETRIS involves manipulating geometric shapes to fill a

rectangular area. The shapes are all composed of four squares in different

configurations. See Figure 1. The player is able to slide or turn the shape as it

'falls" Into place. This is a powerful tool for developing spatial skills and other
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geometry concepts as well as problem solving skills. It is a dynamic exercise

utilizing geometric shapes in a transformational context; the student visualizes

where the *piece" will fit, and then places it there and sees the result.

Figure 1. TETRIS Shapes

1 1 ELB E

Several studies, including Battista, Wheatley & Talsma (1989), Fennema &

Sherman (1977), and Flake (1990), have noted the correlation between spatial

ability and problem solving skill. The process of manipulation, whether mental or

with the computer model, is a problem-solving exercise. The student Is using the

'Guess and Check' strategy when he or she moves thegeometric figure, either by

visualizing it or by actually manipulating it on the computer screen.

Many students, particularly females, are weak in spatial skills (Battista, 1990;

Fennema & Carpenter, 1981; Ben-Chaim, Lappan & Houang, 1988 ). Spatial

visualization and spatial orientation have both been found to be differentially

related to mathematics and/or problem solving performance for males and

females (Fennema & Tarte, 1985; Linn & Petersen , 1985; Tarte, 1990). This

means that it is likely that there is an overall difference in how males and females

think and solve problems. The Importance of spatial skills may be different in

students who think in these different ways, or who have a different approach to a

problem solving task. While there is considerable evidence that gender

differences in spatial ability do exist and do have a strong relationship to problem

solving skill and to overall mathematics achievement, it is less clear which specific
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spatial skills are involved, and how they relate to gender and to skill level.

Some studies have found evidence that experience playing video games may

improve spatial skills. After treatment consisting of playing video/computer

games, two studies found evidence of improvement in spatial skills (Lowrey &

Knirk, 1982; McClurg & Chaille, 1987). In a recent survey of fourth and fifth grade

students, Flake (1990) found a significant positive relationship between spatial

ability and experience playing video games.

Another important facet of this picture is motivation. We need to carefully

study students who are willing to concentrate on an out-of-school activity such as,

TETRIS or other video/computer game, and determine a way to transfer this

motivation to the classroom. It is very possible that these media utilize some

learning facility that we, as educators, have overlooked. Even though we often

categorize the knowledge about video games as useless (or worse), those

students are learning. This experience may well have a strong impact on those

students' school learning. There is a definite need for more information about

learning and video/computer games.

The problem-solving literature indicates that novice and expert problem

solvers have different internal cognitive structures for knowledge and procedure

regarding specific domains of problem solving. Silver (1979) noted that there was

differentiation among novices. That is, good and poor novice problem solvers

could be identified and classified.

Methodology

Twelve collece student volunteers (six male and six female) who had no prior

experience with the game participated in the study. Each student was Individually

given a brief introduction to the game and permitted to practice for ten minutes. A

videotape was then recorded as each participant played the game on an Apple

IIGS computer for 30 minutes.

The tapes were analyzed and coded by the two researchers. In addition to
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total game score, four spatial activity scores for each participant were obtained

from the coded transcripts: (1) number of slide moves, (2) number of turns, (3)

frequency of "dropping' pieces, and (4) frequency that pieces were fit exactly Into

the board. An additional variable called "manipulations" Indicated the total

number of manipulations (the sum of the slides, turns, and drops). Comparisons

were made by gender. Further comparisons examined the specific playing

strategies of the good and poor novice participants (top half vs. the bottom half of

the scores).

Participants were also asked to complete a questionnaire at the end of their

session. They were asked a series of open-ended questions about their TETRIS

performance and their attitudes toward the game.

Results

Males and females were not significantly different on total scores. For further

analysis, the twelve participants were also divided Into six high and six low scores

(three male and three female in each). Means and standard deviations for all

variables are included in Table 1.

Table 1. Means and Standard Deviations of Average Manipulation

Variables for Each Player per Piece Played*

TURNS SLIDES DROPS MANIPS EXACT FITS

Mean 1.448 2.754 0.426 4.201 0.608

St. Dev. 0.487 0.325 0.261 0.610 0.142---
n -12
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An ANOVA was computed for each of the five spatial activity scores (turns,

slides, drops, total manipulations, exact fits). Results revealed that there were no

significant effects (all p > .05) on any of these scores from gender, high/low score

groups, or an interaction of the two.

While these "negative' results are at first disconcs.rting, they actually confirm

our expectations. Dynamic spatial skill as measured by TETRIS activities in a

group of novice players was not different for males and females. Further, when

the participants were grouped by high and low scores, there were no significant

differences in playing actions, as would be expected for novices.

Data from the questionnaire revealed that there were few differences in the

groups' responses, so the data for the entire group was examined together.

When asked about playing strategies, participants stated that their performance

depended 'much" on planning where the next piece would fit, visualizing the

whole game board, and motor skill in manipulating the keys. They also reported

"some" influence of luck in which piece would come next and artistic ability in

putting the pieces together.

All participants said that they thought they could improve their scores with

practice. While they did not mention schema, they said practice would make them

"more familiar with how the pieces fit", "better able to visualize the possibilities",

and "more confident". They said that they were more concerned with correct

placement than with speed, and that their performance depended more on

planning than on motor skill.

All participants except one said they enjoyed playing the game, and felt that it

was educational. Many mentioned geometry and spatial skills. One person

mentioned that this eye-hand coordination activity would be good for preschool

and/or special education students. Another participant said that to win you have

to "think ahead and see the potential of playing the pieces in patterns.' One

person said playing this game made them think in a "spatial, geometric way'

Their reported feelings while playing included the following: challenged, elated,

excited, stimulated, and intrigued.
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Conclusions

While we are not great supporters of computer/video games in general, it may

be that this particular game, TETRIS, may have educational benefit in Improving

mathematics achievement through improving dynamic spatial skill for certair

groups of students. In attempting to Improve InstructIon in mathematics, we are

constantly looking for an interesting and exciting model of mathematical concepts.

The computer Is attractive to students; they like almost any computer endeavor.

Therefore, we must take advantage of that interest, and use the computer as a

model whenever it is appropriate. There is a need for students to experience

mathematics. Constructivism is based on this experience and Individual cognitive

concept building. For spatial visualization, it appears that TETRIS experience

may have a possible positive influence on development of dynamic spatial skills.

In the area of problem solving, we know that one of the most valuable

activities In developing good problem solving skills in students is practice. The

more problems students solve, the better they are at solving problems. This is

due to the development of schema with information and procedural information.

Playing TETRIS is a good context for practice of problem solving. While students

are motivated and interested in this game, are using the Guess and Check

problem solving heuristic, as well as experiencing dynamic spatial visualization.

While this study did not find evidence of gender differences at the novice level

of playing TETRIS, further research should examine gender differences In

dynamic spatial skill as experience and expertise increase. Dynamic spatial skill

and Its relation to problem solving and mathematics ability should also be further

studied.
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Age level: 942

Identifier #1: Mental models

identifier #2: Change problems

MENTAL MODELS AND PROBLEM SOLVING:

AN ILLUSTRATION WITH COMPLEX ARITHMETICAL PROBLEMS.

Louise Pokier and Nadine Bednarz

CIRADE, Universite du Quebec b. Montreal.

Our study focuses on implicit mental models used by children in solving certain
complex arithmetic problems, involving the reconstruction of a change. The study was
structured in two phases. First, we used a written test to identify different stable
resolution procedures. (198 students) in a set of complex change problems. Then, at
each level, students, representing all procedures of resolution, were interviewed in
order to make the models more explicit.

Modelling plays an important role in science and mathematics where one develops models

in order to illustrate observed phenomena. A model is a tool used to capture the fundamentals of

a complex situation; it provides descriptions, interpretations and predictions; it is a common and

useful tool for scientists in problem solving. However, modelling is not an activity restricted
only to scientists. Children when solving problems will also develop, and build their own

models which will enable them to analyze, to interpret the data, to make relations between the

data and then act. The models they are using are an internal representation that will guide their

actions in solving the problems.
Our study focuses on implicit mental models used by children in solving certain complex

arithmetical problems. In the following, the role and importance of mental models in problem

solving will be discussed, after which the results of our study will be presented.

1- Mental models.
The notion of mental models plays a central role in the process of problem solving.

Brousseau (1972) defines "implicit mental models" as follows:
"When a child in a series of comparable situations (same structure) shows a series
of comparable behaviours (same reaction), one can conclude that this child has
perceived a certain number of elements and relations of this strucure. He,
therefore, has a certain mental model of this situation." (1972, p. 58)

Rouse and Moms (1985) have produced a synthesis of various definitions of mental model

and they have shown that they share a series of functions and goals:
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"The common themes are describing, expiating and predicting, regardless of
whether the human is performing internal experiments, scanning displays or
executing control actions" '(1985, p. 11)

A mental model has therefore a heuristic function. It represents a structured entity and its

structure must relate to the reality it represents. Fischbein, 1989, is defining a model as follows:
"Given two systems A and B, B may be considered a model of A, if, on the basis
of a certain isomorphism between A and B, a description or a solution produced
in terms of A may be reflected, consistenly, in terms of B and vice versa. (1989,
P. 9)

This definition emphasizes certain aspects of a model. First of all, Fischbein mentions that

the model must be able to become a substitute of the original. Then, the relation between the

original and the model must be based on some type of structural correspondance. Finally the

model must be au :onomous from the original. Fischbein, Tirosh, Staby and Oster (1990) have
studied this last feature:

"Being structurally unitary and autonomous, the model often imposes its
constraints on the original and not vice versa! Consequently, a model is not
simply a substitute, an auxiliary device (more simple, more familiar, more
accessible)." (1990, p. 24)

Fischbein states that this autonomy of the models is a condition to their heuristic efficiency.

Even though a mental model must be a substitute to the original, it cannot just be a mere
reflection of the original but rather a structured governed by its very own rules and parameters.

In conjunction with its autonomy, Fischbein mentions that the model must also be stable:
"The autonomy and stability of mental models seem to suggest that they are not
mere products, mere reflections of the originals. They belong to the mental
structure of the individual, well integrated into this structure, reflecting its
requirements, its particularities, its schemata, its laws." (1990, p. 29)

This ties in very well with Brousseau's definition presented above. The autonomy of the

model with respect to the original and its stability mean that the mental model originates from the

mental structure of the subject. As the mental model guides the child's action when solving

problems, it will bring about stable procedures, sometimes erroneous, which will be a reflection

of his own mental structure.

2- The study of mental modeLs

The importance of better defining the implicit models that lead the children's action in a

series of situations is of paramount importance to understand how knowledge is constructed.

This analysis can be done in several ways. Stewart and Hafner (1989) have identified three

types of research about mental models in problem solving: model-using, model-elaborating and
model-revising.
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In the model-using perspective, researchers have studied how children use existing and

often erroneous models to solve problems perceived to be solvable by using those models. The

second type of studies, model-elaborating, looks at what the children learn during problem

solving and what metacognitive strategies they use. Finally, according to Stewart and Hafner,

another type of research is also needed in problem solving: 'This research would focus on the

thought processes of solvers who encounter data that is inconsistent with their existing models."

(1989. p. 13) This is what they call "model-revising". In this type of study, the child

confronted to problems different from the usual ones cannot always ignore the initial model,

which becomes an obstacle to solving this new type of problem. Our study is in accordance with

this perspective.

3. The actual study.
During the first years in elementary school, the students are confronted with change

problems in which the change is unknown:
"Mary has four marbles. Her father gives her some more. She now has twelve
marbles. How many marbles did her father give her?"

Several researchers (Carpenter and Moser, 1982; Vergnaud, 1982; DeCorte and
Verschaffel, 1985...) have illustrated the difficulties that these problems create. Furthermore,

Riley, Greeno and Heller (1983) have developed models that explain the succes and failure of

young children in solving change problems.

Although similar in certain aspects to these studies, our work differs by concentrating on

the mental models older children (aged from nine to twelve) use in solving more complex

change problems:
"John plays with marbles. In the first game, he lost 7 marbles. He plays a
second game; we are not telling you what happened during it. If, after the two
games, he has won 5 marbles, has he won or lost during the second game and
how many?

Objective.
The objective of this study is to analyse the implicit mental models used by children in complex

change problems.

Method.
This study is structured in two phases. First, we used a written test to identify different stable

resolution patterns used by children in a set of problems involving the reconstruction of a
change (see table 1). This written test was given to three groups of each level (4th, 5th and 6th
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grade, ages from 9 to 12) for a total of 198 students. Then, at each level, fifteen students,

representing all patterns of resolution, were individually interviewed to gather additional data in
order to make the different underlying mental models explicit

Inter-subject

variable

school level

4th (3k groups)
5th (3 groups)
6th (3 groups)

Intra-subject variable

Problems Involving a reconstruction

5 types of increasing complexity
Type2 Type 3 Type 4 Type 5 Type 6

2 different contexts for each type

XX X X X X
X X X X X X X X
X X X X X X X X

Direct sequence
? c,

Indirect sequence Indirect sequencec, 4 CP. C, c. Cok

cR ? -r cw

Written test's structure at each level
Table 'I

OC

)results analysis.

The statistical analysis ("analyse classificatoire", Lebart) of the written test has permit the
identification of distinct groups of procedures lt-Ading to erroneous solutions. These results are
in agreement with reports from other studies (Vergnaud, Conne, Bednarz et al...).

The interviews were then analyzed to substantiate and better understand how each procedure
used by the children in solving the problems functions. This analysis has shown that specific
erroneous procedures identified in the written test relate to the same reasoning or mental model.

The following three general models have been identified (they will be described with the
problem: "John: presented above):
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1- Linear model

The child considers the first change as an initial state on which the resulting change

operates thus producing a final state. Generally, the subject treats "lost 7 marbles" as an initial

state "had 7 marbles"; he then operates the resulting change "has won 5 marbles" thus obtaining

a final state:

0 +S 8
The child's answer will vary depending if he answers in terms of the final state "He now has 12

marbles" or in terms of the resulting change which has become the second game (the crux of the

question) "He has won 5 marbles". Some show signs of requiring an initial state to solve the

problem and, when given one, they are using a linear model. Fundamentally, the child does not

perceive that he has to reconstruct a change.

2- Comparison model

The child is still treating the changes as states but here he understands that there is a

reconstruction involved; he thus compares the two states to find their difference. When
confronted with the same problem as above, the child will compare 7 marbles to 5 marbles

finding a difference of two marbles. He thus simplifies the problem by treating it as a

reconstruction of a change from states.
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3- success model

Not only does the child deal with the problems in terms of reconstruction, as in the
previous model, but he also think in terms of changes. This model is however used by very
few children. When solving the same problem as above, these children will treat the data
correctly:

(Copy of a sixth grader)

first game: 7 marbles lost
second game:
allmgether: 5 marbles won

Some of them have used a number line or a thermometer to find the difference between -7 and
+5:

5

0

-7

Conclusion

)
12

7

Three models have been identified and they depend on the child's perception of the
underlying structure "a + ?3. c" and his concept of the number. The first model (linear
model), normally used more often by fourth graders, is characterized by the structure
"a + c = ?" and numbers are considered as states. Children using the second model
(comparison model) perceive the structure "a +? c" but they treat numbers as states; this
model will work for simple problems but will fail with more complex problems as it cannot be
generalized. Only a minority have understood the problem structure as well as that numbers
should be considered as changes; this will enable them to successfully solve the more complex
problems. Being capable of making the transition of considering numbers as states to
considering them as changes constitutes a considerable conceptual evolution.

444

-138-

1



REFERENCES

BROUSSEAU, G., (1972) , Frocessus de mathtmatisation. in: Bulletin de Association
des professeurs de mathimatiques de 1 enseignement public, Fivrier 1972, no 282
pp 57-84

CARPENTER, T.P., MOSER, J.M., (1982) Addition and Subtraction. A Cognitive
Approach. Hillsdale, NJ., Lawrence Erlbaum Associates.

DECORTE, E.. VERSCHAFFEL, L., (1985), Influence of Rewording Verbal
Problems on Children s Problem Representations and Solutions. Journal of
Educational Psychology, vol 77, no 4 460-470.

FISCHBEIN, E., (1989) "Tacit Models and Mathematical Reasoning", in: For the
Learning of Mathematics. Vol. 9, num. 2, june 1989.

FISCHBEIN, E., TIROSH,D., STAVY, R., OSTER, A., (1990), The Autonomy of
Mental Models, in For the Learning of Mathematics, 10,1 (february 1990)

RILEY, M.S., GREENO, J.G., HELLER, LI., (1983), "Development of Children's
Problem-solving Ability in Arithmetic",The Development of Mathematical
Thinking, ed., H. Ginsburg, New York.

ROUSE, W.B., and MORRIS, N.M, (1985) On lookine into the black box: Prospects
and limits int the search for mental modelt.Georgia Institute of Technology, Atlanta
School of Industrial and Systems Engineering. (ERIC Document Reproduction
Service No ED 268 131)

STEWART, J. and HAFNER,R., (1989) Extending the Conception of "Problem" ,
First Internation Conference on History and Philosophy of Science in Science
Teaching, Tallahassee, Florida State University, November, 1989

VERGNAUD, G., (1982), "A Classification of Cognitive Tasks and Operations of Thought
Involved" in Addition and Subtraction Problems. Addition and Subtraction. A_

Cognitive Perspective, ed. T.P. Carpenter, J. M. Moser, T. Romberg, Hillsdale,
NJ., Lawrence Erlbaum Associates.

-139-

445



Age level: 6-7 years old
Identifier #1: External representations
Identifier #2: Change problems

A STUDY OF EXTERNAL REPRESENTATIONS OF CHANGE
DEVELOPED BY YOUNG CHILDREN

Nadine BEDNARZ and Bernadette DUFOUR-JANVIER

CIRADE, Univeisite du Quebec a Montreal

External representations generally proposed in current teaching materials, with the
intention of evoking change process, are not decoded as such by the children. Our
knowledge of difficulties encountered by young children in solving change problems, on
one hand, and in using representations meant to give a picture of this dynamic concept, on
the other hand, led us to an investigation aimed to a better knowledge of representations
developed by children in change contexts. An experimentation conducted with 173
children (6-7 years old) revealed different graphic codes used by them to represent these
situations.

The area of the representation of dynamic situations is particularly intriguing and important in

mathematics (in reference to concepts such as transformation, displacement, fonction, variable...).

Researches, conducted in different fields, reveal difficulties encountered by children in soh' ng

situations involving these concepts, and corroborate the problems experienced by children in

interpreting dynamic representations. So, the situations, involving mental reconstruction of a

dynamic process, are often perceived as statics by childrei The same statics conception is
revealed by the interpretation given by children to the external representations used, in current

teaching materials, to express these concepts.

Our previot s research, on the difficulties encountered by children whilst solving certain

complex change problems and on the interpretation given by children to external representations

meant to recreate this process of change, corresponds in many ways to the results previously

mentioned.

In a first study (Bednarz & Janvier, 1987), we considered additive problems which consist

either of a transformation or of a displacement, in other words of a single change where an entity

passes from a given initial state to a final one. We considered also more complex problems
involving a sequence of changes whose effect can be combined and replaced by a single change,

called resultant. In such situations, requiring the reconstruction of a change, our research shows
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that children (from 6 to 12 years old) operate with the same erroneous procedures at one level or

another, revealing implicit models underlying their solution (Poirier & Bednarz, 1991). These

procedures originate from the children's excessive centration on the states, and reveal a static

conception of the relations underlying these situations. Everything occurs as if the thinking

process of the child acted only on states without being able to reconstruct the changes.

On the other hand, our research on problem ofrepresentation of dynamism in mathematics

(Bednarz & Janvier, 1985a) shows how difficult it is for children to perceive change in the

external representations (illustrations, drawings, diagrams...), generally proposed in the teaching

of mathematics to give a picture of dynamic concepts (transformation, displacement...). Graphic

codes and conventions which are in use, with the intention of recreating change, are mostly

interpreted in a static way by the children

The problem of representation of "change"

Several studies corroborate our observations in the difficulty experienced by children when

they must read the graphic codes presented to them and exhibiting a certain dynamism

(Mary, 1983; Campbell, 1981; Newton, 1984; Friedman & Stevenson, 1980; Girardon-Morand

& Janvier, 1987). So, Claudine Mary (1983), in her work on "the film and the teaching of

mathematics: theoretical analysis and experimentation" showed that most secondary school

students are not able to describe movement presented in the film. They are sometimes attracted by

an isolated movement, and are not able to situate the movement of an element in the global system.

The study of Patricia Campbell (1981) on the interpretation given by children to pictures used

in the teaching of mathematics to illustrate a transformation (action to substract or add), described

by posture signs or conventional graphic codes, shows that representation of action is difficult to

interpret by young children. Newton (1984), Girardon-Morand and Janvier (1987) corroborate

these observations in the context of science. They show that movement lines (called pictural

metaphors) in the first case, or arrows in the second case, used to illustrate transformation, are not

understood by children.
Our study (Janvier, Bednarz & Beanger, 1987) indicated the large gap between the intentions

of the authors (for the point of view of textbooks conception) and the interpretation given by

children in the use of these representations. Graphic codes are mostly interpreted in a static way.

For example, arrows on a numerical line (that illustrate displacements) are interpreted as

something which designates a number, or as a set of points. As a consequence of these results,

serious doubts need to be raised on the pertinence of these representations as aids to learning.

Our knowledge of difficulties encountered by youngchildren in situations, on one hand,

involving mental representation of a change, transformation or displacement ( Bednarz & Janvier,
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1987) and, on the other hand, in situations involving external representations, used with the
intention of recreating change (Bednarz & Janvier, 1985a) led us to the object of this study,
centered on a better knowledge of representations developed by children in change contexts. These

external representations can be informative of how children perceive change problems, and
thereby can provide guidelines for designing pedagogical interventions. A study of these
representations might also furnish suggestions for formulating alternative representations on

which a learning strategy could be articulated.

Aims of the project

In a constructivist perspective, where complex significants are strongly articulated on the

symbolic representations built by children (Bednarz & Dufour-Janvier, 1985b), our study intends

chiefly to improve our knowledge of the external representations developed by children in change

contexts. More precisely, the project's objectives can be stated as the following:

to elaborate a typology of representations developed by children to illustrate change (and so

characterize the representations developed);

to catalogue the graphic codes and conventions used by children for this purpose (these

codes can then be compared with the representations in use in mathematics teaching);

to put in light how children modify their external representations of change from one grade

to another (1st to 2nd grade);

to reveal, by the study of these external representations, the conceptions children have of

the relations underlying situations involving reconstruction of a change.

Method

173 children in 1st grade (91 children) and 2nd grade (82 children) were invited to illustrate,

on one hand, situations where qualitative change (transformation of a collection, or displacement)

were involved, and on the other hand, to solve problems involving reconstruction of a change.

In the problems proposed, an entity (collection, measure, position...) is submitted to a change

(transformation or displacement), passing from a given initial state to a final one. The process

needed to solve these situations requires the reconstruction of the change (the complexity of these

situations for young children have been shown by several researchers Vergnaud, 1976;

Carpenter & Moser, 1982; Riley & Greeno, 1983; Resnick, 1982; Bednarz & Janvier 1987).

In the situations requiring illustration of qualitative change, two kinds of situations were

considered: temporal change and procedural one. This important distinction, proposed by the

researchers Girardon-Morand and Janvier (1987), was considered because it can influence the

process of representation by children. In the first case, the process of change is characterized by a
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temporal and continuous proceeding. In the second case, the process of change is more

characterized by a punctual procedure defined on a state.

An example of items of each type, experimented in grades 1 and 2, are given here:

Problem to solve (involving reconstruction of a change):

"I had 8 marbles in my pocket. A friend brought roe some more. I have now 17 marbles.

How many marbles did he bring me?"

Situation to illustrate (involving qualitative change):

Procedural change (Mary): "Mary has almost finished placing playing cards into the

box. Her little brother comes in and throws some..."

Temporal change (balloon): "Your mother inflates a balloon. It increases, increases.,."

Results

The analysis of representations (cf. figures 1 and 2) developed by children puts in light four

types of representations involved and the codes used

Representations developed by young children to illustrate change situations

100%

90%

BO%

70%

60%

50%

40%

30%

20%

10%

66%

48%

Temporal Orange (the process of change is characterized
by a temporal and continuous proceeding)

22%

16% 15%

=2Z1 1st grade (91)
11.1.111111 2nd grade (82)

%
6%

Static Initial, final Repetition Succession
representation states of object of states
(object /state) ., F.) (RO.) (SS)\ / ...---./

Descriptive representation
of change

10%

1% 2 %"

L. F. -RO. - S.S. Symbolics
with symbolics codes

codes

Schematic representation
of change

Figure 1
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A first class, mostly developed in 1st grade, is formed by static external
representations: children illustrate only the elements of the situation (we call this type of

illustration: object) or they illustrate a given state, initial, final or intermediate one (state

illustration).
A second group is constituted by dynamic descriptive representations of change:

children then illustrate the initial and final states, a repetition of the transformed object, or an

action in progress, with in both cases the use of descriptive codes outcome from the

situation (for example, change in size, in the case of the "balloon" situation, change of

location, code of disequilibrium, in the case of "Mary" situation).

In a third category, less important at these grade levels, representations illustrate a temporal

progression by a "wordless" story (or cartoon) (illustration of successive states).

Finally, more schematic representations are used by some children to illustrate change

(by the use of codes borrowed from comic strips, symbolic codes, codes of trajectories. .).

I 00%

so%

Procedure change (the process of change is characterized
by a procedure defined on a state)

9%8

80%

10%
63% =223 1st trade (9i)

so% 2nd (tn)grade

50%

10%

so%

20%
0%2

1o%
7% 7%

A 1%
is 4% 2% 3%

or.
Static Initial, !Mal Action in Succession 1... F. -A S.S. Symbolics

representation states progress of states Symbolics codes
(I.. F.) (k) (S.S.) codes/ \---/ I

Descriptive representation Schematic representation
of change of change
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In some cases, use of external codes which reinforce the idea of change also appear
(participation of the actor, context.:.)

From first grade to second grade, external representations evolve from a static illustration to

a dynamic one. In the second grade, most of the dynamic representations are descriptive of

the situation.

Finally, results reveal interesting links between external representations developed to
illustrate change and the performance in soh .ng problems involving the reconstruction of a

change: children who fail in these problen ,s mostly elaborate a static illustration (they
illustrate a state of the situation). On the other hand, in the majority, the "reconstructors"

illustrate the process of change.

Conclusion

The results of this research put in light the richness of graphic codes and representations

developed by young children to illustrate change situations. These graphic codes go beyond

symbolic conventions generally used in mathematics teaching. We can realize there the large gap

that can exist between representations used in teaching materials submitted to children and the

represenr:tion envisaged by the child to illustrate the problem situation. Young children want to

find the characteristics in a representation that they perceive as essential to the situation studied.

So, their first representations are descriptive of the situations, and even if they finally abandonned

these first very descriptive representations elaborated to illustrate the process of change, they still

remained attached to it for a long period of time. These representations enlighten us on graphic

codes useful for formulating transitory repro entations on which a learning strategy could be
articulated. Moreover, the external representations developed are informative of how children

perceive change problems. So, the majority of children in first grade and a great part in second

grade are centered on states, they illustrate a given state of the problem (initial, final or
intermediate one). We find there the conceptions revealed in our previous research on difficulties

encountered by children in solving change problems.
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Metacognition during Problem Solving

At le Levet Teachers
Identifier Metacognition

Identifier n Problem Solving

METACOGNMON DURING PROBLEM SOLVING:
ADVANCED STAGES OF ITS DEVELOPMENT

Linda J. DeGuire
California State University. Long Beach

Abstract The present paper presents two case studies (Galileo and
Simplicius) which offer a glimpse into the metacognitive processes of
two subjects with some previous experience in problem solving and
with extensive and successful backgrounds in mathematics and the
teaching of mathematics. The case study of Simplicius also gives clear
evidence of the automatization of metacognitive processes.

Metacognition during problem solving has been the topic of much discussion
and research in mathematics education in recent years (e.g. Lester, Garofalo, &
Kroll, 1989; Satoenfeld. 1985; Schultz & Hart, 1989; Silver. 1985). All of that
research has been done with subjects of limited backgrounds in mathematics.
that is, less than an undergraduate major in mathematics. The present paper
offers a rare glimpse into the problem-solving processes of subjects with exten-
sive and successful backgrounds in mathematics and in teaching mathematics
Galileo and Simplicius (the code names they chose for the project). Specifically,

their case studies were examined to see whether such subjects would externalize
metacognition during problem solving before an intervention treatment, whether
they would exhibit development of or change in such activity and awareness of
such activity during and after an intervention treatment, what kinds of metacog-
nitive activity they would exhibit, whether they would exhibit any evidence of
automatization of metacognitive processes, and whether they would experience
any change in their teaching of mathematics. The case studies were selected
from a data set collected to study the development of metacognition over time.
Two other case studies from that data set were reported in DeGuire, 1987, 1990.

Method
A variety of techniquesjournal entries, written problem solutions with

explicit ' metacognitive reveries,' videotapes of talking aloud while solving
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Metacognition during Problem Solving

problems, and general observation of the subjectswere used to try to capture the
development of metacognition from several viewpoints over time. The data were
gathered throughout a semester-long course on the teaching of problem solving
in the mathematics classroom. The course progressed from fairly easy problem-
solving experiences to quite complex and rich problem-solving experiences,
gradually introducing discussions of and experiences with the teaching of and
through problem solving and the integration of problem solving into one's ap-
proach to teaching. Throughout the course, participants discussed and engaged
in'reflection and metacognition.

During the course, subjects were given six problem sets of 2 to 5 problems
each They were encouraged to work together to solve the problems. The
written solution was to include all work on the problem, including blind alleys.
and was to include a separate column for Imetacognitive reveries.' Subjects also
wrote a journal entry each week on topics chosen to encourage reflection upon
their own problem solving processes and their own development of confidence,
strategies, and metacognition during problem solving.

The subjects in the entire data set were 18 graduate and undergraduate
students, all inservice and preservice teachers of mathematics, mostly on the
middle-school level, but with some teachers on the intermediate level and some
on the high school leveL The students had registered for the course as part of
their programs of study. The subjects of the case studies presented below were
chosen because they were the only two participants in the course who had erten-
siv,e and successful backgrounds In mathematics and in teaching mathematics.
They each had an undergraduate major id mathematics and at least 30 semester
hours of graduate-level mathematics. They each had extensive experience teach-
ing mathematics on the high school and/or middle school levels. As the course
began. each expressed considerable confidence in his or her own problem-solving
skills. Throughout the following descriptions, direct quotes are from the sub-
jects' written problem solutions, journal entries, or videotape transcript

Galileo
Galileo had taught mathematics in high school for about 15 years. His

schedule did not permit him to participate in any of the videotaped problem-
solving sessions, a fact that is likely to have affected the viewwe have of Galileo's
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problem solving, particularly of blind alleys and incomplete attempts he may have
pursued in his solutions. From the first problem set, Galileo was a highly success-
ful problem solver. His solutions were direct with no blind alleys. His metacogni-
tive reveries were mainly of the experience kind. For example, he commented
'I'll do this problem f i r s t It looks easyt . . . [after solving it! I was rights' On
another problem, he concluded, 'I liked the other 2 problems better.'

As the course progressed, Galileo's metacognitive reveries became more de-
tailed and included a greater variety of metacognitive statements. He drew pic-
tures, made charts, looked for patterns, thought of simpler or similar problems,
used trial and error, looked for more than one way to solve a problem. listed and
eliminated all possibilities, tested extreme cases, etc., etc. He continued to ex-
press many metacognitive experiences such as 'I'm think Pm getting close to the
solution,' and 'What a surprise! . Actually, amazing [upon finding the Fibonacci
sequence in a problem situation!! The most interesting developments in Galileo
was his increasing use of intermediary checks of his progress and looking back
after solving a problem, his increasing awareness of his use of such checks, and
the variety of means he used to check his solutions. He frequently found a
simpler solution method for a problem upon looking back and commented that
the fact that both solution methods gave the same solution meant that they each
served to confirm the other. Often he generalized or extended problems and
then solved the extensions. Throughout, he frequently expressed his enjoyment
of problem solving and evaluated the problems for classroom use.

By the end of the course, Galileo was successfully tackling, solving, and
extending the most complex problems given in the course. He exhibited a wide
variety of problem-solving strategies, monitored his progress in the solution
effectively, and looked back over his solutions consistently. When asked to reflect
in his joums' -1 whether he had developed a greater awareness of his cognitive
processes or just a vocabulary with which to express them, he responded.

I can see the involvement of many of the problem solving principles and
strategies studied in this class in my cognitive processes throughout my
years of taking math courses. In this sense I can certainly say that this
course has given me a greater awareness of what is going on in my head,
as well as a vocabulary with which to express it.

Did the problem-solving guidelines actually influence Galileo in the classroom?
He states, 'Without a doubt I believe this course has helped me improve my over-
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all methodology of teaching as well as become a better problem solver.' Later, in
reflecting on implementing a problem-solving approach to teaching, he observes,
'This almost becomes contagious tfit the student. I have noticed students begin-
ning to imitate the very same processes which I utilize in confronting problems.'
Thus, it would appear that the intervention (Le., the problem-solving course) had

indeed influenced Galileo's teaching in the classroom.

Stmplictus
Simpllcius had taught mathematics in the high school for several years but in

recent years had been teaching mathematics in middle schooL Even in her first
written solutions of problems, Simplicius was very successful. Her solutions were
direct with no blind alleys and included some explicit references and use of
problem-solving strategies. For example, 'This problem screams to be drawn
out,' and 'My first thought is to try all possibilities.' Even at this early stage. she
checked solutions carefully and even solved one problem a second way and
recognized the second solution as a way to 'reinforce my first answer."

As the course progressed, Simplicius' written solutions became more de-
tailed and richer in the variety of problem-solving strategies used and the kinds
of metacognitive statements made. She also began to include metacognitive ex-
perience statements. She combined elegant mathematical solutions (for example,
to a number theory problem) with an elementary approach to the solution, again
letting one form of solution confirm the other. She generalized and extended
problems and sometimes proved generalizations with the method of finite differ-
ences. Her solutions continued to be clear and direct with few blind alleys. She
frequently commented about especially enjoying certain problems.

By the end of the course, Simplicius was succeisfully tackling and solving the
most complex problems in the course. She exhibited a wide variety of problem-
solving strategies, frequent monitoring and checking statements, and gave rich,
full discussions of the problem solutions. Her explanations of solutions were ex-
ceptionally clear, well-organized, and easy to follow: When asked to reflect in her
journal on whether her cognitive processes had changed or she had merely devel-
oped a new vocabulary, she responded, °I do not really feel that my cognitive pro-
cesses or my vocabulary have been significantly improved. I do, however, feel that
my awareness...has blossomed.'
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Simplicius did make time to participate in the third videotaped session, a
source of data that adds greatly to the richness of her case study. She was the
only student in the data set to correctly solve the problem. The problem for that
videotaped session was: How many different rectangles are on an 8-by-8 checker-
board? (Note, rectangles are considered different if they are different in position
or size. So, a 2-by-1 rectangle is considered different than a 1-by-2 rectangle.)
She began by relating it to a similar problem we had done (Le., how many squares
are on the 8 x 8 checkerboard?). Very soon (within 5 seconds), she decisively
rejected that approach and chose another. "rm not going to do that. Pm going to
try and make a simpler problem' From there, she counted the rectangles in a 1 x
1 checkerboard then in a 2 x 2 board, then in a 3 x 3 board. At that point she
recounted her 2 x 2 and 3 x 3 boards 'just to be sure.' Then she counted (incor-
rectly, missing the large 4 x 4 square) the rectangles on a 4 x 4 board. At this
point, she said "I think Pm going to find a pattern here.' She examined the
numbers, looking for a pattern. Suddenly, she corrected her error on the 4 x 4
board. 'Stupid. I didn't do 4 by 4. There are 100.' Next she recognized the
triangular number pattern but observed 'I'm squaring' Then she wrote the
general form (Le., [ (n2 + n)/2 [2) and checked it for the 1 x 1 , 2 x 2, 3 x 3, and
4 x 4 boards. Finally she evaluated her formula for n 8 and declared "I figure
there are 1,298 rectangles in that thing.. .. Pm real sure of my pattern, finally.'
The transcription of her talking aloud during the solution was less than 2 pages
long) Her solution was devoid of blind alleys and contained only one very minor
error that was quickly corrected. Her solution path was unusually clear and easy
to follow. Her solution in this videotaped session served to add much credibility
to the directness of her written solutions.

Did the course experiences influence SimpliciuS teaching in the classroom?
As she expressed in her journal. 'I feel that.. .my ability as a teacher has blos-
somed. I have definitely made more effort to incorporate problem solving into
the curriculum.... I feel that what I have learned in this course goes far beyond
my own cognitive processes or vocabulary.... I feel that this course has funda-
mentally changed my attitude toward teaching and what the focus of my teaching
should be. It is difficult to change after so many years, but I believe that an effort
to change is essentiaL'
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EllorMealon
The case studies of Galileo and Simplicius represent development of meta-

cognition that is far along the possible continuum of such development. Both
subjects externalized at least some metacognitive activity at the beginning of the
course. Yet both subjects stated that their levels of awareness of their cognitive
and metacognitive activity increased substantially during the problem-solving
course. Both subjects exhibited a wide variety of problem-Solving strategies and
consistent and effective use of various metacognitive strategies during problem
solving. Both subjects also seemed to exhibit a growth in appropriate and effec-
tive metacognitive activity before and after problem solving. Also, both subjects
stated that the course experiences had or would influence their teaching in the
classroom. No attempt was made to observe their classrooms to verify such self-
report information. However, this carry-over into their own teaching practices
confirms the results of Schultz and Hart (1989).

The contrast between Simplicius' written solutions and videotaped solution
offers an interesting insight on another questionthe possible automatization of
metacognition. Like the written solutions of both subjects, Simplicius' videotaped
solution was very direct and devoid of blind alleys; however, it also contained few
references to metacognitive activity. Her metacognitive references during the
videotape were very brief but very effective. They occurred so rapidly and so
naturally as to appear to be automatic. Thus, it seems possible that at least some
of the metacognitive reveries in Galileo's and Simplicius' written solutions were
added as retrospective reconstructions of what might have occurred rather than
reports of what did occur during the problem-solving process. More importantly,
it appears that Simplicius' metacognitive activity (and perhaps Galileo's, also) had
become automatic. This possibility of automatization of metacognition has been
hypothesized previously by the present author and by Lester, Garofalo, and Kroll
(1969), but no such clear evidence for it has been seen before.

Tile possibility of automatization of metacognitionhas implications for teach-
ing in the classroom. In order to develop metacognitive and problem-solving
abilities in their students in the classroom, teachers must verbalize their own
metacognitive and problem-solving activities. They cannot do so if they are
unaware of them. It would appear that an intervention, even a short one such as
the problem-solving course in this study, can effectively bring to consciousness
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for the teacher important aspects of their own metacognitive and problem-solving
activity. It is probable that such an intervention will have a positive effect on their
teaching in the classroom.

As with all self-report data one must assume that to a certain extent the
subjects reported what they feel the researcher wanted to hear or read. Further,
there is no way to know to what extent the subjects may have been aware of meta-
cognitive processes without making explicit verbal references to them. However,
these case studies offer compelling evidence that even in subjects with extensive
and successful mathematics and teaching backgrounds, the development of meta-
cognition can be sparked through an intervention such as the problem-solving
course in this study and can positively influence the subjects' teaching in their
own classrooms. They also offer clear evidence of the automatization of metacog-
nitive processes in successful problem solvers.
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RECONCEIVING MATHEMATICS EDUCATION AS
HUMANISTIC INQUIRY:

A FRAMEWORK INFORMED BY THE ANALYSIS OF PRACTICE

Raffaella Borasi University of Rochester, Rochester (NY)

Both the product and the process of creating a framework for mathemat-
ics education emphasizing student inquiry and the humanistic nature of
mathematics are reported here. The paper also calls more generally for
explicating the pedagogical assumptions informing proposed instructional
innovations, so as to better appreciate their implications for classroom prac-
tice and teacher education.

The assumptive base of instructional innovation

A new wave of reform in school mathematics has recently been called for by many
constituencies (e.g., NCTM, 1989, 1991; NRC, 1989). As new goals for school mathe-
matics, new curriculum guidelines and new teaching standards are proposed, mathematics

educators need to seriously consider what can be done to insure that these efforts towards

improving instruction in everyday mathematics classes succeed better than those which
came before.

As we examine the failure of past attempts at school mathematics reform, it is impor-
tant that we recognize the lack of appreciation for the paradigmatic shift that the proposed

innovations required and, consequently, the lack of support provided to teachers to deal
with such a shift. Research on teachers' beliefs and practices (e.g., Brown and Cooney,
1988; Thompson, 1988) ha: made us aware that teachers' instructional decisions about
curriculum, teaching stratehies, classroom organization and management are informed by
the system of beliefs about mathematics, learning and teaching that each teacher holds,
whether explicitly or implicitly. Consequently, a real change in instructional practices is
not likely to occur unless a compatible shift in pedagogical beliefs is achieved at the same
time.

Consider the teaching practices prevalent in today's school mathematics. With few
exceptions, a typical mathematics class will consist of review of homework, followed by

G 0
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teacher's presentation of new material and sample exercises, and then students' practice
on similar exercises. Though widely criticized in the mathematics education research liter-

ature, these practices are quite reasonable if one accepts the following set of assumptions:

. a view of mathematical knowledge as a body of established facts and techniques, which

are hierarchically organized, context-free and value- free, and thus can be broken down

and passed along by experts to novices (logical positivistic view of knowledge);

. a view of learning as the successive accumulation of isolated bits of information and

skills, which are achieved mainly by listening/observing, memorizing and practising
(behaviorist view of learning);

. a view of teaching as the direct transmission of knowledge, which can be achieved
effectively as long as the teacher provides clear explanations and the students pay
attention to them and follow them with memorization and practice (transmission view

of teaching).

It is obvious, therefore, that attempts at changing the way mathematics classes are
currently taught are not likely to succeed unless the transmission paradigm characterized
by these pedagogical assumptions is challenged at the same time. This does not mean,
however, that mathematics teachers have simply to be presented with and "converted" to a
new set of pedagogical assumptions, from which the proposed innovations in terms of cur-
riculum and teaching approaches would logically follow. Rather, teachers and researchers
alike need to continually engage in a critical analysis of their pedagogical beliefs and prac-
tices, as well as of possible alternatives, and through this process try to articulate, question

and refine their own system of beliefs, its theoretical and/or empirical justifications, and
its implications for mathematics instruction.

Developing a framework grounded in practice: an illustration

In what follows, I would like to share my own experience in engaging in the process of

examining my belief system as an integral part of my work as a researcher in mathematics

education committed to improving the state of mathematics instruction in schools. My
objective here is not only to communicate the results of my efforts to date i.e., the
preliminary articulation of an alternative framework for mathematics education informed
by the notion of humanistic inquiry - but also to illustrate how the process of re-examining

one's practice and making connections with theoretical contributions coming from various

areas of educations may develop.

In the past six years, I have conducted several research projects' with the goal of

Among these research projects, I would like to mention two that have been made possible by grants from
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developing instructional strategies that would help students appreciate the "real" nature
of mathematics. These projects 'were initially motivated by the belief that a logical posi-
tivistic view of mathematics is likely to convey to students a dysfunctional perception of
mathematics as a cut-and-dried, impersonal and non-creative domain (Borasi, 1990) and,
furthermore, that such as view does not accurately describe the nature of mathematics.
As several mathematicians and philosophers (e.g., Kline, 1980; Lakatos, 1976) have ar-
gued, mathematical knowledge is in fact neither predetermined nor absolute, but rather
the result of human construction. The debates and controversies that punctuated the
development of some fundamental topics (such as infinity), the existence and legitimacy
of geometries alternative to Euclidean geometry, the doubts raised by Godel's work on
the absolute truth of even the most fundamental mathematical results, are all evidence
that mathematical knowledge, as any other product of human activity, is contingent and
localized and may therefore admit alternative conceptions and organizations. This more
relativistic view of mathematics also means that cultural and personal values, context and
purposes, and affective elements all play an important role in the creation and application
of mathematical knowledge - as various supporters of a humanistic view of mathematics
have helped us appreciate (e.g., Brown, 1982; Lerman, 1989).

One of the instructional strategies that I have tried to develop so as to enable students
to appreciate the more humanistic dimensions of mathematics involves the use of errors as
"springboards for inquiry" - that is, the analysis on the part of the students themselves of
the causes and potential consequences of specific mathematical errors, together with the
generation and exploration of mathematical questions that arises from such errors (e.g.,
Borasi, 1987). Both the way mathematicians themselves often take advantage of errors in
their work and the powerful role played by "debugging" in learning computer program-
ming languages had suggested this use of errors to provide students with opportunities for
genuine mathematical problem solving and problem posing.

In order to explore how mathematics students could take advantage of errors in similar
ways and what benefits could be derived by their constructive use of errors, I designed and
taught a few units where errors were consciously exploited as "springboards for inquiry".
Yet, because I took on a teaching role in these situations, I soon felt responsible for
providing my students with the best possible opportunities for learning mathematics in
my classroom. This, in turn, forced me to make more explicit the vision for mathematics
instruction that I wrs implicitly trying to realize in my teaching.

the National Science Foundation - "Using errors u springboards for inquiry in mathematics instruction"
(award no. MDR-8651582) and "Reading to learn mathematics for critical thinking" (award no. MDR
8850548).
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I decided that the in depth analysis of a teaching experience representing a somewhat
successful attempt at implementing such a "vision" would be very important to help me
identify my overall goals for teaching mathematics, their rationale and their implications
for classroom practice. At the same time, I also tried to articulate and examine my peda-
gogical assumptions by seeking theoretical contributions from the mathematics education
literature as well as areas such as philosophy of education, cognitive science, everyday
cognition and curriculum studies in subject matters other than mathematics.

The specific instructional experience I chose to analyze was a ten-lesson "mini-course"

on the topic of mathematical definitions, conducted as a teaching experiment with two
math-avoidant female students in an instructional setting relatively free of constraints
and quite supportive of innovation' . The experience consisted of a series of thought-
provoking mathematical activities designed to enable the students to become aware of
specific characteristics of mathematical definitions, recognize their various roles and uses

within mathematics, and come to realize that mathematical definitions are by no means
absolute or pre-determined as many perceive. These activities often took advantage of the
opportunities provided by errors to engage the students in genuine mathematical problem
solving and explorations, and thus act as real mathematicians.

As I examined closely the nature of the students' mathematical activity and learning in
this unusual instructional experience, it became evident that the notion of problem solving

was too limited to describe what the students were doing. The focus of our lessons was in
fact not so much on finding the solution to isolated problems set by the teacher, but rather

on engaging more broadly in an inquiry around the notion of mathematical definition
a process that brought us to formulate and address specific mathematical questions and
problems, but more as means to improve our understanding of this fundamental notion
rather than end in themselves.

Contributions to my thinking about the nature and role of this process of inquiry were
provided by the literature in critical thinking more specifically, the interpretation of
critical thinking as an attitude of inquiry and informed skepticism (e.g., Mc Peck, 1981;
Siegel and Carey, 1989). This interpretation is explicitly based on a view of knowledge,
initially suggested by Dewey and Peirce, as a process of inquiry motivated by uncertainty.
Learning, as well as any other form of knowing, is thus seen as a generative process con-
sisting in the continuous creation, evaluation and refinement of hypotheses, and involving

the negotiation of goals, strategies and solutions in consideration of the context in which
one is operating. This view of knowledge is compatible with and further supports both the

3 The "story" of this experience has been reconstructed in detail in Borasi (in press).
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constructivist perspective that has informed many recent studies of mathematical learning
and problem solving (e.g., Charles and Silver, 1988; Davis, Mahen and Noddings, 1990)
and the results of anthropological studies of mathematical problem solving in everyday
situations (e.g., Lave, 1988). At the same time, its emphasis on the tentativeness of estab-
lished results, on one hand, as well as on the motivational role played by conflict, ambiguity

and anomalies in the continuous search for understanding, on the other, supports and gen-
eralizes other important elements of the view of mathematics as a humanistic discipline I
had started with.

As a result of these theoretical contributions, I was now able to characterize the learn-
ing activity experienced by my students in the mini-course on mathematical definitions as
humanistic inquiry that is, mathematical inquiry that was led by the desire to resolve
doubts and anomalies, rather than by the instructor's plan to reach some pre-determined
results, and was informed by the belief that mathematical results can be constructed to
respond to specific needs and purposes. I could also articulate the innovation of math-
ematics education that I was trying to achieve as reconceiving mathematics teaching as
supporting students' humanistic inquiry in school mathematics.

The in-depth analysis of the mini-course on definitions became crucial as I tried to
spell out the implications of such an interpretation of teaching mathematics and become
aware of the challenges that it may present for mathematics teachers in today's schools.
For example, as I carefully reviewed the transcripts of the lessons, I became aware that
despite my professed beliefs in the value of encouraging students to pose and solve their
own problems, as a teacher I had not always been willing to relinquish my control of the
class agenda. Consequently, a number of times I chose (without even realizing it!) to
follow the original plan for my lesson rather than let the students explore a question they
had raise and for which I did not know the answer. This made me appreciate how difficult
it is for teachers to give up control, especially given the way schools are organized today
and, consequently, become better aware of the radical nature of reconceiving mathematics
education as humanistic inquiry.

A "humanistic inquiry" framework for mathematics education

As I described the process of analyzing my pedagogical beliefs in light ofmy practice in
the previc :s section, I have already implicitly identified key dimensions of the humanistic
inquiry framework that such a process has allowed me to begin to articulate. I would like
now to characterize such a framework in a more succint and organized fashion.

First of all, the major pedagogical assumptions behind the proposed framework can
be summarized as follows:
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a view of mathematics as a humanistic discipline, where results are not absolute and
immutable but rather socially constructed and thus fallible, shaped by the purposes
and context that motivate their development and use, and affected by cultural as well

as personal values;

a view of knowledge more generally not as a stable body of established results, but
rather as a process of inquiry, where uncertainty, conflict and doubt provide the mo-
tivation for the continuous search for a more and more refined understanding of the
world;

a view of learning as a generative process of meaning-making, requiring personal con-
struction as well as the support of a community of learners, and informed by the context

and purposes of the learning activity itself;

a view of teaching as supporting the students' own search for understanding and con-
struction of meaning, by creating classrooms that act as communities of learners and

a rich learning environment to stimulate students' inquiries.

Among the major instructional implications of these assumptions, I would like to high-

light the following ones: a shift of instructional focus from product to process; mathematics

curricula that are flexible enough to accommodate the unexpected directions students' in-
quiries may lead to and to give the students' themselves some control on what they are
learning; classroom dynamics that make possible the continuous negotiation of instruc-
tional goals and activities; the creation and adoption of evaluation standards and pro-
cedure that reward risk-taking and initiative over the production of right answers; and,
finally, the need for developing a variety of instructional strategies and learning activities

to stimulate and support student inquiry in mathematics.

The humanistic inquiry framework sketched in this paper presents a comprehensive and

coherent alternative to the transmission model that informs most of today's mathematics
classrooms and is compatible with the goals and recommendations put forth in the most
recent call for school mathematics reform (e.g., NCTM, 1989, 1991; NRC, 1989), while at
the same time it highlights some elements that I feel have been neglected in the current
debate. Most notably, in contrast to the "focus on problem solving" that has characterized
many of the innovations proposed for school mathematics in the last decade, a humanistic

inquiry framework calls for a new emphasis on highlighting ambiguity and uncertainty
in the mathematical content studied so as to generate genuine doubt or conflict and,
consequently, the need to pursu. inquiry, and on students' initiative and ownership in
their learning of mathematics (involving, for example, experiences in which the students
themselves formulate the problems and questions they want to study and learn to evaluate
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their worthiness).

I would like to conclude by emphasizing that the notion of humanistic inquiryas well as
the pedagogical assumptions articulated in this paper are not presented as a "declaration
of faith" that needs to be absolutely accepted or rejected. Rather, they are offered as
a starting point of discussion for all mathematics educators engaged in improving the
current state of mathematics instruction, with the hope that these notions will be further
examined, elaborated and modified so as to contribute to our increasing understanding of
the processes of mathematics learning, teaching and instructional change - in a true spirit
of inquiry.
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A COGNITIVE FRAMEWORK FOR TEACHER CHANGE

Kenneth L. Shaw, Nancy T. Davis, B. Jo McCarty
Florida State University

Essential psychological components of how teachers change emerged
from an ongoing research project with elementary, middle, and high
school teachers. The interwoven network of perturbation, commitment,
vision, cultural environment, and reflection make up the cognitive
framework. This framework applies to teacher education programs as
prospective and practicing teachers make changes in their epistemologies
and instructional practices.

The purpose of this paper is to elaborate on a grounded theoretical

framework of how teachers change. This framework emerged from an on-going

research project focusing on enhancing mathematics and science teaching.

Recently, mathematics educators have encountered a significant number of

reports on the crisis in mathematics education (e.g., McKnight et al., 1987;

National Research Council, 1989) and a plethora of recommendations to improve

the teaching and learning of mathematics (e.g., Blackwell & Nankin, 1989;

Mathematical Sciences Educational Board & National Research Council, 1990;

National Council of Teachers of Mathematics [NCTM], 1989; MCTM, 1991). The

proposed cognitive framework will illustrate how recommendations can be

personalized by teachers in today's schools. We have learned from research

that taking recommendations and mandating that teachers use them is

counterproductive (Wirt & Kirst, 1989). Before worthwhile change can occur,

teachers must first desire to make changes within their own classrooms. It is

with this premise that we address the cognitive framework of teacher change.

METHODOLOGY AND PROCEDURE

The case study method was used to establish and explicate the framework

of teacher change. An in-depth investigation of three elementary teachers,

two middle school teachers, and two high school teachers occurred from fall

1989 to the present. These teachers are collaborating together as part of a

projecZ to improve mathematics and science teaching and learning (Tobin,

Davis, Shaw, & Jakubowskl, in press). The project is rooted in a

constructivist epistemology (von Glasersfeld, 1989; Yackel, Cobb, Wood,
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Wheatley, & Merkel, 1988) and is designed to assist teachers in becoming

active change agents in their own classrooms and within their own schools.

The methodology included (a) observing teachers during instruction and during

their bi-weekly collaborative meetings, (b) writing rich thick descriptions

(Geertz, 1975) based on interviews, fieldnotes, and teachers' journals, (c)

constructing meaning from the context and through negotiated meaning with the

teachers, (d) being inductive about the data by making and testing conjectures

about how teachers change, and (e) gaining a holistic perspective of teacher

change by comparing individual cases (Reichardt & Cook, 1979; Bogdan & Eliklen,

1982),

FRAMEWORK

After analyzing and comparing the different case studies at the end of

the first year, we developed a framework of teacher change. The results of

explicating the framework during the second year illustrated the complexity of

the teacher change process. We found that teachers change in different ways

as a result of (a) their cultural environment, (b) the quality of

perturbations they experience, (c) their commitment to change, and (d) their

vision of what changes they want to make.

Framework for Teacher Change
Cultural Eh anent

Cultural Environment

The cultural environment for each teacher is different. Geertz (1973)

stated that a "man is an animal suspended in webs of significance he himself
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has spun" (p. 5). For each tea:her in the project, distinctive elements of

the culture were noticed that affect the change process. These are support,

time, money, resources, taboos, customs, and common beliefs.

The quality of support to make changes from administrators, colleagues,

researchers, parents, and students has had a direct impact on how, what, and

why teachers change. Rogers (1969) stressed that the support given should be

genuine, with respect and unconditional acceptance, and with sensitivity and

understanding toward the teacher. This level of support for the teachers,

fortunately, can be attributed to administrators at the county office,

principals, and researchers who realized that changes are needed in the

mathematics and science curricula. However, support from students has not

come as easy. Students are steeped in the traditional format of learning

mathematics, that is, listen to the teacher present instructions about the

assignment, then complete the work individually. When teachers incorporate a

new teaching strategy, for example, cooperative learning, students' routines

are abruptly changed and dissonance is often the result. This classroom

dissonance can easily influence a teacher to return to the traditional way of

:-eaching if tney have received no other support. A supportive climate Is

v'tal if effective change is to occur.

The support needs to be corroborated with time, money, and resources.

Teachers need the time to learn about alternative epistemologies and methods

to teach mathematics, time to reflect and re-evaluate their roles, time to

observe And collaborate with alleagues. It is important that teachers have

access to resource: that w 11 provide alternatives (e.g., books, articles,

manIpulatives, people differing ideas). Without alternatives, teachers

will not be as effective as they could be in improving their classrooms.

Within each culture, people hold certain beliefs about existing taboos

and customs. An example of a taboo is a teacher's reluctance to question an

administrative decision. To question a decision was something she never

thought was allowed. Some common customs and beliefs found in the schools

include teachers' beliefs concerning the curriculum and the environment for

learning. For effective learning to occur, teachers may believe they should

strictly follow their textbooks and that students should be quiet. Cultural

taboos and customs of the particular school culture can often influence the

change process of teachers. The collaboration among teachers from different
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school cultures and different grade levels unveiled many of the customs and

taboos, causing teachers to question and re-evaluate their beliefs about

customs and taboos in their school.

Perturbations

Change cannot occur without a perturbation, that is, a mental

dissonance. This is analogous to Newton's first law of motion, "A body at

rest or in uniform motion will remain at rest or in uniform motion unless some

external force is applied to it." A teacher will continue teaching a similar

way unless perturhed by something or someone. Perturbations often cause

frustration, discomfort, and a great deal of reflection. Perturbations can

come from many sources (e.g., students, colleagues, parents, administrators,

teacher educators, books, articles, self-reflection). The types of

perturbations that will influence teachers to change are as varied as there

are teachers. We have clearly seen that the collaboration among teachers and

researchers in the bi-weekly meetings have caused both teachers and

researchers to be constantly perturbed by comments about each others'

experiences. We have learned that when perturbations are evoked in teachers

in a genuine, caring and supportive way teachers are more likely to make a

commitment to change.

Commitment

Commitment is a personal decision to make a change as a result of one or

more perturbations. One teacher described commitment as an inner feeling

that there's a need . . . and that you are going to do something about it."

Many of the teachers in the project saw a need to change, but were initially

reluctant to change their own practices. During the past 2 years teachers are

beginning to question what is happening in their classrooms, why i. it

happening that way, and whether or not the learning environment in their

classrooms is what they wanted. Through self-reflection, teachers are willing

to take more risks in implementing new strategies to improve the students'

learning of mathematics.

Vision

For teachers to change, they need to construct a personalized vision of

what mathematics teaching and learning should be like in their classroom. We

found that teachers need alternative images to replace the traditional views

of teaching. The teachers initially negotiated and divelmed several

1.1
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components which made up their vision for the ideal classroom. They each

contributed to the vision and felt ownership that this was where they wanted

to concentrate their efforts. Some of the teachers mentioned that they did

not know how to obtain the goals but wanted to try. Having high ideals and

traditional classrooms were common during the first part of the project. For

example, some teachers were verbalizing very positive aspects about a

particular instructional approach, cooperative learning. Yet, when we

observed their classroom teaching, we found them either teaching in a very

traditional manner or grouping students together to work independently on some

assignment. However, through negotiation among teachers and between teachers

and researchers, alternative images were created. This led to an increased

emphasis in problem solving, cooperative learning, communication, and making

connections. Working together as a family also caused the teachers to be much

more reflective about obtaining their vision. As they tried new ideas in

their classroom, they would report the progress or frustrations of trying to

make the change in their own instruction. As the project has continued and

their experiences with new teaching and learning strategies has increased,

teachers beliefs have changed in terms of how students learn. They firmly

believe that students actively construct their own knowledge and are not more

receptors of the teacher's knowledge. This belief has made them more

cognizant of the importance of creating a supportive learning environment for

their students. Hence, more cooperative learning and negotiation of meaning

and priorities are taking place within their classrooms.

EDUCATIONAL IMPLICATIONS

For successful and positive change to occur, teachers need to be

perturbed, they need to be committed to do something about the perturbation,

they need to establish a vision of what they would like to see in their

classroom, and develop a plan to establish this vision. We found teachers

want to improve their instructional strategies and they want to enhance their

students learning with understanding. However, we also found the process of

change to be a very complex endeavor. Change is a slow arduous process which

requires patience, persistence, and respect. Respect is shown when the

teachers are given the ownership of what they are changing. We found that

teachers must first believe change is necessary and that this change will make

A significant impact on student learning.
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The implication for educational reform is that teachers must be actively

involved in the planning phases of the innovation. However, teachers who are

even in on the first levels of planning may hold deeply-rooted beliefs that

may cause them much mental dissonance when they return to their classroom.

But through collaboration with other teachers, they can discuss and deal with

their personal problems. The cultural environment that developed as teachers

worked collaboratively made a significant contribution to our thinking of

teacher change. Teachers are now more empowered; they take charge of what

happens in their classroom and help students realize that they too should take

full responsibility for their own learning.
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CARS, COMPUTERS, AND AIR PUMPS: THOUGHTS ON THE ROLES OF
PHYSICAL AND COMPUTER MODELS IN LEARNING THE CENTRALCONCEPTS

OF CALCULUS1

Andee Rubin and Ricardo Nemirovsky, TERC

Six students explored problems involving "rate of change" in teaching
interviews using one of three computer-enhanced learning environments we had
designed. In analyzing protocols of their sessions, we focused how students
used the three environments differently to support their construction oftentative,
yet vital, webs of related concepts from prior intuitions, implicit knowledge, and
the experimental situation.

Core mathematical notions of a conceptual field are acquired and constructed
through a long-term process which involves the gradual articulation of a great diversity
of situations, interrelated symbol systems, and varying levels of complexity. In
calculus, two of the most important central concepts are rate of change and
accumulation. For the past year, we have been studying environments in which we
believe students can construct, based on their intuition and implicit knowledge
(Fischbein, 1987) and their activity in the experimental situation, these basicconcepts of
calculus. Our goal is not to study their mastery of calculus notation, but rather to
explore how different experimental situations may contribute to the acquisition of
knowledge that underlies and provides meaning for notational expressions of calculus.
In other words, we are studying how students construct webs of conceptual
mathematical relationships in contexts where they have the opportunity to combine
intuition and experimental data.

We have developed three prototype computer-enhanced environments. Our
design goals were to construct environments that mapped intocore calculus constructs
in different ways. In retrospect, we see that the three situations also embody certain
tradeoffs in the resources they make available to students. Forexample, one
environment provides flexible symbolic representation but no physical model, while the
other involve a physical model, but no ,ymbolic expressions with which to operate. The
three environments we created are the following:

1Th1s research was supported by Grant MDR-885564.4 from the National Science Foundation. Opinions
expressed here are those of the authors and not necessarily those of the Foundation.
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-a motion environment, in which the student manipulates a small Lego car
in front of a motion detector that can record the car's relative position many times a
second. The computer which is connected to the motion detector displays graphs of
either position and velocity vs. time. The software provides students with the capability
of finding out the value of points of the two graphs and of comparing two different
"runs" of the car.

-an air pump environment, which uses a hand-driven air pump instead of a car
and motion detector as the physical world analogue, with very similar supporting
software. Stude s control the flow of air into and out of a transparent, calibrated bag
using a hand put. p and a series of valves; the computer records air flow several times a
second and can display both volume and air flow vs. time.

-a spreadsheet environment, which allows students to define functions in terms
of first and second differences and initial values. A spreadsheet representation of the
functions' values is derived and the corresponding graphs are drawn. The function is
labelled A, the first differences B and the second differences C.

We have tried out each environment with two high school students who had
already taken algebra, but who had not yet taken calculus. With each student, we
carried out a three-hour teaching experiment broken into two hour and a half sessions.
The sessions were based on a structured interview in which we posed a pre-selected set
of problems, e.g. 'Try to create (using the experimental environment) a graph of
velocity (or air flow or B) that is a non-horizontal straight line. What do you think the
graph of position (or volume or A) will look like?" Students would first try to generate
the velocity (or air flow or B) graph using the car, air pump, or spreadsheet. They
would then predict the position graph. We video-and audio-taped all sessions. The
analysis underlying this paper focused on important differences among the
environments, with a goal of understanding what each environment made available to
students as fodder for their conceptual constructions and what mathematical concepts it
made difficult to access.

This paper will focus salient differences among the three environments, both in
this specific application and, more generally, as examples of concrete situations which
may function as sources of mathematical meaning for students. In this focus, we follow
Monk's (1990) work on college students studying calculus and Greeno's (1988) and
Meira's (1991) work on simple machines that embody linear relationships. We will
examine three categories of differences among the environments. The first concerns
mappings between the environment and the mathematical model of the situation. The
second comprises vocabulary that students used to describe changes. The third is the
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different kinds of strategies students used, given the tools and metaphors each

environment made available.
Mapping into Mathematics A large part of the task for students working with

any environment is to understand how to relate components and actions of the situation

to mathematical entities. Each of our environments had particular characteristics that

affected how students constructed such mappings. We shall analyze below students
working on the same problem in two different environments: motion and airflow.

The problem on which students worked was the following.
If this is a velocity vs. time graph, what would the corresponding position vs.

time graph look like? (Below is both the velocity graph she worked with, and a possible

corresponding position graph.)

t

This problem was preceded by several similar ones involving only positive
velocity. Students' task was to generate the velocity graph and predict the position

graph.
The maps students constructed from the car environment to a mathematical

model were at times inconsistent. One of the sources of this difficulty was that there

was no natural zero or natural positive or negative direction in the environment; both

choices were strictly conventional. We arbitrarily set Oat the motion detector and
movement away from the motion detector as positive motion, but any other choices

would have been as consistent and made as much mathematical sense. While students

were doing the first few problems, which involved only positive velocity, this

convention caused no trouble. But when students began to work on problems
involving motion toward the motion detector, represented on the graph as negative
velocity, they all faltered. S., who had a relatively easy time with the early problems,
assimilated the convention after only a few runs. Still, when he was asked to review

what he had learned in the first session, he considered the directionality of the motion

detector one of the key points he had learned: 'Well, what I figured out so far is that at a

positive velocity the car, that little man, will be going away from the motion
detector...Where here is the decreasing or reverse velocity going towards the motion
detector" S. was careful, in fact, to face the little Lego man in the car away from the

detector to reify the positive direction.

476
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N., on the other hand, never quite constructed a consistent meaning for negative
velocity. Her primary confusion had to do with an ambiguity in the interpretation of the
position vs. time graphs that existed only in the car environment. N. often thought of
position as "distance traveled," rather than "relative position, " as if she were referring

to the odometer reading of the car. She commented when analyzing theposition graph

above, "I don't understand what the difference is if you <i.e. the car> go the other way."
And later, when reflecting on her interview, "I still don't quite get the concept of
negative velocity...if you're going you're going, what difference does it make if you're

going forward or backwards." The "distance travelled" metaphor was so strong for N.
that even when she had glimmerings of understanding, she wanted to keep her
intuitions, "Well, just in terms of like looking at the two graphs, the distance between

them, it makes sense...But..in reality...(laughs)"
The air pump environment had fewer of these semantic pitfalls; both zero and

negative first derivatives were more naturally depicted. Rather than being a
conventional value, zero had a natural correspondence in the air flow environment with
the empty bag. The lack of negative volume was also not conventional, but based on a
property of the environment; the bag couldn't be emptier than empty. The confusing
"distance traveled" interpretation of "position" was unnatural in this environment, as
there was no natural "odometer" reading that added together both negative and
positive air flow into "quantity of air exchanged." And the analog of negative velocity -
negative air flow - was easily identified by students as air flowing out of the bag. In the
following comments, F. grew to understand the concept of negative flow rate in the
course of a relatively short conversation. When he first saw the flow rate graph

(corresponding to the velocity graph above), he commented, "How can you get leas
than zero flow rate?....How are you going to do that?" The interviewer asked him to
move the bellows to generate any pattern of air flow. In doing this, F. naturally made

air go both in and out of the bag. He almost immediately understood the contrast
between positive and negative flow. "Oh, now I see, all right. Cause my, when I pulled
it down it goes, it was the, the amount of air going in was on the positive, it was going
up. Then I pull it down and it came back down to negative...It can never, the volume

can never go down to be less than zero. The flow rate can."
Environment-Specific Language T"e motion, air flow, and computer

environments all differed in the language they evoked in students' descriptions. In
many respects, the car environment suggested the most specific language. For example,

the motion environment was the only one that had a specific word for second
derivative: acceleration. In the airflow environment, students had to describe second
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differences as changes in air flow. F., for example, said, "the only reason could be that
flow rate increased, but it didn't increase so, that so much per second that it increased
more rapidly." This specificity in the motion world, however, was not always helpful to
students. (Nemirovsky and Rubin, 1991b). One confusion arose from the fact that
students referred to negative acceleration with different words, dependingon the sign
of the velocity. A car with positive velocity experiencing negative acceleration was
"slowing down;" if it had negative velocity and was accelerating negatively, it was
"speeding up" (but in the opposite direction). The fact that students' language is based
on the absolute value of the velocity (i.e. the speed) made such problems about negative

acceleration especially challenging in the motion situation
In the computer environment, neither zero, positive or negative numbers had a

special real-world meaning or connotation that spilled over into students' mathematical
modelling. But the use of the word "difference" was confusing to at leastone student.
M. was modelling the situation, "The cost of home computers is still decreasing, but
more slowly than it was last year." He understood that the difference between
consecutive values of A (cost of computers) was changing by a smaller and smaller
amount over the course of the graph. He arranged his spreadsheet so that B tookon the
values _0, 48, 46 etc. He was then surprised to see that the graph of A increased. The
interviewer asked, 'The first month is $1500. What happened the second month?" In
answering this question, M. understood his confusion, "Well, we added 5.50. Well, 1
guess I'm using this wrong...So we want all of these <values of 13> negative." In order to
understand this situation, M. had to disambiguate two meanings of the word
"difference." The first is as in "B is the difference between two consecutive A's," e.g. 50
is the difference between 1450 and 1500. The second is the number used in the
operation of subtracting to generate the next A, as in 1450 = 1500 - 50.

The motion and airflow environments also differed in the kind of language
students used to refer to changes in velocity or airflow. In the motion environment,
students used words from their everyday vocabulary for cars: speedingup, slowing
down, getting slower. None of these phrases contained any indication of directionality;
negative and positive velocity were described in the same phrases. In the airflow
environment, on the other hand, there was always an indication of the direction of
change in volume corresponding to the direction the bag moved: went up slowly; go up
slower,slower,slower; let it back lip quickly, it has to go down, but slow. Thus, in the
very language they used to describe the action of the air pump, students made the

distinction between positive and negative airflow. This specificity helped them
understand negative velocity more easily than in the motion environment.
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Problem-solving and explanation strategies The character of each of the three
environments lent itself naturally to different problem-solving strategies. Here again,
the motion and spreadsheet environments provided the greatest contrast. Because the
car environment was so familiar, students often used real-world memories to guide
their thinking. Using these mental pictures, students were able to carry out thought
experiments in the motion environment. S., faced with the following velocity graph of
two different cars that started in the same position, was trying to figure out if they were
ever in the same position again and, if so, if it were before, after, or simultaneous with
the time they were going the same velocity.

S. first guessed that the cars would meet at the same time they were going the
same velocity. He supported his opinion by describing a familiar situation in which
two cars are going the same speed down the road, next to one another, "...they would
end up meeting there [pointed to the velocity graph at the intersection]. That's where
they would end up being side by side."

After a while, S. figured out, through a series of attempts to make the velocity
graph and look at the corresponding position graph, that the cars actually meet after
their velocities are equal. Both his problem-solving and his explanation involved heavy
use of real-world language, thought experiments and simulations with the cars. He
moved his hands numerous times to show how one car would catch up to the other and
finally pass it. Finally, he was able to articulate a rationale for why the velocities would
be equal before the distances were equal in general. His story was accompanied by
hand motions that recalled his experiences with the motion detector and his real-world

experience with cars.
"The reason is that they're starting at the same place; however, this one I'll call
this number one is starting at a much faster speed so while this one is sort of
(rrr noises indicating slow velocity) this one is (vroom noise indicating fast
velocity). And it's accelerating at a steady pace of whatever, although it's
accelerating a small amount while this one is accelerating a lot. So that when
they're going equal speed, say this one <#1> would be this far behind this one
<#2> and then suddenly it's going to catch ti t) a little later cause this one <#2>just

isn't accelerating as fast as this one<#1>."
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The spreadsheet environment, on the other hand, supportsa very different kind
of problem-solving strategy. Because there are no real-world semantics associated with
the variables, students generally do their thinking in an entirely mathematical domain.
Since the relationship between A and B is described by the interviewer in terms of
differences (B is the difference between adjacent values of A), students' talk in general
mirrors this way of thinking. M. worked on the crossing lines problem in the
spreadsheet environment One of his first statements about the problem was, 'The
difference <between adjacent values of A in the steeper line> is big at first...We have
500, then we have a big difference of say 10." M. then generated lists of numbers for
both lines before he used the spreadsheet to see the graphs. Through working with the
numbers, M. could see patterns that convinced him that the A lines would cross after
the B lines. By trying several combinations of numbers he was convinced of the
generality of his result. He ev?.n generated the conjecture (which turned out to be
correct) that if the B lines crossed at x=t, the A lines crossed at x =2t. He could not,
however, describe his result in the kind of coherent story S. generatedbecause there
were no real-world referents available in the spreadsheet environment.

These two categories are representative of the kinds of distinctionswe are
finding among these environments. In future analyses, we intend to compare the three
in terms of the vocabulary students use to describe the shape and properties of the
graphs, how they describe the process that generates the graphs, and therelationship
between their qualitative and quantitative reasoning.
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TALKING MATHEMATICS: "GOING SLOW" AND "LETTING GO"1

Susan Jo Russell and Rebecca B. Corwin, TERC, Cambridge, MA

Teachers attempting to develop better mathematical discourse in their
classroom engaged in a period of "going slow" characterized bygradual
changes in amount of time devoted to mathematics, types of questions, and
the nature of mathematical problems presented. A more complex and
difficult phase of change, "letting go," involved giving up planned goals or
topics to pursue ideas arising from the students' mathematical work.

For the past year, we have been working with a group of 12 elementary grade

teachers (spanning grades kindergarten through seventh grade) who are

investigating ways to develop mathematical discourse in their classrooms. The

goals of this project (Talking Mathematics) are to: 1) work with a group of master

teachers to explore techniques, principles, and models ofmathematical talk in the

elementary grades, 2) identify the difficulties teachers experience in supporting

mathematical discourse in their classrooms, and 3) document the project's effects on

teachers' beliefs about mathematics and on the nature of mathematical discussions

in their classrooms.
After initial interviews and observations of all participating teachers, the

project began with a 3-week seminar in the summer of 1990. During this time the

teachers did mathematics together and began to explore the project's research

questions with project staff. The team of two mathematics educators and a

mathematician2 deliberately focused the first two weeks of the seminar on
mathematical investigations. We further decided that we would involve teachers

in doing mathematics for their own development (Simon & Schifter, in press),

regardless of whether the particular mathematics content and problems we chose

could be used directly with their students. This approach contrasted sharply with

much of the teacher training they had encountered, in which the "activities" from a

workshop on Monday could be used in their classrooms on Tue-day. At first,

teachers' discussion of mathematical investigations centered on "how I would do

this with my students" or "how I would simplify this so my students would

understand it." This classroom focus acted as a barrierand perhaps as a safety

I Tins research was supported in part by a grant from the National Se ienceFoundation TM-8954631. The views
expressed in this paper are those of the authors and do not necessarily represent the views of the Foundation.

2 The authors and Hairier Pollatselc, Mt. Holyoke College.
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valveto teachers' grappling with mathematics for themselves. By the second
week, however, teachers were engaging eagerly in mathematical investigations for
their own intellectual development. A single mathematical investigation might
require several hours or even several sessions because they insisted on continuing
their work. By the end of the third week, we laughed together each morning about
the "unagenda" for the day, since we all knew it would change as teachers became
immersed in mathematics. As they gradually let go of immediate dassroom
application, they began to be captured by the pleasure of deep involvement in
mathematics. As one teacher wrote in her journal, after an investigation that
involved geometric relationships, "I loved doing the polyhedra problem . . . I don't
want to leave it. I wish I didn't have other plans, a house to clean, a husband, so I
could work on it. 0 boy, would I like to engage children the way I am engaged."
Starting the School Year: Going Slow

Feeling legitimately daunted by the nature of the task ahead, the teachers
agreed at the end of the summer that "going slow" in the face of the complexity of
change was the only way they could proceed. They recognized that they would be
returning from their intense summer experience to a school culture of mathematics
in which the expectations of students, parents, and administrators, the constraints of
"the curriculum" and the tests, and even their own well-established routines might
act as barriers to the changes they envisioned. They understood that if they
demanded fast, radical change of themselves, they would end up feeling
discouraged. As one teacher remarked: 'We all have changed and I'm afraid of . . .

what will happen to us once we're back in the system. .. I am afraid to walk in in
September happy and with beautiful ideas and after three weeks all will be
shattered."

As the school year began, teachers made gradual shifts in their approaches to
teaching and learning mathematics in their classrooms. Analyses of teacher
interviews, teacher journals, documentation of semimonthly seminar sessions,
field notes and videotapes from classroom observations suggest five major shifts.
We will list the first four here briefly, then discuss at greater length the fifth, which
we view as central: a shift from "going slow" to "letting go." The first four
indicators of change we documented are:

1. Teachers planned and scheduled more time for mathematics. This
increase in time reflected a new balance between doing mathematics and reflecting
on mathematics. At the beginning of one class session, a first grade teacher told our
observer it would be a brief lesson. At the end of almost 40 minutes, with students
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still eager to pursue a new discovery, she remarked to the observer, 'This isn't going
to die today! I didn't think this would last this long!" Teachers increasingly found
that the complexity in apparently straightforward mathematical ideas led students to
longer, deeper immersion in mathematics periods.

2. Teachers asked different kinds of questions ;Ind refrained from accepting
the first right answer offered by students. Many of the classroom conversations we
had observed which led us to undertake this project were dominated by teacher
questions which generated single right/wrong responses. These tended to shut
down conversation about mathematics. Teachers in the Talking Mathematics group
are finding ways to word their questions so that they open up the conversation: "I
think there is more of an attempt on my part to slow down and give kids a chance to
use their own words to express things. I'm not as quick to take what I think kids are
saying and make it the 'right thing."' A good example of this kind of more
prolonged exchange, provoked by a teacher's question, "what do you mean by
even?," is described later in this paper.

3. Teachers required students to share their thinking, and students became
more able to do so. In our field notes, we see teachers gently insisting that students
try to explain their clarity or confusio. ("you're thinking something--explain it to
me"). In this context, mistakes become fuel for mathematics, rather than an evil to
be avoided. Even the youngest students, in grades I< and 1, are participating in
mathematical discussions. A kindergarten teacher remarked, "I've noticed a decline
in 'I don't know' (or] 'I just knew it,' and a second grade teacher echoed her,
"Instead of 'I just know,' they can little by little define what they are thinking ...
Instead of telling, telling, telling, and rote, rote, rote, it's .. . their own information."

4. Teachers structured mathematics experiences to focus on finding patterns,
describing and analyzing those patterns, and devising conjectures, generalizations,
formulas, and rules about how mathematical objects behave. A good example of
this trend occurred in a first grade classroom in which the students invented and
investigated "rules" for addition and subtraction. Unlike the rules which usually
come from an expert authorityteacher or textbookto be learned and memorized,
these rules were generated by the students. The beginnings of this discussion arose
spontaneously and the teacher built the children's observations into a search for
conjectures. As a result, these 6-year-old students have delved deeply, at their own
level, into commutativity and the relation between addition and subtraction.
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Changes in Beliefs: The Nature of Mathematical Authority
Even while "going slow," teachers' explorations of their own beliefs about the

nature of mathematics and of mathematical authority (see Lampert, 1988) led some
to more radical departures from previous classroom practice. Supported and
challenged by the group, some teachers profoundly changed their views of the
nature of mathematics as an endeavor. These changes are not uniform nor are they
incremental, yet changes are occurring. Many ara coming to believe that
mathematics is something that is invented and constructed, and that mathematical
convention is simply thatart agreed-upon set of definitions and procedures. The
shape of these beliefs forms such an important basis for decision-making about
teaching that they now enjoy discussions that we believe represent significant
internal struggles about the nature and sources of mathematical knowledge.

In particular, teachers grappled with the role of convention in mathematics:
To what extent can students participate in constructing and inventing mathematical
knowledge? When do you give students a definition, formula, or procedure? What
if students' constructions aren't "right?" In a February meeting, one of the teachers
asked, "Say this group (of studentsl... all agreed and they carne to some conclusion.
But it wasn't a correct mathematical conclusion. Then what would a teacher do?"
This question led to a powerful discussion of the nature of mathematical authority.
The following excerpts provide a sense of the cognitive dissonance created in the
group as they tried to find a legitimate role for mathematical convention while,
encouraging students' construction of their own mathematical ideas:

I think that there are some things that we need to confirm for kids. What it
is that mathematicians, after having these kind of discussions for the past
5,000 years, agreed upon as universal enough to accept it.... Let's say there's
some practical reason to know the basic facts in base 10. So we don't need to
have them debated at the point that it's useful for them to have that
information...it's practical at some point to give [students] the conventionally
agreed upon thing.

We're trying to teach kids that they can ... be an inventor and they can
create. If we give them convention they're always thinking that there is an
answer out there that someone has already predesigned or pre-made. And
then there is no inventor within them.

I think that it's important to always leave kids with the feeling that at this
time, this is what we know about it. And there may be Ime information that
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you'll get later that might make you think differently... The same thing
happens in science all the time, that information changes pretty quickly. But I

think if that seed of doubt or ability to change is part of discussions, then you
kind of cover for it... Leaving kids with the feeling that nothing really is
certain is all right, even though that's a little unnerving.

A Qualitative Change: "Letting Go"
As teachers began to change their pedagogy to reflect their changing beliefs,

their classroom work was characterized by a series of attempts to "let go" of the

planned goal or subject matter in order to pursue important mathematical ideas.

Just as we had "let go" of our agenda during the summer, some teachers "let go" of

their previous goals in mathematics teaching, of their control of the course of

mathematical activity in their classrooms, of the shape and structure of the
mathematics lesson, and, perhaps most difficult, of "getting through" all the subject

matter they are expected to "cover". "Letting go" involved allowing more time for

reflection and analysis, for students to articulate their own approaches. It required

listening harder to students and probing beyond surface understanding. This

process was accompanied by a loss of the comfortable feeling of closure and tidiness

mathematics once seemed to embody. As teachers spent more time listening to
their students, they were shocked to find that their students truly did not
understand ideas which they had thought were straightforward. They sometimes
became discouraged that their students "knew so little." They faced difficult

questions: how do I treat a wrong answer? when do I introduce a definition? what

do I do when a child does not "discover" what I hoped she would discover? how

long do I wait until I "just tell them how to do it?"
For example, Martha, a fourth grade teacher, noticed as she watched her

students count by twos on a hundred board that many of them did not seem to be
using the terms even and odd comfortably. Taken by surprise that her fourth

graders might not have a thorough understanding of even- and odd-ness, she asked,
"What do you mean by even?" A long conversation ensued; this is a small excerpt:
M: What do you mean by even?
SI: You add them up and they add up to even.
M: What is even?
S2: On one chart you got 1, 3, 5, 7, 9, and on the other, 2,4, 6,8, 10.
M: What are they, 1, 3, 5, 7, 9?
S3: Multiples of 1.
M: Is that true?
S4: Odd is if you have three apples. You couldn't split it with a friend.
M: Split how? Why can't I get two and you get one?
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S4: No, it's not even. If we had four, you could have two and I could have two.
M: Is 5 e7en?
Students: N o . . . yes . . . Tin not sure . . .

S5: I couldn't get the same amount as you.
S6: If you had five apples, c. e each could get two and split the other half ...

Martha "let go" both of her previous plan for the lesson and of her
assumption:: about her students' knowledge. However, this "letting go" was both
difficult and uncomfortable. By asking a different kind of question and by not
leading students hurriedly to a correct definition, she found that her students did
not truly understand something which seemed so basic. While it is easy for
researchers to be delighted and intrigued by the diversity of children's
understanding, it may not be so easy for teachers, who feel responsible for their
students' learning (Ball, 1990), to feel the same kind of delight when they begin to let
go and uncover the complexity and confusion of apparently simple ideas .

Anna's fifth grade class was exploring relationships among the faces, rAges,
and vertices of various pyramids. As they compared their results, they began to
realize there were disagreements about some of the conjectures they were positing
They gradually realized that the disagreement hinged on their definitions of points
and corners. Some students had defined corners to include all the vertices of the
pyramid, while others insisted that corners were only the corners of the base while
the vertex "on top was "a different kind of thing." Anna attempted to follow the
students' thinking, asking questions designed to challenge arc clarife their
definitions. A wonderful roaring discussion ensued, and the students pursued their
ideas vigorously. As she continued to prod students' ideas Lnd ask for elaboration,
Anna made several attempts to bring closure to the discussion. As she became fully
aware that they would not stop, and that closure was not likely, she completely let
go of control of the discussion by turning it over to the class, saying: "All right.
Argue. Or tell me. Or talk!" They did! As the class ended, she pointed to the
formulas generated by the class and listed on the board: "Now these are questionable
. .. tomorrow this is what you're going to have to do: decide if it (your definitions
really matters." In letting go of time frame and lesson plan, this teacher was both
following the interests of her students and allowing serious investigation of the
nature and purposes of mathematical definition. There was no "summary" of the
lesson, no closureinstead, the students left the room in full uproar, still talking
about whether points and corners were the same thing.

The process of deep change is very difficult The teachers with whom we
work are extremely thoughtful and committed people; they lave enjoyed the
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mathematics they've done, and they enjoy working together to generate their own
theories of how mathematical discourse can best be supported in their classrooms.
We see them as outstanding practitioners who are struggling to find a balance
between two worlds of teachingone with tidy little segment of ideas presented in a
more-or-less linear manner, the other a much less tidy world of interests,
enthusiasms, and uncharted teaching territory where much of their teacher-
behavior must be let go.

Because of our deep and growing awareness of the difficulties (and the joys) of
such deep epistemological change, we can make some statements about some of the
conditions that seem to support them during this process. First, this is not a linear
process. Teachers are at many places in a spectrum of possibilities, and any
individual moves "forward" and "back" often, depending on many circumstances.
"Going slow" and "letting go" are not neat progressive states; they alternate,
overlap, and interact. Second, it isn't possible for teachers to disregard convention.
Any conscientious teacher cannot simply shrug away all of the mores surrounding
"the usual thing"mathematical algorithms, tests, parental concerns. It is
important that the conflict between old practice and new beliefs not be minimized;
that it be understood and worked with. Third, just as we expect teachers to respect
their students, those involved in teacher enhancement and research must feel deep
respect for the teachers they work with as we ask them to take tremendous risks.

In the final analysis, it is in the complexity of the task that our enjoyment lies,
for it is truly here that we see the wide range of individuals, teaching practices,
changes in classroom practice, changes in belief. Here, in the midst of complexity,
we find that the work of supporting teachers is, as always, based on respect, support,
and taking time. We too, like the teachers, need to learn to let go of "certain"
outcomes. We too need to enjoy and welcome uncertainty.
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changes over time

YOUNG CHILDREN'S SPONTANEOUS REPRESENTATIONS
OF CHANGES IN POPULATION AND SPEED

Cornelia C. Tierney and Ricardo Nemlrovsky
Technical Education Research Centers (TERC ) Cambridge. MA

This study investigates spontaneous representations developed by fourth grade
children to depict changes over time in number of people in a place and In motion
of cars. In the typical graphing introduced in schoc:. children are taught to begin
with a systematic format for the graph. In this study, when no particular format
was required, children created idiosyncratic representational systems guided by
the need to express actualized data and whatever they found relevant In the
situation to be communicated.

Studies of spontaneous representations invented by children for different phenomena
and situations, and the contexts in which the children engage to create these representations

are emerging as a rich field of research. The creation of representational systems by children

is being considered from several points of view:

-as a learning environment.

-as a research technique to investigate cognitive aspects.

-as a way to explore social construction of meaning through classroom interaction.

-as a medium to examine the impact of conventional representational systems in our culture

Investigations of children's spontaneous representations are described in Bamberger
(1988) on development of representations for musical rhythm, diSessa et al. (1991) on

development of representations for the changing speed of a car, Ferreiro and Teberosky

(1982). and Ferreiro (1988) on the development of reading and writing. and Karmiloff-Smith

(1979) on children's representations for directions along a bifurcating path.

The study reported in this paper is most similar to the diSessa et al. study. It explores

children's invention and discussion of graphical representations for situations of change In
a teaching experiment, we worked with children's spontaneous representations of changes in

the motion of cars and changes in population. It is part of a curriculum project and a research
project funded by the National Science Foundation 1. Rather than teach certain forms of

graphing - -bar graphs in the early grades, line graphs later--we want to design learning ramps
which connect the natural representations of children with more formal graphing
techniques.

The teaching experiment was developed in six 45-60 minute sessions at a private

school in Cambridge. Massachusetts. The group consisted of eight fourth grade students One
or two observers attended each session. The observers' notes and the children's graphical

productions were the main data for our analysis.

1MDR-9050210 (Elemmtary math curric.): MDR-8855644 (Measuring and Modeling)
This paper reflects the authors' ideas which are not necessarily those of the grantor&
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We asked the children to make "pictures or graphs or charts" to show changing events.

The sequence of phenomena we asked them to represent were:

L Changing populaUon in a restaurant and in their classroom over aday;

2. Changing number of people in their homes over a day;

3 Sequence of changes (adding and taking away) of objects In a bag;

4 Changes in speed of a car described by a story:

5 Motions of a toy car moving across a table, presented in a video.

The representations were shared and discussed by the group. Students tested their

understanding of each others representations by acting them out. To act out the graphs of

people in their houses, students moved small blocks "Into" or out or a drawing of a house. To

act out the motion graphs, students moved a toy car along the floor.

After we submitted the proposal for this paper. we observed 45 fourth grade students In

an inner city and a suburban public school developing representations for the changing

number of people in their homes over a day. Working with a large. numberof children in

different circumstances reinforced the major patterns we observed in the earlier study.

Patterns In the children's approaches to making graphs to communicate

One of the main attributes of a representational system is to delineate a universe of

possibilities regardless of their "actuality'. However. the children generally limited their

representations to what was. All the children in this study had been introduced to the

making of bar graphs in school prior to this experiment and some had experience with line

graphs A tension existed for the children betweer. communicating data and using a system

that fitted the criteria shown by teachers. The children's inventions incorporated some

conventional graph features, but often had room only for the actual data, and they included

illustrative features that were external to the system. For example, many children made

graphs showing exact lines people came and went instead of a scale of equal intervals:
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When the teacher in one of the classrooms asked students to combine their data on agraph

with equal hourly intervals. the children were concerned about how to do it - -is a personwho

goes out at 7:15 shown to leave at 7:00 or at 8:007--and they were puzzled at losing the specific

data.
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We will describe some typical characteristics of the children's productions that

Illuminate this tension between data driven and system driven representations: dealing with

zero values, representing all data as discrete, and adding figural elements to the graphs.

. 11* 1 II 4 1

In a systematic context, an empty cell is meaningful as a zero value. The children did

not understand the bar graph as a system, but as isolated symbols requiring a key. They dealt

with zero values In two ways. They explicitly marked the zero, usually in a manner

distinctive from the markings for other values, or they omitted categories that had no
members.

Children who made bar graphs to show populations through the day, more often than

not, put a block for zero people home. One boy put one block for both zero and one person: he

then used a color key with a different colors to distinguish them. Another child used one

block to show no one home, two blocks to show one person home. etc.

A child who made charts, had trouble symbolizing "never". Since she specified time

In terms of intervals delimited by extreme times (e.g. 10:30.11:30), what are the extreme times

for an interval of zero duration? She resolved this first by using 0:00 to show that at no time

was there only one person home. In her second draft of the chart she further resolved It by

altogether omitting the category of one person home:

iwo three
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Another girl both omitted the possibility of one person home and used a special symbol--one

empty block--to show zero people home. She then had two blocks represent two people home:
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When the children did include zero values as in stopping in velocity and nobody in

population. they tended to represent t: em as exceptional points. Even students whose

representations showed some continuity of motion treated a stop as a special kind of

situation, not a particular value on the continuum. Thus a child who increased the frequency

of a wavy line to show slowing down, drew a dot in a box to show a atop. Others used spaces.

vertical lines. or illustrations of stoplights to depict a stop.

Many children left no place for more than the maximum number of people present or

t.''t maximum speed of the car In the particular situation they were Musts:1W*, and most

omitted evening and night hours on the graph of population of their classroom when no one

would be there, but Included them on the graph of population of their homes. When we asked

some students why they had not listed the evening hours, they assumed we meant there would

be some people in the classroom then. One child went to ask her teacher how late she stayed

at school and another asked whether the Janitor would be present.

2 Tendency to think ofsLange_tascredely,

The changing speed of the car is a continuous phenomenon. The car cannot go from

motion to a stop without going through every speed in between. However, the children,

reflected the data they actually had, and that data is always discrete. Instead of showing a

continuum of speeds, they made categories such as ''slow", -stop' and 'fast". When they

watched a video of a toy car moving, they Jotted down their observations in terms of taese

categories. Similarly, for the population of a restaurant and of their classroom, they used

categories such as "nobody', 'few people', and "many people". When data fell between these

categories, students did not know how to include them. One student, when trying to represent

a situation when one third of the students were out of the classroom, said "I don't know how

to put lots (of students in the room( but not as many as lots."

The discrete quality of most of the children's presentations was further emphasized by

the use of keys: - 0 /--
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Some children used key codes such as color that could have been adjuster I..: show gradations.

but they kept to the distinct categories.
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INvo girls made a graph of the changing population of the classroom that illustrated

the tension between various conventions and between continuous and discrete presentations.

They called their graph a line graph but they discrettzed it by providing a key and bringing the

line down to zero to separate the hours:
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All of diSessa et. al.'s sixth grade students developed continuous representations for

the motion of a car, but only one of our fourth graders represented the possible speeds of a car

as a continuum. He used a very wavy line for slow gradually becoming less wavy to a straight

line for very fast, similar to the representations developed by students In the diSessa et. al.

study:

The keys were a special example of the children's use of figural elements. In

representing motion, the students often included drawings of perceptual elements of the

situation (a toy car. a table, a street, etc.) even if they were not Informative with respect to the

motion itself. For changes In population, drawings (usually of stick figures) were used more

informattvelyas headings in a chart or icons in a pictogram.

Figural elements are not systematic. A system Is based on internal consistency, but

the figural elements are not. The children want to replicate the context they are representing.

They make graphs to represent what is. A graph is complete if it illustrates all the data to be

communicated. They are not concerned that the graph include all possible options.

In spite of the variation among their representations. the children were able to

interpret each others graphs and to act them out as the author expected. They had difficulty

only if the times were out of order
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Discussion
The development of any representation Integrates three aspects:

1. The information to be convey 2d

2. The rules of the representational system
3. The Intended use of the representation
These three aspects correspond to the traditional distinction betweeen the semantic.

syntactic, and pragmatic aspects of L'nguage.
When the fidelity to the information to be conveyed Is the most determinant factor in

the representation. we rzfer to It as data -driven. Most the the children's examples we have

described fall into this category. There are elements of a representational system - -a well

defined set of symbols, the ordering of the symbols. and so forth- -but the system is simple: it

has only one layer of meaning (each symbol means only one thing), and it is full of external

elements.
On the other hand, when the emphasis of the representation is on using rules to be

coherent, we refer to this as a system-driven representation. In this type of representation.

efforts are made to eliminate elements that are not part of the symbolic system or that are not

consistent with the system's internal rules.
Each emphasis (data or system) has its own advantages.

A data-driven representation:
Facilitates communication when the system is unfamiliar to the reader. If we are not sure

that the reader masters the representational system, it is helpful to resort to external

elements to provide additional cues.
Preserves the intbrmatwn. A data-driven system keeps all information thought to be

relevant, whereas one of the implications of a system - driven representation is that some

pieces of information may be lost.

On the other hand, a system-driven representation
Helps us to envision new possibilities and to open new questions. A data-driven system

tends to reflect no more than what we already know. In contrast with a data-driven

representation that tends to be idiosyncratic, a system-driven representation allows us to

perceive patterns and generalizations. A well-known example is the Periodic table where the

system of listing elements allowed scientists to recognize missing possibilities.

Conveys more information with fewer symbols. A sophisticated representational system is

a network of tacit relationships that become part of the message.
In developing a representation we have to decide how to come up with a good

combination of data- and system-driven elements. This is the point where the third aspect,
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the pragmatic side of the representation, plays a critical role. If the representation is meant

primarily to communicate to others, we need to at it to the readers knowledge. A

collaborative process like the one reported by diSessa et al. allows participants to assume a

common understanding of their system-driven representations. The children in our study.

developing their own representation for their own data, could not assume that someone else

knew their personalized systems. This may account for the predominance of data-driven

representations among these children. On the other hand. a representation for the purpose of

keeping track for ourselves poses a different problem. We know what we need to include in

the representation. When the children kept track for themselves (in collecting data or in
putting objects in and out of a bag ) they did not use figural elements because they did not need

them. They knew the context of the problem.

In any case, the bias toward a system- or data - driven representation is an issue of

weighing the pros and cons of each. This is why we talk about the tension between them. In

the literature, a developmental trend is reported (Bamberger 1988, Ferzeiro 1988. Karmiloff-

Smith 1979): from data driven to system driven. It is also stressed that this transition does

not respond simply to failure to communicate using less systematic representational

systems. Apparently children tend to adopt a more systematic approach even when their

former practices were successful. There is a spontaneous perception that systernaticity,

Internal consistency. "cleanness" or elimination of external elements, avoidance of
redundancies, and so forth are advantageous.

From a pedagogical point of view, we have observed that students are typically

introduced to a system-driven representation while they perceive it as a wrong or

meaningless way of conveying information. They appropriate it in terms of a data-driven

system. We hope that a better understanding of spontaneous representations by children will
help us to bridge this gap.
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Fourth grade through adult
Statistics
Average

TOWARD AN UNDERSTANDING OF MEAN AS "BALANCE POINT"1
Janice R. Mokros and Susan Jo Russell

Technical Education Research Centers, Cambridge, Massachusetts

Twenty-nine children and adults were given problems in which they constructed
data sets that could be represented by a given mean. Many of them felt that the
notion of "balance" was an important one. As tliey attempted to construct a data
set which 'balanced," they explored sym2 metrical balancing, balancing the sum
of the data on each side of the mean, and finally, balancing deviations around the
mean.

While most children are introduced to the averaging algorithm in fourth grade,
recent research has shown that children and even adults do not understand the way in
which the mean represents the data set (Gal et al, 1989; Mokros and Russell, 1990,
Strauss and Bichler, 1989.) Our research focuses on how children and teachers think
about the mathematical relationship in which the data 'balance" around the mean in a
particular way.

Twenty-one children (seven 4th, seven 6th, and seven 8th graders) and eight
teachers were individually interviewed, using a series of open-ended tasks. Three types
of problems were used: 1) Construction problems, in which participants were asked to
construct a set of data which would result in a given average; 2) interpretation
problems, which involved describing, summarizing, comparing, and reasoning about
given sets of data, and 3) traditional averaging problems, solvable through the use of
the algorithm. Data construction problems yielded the most interesting results, because
these demanded deep thinking about the way that the mean represents the data

Results showed that at the early grade levels (4th and 6th), children had a sense of
the average as representing a modal amount or what is "typical" about a particular set
of data. By 8th grade, most of the childrer thought about average as the midpoint of the
data or the point of symmetry in a distribution which looks identical on each side of the
mean. In some cases, this was the midpoint of the X axis, or the midpoint of the range

1 The research described in this paper was funded in part by a grant from the National Science
Foundation. The opinions expressed in the paper are those of the authors and do not necessarily
represent the views of the Foundation.
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When given the opportunity to construct a data set for a particular average, about
half of the 8th graders and adults constructed symmetrical data sets around the mean.

In the symmetrical approach, people placed an equal number of data points above and
below the mean, frequently using a pair-wise approach where they placed one data
point a certain distance above the mean, and a second data point an equal distance
below the mean. This approach resulted in a construction in which the mean, median,
and mode were identical. In these symmetrical constructions, the average was clearly
seen as a visual balance point, but this balance could only be maintained for

symmetrical distributions: It was a significant problem for these people to deal with
skewed distributions. When symmetry was not possible (e.g., when we moved a data
point high enough so that the compensating piece of data on the other side of the mean
would be below zero), these people had to switch strategies. Their middle point was no
longer possible, and their framework for thinking about average no longer worked.

A problem that intrigued us was what strategies people would employ when they
were no longer able to use the simple balance of symmetry, and were confronted with a
problem where they needed a more complex notion of mathematical balance. In the
section which follows, we describe the strategies employed by two individualsa sixth
grade boy and an elementary mathematics specialistwhen they sense that balancing
involves more than just symmetry.

1. Fred: Balancing symmetrically and balancing totals

Fred is the only sixth grader (and one of only two students) in the group who has
both an understanding of symmetry and glimmers of a mathematical balancingstrategy
that goes beyond symmetry. In the Allowances problem, he was asked to build a
distribution of allowance data around a mean of $1.50, by placing scrabble tiles on a
large graph in which the horizontal axis was labeled in 25 cent increments. Fred first

approaches this problem in a qualitative way, putting a few tiles out fairly dose to the
average. When asked what he's doing, he replies, "Well, I'm just making some of the
numbers close to $1.50. So on average it would be close to $1.50." In fact, his data are
quite symmetrical. As he continues to build his distribution, it appears that he is
balancing each data point over $1.50 with one under $1.50. When asked whether he

thinks the average would be $1.50, he replies that his data are "balanced", and when
asked to say more about what he means, he notices something fishy:

Well, on either side of $150 there are about the same amount of pieces... wait a second... but
urnm... I think I made a mistake. But there should be more numbers on this side [points to
the lower side of the distribution] because these are a lot more .umbers. This (points to the
upper side of the distribution] is a lot more money than these [lower side].
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Fred is becoming aware that there may be another kind of balanceone which is
based on the sum of the data on either side side of the mean. In the next part of the
interview, he explores this new kind of balance. He begins by moving several of his
data points from the high side of the distribution to the low side. Now, he has lots more
on the lower side of $1.50 than on the upper side. He explains:

Red: So there would be some that would be more money [points to the data on the right
side], but there would be more that were less than $1.50 to make it even.

Interviewer: OK, and how would that make it even?

Fred: Well, maybe if some of these were added up [values lower than the mean' they would
equal what these would add (values higher than the mean].

Fred subsequently constructs another distribution of allowances which uses this
principle of "balancing totals", where the sum of the data on each side of the mean is
the same. In his second construction, he demonstrates that this technique "works" even
if you don't have any data on $1.50.

Of course, the technique does not work, but even many adults who are presented
with this strategy are intrigued with it and cannot immediately determine its flaw. The
problem becomes clear when one takes an extreme example: Given an average
allowance of $1.50, the "balancing totals" strategy might yield a distribution with 2 data
points at $3.00 (total of $6), 10 at $50 and 4 at $25 (again, a total of $6). As can be seen

below, this very skewed distribution appears to have a much lower mean than $1.50, as
indeed it doesthe actual mean is $.75. The "weight" of the data is at the lower end,
between $.25 and $.50.

Actual mean

0 .25 .50 .75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

But for someone struggling with trying to develop a mathematical balance which
works, this balancing strategy is appealing: it takes into account the values of all of the
data; it applies to nonsymmetrical distributions; it is a kind of balance which works in

- 1 9 1 -

7



Average

other familiar mathematical situations, as in balancing equations or using a pan balance.
However, what it fails to do is recognize deviation from the mean as the quantity that
must be balanced. It is not the value of each piece of data which is important, but how
far away it is from the balance point.

2. Evelyn: Scaffolding a flexible theory of balance

Evelyn is one of only two of the teachers in the study who develops a more general
and flexible theory of balance, tied neither to symmetry nor to the algorithm. She

appears to develop and solidify her ideas about the kind of balance represented by the
mean in the course of the interview. In the Potato Chips problem, she is asked to
construct the prices for 9 bags of chips so that the average is $1.38. A follow-up probe
involves doing this problem without using $1.38 as a data point. After using an
algorithmic approach successfully to solve both problems, she muses, "how else could
you do it in an organized way, without actually hitting $1.38?" Encouraged by the
interviewer, she thinks for a long time, admitting at one point, "I'm getting hung up on
the unevenness of it," referring to the odd number of bags which prevents her from
using only balanced pairs of values on either side of the mean. Then, she wonders out
loud, "what would happen if four of them, yeah, if four of them were five cents under
$1.38 and then if five of them were four cents over $1.38, that would work out," and,

finally, more confidently, "any combinations like that, if you took six of them and made
them three cents under [and] three of them at six cents over, I mean anything like that."
With this solution, Evelyn Lis abandoned both the algorithm with its demand to
consider the intermediate total and the midpoint with its demand for symmetry. She is
the only person in our study, student or adult, who comes close to devisinga general
solution to this problem. However, in the Allowance problem, involving a larger and
more complex data set, we see that her idea is not completely developed and she must
reconstruct the way this balance works.

Evelyn begins the Allowance problem with an image of a normal distribution.
She describes how to make a completely symmetrical distribution around the mean of
$1.50, but decides that "it's not very interesting." To give herself more of a challenge,
she decides to start with two tiles at $4.00, out of the range ofa purely symmetrical
distribution, which in this case must be bounded by $0.00 and $3.00. She balances the
two tiles at $4.00 with 8 at $1.00, creating a balance of the total amount of money on each
side of $1.50. Like Fred, she balances by using totals.

498
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She explains:

Evelyn: Balance [means' that if you add something to this side of the $1.50, you have to
have an equal addition to the other, I mean, the equation idea.

Interviewer: So, for instance, if you added, let's say you added six [tiles] nere at $1.00, then
how would you think about ...
Evelyn: Then I'd have to put something over here [greater than $1.501 that would equal
$6.00.

She is dearly struggling with these ideas during the interview, interrupting I
own actions frequently with questions and reflective statements indicating uncert
Although not completely content with her strategy, she does complete a distributi
which the total of the data values greater than $1.50 is equivalent to the total of the
values less than $1.50. She explains, 'The average is $1.50 because the way it's set
right now is, the amounts over here would balance with the amounts that are over
here." A new strategy of "balancing totals" has replaced the strategy of balancing
deviations which she articulated so dearly on the Potato Chips Problem. At this I
in the interview, the interviewer introduces two new pieces of data, at $0.00, and
Evelyn how she would balance these. This question quickly places Evelyn in a sts
disequilibrium as her "balancing totals" strategy cannot accommodate values of z

Evelyn: My first impulse is that you'd need two kids to go right there [at $1.501. Is that
right? Let me think. OK, we have two more kids, and that way the average is down ... a
little bit. Oh, no, we need to go up a little bit.... You need to up them ... they're $1.50
under the average. [She places two tiles at $3.00.1 That doesn't seem right, though, that's
too high.

Interviewer: To make them $1.50 above?

Evelyn: [pause] You know, what's holding me up here is if it's $3.00 each, you're actually
adding $6.00 over here, whereas down here you're subtracting $3.00, I mean, net... So, I
need, let me see, I've taken away a total of $3.00 here. Is that right? Yeah. I need to add a
total of three dollars over here, which I could do by just putting one more on the three
dollars. And then I would think it should balance... I'm still with the same idea of
balancing the value above the $150 with the value under $1.50. [pause] There's still
something not right with that, though.

Evelyn is actually balancing the sum of the deviations below the mean (the two tiles

$0.00 are a total of $3.00 away from the mean) with the sum of the data values above

mean (one tile at $3.00). As the interview progresses, the interviewer asks her to

compare the strategy she used on the Potato Chips problem with her current strat
In the course of this comparison, she decides to simplify her allowance distributic
using only three tiles and explores the possibilities with this small number of valt
With this small number of tiles, she quickly returns to a deviations strategy, finall
deciding that only the deviations are critical. Unlike a seesaw, where both weight
distance from the fulcrum matter, on this "balance beam" only distance matters, a
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Evelyn concludes: "See, I had to do it with real numbers before I was kind of
working it as an equation ... and I was getting stuck on that ... it would depend upon
where I put them in the distance away from $1.50 ... what you need to do is look at the
distance from the average."

Teaching Interventions
While it was very unusual for children or adults to make use of the concept of

deviation in finding the mean, it appears that their own notions of balance are an
important foundation for building the concepts of mean and deviation. We have
discovered some key teaching strategies for building this concept. All of them involve
data construction problems.

First, a simple method of calling attention to different kinds of balance is to have
people build a small distribution with these stipulations: 1) it has an odd number of
data points, and 2) no data can be placed on the mean. For example, in the Potato Chip
problem discussed above, there were nine bags of chips to be priced. People frequently
attempied pairwise balancing (e.g., one bag > $1.38, one bag <$1.38) and priced the
leftover bag at $1.38. We then asked, "Can you do it without using $1.38?", which

prompted people to think about different kinds of balances. Occasionally, we saw older
students and adults come up with a "triad" strategy in responsea strategy in which
three prices were balanced so that the mean was $1.38. Recognizing triads as a form of
balancing is an important step toward understanding deviations.

A second method of moving people toward a more sophisticated view of balance
involves the teacher or interviewer in making "adjustments" to the data distributions
which children have already constructed. This strategy is a helpful intervention for
peopie who balance in a strict symmetrical fashion as well as those who balance by
totals. For symmetry users, simply moving or placing one data point at the extreme
right end of the distribution can prompt disequilibrium. For example, in a distribution
of the number of children's cavities (with a mean of 3), placing a new data point at 10
cannot be compensated for by placing a data point at -4! A new, nonsymmetrical
strategy must be developed. For people who balance by totals, an appropriate

intervention might be to add several pieces of data at zero, as was done with Evelyn
This addition has no effect on the total, but has an important impact on the mean.

Finally, we are experimenting with a teaching strategy that starts with the mean,
and involves "unpacl-ing" it. We start with all data piled on the mean (for example,
data piled on 4 to represent the average family size). We then ask children to move the
data points so that they look more realistic but still represent a mean family size of 4.

500
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Most children initially construct the data .'et by moving pairs of data away from the
mean in a symmetrical fashion. Gradually, they see that a large move on one side (e.g.,
a move from 4 to 8) can be compensated by smaller moves on the other side (e.g.,
moving two data points from 4 to 2). The fact that a family of 8 cannot be compensated
for with a family of zero provides a strong motivation to move beyond symmetry! Our
work has been primarily with concrete materials, but we are exploring a software
environment which will allow children to manipulate data around a selected mean, and
see the results of their moves.

Conclusions

The older children and teachers in our study usually had a concept of average that
involved a balance point in the data. What they didn't yet understand was average as a
mathematical point of balance that is usually different from the midpoint or the point of
symmetry, and which is quite different from the kind of balance which they have
encountered in equations or pan balances, in which each "side" has an equivalent
amount. In order to have a solid understanding of what the mean represents, and how
it relates to the data, the concept of balancing deviations is essential.

We believe that the notion of balancing is central not only to the understanding of
mean, but to the understanding of a range of central mathematical ideas. However,
there are many different kinds of mathematical balance embodied in a variety of

relationships: equations, proportion, balancing weights on a seesaw or in a pan balance.
Children and adults need plenty of opportunities to construct balancesin the realms
of statistics, geometry, and numberin order for the rules of mathematical balance to
make sense.
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Age: 12-13 yrs.
Pre-algebra

Crossing the didactic cut in algebra: grouping like terms in an equation

Nicolas Herscovics, Concordia University, Montreal
Uora Linchevskl, Hebrew University, Jerusalem

The objective of the teaching experiment reported here was to overcome the
'didactic cur, that is the student's inability to operate spontaneously with or on the
unknown in an algebraic equation. In order to teach the procedure of grouping like
terms, we treated a multiple of the unknown as a string of additions (e.g.
3n=n+n+n). This proved to be adequate for the grouping of terms involving
multiples of the unknown. A persistent difficulty was observed in the grouping of a
multiple and a singleton (i.e. 5n+n=192). A different problem of an arithmetic nature
occurred in 5 of the 6 :ase studies. In jumping over terms in order to group like
ones, students tended to be influenced by the operation following their take off term
and ignore the operation preceding the term on which they were landing.

In a recent paper (Herscovics & Linchevski, 1991), we have reported the results of a
study assessing the range of first degree equations in one unknown that could be
solved by seventh graders prior to any formal instruction in algebra. For equations in
which the unknown appeared only in one term, the overwhelming majority of students
used inverse arithmetic operation(s) as a solution procedure. For equations involving
two occurrences of the unknown, we have to distinguish cases in which the unknown
appears on the same side of the equal sign (e.g. 3n + 4n = 35) and others in which it
appears on both sides (e.g. 4n + 9 = 7n). Since our subjects had never seen a double
occurrence of the unknown, they had to be informed that solving the equation meant
finding a number that could be substituted for n in both terms. Practically all our
students were able to solve all these equations and about 90%(20 out of 22) used
systematic substitutions as a solution procedure. These results are complementary to
those obtained by Filloy & Rojano (1984) who pointed out that a sharp demarcation
exists between arithmetic and algebra as evidenced by what they called the didactic
cut, that is, the occurrence of the unknown on bath sides of the equality symbol. Our
investigation has shown that students use the same solution method (systematic
substitution) whether the unknown appears twice on the same side of the equation or
when it appears on both sides. This leads us to view the didactic cut not in terms of a
mathematical form but in terms of a cognitive obstacle (Herscovics, 1989). We define
the didactic cut as the student's inability to operate spontaneously with or on the
unknown.

A tepch Ina experiment
In order to study the cognitive potential of some pedagogical interventions aimed at
overcoming the didactic cut, we designed an Individualized teaching experiment
involving six case studies. We opted for this methodology in order to study the
student's thoughts in a dynamical state while instruction was taking place
(Menchinskaya,1969). We prepared a sequence of three 45' lessons. Each lesson
was semi-standardized in the sense that a script had been prepared with the exact
wording of each problem as well as some related questions to be raised by the
instructor-interviewer. The lessons were semi-standardized so that the interviewer had
the freedom to adjust the wording of the questions to maka sure that they were
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understood by each student and also hi the sense that the researcher could pursue
any interesting avenue unforeseen in the preparation of the experiment. A second
person acting as an observer was present during all the lessons. The observer came
prepared with a detailed outline used to record all the students' responses. The
lessons, as well as the pre-test and the post-test, were videotaped so that further
analysis was always possible.

The six subjects that were chosen reflected three levels of mathematical ability as
determined by the classroom teacher through her regular assessment of their
schoolwork performance. Our two top students were Andrew and Daniel, our average
students were Andrea and Robyn, our two weaker students were Joel and Audrey. The
three lessons planned in this experiment dealt respectively with grouping like terms,
cancellation of additive terms, cancellation of subtractive terms. This paper will be
restricted to a detailed account of lesson 1. the teaching and learning related to the
grouping of like terms.

Pre-test
Since our initial assessment had taken place during Oct.-Nov.1990 and our teaching
experiment was scheduled for March-April, '91, we first had to ascertain if any changes
had occurred during this time interval. We used the following equations to verify this:

1)13n
2) 16n
3) 12n

+ 196 =
215 =
156 =

391
265
0

4) iln + 14n =
5) 17n 13n =

175
32

6) 4n + 39 = 7n
7) 5n + 12 =3n + 24

By and large, we observed very little change between the solution procedures used in
November and in March. Students used inverse operations in reverse order to solve
equations 1 and 2. Equation 3 was not part of the comparison for it had been added to
assess the student's response when 'the answer" was zero. All students used one
single inverse operation except for Robyn who first converted it to 12n = 156. Four of
the six students solved the remaining equations by systematic substitution. Two
students showed a somewhat different behavior. Robyn was our big surprise: after
several attempts to find some numerical pattern, she used grouping and an inverse
operations to solve equations 4 and 5, and a transposition followed by an inverse
operation to solve equation 6. For equation 7 she reverted to systematic substitution.
Audrey had surprised us in Nov. when she spontaneously grouped the terms in
equations 4 and 5.and used substitution for equations 6 and 7. In March she used
grouping in equations 4 and 5 but continued doing so with equations 6 and 7, thereby
indicating that it was a meaningless operation.

Another part of the pre-test which we report here deals with the students' ability to
perceive an equation globally. We felt that in grouping like terms, the students had to
be able to distance themselves and view the equation as a whole in order to re-
arrange the various terms. We used their perception of the possible cancellations in a
string of arithmetic operations as some guideline of their global perception. We asked
them to evaluate the following two sums: (a) 17+59-59+18-18=? (b) 237 +89- 89 +67-
92+92=? In Nov. only 2 students had observed the two possible cancellations in (a),
but by March all of them could point them out. Regarding string (b) the second
cancellation had been noted by 3 of the subjects. In March, this number had changed
to 4 . It is in the second cancellation (-92+92) that we had observed a behavior which
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we qualified as "a detachment of the minus sign": 10 of the 22 stodenis in our initial
assessment had first added 92+92, then went on to subtract 184 I Only one of the
students participating in our teaching experiment , Audrey, was among them and she
ceased to do so in March.

Lesson 1
In our earlier work, we had presented 7 equations with several numerical terms on
either side of the equal sign and found that the students had no difficulty in grouping
them spontaneously. The only equation where a problem did occur was 4+n-
2+5=11+3-5 . We again had here evidence of the detachment of the negative sign for
eleven of the 22 subjects first added 2 and 5 and then tried to solve the equation 4+n-
7=9 . At the time we thought of this phenomenon as an aberration or an artifact. Since
in the other equations students grouped numerical terms spontaneously we decided
that this procedure did not have to be taught.

Part 1: Grouping terms Involving the unknowq
In our earlier investigation we found that students did not spontaneously group terms
involving the unknown on the same side of the equal symbol. This is not too surprising
since similar results were found in the context of algebraic expressions (Chalouh &
Herscovics, 1988; Herscovics & Chalouh, 1985). However, in our study of the range of
solvable equations, we had also included the equation n + n = 76 . Out of 22
subjects,15 (68%) immediately divided 76 by 2, one used number facts and only 6
students used systematic substitution. These results suggest that when the terms
involve the unknown without any coefficient, for a majority of students there is a
natural tendency to group these in the solution process. We used this idea at the
beginning of lesson 1 by asking students to solve n+n=178 and immediately thereafter
to solve 2n=178 . We repeated this problem with 3n=126 and 5n=155 and then
pointed out that "when we collect all the terms in n, we call this grouping all the n's".
At this point we asked our 6 subjects Can you group the sum on the left of
3n+5n=126? Three of our students spontaneously grouped the two terms. The other
subjects were requested to expand each term into additions: n+n+n + n+n+n+n+n
=136 which they easily regrouped as 8n. After solving 8n=136 they were asked if the
answer they had found would also be a solution of the initial equation. None of them
had any doubts about it thereby indicating that they accepted the two equations as
equivalent. Two more questions were raised:- Do you think that we can add 3n and
5n even if we don't know what the number is? - Is 3n 4- 5n = 8n true for every
number n? Our six students seemed somewhat surprised by the questions but
answered affirmatively. The first of these questions was to make them aware that they
could operate with the unknown and treat it as a generalized number by which a
symbol such as a letter can be regarded "as an entity in its own right but having the
same properties as any number with which they had previous experience"
(Collis,1975) The purpose of the second question was to preventa purely mechanical
approach to grouping and to point out its general validity. Another 8 equations were
presented:

1. 4n + 3n =119
2. 13n+18n= 217

3. 5n + n = 192
4. 9n-3n =174

5. 23n 14n = 135
6. 7n n 174

7. 3n+9n + 7n = 342
8. 10n-5n + 3n = 96

In solving equation 1, 4 students grouped the two terms immediately and 2 subjects
first expanded each term into a string of additions. For the second equations, all 6

5 4
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grouped Immediately. These results show that our teaching intervention was sufficient
for the students to overcome their initial difficulty in operating on the unknown in this
specific context. Our sequence of equations was adequately incremental, with the first
problem occurring in equation 3 due to the presence of the unknown as a singleton.
Three of the 6 subjects were perplexed by this situation but overcame it when asked to
expand 5n Into a string of additions and then group all the n's. Given another singleton
situation in equation 6, two of these three students had overcome their initial difficulty.
The results on equation 4 and 5 indicate that the Introduction of subtraction was
handled with ease, all 6 students grouping the terms without any hesitation.

Equations 7 and 8 required expanding the grouping procedure to three terms. As long
as only addition was involved, no problem could be detected. But it is with equation 8
that we observed some interesting failures, that of both the strongest and the weakest
students, Andrew and Audrey. Both failures were due to a detachment of 5n from the
minus sign preceding it. Both students ignored the subtraction and instead added
5n+3n to get 8n whicti they subtracted from 10n. In both cases , it was sufficient to
question the students with an analogous arithmetic string; "Is 20 10 + 5 the same as
20 15?" The two students then corrected themselves.

Part 2:Grouping terms In the oknown In the presence of numerical terms
In order to verify if addition al mixed terms occurs spontaneously or not, we asked our
students: Can you show me now you would solve 7n + 6n + 21 = 203? Four of the 6
students (Andrea, Robyn, Joel, and Audrey) grouped the terms in the unknown with
the numerical term (7+6+21=34). For these students we had prepared the following
intervention. We asked If I have a simpler equation like 9n+17=116, can we add 9
and 17?" After they had solved the equation and found the answer to be 11, we asked
them to look at the arithmetic equation 9x11+17=116 repeating the question about the
addition of 9 and 17 This discussion proved to be sufficient to prevent any further
grouping of mixed terms as evidenced in their solution of the next three equation:
1). 17n + 12n + 36 = 210 2) 4n + 12n 17 = 127 3) 27n 41 19n = 87

Until now we had proceeded as in our assessment experiment. The interviewer wrote
down on the student's worksheet each of the operations that was suggested by the
subject; the student was strongly encouraged to use a calculator close at hand, and
furthermore, he or she could look at the interviewers notes thus eliminating the need
to keep track of past operations. It is while working on the first equation above that we
ahawid the students how to write out all the operations performed In the solution of the
equation. After grouping the terms in the unknown, we rewrote it as 29n+36=210, and
then to indicate the last two steps we wrote n=(210-36):29 ., n=6 . Andrew, Daniel and
Robyn used this notation In the solution of the next two equations. On the other hand,
Andrea, Joel, and Audrey preferred more detailed notation In their solution requiring
one equation for each step.

Fart 3 * Qrouping like terms
It is only when the possibility of adding terms In the unknown as well as numerical
terms is present that the concept of "grouping like terms" becomes meaningful. We
introduced this notion without any Instruction in order to verify if the prior work
preventing the addition of mixed terms had been sufficient. We asked our students to
solve 9n+13n+15+21=278. All six subjects solved this through the appropriate
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grouping of like terms and then the use of inverse operations. It is at this point that we
introduced the terminology.

A second equation ,Jf this type was presented: 17n+36+8n+51=262. All students,
except one, solved it Immediately using the procedure described ;Above, One subject,
Robyn, tett the need to re-write the initial equation in order to reduce the "distance"
between like terms. She re-wrote it as 17n+8n+36+51-262 , and proceeded to solve it
as had done the others.

A third equation, 102=22n-17n+49-12 ,verified if the "direction" of the equation might
affect the students' responses, Three of our students did provide some indication of
being affected by this new form. Andrea wrote =102 on the right hand side of the
equation, but then proceeded to solve it with this number on the left. Robyn re-wrote
the whole equation with 102 on the right. Audrey, after grouping like terms, re-wrote
the grouped form with 102 on the right.

The grouping of separated like terms becomes far more difficult In the presence of
both additions and subtractions as evidenced in our students' solution of

19n + 67 11n-48 =131
Three of our students (Andrew, Daniel, and Joel) tried to solve it by grouping 19n and
11 n, but the addition sign following 19n seemed to take precedence over the minus
sign in front of 11 n since they added the two terms. The same pattern was used by
Andrew and Daniel in grouping the numerical terms.: 48 was subtracted from 67, but
they ignored the addition sign preceding 67 and focused on the subtraction sign
following It and wrote their result as 19 . We provided two specific Interventions. We
used the arithmetic string 20 + 5 10 and compared it with 20 10 + 5, bringing out
the fact that the indicated operations had to be carried with the number in any change
In the sequence of the string. We then suggested that the equation be re-written and
the terms be re-ordered so that the like ones would be consecutive This was sufficient
to generate the correct grouping and inverse operations needed to solve the equation.
Regarding the other three subjects, Andrea was the only student who did not
experience any difficulty with this equation. Robyn spontaneously re-wrote the initial
equation in order to gather like terms closer together and proceeded to solve the re-
arranged form. Audrey grouped correctly the numerical terms but experienced
difficulties in grouping the terms in the unknown. She received the same instruction as
the others regarding changes in the sequence of operations.

From these detailed descriptions, it appears that the need to deveLp the ability to
perform operations non-sequentially must overcome the hurdle created by the
presence of different arithmetic operations. Clearly, this is one area of pre-algebra that
causes widespread problems. However, that the simple interventions seemed
sufficient to rerne,dy the situation was verified through the last equation presented in
lesson 1:

7n + 29 + 16n-12 9n + 49= 37 + 295
Three of ou7 6 students re-wrote the equation as 7n + 16n 9n + 29 12 + 49 = 37 +
295 and then proceeded to group like terms and use inverse operations. The other
three students grouped like terms without any prior need to re-write the equation.
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Post-test
A post-test was administered one month after the teaching experiment. One o
students, Joel, showed signs of detaching a number from the indicated operatic
evaluating 189-50+50 as 189-100 . To evaluate their performance on grouping
had prepared a list of 8 equations. However, they had not done any algebra sine
3 lessons given more than 4 weeks ago, and hence we thought that some o
procedures we had taught would not come to their mind spontan-ously. We thus
prepared three tasks that were to be used as triggers that we hoped would jolt
memory and replace them in the framework needed for the solution of equations
the grouping procedure, one such trigger was required by only one student, Rc
who simply did not know what to do when faced with the first equation, 11n+14n:
We had prepared a worksheet used at the end of the three lessons listing the difli
procedures we had taught and asking the students to indicate which one was t
used on the four equations that were presented. For Robyn, this review pn
sufficient to trigger the grouping procedure.

The following equations involving grou ing were used in the post-test:
7)19n+67-11n-4

I 8)7n+29+16n-12-9n+49.37+29

The first difficulty appeared in the solution of equation 3. All our students with
exception of Andrew and Daniel failed to solve it. The presence of the unknown it
form of a singleton was simply not considered as a multiple of n that could be ai
since it lacked a numerical coefficient. This was expressed very clearly by Robyn
stated" five n plus zero n is five n".

The next three equations were solved by all students without any problem. In equ,
4, no one added 5n+3n thereby indicating a detachment of the minus sign from 5
equation 5, not a single student grouped mixed terrr.,.; although four of them had
so during the teaching experiment.

It is on equation 7 that we observed the recurrence of a problem noted earlier. Di
the initial lesson, three students, Andrew, Daniel, and Joel had added 19n and
two of them, Andrew and Daniel had subtracted 48 from 67 but then decided tha
result ,19, had to be preceded by a minus sign. In the post test, Daniel starts
adding 19n to 11n but then corrected himself. When queried about it he stall
thought you're supposed to use the sign after the first number." In the post-test,
repeated the same mistake explaining quite convincingly that "19n goes with the
sign." Audrey, failed to solve the same equation for the same reason.

1)11n+14n=175
2) 17n-13n=32

r3) 5n+n=192 5) 7n+6n+21=203
4)10n-5n+3n=96 6)39+12n +47+21 n=383

Conclusion
The teaching experiment was successful in overcoming the cognitive obstacle kr
as "the didactic cur, that is, the students' initial inability to operate with or or
unknown. Of course, this change is restricted to the very limited operation invol
that of grouping like terms In an equation. Our subjects' performance indicates
they are viewing the literal symbol as a generalized number. However, the fact
four of them had problems dealing with the occurrence of the unknown in the form
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singleton must moderate this statement. One must also remember that with all our
equations we remained in the realm of natural numbers.

As in our first investigation we discovered the tendency to detach the minus sign
preceding a numerical term. In this experiment too, we found a major cognitive
problem of an arithmetical nature. During the teaching experiment, Andrew, Daniel,
and Joel solved equation 7 by adding 19n+11n. In the post test, Joel repeated this
mistake while Audrey was doing it for the first time. Both Daniel and Robyn showed
great hesitation, not being sure whether to add or subtract. Thus, 5 of our 6 students
showed at one time or another evidence of some this problem. Two of them clearly
stated that they were jumping over terms but carrying with them the operation
immediately following their take off term. Perhaps one can summarize this behavior as
jumping off with the posterior operation. That this type of problem is not trivial is
shown by the fact that during the lesson this problem was addressed but that a month
later, one of the students was repeating the same mistake, a second one was no
longer sure about what to do. This seems to indicate that the problem is rather robust
and that perhaps, it should not be dealt with incidentally but should be addressed as a
serious obstacle in pre-algebra.
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Numerical Knowledge

Age Level: Age 4:9-5:8
Identifier: Number Concepts
Identifier: Minority Students

NUMERICAL KNOWLEDGE OF ENTRY-KINDERGARTENERS:
AN URBAN STUDY

Patricia F. Campbell, Jeri Benson, Honi J. Bamberger, and Susan R. Hutchinson
University of Maryland at College Park, College Park, Maryland

Between day 5 and day 12 of the school year, all of the entering kindergarten
children in six predominantly minority, urban, public schools were
interviewed to characterize the children's knowledge of number and
counting prior to formal schooling. Tasks included enumeration, set
construction, and counting on. In addition, the children were
administered tasks that required them to apply their knowledge of number
to solve quantitative problems presented within a real-life context.

Prior to formal schooling, young children construct knowledge of number

and counting through real-life events (Ginsburg, 1982). As noted by Leinhardt

(1988), circumstantially-based knowledge may be applied by a child when solving

problems based in a context that is familiar to that child. Prior studies have

characterized older children's use of informal knowledge to solve mathematical

problems (e.g., Carpenter & Moser, 1983) and have examined young children's

knowledge of counting and early number prior to schooling (e.g., Fuson, 1988). This

study extends this work in two ways. First, it simultaneously examines the entering

kindergarten child's proficiency in counting, in constructing sets, and in solving

contextually-based numeric problems. Second, this study's sample reflects culturally

diverse children of varied socio-economic levels. Need for this type of research was

noted by Secada (1988) who cautioned that if research on cognition fails to include

minority learners, then that research may fail to identify any unique characteristics

The work reported herein was supported by a grant from the National Science
Foundation to the first author (MDR-8954692). Any opinions, findings, and
conclusions expressed in this publication are those of the authors, and no
endorsement from National Science Foundation should be inferred. Computer
access time was partially supported through the facilities of the Computer Science
Center of the University of Maryland at College Park.
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Numerical Knowledge

of those underrepresented learners. Secada warned that such a research base may
then legitimize the perception that any minority learners' deviation from "the
expected" is either marginal or deviant.

This report examines the understanding and application of cardinal number
offered by culturally diverse children upon entry into kindergarten. This

. investigation is part of a larger study that will attempt to periodically reassess these
children over a three-year period. Thus, this report is limited to examining specific
constructs at a given point in time in order to establish baseline data characterizing
the numerical knowledge of culturally diverse kindergarten children. The
constructs selected for inclusion in this assessment were identified in light of
existing theoretical models that offer a framework for examining the maturation of
a young child's construction of number.

METHODOLOGY

Sample. The sample for this study consisted of each of the 469 kindergarten
children in 21 classrooms located in six predominantly minority public schools in
Maryland, on the outskirts of Washington, D. C. Each of these schools is located in a
generally contiguous urban area reflecting culturally diverse neighborhoods.
Because of the three distinct multicultural and socioeconomic patterns reflected in
the schools, the six schools may be better characterized as three pairs of schools (pair
A, B, and C) with the schools in each pair reflecting similar economic and
racial/ethnic patterns. Table 1 depicts the racial make-up within the kindergarten
classrooms within the pairs of schools. An economic characterization of the six
schools may be inferred from the percentage of children receiving reduced fee or
free school breakfast and/or lunch through a government-supported program.
Assistance was deemed appropriate for approximately 70% of the children in pair A,
58% of the children in pair B, and 35% of the children in pair C.

Interview Protocol. Because of the number of children involved, the

interview protocol was structured with a scripted format. The script outlined
alternative directions and clarifications, as well as describing the placement and use
of supporting manipulative materials. Although other items composed the entire

T."t.) 0
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Table 1 Racial Distribution Upon Entry into Kindergarten

White Black Asian Hispanic

Pair A

School 1 11 ( 9%) 53 (45%) 18 (15%) 36 (31%)

School 2 4 ( 8%) 16 (38%) 8 (19%) 15 (35%)

Combined 15 ( 9%) 69 (43%) 26 (16%) 51 (32%)

Pair B

School 1 22 (21%) 24 (23%) 10 ( 9%) 49 (47%)

School 2 28 (28%) 26 (36%) 4 ( 5%) 15 (21%)

Combined 50 (28%) 50 (28%) 14 ( 8%) 64 (36%)

Pair C

School 1 34 (46%) 33 (44%) 0 ( 0%) 7 (10%)

School 2 22 (40%) 16 (28%) 3 ( 5%) 15 (27%)

Combined 56 (43%) 49 (38%) 3 ( 2%) 22 (17%)

The category White includes any child who is not Black, Asian or Hispanic

interview, this report only addresses the items, and item clusters, that focused on

numerical knowledge. The protocol was translated into Spanish for administration

to Spanish-only speaking children (13. = 72) by bi-lingual interviewers. Children who

were fluent in Vietnamese (ri = 6) or Khmer (n = 9), but not English, were assessed

by an English-speaking interviewer who was accompanied by either a Vietnamese

or a Cambodian translator.

The numerical knowledge items assessed the following understandings: rote

counting (children were stopped if they counted correctly to 35), counting sets (of

size 3 and 5), constructing sets (of size 3, 4, 9, and 15), cardinality, unit rule (4 + 1;

4 - 1), repair of sets (modify 1 to 3), identifying larger number as more within a story

context (3 vs. 2; 10 vs. 4; 7 vs. 3), solving simple join and separate word problems

(3 + 1; 4 + 2; 5 - 2), and counting on (identifying what number comes after a specified

number during counting and rote counting on). The actual interview items were

either identical to or modified forms of items developed in prior studies conducted
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by Baroody, Bergeron, Carpenter, Cobb, Fuson, Ginsburg, Herscovics, and Steffe.

Dolga. As part of a larger study, one school from each pair was randomly

selected to participate in a teacher enhancement program. Therefore, the design for

the analysis of this baseline data was constrained to determine if there were entry-

level differences in numerical understanding between the kindergarten children

enrolled in the schools where the teachers are scheduled for inservice enhancement

and the kindergarten children in their paired schools (TX effect). The design also

examined whether their were differences associated with the three different racial

and socioeconomic patterns reflected within the three pairs of schools (SES effect).

The inclusion of 21 classrooms yields an unbalanced mixed effects model with two
fixed effects (TX, SES) and an interaction term (TX SES) as well as a random effect

due to classroom (CLASS), nested in TX and SES.

ANALYSIS

In order to inhibit frustration, item administration branched at given points

during the interview. If a child incorrectly counted a set of 3 beans, then the child

was not asked to count 5 beans; rather the more difficult item was coded as

"incorrect". A similar branch was made for the sequence of set construction items

(construct sets of 3, 4, 9, and 15). If a child could not construct a set of size 3 or 4, then

the subsequent unit rule, repair sets, word problems and counting on items were
not administered as each of these subsequent items presumed this set construction

knowledge. These items were then coded as incorrect for the purpose of this
statistical analysis.

Reliabilities. Items within the interview protocol that were designed to assess
similar constructs were clustered, and subscale reliability was computed using
Cronbach's alpha. Subscale reliabilities were computed for counting sets (.547),

constructing sets (.869), adjusting set size (i.e., items reflecting unit rule or set repair)
(.612), identifying larger number in context (.78), addition and subtraction word
problems (.685), stating what number comes next in a count (.853), rote counting on
(.672), and numeral recognition (.912). Reliabilities were also computed for two
defined aggregate scales: Number in context (cluster of unit ruleset repair,

512
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identification of larger number in context, and addition and subtraction word

problems) (.816) and early number concept (cluster of counting sets, constructing sets

and cardinality items) (.769).

MANOVAs. A multiple analysis of variance was computed on the subscales

using SAS's general linear models procedure as defined for a nested, mixed effects

modal. To hold any Type 1 error rate constant across the multiple statistical tests

made for item clusters, Bonferroni critical values were used to determine statistical

significance of resulting ANOVAs, as well as for ANOVAs computed on aggregate

scales and rote counting data. The only significant overall effect identified in the

MANOVA was SES (E(20,10) = 5.32; iz = .0048). Subsequent examination of the

related subscale ANOVAs yielded significant SES effects within two of the subscales:

identifying the larger number in context (F: (2,15) = 9.42; g = .022) and stating what

number comes next in a count (E (2,15) = 9.59; g = .021). An examination of means

revealed that for both of these subscales, school pair C had significantly greater mean

scores as compared to school pairs A and B. No significant effects or interactions

were noted on ANOVAs computed on the aggregate scales or rote counting data.

DISCUSSION

Descriptive Analysis. As indicated in Table 2, of the 469 children in the

sample, 22 children (4.7%) could do no more than imitate the counting stem offered

by the interviewer (WOULD YOU COUNT FOR ME?... COUNT WITH ME....

ONE ... TWO ... THREE ... NOW YOU KEEP GOING.). However, 78.9% of the

children could count to 10 or beyond upon entry to kindergarten, while 22% could

also count beyond 29. Many children clustered within the 11 through 14 range

(25.3%) or stopped counting at 29 (a = 35; 7.5%).

Table 2: Enumeration Skills of Entering Kindergarten Children by SES: Frequency

Count: 0-3 4-5 6-9 10 11-14 15-19 20-29 30-35

Pair A 7 (4%) 9 (6%) 19 (12%) 14 (9%) 52 (32%) 18 (11%) 20 (12%) 22 (14%)

Pair B 10 (6%) 16 (9%) 21 (12%) 12 (7%) 43 (24%) 14 (8%) 22 (12%) 40 (22%)

Pair C 5 (4%) 3 (2%) 9 (7%) 7 (5%) 24 (19%) 12 (9%) 29 (22%) 41 (32%)
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Table 3: Counting Set Skill of EnteringKindergarteners by SES: Frequency Correct

Pair A Pair B Pair C
Counts 3 beans

Counts 5 beans
145

128

(90%)

(79.5%)

166

145

(93%)

(81%)

126

115

(97%)

(88.5%)

The conceptual demand of constructing a set composed of a specified number
of items, as opposed to counting a set consisting of a given number of items, is
demonstrated in the data in Tables 3 and 4. Although the distinction was not
statistically significant, the children in Pair C, with a, higher economic basis and ?
lower percentage of minority children, seemed to have constructed a scheme for
constructing larger sets than the children in the other four schools. As expected, an
increase in the quantity to be considered increased the difficulty associated with both
the set counting and the set construction tasks.

Table 5 characterizes the children's facility in using number in applied
contexts. Approximately 50-75% of the children sampled could apply their construct
of number to familiar contexts prior to formal schooling. Although patterns in the
data between the three pairs of schools may be discerned, with the one exception of
determining the larger of two numbers beingused in context, these distinctions are
not statistically significant.

When asked what number is one more than 3 and what number follows 8
when counting 37% of the children in Pair C answered both questions correctly
while only 16% (Pair A) and 19% (Pair B) of the other children were successful,
yielding the significant SES effect.

Table 4: Constructing Set Skill of Entering Kindergarteners by SES

Pair A Pair B Pair C
Constructs set of 3 108 (67%) 133 (75%) 115 (88.5%)
Constructs set of 4 85 (53%) 109 (61%) 104 (80%)
Constructs set of 9 61 (38%) 78 (44%) 76 (58.5%)
Constructs set of 15 20 (12%) 34 (19%) 36 (28%)

5 I 4
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Table 5: Entering Kindergarteners' Understanding of Number in Context

Pair A Pair B Palr_C___

Unit Rule (4 +1) 74 (46%) 90 (51%) 91 (70%)

Unit Rule (4 -1) 77 (48%) 98 (55%) 92 (71%)

Repair Set of Size 1
to a Set of Size 3 78 (48%) 102 (57%) 99 (76%)

Who has More? 2 or 3? 80 (50%) 103 (58%) 101 (78%)

Who has More? 3 or 7? 76 (47%) 95 (53%) 95 (73%)

Who has More? 10 or 4 59 (37%) 75 (42%) 90 (69%)

Join Result Unknown (3+1) 75 (47%) 94 (53%) 93 (72%)

Join Result Unknown (4+2) 52 (32%) 66 (37%) 74 (57%)

Separate Result Unknown (5-2) 47 (29%) 53 (30%) 52 (40%)

Although the analysis presented here has been constrained by the lack of

individual SES data on each student, this work does offer clarification of the broad

and varied understandings possessed by the children in predominantly minority

kindergartens. In particular, many of the children are quite adept at using their

informal knowledge of number to solve problems situated in real-life contexts.
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Age Level: Undergraduate
Identifier #1: Proof
Identifier #2: Concept understanding

A CONCEPT-UNDERSTANDING SCHEME AND THE LEARNING OF PROOF

Robert C. Moore
Southern College of Seventh-day A iventists

Collegedale, TN

ABSTRACT: This study examined the cognitive difficulties undergraduate students
experience in learning to do mathematical proofs. The data were collected primarily
through nonparticipant observation and interviewing, and analytic categories were
developed inductively from the data. The major sources of the students' difficulties
are discussed in terms of a concept-understanding scheme involving concept
definitions, concept images, and concept usage.

The present study sought to understand the sources of undergraduate students'

cognitive difficulties in learning to read and write proofs as they make the transition from the

lower-level mathematics courses emphasizing computations and symbol manipulations to the

upper-level courses requiring proofs.

Although few empirical studies have addressed the learning of proof at the

undergraduate level, the literature suggests the following areas of potential difficulty for

students: (a) perceptions of the nature of proof (Balacheff, 1988; Bell, 1976, 1979;

Galbraith, 1981; Schoenfeld, 1985), (b) logic and proof techniques (Bittinger, 1969; Solow,

1982), (c) problem-solving skills (Goldberg, 1973/1975; Schoenfeld, 1985), (d) mathematical

language (Leron, 1985; Rin, 1983), and (e) concept understanding (Dubinsky and Lewin,

1986; Hart, 1987). Whereas most of these studies focused on a particular aspect of proving,

the present study took a broader perspective by attempting to determine which areas of

difficulty are the most salient for capable students who are just learning to do proofs.

Methodology

The purpose of the study was to develop a grounded theory of the students'

difficulties in learning to do proofs in a first course that emphasizes proofs. I conducted two

This paper is based on the author's doctoral dissertation completed in 1990 at the University of Georgia under
the direction of Jeremy Kilpatrick.
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preliminary studies and the main study in undergraduate mathematics courses at the

University of Georgia in 1989. The first preliminary study was in a group theory course,

and the other two studies were in a transition course designed to teach students how to do

proofs and to introduce them to certain mathematical concepts that pervade advanced

mathematics courses. The topics included in the transition course were logic and proof

techniques, set theory, relations and functions, and the real number system. The assigned

proofs were short deductive proofs based largely on definitions.

I conducted the main study during the 10-week fall quarter. The professor was a

research mathematician who had taught a wide variety of undergraduate and graduate

courses. The class consisted of 16 students: 8 undergraduate mathematics majors, 6

undergraduate mathematics education majors, and 2 graduate mathematics majors. I selected

five students as key participants. They represented a variety of mathematics backgrounds

and were willing to meet with me for tutorial sessions and interviews outside of class.

The data collection methods included daily nonparticipant observation of class,

interviews with the professor and with the students, tutorial sessions conducted with

individual and small groups of students, two open-ended questionnaires given to the class,

and examination of the key students' tests. As the study progressed, I analyzed the data

inductively by writing categories of the students' difficulties in the margins of my fieldnotes

and interview transcripts and by looking for properties of the categories and relationships

among them.

Findings

The data revealed three major sources of the students' difficulties with proofs: (a)

concept understanding, (b) mathematical language and notation, and (c) getting started on a

proof. These areas of difficulty, and seven particular difficulties (D1 - D7), are shown in the

diagram in Figure 1. The arrows between the boxes indicate that a difficulty in one area led

to a difficulty in another. Other sources of difficulty, such as poor problem-solving skills

and lack of prerequisite knowledge, were also evident in the data but were not major sources

of difficulty for the students in this course.

- 2 I 1 -



Mathematical
Language
and Notation

D6. Cannot
understand
and use
language
and notation

Learning of Proof

Concept Understanding

Images

D2. Lack intuitive
understanding of
the concepts

D3. Cannot use
concept images
to write a proof

Defintioas

Dl. Cannot
state the
definitions

Usage

D4. Fail to
generate and
use exatuf.!,s

D5. Do not
know how to
structure a proof
from a definition

Getting Started
on a proof

D7, Do not
know how
to begin a
proof

Figure I. Model of the major sources of the students' difficulties in doing proofs.
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Concept-Understanding Scheme

Tall and Vinner (1981) distinguished between the formal verbal definition of a

mathematical concept, the concept definition, and the cognitive structure in an individual's

mind associated with the concept, the concept image, which is derived from examples,

diagrams, symbols, and other experiences cite has with the concept. The data from the

present study revealed a third aspect of concept understanding, concept usage, which refers

to the ways one operates with the concept in generating or using examples or writing proofs.

The term concept-understanding scheme refers to these three aspects of a concept:

definition, image, and usage.

As an example of the concept-understanding scheme, consider the notion of a one-to-

one function. Two definitions are commonly used: (a) A function f is one-to-one if no two

distinct ordered pairs off have the same second term, or (b) a function/is one-to-one if for

all x and y in the domain off, fix) = fly) implies that x = y. Although these two definitions

are mathematically equivalent, one may be easier to use than the other for a particular task.

One's concept image of one-to-one may include specific examples or nonexamples, such as

x3 or x2, a dynamic mapping of points (drawn on paper with arrows between dots), a graph

in the Cartesian plane in which no horizontal line meets the graph more than once, or other

representations. A student, Linda, drew the following diagrams when I asked her to explain

one-to-one. They reveal aspects of her concept image.

Rr (1,2), (3,9), (2,2)1

not ne..t, -aa Anekort

2 .

3

nit /

Finally, one uses the definition of one-to-one in at least three ways. One way is to generate

examples or nonexamples. For this purpose the first definition above may be easier to use

than the second. Linda appeared to use the first definition to generate her nonexample

involving ordered pairs. Another way to use the definition is to apply it at a particular point
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in a proof. If one has that f(x) = fly), then one uses the definition to obtain the next line in

the proof, x = y. The definition provides both the language and the justification for the

statement. A third way is to use the definition for the overall structure of a proof. To prove
that f is one-to-one, one begins by supposing that Ax) = _Ay) and then shows that x = y. The

second definition is better for this purpose because it clearly reveals how such a proof should
begin and end.

Discussion

As illustrated in Figure 1, the students were unable to do proofs when they did not
know the definitions for the concepts involved or did not know the most appropriate

definition (D1), when they had little intuitive understanding of the concepts (D2), or when
they did not know how to use a definition to structure a proof (D5). When I asked Linda
about one-to-one, she stated the first definition and gave correct examples and nonexamples,
but she did, not know how to write a proof that a function is one-to-one. She chose the

wrong definition to work with, and even when I gave her the second definition she did not
know how to use it to begin a proof.

The arrows emanating from the Images box indicate that the students often needed to
develop an informal understanding of a concept before they could understand its definition,

including the language and symbols used in the definition, or know how to use it in a proof.
But as shown by the episode with Linda, knowing a definition and having an informal

understanding of it are not sufficient to do a proof. Her definition and concept image did not
provide the language and logical structure she needed to write a proof (D3).

Mathematical language and notation (D6) was an obstacle for many students.

Although most of them overcame most of their difficulties in this area by the end of the
course, some students had difficulties throughout the course. In Figure 1, the arrow^ from

the Mathematical Language and Notation box indicate that difficulties in this area prevented

the students from understanding concepts and using definitions. In particular, the students
could not understand a definition because they did not understand the language or notation

used in the definition. On the other hand, they seemed to learn the meaning of the language

and notation by learning the definitions; that is, by developing their concept images through
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examples and diagrams they gained an understanding not only of the definition but also of the

symbols, words, and grammar of mathematics. Also, learning to translate a de.. :Ion into

symbolic form in which quantifiers are explicitfor example, f is one-to-one if Vx Vy (az) =

J(y) - x = y}- helped them see the logical structure of a proof based on the definition and

facilitated their use of the definition.

In many instances the students were unable begin a proof. Figure 1 shows that this

inability way due to deficiencies in all three aspects of concept understanding and in language

and notation. Also, the students often began a proof with the wrong hypothesis.

Specifics;;, they tended to begin a proof of an implication If P then Q" by writing the

statement P, rather than using P at the appropriate place in the proof. This error suggests a

misconception about the role of hypotheses in a proof.

Finally, the findings suggest differences between the students' cognitive structures and

the professor's. His knowledge of a mathematical concept seemed to be organized into a

single schema that included multiple definitions for the concept, a well-developed concept

image, and an understanding of how the concept is used. His work with the concept was

facilitated by his ability to move freely among these different aspects of his schema as

demanded by the task at hand. In contrast, the students often knew at most one definition for

a concept, had superficial or narrow concept images, and lacked an understanding of how

definitions are used. Furthermore, their knowledge of the concept was not orchestrated into

a whole but appeared to be organized into separate schemata. In short, the professor had

more domain-specific knowledge, more general knowledge, and better knowledge

organization.

In conclusion, the study reveals that concept definitions, concept images, and concept

usage interact with one another as students learn to do proofs and that these three aspects of

concept understanding are linked with other difficulties the students have in reading and

writing proofs.
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Age Level: Grade 6
Identifier *1: Fractions
Identifier 02: Measurement

SIXTH-GRADERS' KNOWLEDGE OF FRACTIONAL PARTS OF AN INCH

Carol Novillis Larson
University of Arizona

Sixth-grade students performed a number of tasks that involved
representing fractions and mixed numerals on a ruler scaled to the
eighth-inch. Most students successfully measured and identified half-
inches and mixed numerals; they had few problems with unit
identification similar to those reported in the literature for number
lines. Few students consistently responded correctly to fourths and
eighths of an inch.

This study investigated sixth-grade students' ability to use a 6-inch

ruler scaled to the eighth-inch to measure lengths to the exact half-, fourth-

and eighth-inch. In Kieren's (1976) analysis of the rational number concept

this would be one application of the measure subconstruct. ?revious research

(Larson, 1980; Bright et al., 1988) has shown that the measure subconstruct as

represented by the number line is very difficult for both elementary and

junior high school students. The purpose of this study was to see if students

had the same difficulties with representing fractions on a ruler as they did

with representing fractions on a number line. In past: research, rulers and

number lines have been considered to be essentially the same model, with the

result that few rational number research studies have investigated the ruler

as a model. For example, Lesh, Landau, and Hamilton (1983) classified the

ruler as another number line representation on their test, Rational Number

Concept Assessment.

A comparison of the features of the number line and the ruler shows that

they are similar in that they are both related to linear measurement as they

both contain a well-defined unit of length which can be partitioned into

fractional parts and a scale. One way in which they differ is that the linear

unit used on a number line is a non-standard unit, whereas the unit on the

ruler is fixed, has a specific name, and is part of a system of measures

(Ohlsson, 1988). The inch was the fixed unit used in this study Another way

in which they differ is the manner in which the points on the scale are

indicated. On the number line each rational number, including those that are
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whole numbers, are marked with identical dots or with vertical lines of the

Salle length. On the ruler, the fixed unit is marked by vertical lines that

are longer than any of those used for fractional parts. Also as is customary,

the marks on the ruler indicating halves were longer than those for fourths

which were longer than those for eighths.

A third way in which the number line and a ruler differ is that rulers

are common in the real world of ten- and eleven-year-olds outside the

mathematics class both at school and home, whereas the number line as a model

for rational numbers is usually only encountered in mathematics lessons. By

sixth grade students should have encountered many opportunities to use rulers

in and out of school.

Method

Sub ects

Sixteen sixth-grade students were selected from 48 sixth-graders who had

completed an 84 item Fraction Test that included items testing their ability

to associate fractions with area, number line, and ruler models, and to

identify equivalent fractions. The pattern of responses on the paper-and-

pencil Fraction Test was reported elsewhere (Larson, 1987). The 48 sixth-

graders were separated into five quintiles based on their total scores on the

Fraction Test. The students who were interviewed in this study were randomly

selected from the following quintiles: Quintile 1 (n 5), Quintile 3 (n

5) and Quintile 5 (n 6). All of the students attended the same school which

is located in a lower to middle socio-economic area in Tucson, Arizona, and

contained many minority students.

Interview

In a clinical interview the 16 sixth-grade students were asked to

respond to three types of measurement tasks involving fractions administered

in the following order:

Type I Tasks. The interviewer pointed to a mark on an enlarged ruler

and asked each student to identify the indicated length from the left edge of

the ruler. Lengths indicated were: 4 inches, 3/4 inch, 2 1/4 inch, 3/8 inch,

1 5/8 inches, and 1/2 inch.

Type II Tasks. The interviewer asked each student, "Where would you

begin and step to draw a line n inches long?" The following lengths were

524
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presented orally and in writing: 3 inches, 1/4 inch, 5/8 inch, 3 1/2 inches,

2 7/8 inches and 15/8 inches.

Tyne III Tasks. The students were asked to measure strips of cardboard

and to write the lengths on a record sheet. The strips measured ware the

following lengths: 2 inches, 3/8 inches, 3/4 inches, 3 1/2 inches and 2 5/8

inches.

In all tasks a large replica of a 6-inch ruler scaled to the eighth-inch

was used so that the students' responses could be adequately recorded on video

for later analysis. All of the students identified a 12-inch wooden ruler as

being a "ruler" and except for one student, correctly identified the inch as

the basic unit on this ruler. The students were then introduced to the

enlarged replica of the ruler. None of the students were bothered by agreeing

to call the unit on this ruler one inch.

Results

All of the students were proficient with using a ruler to measure a

whole number of inches; only one error was made on these tasks. Fourteen of

the students were very consistent with using mixed numerals when measuring

inches. All of these students' errors related to the fractional part of the

mixed numeral. They demonstrated that they knew that a mixed numeral of the

form "w a/b" meant "w" inches and a part of the next inch. So, if they could

associate halves, fourths, and/or eighths with appropriate parts of an inch,

then they could also respond correctly to mixed numerals that included these

fractional parts.

In addition to examining the number of correct responses to each

individual task, each student's set of responses to all ruler tasozs were

analyzed for patterns of knowledge and strategies across tasks. Only one

student (088, Q5) responded correctly to all tasks; she was the only student

who consistently related improper fractions to the ruler. One other student

(#82, Q5) responded correctly to all measuring tasks except for the ones

dealing with improper fractions.

At the other end of the spectrum were two students (0108, Ql; & 10103,

QI) who were incorrect on almost all tasks involving fractional parts of an

inch, including halves. During the interview Student #103 consistently called
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eighths of an inch helves. He counted the correct number of eighths in Type

and III Tasks but gave the incorrect name to the part; for example for 6/8

inch he said "six-halves of an inch". When he responded "four - halves" for 1/2

inch, the following discussion took place:

I: "Why do you call each one of these a half?"

S: "Cause sometimes in the class that's what I hear her say, half and
half. And when it's in the middle, three inches and a half."

I: "Are these in the middle? (I pointed to various eighths.)

S: "Yes."

The other twelve students had some success with the measurement tasks

involving fractional parts of an inch. Eleven of these students correctly

responded to the three tasks involving half an inch, the twelfth student (#77,

Q5) responded correctly to the two tasks involving 3 1/2 inches but not to

Type I Task involving identifying 1/2 inch. In all Type I Tasks this student

(#77) responded in terms of eighths which she seemed to associate only with

the shortest marks on the ruler. Thus she only counted the shortest marks

from the left edge of the ruler to the indicated mark or to the shortest mark

that preceded the indicated mark if it was longer (indicated fourths or

halves). For example, she responded "3/8 of an inch" when 3/4' was indicated

and 1 3/8 inches for 1 5/8 inches. After responding incorrectly to two Type

II Tasks she correctly showed 3 1/2 inches and 2 7/8 inches on the ruler, in

the latter case correctly counting eighths. She then correctly measured all

strips in the third part of the interview.

Of the other eleven students, two students (#110, Q3; & #113, Q5)

consistently identified all measurements involving fourths and eighths as a

correct number of eighths. They were not able to show 1/4 inch on the ruler

One other student (#105, Q5) was successful with all tasks involving fourths

of an inch, but she said "I don't know" or responded incorrectly to any

measuring tasks involving eighths of an inch. When asked why she had

correctly responded "three-fourths of an inch" to a Type I Task, she said,

"Because I just know." The other eight students were consistently correct

only when half-inches were involved Each of these students responded

correctly to only 0 to 3 of the 10 measuring tasks (excluding tasks involving

516
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improper fractions) involving fourths or eighths of an inch. When asked for an

explanation these students often said, "I don't know." or "I guessed."

Some of the students' explanations seemed to indicate that they

identified a half-inch, a fourth-inch (or quarter-inch), and an eighth-inch as

smaller units on the ruler. A number of students explained that the line

between two inches was called a half because it was "in the middle". Excerpts

from interviews with two students shows their reliance on memory for the names

of the fractional parts of an inch. Their statements also seem to indicate

that these two students' possess a belief in a model of "learning-by-being-

told" which VanLehn (1986) claims is an inaccurate model of learning in

mathematics classrooms. The remarks of Student *103 above is another example

of reliance on memory for the names of the fractional parts and of a student's

report that information came from "telling" by the teacher.

Example 1: Student *81 (Q3) kept commenting during the interview that
he did not know what to call the smallest parts (eighths). Early in the
interview he asked: "What are these things called?" On the last task
he repeated this question. When asked "Is there anything you can do to
find out?" He responded, "Ask Mr. Y. (his teacher)". This student had
no problem identifying proper fractions and mixed numerals when using an
area model in a previous interview.

Example 2: Student *107 (Q3) in trying to identify 3/4 of an inch at
the beginning of the interview said, "Couldn't be a half (pointed to a
half)...couldn't be a quarter (pointed to a quarter inch)." When asked
if there was a way she could figure it out, she replied, "Beats me, I
was never told what each line meant." At the and of the interview she
said, "I don't know what the small ones are." A possible way for her to
find out was "look it up in a dictionary."

Three students' responses to the Type II Task of showing where to stop

on the ruler to draw a line 2 7/8 inches long seem to be Van Hiele Level 0

type responses based on a global location (Hoffer, 1983). This was the only

task involving eighths to which Student *107 responded correctly; her only

explanation was, "My head says yeah, yeah, yeah." Two students (*91, Ql; &

*95, Ql), who did not correctly respond to any tasks involving eighths,

pointed to the mark associated with 2 3/4 inches. Stuc'rnt *91's explanation

was, "Because I have a feeling I would (stop here)." and Student *95 said:

"Because seven-eighths is almost a whole inch." This holistic approach to

this task seems to be based more on memory associating a specific fraction
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with a specific location, than with applying a rational number concept. A

number of students' correct identification of "two and a quarter inches" on

the Type I Task at the beginning of the interview also seemed to be a question

of recognizing "a cuarter".

Conclusions

Host of the sixth-grade students in this study could not consistently

use fractions to measure fourths and/or eighths of an inch on a replica of a

6-inch ruler scaled to the eighth-inch. Students tried to remember the names

of the parts rather than use their more general fraction knowledge to figure

out the names of fractional parts. Students seldom counted the number of

parts in an inch to determine the denominator. They usually either remembered

the name of the part or they didn't. Most counting activities were related to

the numerator of the fraction.

One error commonly made by students when representing proper fractions

on number lines of length greater than one was to disregard the unit and treat

the total length of the given number line as the unit (Larson, 1980; Bright et

al., 1987). This error was never made by the sixth-graders in this study when

associating fractions with marks on the ruler. They consistently identified

the inch as being the unit. With a few exceptions, incorrect responses for

proper fractions were identified as being between zero and one; and those for

mixed numerals of the form "w a/b" were identified as between 'w" and

"w + 1".

All of the sixth-graders in this study understood the measurement

concept of unit iteration and most of them understood the concept of repeated

partitioning of the unit to fora secondary units (Ohlsson, 1988). They

demonstrated the later by treating a half-inch, a fourth-inch, and an eighth-

inch as secondary units with arbitrary names that they either recalled or

didn't. The equivalent partitions of the inch were not addressed by most of

these students by applying their rational number construct. If they had done

so then they could have counted the number of eighths in an inch and responded

to appropriate tasks in terms of measuring to the eighth-inch. Only four of

the students consistently did this, yet 13 of the students in a previous

interview could represent proper fractions and mixed numerals with an area
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model. Most of these students were operating within a measurement construct

which they failed to integrate with their rational number construct.
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Potter Title: Using writing to enhance preservice elementary teachers'
understanding of mathematical concepts and procedures.

Prese nter: Thomas .1 8assarear

Institution: KPpne State College. Keene, New Hampshire

The presentation wi!1 begin by articulating how writing
activities connect with the overall goal of having the stucents
internally construct mathematical knowledge. Connections will
also be made to the recent N.C.T.M. Curriculum and Evaluation

Standards and the N.C.T.M. Professional TeachIng.5tand3iCs.

The following writing activities will then be presented:
(1) thought process protocols to increase students awareness of
their thinking processes as they solve problems and how those
processes can help and hinder their ability to solve problems,
(2) in-class writing activities to develop understanding of both
concepts and procedures, (3) out-of-class writing activities to
enable students to learn from their mistakes, (4) assignments to
enable students to examine the development of their problem
solving abilities, and (5) writing activities at the end of the class
which can be used both to present different students' articulation
of mathematical concepts and procedures and as feedback for the
teacher.

Each of the writing activities discussed will include: (1) an
articulation of the purpose of the activity, (2) a description of how
it is used in the classroom, (3) directions given to students, (4)
examples of students' actual work, and (5) selected students'
comments (positive and critical) with respect to the usefulness of
these activities.

A bibliography of related articles and books will be included.

0
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NocrTitle: Self-Perceptions of Mathematics Learners Derived

from Client-Centered Interviews

Prcvnicr:
Anne R. Teppo

Institulinm
Mathematics Education Consultant

The constructivist perception of the relationship

between teacher and learner bears similarities with

clientcentered counseling developed by Carl Rogers, which

views the therapist as a facilitator who enables clients

to become aware of their beliefs and feelings and take

responsibility for personal change. Roger's philosophy can

be used to add a psychological dimension to the

teaching/learning interaction.

Client-centered technique's were used effectively in

extended interviews to identify students' perceptions of

themselves as mathematics learners. This information was

gathered as part of a qualitative research study of the

classroom performance of non-mathematically oriented

college students enrolled in a course dealing with the

language and structure of mathematics.

The interviewer exhibited the three personal

characteristics (identified by Rogers) of genuineness,

unconditional positive regard, and accurate empathetic

understanding to establish an effective relationship with

the students that enabled them to become aware of and

articulate their personal feelings about themselves in a

mathematics classroom. Analysis of the interviews enabled

the researcher to identify components of an effective

teaching/learning environment. As an added benefit,

students increased their awareness of and reflected on

their actions within the mathematics classroom.
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The Rutgers-New Brunswick Mathematics Project:
PogerTille:

An Examination of Children's Mathematical Thinking

Presenter Roberta Schorr, Sally Weisman, Tom Purdy

Institution:

Rutgers University

The Rutgers University-New Brunswick Schools

Mathematics Project is a cooperative program between

Rutgers University and the public and parochial schools

of New Brunswick, New Jersey. It is designed to improve

the state of mathematics education in the city. This

program has, for the last three years, brought together

teachers from the New Brunswick Schools who are committed

to a perspective about learning and teaching mathematics

that pays close attention to individual children's

mathematical thinking.

Project faculty and staff work directly with

teachers to design lessons that are built around problem-

solving activities, thus allowing children to explore

particular mathematical ideas. These activities differ

from what is typically found in textbooks in that they

allow the child to incorporate a variety of mathematical

ideas in a problem-solving setting. The children often

work in small groups to construct solutions to problems.

Explanation, justification, and comparison of solutions

by the children is encouraged.

This poster session is intended to highlight some

examples of children's work which exemplify the types of

problems which we feel encourage their mathematical

thinking. These data will form the basis of a much

larger study of children's mathematical thinking which

is part of a pending National Science Foundation research

proposal.
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Poster Ilk: I trirningahoutFunstions: Students and Teachers using Contextual

Problems and Multi - Representational Software

Presenter: Frick Smith RTC Confrey, Karoline Afamasaga-Fuata'i,
Susan Piller°, Ian Itizzuti, Mine Vedelsby

I nuitution:

This poster presentation is intended to complement the paper presentation, "A

Framework for Functions: Prototypes, Multiple Representations, and

Transformations" by Jere Con frey and Erick Smith. In that paper we refer to our

observations of students working on contextual problems using the multi-

representational software tool Function Pmbe0. This presentation will consist of

two pans: First we will illustrate the use of Function Probe, particularly in relation

to the use of transformations and multiple representations (table, graph, calculator,

algebra) which were described in the paper. Because of the importance of actually

using the program to develop an understanding of the dynamic nature of these

features, a computer with Function Probe will be available. We will have a few

sample problem situations to encourage others toexperiment with the program.

Second, we will offer specific examples of student work which illustrate both how

students have used the program and how we have learned from our students about

the ways that functional relationships can be created, modified, transformed, and

understood, These examples will be drawn from the work of all the members of the

research group.

The use of multiple representations, contextual problems, and results from

observing students play a central role in our research. The design of this

presentation is intended to foster discussion with other researchers about the

importance of these approaches and their relevance to effective mathematics

teaching.
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Video Presentation Tit;e:
The Rutgers-New Brunswick Mathematics

Project: Children with Partners

Presenter. Sally Weisman, Roberta Schorr, Tom Purdy

Institution:
Rutgers University

The Rutgers University-New Brunswick Schools

Mathematics Project is a cooperative program between

Rutgers University and the public and parochial schools

of New Brunswick, New Jersey. It is designed to improve

the state of mathematics education in the city. This

program has, for the last three years, brought together

teachers from the New Brunswick Schools who are committed

to a perspective about learning and teaching mathematics

that pays close attention to individual children's

mathematical thinking.

An important component of this multi-faceted project

for New Brunswick children involved in the project and

in grades 3-7 is the involvement of their parents or

other adults in Saturday morning workshops. These

sessions provide an opportunity for the children to be

part of a one-on-one learning experience in mathematics

with a parent/partner. Experiences gained in these

sessions are intended to carry over into the child's

school life as well as the every day life of the child

and his/her partner.

Videotaped excerpts that illustrate interesting

examples of children and their partners working on

mathematical problems are currently being gathered. Some

of these excerpts will be presented at this session.

r
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Video Presentation lidc

Lived-In Simulations: A New Genre of Learning Environment?

Presenter James J. Kaput

Institution: Southeastern Massachusetts University

Traditional quantitative computer-based simulations have taken the form of
manipulable models sharing some features of the situations that they are attempting to

represent. One's actions on these models typically take the form of choosing and/or
setting some quantitative parameters, and then running the model. This is followed

by observation of the process and/or the result and then perhaps some analysis. This
may then be followed by another round of the same procedures.

We depict in this video an alternative form of simulation that involves continuous,
differential feedback. Here the user "lives in" the simulation and modifies its
essential parameters continuously, with continuous real-time feedback as the system

responds and opportunity to react to differences between intended and actual system
behavior. The simulation in this case is entitled "MathCars" - a simulated driving
environment, with a crucial addition: time, position and velocity data are collected in
graphical form in real time as the driving occurs. There is no delay between user
action and system reaction. Here the student has the opportunity to "experience" the
quantitative relationships reflected in, for example, the Fundamental Theorem of

Ca'-ulus. Oa the other hand, any mathematical representation such as a velocity
graph generated via student "driving" can subsequently be treated as a mathematical

object in its own. right, to be analyzed, modified, etc. We suggest that this genre of
simulation offers the chance to build mathematical ideas in a new way, one that is
much more closely related to the types of "natural" learning that occur outside school

contexts.
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Changing Ways of Thinking About Mathematics

by Teaching Game Theory

Iin-lra Gura

Ilse Hebrew University, Jerusalem

One of the main purposes of teaching mathematics in
the schools is to contribute to the enrichment of the
mathematical world view of the students. In order to help
them to sense the spirit of mathematics, an effort must
be made to introduce students to as many kinds of
mathematics as possible. It may be done by means of new
curricula and new approaches to instruction. In Israel, a
mathematics curriculum for high-school upper grades
composed of a combination of compulsory courses ani 90
hours of elective studies was approved in 1975. The
change in curriculum structure gave rise to the idea of
creating an elective in game theory. Game theory both
satisfies the criteria of the elective mathematics
curriculum and exemplifies a branch of the discipline
which may contribute to a change in attitudes and
approaches to mathematics.

A course in game theory was created such that it is
constructed of four topics dissimilar in character and
bearing little mathematical relation to each other. The
four topics were elected on the basis of their being of
special interest beyond their mathematical content, not
demanding specific prerequisite knowledge in mathematics
and providing general knowledge about game theory and its
concerns.

The research was conducted in three different types
of classrooms in which I taught the course in game
theory. The purpose was to investigate whether it is at
all possible to teach game theory at high-school or
equivalent level. In addition, there was an attempt to
d termine the contribution, if any, of this specific

Arse in game theory to the mathematical world-view of
the students as well as to their attitudes and approaches
towards mathematics in general and to game theory in
particular.

As a consequence of the course, the number of
students exhibiting an open-minded attitude towards
mathematics increased. Students discovered that the world
of mathematics is much richer than they had previously
thought.
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Video Presentation Tide: 'Accounting
for' versus 'an account of '

Presenter:
David Pints and John Mason

Institution
The Open University, Milton Keynes.

Increasingly, videotape records are being made both as research tools

and as in-service education materials in mathematics education. As

with any new technology, videotapes are not 'transparent' with

respect to what they purport to
display, but need to be worked on

explicitly with particular techniques in order to highlight

stressings and ignorings as well, as revealing interpretive

projections that any viewer necessarily brings to bear.

We propose to illustrate one framework for working on videotape

highlighting a distinction between 'giving an account of and

'accounting for' what is seen. In the process we hope to exemplify

how we work with anyone (teachers or
researchers) on videotape of

mathematics classrooms.
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