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Editor's Preface

The theme for the 1991 PME-NA conference is “Theoretical and Conceptual
Frameworks in Mathematics Education.” We are fortunate, indeed, to have plenaries
on this topic by Drs. Bauersfeld. diSessa and Eisenhart and reactions to the three
plenaries by Drs. Peterson, Thompson, and Lester, respectively. The Program
Committee expects that these six presentations and the Saturday panel discussion of
the topic will create an atmosphere of reflection, examination and discussion on this
significant issue.

Three features of these two voiumes were organized in such a way as to
maximize their usefulness to colleagues. First, Volume 2 was completed first so that it
could be maited one month before the conference to preregistrants. Second, a Grade
(Age) Index was compiled and printed at the end of Volume 1 to help people identify
presentations aimed at further exploring concepts and research issues of learners of
particular developmental levels. And, third, all papers have been indexed by topic in
a Subject [ndex at the end of Vclume 1; nearly all papars were indexed twice. The
Grade (Age) Levels and subject identifiers are also indicatea on the upper right hand
corner of the first page of each paper. Because of printing costs and the
unavailability of many complete addresses, 0ne address is given for @ach paper at
the end of Volume 1.

| would like to extend special thanks to the members of the Program Committee,
especially to my colleague Cathy Brown, for their assistance. 1 also am most
appreciative of the efforts of the many reviewers who helped evaluate proposals in a
timely manner and to Tom Hunt, Director of the Division of Curriculum & Instruction for
facilitating our work through secretarial and bookkeeping support. And, finally, I'd like
to express my sincere thanks to Paula Buchanan for her very abie secretarial
assistance this year. My job has been ever so much facilitated by her hard work,
competence and good humor.

Robert G. Underhilt
September 1991

Program Committee Local Qrganizing Commitiee

Bob Underhill, Co-Chair, Virginia Tech Cathy Brown, Chair
Cathy Brown, Co-Chair, Virginia Tech Carl Grady
Paul Cobb, Purdue University Sue Hagen
Jerry Goldin, Rutgers University Bridget Arvold
Carolyn Maher, Rutgers University Lynn Reed

Bob Underhill
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Epistemology
Algebra Translation
THE COGNITIVIST CARICATURE OF MATHEMATICAL THINKING:
THE CASE OF THE STUDENTS AND PROFESSORS PROBLEM

David Kirshner Janet MzDonaid
Psychology Department

Thomas Awtry Eilzabeth Gray
Department of Curriculum & Instruction
Loulsiana State Universlty

Abstract
The Students and Profassors Problem has been researched axtersively for over a decade by cognitive
scientists. This paper examines some of the epistemological assumptions embeddad in cognitive
science methods, and presenls dafa to suggest that these assumplions are unproductive for
understanding the source of the reversal error,

Noddings (1990) distinguishes batween constructivism as a cognitive position and as a methodological
perspective:

As a cognitive position, constructivism holds that all knowledge is constructed and that the instruments

of construction include cognitive structures that are sither innate (Chomsky, 1968; 1871) or aie

themselves products of developmental construction (Piaget, 1953; 1970a; 1971a). (Noddings, 1990,

p-7
Thus cognitive constructivism is a broadly inclusive movement admitting of divergent views as to the nature
cognitive structure. Methodological constructivism is more restricted:

As amethodological perspectiva in the social sciences, constructivism assumaes thathuman beings a

knowing subjects, that human bghavior is mainly purposive, and that prasant-day human organisms

have a highly developed capacity for organizing knowledge (Magoon, 1977). These assumptions

suggest methods--sthnography, clinical interviews, overt thinking, and the like. (Noddings, 1990, p. 7)
The cognitive science meti:od of fine-grained analysis of clinical interview transcripts is the principal vehicle
for the now dominant constructivist psychology of mathematics (Schoenfeld, 1987). But this is the restricted
metiodological constructivism that assumes "human baings are knowing subjects, that human behavior is
mainly purposive.” Such assumptions help us to refabricate the psychology of mathematics as a
foundationally rational domain, but they don't much help us to help children leam mathematics.

The case in point is the now amous students and professors problem:

There are six times as many studants as professars at this universily. Write an equation o represent

this statement using S for the number of students and P for the number of professors (Clement, 1982).
The resulting reversal error (65 = P, instead of 6P = S} is one of the most highly investigated phenomena
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Cognitivist Caricature
in the recent history of mathematics education resaarch.

The cognitivist approach to undarstanding the reversal error has been to closely observe subjects,
successful and unsuccessful, as they grapple with the above (or similar) problems. Transcripts of the
sessions are minutely analyzed to frack the problem-solving processes employsd. For instance Clament
(1982) has identified three kinds of solving strategies. The word order maich strategy is fo "simply assume
that the order of the key words in the problem statement will map directly into the order of symbols appearing
in the equation™ (pp. 18-19). The second errant strategy, static comparison, racognizes that the conceptual
content of the sentence must be accessed. But because of weak or immature notions of variable and
squation, the solver is unable to encode his or her concepls in correct algebraic symbolism. Finally the
successful solver uses the operative approach in which the conceptual content of the sentence is accessed,
and the solver understands that his or her role is "not [to] describe the situation at hand in a literal or direct
mannar; ...[but to} describe...an equivalence relation that would occur if one were to perform a particular
hypothetical opération” (p. 21).

The view of translation skill and its development that emerges from this and other studies can be
summarized as follows:

1) Translation from natural larguage into algebraic language is an inherently semantic/canceptual rather
than a syntactic task; hence it is semantic/conceptual ditficulties that underlie the reversal error;

2) The syntactic translation strategies that novices apply to word order matching "in part can be described
as an overextended application of the representational system of natural language to the formalisms
of algebra® (Kaput, & Sims-Knight, 1983, p. 69); and
The standard curricular practices that support syntactic translation strategies by presenting techniques
of phrasa-by-phrase matching (e.g. Brown, Smith, & Dolciani, 1986) are fundamentally misconceived:

How is it possible for students with such weaknesses to survive high school and college science
courses? It appears that thase students have developed snecial purpose transtation algorithms
which work for many textbook problems, but which do not Involve anything that could reasonably
be called a semantic understanding of algebra. Many word problems are constructed so that they
can be solvad through a trivial word-to-symbol matching algorithm.... While these techniques may
be partly successful in many classroom situations, they are too primitive and unreliable 1o be
trusted in any but the mnst routine applications. (Clement, Lochhead, & Soloway, 1980, p. 5)

There are several features of this cognitivist research program that giva rise to concerns. Firstly the
selection for intensive study of particular problematic transfation tasks provides a means for obtaining a

.2,
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Cognitivist Caricaturs
snapshot, as it wera, of the mind in action. But the cost of this single-minded attention is that the cognitive
context of such translation tasks embedded within a school curriculum of other translation tasks remains
unstudied (though not unanalyzed. as the above quotalion attests).

Secondly, and more alarmingly, the clinical interview is an entirely inappropriate method for
investigating phenomena that may be related to syntactic processes --well-known 10 be unconscious and
inaccessible 1o infrospection. Think-aloud protocols only can reveal aspects of thought that are consciously
accessible to the informant (Ericsson & Simon, 1984, pp. 14-15). Thus the conciusion of cognitivist research
that semantic/coriceptual rather than syntactic knowledge underlies successful translation is an artifact of the
methods used, rather than a bona fide implication of research.

A SYNTACTIC MODEL OF ALGEBRA TRANSLATION SKILL

For the vast majority of school word problems syntactic methods of phrese-by-phrase translation can
successfuily be employed. Inthe sunplest case the sentences are immediately phrase-order-maiched (POM).
For example if J represents John's height, and M represents Mary's height, {John's height] [is equal to] [six]
[times] [Mary's height] can be translated by substituting the mathematical symbois J, =, 6, x, and M
respactively for the bracketed phrases, without accessing the conceptual content of the sentence.’

For a second class of sentences, certain within-phrase adjustments (WPA) must be made prior to
applying phrase-by-phrase substitutions, For instance the sentence The number of diskettes is four less than
the number of notebooks must first be adjusted to The number of diskettes Is equal fo the number of
notebooks sublract fourbefore phrase-by-phrase translation can be done. We argue that such within-phrase
adjustments can be accomplished without accessing the conceptual content of the whole sentence.

A third class of sentences doas require whole-sentence transformation (WST) to bscome phrase-order-
matched. The seritence The calf weighs four times as much as the pony has non-quantitative noun phrases
(e.g., the calf); the quantitativa aspect residing in the verb (weighs). In order 1o achieve POM form, the
quantitative aspect of the verb must be parcelled out to the noun phrases, leaving the denuded "to be” verb
form: The calf's weight is four times the pony’s weight. We argus that such “massaging” of the sentence can
be accomplished by syntactic means, without accessing the quantitative relationship between the variables
that underlies the concentual structure of the sentence, and, thus, that these sentences, too, can be
transtated by phrase order matching.

Qur position is not that translators read such sentences without understanding, but that their
knowledge of the meaning of the sentenca is not utilized in the translation process.

.3
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The Students and Professors problem is an exemplar of a fourth class of santences that tum out to
ba not phrase order matchable (NPGM). Attempts to adjust and transform such sentences fail. For There
are six times as many  Jdenis as professors attempts to make the noun phrases quantitative might resutt
in There are six times the number of students as the number of professors, but then no syntactic
transformations are available to relocate the vert between the noun phrases to enable phrase-by-phrase
translation. [t should be noted that this sentence does have a POM counterpart, Tha number of students is
equal fo six times the number of profassors, but this form of the sentence cannot be achieved by syntactic
transformations; thus reference to the conceptual structure of the sentence is needed in translation.?

This analysis of NPOM sentences within a broader context of algebra translation tasks leads to two
possible hypotheses:

1) Either translation is inherently a conceptual task —the syntactic corretates and their pedagogical
exploitation being nothing but incidental and vexatious distractions; or
2) Algebraic translation is inherenty a syntactic task, and the competent translator avoids reversal errors
by being sensitive to the partial products of the (syntactic) translation process, abandoning syntactic
translation methods in favor of conceptual methods for NPOM sentences only.
Note that the second hypothesis is compatible with previous cognitivist observations of student protecols.
That the competent translator first attempts, and then rejects, a syntactic translation strategy might well be
Introspectively inaccessible information. Similarly the novice translator may fail, not because of immature
conceptual structures, but because of a lack of sensitivity to, or lack of security with, the partial products of
the syntactic translation process, and thus miss the cue to abandon syntactic processes in favor of conceptual
strategies. Following are data relevant to these hypotheses.
EXPERIMENTAL DESIGN, DATA, AND RESULTS

Our subjects in this study were 20 professors, 5 instructors, and 17 graduate students in the
Mathematics Department at Louisiana State University. We reasoned that if the syntactic mode! presented
abovae is corract then the amount of time required to translate sentences of the various types icentified ought
to vary with the amount of adjustment and fransformation required. In contrast, the conceptual model of
sentence translation does not predict that the ditferent classes of sentences (controlled for word length)
should require different amounts of processing time.

Actually we have discovered saveral types of NPOM sentences, each of which fails to be
transformable for different reasons.

Y
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Following 6 warm-up sentences of the POM and WPA variety {to guard against speed up effects), a
random arrangement of 2-POM, 2:-WPA, 5-WST, and 5-NPOM sentences were presented individually on &
computer terminal to each subject {4 “fillers” and 1 additional NPOM sentence involving an extra operation
also were presented, but those data are not reported here). Preceding each sentence were definitions of the
two variables to be used, and instructions to translate the upcoming sentence on the answer sheet provided
as quickly and accurately as possible, and then to press the space bar. Response times to read and
translate each sentence were automatically recorded by the computer.

Ot the 1050 {25X42) answers given, there wera a tolal of 61 errors, 46 on NPOM sentences, 2 on WST
sentences, 13 on the filler items. Of the NPOM errors, ail but two wera reversal errors. Over all items, only
16 subjects scored perfectly; 26 made at least one error. Table 1 displays mean response times by problem-
type for the 16 subjects with perfact scores (similar results obtain for more inclusive analyses).

Table 1

Mean Latencies (in Seconds) by Froblem Type for the 16 Errorless Subjects
POM WPA WST NPOM
92 94 122 16.8

An analysis was performed by aggregating items within problem type, and then performing a within
subjects ANOVA on response latencies. Response fimes on the problem types differed significantly
(F(3.45) = 18.6,p < .0001). Newman-Keuls post hoc analysis showed that NPOM problems took significantly
fonger than WST sentences (Q(2,45) = 5.6, p < .01), which took longer than WPA sentences (Q(2,45) = 34,
p < .05) ana POM sentences (Q(3,45) = 3.7, p < .05). Responsa times for WPA and POM sentences did
not differ significantly.

CONCLUSIONS AND IMPLICATIONS

In two respacts these results provide suppart for the syntactic theory of sentence ranstation. 1) The
pattern of responsa |atencies for the different sentence types matches the predictions of the syntactic theory.
There would ba no reason to expact such response-time differences if translation were based on conceptual
analysis of sentences. 2) The high fraquency of reversal emors by fully accomplished mathematicians and
graduats students makes it almost inconceivable that translation s a purely conceptual task. There Is nothing
conceptually difficult about sentences like There are six times as many studenis as professors, even for
novices (Wollman, 1983). it is much more reasonable to presume that some subtie, internal cue to access

-5-
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the conceptual content of the sentence has been missed.

It might tse concluded that the data reported here shed new light 6n the transtation process that can
inform future research and theory. But this conclusion misses the major intention of the paper.
Mathematically competent people are able to accomplish a variety of translation tasks including NPOM
translations which require ultimate reference to the corceptual structure of the sentence, as well as simple
POM, WPA, and WST sentences which could (in prinziple) -2 dealt with by sither syntactic or conceptual
means. But ther is another class of complex (COMP) sentences involving multiple operations (the “filler”
sentences in the instrument described above) that are easily translatable, but which may be essentially
incomprehensible. For instance, sentence like John's weight in pounds is five more than two-thirds of three
more than twice the square of two less than half the cubs root of Bill's weight in pounds are easy to translate
into algebraic notation, but it would probably be necessary to do the translation first, and then ponder the
resulting equation, in order to be able to conceptualize the relationship between the variables. Thus adopting
the position of previous reversal-error research that translation in algebra is essentially a conceptual/sem antic
task requires disregarding obvious and ordinary facts about transiation skill. This testifies to the
epistemologically-bounded nature of the theorizing that has informed reversal arror research thus far, and,
as argued by the first author (Kirshner, 1989a, 1989b), is part of a more general program in the psychology
of mathematics to idealize algebra as a domain of rational intellection.

Pedagogically this is a matter of no small importance. Reflecting the influence of cognitivist research,
the recent NCTM Standards calls for decreased attention to routine word problems (NCTM, 1989, p. 127).
From a cognitivist perspective this serves to minimize the vexing influence of syniactic factors on the
acquisition of conceptual knowledge. But despite numerous attempts to remediate the reversal error by
attending to the conceptual deficits identified in cognitivist research, it has baen found that “the reversal
problem is a resilient one and ... studenis’ misconceptions pertaining to equation ard variable are not quickly
‘taught' away" (Rosnick & Clement, 1980, p. 6). If, as proposed in this paper, syntactic parsings and
matchings practiced in routine word problems are the foundations of translation skill in algebra, then the
disappointing results of cognitivist instruction will be replicated nationwide.

3An exception is the study by Clement, Lochhead, & Soloway (1980 of the effect cf translating word
problems in the context of writing computer programs. But they note the different functions of equal signs
and variables in computer languages as compared to algebraic language (p. 11).
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COGNITIVE OBSTACLES OF DEVELOPMENTAL-LEVEL COLLEGE STUDENTS

IN DRAWING DIAGRAMS

B. Lynn Bodner
Mathematics Department, Monmouth College
West Long Branch, New Jersey 07764

Gerald A. Goldin
Center for Mathematics, Science, and Computer Science
Rutgers - The State University of New Jersey
Piscataway, New Jersey 08855

This paper examines qualitatively some problem-solving processes used by
developmental-level college students, in relation to the cognitive obstacles
(diagram-drawing, algebraic, and affective obstacles) they encounter.

In this paper, we focus on "cognitive obstacles” - i.e., conceptual blocks to student
understanding which ¢an occur during problem solving, which are more than momentary
difficulties.

Through carefully structured, individual clinical interviews, we have been able to
describe in considerable detail the spontaneously-employed "heuristic subprocesses” used
by each of 22 students, when solving an algebra word problem that may entail drawing a
diagram. We also observed their responses to minimal structured suggestions, or "hints"
(Bodner, 1990; Bodner and Goldin, 1990, 1991). The interviewer’s script was modeled
structurally on an earlier script developed for studying a different heuristic process,

"think of a simpler problem" (Goldin, 1985). It consisted of six sections: 1))

Introduction; (IT) Understanding the terminology and concepts; (I) Presentation of
the problem (the clinician encourages free problem solving as much as possible, without
interruption):
The length of a rectangle is one inch greater than twice its width. The
perimeter is 26 inches. What are the dimensions of the rectangle?
(IV) Guided use of the heuristic process, "drawing a diagram" {the clinician offers
minimal heuristic suggestions, but only when the student cannot continue); (V)
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Presentation of diagrams (a last resort, which was not in fact necessary for any of the
students); and (V1) Looking back. Such a structured script allows us to learn first about
each student’s spontaneously-employed heuristic processcs; when an obstacle occurs, we
provide just those minimal heuristic suggestions needed to ove.come the difficulty, and
learn more through observing the student’s subsequent spontaneous behavior. The
interviews were videotaped, and all 22 protocols were transcribed and analyzed. Thus
we obtained for each student a detailed sequence of diagram-drawing and related
competencies exhibited (a) spontaneously, or (b) only in response to suggestions, or (c)
not at all.

As a result of the analysis of student protccols, we identified various kinds of
cognitive obstacles, among which three were particularly prevalent:

(1) diagram-drawing obstacles: failure to establish or monitor an effective

correspondence between decisions motivated from a diagram (possibly an

inappropriately labeled diagram), and the problem statement; this includes

use of the diagram only to organize conclusions rather than to motivate
strategic decisions;

(2) algebraic obstacles: misconceptions about symbol meanings;
misunderstandings about relationships between variables and equations;
and algorithms memorized without understanding;

(3) affective obstacles and unproductive belief systems: emotional
interference; lack of confidence in the student’s own ability resulting in
ineffective executive planning and control; beliefs about "what to expect”
that are unrelated to or counter to conceptual understanding.
Only a few representative examples and partial excerpts from protocols are cited here
due to space limitations. For the complete transcripts of all 22 students see Bodner,
1990.

Diagram-Drawing Obstacles
The calculation of a semi-perimeter (that is, setting the sum of one length and
one width equal to the numerical value of the perimeter) was the most frequently

occurring student error. Nine of the 22 students committed this error at some peint in
their interviews. Those students who drew partially labeled diagrams may have been led
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to this error by their diagrams, in the absence of effective monitoring. Consider Alice’s
response. Initially, she had calculated a semi-perimeter and when asked to explain how

she obtained her answers she replied:

Well first you read the problem aloud and try to get an understanding of it
and then if you can you try to draw a picture like to help you along. And
then I drew the picture and labeled the sides. I just labeled the width
"cause it gave me the length of the other side. So if it's twice the width
which is 2X and one inch greater than that is 2X plus one. Then I just
worked it out because if you take the length and the width, it's like, let me
do it again. . . When I looked back and noticed that I did the problem
wrong, because I had only used, like, one side, one length and one side of
the width, when it was actually two sides. I forgot about this side and this
side. [She pointed to the unlabeled sides of the rectangle.]

Alice herself retrospectively detected her own failure to monitor the correspondence.
Millie’s obstacle was that she did not spontaneously draw a diagram when solving

the problem. She, too, incorrectly calculated the semi-perimeter. After she had

explained her solution, the clinician asked her if she could draw a diagram for the

problem. She immediately recognized her error and responded:

I did that wrong. The perimeter would be the addition of all of these and
I only added cne of each. The first time 1 did it, umm, like I told you, I
got the length equal to two times W plus one and the width is W 2nd they
give you the perimeter, which is the addition of all four sides and [ only
took one of the length and one of the width. But then when I, I thought I
did it wrong, but then when you asked me to write the diagram I really
realized what I did wrong, thut I had to add two of each. If you have a
diagram in front of you, it makes you, you can think a lot easier about the
problem. 1 mean I did it without the diagram the first time and I wasn't
thinking right, but as soon as I looked at the diagram and I realized, I
mean it made me think right. 1 mean, I knew that the perimeter is the
addition of all four sides but when I just went ahead and did the problem
and I didn’t have the diagram, I wasn't thinking, I was just doing the
problem. And then when I did the diagram, I realized, you know, I just
said that the perimeter was the addition of all four sides and then I didn’t
do it wher I did the problem.

The initially unsuccessful students were eventually successful, and recognized their
errors either (a) spontaneously while describing to the clinician how they had solved the

problem (usually when referring to their diagrams), or (b) when prompted to draw a
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diagram or to label the diagram more completely. The labeled diagrams seem to have
focused the students’ attention on what they were trying to accomplish, as well as

enabling them to accomplish it. Interestingly, none of the five students who labeled all
four sides of their rectangles made the “semni-perimeter* error. It appears that diagram-

drawing obstacles can be overcome fairly readily through suggestions and hints,

Algebraic Obstacles
—— —

One algebraic obstacle for several students occurred in interpreting the phrase
“greater than" in the first sentence of the problem statement. Mary repeatedly (four
times throughout the interview) wrote L = 1 > 2W, using the "greater than" symbol in
place of the “plus" sign. Later she realized

That is wrong. I don’t know. I guess I should have a plus because if

they’re just saying greater and I'm just thinking greater than, less than so. .

I can put it in like that.

Other algebraic obstacles involved the writing of equations. Bill attempted to write an
equation for the problem by setting the sum of the four dimensions of the rectangie
equal to zero. When the clinician asked him about why he wrote this he replied:

The zero is just to keep the equation kinda’ balanced. You just can’t have

an equal sign without anything there. . . until you put something over there.

He knew that a number cf some sort was required, and zero seemed a logical “default”
choice to him (instead of the value of the perimeter). Initially Mary also demonstrated
considerable confusion over variable and equation usage. Her initial idea seems to have
been that one shouldn’t have "too many W's". Here she corrects herself:

26 equals two plus 4W plus 2W. See, I'll have too many. . . oh wait 2

minute, never mind. 26 equals two plus 6W minus two is 24 equals 6W. |

have a new one now. . . . I don’t know why I left it out to begin with

because if I have the equation I should have used everything. To begin

with [ just left that whole step out completely. . . . Because, I don’t know it

was because I thought that there were too many, it’s stupid but, too many

W’s. Because there was you know what I mean? There was two of them

but I forgot it came back that you could add them together again because
you know they could be added together.

RIC




Mandy eventually wrote a correct equation, 2(1 + 2W) + 2W = 26; but she did not

believe she could solve the problem, that is find the values of the dimensions, using her

equation:

I have no ide: ‘ike how I could try to find a side like for the length or for
the width. . . .., I don't understand how like to use. . . T know how to use
equations but I just don’t how to use an equation in this way, to find one of
the four sides. . . . I'm just not, it just doesn't seem like I solved it correctly
because I just took, I just guessed at how to write out the equations using
what [ was given. . . . Like the way I was able to get hike a width out of
that. . . it just doesn't seem like I solved the problem because it should
have been easier than all these steps.

She had no trouble manipulating the symbols in the equation: but she could not recognize
the connection between the equation and what the variables represented.

A few students were able to perform the algebra correctly, but their statements
evidenced algorithm memorization without full understanding of the undetlying conceplts.
As Vicky stated:

I took my 2X plus one and I did it times it by two, put parentheses around
it "cause it. . . I don't know. That's what you're supposed to do... And
then I had a two left over which was with my variables and you can never
have variables and constants together so I had to bring the two to the other
side and since it becomes negative, I had to subtract it from 26 which gave
me 24 and then I took the 6X and divided into 24 and that gave me four.

Likewise, Jane expressed herself as following rules rather than understanding what she

was doing conceptually:

I was always taught that whatever, whenever an equation says "than"
whatever’s after that goes first so since [ know that the width is X, right?
And it says twice its width, X is representing the width so I put two in front
of the X which gives me. .. and I know that it's one inch greater than twice
its width so T put 2X plus one for the length. .. . Then what I did I added
the like terms and in front of the X is always the invisible one so that's 3X
plus one equals 26. Now you gotta’ get the positive one to the other side
and in order to do that you have to negative one tc both sides. This
cancels out and it stays, 3X equals, you subtract here which gives you 25
and you divide by the three. Now your result is eight over 1/3. The
reason why it's wrong is because it's a fraction.

Although the use of algebra is correct we still regard these students’ "procedural”
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orientation as a serious cognitive obstacle.

Affective Obstacles and Unproductive Belief

Students’ feelings about the problem, word problems, and mathematics in general,
were also sometimes obstacles. Jane commented:

Tve always had problems with solving problems, these kind of things when

I first encounter them. But I don’t know, I kind of get like, uram. . . like I

don’t know I get upset "cause I see it as a competition. Every time I try to

tackle it I can’t get through it. .. If I do some certain typs of problem and

it comes out wrong then I get discouraged and I guess that's one of my

weaknesses as well.

Naomi said the problem "wasn't hard but I was aggravated because I couldn't figure it
out." After solving the problem she said that she felt "relieved. . . A feeling of success, I
mean it’s just a little problem, but me and math don’t get along so when I get a problem
right then [ just feel good.”

Student expectations and beliefs could also become obstacles. Some of the
students verbalized what sort of processes they expected to go through and the sort of
answers they would find. For example, Mandy doubted her correct answers:

I don’t think it’s righe. . . It just doesn’t seem like I solved the problem

because it should have been easier than all these steps. . . from where I've

had things like this in school, it just seems to me as though there’s always a

simple equation. Then you just plugged in numbers, but this one only gave

you one number.

Many of the students expressed themselves as expecting whole number answers to the
problem. As Roger explains:

I figure this is wrong because when I adds this up it does not come evenly
and because I bad a mixed fraction here. . . When I seen the negative two
change the negative two to 26 and I knew the eight, the 8W would go into
24 evenly, three. At that point I knew it was going to be right. This
problem is going to work out right, because I figure in these kind of
problems that a fraction would not help, unless, you know it's really some
kind of significance within this problem.

Jane too (see carlier quote) thought a fraction had to be a wrong answer.

13-




Our results suggest that overcoming these specific cognitive obstacles should be a
more explicit goal in developing problem-solving ability in algebra.
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EVALUATION PRACTICES OF SECONDARY MATHEMATICS TEACHERS

Melvin R. Wilson Thomas J. Cooney Elizabeth Badger
University of Georgia University of Georgia Massachusetts State Department of Education

A written survey was used to investigate the evaluation practices and conceptions of 201
secondary mathematics teachers (grades 7-12). About half (48%) reported using
primarily tests proyided by publishers to evaluate students. Over half( 57%) generated
computatonal or single step problems to test decp mathematical understanding. A
follow-up survey (N=102) and interviews (N=20) confirmed that many teachers
evaluation practices reflect a narrow view of what constitutes mathematical
understanding.

There is no question that tcachers’ evaluation practices influence the nature of mathematical
experieaces in the classroom. Evaluation sends a powerful message to students, not only about the
content that is considered important, but also about the kinds of thinking that are vatued. In his
review of the impact of classroom evaluation, Crooks (1988) cites the potent effect of students’
expectations of what will be tested on their studying and leamning:

Examinations teil them our real aims, at least so they believe. If we stress clear
understanding . . . we may completely sabotage our teaching by a final examination
that asks for numbers to be put into memorized formulas. However loud our
sermons, however intriguing our experiments, students will judge by thai
examination--and so will next year's students who liear about it. (p. 956)

The purpose of this study is to identify the evaluation practices of secondary mathematics
teachers and consider those practices in light of the vision set forth in the Curriculum and Evaluation
Standards (National Council of Teachers of Mathematics, 1989). Identifying teachers' conceptions
of evaluation can deepen our understanding of important psychological aspects of teaching and
leaming by exploring what teachers think mathematical understanding consists of, what teachers
believe is important for students to know, and wat teachers believe students are capable of
understanding. This study aims to identify these aspects as evidenced by teachers' evaluation
practices and their conceptions about evaluation. Guiding the research are the following questions:
(1) What are teachers’ conceptions about evaluation and how are those conceptions reflected in their
cvaluation techniques?, (2) What is the nature of the mathematics that teachers evaluate?, and (3) Do
teachers feel comfortable responding to and using open-ended evaluation items and do they
appreciate the potential of such items for assessing students?

Influencing this project is a developmental theory proposed by Pesry (1970) that suggests how
individuals typically view their worlds. It describes a classification of individuals' beliefs about the
nature and origin of knowledge and their responsibility toward those beliefs. Two of the general
categories discussed by Perry include dualis; and relativism. Dualism suggests that cvery question
hg& an answer, that there is a solution to every probiem, and that those in authority should deliver
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these answers and solutions. A dualist conception of mathematics is reflected in the statement,
“mathematics is a fixed set of procedures to be mastered.” Relativism on the other hand suggests
that observed data should be interpreted in terms of validity and intemal consistency, and that validity
depends upon context. For example, one solution method to a mathernatics problem might be
preferred over another because of its computational efficiency, while the first might be easier to
understand. An emphasis on mathematical processes such as problem solving, communication, and
reasoning reflects a relativist orientation to mathematics and mathematics teaching.

We have little information about what teachers actually consider when evaluating students or
what beliefs teachers hold about evaluation. For example, although there is a growing body of
literature suggesting that many teachers and students have dualistic conceptions about mathematics
and its teaching (Borasi, 1990; Brown, Cooney, & Jones, 1990), we do not know whether such a
view is reflected in teachers’ evaluation practices. Untl such information is available, we have little
basis for determining how the vision described in the Standards (NCTM, 1989) can be achieved.
This study attempts to provide such information.

METHOD
Sample and Instruments

Data about teachers' evaluation practices were obtained using two written surveys and an
interview. The surveys were designed by the authors and piloted by teachers at a local high school.
The first survey (Phase I) was completed by 279 mathematics teachers participating in summer
(1990) inservice mathematics and mathematics education courses at colleges and universitics across
the state of Georgia (USA). The survey was designed primarily for secondary teachers (grades 7-
12), so analysis was restricted to the 201 surveys completed by secondary mathematics teachers.
The sample included 45 males (22%) and 156 females (78%). Average teaching experience was 9
years. The majority of teachers (111, 55%) taught at traditional high schools (grades 9-12 or 10-12);
seventy-two (36%) taught in middle schools or junior high schools (any of grades 5-9) and 18 (9%)
taught in some other type school (¢.g., grades K-8 or 6-12). The survey requested teachers to
respond to questions in a way that would describe their evaluation practices for their first period
course (1989-1990 academic year). Table | summarizes the number of teachers (and percent) who
reported about each of the various courses listed in the table.

Of the original 201 teachers, 102 (51%) completed a second survey (Phase II). Teachers
responded to five non-traditional evaluation items (mathematics problems) that varied in open-
endedness; three required some explanation or argument and two asked for the generation of a
number. Figure | contains each of the five items. Teachers were asked to provide “ideal responses”
to the items and indicate both what they thought the itemns tested and how likely they would be to use
such items in evaluating students. A third phasc of data collection (Phase III--in progress) includes
interviews with 20 teachers that explore in more depth teachers’ conceptions of mathematics and
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1.

A researcher asked many students two questions:
“What was your grade on your last math exam?" and
“How many hours per fight did you usually spend
on math hiomework?” The researcher then sorted
students into groups according 10 how niuch ume
they spent on homework. Finally, the researcher
computed an average math grade for each of these
groups amd plotted the averages in the graph below.

Write a plausible cxplanation to expiain the daa.
l/.\‘\l
SN

f
.

Tene Speat on MDY
Homeworm 20 Sreeg
laverage)

Theo wants fo find out which pond covers the larger
arca, Parker Pond or Shelby Pond. He does riot
need 10 know the two areas, just which is bigger.
Theo claims that all he has to do is measure the
distance around each pond to find out what ite wants,

Will Theo's method work? Wrile a convincing
argument for your answer.

SHELBY
PARKER POND
POND

\,

O

1S ONE UNIT OF AREA.

Given the unit of area shown above, what is the area of the larger figure?

4,

Gwen was given the problem 2/5 <? <4/7. She said
Gwen tu caplain how she got her answer and why she
numerator of 3 because 2 < 3 < 4 and 2 denorninator o

works and gave the following examples:

that 3/6 would be berween 2/5 and 4/7. The teacher asked
thinks her method works. Gwen said that she chosc a
f 6 because 5 < 6 < 7. Gwen claimed her method always

i. The fraction 2/4 is between 1/3 and 3/5 because 1<2<3 and 3<4<5.
ii. The fraction 4/9 is between 2/5 and 6/11 because 2<d<6and 5<9<11.
Does Gwen's method atways work? Explain you reasoning.

l&— &%in.%

How far to the left should the picture be moved so that it is centercd on the wail?
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evaluation. One focus of the interviews is a discussion of a typical test used recently by each teacher
to evcluate students.

Table 1
Courses Taught

(N=201) MS PA BM Al G A2+
| ‘Nurnber of
; teachers(%) 41(20) 41(20) 27(13) 36(18) 26(13) 29(14)

MS=Middle School Mathematics (grades 7 and 8), PA=Prealgebra, BM=Basic/General
Math (grades 9-12), Al=Algebra 1, G=Geometry, A2+=mathematics courses at the
Algebra 2 level or above (¢.3., Precalculus, Algebra 3, Calculus)

RESULTS
Phasel

Using data from the first survey we attempted to identify how teachers evaluated students, the
sources of their evaluation instruments, and what basi~. conceptions of evaluation teachers scemed to
have. Table 2 illustrates how the teachers’ evaluation practices related to their grading procedures.

Table 2
Grading Procedures
Final . . Home-  Notebooks Class Part-
Source Exam Unit Tests  Quizzes work  /classwork icipation Other
Percent 12.6 41.2 17.2 16.6 7.6 3.6 1.3

Almost half of the teachers (N=97, 48%) indicated that the primary source for their unit or
chapter tests was textbook publishers. Further analysis led us to categorize two kinds of testers:
“external” and "internal.” EXTernal testers relied exclusively on extermnal sources (e.g., publishers,
local or state boards of education) for test< and final examinations; INTemal testers relied exclusively
on tests created by themselves or peers. Of the 201 teachers, 39 (19%) were classified as external
and 64 (32%) were classified as internal. As indicated by Table 3, the external testers were
concentrated in the middle school courses (MS and PA--67%) while most internal testers taught high
school courses (BM, Al, G, A2+--80%).

Table 3
External and Internal Testers

MS PA BM Al G A2+ Total
EXT (N=39) 31% 36% 10% 10% 5% 8% 100%
INT (N=64 8% 12% 11% 25% 19% 25% 100%

Refer to Table 1 for course abbreviation interpretation
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Using the survey in Phase I we also investigated how teachers conceptions of mathematical
understanding might be reflected in their evaluation practices. Specifically, we we.  terested in
finding out the meaning ascribed by teachers to the phrase “deep and thorough understanding” of
mathematics. Teachers were asked to write typical problems they believed would test (1) basic and
(2) deep and thorough understanding of a chosen mathematical topic. The problems were classified
according to the predicted level of student understanding necessary to complete the problem. The
levels used in analysis were (1) recognition or simple computation, (2) comprehension or one step
word problem, (3) application or multistep problem, and (4) non-routine or open-¢nded problem.
Each problem was scored independently by two people, disagreements (there werd only 20) were
scored independently by a third person. Figure 2 illustrates some of the typical responses at each

level.

Topic

Level 1

Level 2

Level 4

Find the arca of a
rectangle with a width
of 4 inches and a
length of 2 inches.

Find the arca of the
parallclogram

1/

8

4

Draw the floorplan
of a house and
determine the
number of square feet
in the house.

Functions

1. Is the relation ((0,5),
(13), (0.7).(2.4), 3.9))
a function?

2.Graphy=2x+3

1. Find the cquation of
the line containing the
points (2,3) and (-1,5).

2. Graphy = (x-3)%-2

Find the cquation of the
line through (-2,3) and
perpendicular to the
ling 2y + 5x = 5.

Write aquadratic
function f(x). Write the
function that would
translate f(x) vertically;
horizontally: dialate f.

1. -3—4-"1—:?
8 4
2. What fraction of the

rectangle is shaded?

P

Mary and Joc are
taking a trip of 80
milcs. Mary drove 2/5
of the distance. How
many miles did she
drive?

Bobalie 1/4 of a
peperroni pizza, 2/3 of
acheese pizza, and 172
of a sausage pizza.
How much of a whole
pizza did he car?

Identify the activities
of a typical teenager in
a 24 hour period.
Graphically represent
the fractional pasts of a
day spent on these
activities.

Figure 2. Typical test items generated by teachers

To measure deep and thorough understanding, more than haif the teachers (57%) generated
problems at either level | or level 2. These results were even more pronounced among the following
groups of teachers: (1) teachers with less than four years experience (48/69, 70%), (2) teachers of
below average students (24/33, 73%), and (3) teachers who generated problems dealing with
fractions (40/46, 87%).

ERIC

PAFullToxt Provided by ERIC

-19-




E

PAFulToxt Provided by ERIC

Q

Teachers' Evaluation Practices

Phase Il

Table 4 summarizes some of the interesting results from the second survey (Phase ID),
includirn:x teachers' performance on the problems and their indicated Likeliness of using the problems
to evaluate students (likleliness of use was measured using a five point Likert scale).

Table 4
Swmmary of Phase Il Evaluation Items

(N=101) Item 1 (0) Item 2 (O) Item 3 (S) Ttem 4 (O) Item 5 (S)

Possible Scores 0-3 0-3 0-1 0-3 0-2
Average Score 2.32 2.31 95 1.80 1.97
Avg/Maximum 77 77 95 .60 .98

Likely or Very 54% 66% 79% 75% 85%
Likely to Use

S=single number requested, O=open-ended response requested

Phase Il

Todate we have conducted 16 interviews. Detailed analysis has not been conducted on the
interviews, but preliminary analysis scems to be confirming and expanding on survey results.
Examples appear in the discussion section.

DISCUSSION

Mathematical Understanding

The data suggest that many teachers test a rather limited or narrow range of possible
mathematical outcomss. To many teachers deeper understanding simply means solving problems
involving more steps, i.¢., harder computation. Although most teachers agreed that providing
feedback and identifying students’ misconceptions are important purposes of evaluation (86% and
88% respectively of the teachers agreed with these purposes), the problems teachers apparently use
in evaluating students do not suggest that the kinds of misconceptions identified or the substance of
the feedback provided are consistent with current definitions of meaningful mathematical knowledge.
These results were confirmed during the interviews in which teachers consistently conveyed the
notion that mathemiatics is a sequence of steps and implied that assessing deeper understanding
means providing problems that require more steps to successfully complete. None of the 16 teachers
interviewed thus far indicated that deep and thorough understanding could be assessed by asking
students to exhibit reasoning abilities beyond the production of a specific answer.

Open Ended Evaluation ltems
Results from the second survey further indicate that teachers prefer to use single answer
problems as opposed to the open-ended ones to evaluate students (see table 4). Although teachers’
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Teachers’ Evaluation Practices

perceptions about the nature of meaningful learning probably influences this result, teachers'
mathematical ability may also contribute to it. Teachers were less likely to respond correctly to the
open-ended items (as opposed to those requiring a single number) on the second survey. If teachers
find difficulty in answering items that require: the construction of counterexamples or arguments,
then they will probably be less likely to engage their students in such activities. There were a variety
of reasons expressed by teachers concerning why they would hesitate to use the open-ended items in
testing situations, including lack of confidence in answering the questions themselves, and that the
problems were too difficult or otherwise inappropriate for their students.

Conclusions

There is a national consensus that assessment should be a vehicle for curriculum reform.
Although there is little doubt that tests exert a powerful influgnce on what teachers teach and students
learn, the tests themselves are incapable of camrying the burden of reform. Unless teachers
understand tha new forms of evaluation reflect a better vision of what it means to know
mathematics, these new forms will have little influence on curriculum change. The current study
indicates that teachers will not usc tasks for evaluation if (1) the tasks do not reflect their own
understanding of mathematics, (2) teachers do not recognize the value of the tasks in measuring
significant mathematical knowledge, and (3) teachers do not value the outcomes the tasks claim to
measure. We do not know all of the reasons why the mathematics that evolves in many classrooms
is dualistic in nature. It may be due in part to circumstances, i.c., student expectations, issues of
faimess in grading, or the ease with which classroom activities can be managed. However,
regardless of the circumstances, as long as teachers choose to communicate a dualisiic view of
mathematics, that is, primarily as a series of isolated steps to be applied in isolated contexts,
alternative methods of evaluation will be seen as peripheral to the “real” curriculum.
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Culture Inclusive Research

A CHALLENGE: CULTURE INCLUSIVE RESEARCH
Patricia S. Wilson and Julio C. Mosquera P.
The University of Georgia

Currently a vast amount of mathematics education research has
completely ignored the cultural diversity of subjects and failed to recognize
implicit differences in treatments or contexts due to culture. Existing
literature in sociology, anthropology, psychology and mathematics
education is used to identify factors contributing to the problem and to
provide insights for future directions. In order to develop a culture
inclusive approach to mathematics education, researchers are challenged to
sxpand their psychology-based frameworks.

Culture is an integral part of mnathematics, mathemaiics leamning, and
mathematics teaching. In his presidential address to the fourteenth annual
meeting of PME, Nicolas Balacheff (1991) claimed that the relevance of the 4
psychological approach to mathematics education depends on researchers’
capacities to integrate the social dimension of mathematical construction into their
theoretical frameworks and research problems. We would like to add the
observation that the social intercourse that occurs in the classroom cannot be
separated from its cultural context. The social construction of mathematics
occurs in environments that are culturally organized. Therefore, culture is an
integral part of mathematics education phenomena and should be addressed in
both theoretical frameworks and research design.

The Preblem

Currently a vast amount of mathematics education research has completely
ignored the cultural diversity of subjects and failed to recognize implicit
differences in treatments or contexts due to culture. Several major factors
continue to contribute to this problem:

1. Much of mathematics education research is grounded in psychology- s
influenced frameworks which assume that a particular cognitive model explains
leaming for all people. Examples can be found in research using constructivist,
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information-processing, or cognitivist frameworks. Piagetian research has been
replicated in a number of cultures, with the purpose of determining the
deficiencies of other cultures, rather than enhancing the theory or questioning
generalized application of the theory.

2. The demographic make up of the population in the United States is not
reflected in the samples used by mathematics education researchers. Researchers
appear to have easier access to white, middle/upper class, suburban populations.
Even in urban situations, individual, homogeneous classes do not reflect the
diversity that exists in the school as a whole. This situation creates a closed and
dangerous cycle. Research studies based on one particular segment of the
population drive the research frameworks which may be only qualified to inform
research related to that particular segment of the population. Secada (1988)
pointed out that research can end up legitimizing unjust social arrangements and
actually indirectly causing disparity in mathematics education between cultural
groups.

3. Mathematics education researchers are often not informed by related
research in other fields such as social psychology, sociology, and anthropology.
Equally important researchers outside mathematics education studying
mathematical understanding are frequently not informed by work done in
mathematics education.

4. Mathematics educators have not paid enough attention to what happens
inside the mathematics classroom. Even rcsearch on learning and teaching
mathematics has avoided the classroom and other social contexts. Influenced by
arguments of pure research coming from psychological quarters, mathematics
educators have not confronted social situations where the influence of socio-
cultural factors are salient.

We challenge researchers to address these problems by adopting a cultural
inclusive approach to research that is capable of capturing the wealth of
information available in mathematics classrooms. A culture inclusive approach to
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mathematics education research should include a focus on how culture, or socio-
cultural contexts, influence mathematics teaching and learning. This can be
accomplishied only through changes in theoretical frameworks so that research
will progress beyond exclusively psychological tenets.

Insights from the Literature

A number of developmental and cognitive psychologists have recognized
that culture plays a fundamental role in human cognition. This notion applies to
the cognitive activity of the researcher trying to understand as well as the activity
of the learmer. Scholars in fields such as anthropology, linguis..cs, social
psychology, and cognitive anthropology have also addressed the role of culture
in mathematics leaming. Although these studies often lack a mathematics
education perspective, they do offer directions for confronting our problem. A
growing number of mathematics educators have acknowledge the importance of
culture in the development of mathematics, mathematics leaming, and
mathematics teaching. They have been mainly influenced by new developments
in the philosophy and sociology of mathematics.

Developmental psychologists have been interested in cross-cultural studies
as a way of testing the universality of their theories elaborated in the context of
Western cultures. This approach has been challenged by other developmental
psychologists who argue that such studies do not help us to understand how
culture influences thought. Valsiner (1989) and Buck-Morss (1975) are among
those that have criticized that approach. Valsiner, for example, proposed the
creation of a cultural-inclusive developmental psychology. From his perspective,
culture should be regarded as a constituting part of child development. The point
here is that there are broad frameworks in developmental psychology that offer
theoretical and methodological elements that can be incorporated into a
framework for mathematics education in order to overcome the problems
inherited from classical psychological approaches.

Researchers working from a situated cognition perspective begin with the
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situation in which the cognitive activity takes place, and they investigate how the
situation influences individual cognition using methodologies employed in
anthropological research . Through the study of the situation, the relationship of
culture and cognitionl becomes clearer. For example, Saxe (1991) studied the
situation of candy selling by children in Trazil in order to understand how the
culture of candy selling organized the mathematical cognition of the sellers.
S~ribner (1985) was interested in how action guided the acquisition and
orgay.zation of mathematical knowledge. For her, the situation and related goals
regulated the action of the participant. Other researchers who have focused on
the situation or context as providing information about cognition include Lave
(1988), Cole and Scribner (1974), and Carraher, Carraher, & Schliemann
(1985).

Both the philosophy and sociology of mathematics are crucial for the
development of a culture inclusive mathematics education. Recent developments
in these areas have contributed to the revival of the conceptualization of
mathematics as socio-cultural phenomenon. It is important to consider how
specific forms of social organization influence the construction of mathematics
(Bloor, 1976; Restivo, 1983 Struik, 1942).

In mathematics education, some researchers have looked at mathematics as
a socio-cultural product and at mathematics education as a social process
(Bauersfeld, 1980; Bishop, 1988; Cobb,1989; Mellin-Olson, 1987; Walkerdine,
1990). In their works, these mathematics educators have called for broadening
disciplinary perspectives in mathematics education in order to move beyond
exclusively psychological frameworks. For Bishop mathematics is a panhuman
activity. He claimed that all cultural groups have the capacity to create
mathematics and, in fact, they engage in mathematical activities. There are six
key “universal” activities in which mathematics is elaborated in culture: counting,
locating, measuring, designing, playing, and explaining, Cobb postulated the
existence of three non-intersecting domains of interpretation in the study of

225-

RIC




Q

ERIC

PAFullToxt Provided by ERIC

Culture Inclusive Research

mathematics learning and teaching: the experiential, cognitive, and
anthropological. These constructs, however, are complementary. For gaining a
better understanding of mathematics teaching and leaming in the classroom a
coordination of these three interpretations is necessary. Mellin-Olsen argued that
the different uses of mathematics in various cultures can decisively affect how
members of those cultures learn school mathematics. He explained that in
discussion about personal and shared knowledge, notions such as conflict and
oppression are unavoidable. Therefore, he focused his work on the construction
of a general theory describing the politics of mathematics education. His general
theory is built on elements and assumptions borrowed from activity theory,
research on language, anthropology, symbolic interactionism, communication
theory, and mathematics education.
Future Directions

We are challenging all researchers to consider a culture inclusive approach
to mathematics education. While we think cultural influence is important for ail
areas of investigation, it may be appropriate to consider different levels of
involvement. At a minimal level, researchers should include descriptions of the
ethnic, cultural, or social class composition of the sample even if cultural
influences are not reported. At more involved levels, researchers should include
culture as an independent variable in their designs, so that they can report the
interactions between culture and other factors as well as the composition of the
sample.

We hope that a significant number of researchers will move beyond
reducing cv.ture to an independent variable, and will address culture as an
integral par. of mathematics education (Valsiner, 1989; Stigler & Baranes, 1988).

We encour age studies in which the primary goal is to investigate how culturally
organized contexts affect the learning and teaching of mathematics.

We challenge researchers to develop an interdisciplinary, culture inclusive
approach to mathematics education that borrows from current research in
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anthropology, philosophy, and sociology as well as psychology. Increased
attention to cultural diversity will allow researchers to more accurately inform
classroom practice.
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INTERACTIONS BETWEEN COGNITION AND AFFECT
IN EIGHT HIGH SCHOOL STUDENTS’ INDIVIDUAL PROBLEM SOLVING

Valerie A. DeBellis and Gerald A. Goldin
Center for Mathematics, Science, and Computer Education
Rutgers University
New Brunswick, New Jersey 08903 USA

In an exploratory study, we interviewed eight mathematically talented high
school students solving a pair of related non-routine problems, and observed
interactions between their ccgnition and their “local affect”. We cite some
instances of the influence of affect on executive decisions, and conjecture
an important role for such affect in problem-solving success.

Recently attention has heen focused on the role of affect in executive decision-
making during problem solving (Goldin, 1988; McLeod and Adams, 1989).

In previous work, Goldin defines “local affect” to be the “changing states of
feeling during problem solving”, and treats it as an internal system of representa.
tion for problem sol“ing, on a par with imagistic representation, formal notational
representation, verbal representation, and a system of planning and executive con-
trol. Global affect, in contrast, refers to general feelings and attitudes, reinforced by
belief structures, that solvers may bring to the problem situation but that are not
so readily modified. For example, a student who is generally fearful of mathematics
(global) may nevertheless, when engaged in a particular problem-solving situation,
experience a variety of feelings (local) ranging from anxiety (at the outset) to sur-
prise and satisfaction (on solving the problem insightfully). Thus, one envisions
local affect as a system of changing emotions; some affective states include cu-
riosity, puzzlement, bewilderment, encouragement, pleasure, elation, satisfaction,
frustration, anxiety, fear and despair. Major pathways involving local affect and
heuristics during problem solving may lead to positive or negative outcomes; and
it is suggested that (desirable or undesirable) long-term, global affect results when
such paths of local affect becoming well-established competency structures.

A similar distinction is made by McDonald (1989, p. 230), who discusses two
different ways in wli. ' cognitive and emotional processes are involved in learning:
“One is through the individual representation of information that is tied to emo-
tional concerns~the emotional reactions that affect moment-to-moment conscious

processing.” {The other] “has to do with sociocultural influences on individuals
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and the way that they see themselves or the information.” Mandler (1989, p. 4)
suggests that a theory of emotion “should be of both general and specific interest
to cognitive psychologists”, while McLeod (1989, p. 246) distinguishes “beliefs”
and “attitudes” (that are relatively stable and resistant to change) from “emo-
tions” that change rapidly. This important distinction has consequences for ef-
fective mathematics teaching., The NCTM "Professional Standards for Teaching
Mathematics” (National Council of Teachers of Mathematics, 1991, p. 104) is-
cusses the need for teachers to be able to promote a mathematical disposition by
facilitating students’ confidence, flexibility, perseverance, curiosity, and inventiva-

ness in doing mathematics. The assumption is that fostering these (local) feelings /
repeatedly in a variety of mathematical situations will foster construction of the
desired (global) disposition. )

These background considerations motivated an exploratory study to look at the
interaction of cognition and local affect in a non-routine problem-solving situation.
We conjcctured that local affect especially influences executive decisions, and that
it should be possible to observe and describe instances of such influence. We further
conjectured that successful problein solvers tacitly use local affect in selecting
particular processes, so that their affect might actually be guniding their strategies.
Ultimately we are interested in the idea that nietacognitive awareness of local
affect can help individuals become more powerfui problem solvers.

Subjects

Four high school women and four high school men from New Jersey were se-
lected randomly from the participantsin a month-long “Young Scholars” institute
at Rutgers University in the summer of 1990. The students are mathematically
talented, and each identified himself or herself as extremely interested in taking
more science znd mathematics courses at school. All had completed 11th grade.
with the exception of two women who had completed 10th grade. The students
returned twice to campus during the Fali 1990 semester for foliow-up sessions, and
it was during the second of these sessions that the interviews took place.

A "Last Day Questionnaire” distributed during the 1990 summer institute
asked, “What kinds of personal traits do you think are involved in ‘being good
at mathematics'?”. The cight subjects had responded that one needs ‘o have
“logic” or be “logical” (4), have “patience” (2), be “curious” (2), have “diligence”
or be “hard-working” (2), “possess understanding” (1), *have intelligence” (1),
have “ingenuity” (1), have the traits of “thinking widely”, “thinking carefully”,

“determination”, and “not giving up” (1), have “the ability to accept failure”
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(1), have “a good memory” (1), “a keenness” (1), “be open-minded” (1), “be
bullheaded” (1), and “be creative” (1). Five subjects thought they possessed all the
qualities they themselves mentioned. Overall, subjects' “global affect” in reference
to their self-perceived ability to solve mathematical problems was quite positive.

Method

In one-on-one interviews two problems were suecessively introduced, and the
subject encouraged to “think aloud”. We used non-routine problems, unfamiliar to
these students, to minimize affective differences among the subjects that might be
due to previous emotional experiences associated with school mathematics or with
standard topic areas in mathematics. Two videocameras recorded each interview.
one focusing on the subject and the other on both the subject and the clinician.
All interviews were conducted by the same clinician (DeBellis).

First, Problem 1 was presented (orally); simultaneously the clinician placed
two bottles of Gatorade on the table in front of the subject:

Problem 1. Suppose you have two containers of liquid, Everything about

the one container of liquid is the same as the other, except for color-that

is, density and volume are the same. In this experiment we used Gatorade.

One container held red liquid, the other container held yellow liquid. Now

suppose you take one tablespoon of red liquid and drop it into the yellow

liquid and mix thoroughly. Then you take a tablespoon of this new mix-

ture and drop it back into the container that has the red liquid and mix

thoroughly. The question is, which container has more contamination i it?

Does the red Gatorade have more yellow Gatorade in it or does the yellow

Gatorade have more red in it?

The subject was left free to solve the problem, without hints or suggestions. After
a conclusion was verbalized, the clinician asked “Why?" The subject was again left
free to justify his or her answer. If a subject’s justification used words suggesting
uncertainty or ambisuity, such as “almost”, “probably”, or “about”, the clinician
probed further, e. g.: “What do you mean by ‘almost’ [or ‘probably’ or ‘about’]?”
After the subject verbalized a justification, the clinician asked, “Do you think your
answer i8 correct?” The subject responded and the clinician again asked, “Why?" If
the subject concluded the amounts of contamination would be equal, and justified
this conclusion, the clinician asked whether that would always be the case. Finally
she asked, “What happens if we don't stir the mixture? Does that change your
answer?” When the subject expressed confidence or security in a solution (without
affirmation from the cliniciar), the second problem was pcsed:

Problem 2. Suppose you have two containers of M and M’s. Each of these
containers holds one hundred fifty M and M’s in it. Suppose you take a
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handful of red M and M’s from the container and dump them into the
yellow M and M's container and shake them up. Then suppose you take the
same size handful of M and M’s from this mixture and dump them back
into the red M and M container. Which container would have more of the
other colored M and M’s in it? Would the red M and M’s have more yellow
M and M’s in it or would the yellow M and M'’s have more red in it?

The Gatorade bottles were replaced by two containers of M and M’s, each holding
150 pieces. Note the direct correspondence between the Gatorade colors and the
M and M colors, and between the problem structures (with “volume measure”
replaced by the discrete “number measure™). The structure of the questioning for
“zoblem 2 paralleled that for Problem 1. The subject solved the problem freely;
when a conclusion was reached, the clinician asked “Why?” When a justification
was offered, the clinician asked, “Do you think your answer is correct?” The subject
responded and again the clinician asked, “Why?” Some subjects spontaneously
experimented with the M and M’s: there was no guidance from the clinician as
to how to do this, except to indicate that “handfuls” had to be the sane size.
Again the ques.ion, “Does stirring make a difference?” was posed. Whatever the
outcorme, tliree final questions were posed: “Have you ever seen a problem like this
before?" “What did you like about this problem?” and “What did you hate about
this problem?" These questions elicited some retrospective expressions of emotion.

Observations and Interpretations

Four subjects correctly concluded for Problem 1 that there would be the same
amount of contamination in each container. Three of these (Subjects 2, 3, and 7)
justified their answers in a valid way, while the fourth (Subject 1) responded, “my
feeling just tells me." Of the other four subjects, all expressed the opinion that their
answers were correct, and provided justifications. The three with correct solutions
and valid justifications took far more time to achieve closure on this problem than
did the others (the clock began after presentation of the problem):

Subject 1 M 2 minutes 13 seconds
Subject 2 M 7 minutes 03 seconds  [correct solution, valid justification)
Subject 3 M 4 minutes 46 seconds  [correct solution, valid justification)
Subject4 M 1 minutes 59 seconds
Subject 5 F 0 minutes 57 seconds
Subject 6 F 2 minutes 35 seconds
Subject 7 F 6 minutes 56 seconds  [correct solution, valid justification]
Subject 8 F 2 minutes 32 seconds

In Problem 2, Subjects 1 through 7 ultimately concluded there would be the same
number of M and M’s of the wrong color in each container; all but Subject 4 offered
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valid justifications. Subjects 2, 3, and 7 did not physically perform any experiments
with the M and M’s; Subjects 3 and 6 performed one experiment before reaching
this conclusion; while Subjects 1 and 4 performed two experiments. Unfortunately
the videotape recording Subject 8 ran out; she had performed two experiments to
that point indicating equality, but never articulated this as a firm conclusion.

The following excerpts illustrate some representative instances of local affect
interacting with executive decision-making. We let “...” denote a pause by the
subject. and * ***** ™ an omitted portion of the transcript. In the first problem,
Subject 2 has concluded the yellow bottle will have more red in it.

[Clinician:] Why? [Subject:] Because you take a teaspoon of this (points to red
Gatorade) and put it in there (points to yellow Gatorade) then when you ... dif-
fuses, then you take the amount back up. there will probably be a couple of reds
still in there ... so when you put it back in there (pointing to the red container)
vou're only adding a certain amount of yellow and there will be couple of reds
still in there so there won't be quite as much yellow ... oh, I know what you’re
saying ... you're saving it's equal ... (panse) [C:] Why do you think I'm saying
anything? {S:] {ignoring the question, sits back in rhair and smiles) Yeah ... it's
equal ... I understand what you're saying ... [C:] (gestures, shaking head) I'm not
saying anything. [S:] Ummm ... (points to the red container) see it's hard to think
out loud ... [C:] Yeah, I understand that ... but that's okay ... [S:] Ugggh ... if you
put some of this (points to red Gatorade) in there (points to yellow Gatorade),
it's gonna diffuse and you take some of it back in there (points to yellow Gatorade
then to red Gatorade) ... no, all of it's going to go ... {(pause) let’s say this was ten
and that was ten (subject points to red, then yellow bottle), let's say hundred ...
*x2xx .50 it would be equal. [C:] Do you think your answer is correct? [3:] Yeah.
[C:] Why? [S:] By my example of ... if this was a hundred and that was a hundred
... (pauses) oh ... oh ... it’s not equal. Okay ... ***** ,, Take back one cleventh of
it (points to the yellow), put it in here (points to the red) ... this would have ... (S
looks up at C and smiles], this is confusing ... I like it ... a hundred (points to the
red), ten in there (points to the vellow), so you would be leaving just over nine ...
take back ... ***** .. so0 it would still be the same ... I think ... sce, you know, I
don't wanna look like a fool.

Noteworthy is the way this subject twice ignores the clinician while atiributing

to her a point of view; this construct seems to help him express his first insight,

at which he smiles. His pleasurable affect then appears to cause him to reflect on
the insight; his expression “ugggh” suggests a letting go of anxiety, and marks his
strategic decision to try a special case, assuming particular amounts of red and
yellow liquid. His concern about “looking like a fool” also motivates him to retain
some tentativeness in his conclusions, and to monitor further their validity.

-33.




Q

ERIC

PAFullToxt Provided by ERIC

Subject 7 has responded to Problem 1 by saying that the yellow bottle has
more red in it; the clinician has asked "Why?” and "What are you thinking?”

[S:] Let’s see ... the yellow would have more contamination unless the amount of
red that you took out was a half of tablespoon ... yeah ... ’cause if you took out
a tablespoon, the only way that they could be equal contamination would be ...
if you took out a half a tablespoon of red and half a tablespoon of yellow and
put it in there, and each would have one half tablespoon of contamination. But
since you shake it up, you can't ... ***** __ for some reason, it doesn't sit right,
though. (S stops, puts her hand to her mouth, sits back on her chair, speaks very
softly) A little bit of red that got out of there (points to yellow container) and put
it back in there (points to red container, mumbles under her breath) ... they're
equal. (smiles, looks at C) they're, yeah, no (squints her face and covers her mouth
again) ... if you take into consideration the amount ... I guess it doesn’t matter
(pauses, looks at C) ... now I'm thinking they're equal. because ... ***** ... I want
to say they are equal. Is that right? (C shrugs, S appears frustrated, exclaiming
and sitting back in her seat) 'Cause I can’t explain it! ... the amount of red that
you take out in the tablespoon ... part of it ... most of it ... is yellow. Okay, most
of what you take out is yellow ... and the yellow that you take out equals the red
that'’s remaining in there (referring to the contamination in the yellow container).

We observe the subject’s puzzlement, soft speech, and smile as she reorients away
from her initial commitment that only a transfer of exactly half a tablespoon of
red liquid could achieve equality. Note also how this subject’s frustration at her
difficulty in explaining her conclusion appears to have served her well, motivating
her to articulate an explanation.

Subject 5 had reached an erroneous conclusion on the first problem. When
Problem 2 was presented, she initially responded that that the container of yellow
M and M’s had more red in it,

[C:] Why? [S:] This one (points to yellow container) if you stir, if you stir this
up perfectly, you would take back some of the red M and M'’s, (stops) Oh! Okay!
(excitement) All of a sudden I ... (stops to think) [C:] What just happened there?
[S:] (S ignores C). If you take out a given amount ... a certain percentage of M and
M’s that you added so ... um ... okay! if you take the handful out (gestures as if
taking a handful out of the reds) and put it in here (mimics dumping it into the
yellow container), redefines problem) and shake it up (gestures as if to shake) a
certain percentage of the stuff you gave here ... ***** .. so it would be the same.
And the same goes for that! (S points to Gatorade bottles, displaying confidence).

The display of excitement accompanies the subject’s “aha!” experience. Her pos-
itive affect, happy but not quite elated, appears to increase her determination
to regroup, to reorganize the problem, and to see her reasoning through to its
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conclusion-nothing is going to stop her until she finally has it. And when she
does, she confidently transfers her analysis back to Problem 1.

But not all the affect we observed had consequences that were positive (from
a mathematicai point of view). Subject 6, in solving the first problem, concluded
that there will be more red in the yellow Gatorade.
[C:] Why? [S:] (giggles) Because since you're taking the red first, and you're putting
in the yellow and mix it up, you have red and yellow mixed up. When you take
another tablespoon so then you're putting red back into the red, so it's not really

a full tablespoon of yellow. [C:] Do you think your answer is correct? [S:] Yes. [C:]
Why? [S:] Because I'm confident.

This subject’s feeling of confidence substitutes for an analysis, rather than encour-
aging her to investigate further. Her executive decision, inspired by her affect, is
to stop considering the situation as a problem, and to cease to engage.

Conclusion

We have seen examples in which affect appears to guide problem-solving
choices, and where powerful problem solvers use it effectively. However, affect can
also have negative consequences, even in strong students. The goal of achieving
effective use of local affect for mathematical problem solving needs considerably

more research attention.
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CHANGING INSTRUCTIONAL PRACTICE: A CONCEPTUAL FRAMEWORK
FOR CAPTURING THE DETAILS!

Mary Kay Stein
Barbara W. Grover
Edward A. Silver

University of Pittsburgh, Learning Research and Development Center

This paper discusses the conceptual framework and methodology of a
longitudinal investigation of teacher change within the context of axn
instructional reform project. It describes the aspects of the instructional
environment and teacher knowledge and beliefs that are being monitored as
well as the various data sources and perspectives from which information is
being ga.nered.

Over the past several years, recommendations for the reform of mathematics instruction have
been remarkably consistent (National Council of Teachers of Mathematics, 1989; 1991; National
Research Council, 1989; Silver, Kilpatrick, & Schiesinger, 1990). Reformers agree that
mathematics classrooms should be places where meaning making is paramount, where students
take an active role in constructing their own knowledge, and where mathematical communication is
as important as obtaining the cormrect answer. This vision is very different, however, from the way
in which most classrooms currently operate. A number of studies have reported that mathematics
lessons typically follow a predictable sequence of activities, most of which emphasize rules,
procedures, memorization, and right answers (e.g., Stodolsky, 1988). Moreover, the vision
represents a radical departure from the manner in which most practicing teachers leamed
mathematics and learned to teach mathematics (Ball, 1988). Clearly, both teachers and their
classroomns will need to undergo some fairly profound transformations if they are to create new
instructional practices that answer the reformers' calls. The purpose of this paper is to present the
conceptual framework and methodology of a longitudinal investigation of teacher change within the
context of an instructional reform project.

The present research is part of QUASAR (Quantitative Understanding: Amplifying Student
Achievement and Reasoning), a large, multi-year project that shares the above vision of how
mathematics classrooms should be transformed. The goal of QUASAR is to foster and study the
development and implementation of enriched mathematics instructional programs for students
attending middle schools in economically disadvantaged communities. Toward that end, a set of
six geographically, ethnically, and intellectually diverse sites began developing and implementin

Lpreparation of this paper was supporied by a grant from the Ford Foundation (grant no, 890-0572) for the
QUASAR projecL. Any opinions expressed herein are those of the authors and do not necessarily reflect the views of
the Ford Foundation.
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unique approaches to teaching high-level mathematical thinking, reasoning, and problem solving in
the Fall of 1990. The programs at each site are school-based and involve a partnership between the
school faculty and leadership and one or more resource partners (typically faculty from a nearby
university). Implementation of these programs will continue and expand over the next several
years.

The QUASAR Documentation Effort

Instructional change is influenced by variables operating at a variety of levels within the
schooling environment (McLaughlin, 1990). As such, QUASAR's documentation strategy
systematically examines three interwoven components: the social and organizational context for
instructional change (e.g., the school climate, the collaboration between teachers and resource
panners), the development and implementation of the mathematics programs, and self
documentation produced by site-based participants (see Stein, 1990). This paper focuses on the
second component, the dncumentation of the classroom implementation of the mathematics
programs.

Classroom documeniation serves a variety of purposes within the QUASAR project. First,
observations and descriptions of mathematics lessons provide specific instructional instantiations
of the broad principles on which QUASAR is based. Although the project has provided a broadly
stroked picture of the kinds of instructional activities and conditions that should exist at project
sites, the development of specific instructional programs has been left to the individual sites.
Second, classroom documentation data complements other project data. For example, students in
QUASAR classrooms are periodically assessed with respect to their understanding of a variety of
middle school topics and their performance on problem solving tasks. Descriptions of classroom
instruction contribute informatior: on the nature of the mathematical tasks and instruction activities
to which students have been exposed. Possible relationships between changes in student
understandings and instructional activities can then be explored. Similarly, the project is
systematically collecting data on staff development activities at each site. Hence, possible
relationships between staff development experiences and teachers' instructional practices can also
be examined.

Finally, QUASAR classtoom documentation expects to contribute to the extant knowledge basc
on teacher change. Although teachers are the chief mediators of most school improvement efforts,
history suggests that helping teachers to alter their practice is not easy (Cuban, 1990). Moreover,
recent studies are beginning to document the difficult nature of teaching in a manner compatible
with the spirit of the mathematics reform movement (c.g., Grover, Gill, & Kaduce, 1991). All
teachers, of course, must struggle to overcome tendencies formed by the way they were taught
mathematics (Ball, 1988). New teachers can leamn to experience mathematics and themselves as
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leamners of mathematics in new and exciting ways; they fare less well, however, when they attempt
to create an appropriate instructional role for themselves, including how to deal with the often
unpredictable contributions of students (Schram, Wilcox, Lappan, & Lanier, 1989). Experienced
teachers carry the baggage of established practice and prior experience with reform cfforts, many
of which have been diametrically opposed to the goals of the new reform (c.g., direct instruction
and the back-to-basics movement) (Cohen & Ball, 1990). QUASAR documentation research can
contribute to a small but growing body of work that examines the processes by which experienced
teachers’ practice changes as they are confronted with new igeas about mathematics, about how
students learn mathematics, and about better ways to teach mathematics.

Conceptual Framework

The conceptual framework guiding the classroom documenttion work is informed by recent
recommendations for the reform of mathematics education (i..., NCTM, 1989; 1991} and research
in a number of areas including tae cognitive aspects of teaching (e.g., Clark & Peterson, 1986;
Leinhardt & Greeno, 1986), teacher knowledge and beliefs (e.g.. Brophy, in press; Shulman,
1986), and research on mathematics teaching and learning (c.g., Cobb, Wood, & Yackel, in press;
Fennema, Carpenter, & Lamon, 1988). The above recommendations and research suggest that it
is important 1o systematically monitor specific aspects of the instructional environment and of
teacher thinking that are expected to change as mathematics programs are implemented and
progress is made toward facilitating high-level thinking and reasoning.

Four main variables form the nucleus of our framework for describing changes in the
instructional environment: mathematical tasks, classroom discourse, intellectual environment, and
the nature of instructional formats. Mathematical tasks are a central feature because it is
through engagement with such tasks that students are provided with opportunities to think about
concepts and procedures, connections among mathematical ideas, and applications to other
domains and real world contexts. Mathematical tasks also implicitly carry messages about what is
worthwhile mathematical activity. Consequently, we attend to scveral features of the tasks that
occur in QUASAR classrooms including goals (implicit or explicit) for students’ leamning or
understanding, the degree to which the tasks focus students’ attention on doing mathematics as
opposed to foliowing preestablished procedures, and the kinds of communication that the tasks
foster. Recent research emphasizes the role of classroom discourse--the way that mathematical
ideas are exchanged-- in how students develop and refine their knowledge (¢.g., Lampert, 1988).
Our framework includes attention to various aspects of classroom discourse including the extent to
which students are encouraged to explain and justify their thinking rather than simply supply the
"right" answer, the representations and technological tools that teachers and students select or
invent, and the extent to which students are encouraged to initiate problems and to question the
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teacher and one another. The framework’s attention w0 intellectual environment examines
hidden classroom norms that may influence students’ ideas about mathematics and themselves as
learners of mathematics. It is based on the epistemological consideration of who possesses
intellectual authority in the classroom: Does task presentation suggest an outside author of
knowledge (e.g., teacher, text) or does it encourage students to view themselves as constructors of
knowledge? Finally, the framework incorporates descriptions of the instructional formats
(paired learning, smali group work, whole-class discussion) used in QUASAR classrooms,
including attention to the assignment of roles to group members, teacher monitoring of group
work, and peer interactions.

Since the teacher is central to decisions made about the instructional environment, feacher
thinking constitutes another broad arca for the systematic study of change. Our framework for
documenting teacher thinking includes the following variables: Teacher knowledge and beliefs
about mathematics as a discipline, beliefs about instructional practice, and beliefs about how
students leam mathematics. A host of findings suggest that teachers' own understandings of a
subject matter influences their instructional approach, impacting both what they teach and how they
teach it (Brophy, in press; Stein, Baxter, & Leinhardt, 1990). Teachers' beliefs about mathematics
and about how students learn mathematics are similarly influential (e.g., Thompson, 1984), Our
focus on teacher knowledge and beliefs explores both how they change during the course of 'he
project and how they act as a filter through which teachers interpret project goals and activities.

Methodology

A methodologically eclectic approach to classroorn documentation is being employed.
Interviews, observations, paper and pencil instruments, and classroom artifacts form the data base.
In addition, we employ the qualitative research approach of triangulation which calls for gathering
information on a specific phenomenon from a variety of sources.

Instructional environment. The mathematics cfassrooms are being documented from a
number of perspectives. The most visible and labor-intensive consists of thres 3-day observation
sessions occurring in the fall, winter, and spring of each school year. The purpose of each of
these sessions is to gain a detailed understanding of mathematics instruction in a particular
teacher’s classroom at a particular point in time. We are also collecting data to gain insight into
instruction over the course of the year. These data include teacher self-reports (paper & pencil) on
their instructional objectives, pedagogical techniques, and content coverage; and teacher-provided
classroom artifacts (e.g., teacher-made tests, student work).

The classroom observations include both an analytic examination of the mathematical content
and pedagogy of the lessons and an ethnographic-style investigation of what it is like to be a
student in the classroom. Two observers take detailed field notes, onc focusing on the overall
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mathematics instruction, the other on two pre-selected target students. Both observers' ficldnotes
are guided by pre-designed observation guides. The mathematics observation guide consists of
qualitative questions grouped by the main themes: tasks, discourse, environment, and formats.
The target student observation guide consists of questions about the students’ behaviors and their
level of engagement during the various phases of the lesson. The aim is to chronicle the
development of the lesson through the eyes of the student, thus "personalizing” the observations
and providing detailed information regarding how students are responding to the lessons. After the
observation, the observers write narrative summaries {of the lesson and the target students
respectively) and, using videotape and their ficldnotes as data, answer the questions on the
observation guides. In addition to these qualitative accounts, the observers complete a quantitative
evaluation of the lesson on a series of anchored rating scales.

The observers were sclected on the basis of a set of qualifications that included a strong
background in mathematics education, psychology, or a related field, a demonstrated competence
in their ability to analyze instructional events from both pedagogical and mathematical content
perspectives, prior experience observing classrooms and conducting interviews, and their
understanding of the ethnic or multicultural nature of the community at the site (many of the
observers are residents of those communities). In some instances, Spanish-English bilingual skills
were also required because the population included a high percentage of students whose native
language is Spanish.

The observation reports are complemented by interview data from a variety of project
participants. The mathematics observer conducts a pre- and post-observation interview with the
teacher, asking questions about the teacher's objectives for the 3-day sequence and his/her
svaluation of the lessons. The target student observer conducts a post-observation interview with
6 students from cach observed class. The interview is focused on the students’ perceptions of their
mathematics class in general (e.g., students brainstorm about “what it takes to get a good grade in
Mr./Mrs. ___'s math class") and of the 3-day observational period in particular (e.g., students
respond to the question, “What do you think was the main thing that you were supposed to leam
during thesc past 3 days?"). In addition, the target student observer conducts semi-structured
interviews with the principal, the resource partner(s), and the site facilitator. The interviews focus
on these individuals' perceptions of mathematics instruction in the observed classrooms. All of the
above data is organized to provide information on the four main variables outlined in the conceptual
framework.

Teacher thinking. Two inventories elicit information about the teachers' thinking. One
inventory, consisting of 30 Likert-style statements, focuses on teachers' beliefs about mathematics
and how it is best taught and leamned. The second inventory consists of 10 problem situations and
focuses on the teachers' knowledge of mathematics and pedagogical skills in dealing with student
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responses to problem situations. Teachers are asked to provide examples of full- and partial-credit
student responses to five of the problems and to give a rationale for their assignment of points. On
the remaining five problems, teachers cornment on how they would respond to students whe have
answered the problems in a particular manner (usuatly exhibiting some misunderstanding). These
inventories are administered once per year during the course of the project. Additional informadon
about teachers' knowledge and beliefs is gathered from a variety of informal sources (e.g., teacher
journals, teacher-made or teacher-selected tests, lesson plans).

Expected Contributions

Given the relatively weak instructional specitication of the reform's vision to date (Cohen &
Ball, 1990), grounded examples from QUASAR classrooms should be useful to the field of
mathematics education as it secks to specify promising practices. Even with more detiled portraits
of exemplary insruction, however, the reform's recommendations will not be implemented unless
teachers undertake the complex, long, and often difficult process of creating a meaningful
instructional practice. The present research, combined with other tongitudinal work on how novice
teachers learn to teach mathematics (e.g., Schram, Wilcox, Lappan, & Lanier, 1989; Jones,
Brown, Underhill, Agard, Borko, & Eisenhardt, 1989), should provide insight into the process of
becoming a skilled, knowledgable, and thoughtful teacher.
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TOWARDS A CONSTRUCTIVIST PERSPECTIVE: THE IMPACT OF A MATHEMATICS
TEACHER INSERVICE PROGRAM ON STUDENTS!
Deborah Schifter, Muunt Holyoke College
Martin A. Simon, Pennsylvania State University

A constructivist-oriented inservice program provided teachers of mathematics
(K-12) with intensive two-week summer institutes and weekly classroom {ollow-
up. Pre- and post-program data on student outcomes indicate that, along with
transformations in the nature and quality of mathematics activity in the
classroom, students’ beliefs about learning mathematics changed and
elementary students' attitudes toward mathematics improved. Although
instruction focused more on conceptual understanding and iess on
comgutational skill, standardized test scores assessing routine knowledge did
not drop.

The Educational Leaders in Mathematics (ELM} Project was an inservice
program that provided teachers of mathematics (K-12} with intensive two-week
summer institutes and weekly classroom follow-up during the succeeding academic
year. While the project predated the NCTM Professional Standards for Teaching
Mathematics (1991), its goals--to stimulate and support teachers' development of
instructional practices informed by a constructivist view of mathematics learning--were
consistent with the vision the Standards proposed. An instrument designed by ELM
staff to assess participants' classroom practice after one year's involvement in the
program (Schifter and Simon, 1991} determined that 99% of them implemented new
instructional strategies and approximately half developed a practice informed by a
constructivist epistemology (Simon and Schifter, in press). 1n general, students' rote
learning of facts and practice of routine algorithms was deemphasized; instead
students were encouraged to generate their own ideas and communicate them to one
another.

This paper discusses the impact of ELM on the students of these teachers. We
were interested in the effect of the program on: 1. students' attitudes toward
mathematics, 2. students' beliefs about mathematics learning, 3. students’
performance on standardized tests. and 4. the nature and quality of the mathematical
activity in the classroom.

1This work was supported by the National Science Foundation, Grant No. TEI-8552391. Any
opinions, findings, conclusions, and recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the National Science Foundation.
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Many teachers engaged in innovative inservice programs such as ELM feel
what they perceive to be contradictory pressures. On the one hand, they are aware
that traditional instructional approaches do not promote the levels of understanding
and interest among their students that an alternative practice could inspire. On the
other hand, they feel that they are held accountable for students' scores on
standardized tests of computationa!l ability ard they must prepare their students for
those tests. Yet this study and others (Cobb et al, 1991; Carpenter, et al 1988; Heid,
1988) are beginning to show that as teachers change their focus to student
construction of mathematical concepts--emphasizing problem solving, communication,
and reasoning--not only do assessments of attitudes. beliefs. and conceptual
understanding indicate positive change, but standardized test scores do not drop.
These results ought to allow more teachers, with support from their schoo! districts, to
become involved in inservice efforts directed toward implementation of the NCTM
Protessional Standards for Teaching Mathematics without fear of diminished
computational skills and lowered test scores.

Methodology

In examining the program's impact on students, we employed qualitative and
quantitative methods that included both formal and informal approaches: data was
collected through surveys, standardized tests, and teachers' reports of student change

For the three cycles of instruction (1985-1988), surveys and standardized
mathematics tests were given to parallel classes (grades four and above for the
surveys) of participating teachers at the end of the academic year prior to entering the
program angd again at the end of the following academic year. The students surveyed
were thus not the same individuals from one year to the next, but they were taking the
same course with the same teacher. As a consequence, surveys and tests were
included only for classes of teachers who taught the same course (e.g. third grade
heterogeneous, sixth grade remedial, honors precalculus, etc.) two years in a row.
Between pre-test and post-test, teachers participated in a two-week summer institute
and then received weekly follow-up visits (September to May) from ELM staff.

in April 1888, ELM teachers who had entered the program between 1985 and
1987 were requested to respond in writing to the following question:

What changes have you observed in your students as a resuit of your

involvement in the ELM Project? (Include all types of changes: positive,

negative, and neutral.}
Response items were consolidated and categorized.
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Results

Survey items about feelings toward mathematics and the importance of
mathematics were combined to calculate a general altityde score. Two-tailed t-lests
were run to compare pre- and post-program survey responses.

Attitude scores for elementary students (grades four through six) calculated from
171 pre-program surveys and 179 post-program surveys showed a highly significant
increase (p.<.001). Looking at specific items that comprised the general score, the
following items changed at a level of p<.005:

It is fun to work math problems. I'd rather do math than any other kind of

homework. Math is one of my favorite classes in school. It is interesting to do

story problems. Math helps me learn ‘o think better. 1 iike to explain how |
solved a problem.

For secondary students responding to the questionnaire, there were 295 pre-
program surveys and 303 post-program surveys. The composite general attitude
scores indicated no significant change from one year to the next.

Beliefs about learning mathematics were assessed from survey items for which
students responded to the following question: To do well in rmathematics, how
important are these? For elementary studenis, the following items increased In
importance at a level of p<.05:

Checking your own answers; being able to explain what you did; drawing

diagrams; luck; being creative; trying new things to see how they work; seeing

connections between things you've learned; trying different ways to solve
problems even if you're not sure how to solve them; opinions.
The following items decreased in importance at a level of p<.05:

Working problems quickly; reading the textbook; writing down what the teacher

says in class.

Survey scores for the following items indicated no difference between pre- and post-
program surveys:

Neatness; asking questions in class; memorizing; thinking logically.

For secondary students, the following items increased at the level of p<.05:

Being creative; trying new things to see how they work;
and the following items decreased at the level of p<.05:

Reading the textbook; writing down what the teacher says; thinking logically.

Teachers of all grades administered standardi which evaluated routine
and computational knowledge of mathematics. Like most of the standardized tests
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available, they could not, in our view, adequately measure conceptual understanding
and problem solving abilities. Three hundred eighty pre- and 388 post-program
elementary students and 290 pre- and 303 post-program secondary students took the
tests. Two-tailed t-tests were used to compare pre- and post-program scores. No
significant differences were found for the total group, or for elementary and secondary
students analyzed separately.

To consider the pature and quality of mathematical activity in the clagsroom, we
solicited observations of changes in student behavior from sixty-one ELM teachers.
The thirty-five responses included reports of both positive and negative effects, but the
former were overwhelmingly in the majority. Following is a list of the effects which
were reported by at least five teachers. The number of teachers reporting the
observation is noted in parentheses.

Students:

show greater ability to express mathematical ideas and to defend their point of

view (16); express more interest and/or enjoyment in mathematics (13): listen to

and respect others’ ideas (9); show greater cooperation among themselves (9);

willingly use concrete manipulatives to solve problems (8); take risks/share their

strategies with the class (8); understand that there is more than one way to
solve most problems (8); depend more on each other and less on the teacher

(8); participate more in class (8); probe for understanding (6); are more

confident, competent problem solvers {6); understand more (6); are more

confident in math (5); and experience more frustration (5).

Discussion

Although teachers' observations of their students need independent
corroboration, when taken together with the survey data some tentative conclusions
may be drawn. We can categorize student change into three broad areas: cogrnitive,
affective, and sociaf.

Cognitive change described by teachers involved greater facility with
mathematical ideas, greater ability to communicate about mathematics, and deeper
understanding of mathematical concepts. They reported that students were hecoming
more competent problem solvers who understood that there is more than one way 10
solve most problems.

These reported changes are consistent with survey responses concerning
beliefs about mathematics learning. Both elementary and secondary students’ scores
increased for items such as, "It is importart to be creative,” and “It is important to try
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new things to see how they work." Rote behaviors such as “writing down what the
teacher says” became correspondingly less important.

Two results concerning student beliefs seem particularly puzzling: first, although
"luck" continued to be considered relatively unimportant {the mean remained low), it
increased in its perceived importance for elementary students. This may be
attributable to the change in the nature of mathematical activity in the classroom. If
pre-ELM assignments were largely computational exercises, then "luck” would have
played little or no role; success was dependent on carsful repetition of a known
algorithm. But teachers patticipating in ELM gave non-routine problems where trying
out different strategies was appropriate, and some students might have identified
hitting on a successful strategy as a matter of fuck. And second, while elementary
students' response to the item "it is important to think logically” did not change,
secondary students' response to this item decreased (althcugh the mean still
remained high). Perhaps this was due to the fact that it is generally held that
mathematics helps to develop and requires logical thinking. If, prior to their
involvement in ELM, teachers tended to emphasize this, students might have come to
idr:ntify "logic” with mechanical or routine solutions and it would be expected that the
pre-program measure for this item would be as high or higher than the post-program
measure.

Affective change. Teachers reported that their students now expressed more
interest in and enjoyment of mathematics, and that they demonstrated more
confidence in solving problems and in doing mathematics generally.

The attitude survey scores for elementary students supported the teachers’
observations. After their teachers had participated in ELM, elementary students more
frequently reported that it was fun to work mathematics problems, that they liked to
explain how to solve problems, and that mathematics helped them to think better.

Among secondary students, responses to the attitude survey did not change. A
possible explanation is that older students' attitudes toward mathematics were more
firmly set as a resuit of more schooling. Informal discussion among elementary and
secondary teachers indicates that school structure also effects the potential for
change. Elementary teachers, who have the same students for the entire school day.
report that after attending the summer institute, instruction changed in many of their
subjects. Thus, they were able throughout the day to communicate beliefs about
learning and to convey expectations of student behavior consistent with their goals for
their mathematics classes. To cecondary students, mathematics classes taught by
ELM participants tended to be the odd experience.
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Sqcial change. Among teacher-reported changes, it is interesting to note how
many of their observations concerned changes in sociai behavior. Teachers wrote
that students showed greater cooperation among themselves, listened to anxd
respected one another's ideas, and depended more on orie another and less on them
Students were more willing to take risks and to share their ideas and strategies with
their peers, and in general more willingly participated in classroom activities.

These developments reflect changes in the social organization of the
classroom: students often worked in pairs or small groups and were responsible for
their own and each other's understanding. By listening to and valuing students’
mathematical ideas, teachers worked to shift the locus of authority from the all-knowing
instructor (or textbook) to students' reasoning processes.

Conclusions

Teachers participating in ELM tended to increase their attention to problem
solving and conceptual development, deemphasizing computation and memorization.
As a result, student beliefs about mathematics learning came to include an
appreciation for the values of creativity and experimentation. And elementary students
developed more positive attitudes toward mathematics.

Yet standardized test scores did not change. This result should help allay
concerns that greater attention to understanding and problem solving, particularly
considering the additional time allotted to conceptual exploration, will lead to a decline
in computational skill. The related concern that instructional changes of this
magnitude will resuit in lower test scores for the first year or two, as teachers learn the
ropes, has also been expressed. However, these test results indicate that even during
the initial change process, computational skill is not necessarily sacrificed. For
teachers and schooi administrators who wish to engage in teacher development
efforts along the lines of the NCTM Standards, this should come as encouraging news.

Aside from those shifts in attitudes and beliefs described above, the results of
our standardized tests could not tell us whether students were constructing stronger
conceptual understandings. That the future of educational reform is tied to the
development of ways of measuring such complex processes Is increasingly widely
recognized.

in addition, many--perhaps crucial--questions arose for us which can only be
addressed through longitudinal studies. Does the teacher's, and her students’,
enthusiasm wear off as more time passes? What happens to students who have
project teachers several years in a row? Do secondary students’ attitudes begin to

.48-

Q

RIC




Impact on Students

change after two or three years of constructivist-oriented mathematics instruction?
What are the differences between elementary and secondary schools that are
reflected in different responses to the project?

Finally, future research must more closely examii e change in teachers’
conceptions of mathematics, and of learning and teaching, and relate such change to
cognitive and sociological studies of students and teachers in classrooms.
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Subject-~Matter Knowledge
Functions and Graphs
PROSPECTIVE SECONDARY TEACEERS'
SUBJECT~-MATTER KNOWLEDGE ABOUT
FUNCTIONS AND GRAPES

Christine L. Ebert
University of Delaware

This atudy deals with prospective secondary teachers' subject-
matter knowledge about functions and graphing. A set of tasks
was designed to assess the elementary knowledge that
prospective secondury teachers have about functional
relationships represented by verbal descriptions and by
graphs. The primary objective of this study was to document
evidence of the relationships between elaementary knowledge
about functional relationships and constructing graphs that
represont these relationships. The findings suggest that the
pre~service teachers’' knowledge of functions and graphing was
incomplete and particularly fragile with respect to certain
classes of functions.

CONCEPTUAL FRAMEWORK

The study of teacher subject-matter knowledge in the context
of functions and graphing is an important topic within the
conceptual frameworks dealing with research on teaching ( Brophy,
in press; shulman, 1986) and research on functions and graphing
(Leinhardt, Zaslavsky, & Stein, 1990). Teacher subject-matter
knowledge has received a great deal of attention of late and is an
important component of the conceptual framework dealing with
research on teachers and teaching. Shulman (1986), who identified
teacher subject matter knowledge as the ™missing paradigm" in
research on teaching, has inspired much of this work. In order to
describe the relationships between teacher subject-matter knowledge
and instructional practices, it is necessary to examine the
elementary knowledge that teachers have about a particular
mathematical topic. The mathematical topic of functions, graphs,
and graphing has also received considerable attention of 1late
(Leinhardt et al., 1990). A significant amount of research
concerned with students' understanding of functions and graphs has
been completed and further studies dealing with instructional
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aspects have been suggested (Leinhardt et al., 1990). This study
may be located within the intersection of these two conceptual
frameworks - in the subset of teaching that deals with subject-
matter knowledge and in the subset of functions and graphing that
deals with verbal descriptions and graphs cf functions.

The current reform movement in mathematics education suggests
that teacher subject-matter knowled.je is an important component of
the new view of mathematical competence. The emphasis is being
placed on examining various representations of a concept and
developing connections between those representations. Lolving
multi-step problems and utilizing appropriate representations in
the solution process replaces the memorization of isolated facts
and displays of algorithmic dexterity. Classroom teachers are
encouraged to convey to their students the processes in which
mathematics is discovered and communicated.

It has been suggested (Ball, 1988) that this view of what it
means to Kknow and do mathematics is very different from the
mathematics instruction of both curreni and prospective teachers.
Stein, Baxter, & Leinhardt {1990) suggest that " the subject-matter
knowledge necessary to support the instruction that will foster
this new view of mathematical competence remains underspecified"
(Stein, Baxter, & Leinhardt, 1990, p.641). They argue (Stein et
al., 1990) that the realization of this new view of mathematical
competence will not take place without systematic attention to
subject-matter knowledge and " how both current and desired levels
of teacher kncwledge impact instructional practice" (Stein et al.,
1990, p.641).

The significance of a study on functions and graphs can best
be described in terms of the view that "graphing can be seen as one
of the critical moments in early mathematics" (Leinhardt et al.,
1990, p.2). They describe these "critical moments" as sites within
a discipline when the opportunity for powerful learning that is
different from other learning episodes takes place. Two key
features of the "critical moments" are that they are usually
unmarked in the curriculum and that they are fundamental to the
development of more sophisticated mathematical knowledge. The
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study of teacher subject-matter knowledge about functions and

graphs provides the opportunity to examine this critical site of

learning in the context of knowledge of the content and
organization of the topic.
Research Question

What relationships can be documented between elementary
knowledge about functional relationships and constructing graphs
that represent these relationships?

METHOD

Subijects

The data source for this study consists of six secondary math-
education majors. 211 of the prospective teachers were enrolled in
mathematics methods classes at a major state university located in
the south-eastern United States. Three of the students were
scheduled to do their student-teaching during the upcoming quarter
and three of the students had recently completed ten weeks of
student-teaching at area high schools. The six students were
randomly selected from the class. There were 4 female students and
2 male students who participated in the study.
Tasks

A set of five tasks was designed to assess elementary
knowledge about functional relationships and graphs. The tasks
focused on documenting evidence of subject-matter knowledge that
prospective teachers have about functional relationships
represented by verbal descriptions and by graphs. The teachers
were asked to do the following:

1. Match a graph to a situation presented verbally;

2. a) Construct a graph from a situation and

b) Construct a situation from a graph;

3. a) Answer a series of questions dealing with a
specific situation and culminating in
construction of a graph;

b) Do the same as (3a) but begin with the graph;
4. Choose a particular representation ( equation, table,
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graph) and use that representation to solve a
problem presented in the verbal description;

5. Task 5 is the same format as task 4 with the exception
that the set of problems were weighted toward a
particular representation in task 5 and neutrally
weighted in task 4.

Each of the first four tasks consisted of linear, quadratic,
and exponential functions. In task 5, the questions were
constructed such that a particular representation was salient and
the class of function ( linear) remained constant. 1In addition,
each of the teachers participated in a card-sort task based on
those described in the literature ( Chi, Feltovich, & Glaser, 1981;
Silver, 1979; Stein, Baxter, & Leinhardt, 1990). The set of tasks
was administered individually by the researcher. For each of the
tasks, the teachers were asked to "describe the relationship
between the gquantities in your own words" prior to choosing or
constructing a graph or situation. They recorded these
descriptions on their paper. After completing the problems in each
task, the teachers described their strategies to the researcher.
These were audiotaped and later transcribed.

ata sj

The set of five tasks provide a variety of data sources to
assess the prospective teachers' subject-matter knowledge. The
first two task- may be characterized from the literature on
functions and graphing as either interpretation or construction
tasks. Tasks 4 and 5 provide the opportunity for the teachers to
use a variety of representztions to solve problems about
situations. Of interest is the consistency of their descriptions
"in their own words" with the choice or construction of a graph;
the direction (situation-to-graph or graph-to-situation) that
provides evidence of greater understanding; the choice and variety
of representations used to solve problems; and the breadth and
depth of knowledge revealed by the series of questions in task 3.

The card-sort task provides the opportunity for the teachers
to categorize the cards based on a variety of criteria. There were
several dimensions in which students could sort the cards:
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representational format ( tables, graphs, equations, ordered-pairs,
arrow diagrams); the mathematical relationship depicted by several
representations (all representations of y=x); and whether or not
the mathematical relationships were functions. This task provides
a backdrop in which information from the other tasks may be
interpreted. The use of a variety of data sources is necessary to
triangulate subject-matter knowledge about functions and graphs.

80ME RESULTS

For the card-sort task, three of the prospective teachers used
the function vs. non-function distincticn as an initial
categorization. Within these two classes they grouped all of the
cards that represented a particular mathematical relationship.
These were the teachers who had recently completed their student-
teaching in the area high schools. The other three teachers also
grouped together the cards that represented a particular
mathematical relationship. All of the teachers had a great deal of
difficulty deciding what to do with the arrow diagram that
represented a one-to-many situation. Everyone matched the one-to-
many diagram with the graph of y = x*.

Task 1 (interpretation) proved to be much more difficult than
task 2 ( construction). All of the teachers were able to correctly
describe the situation in their own words. However, three of the
teachers basically made all of the wrong choices for the graphs.
They chose a cubic graph for a linear situation and a linear graph
for an exponential situation. All of the teachers indicated a
degree of uncertainty between the two graphs that depicted position
vs, time and velocity vs. time. The axes were not labeled and the
graph of velocity vs. time was requested in the situation. In the
construction task (2), teachers were much better at constructing
the graph from the situation than visa versa. Although they could
describe the mathematical relationship depicted by the graph, in
most cases their situations were not very clear. While most of the
teachers performed well on the tasks dealing with linear functions,
almost everyone confused exponential and quadratic functions. In
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this regard they were fairly consistent across the first three
tasks.

Task 3 was designed as a series of questions about the
variables described in the situations or depicted by the graphs.
The teachers had the opportunity to " discover" the mathematical
relationship by answering the questions and noting the relationship
between the previous answer and the subsequent question. While
they were able to describe the situation in their own words, they
continued to rely on surface characteristics to answer the
questions and depict the graph. No one described the relationship
between the variables as " is a function of ",
Instead they focused on whether or not the dependent variable
increased or decreased as the independent variable increased { my
words - not theirs). There was also no indication that they made
the connections between specific features of the situations and the
key points on the graph. 1In all of the situations, the initial
value of the dependent variable ( # of minks, area of a pizza, and
# of lisrelites) was not identified as the y~intercept on the graph
of the function.

Tasks 4 and 5 were designed to provide the students with a
choice of representations for solving the problems. In these tasks
the students were very successful at solving the problems. O0f the
three representations presented iconically to the students, the
tabular representation was chosen least often. The graphical
representation was used appropriately as a tool for problem solving
(maximum number in a quadratic situation, point of intersection,
and interval during which one quantity is greater than another
quantity). The equations or algebraic representation was also used
appropriately to determine specific values of the dependent and
independent variables.

CONCLUSION
The primary objective of this exploratory study was to collect

descriptive data about prospective teacher's subject-matter
knowladge as it relates to the topic of functions and graphs. The
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results of this study support the need for further research. In
particular, future studies should examine the relationship between

the subject-matter knowledge of prospective secondary mathematics

teachers and their instructional practices during student-teaching
and in their own classrooms. While it is impossible to predict
exactly how these prospective teachers will present functions and
graphing in their own classroons, it is unlikely that their
presentations will reflect all of the conceptual connections and
powerful representations that characterize rich well-organized
subject-matter knowledge.
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Functions
Representations

A FRAMEWORK FOR FUNCTIONS: PROTOTYPES, MULTIPLE
REPRESENTATIONS, AND TRANSFORMATIONS
Jere Confrey and Erick Smith, Comell University
Abstract. This paper summarizes several years of research culminating in an approach to
teaching functions which emphasizes: 1) families of prototypic functions with associated
actions in human activity; 2) coordinating the use of multiple representations in representing
and acting on functions; and 3) wansforming functions with an cmphasis on the consistency

in the actions of transformations across prototypes and representatons. An important part
of this pedagogical approach is the use of a multi-representational software tool.

Int: oduction

The concept of function has been identified as central to the secondary mathematics curriculum
in several curricular reform documents including the Curriculum and Evaluation Standards for
School Mathematics (NCTM, 1989). This paper reports on an approach to the study of functions
that has been successfully used in a number of classrooms (Rizzuti, 1991; Vedelsby and Confrey,
in progress; Smith, 1991) and which combines several key features: 1) families of functions,
called prototypes, are described through characteristic actions and operations related to particular
human contexts and activities; 2) functions are represented through multiple forms including tables,
graphs, algebraic expressions and calculator procedures; and 3) students leamn to fit these
prototypes to particular data through stretching, translating and reflecting. In this paper, each of
these key features is discussed with brief examples. The discussion of multiple representations and
transformations is presented using Function Probe® (Confrey, 1989; Confrey and Smith, 1988).
Functions Defined

Historically, two traditions in the development of functions were witnessed. Functions were

viewed as: 1) the covariation between quantities. As one quantity changes in a predictable or
recognizable pattern, the other also changes, typically in a differing pattem. Thus, if one can
describe how x] changes to x2 and how y) changes to y7 then one has described a functional
relationship between x and y; 2) a correspondence between values of two quantities. If one can
describe how to find y (or f(x)) given a particular value for x, then one has described a functional
relationship. Dus to the heavy emphasis on algebraic expressions and manipulation in the
secondary mathematics curriculum, the correspondence approach dominates current presentations
of functions. However, we sce both approaches as invaluable to the process of learmning functions
and seek to develop a more balanced approach to the function concept in our curriculum .

Typical definitions of function describe a relationship between two quantities, one identified as
the domain and one as the range, such that each member of the domain is associated with exactly
one member of the range. We will accept such a definition in this paper. However, we believe that

the rejection one-to-many correspondences as functions is refatively arbitrary and is curricularly
overemphasized due to the tendency to select easily measured standardized tests items. In our
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teaching, we spend relatively little time on the distinction between relations and functions. Our
primary goal is to have students recognize and develop flexible ways to portray and acton a variety
of relationships between varying quantities. With this emphasis on operational and relational
concepts, we believe, for example, that it is more important to undersiand the reasons behind the
tendency of tudents to resist intuitively certain kinds of "moaster” (Lakatos, 1976) functions
(discrete sets of points, constant functions, multiple rule functions etc. (Vinner, 1983)) than simply
to label this resistance as evidence of misconceptions. The constant function, f(x)=c is a
particularly interesting example of a “monster” function, for it defies students’ intuitive sense that
quantities should be covarying. Such examples should be incorporated gradually as they become
useful in modelling applications or as the need arises to describe commonalties between well-
behaved functions (the ones they want to accept) and "monster” functions that distinguish them
from other kinds of relationships.

We place our work within a constructivist tradition, seeking to map and follow the construction
of students' ideas rather than imposing a more singular approach. This openness of consu‘ucﬁvism
is often interpreted to mean that no curricular design can be offered. We take issue with suc¢h an
assumption. A well-designed curriculum will invite students ta explore a variety of approaches to
functions, develop and expand their concepts in ways compatble with these experiences, and
encourage them to construct connections between their own experiences and the common usages of
these concepts by their larger community. However, we believe such a curriculum must be based
on an understanding of student methods. Although much of what we describe in this paper and
many o1 the design features of Function Probe result from examining student methods, due to
space limitations few detailed descriptions of this work will be given. Descriptions of and
references to the supporting work are provided in the final section of this paper.

Prototypes

We introduce students to a variety of families of functions, called prototypic functions, each
having a range of identifiable operational characteristics. These families include: linear (including
absolute value, step functions), inverse, quadratic, high degree polynomials, exponential, and
trigonometric. Algebraically, these are: f(x)= x, f(x) = l/x, f(x)= x2, f(x)= x?, f(x) = aX, etc.

To connect a prototypic function to characteristic operations and actions, we use contextual
problems designed to help student create and identify appropriate actions. For example, onc way to
introduce the exponential function is to use the context of a cell splitting, building the relationship
between a constant splitting action and exponential growth. Altematively, the idea of change
through the identification of a constant ratio can be investigated using a bouncing ball. Students are
asked to predict the height of a ball on the nth bounce when dropped from a given initial height In
classroom situations, we often give them tennis balls and let them work in groups to create their
experimental data. Compound interest provides another approach. Students typically understand
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that the amounr of growth is a constant proportion of the amount present (i.e. the interest rate).
They must deal with the issue of how this understanding of the magnitude of growth can be
transformed into a way to predict the total amount present after a given number of years. A fourth
approach builds on the idea of growth through similarity. A particular example we use is a nautilus
shell, where succeeding chambers are similar in shape and grow on each other.

Once a student can coordinate these varying types of experience and their associated actions
with the more generalized concept of an initial amount followed by repeated multiplicative growth,
s/he possesses the fundamental attributes of the prototype of exponential functions. We have found
that the careful exploration of several contextual problems which encourage the development of the
types of action appropriate to exponential functions gives students the power to recognize
siruations in which these functions are appropriate. For example, students must leam to sense that
the act of splitting cells can be identified with the operation of repeated multiplication per iteration,
so that there must be an initial amount, a constant multiplier per iteration and a way to keep track of
the number of iterations (in this case, the exponent). These kinds of experience will lead to a need,
on the students part, for negative and fractional exponents, making their introduction both
meaningful and necessary (Confrey, 1991). Note that this treatment of the exponential also
parallels one possible treatment of the linear function prototype, that of an initial value and an
action of repeated addition (or subtraction) using a constant value giving y= b+ x (m) where b is
the initial amount, m is the amount which is added per iteration and x is the number of iterations.
The Use of Multiple Representations

Becoming familiar with a functional prototype, such as the exponential,
requires one to develop generalized procedures that allow one to "recognize”! its
appearance in diverse representations, to operate with these different O\ O - O
representations and to coordinate and contrast the actions across the N
representations. Thus in the cell splitting example. we would ¢ncourage students 0 1 2
to create a picture such as the one shown on the right as a legitimate functional
representation for exponentials. Many less standard representations have also been used.

In our teaching, we work extensively with four conventional represe ntational forms: tables,
graphs, algebraic expressions and calculator keystrokes using the multi-representational software
tool Function Probe. Euch representation yields its own insights into functions such that no one
can be subordinated to another. This is in contrast to typical secondary mathematics texts and most
current software programs which rely almost entirely on algebraic expression, subordinating other
representa’ ans to either secondary forms or merely displays of data.

1 We place “recognize” inq ions here to emphasize that functions are not “in” a representation. rather that we
construcl ways by which we vartous fepi ions with Lhose actions we jate with a P ypic fu
However, once we have construcled those connections, we will “see” the function in the representation.
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Tables, for example, are perhaps one of the most under-utilized resources for the exploration
and creation of functions, particularly in the rich environment they provide to construct and explore
covariation. If a student can fill two columns in a table, creating an arithmetic sequence in one
column and a geometric sequence in another and then describe the relationship as the change of x}
to x being constant addition while the corresponding change of y; to y2 being constant
multiplication, s/he is demonstrating a significant grasp of exponential functions. We have also
found the table window in Function Probe to be particularly appropriate for drawing attention to
such issues as rates of change, the rates of accumnulation, the need for interpolation and
extrapolation, (See Nemirovsky's work (1991) on how these ideas can create a bridge to
elementary calculus concepts.), and the maintenance of functional relations (by linking columns)
during sorting and editing without the necessity of specifying a formal algebraic relation.

Emphasizing the independence of the various representations has atlowed us to reconceptualize
how actions across multiple representations can be coordinated. For example, whereas most
graphical software is algebra-driven -- changes in graphs can only be made by changing the

- algebraic parameters -- Function Probe allows one to transform a graph directly through mouse

Q

actions. This direct graphical action allows two-way commenication between representations -- one
can change the algebra and observe the change in the graph or one can change the graph and see the
change in the algebra. This flexibility tends to minimize some of the perceptual ambiguities
reported in Goldenberg, Harvey, Lewis, Umiker, West, and Zodhiates (1988). For example, the
graph for the equation y= 3x-6 [y= 3(x-2)] can be formed from the prototype, y = x, by:

1) stretching the graph until its slope reaches 3 then translating it down (vertically) until its y-
intercept is at-6; 2) translating it down until its y-intercept is at -6, then stretching it horizontally
until its slope is 3; 3) translating it horizontally until its x-intercept is at 2, then stretching it
vertically until its slope is 3; or 4) translating it down until its y-intercept s at -2, then stretching it
vertically until its slope is 3. Predicting algebraic outcomes from graph actions, and graph
outcomes from algebraic actions becomes a significant and multi-directional undertaking. Using
such transformations with point-sets, in combination with the table, can contribute dramatically to
students' insights in this arca and provides an example of how interactions among three of the
representations can be woven together.

A final example of using multiple representations comes from teaching inverses. Most students
leave sccondary courses knowing that one can get an inverse of a graph by reflecting around the
line y=x and an inverse of an equation by reversing the x and y and solving for y. We have found
that the calculator on Function Probe, which provides a keystroke record and allows one to bu'd
buttons, can provide a unique contribution to this understanding. If a stucent builds a function as a
set of keystrokes, to create an inverse is simply to undo that set of keystrokes. For example, if a
student has evaluated the function y= 7(3% )+ 9 using 2 as the value for x, s/he would likely have
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entered: 2 3 «#7+9 = (gening 72 as the answer). Generalizing this to a button yislds,
j 1103-*74-9 =. The inverse can be seen as undoing these actions: 72-9= +7 @3=
(getting 2 back as an answer). Making this into an inverse button produces:
jtinverse: ®-9:=+7 @ 3= Two results are significant: 1) creating an inverse, becomes
identified with undoing a procedure; and 2) the log function in any base becomes seen as a way to
undo an exponential with the same base, i.c. the notational inverse of a*. The swength in this
example is amplified when students work such a problem using multiple representations, creating
from their outcomes a convergent and secure understanding of inverse functions.
Transformations

The development of multi-representational approaches to functions through contextual
problems can appear to make the study of each prototype overly independent. Functional
transformations are an important means of uniting these approaches. Algebraically, the
mansformations we use can be coded as: y= A f( Bx+ C) + D; that is, as a linear transformation on
the variable x and followed by a linear transformation on f(x). Students learn that although all of
the prototypes behave quite similarly under these transformations, the uniformity of that behavior
is not necessarily obvious. This becomes a major issue to be explored in the course.

Transformations are initially introduced through vertical stretches and translations of the
identity function y=x, creating the class of linear functions. Because of the equivalence of vertical
and horizontal translations on lines, we use the absolute value function to introduce the distinction
between a vertical and horizontal translation, for example, whereas the graph of y = (x-2)+6 is
identical to y=x+4, it is not the case that the graph of y=1x-21 + 6 is the same as either y = Ix+4l or
y=Ixl+4. Although the distinction between a horizontal and vertical stretch can be seen in the

absolute value function, it becomes more apparent in the step function y=[x}, particularly when
introduced in relation to an appropriate context. We have used a parking garage fee structure as an
example, showing that horizontal stretches (which affect unit time intervals), are clearly distinct
from vertical stretches (which affect costs per time unit). This context allows one to cxplore
separately the effects of cach parameter in y= A f(Bx +C)+D.

Two approaches to transformations are used, each with its own strengths and weaknesses.
One, called "function building,” starts with y=x and builds the final function, step-by-step. The
initial series of transformations creates the linear function: y= Bx +C. The action of the appropriate
prototype is then applied to this function, creating y = f(Bx+C). This is more straight-forward for
some prototypes than others. For example, taking the absolute value of Bx + Cissimplya
reflection of the portion of the graph below the x-axis about the x axis. Squaring a linear function
involves a similar process. The effect of applying a trigonometric function toa given line is
considerably less obvious. For all functions, however, the final transformations, stretching
f(Bx+C) by A and translating Af(Bx+C) by D, occur in the vertical direction. Thus it is essential
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for students to build an understanding of how the x-intercept of the line y = Bx+C is transformed
under each prototype.

A second approach starts with A(f( Bx + C))+ D, emphasizing the importance of sceing C/B
as the horizontal translation, B as the horizonta! shrink, A as the vertical stretch, and D as the
vertical ranslation. These individual transformations must be carried out in order. This approach is
typically emphasized for trigonometric applications where each of these factors has a differing
effect: phase shift (C/B); periodicity (B); amplitude (A); and (adjusted) initial position (D). If relied
upon too early, this approach may encourage students to memorize the ordered transformations
before building an understanding of their distinctions, stating, for example, that the horizontal
translation is C rather than C/B or failing to build the distinctions between when they can and
cannot combine vertical and horizontal stretch. It has the advantage that all prototypes can be
viewed in terms of their movements on the plane under 1o these four transformations. A powerful
outcome occurs when students learn to coordinate both approaches, developing a sensitivity to the
distinctions in the formula while being able to revert to function building from a line when in doubt
or when using a new prototype. The use of transformations has been repeatedly identified by
students as a major strength of the courses.

A final example illustrates that transformations need not depend on algebraic manipulation: A
student is given a problem where annual wition at a university was, in some previous year,
$12,000 and has been increasing at a rate of 8% per year. She initially creates the graph of the
function, f1(t) = 12,000 * 1,08t She is then asked to find two forms of graph actions that will
transform the graph of a new function, fa(t) = 6,000 * 1.08%, into her previous function. She can
do this through either a vertical stretch by 2 [algebraically, f1(t) = 2 *(6,000*1.081)] or a horizontal
translation by 9 [algebraically, fi(t) = 6,000 * 1.08+9= 6000* 1.08ts 1,089 = 6000* 1.08% 1.08t
= 6000* 2* 1.08Y). The equivalence of a horizontal translation and a veriical stretch provides an
important insight into the structure of exponential and logarithmic functions. A sign that the student
has understood the contextual implications of such transformations would be recognizing the
equivalence of seeing: 1) f2(t) as representing a halving of the initial wition of fi(t); or 2) f(t)as
representing an equation for the initial year being nine years earlier than the initial year for f;(t).
Corclusions

In this paper, we have described an effective framework for teaching functions. Although
the paper does not report on the specific research findings which led to the development of the
methods or to the design of the software, references are provided below. Research resuits,
however, are seldom sufficient to lead to the development of a complete curriculum but do provide
the conditions under which such development might be undertaken. The principles which underlie:
this work include the need to: 1) allow students to develop concepts of function which support
both covariation and correspondence approaches and create the possibility of focusing on rate of
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change and accumulation per unit time; 2) develop families of functions built around prototypes
which are tied to human actions and operations; 3) encourage the use and exploration of multiple
representations in both traditional and non-traditional forms; and 4) value the integration of these
diverse families of functions through transformations. We do not wish to imply that with such a
framework, our investigations of functions are complete. We are currently engaged in an extensive
pursuit of the schemes which underlic each of these families of functions. In the case of
exponential functions, for example, we seek to understand its roots in a form of multiplication
which is not repeated additica (Confrey, 1991, 1990). For quadratics, we are finding schemes
about the ideas of symmetry, dimensionality and rates of change based in arithmetic progressions
(Afamasaga-Fuata'i, 1991). This work, combined with research on how teachers develop insight
into these ideas (Piliero, in progress; Vedelsby and Confrey, in progress), and how groups of

students interact around these ideas (Smith, 1991) leave ample room for further investigations.
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High School
Algebra
Variables

UNKNOWN AND VARIABLE IN ANALYTICAL METHODS FOR
SOLVING WORD ARITHMETIC/ALGEBRAIC PROBLEMS

EUGENIO FILLOY
(Seccién de Matemdtica Educativa, CINVESTAV, IPN. México)

GUILLERMO RUBIO
(C.C.H. de la Universidad Nacional Autdénoma de México)

The tensions that the concepts of unknown and variable
provoke in the students are the main focus of attention in
this experimental study. The use of algebraic symbols is
interpreted as an answer to the need for representing and
operating on the more and more complex unknowns that
(theoretically) the solution (through logical analysis) of
arithmetical word problems presupposes.

I. INTRODUCTION

This study forms part of a large project on the solution of
word problems in algebra. Relevant previous studies have been
presented in P.M.E.N.A. (see Filloy, 1987; Rubio, 1990a and also
Filloy-Trujillo Roshlander, 1987 and the now classical work of
Krutetskii, 1976, on deneral skills). In this study the
difficulties that appear in the teaching of strategies of logical
analysis for solving certain types of arithmetic-algebraic
problems are contrasted with Krutetskii’s statement of the need
to have certain general mathematical skills.

IXI. THE STUDY

The study is composed of the following stages:

1.~ The <classification of the problems according to their
difficulty of logical analysis.

2.- The design of the teaching sequence on the basis of 1) the
tensions that the concepts of unknown and variable provoke in
the subjects. Natural tendencies are used in considering
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unknowns as variables, producing what in other studies we
have called "polisemia" of the x (the unknown in a linear
equation -see Filloy PME- XIV-1990). The teaching strategy,
then, proposes varying the data in order to obtain a
multitude of problems that aie equivalent from the logical
point of view, and also, 2) to propose solutions that will
vary during a trial and error test (what we call arithmetical
exploratory analysis).

Development of the strategy of teaching in a class with 16
year old pupils.

observation of this teaching strategy in the classroom.

on the basis of the previous stage, all the teaching
procedures are refined in order to go on, firstly, to using
Spread~sSheets for carrying out the exploratory arithmetic
part and secondly, using clinical interviews to relate the
students difficulties with the difficulties of logical
analysis of word problems carried out theoretically in the
first point.

Description and interpretation of the difficulties arising
from the logical analysis that either appeared in class or in
the clinical interviews.

Description of the cognitive processes involved in the

exploratory, analytical and problem resolution phases.

Theoretical framework

The theoretical framework of this study is based on the
concept of local theoretjcal models (Filloy, 1989, 1990) in which
the object of study, in this case, the solution of word problems
in algebra, is focused or. through three interrelated components:
1) models of the teaching of algebra, 2) models of cognjtive
processes, 3) models of formal competence.

In this study on the solution of word problems in algebra,
the local theoretjcal mode]l takes as the basic idea, the logical
analysis of problems. In turn, this analysis is taken as a
general model of reasoning for seeking the solution of
arithmetic-algebraic problems. The logical analysis shows the way
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to the solution presupposing the answer (the magnitudes or
quantities) is given, and deriving logical consequences from the
"gives" relationships between the “given" magnitudes or
quantities (the data of the problem), (see J. Klein, 1968 for his
description of the analysis). The logical analysis of the problem
shows the interrelationships implied by %“he relations between the
data and the unknowns.

In its teaching component, the local theoretical medel takes
into account the analysis of problems through explorations of an
arithmetic type, be they 1) using a trial and error procedure,
Rubio (1990a, 1990b) (whose historical antecedents can be found
in the false position methods which use, in the case of certain
problems, are used spontaneously by some pupils), or else 2)
starting with a logical analysis that is directed straight at the
solution of the problem, focusing its interpretation and
representation in a basically arithmetic way; this
logical-arithmetic analysis is what allows the discovery of the
relations of the problem that lead to the solution.

In its cognitive component, the Jlocal theoretical model

links the representation of symbols with the processing of

information and, *.. 5, with memory. On the processing of
classroom observation, it appears that the information processed
in the =®emory (short and long term) when a logical-arithmetic
analysis is carried out (in many typzs of algebraic word
problems) requires adequate recovery, based on the installation
in the memory of the numerical facts produced by the exploratory
arithmetic analysis. In this way the path from STM to LTM, when
the problem to be solved is processed, tends to become less
saturated (Rubio, 1990c, Filloy, 1987) than when an attempt is
made to represent the problem algebraically from the outset. The
latter requires higher order processing of the information, as
more information is concentrated in less symbols and their
relationships, making comprehension of. the secondary unknowns
difficult, among other things. This can be seen in the studies
carried out on algebraic errors which show difficulties in
semantic interpretation, for example, Booth (1984), Trujilio
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(1987), Rojano (1985), Rubio (1990). The first results of the
study show promising directions for further research on teaching
algebraic problems with verbal sentences constructing and/or
recovering algebraic concepts using arithmetic or logical methods
of exploratory analysis. On this basis, a model of formal
competence of an ideal user of the conceptual apparatus of
elementary algebra is generated, when the latter is employed to
solve the usual arithmetic-algebraic problems in high school
(Junior and Senior).

SOME RESULTS

1.- As a consequence of a teaching strategy that requires the
pupils to vary the solutions to the problems, 1) we observed
a tendency to thinking that any datum is possible. When asked
for the invention of various problems similar to the one that
has been solved, 2) the pupils tended to center on taking the
data to calculate solutions instead of proposing solutions to
calculate the data.

2.- Another tendency observed in the pupils when they were
carrying out the logical analysis of the problem, was that
they could not accept the operativity of the unknowns; that
is, when they attempted the analysis, they tended to employ
or to give values to the unknowns and could not manipulate
them as such. Even in problems with concrete objects, when
they attempted the analysis, the pupils could not follow
through the corresponding process of thought (although they
could accept them separately without problem). This is due to
the fact that they cannot follow the logical implications
that derive from thinking about something unknown, such as a
number of children (syntactically this would be linked to the
incapacity to accept the uninterrupted operations that arise
when certain types of semantic errors are committed (Booth,
1984; Trujillo, 1987; Rubio, 1990).

3.~ A natural tendency to handle a single unknown in problems
that can imply handling two or more unknowns was found, in
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contrast with the classical teaching strategies that tend to
use two unknowns in the solution of such problems (this was
also reported in Filloy, 1987).

Great difficulty in being able to represent one unknown in
terms of another was observed, even in subjects who had
overcome the difficulty expressed in 2).

The possibility of carrying out an exploratory, arithmetic
analysis makes it easier to show, and to make explicit if
desired, the relationships between the unknowns and the data,
making the logical analysié of the problem possible.

We noted that arithmetic analysis led to easier access to the
algebraic interpretation of the problems and to giving it
meaning.

By making the natural tension between the notion of unknown

and that of variable explicit, through teaching (in the
clinical interviews as well), various states of development
were observed, which depended more on the degree of progress
in the possibility of carrying out increasingly complex
logical analysis and not so much on progress in the
utilization of the symbolic elements of algebra and in the
exploratory arithmetic analysis.

FINAL DISCUSSION

The results of the exploratory phase of this study seem to
imply that the earlier concepts of algebra simplify the logical
analysis and make it possible for the learner to solve word pro-
blems that he or she wouldn‘t be able to solve just with a logi-
cal analysis based on the use of the Arithmetical Signs System.
But, it also shows that the learner needs to master late stages
of the arithmetic-logical analysis to be able to carry on with
latter phases of the mentioned algebrization programme. Further-
more, contrasting with its logical counterpart, (that generates
unsurpassable obstructions), arithmetical exploratory analysis of
word problems appears as a bridge froam arithmetical to algebraic
competences.
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Small Group

AN ANALYSIS OF STEPHANIE'S JUSTIFICATIONS OF PROBLEM
REPRESENTATIONS IN SMALL GROUP INTERACTIONS

Amy M. Martino and Carolyn A. Maher
Rutgers University

This report describes one component of a three-year longitudinal study
involving Stephanie, a third grader, who has been observed doing
mathematics in small-group settings since grade one. Data in the form of
videotape transcripts of small-group problem-solving explorations,
indicate how Stephanie represents certain mathematical ideas in social
situations, and how her ideas, methods, and attitude change over time.

Studies over the last twenty years comparing male and female achievement
in mathematics have revealed that females do not participate in advanced
mathematics to the same extent as males and that achievement in mathematics is
higher, on average, for males than for females (Fennema, 1990). Currently,
researchers are acknowledging that before educators can know more about
mathematics and gender, they need first to know more about the characteristics
of learners who do or do not succeed in mathematics, as well as their schools
and classrooms (Leder & Fennema, 1990)}.

The predominant mode of analysis for much of the research on mathematics
and gender has been to focus upon the behaviors of teachers as they interact
with children. Koehler (1990} reports two studies that involve small groups
and gender differences (Webb, 1984; Webb & Kenderski, 198S). In these studies,
male out-performance of females was explained by three factors with
relationship to student-student and teacher-student interactions in the
classroom: (1) males received more explanations than females; (2) females
did not receive answers for their requests for help; and (3) both males and
females asked for help most frequently from males.

The results of these small group studies suggest that the analyses
focused on the responses of teachers to student questions and studernts to each

other's questions. The setting seemed to be "authority centered*, thatl is,

the justification for correctness of solutions came from some autherity within

the classroom rather than the logic of the situation. What is unciear from
these reports is the extent to which small group organization was usual
classroom practice. Cobb, Wood and & Yackel (1990} argue that in crder ror
mathematical communication to be shared, the classroom norms must be “taken-

to-be-shared® by all members of the community.




Problem Representations

Clearly, there is a need for research to be conducted in classrooms in
which mathematical conversations and open sharing of problem-solving
strategies are regularly a part of the child‘'s mathematical environment. 1In
particular. some questions emerge that have potential implications for gender
studies conducted in learning environments which encourage students sharing.
asserting and defending their mathematical ideas. Before addressing the
gender issue directly, research needs to take place which focuses on the
construction of mathematical knowledge for all individuals in learning
environments which value student discussion and sharing of solutions.

This report focuses on the study of a female student, Stephanie, who has
been observed over a three year period dealing with a variety of mathematical
situations in small-group settings. We encountered Stephanie for the first
time in March 1989 as a first grader. She and three other children were
working together on a mathematics problem. Careful viewing of the videotape of
this classroom episode revealed that Stephanie exhibited considerable
assertiveness (persistence in stating and defending her position) by insisting
that her solution be considered and calling for justification (the provision
of evidence to support one's position) for the solution presented by another
group member. What was particularly noteworthy about this episcde was that
Stephanie was the only girl in this four member group. These preliminary
observations of Stephanie raised a number of interesting questions.

Guiding Questions

. What criteria did Stephanie and the other children use to validate or to
reject their own ideas and the ideas of others?

. What role did assertiveness, the ability to state and defend one‘'s own
pusition, play in Stephanie‘'s communication of her ideas?

. Were there patterns of assertiveness and/or validation for children
engaged in these small-group explorations that emerged over time?

Theoretical Framework

The study is based on the view that children, given the opportunity to

be challenged by problem situations, cycle through various steps as they build

representations of those situations {(Davis, 1984; Davis & Maher, 1990).
Careful analyses of videotape transcripts of children doing mathematics

enables a detajled study of how children deal with mathematical ideas that
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arise from the problem situation. By following these episodes over time,
researchers can learn much about how children's thinking has developed.
Design

The setting in which our observations take place is the Harding School,
a K-8 district which has participated in a mathematics teacher development
project since 1984 (Maher, 1988; Maher & Alston, 1990). This research was
conducted in classrooms where children have worked in small groups on problem-
solving explorations since their entry to grade one. In this enviroﬁment,
children are encouraged to relate abstract or symbolic ways of working with
more concrete representations, using pictures or actual physical models.

This paper will present a fine-grained analysis of three videotape
transcripts of classroom small-group problem-solving activities, with the
accompanying student written work, spanning grades 1-3. Specifically, this
analysis will focus upon Stephanie's building of representaticns of problem
solutions as well as her ability to validate and reject her own and the ideas
of others. It will also explore Stephanie’'s patterns of assertiveness and how
these served to facilitate or impede her own problem-solving.

Results
The three small-group episodes will be presented in chronological order.
Grade One: Four children, Stephanie (St}, Gerardo (G), Aaron (A) and Sean
(S), were working in a small group to solve the following problem:
The kangaroo jumped six times. If the rabbit jumps four more times, he will have jumped as
many times as (he kangaroo. How many times bas the rabbit already jumped?.
{to Gerardo} Listen! These two boys are going to have to figure this
one because you and me already figured this one out...0k? So I'm going
to read you the question and you're the two who are going to figure it
out. paron...you didn‘t answer a question and Sean you didn't...
Notice Stephanie's insistence upon fairness within the group. She asserts
that she and Gerardo have solved a problem, so the next preoblem should be
solved by Aaron and Sean. She is orchestrating a division of labor.
[} So it would be six...because the kangaroo jumped six times!
lerardo provides an answer with an explarition that is insufficient for
Stephanie who now demands justification for the answer of six.
8t: Wait a second buddy...you can't just say six!

Q: It's gotta be six.
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Gerardo reasserts his answer with no justification for his choice. Therefore,

rather than pursue Gerardo's assertion, Stephanie decides to validate this

problem with her own concrete model.

st: Wait...I think we should read this word (the word is already) Wait for
us buddy (to Gerardo) remember, you can't just jump to conclusions like
*I know this"... wait...let's just try these five...no six...jumped six
(Stephanie groups six unifix cubes and takes away four of them) six and
four...two! Put two over here...l.,2. We did it. 1It's two! Do you want
te go over the problems and figure out if they're right?

In this episode, Stephanie asserted and justified her own solution with a

physical model. She was clearly searching for justification, but did not
actively pursue the reasoning of others. This and other observations made in
grade one formed the basis for further study of Stephanie's monitoring of
group problem-sclving and her need to justify all paths of solution. Stephanie
consistently demonstrated confidence in her mathematical thinking and refused
to accept solutions at “"face value®.
Ggrade Two: Four children, Stephanie ({St), Dana (D), Michael (M) and Sean
{S), worked together to determine how many single units would be needed to
construct a base 4 cube (4 x 4 x 4 dimensions). The children were given a set
of base 4 blocks which included units, longs of four units, flats of sixteen
units and a cube of sixty four units. This excerpt begins with Stephanie
monitoring the selection of a solution strategy. Note the progressive
sophistication of her methods for choosing the group's solution strategy. and
her need to justify her method for the following problem:
How many small blocks do we need to make the big block?
st: Let's decide on a way we all want to do it.
D: Would you like to do it by tracing the sides?
" Dana planned to trace all six faces of the cube to find the number of units.
gt: (joining) Or would you rather do it like this...
M: Give me that! (referring to his cube
3t: Wait A second. Trace the box and then you'd be able to fill the box and
figure out the picture.
Stephanie wanted to trace one face of the cube and rebuild the cube inside her
traced outline.

Yeah! Wouldn't that be easier?

g:
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gt: Let's vote, who wants to do it my wiy? (Sean raised his hand) .

st: Who wants to do it Dana's way? (Mike and Dana raised their hands) .

D: It's two against two.
ac: Two against two...so we'll have to do odds and evens. Evens is mine,

odds is hers. Ready Dana...one,two...l won: We're doing it our way.
As they began to use Stephanie‘s strategy, she provided a more legitimate
means of justification for her method of sclution.

8t: You know Dana why you can't do it that way..because you have to work

around in the middle... in order to get in the middle...if you were

going to do it your way what would happen is you would be Joing the

ocutside and you wouldn't be doing the inside. What I'm saying is you

have to get all the blocks. (Dana nods) But what you were doing was

this...you were going around it {referring to the surface of the cube}.

If you do that there is no way you can fit the blocks inside (referring
to unseen blocks at the center of the cubel}.

Stephanie used an explanation which compared surface area to volume, and

pointed out that Dana's method would not account for the blocks which were not

visible to the eye. Thus, she had replaced voting strategies and the “odds

and evens® method for selecting the best strategy with a well conceived

explanation of her method of solution. This transcript indicates that

Stephanie was simultaneously monitoring her own construction of a solution and
those of her classmates, then judging which method was best.
Grede Three: Stephanie continued to refine her explanations and group
monitoring techniques. She (St) worked with Dana (D) on the following problem:
Stepben bas a blue shirt, white shirt and yeliow shirt. He also has a pair of blue jeans and
a pair of white jeans. How many different outfits can be make?
Note that Stephanie subtly monitored her classmate's work as well as her own
by drawing a simple diagram to keep track of her outfit combinations.
D: ...how many different outfits can he make?
st: We.. why don‘t we draw a picture?
As Stephanie and Dana drew their pictures (See Figures 1 and 2), we see them
focusing on the pieces of data that deal with numbers of shirts and pants and
their colors. In so doing. they searched for a way to map their knowledge

representation into the data representation of the problem.

D: OKk...he had a white shirt (The girls drew pictures of shirts).
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So I'11 make a white shirt.. (Notice that Stephanie was checking her
representation as she drew her picture to match the problem datal .
A blue shirt...

I think I'll have to use the big marker for this one...you know color it

in blue (decided to color the shirc blue to match the problem datal.

And a yellow shirt (The girls drew another shirt).

Iy \)71 w

Figure 1 - Stephanie's work Figure 2 - Dana's work
At this point, Stephanie suggested that the data be coded by assigning the
first letter of the color rather than coloring the piece of clothing.
st: Wwhy don‘t we just draw a Y, a Band a Y (sic) instead of coloring it in?
(Began to use & one letter code to represent garment color) .
D: That's what I'm doing...
st: W, B, Y (she put a letter in each shirt to denote color). Ok, he has...
Stephanie indicated that she had begun to construct a representaticn of the
relevant knowledge and proceeded to draw two pairs of jeans, blue and white.
st: Alright let's find out how many different outfits you can make. Well,
you can make white and white so that would be one...l'm just going to
diuw a line...(connected each shirt/pant combination with a line and
attached a number label to each of these lines).

Later Stephanie and Dana were quest ioned by the instructor about their
purpose in using connecting lines. Stephanie replied, *So we could know if we
already matched that (any shirt and pants combination). So we don‘t get more
that we were supposed to.” For Stephanie, the connecting line strategy was a
way to check one's work by avoiding the repetition of combinations as well as
a method for obtaining those combinations (Figure 1}.

concluding Remarks

over the course of several years, classrooms such as those at the

Harding School, which embody sharing ideas and providing explanations to

justify those ideas, are an important asset to children's construction of
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mathematical knowledge. In grades two and three, Stephanie continued to build
models to justify her solutions. She demonstrated competence in assisting
other group members as they pursued and refined their own strategies. One
pattern that manifested itself in grade two and was reinforced in grade three
was greater attention to multiple justification of arguments provided by
others. She listened to the ideas of others, and rejected or integrated them
into her representation of the problem solution.

In this longitudinal case study, Stephanie's criteria for the validation
or rejection of ideas seems to have been ®sense-making®. Some ideas she was
able to accept because they mapped into her representation of the problem
situation, others did not and were rejected. This learning environment of
open sharing provided Stephanie with the opportunity to further develop her
own mathematical knowledge by allowing her to share her ideas with others. 1In
this forum, she demonstrated her ability to assert her mathematical beliefs
and justify them in a variety of ways (physical models, comparing strategies,
drawing diagrams). A modification and refinement of her approach was that in
pursuing her own problem-solving strategies, she simultaneously referred to
and monitored the strategies of other group members.
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Elementary through College
Theoretical/Conceptual/Frameworks
Multiplicative Structures

A THEQRETICAL-CONCEPTUAL ANALYSIS OF U.S. AND SOVIET
STUDENTS’® UNDERSTANDING OF MULTIPLICATION

Jewn Schmittau
State University of New York at Binghsmton

This paper reports on an agsessment of conceptual structure
in twvo groups (from the U.S. and Soviet Union) whose formal
mathematice instruction differed significantly. The Soviet
group experienced three yearz of a curriculuum which vas
explicitly deaigned to develop conceptual structure using a
Vygotskian psychological approach. Differences reflecting
that approach were found in the psychological atructure of
multiplication, the concept investigated.

The Soviet research vas conducted during the fall of 1990 in
cooperation vwith the Academy of Pedsgogical Sciences of the USSR.

Resulta vere compared with results obtained earlier in similar

investigations conducted in the United Statea (Schmittau, 1988,

1989, in press). Data from written ingtruments and clinical

intervievs vere obtained from 40 American and 24 Soviet subjects.

The Soviet subjects vere drawn from the fourth, fifth, and
upper secondary forms of neighborhood public mchools in both
urban and village settings. All had learned mathematics during

their first three years of achooling using experimental materials
developed by V.V. Dsvydov (197%), which vere designed to promote
conceptusl integration and the development of real number
concepts in measurement contexts.

The U.S. subjects vere drawn from a highly aelective
university and from middle class public secondary schools in the

esatern United States. Seventy-five percent of the U.S.

secondsry students vere identified ss high schievers in

mathematics, fifteen percent as average, and ten percent ss lov

schievers. Soviet lover form wubjects vere evenly divided
betveen aversge and high achieving, and sll upper form secondary

students vere rsted ss aversge. Despite the age and achievement

rating disadvsntsges of the Soviet mubjects vim-s-vis their

American covnterparts, no dimadvantsges with respect to

conceptusl structure on the part of theae aubjects vere in

evidence. In fsct, Soviet fourth and fifth-form school children

LR
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often gave evidence of poverful relational understandings not
found in U.S. secondary and university studentasa.

The investigationa vere designed to aasess the paychological
structure of multiplication for real number instances.
Paychological atructure iz described by Auaubel as the
"cumulative residue of vhat is learned, retained, and forgotten"®
(Ausubel, Novak, & Hanesian, 1978, p.129). The psychological
structure of a concept vhich has been meaningfully learned
typically reflects a progresaive restructuring of knovledge under
more general and incluaive higher order concepts.

Hence, the investigations sought to determine vhether
knovledge structures were hierarchically integrated or fragmented
(indicating meaningful or rote learning, regpectively), and
whether connections vere eatablished along formal, conceptual, or
prototypic linea. This latter considerztion reflects the current
level of our understanding of category structure, wvhich vas
modified by Roach’s (1973) challenge to the classical viev of
organization according to genus and differentia. Numerousn
studies have corroborated her findings of prototype effectz in a
wide range of perceptual and smemantic categories (Lakoff, 1987).

To masess for prototype effecta, a ratings instrument bazed
on the work of Rosch and folloving the design of Armwmstrong,
Gleitman, and Gleitman (1983) vas adminiatered. Using a scale of
1 to 7, subjects vere asked to rate instances of multiplication
for their degree of mewbership in the category, wvith a "i*"
indicating a high degree or "besat exenplar" and a "7" a lov
degree or "poor exemplar" memberaship status. The ratings data
suggest that for U.S. subjects the instance "4 x 3" functir -2d as
an exemplar for the category. Organization around a cardifa.
number prototype vaa confirmed by t:iangulation acroas tvo
additional data mources: a) subjects’ explanations of the mearaing
of multiplication and b) clinical intervievs on the manner in
vhich the various instances vere underastood as m..ltiplication.

While all American aubje¢ tm rated the cardinal number

instance "1", no auch ciear prototype emerged from the Soviet

ratings.




RATINGS TASK -- Mean Ratings
U.S. Studies Soviet Suudy
Instance University Secondary 4th Form Sth Form

4 % 3
2/23 % 4/5
ab
(23+y) (x+ldy)
(-5 x 2
(-31¢(-2)
S °0n
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Indead, for the lower form studsants eepecially, the inatance of
restangular area y&s rated ¥ more rearesentive of multiplicaticn
than the inastance ?4 x 3%. in nddition, every Americzn subject
defined multiplicetion st the operazional level as the repeated
addition of positive integerws, vhile the Soviet students
deacritbed it am an scticn which they flexibly applied acroas
numerical and slgebraic domainm, extended to lengtha of line
segmrnty., ard expressed vith rows ol mquares vhoae repetition
generated rectecglea. It aemma probable that these differences
reflect, firat of all, the influence of the theory af sctivity in
Sovie’ praychology; and second, cardinality emphasss in
elewentary education in the United States as oppoaed to the
Soviet ewphasis on seaaurement contextas in the development of the
eal nuwbers (Davydov, 1975; HMinakaya, 1973).

Clinical interviewing confirmed that for the American
siudentas the conceptual structure of wmultiplication for real
number instances wam not only organixed around a prototype, but
that thia prototype functioned am s rudimentary concept o vhich
other inztancea of the category vere linked vith difficulty or
no% st sall. For the Soviet subjecta, hovever, the conceptual
structure of multiplicstion appeared to be highly integrated--
iacking the prototype effects found in the U.S. etudiea--and
organized around a conceptual base of greater generality. The

exnpanded conceptusl bLase prasoted relational learning snd sllowed
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for the subaumption of other instances of the category and their
meaningful integration into cognitive atructure. At the same
time, the underatanding of multiplication as an action connected
with the children’a action schemas and alloved their
understanding to develop to a high level of abatraction and
generalization--to proceed, in fact to algebraization.

These differences were obvious, even in the case of those
inatancea, such as "ab", vhich appeared to have meaning for both
the U.S. and Soviet subjectas. Typically, the American students
msubstituted small positive integera for “a" and "b", thereby
effecting a reduction to the prototype. The Soviet children vere
more likely to represent "ab” wvith a schema vhich constituted a
representational embodiment of the action of repetition
understood at an abstract level. The folloving schema, in vhich
a 'b = k is illuatrated, vas provided by Saviet children wno

vere beginning their fourth year of schooling.

bh F1rmes

Other differencea betveen the tvo sets of subjecta vere
observed vhich related both to autonomy and to the use and
extenaion of the knovledge base. While American students
preferred essier tasks and amall vhole numbers, the Soviet
children dismiased these as unintereating, choosing large numbera
and decimals and preferring tasks asuch a@ multiplying fractions
or binomials, vhich they had not yet encountered in the
clasaroom. Even the youngeat studenta vere succesaful vith auch
taska, conaimtently demonstrating their ability to extend their
knovledge in the zone of proximal development identified by
Vygotsky.

Space conaiderations preclude a description of the many

differencea vhich surfaced betveen the Soviet and American

-80-
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studenta’ mathematical understandings. Hovever, the folloving
incident illustrates the relational na‘ure of the Soviet
children’s knovledge. A fifth-form girl, having succeasfully
accomplished all tasks connected with the preceeding instances,
stated that "(-5) x 2* wvas "the classic example®” of a times b"
and that one "could put any variant in as a and b." She
annour.ced that she vas changing ta "i" her rating for "ab”. She
changed all of her other ratings as vell, and proceeded to
diagram her understanding of multiplication, explaining hov it
vag ordered uader the general schema for "ab". The U.S.
subjects, by wvay of contraat, subordinated their underatanding of
"ab" to that of the multiplication of tvo cardinal numbers.

Although space congiderations limit not only the reporting
of resulits, but the full development of the lines of inquiry of
the study as vell, it is important to point out that the results
do not merely preaent yet another chronicle of American students’
misconceptions (vis-a-vis the more adequate conceptualizations of
their Soviet éounterpartl). Rather they reflect the

peychological orgenization of the category iteelf. The vorks of

both Vygotsky (1962) and Ausubel (1978) allude to the important
consequencea of thege organizational differences.

The first consequence concerns the difference betveen the
psychological and the logicsl atructure of the concept under
investigation. We did not find knovledge connected at the formal
level for any of the subjects, whether Soviet or American. The
second concerns the fact that for U.S. subjects the paychological

structure vas not only prototypic but organized around the moat

conceptually restrictive instance in the category. Oiven the

predominant tendency tovard aasimilation into the existing
c¢ognitive structure (Ausubel, 1978), it vss not advantageous for
the American subjects, that after 8 to 14 yesrs of schooling
multiplication should remain for them at the most rudimentary
level of understanding, organized around a conceptual base of
inmufficient generality to support the subsumption of other
instances of the category. As one tenth-form Russian student

observed, multiplication as repoated addition of positive
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integera "does not apply to [other instancea asuch as) irrational
numbers; for irrational numbers you need to use area, and for
fractions it is easier to uze area as well." In fact, the Soviet
students’ relational understanding of both area and irrational
products vas far superior to that of their U.S. counterparts, for
vhom irrational numbera themselves often had no meaning.

Finally, given the atability of the conceptual rYramevork,
once it im established, to function as a aubsumer for new
knovledge (Ausubel, et al. 1978), the extent to which the
establishment of an inadequate conceptual framework limits
meaningful learning becomes obvious. The difficulty of
integratively reconciling later multiplicative underatandings
based upon area considerations is reminiscent of gimilar
difficulties engendered by the Greeks’ isclation of number from
magnitude, which extended historically throughout most of the
succeeding two millenia.

By structuring the elementary mathematics curriculum around
weasurement rather than cardinality, Davydov has developed from
the very first vears of schgoling a conceptual base of sufficient
generality to subsume other instances of the category. Rather
than being faced (as are U.S. children) with the necesaity of a
total reorganizmtion of psychological structure around newly

introduced concepts of greater generality (a Herculean cognitive

tumk), the Soviet children’s pedagogical experiences work with

rather than against the prevailing cognitive tendency toward
assimilation.

As the Soviet results indicate, multiplication for real
number instances is not a category aubject to an invariance of
natural development, but is instead modifiable through the
sfiplication of principles derived from the psychology of
learning. Davydov’s curriculum materials reflect not only
Vygotsky’s (1962) emphasis on the importance of the conceptual
framevork, but his cognitive developmentsl theory of the
internalization of action as cognition.

In addition to developing and -efining Vygotaky’s ideas over

#ix decades of reaearch, Soviet psychologists have also proved
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their applicability to the learning of mathematica. In so doing,
they have demonstrated a) that mathematics education can
profitably tap its foundations in order to inform its practice,
and b) that there may be, after all, nothing quite so practical

as a good theory.
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BUXLDING A REPRESENTATION OF MULTIPLXICATION: A DESCRIPYWION AND
ANALYSIS OF ANGEL'S RECONSTRUCTION!

Carolyn A. Maher and Alice Alston
Rutgers University

This paper describes and analyzes the mathematical
activity of a fourth grada boy, Angel, as hnh devalops
and explains pictorial constructions related to
multiplication. It focuses on his creative
reconstruction of a problem situation in which he
builds and maps his numerical to his pictorial
representation, developing a complex, multi-level
problem situation involving multiplication.

Davis (1984) describes thiaking abcut a mathamatical situation as involving a
series of components that include constructing a representation of the input
data, building a representation of relevant knowledge that may be used to
solve, or attempt to solve, the prcblem, and mapping between the
representations of data and knowledge. According to Davis, checks are mades
along the way as the learner attempts t> develop this mapping and other
knowledge may be entered, causing certain representations to be modified or
rejected. when the learner is satisfied with what has been constructed,
various strategies and procedures associated with the particular knowledge
representation may be applied to carry out the solution to the problem at
hand. Examples of such constructions can be found in the problem solving
activity of Brian, as he is engaged in problem solving activities that
encourage the building of representations (See Davis & Maher, 1990 and Maher,
Davis & Alston, 1991). Studying in detail children's p:oblem solving in
environments that provide the stimulus and tools for constructions, suggests
that children: can develop meaningful understanding of mathematical ideas from
an early uge (See, also, Maher & Martino, 1991, Maher & Alston, 1989; and
Landis & Maher, 1989}). In the domain of multiplicative structures, Vergnaud -
{19%3) suggests that children from an early age develop understanding through
angaginy in meaningful problem activities. His position is that children's
problem solving should be carefully analyzed in order to facilitate this

development.

1 The research reported in this paper was supported in part by a grant from the EXXON
Foundation, An Assessment Model for Elamentary Mathematics: Conceptual Understanding and
Problem Solving.




Building Representations

The purpose of this paper is to describe and analyze, in detail, the
mathematical activity of a fourth grade boy, Angel, as he develops and
explains particular constructions. In particular, the focus is on the process
by which he reconstructs a picture of three fish tanks, each containing a
different number of sea creatures, to build a representation of a

multiplicative relationship.

Methods and Procedures
Angel's instruction in mathematics in grades 1 through 3, as a member of an
urban, New Jersey classroom, had depended almost entirely on memorizing number
facts and procedures. Lessons, for tlLe most part, consisted of the children
working individually to complete sets of practice exercises. Two task based
interviews were administered to Angel within a one-week period of time in
November. A variety of waterials were availaole during the tasks including
Unifix cubes, base ten blocks, and paper and pencil. The interviewer was
guided by prepared protccols to explore whether the student could accomplish
the following: (1) communicate procedural xnowledge of multiplication; (2)
construct and explain ideas abeut multiplication using concrete materials
and/or pictures; and (3) select from a group of pictures those that seemed
appropriate to use in learning abcut multiplication and to explain these
choices to the interviewer. As 2 part of each protocol, the interviewer asked
Angel how he would explain what the various problems might maan to a child who

had not yet been introduced to multiplication in school.

Results

Augel's Thinking about Learning Multiplication. tn each interview,

when Angel was asked about how a young child learn: 1 about multiplication, he
jmmediately referrasd to procedures and learning fac » In the first interview,
Angel was asked how he would explain what 4 times 7 w1, to a 2nd grade girl.,
Nina.

Int: She's probably heard some of the big kids talking about
times.... and she wonders.... 4 times 7...What does that mean?

Angel: 1'd get my "trapper keepor” (matrix chart of multiplication
facts) and it's got all that stuff that will teach you. Four
(pointing down an imaginaxy vertical side of a chart) and then
go seven (over) and then come to (28 in the matrix cell}....




Building Repreventations

Ang2l was asked again at the beginning of the second interview how he might
teach multiplication.

Int: What would you do to help children first start thinking about
multiplication?

Angel: Write them some easy problems, with the ones or with the zeroes
and let them add it.

Int: And let them add {t? Give me an example.

Angel: Like nine ... or one times one equals one ... Three times zero
is always zero. I'd do it step by step like that.

Episodes from Interview One. Throughout the interview, Angel defended his
solutions by explanations based on addition and/or counting, often
constructing and reconstructing the numerical representation of the solution,

Example One: Angel's response to the first question, What is 4 times
7?, was to immediately write out 4 x 7 = 28, apparently as a memorized fact.
When asked to defend thia, he spontaneously used the base-10 blocks, counting
out four groups of seven small cubes and then counting the total. He then
regrouped the cubes and traded the two sets of 10 small cubes for two "longs",
indicating that this also represented 28. The interviewer questioned Angel
about how he might explain 4 times 7 to Nina, the 2nd grade child.

Int: Is there any other way you could show her? What if she didn't
know how to read that chart (the "trapper keeper” matrix
referred to earlier)?

Angel: Count on your fingers. Can I write on here?

Sure (Helping Angel reach a blank sheet of paper).

Angel: 14, two times (writing two l4's, one above the other), 8
{(writing 8 below the two 4's). Two (writing 2 below the two
1's).

Int: Now what did the 14's stand for?

Angel: The 7's. Four 7's and that's this (pointing to cne 14) two

times. Make it like 7, 7, 7, 7 (writing the sevens vertically

with a plus sign before the fourth 7)...14... 14...28.

As the interview continued, Angel was asked to solve other problems, including
12 times 4 and 4 times 12. For each problem, Angel first computed the answer

numerically by adding.

For 12 times 4,

Example Two: after adding 12 four times fur a sum of
48, Angel was asked how he would explain the problem to Nina. He ccunted out
40 Unifix cube” and 8 small base-10 wooden cubesz, yrouping them as 4 stacks »f

10 Unifix cubes and one group of 8 wooden cubes.
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I'd take all these apart (holding up a stack of 10 cubes) and
then I'd count them: 1, {pointing to each individual cube
in the four stacks of 10), 40... and then I'd say that these do
the same thing (placing the 8 wooden cubes on top of one of the
stacks of 10)....41, 42, 43, 44, 45, 46, 47, 48. She'd (Nina)
probably count on her fingers.

When the interviewer questioned Angel as to what these 48 cubes had to do with
12 times 4, he removed the eight wooden cubes and added 2 more Unifix cubes to
each of the four stacks of 10.

Angel: Twelve. Four 12's...and those are the 8 that I had...2, 4, 6,

8 (pointing to the wooden cubes and then touching the 2 cubes
that he had attached to each of the 4 stacks of 10).

Angel said immediately that 4 times 12 was "the same thing™ as 12 times 4.
When asked if there was any difference between the two, he first said 12
groups of 4, but then rewrote the addition as follows, whispering to himself

and counting on his fingers as he wrote vertically:

16

32

Int: Well, that says 12 times 4, so why 162

Angel: I just made it different, but I come up to the same answer like
the four of these (pointing to the four 12's) together be 48
and I get two 16's out of that.

Int: OK, but how did you get the two 16's? That's what I don't
understand.

Angel: Off the 48. You make the same answer. [Pexrhaps indicating
successive subtractions of two groups of 16 from 48].

Angel seems here to be inventing a new notation to represent actions of
decomposition and partitioning of products from partial sums. When questioned
about how Nina would understand 4 times 12 from this, Angel wrote twelve 4's
on the paper and began to count.

Angael: B8 (placing fingexs on two 4's)...16 (pointing to two more 4's
and then holding up four fingers) 17, 18, 19, 20.

He continued with this process, using his fingers to indicate each 4 in cturn,
until he £finally announced: "48... 1, 2, 3, 4, 5, 6, 7, '0, 9, 10, 11, 12
(pointing to each 4)., There's 12." In this instance he seems to be

representing skip counting by fours.

<0
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Building Representations

Episcde from Interview Two. In the second inteorview, Angel was asked to
select pictures from a set that he could use to h2lp young children to learn
about multiplication. Among his choices was a picture of three fish tanks,
each containing a different number of sea creatures, which had been intended
to serve as a distractor. Angel's reconstruction of the picture along with his
numexical representations give us further insight into his thinking about

multiplication (See Figure 1).

Tigure 1. Angel's reconstruction of sea creatures with his
numerical representations

How would you use this one for multiplication?
Have to count -1, 2, 3, 4, 5. (Uses his pen to point tc each
of the fish in the upper tank and then looks at the next
tank.) - 1, 2, 3, 4 - (pauses for a moment) - 5, 6, 7, 8, 9.
(points to the fish in the lower left tank.) ... Can I draw
another box?

Int: You can do anything you want to.

Angel drew a box at the bottom of the page, crossed out the five snails in the
bottom left tank of the picture, and drew five circles in his box. He drew a
second box. Using his pen, he pointed to the creatures in the bottom right
tank, appearing to count them. He marked three fish and one snail in the tank

and then drew four squares in the second box.

Int: (Pointing to the second box) OK - Now tell me what this stands
for?

Angel: The fishes.

Int: Oh, so you took those fishes and put them down here?

.88-




Q

ne

PAFullToxt Provided by ERIC

Building Representations

Yes - (pointing to the upper tank and counting its contents to
himself) ~ five - {pointing to unmarked creatures in the
original lower left tank ) - Nine - (moving to the tank on the
right and pointing to each unmarked item) - 10, 11, 12, 13 -
(then pointing to each circle in the bottom left box) - 14, 15,
16, 17, 18 - (finally pointing to each square in the bottom
right box) - 19, 20, 21, 22.

Int: (Pointing to the right tank and the box beneath it) So you put
these fish in this box? - And these ones? {Pninting to the
bottom left box) Where did these come from?

Angel pointed to the left tank, indicating that the circles represented
the creatures crossed out in the tank above. He then began to point to
the different tanks and to count the creatures. He first wroue the
vertical addition of 9, 9, and 4 shown in Figure 1. After completing
the addition, Angel paused and then wrote s X at the bottom left side
of the page. He raised his eyebrows, paused again, moving his mouth as
well as his head, eyes, and the fingers of his left hand. After several
seconds, glancing at his addition problem, he finished writing the

symbolic statement as indicated in Figure 1.

Int: OK. Show me what you did. 5 times 4 (pointing to what he wrote)
Angel: And 2 plus that - a half of - a half of a 4.

Int: So 5 times 4 was what?

Angel: 20.

Int: And then you added?

Angel: 2....and you got 22,

When questioned by the interviewer, Angel circled the single fish in the
top tank and the single circle in the left bottom box, explaining that

these represented the two that he had added.

Conclusions
In the first interview, Angel produced symbolic mathematical statements that
were remotely related to multiplicative relationships. His re: onses were

based on numerical representations of the solution. This is not surprising;

his experiences with mathematics 'n school were symbol driven. During the

second interview, in constructing his pictorial representation, Angel modified
a picture which included three fish tanks, each with a different number of sea
creatures. His new construction contained two more tanks into which he

n¢ ransferred® some of the creatures in order to develop groups of four. He
then constructed a numerical representation to accompany his explanation of

his production (five times four plus one half of four.) Angel's reconstruction
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of the pictorial representation of the fish tank problem was then mapped into
his representation of numbers of sea creatures. As he built his
"reconstructed” tanks, he modified his numerical representation to produce a
more complex multi-level problem. What is particularly interesting in Rngel's
problem solving, is the process of his reconstruction. The symbolic
representation of numbers of fish and numbers of tank had meaning for him.
Angel, monitoring and building the representation, chacked the input data and
how it mapped between the two representations of the problem situwation.

The study suggests the power of a child's thinking when given an opportunity
to build task conditions in an open-ended problem situation. It provides
insight into the powerful reasoning of a child engaged in a task that provides

opportunity to create and connect different .i.odes of representation.
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Teachers
Concepts
Integration

UNDERSTANDING THE INTEGRATION CONCEPT BY THE TEACHERS
OF ENGINEERING SCHOOLS.

Francisco Cordero-Osorio
Centro de Investigacion y Estudios Avanzados
Mexico.

This document diecusess the result of a research done
with  teachera of enginearing schools, by studying their
vaye of concewving the integration concept vhen foced
wvith spaciiic ertuatione of continuous wvariatwon,
capturing thaeir explicative modals tied to theur
notione, wntuttione and practice that smerge i the
continuoue variation.

INTRODUCTION

The problems in the transmission of knowledge in Calculus is
related to the explicative model chosen in the Schulastic
Mathematical Discourse (SMD) [4]. This model respond more to the
demands of the Calculus formal system then the requirements of a
significations system, based on the notions, Aintuitions, and
experiences of the teachers and students faced with wspecific

situations of continuous variations.

This last system is practically absent in the SMD, aspect that

could damage the efficiency in the transmission of knowledye in

Calculus. This research is aimed at exploring the ways of

thinking the ideas in Calculus under the scheme of a
signification system, to s1alize the explicative models that may
derive from them, to draw didactic situations that will allow,
given the case, an efficient transmission of knowledge of

Calculus.

We present here, the study of cases with mathematics teachers in

engineering schools under a controlled teaching experience




focused on the concepts of integration. The study consists in an

epistemological analysis of integration concept associated to

the genesis of the concept, comprehended in two stages: the old

Calculus texts and the treatises on the movement of fluids.
Recognizing a construction pattern of the integral tied to
signification of the accumulation notion allows to view Integral
Calculus (IC) in two directions: based on a movement system,
where the most important aspect lies in the acumulation notion
and the accumulated value reconstructing elements of the
quantities that vary continuously, and, the other, based on the
theoretical system of IC, where the most important concept of
the general integration theory is the primitive function {21.
Both visions of IC are analyzed in the expiicative models of the
teachers and students placed in continuous variation

surroundings.

SOME ASPECTS OF THE INTEGRATION PATTERN AND ITS SIGNIFICANCE.

The basic idea of the pattern consists in observing or rather
recognize the difference between an invariant state and its
adjacent states in the movement system of a particle or a
continuous fluid

o€ X+dX) ~pC X3
where o(X) represents the invariant state and PpCX4dX) its

adjacent stztes. The difference expresses the last position of

the particle or the local acumulation of the fluid

P (xrdx
out

xedx

Pt dxd= PO xI=P- (x)dx
accumulatfion
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The last position and the local variations are obtained by the
variation of in the whole system's pracess, which is recognized
by the difference P X+dX) ~pCX); this difference represents, on
one hand, the displacement portion needed to reach its last
position and, on the other, the accumulated portion of the
fluid. If we join or integrate these portions we will find the
final positicn of the paricle and analogously the total
accumulation of the fluid at the end of the process. When

recognizing

ol x+ds) mpCs) +p° (30dx, we know p(x)-p(a)+f: p'(3ddx and by

recagnizing o< x+dx)=p(x) mp® (xIdx, we know p(b)-p(a)-f: P’ (xddx.

Within the mathematical analysis requirements,the model can be
reformulated for functions

F:Rk-———4R and functions of F:C ——— €, in the following

Mmanner:

oo X the function Fix) complies with
Fix+dx)=F(x)+F(x)dx+a(dx), sa that ¥F(x)=F'(x), in the [a,b]
interval and o(dx), represent an infinitesimal arder bigger thar
dx, which Is equivalent, iIn the limit context, to Otdx)/dx — O
when dx ——0. Hence the Iintegral can be defined as

J:f(x)dx=F(b)-F(a) £21.

The ideal conditions of F(x) for the model to take place when
faced with different physical and geometrical situations are
that F(x) be of the type C™ or be analitical [2].

An aspect to mention on the way of thinking about the
integration by the professors and the impact of this pattern on

the student activities for the comprehension of the integral in
regard to continuous variation situations, is that the
discussions on integration starts precisely with the “unknown®

quantity (primitive function) that has to be found, requiring
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this to recognize its vatriation {(derivative function) in the
situation’s context to finally know its integral (know
quantity). This symptom can be distinctive from the traditional
scholastic discourse on integral Calculus, in which, it is
normally asked about the integral of an arbitrary functions
starting from & definition of the integral. This matter leads

necessarily to a different discourse, that we will describe.

PLAN OF THE STUDY

We worked with 13 professors of engineering schools, in 4
sessions of 10 hours every 15 days, within the activities of the
Mathematical Teacher’'s Formation Program [4], in a controlled
teaching atmosphere with & clinical approximation of stidies of

cases.

The discussion on Calculus was based on the continuous variation
Idea, comprehending a mathematical content recognized in the
study of fluids movement. Under this view, the outlining of
Calculus is defined as follows:

"...we try to express an explicit form able to interrelate all
the variables iInvolved in a movement system to study a fluid of
a specific nature, generally expressed by Fi(x,y,z,...)=U, but
by starting to recognize its local variations, that depend on
the specific situation of the system, expressed by
F (F,dF,d'F,...)=0 ..." [4].

In that ense the important thing was to study the respective
variatious FC(X+H) ~FCX) =sDF 4something, and from "~e DF variation
and from the integration or accumulation of the variation JbF,

to establish the nature of the F(X)=U quantity.

The elements to explore in this surroundings, in the ways of
thinking of the teachers,were the reqularities of the concepts
in regard to different situations, the common construction
patterns and using analogy to recognize a situation to know a
new one, all these with physical, geometrical, and analitical

attributes.
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RESULTS OF THE STUDY.

The analysis was per formed by interviewing the teachers, based
on reading their explicative models of integration, considering
their mathematical discourse generated by fluid, surface and
volume situation. It is important to mention that the need to
study integration in the ancient didactics, in the text of
Calculus, and in the original treatises on fluid movement, was
due to the fact that our investigation wanted to have a
reference to understand the ways of thinking of the teachers in
regard to integration when taced with the different situations
we have mentioned.

We will describe the results by means of two paradigmatic
packets, which present the following situations: the necessary
elements that have to be incorporated to the specific situation
to recognize an instrument of continuous integration in the
discrete of the continuocus and from there the invariant of that
what changes. This packet relates to the second, the one that
describes the notion and the necessary intuitions to understand
the theorems of divergence and rotational, which consist of
thinking in a “principle" of continuity and conservation to
express the accumulation of the fluid and the work of its

displacement, all these through a notion of accumulation,
configurated in “Taking the differential element” [1 y 2].

The previous appreciations point out that the way of thinking the
integral are more related to the specific situation that to the
integration concept; either to the definition associated to the
Rismanniano apparatu: (31, or to the definition of the primitive
function, as it was seen in a parallel phenosencn between a
teacher (of the 13) and a student of a course in Calculus in
several variables —- both persons do not know each other~ but thaey
both established the same explicative madel on the Fundamental
Theorem of Calculus. The explanation is as followss e when

considering an unknown quantity that varies




in respect to a parameter F(x)=U, we need to recognized its
variation, which is possible with the lineal terms of the
Taylor Series, that Is

Fi(x+dx)=F(x)+f(x)dx, where f(x)=F (x)

then f(x)dx is the variation of F(x), which can have a
geometrical Interpretation as follows:

fix)

milinls

x x +dx ; 1 dwx dx  dx kl;

a

Each rectangle has dox as a base and F(x) as height, but as the
variation of F(x) is continuous, there are no space between the
rectangles, i{.e., a region forms that 1Is covered by the
rectangles f(x)dx, that Is, F(b)-F(a)=zf(x)dx, but this sum iIs

continuous, that is It Joins 1In continuous form the f(x)dx
quantities, from this region we can observe that height varies
in the f(x) form, if we choose one point on each height we can
draw a curve will be y=f(x)..."’

Loth recognized the known expression

jtf(x)dx-F(b)-FCa), where f(xI®wF’'C(x) in (a,bl

its “"construction is inverse" from how it is traditionally

explained.

CONCLUSIONS

Qur research point out that holding on to these significances
could help to create a mathematical discourse that could make
the transmission of the knowledge of Calculus easier, a
transmission based on system of significations, captured from
the intuitions, notions, and experience from both the teachers
and students, in specific situations of cortinuous variations by

studying their ways of thinking and that in order to do this
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study it was necessary to create a background of thinking
through the genesis of the concept, its didactic in the ancient
texts and its significance in the treatises on fluids movement.
The investigation itself suggests didactics situations that
focus more an the specific situation of continuous variatiocn
than on the concept, as it is in the accumulation notion and not

in the derivative function and/or "Riemann sum".
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Undergraduate’s Math Performance
College Mathematics Cumiculum

MATHEMATICAL PERFORMANCE OF NON-MATH MAJORS
AT THE COLLEGE LEVEL

Carole Greenes, Boston University
William Fitzgerald, Michigan State University

In 1989. more than 1.5 million students at colleges and universities in the United States were
enrolled in remedial mathematics courses. In 1990, the number of studemis enrolled in such courses
had increased. The majority of these remedial courses review arithmeric computanon and algebraic
manipulations, content with little applicabiliry to other academic areas. and content with which
studenis have limited difficulty. Data from studies conducted at Boston University and Michigan
State University indicate that remedial courses are not iargeiing siudents’ learning difficultics, nor
preparing them for further study of math ics and/or math ics-related subjects. What is needed
is a means of dentifying spectfic difficulties college swdents have with mathematics, and providing
appropriate instruction that targets those difficulties.

The problem of inadequate preparation for college mathematics is pervasive, From 1975
to 1980, enrollment in remedial mathematics courses at colleges and universities in the United
States climbed 72%, while the total student population increased by only 7% (Chang, 1983;
Coleman & Shelby, 1982). A report of a survey of 500 institutions of higher education,
conducted by the National Center for Education Statistics, stated that enrollment in remedial
courses increased in 1983-84 at 67% of the colleges that offered such courses. Of the
freshmen in public institutions of higher leaming, 27% were enrolled in remedial mathematics
courses; at private colleges and institutions, 15% were enrolled in remedial mathematics
courses; and at colleges with open admission policies, 30% of the freshmen were taking
remedial mathematics courses (Evangelauf, 1985). In 1984-85, 86% of all U.S. colleges and
universities offered courses in remedial mathematics and 35% of all college freshmen were
enrolled in such courses (A kst & Ryzewic, 1985). In 1985-86, there were more than 800,000
students in U.S. colleges and universides enrolled in remedial mathematics courses. In
1986-87, the number increased to more than a million. The 1989 report of the National

Research Council states that “each term nearly three million students enroll in post secondary
mathematics courses. About 60 percent study elementary mathematics and statistics below the
calculus level” (p. 51).

At the same time that there are growing numbers of students in remedial mathematics
courses, there are increasing demands on students to take more mathematics and/or
mathematics-related courses. These demands stem in part from the expanding number of

98-




PAFulToxt Provided by ERIC

Undergraduate's Math Per jormance

career options in technology fields that require additional study of mathematics, and the fact
that at comprehensive universities, virtually all programs now requirc some university-level
mathematics (National Research Council, 1989; Akst & Ryzewic, 1985; Leitzel, 1983).

. While more mathematics is being called for at the college level, there is limited help for
students who have learning difficulties in mathematics. Traditionally, remedial or basic

mathematics courses at colleges and universities are one or two semesters in duration, and
focus on the reteaching of arithmetic and algebraic computationai skills (National Research
Council, 1989: Akst & Ryzewic, 1985; Chang, 1983). Underlying this content focus is the
assumption that all students with low achievement in mathematics require review of the same
skills, primarily arithmetic computations and algebraic manipulations, to the same degree of
sophistication, and at the same instructional pace. For many students, much of the content is
review of skills in which they are already proficient (Greenes, 1987b). For other students, the
remediation is a duplication of high school instruction (Steen, 1986); instruction with which
they were previously unsuccessful \ .rsch & Goodman, 1986; Kelly, Balomenos &
Anderson, 1986).

As a consequence of the inappropriateness of the content, remedial and basic courses
have tended to be terminal mathematics experiences which, rather than restimulating and
preparing students for possibly pursuing mathematics-related careers, have effectively closed
off this option. What is needed is a better understanding of the difficulties college students
experience with mathematics in order to provide appropriate remedial instruction.

From September, 1985 to September, 1987, the Mathematics Education Deparument and
the Center for Asscssment and Design of Leaming of the School of Education at Boston
University, with support from the U.S. Department of Education's Fund for the Improvement
of Post-Secondary Education (FIPSE #G 00854104), developed the Probe Asscssment of
Mathematical Abilities (PAMA). The mathematical concepts and skills that PAMA identifies
are those same skills that academicians in the natural and physical sciences, and the social
sciences, have identified as requisite to the successful study of mathematics-related subjects.

More than 2,200 students at Boston University, the University of New Hampshire, and
Pine Manor College (Chestnut Hill, Massachusetts), participated in the design of PAMA,
During the development phase, project staff gained greater insight into those mathematical
skills related to the topics of arithmetic, algebra, graphs, and applications (problem solving)
with which college students have litle or no difficulty (scores of 80% or better on test items),
moderate difficulty (scores between 60% and 80%), and great difficulty (scores of 60% or
less). These topics are identifed below.
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Litie or No Difficu!
Arithmetic
« Compule with whole numbers.
= Muitiply and divide integers.
= Add and subtract decimals,
+ Find the percent of a number.
Algebra
+ Substitute values for variables.
* Solve equations with onc variable.
Graphs
« ldentify the coordinates of a point that lies on the intersection of grid lines.
= Interpret bar graphs.
Applications
= Read, understand, and obtain data from prose.
» Solve word problems with action sequences.

Modeqate Difficulty
Arithmetic
Multiply decimals.
Add and subtract integers.
Compute with fractions.
Convert whole number percents greater than 100 or less than 10 to decimals.
« Compute with measurement units.
Algebra
« Use a variable 0 express a direct relation.
Graphs
« Distinguish between two lines given a prose description of the relation.
= Recognize the function of the scales and title of a graph.
Applications
« Solve special case word problems taught algorithmically (¢.8., mixture, distance-rate-time)

Great Difficulty
Arithmetic
Divide decimals.
Convert percents with fractions 10 decimals.
Find the number when the percent and percentage are known: find the percent one number is of another.
Compute with percents.
Algebra
« Use a variable w express an inverse relation.
= Write equivalent equations.
= Solve proportions.

Write equations to €xpress relations.
Solve equations with two variables.
Graphs
* Interpolate.
« Extrapolate.
Applications
«  Solve word problems for which data must be obtained from a graph by interpolation or extrapolation.
«  Solve variations of special case word problems taught algorithmically (e.g., break-even analysis).
+ Solve word problems in unfamiliar settings.
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Based on the PAMA study, most college remedial mathematics courses do indeed reteach
concepts/skills with which students have least amount of difficulty, and give little or no
attention to moderate or most difficult topics. PAMA was designed to assess student
performance on topics of moderate and great difficulty.

PAMA (Greenes, 19872),2 computer-presented assessment, consists of two parts. Part

A contains Sections I-V: Compute with Integers, Fractions and Decimals; Compute with

3

Percents; Solve Equations; Interpret Graphs; and Translate Words (0 Symbols. PartB contains
Sections V1 and VII: Solve Word Problems and Solve Word Problems with Graphs. The
problems in Sections I-V are independent of one another. The problems in Sections VI and Vil
are grouped by applications setting. Each setting has a target problem and a set of related probe
questions. Probe questions explore understanding of the solution process and are only
presented when the target problem is not solved correctly. Allitems are multiple choice with
five-choice response formats. At the conclusion of cither Part A or Part B, 2 Student’s Report
is presented immediately. Students leave the assessment with knowledge of their mathematics
strengths and weaknesses.

Despite the fact that college students study algebra in high school, they appear to have
difficulty with cquation solving, graph interpretation, and words to symbols translation,
concepts and processes basic to an understanding of algebra and presented early in the
wraditional Algebra I course. The performance of undergraduate students at Boston University
and at Michigan State University on PAMA sections I, IV, and V, provide additional
evidence of this continuing difficulty.

jon [II: Solv ions is a 15-item section that assesses various equation solving
skills. Students must recognize cquivalent equations, solve equations with one variable, and
solve systems of two equations with two variables. s_gg_ti_qn_[!;_m&mmﬁmphi is an 8-item
section with two graphs. One graph isa linear function that does not contain the origin; the
other graph is a pair of linear functions in which the lines do not contain the origin and do not
have the same slope. Students must read and interpret the graphs, interpolate, and extrapolate.
Mﬂﬂuﬁmm ic a 16-item section that assesses students' abilities to
identify symbolic representations (expressions) of mathematical relations presented in prose.
The relations assessed in this section are: 1) maximum, minimum, at most, at least; 2) less
(..an, more than; 3) n times as many as; and 4) n times with more than, less than, ot n times.
Both direct and inverse relations are presented.

PAMA is administered to all undergraduate students enrolled in the Introduction to
Education course in Boston University’s School of Education each academic year at the
beginning of the Fall semester. The majority of students in the course are freshmen. In
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1988-89, 1989-90 and 1990-91, all students enrolled in the course had completed Algebra I or
its equivalent (e.g.. an accelerated, advanced algebra that combines Algebra I and II), one-third
of the students had completed Algebra II, and two-thirds of the students had completed
Geometry in high school

TASLE 1- BOSTON UNTVERSITY « PAMA DSTRISUTION OP SCORES
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Table | shows the distribution of scores on Sections I, [V and V by gender ror the three
years, 1988-89, 1989-90, and 1990-91. The total number of items on the three sections is 39.
The means and standard deviations are given for the totals for each of the years.

Of note is the consistency of performance from year to year, and between males and
females. What is perplexing is the item difficulty. Graph interpretation items were the most
difficult: translation items, least. Item difficulties for the line graph items that required
interpolation and extrapolation were in the range 0.21 - 0.69, with the most difficult item
requiring both interpolation and extrapolation. While graph interpretation was expected to be
difficult, because of little or no instruction on this topic at the high school level, little difficulty
with translation was unexpected. Algebra programs do not provide much instruction in words
to symbols translation. Yet. the item difficulties in Section V., Translate Words to Symbols,
were in the range 0.69 - 0.91. :

Table II shows results of administration of PAMA Sections III, IV, and V to 16
undergraduate students enrolled in College Algebra (an Algebra I course that uses the Casio
FX 7000g graphing calculator) at Michigan State University in the winter of 1991. All 16
students had completed a remedial mathematics course focusing on Algebra I content at the
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University prior to enrolling in College Algebra, Fifteen of the 16 students had completed
Algebra 1, 12 had completed Algebrall and 12 had completed Geometry in high school.
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The mean for the Michigan State group is similar to the means of the three Boston
University groups, despite the fact that the Michigan State group had the remedial course in
mathematics. The smaller standard deviation for the pichigan State group may be artributable

to the small sample size and/or to the fact that the Michigan State group is more hormogeneous

in mathematics experience (i.c., all sudents took the same remedial course and were enrolled in
the same college algebra course).

Mathematics education faculty at Boston University and Michigan State University are
investigating further college students' understanding of mathematical relations presented in
graphical form (lines and curve), how this understanding develops, and why college students
who are able to recognize expressions of mathematical relations presented in prose, have great
difficulty recognizing the same mathematical relations in equations.

Concurrently, attention will be paid to the degree of continuing neexl for students to
perform the essentially algorithmic tasks in Section III, Solving Equations, as we watch
symbol manipulating utilitics becoming increasingly available. Also, one might expect the level
of students’ performance in intérpreting graphical information to increase as their experience
with graphing utilities becomes more commonplace.

As demonstrated by the Michigan State group and others, students frequently exit
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remedial courses with no greater skill in mathematics than they had prior to the course, and no
confidence in their abilities to reason mathematically (National Research Council, 1989). What
is nceded is an instructional program that provides in-depth development of only those
concepts and skills with which students demonstrate difficulty.

In 1989, the PAMA development group was funded by FIPSE for three years to develop
mathematics instructional materials for college students in remedial courses. Seven modules
are being written, each using an "active" fill-in format, and focusing on a specific mathematical
concept and related skills as identified in PAMA, The modules are being designed to engage
students' interest, to encourage them to read analytically for relevant information, and to
enhance their understanding of the mathematical ideas by demonstrating application of the
mathematics to the solution of problems. Applications have been selected from the physical
and natural sciences, the social sciences, and the arts. Each module is designed to be used
independently of the others, and may serve as the content focus of a short-term mini-course, or
to support existing remediation programs. Students will be assigned to modules that target

" their specific deficits. An Instructor's Guide will summarize the content of each module,

identify common student misconceptions, suggest implementation techniques, and provide
additional information related to the applications. The modules are: 1) Graphs and Their
Interpretation, 2) Decimals and Decimal Computaon, 3) Integers and Integer Computation, 4)
Rational Numbers, 5) Proportionality, 6) Variables and Equations. and 7) Problem Solving.
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Age Level: Adult
ID #1: Naturalistic Inquiry
ID #2: Data Analysis
NATURALISTIC INQUIRY OF EXISTING VIDEOTAPED/TRANSCRIBED
DATA SETS: A PROCEDURE FOR ANALYSIS

Deborah H. Najee-ullah
Georgia State University

The secondary analysis of a naturalistic inquiry will be examined. The study, a
secondary analysis of videotapes and transcriptions, examined teacher attributions
of success and failure and other beliefs exhibited while solving mathematical
problems. A detailed procedure developed for constant comparative analysis of
videotaped/transcribed data will be described and its effectiveness in generating
emergent themes will be discussed.

Introduction

Often data collected for a particular study are not looked at as a source for
examining additional research questions. However, when research is designed using
existing data beneficial outcomes can occur. Among them new questions can be posed
with the old data or original questions can be re-examined using alternative methods of
analysis (Glass, 1976).

This paper will describe a naturalistic inquiry employing secondary analysis. A
brief description of the purpose and design of the "parent” study and a rationale for using
secondary analysis in a subsequent inquiry follow.

Data Source and Rationale

The Problem Solving and Thinking Project (PSTP; Schultz, 1991), the primary
research for the study being examined, was designed as a naturalistic inquiry of middle
school mathematics teachers for the relationship berween their metacognitive activity and
knowledge and their problem-soiving ability. PSTP thus adhered to the basic
assumptions of the naturalistic paradigm which in turn established the paradigm for any
inquiries conceived from this work. The decision to conduct a secondary analysis on
PSTP data grew out of an interest in teacher beliefs and the prospect of examining them
emerging out of teachers' actions and comments rather than professed beliefs solicited in

response to self-report instruments. Teacher beliefs were viewed as central to

understanding teacher instructional behaviors and were believed to be the motivating

forces for them. Attributions of success and failure were considered to be critical in
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influencing teachers' disposition toward mathematics and were believed to be related to
other beliefs regarding their personal perceptions of themselves as problem solvers. The
research design was compatible with the author's perspective and the data offered

opportunities to explore research interests. This research direction would also enhance

the primary study by élaborating on the aspect of metacognitive knowledge through its

focus on a specific set of beliefs.

The resulting study, a naturalistic inquiry, involved the secondary analysis of data
generated by PSTP, in the form of videotapes and verbatim transcriptions of two
teachers engaged in individual and small group problem-solving protocols. The
investigation examined a specific set of beliefs as one aspect of metacognitive knowledge,
including attributions of success and failure and related beliefs about value of task,
persistence, goal expectancy, and competence (Najee-ullah, Hart, & Schultz, 1989).

Naturalistic Inquiry and Secondary Analysis

The advantages and limitations of secondary analysis have been discussed at
length by many (Burstein, 1977, Boruch & Reis, 1980; Miller, 1982). Its virtues and
limitations have however, been examined primarily for the quantitative analysis of
massive data sets such as nationaf samples. Many of the virtues and limitations can be
applied to all research regardless of design or paradigm. However adherence to certain

-characteristics fundamental to the naturalistic paradigm becomes difficult if not
impossible for a number of reasons.

Naturalistic inquiry is characterized by a number of inherent features (Lincoln &
Guba, 1985) which, dPe to the use of secondary analysis, may be addressed in a limited
manner or may be impossible to address at all. This was the case with the secondary
analysis of PSTP data.

Using the PSTP data meant that data selection was limited to what was collected
by the primary study. Within those limitations however, data selection was purposive.
Respondents were selected who seemed to represent the best source of information
related to the set of beliefs being examined. There was less latitude in deciding the most
useful and relevant form of the data. That too was determined by the primary
investigation which included videotape and verbatim transcription data. The most
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significant infraction of naturalistic inquiry requirements was that data collection and
data analysis could not be simultaneous. Instead, these activities were separated by time
and most importantly the inability of the researcher to interact with the respondent;
therefore findings are devoid of concurrence with respondents. Despite these
constraints, the overwhelming advantage was that the researcher was able to devote
essentially all energy and resources to the transformation and analysis of the data. A
detailed procedure developed to process videotaped/transcribed data using the constant
comparative method will be described below.

- Procedure for Analysis

The study used the constant comparative method of analyzing data (Lincoln &
Guba). This method involves the examination of data for categories of emerging
patterns and themes. Catcgories are further divided into groups. As these thematic
incidents emerge during analysis, they are coded. The code defines the incidents and
identifies its group membership. The constant comparative method requires that the
coded incidents be compared to incidents within the same and different groups within
the same category. It is this process that begins to generate theoretical properties of that
category. The constant comparisun process motivates the thinking leading to describing
and explaining categories (Lincoln & Guba), categories that the investigator has
constructed and those that have emerged as categories used by the subjects.

In the study being examined the category of "beliefs” was identified. This category
was further divided into three groups of "task”, “strategy", and "self*, Any belief
emerging during analysis was coded and grouped, not merely the set of beliefs of
interest.

The procedure for analysis included ten phases: videotape selection, viewing
sequence, initial coding, characterization, summarization, transcript correction,
intermediate codtng, classification, translation, and synthesis. The essence of each phase
will be extracted and described, referring to the study to provide context and
clarification. The procedure is characterized by recursion and repetition to identify
incidents and themes and to clarify their significance. Within each phase, analysis

activities are repeated and should be exhaustive, clarifying previous impressions,

7
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revealing relevant information, and continuing until no additional information is
revealed.
Vi lection

Videotapes were defined in categories according to their purpose. It was then
determined which videotapes would provide the information most relevant to the focus
of the inquiry. Thus, videotape selection served as a process which refined the focus of
the inquiry. The selection of tapes was dependent on whether the focus of the inquiry
would be the relationship between teacher beliefs/problem-solving ability and
performance or an investigation of the relationship betwe.sn teacher beliefs/problem-
solving ability and mathematics instruction.
Viewin uence

Those factors which influence the order of viewing tapes should be considered
and established. A chronological order by respondent was established for reviewing
videotapes having the same definition (i.c. individual problem-solving protocols; first pre
then post for respondent 1) to reinforce changes occurring over time. Respondent order
was considered arbitrary, yet once established was maintained throughout the analysis.

nitial Coding

All incidents observed in the tapes which appear to relate in any way to the broad
focus must be identified. These will be refined and perhaps discarded over the course of
analysis yet it is necessary to include them at this stage. Tapes should be viewed several
times to obtain a sense and an atmosphere of what has transpired. Viewing while
following the transcripts will then help to begin to clarify and define critical incidents.
Notes can be jotted in the transcript margins. This viewing is necessary to begin to sort

through the data for relevant information. Reading the trarcripts without the

distraction of the tapes may reveal relevant incidents that simultaneous viewing may

miss. Previous impressions are then checked by viewing tapes and transcripts
simulta:neously.
Characterization

By this point in the process, certain types of incidents will be found to recur.

Therefore there is a need to develop a method for recording simular incidents. A chart
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of cells with headings broadly defining the incidents can be constructed. The cells would
include a list of line numbers and a tape code to keep track of where within a transcript
and for which tape it occurred. For instance, a cell headed "persistence” including lines
219-239A meant that a belief related to persistence occurred within lines 219 to 239 of
the transcript for the pre interview problem-solving protocol. Such a chart was created
for each respondent.
Summarization

A summary of the general activity relating to the focus should be prepared for
cach tape. The summarization phase is necessary to provide a cohesive picture of the
incidents as they occur within the tapes, for up to this point the emphasis has been on
incidents in isolation. Summarizing can also help to make similarity among incidents
apparent. It was at this stage of the analysis that the properties of the broad belief
groups of "task", “strategy”, and "self" emerged and belief definitions began to replace the
more intuitive judgements of previous phases.
Transcript Corrgction

Transcript errors may be found that are critical. Entire sections may not have
been transcribed or misinterpretations may have occurred which alter the tone or intent
of certain statements. Many of these corrections may have been "penciled in" during
previous viewings but need to be included. These may change line numbering. If
original un-numbered transcripts were typed using a standard word processing software
the Ethnograph (Seidel, 1987), a data management software program, can be used to
convert, number, and print corrected transcripts.
Intermediate Coding

This phase is similar to the initial coding phase in its steps, yet the observed
incidents are more refined, more specifically than broadly defined. Concurrent viewing
of the tape and reading of the transcript is performed with notes being jotted in margins.
Notes define specific incidents and can be written to identify the group they fall within.
Again, reading transcripts alone may reveal additional incidents otherwise obscured by
the rapid dialogue of the videotape. The final set of transcript codes should now be
reviewed with the tape for confirmation.
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Clagsification

Now that incidents have been defined a method for recording them must be
developed. Incidents can be recorded in a manner similur to those in the
characterization phase except the charts will contain more specific information. For
instance, each page of cells identified a group (task, strategy, or self) and each cell was
headed to define the beliefs that were listed within. Thus a page headed "“strategy" may
include a cell defined "usefuiness" and include 613-639D meaning the belief about the
usefulness of a strategy occurred within lines 613 to 639 of the post small group protocol.
A separate set of charts would be created for each respondent.
Translati.n

At this point, coded transcripts must be synthesized to generate more specific
patterns and themes. This process began by translating the coded incidents to the
Ethnograph software (Seidel). Codes from cach transcript and the classification charts
were used to transfer this information. Blocks of transcript text are marked by the
program using beginning and ending line numbers headed by abbreviated codewords of
up to 10 letters or less that include a group and incident definition designation. Blocks
of texts which define different incidents may appear nested within another bluck.
Synthesis

Coded transcript segments similarly defined may now be used to generate patterns
and themes. The Ethnograph (Seidel) facilitates the search for codes. Specific transcript
files are selzcted along with the codewords. The program will then print all segments
corresponding to the codewords and these segments can be further examined for patterns
and themes. The constant comparative method of analysis requires that the voded
scgments be compared to segments within the same and different groups of segmen:s for
the same category. In this study, beliefs was the only category and the incidents falling
under the groups of task, strategy, and self were the specific set of beliefs being
investigated.

Summary

Despite the limitations expressed regarding a naturalistic inquiry using secondary

analysis, it clearly has its advantages. Such analysis allows for new questions to be asked
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Identifier ¢ 2: Reacarch Methodology

THE STUDY OF COMPLEX SYSTEMSAPPLIED TO MATHEMATICS EDUCATION

Elfriede Wenzelburger Guttenberger
Maestr{a en Educacién en Mateméticas

A complex system as an organized total can be studlied by means of a research
methodology with an epistemological background. The starting point is a
leading question, then a scale of phencmena and a time frame is defined.
Data, observables and facts are clearly distinguished. A system as such has
limits, clements and structures and its own dynamics which are studied at
different levels of analysis according to different levels of processes.
Given the leading question: “What are the major trends in mathematics educa-
tion {n 19912 a first analysis of mathematics education as a complex system
has been attempced,

PART I: THE STUDY OF COMPLEX SYSTEMS ~A RESEARCE METHODOLOGY

1. Introduction

Garcfa (1986) proposes a basic research methodology for the study of complex
systems. If we suppose that mathematics education and related areas have
characteristics of a complex systems, this methodology could be relevant for a
better understanding of our academic endeavours,

In the first part of this paper, a brief description of Garcia's methodology {is
presented. In the gsecond part, it is applied to explore mathematics education

in the 1ight of the leading question: "What are the major trends in mathematics
education in 1991?",

2, Epistemological Background

According to Garcfa (1986), a global or complex system is a set of elements
together with constitutive factors, interrelations and interactions with other
systems in what he consideres a first aproximation of a definition. The study
of such a system 1a interdisciplinary work, done in a conceptual framework with
epistemological foundations. The term "System" here 18 not used in the same
way as in engineering, econometrics or computer science and is not related to
system analysis as commonly used in these disciplines. The models developed 1in
those contexts are not applicable here, because a complex system {3 much more
than a mere set of related elements.

Q
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A complex system is not given or defined a priori, but it can be defined in
the context of a leading question. The proposed methodology is anciempiri~
cits, but not antiempirical, beciuse observations are interpreted and observ-
ables ar« not considered the basis of all knowledge, accessable by pure, neu-
tral perception., Hanson (1965) affirms that all experience 15 charged with
theory and Plaget showed in the light of his genetic psychology from an
epistemological viewpoint that there are no "pure obsecvables' ~there s
always a previous construction of relations in the observer and "observables"
are torms of organized data. Knowing means establishing relations between

data in a social, intersubjective environment.

From this antiempiricist viewpoint we have to distinguish data, ubservables
and facts, whereby observables are interpreted data, facts ave relations
between observables. The interpretation and organization of observables and
facts requires previous conceptual schemes or theories. The term Ytheory" is
used in a very broad sense as a set of affirmations and assumptions in which

a researcher establishes hypotheses and makes or vefutes inferemces. This
way the rescarcher sets up an empirical field with an epistemic frame and an
empiric domain (Piaget, Garcfna, 1982) in which he selects data and interpre-
tes them to establish obscrvables and facts. For example, an educational
researcher which studies learning will select or interprete data according

a learning theory.

3. Components of a cowplex system

A complex system is a plece of reality which can be investigated in its diffe

rent aspects. As a point of departure, a leading question is asked. Then

the limits, elements and structures of the system which will be studied and

eventually make up the components of the system, are selected.
3a. Limits
Real complex systems often lack limits -they have to be drawn more or less

arbitrarily. Lf what is left out influences the "inside" of the system, we

speak of suzrounding or contour conditions.
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3b., Elements

Elewents of systems are generally themselves complex subsystems which interact.
They are selected according to a spatial scale of phenomena which determines
the location and extension of events which coexist or interact-and a time

frame as a temporal scale for the study.

3c. Structures and processes

The structures of a system are given by the relations between its elements as
an organized total which is kept in a state of stationary fluctuation by means
of dynamic regulation processes. The main objective of the proposed method of
analysis of complex systems is primarily the study of these processes, not the
states of a system in any given moment. This emphasis in processes is some-

times refered to as “genetic structuralism".

The processes describe changes in the system and occurr at different levels

which again require different levels of analysis.
Three levels of processes can be differentiated:

Level one processes are observed and measured on a local, regional basis by

means of polls, interviews. explorations in a merely descriptive way. All

observations are made within a conceptual frame. At the second level, there

are metaprocesses which explain level one processes and third level processes
are of a more predictive nature and determine the processes at the lower levels.
Assoclated to levels of processes are the corresponding levels of analysis with

local, national or international dimensions.

in the study of the dynamics or evolution of a global, complex open system
without clearly defined limits and affected by surrounding conditions, the
imbrication or overlapping of structures is a basic approach. For example, the
learning of mathematics can be studied at an individual, classroom, local
regional, natioral or international level. Each structure at a given level

becomes part of a subsystem at superior levels.
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PART II: MATHEMATICS EDUCATION AS A COMPLEX SYSTEM, A FIRST ANALYSIS

As a leading ques+tion we chose: "i;What are the major trends in mathematics
education in 1991?". This will enable us to apply the methodology of
studying complex systems to a "metaresearch" problem about the nature of
mathematics education. To begin our research we have to restrict ourselves
to a limited portion of reality in order to be able to establish a system
with its elements, internal relations and contour conditions. We limit our-
selves tu consider mathematics education as dealing with teaching and

learning mathematics.

This definition of limits of the system, requires a selection of a scale of

phenomena we will study. This scale could be as follows:

Teaching Learning

Ist. Level
Group - one teacher (-classroom situation)

Local school system
2nd. Level

Cune-to - one basis (individual learner) ]

Regional education system
National education system

International comparison ] — 3rd. Level

The temporal scale is determined by the question itself, the present time,
even if some of the subsystems could have a different time scale, specially
if we use the analysis of developmentsover a period of time to explain the

""state of the art".

Elements of the complex system may be special problem areas considered sub-
systems like the individual students, the teachers, the mathematics curricu
lum, the researcher in machematics education,all of them in different, but

related domains.

Our scale of phenomena is applicable to all subsystems since we can study the
role of an individual student in a teaching-learning situation on a one-to
one basis, in a group situation and so on. We can also study on the way the

mathematics curriculum is affected by each phenomenon of the scale or how
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each phenomenon affects the mathematical contents. Structural relationships

go very often both ways.

It is now possible for example, to make observations, within the subsystem
"teachers", of a level 1 phenomenon, -a classroom situation. In order to
convert the collected data into "observables", our theoretical predisposition
will affect the interpretation of the data. We would make observations about
teaching techniques, contents, student-teacher interaction, selfperception of

teachers and so on.

If we adapt a constructivist point of view, the teacher is no longer conside-
red as the main actor in the classroom, he is a guide or monitor of the cons-
truction of a student's mathematical schemes based on previous knowledge.

Teaching is not the transmission of knowledge, but a guidance in the recons—-
truction of concepts by the learner, taking into account the epistemological

obstacles yhichhave to be overcome (Herscovics, Bergeron, 1989).

If we make an analysis from the standpoint of activity theory, observations

would focus on the role teachers play in the human activity within the social

group "classroom”. The zone of proximal development (Vygotsky, 1978) can be

interpreted as a locatjon in the interaction between teachers and students in
which new understanding can arise. Teachers and learners work together on
problems which students alone could not solve. Sometimes the term construction
zone is also used in this context as a mediator between the thoughts of
teachers and students or a shared activity in which interpsychological proces~

ses occur (Newman et. al. 1989).

We can also adapt an information-processing paradigma (Nason, Cooper, 1988).
The teacher takes the role of a disseminator and facilitator of learning, as
well as a diagnostician and an introspective professional who analyses and
evaluates his behavior continuously, but most of all he would conceived as a
scientist who understands how each student processes the information being

taught.

If we believe in thc¢ metaphorical nature of thinking (Wenzelburger, 1991), we

put special attention tothe teacher's discourse in the classroom and use of
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metaphors to initlatve thought processes and to communicate knowledge. We
have to take also into account the basic underlying metaphors teachers use to
describe the teaching~learning of mathematics ~"education is like growing
plants" or "the mind is a muscle", the Yconduit" metaphor or the "teacher as

a builder of knowledge” metaphor.

Each theoretical frame will provide us with an apparently different collection

of observables and facts to identify structures within the subsystem and the

global complex system "Mathematics education". A complimentarity principle

(Pathee, 1982) may be applied in order to avold false dichotomies (Hilton,
1977). Such a principle requires simultaneous use of descriptive modes that
are formally incompatible-contradictions are accepted as an irreducible aspect

of reality.

The leading question makes poss ible a-taoroygh analysis of each suggested sub-
system according to the scale of phenomena and time frame. This requires the
efforts of a research team with an interdisciplinary approach, The research
methodology we discuss here puts special emphasis on interactions of phenomena
from different domains. It is not intended to discover "given" facts and list
data produced by isolated groups of specialists ~rather a systemic view is
adopted, more appropriate to complex phenomena from an interdisciplinary stand
point. Researchers in mathematics education would work together with teachers
administrators, psychologists, historiams, mathematicians, in order to complete

the plcture of the major trends in mathematics education at the present time.

The systems approach discussed here, applied to a meta research question in
mathematics education, is in accordance with tendencies in modern science to
gsearch for relations, interactions and structures in order to move away from
"dissecting” phenomena into isolated parts. A general awareness that the

“shole 1s larger than the sum of its parts' is a consequence of the general

theory of systems (Bertalanffy, 1972) on which Garcia's work is based.

To think of mathematics education as a complex System of interrelated elements
with limits and structures is potentially useful to reach a better understan-

ding of our discipline.
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Models for Learning
Arithmetic

THE CONCEPTUAL-REPRESENTATIONAL ANALYSIS
OF CHILDREN'S EARLY ARITHMETIC

Gerald A. Goldin Nicolas Herscovics

Center for Mathematics, Science, Department of Mathematics and Statistics
and Computer Education Concordia University

Rutgers University Montreal, Quebec

Naw Brunswick, N. J. 08903 USA CANADA

We explore the interface between two models: the two-llered
oxtended model of understanding, developed by Herscovics and
Bergeron; and the unifled model of problem-solving competence
based on cognltive representational systems, propoeed by Goldin.
The context for the exploration le children’s eerly arithmatic.

Research on the construction of conceptual knowledge, and research on mathematical
problem soiving, have both advanced significantly in recent years; in part, through the
development of more sophisticated theorstical models. In the study of conceptual development,
several models of understanding have been proposed., based in large part on observation of
children's early arithmetic through numerous structured, individual interviews (Harscovics
and Bergeron, 1983, 1984. 1988). In the study of problem solving a unihed model of
compatence was proposed (Goldin, 1983, 1987, 1983), based mainly on observations made in
more advanced mathematical domains, with the goal of providing a framework for detailed
descriptions of mathematical problem-solving processes. Here we explore the interface
between the two-tiered extended model of understanding of Herscovics and Bergeron (1988),
and the unified model of problem-solving competence proposed by Golidin. The context for our
exploration is children’s early arthmetic. We are interested in whether ideas drawn from

problem-solving research can help charactenze conceptual development at this early stage.
Two Cognitive Modele

When children construct basic mathematical concepts such as *cardinal number”, ‘ordinal
numbar’, "addition®, etc., the complexity of the ditferent aspects cf understanding they achieve
is difficult or impossible to describe using classical concept-formaton theory based on
exemplars and non-exemplars. The idea of a conceptual scheme proves more useful. This is

defined (Bergeron and Herscovics, 1990) as a network of related knowledge, together with the
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problem situations in which the knowledge can be used. The extended model of understanding of
Herscovics and Bergeron is designed to idantify systematically the components involved in the
construction of conceptual schemes for earty arithmetical concepts. It involves two tiers; one
referring to the preliminary physical concept, the second to the emerging mathematical
cancept. The model may be viewed schematically as foliows:

Understanding of the physical pre-concept

intuitive understanding = procedural understanding - logico-physical abstraction

of a logico-physical nature
procedural undarstanding /

of a logico-mathematicat & logico-mathematical formalization
nature abstraction

T T

The emerging mathematical concept

This framework, while not claimed to describe the development of understanding of alf

mathematical concepts, proved adequate for the analysis of many aspects of children's serly

it

ar For ple in di ing the concept of number, on the first tier “intuitive
understanding® would include quelitative visual spproximation/estimation (by the child) of
whether one set of objects contained *more®, °lese’, or “the seme* as enother set;
‘logico-physical procedures® would include activity such es placing physical objects from two
sets into one-to-one correspondence; snd logico-physical abstraction would Include the mental
operaticns {eading to conservation of quantity (or more precisely in this context, of plurality).
Symbolic representation comes Into play in ths second tier, with the sdvent of
“logico-methematicel procedures®, Thess invoive steps such as counting, teken with
number-words or symbole rather than (or et the same time o8) physical objects. On this tier,
the results of abetraction include consesrvetion of quotity (which refers to number-words or
symbols) as oppoeed to the first-tier conservetion of plurallty (which refers to physicel




amounts). On this level we also have the ultimate formalization of mathematical ideas
involving “number®, making use of symbol-systems for numeration (and for arithmetical

operations); ideas for which prior procedural understanding has developed to some extent.

Formalization also includes axiomatic preperties of “number®, and concepts involving

mathematical justification (or at a more advanced Ievel, mathematical proof).

The model for competence in mathematical problem solving of Goldin is based on the idea
of cognitive rapresentational systems intemal to problem solvers, as distinct from (external)
task vanables and task structure (Goldin and McClintock, 1979). Such a cognitive
representational system is comprised of a (not necessarily well-defined) class of signs or
characters, together with weys of combining these into configurations, and higher- level
structures which can manipulate and transformation configurations, Five kinds of internal
cognitive representational systems are proposed: (a) a verbal/syntectic system, invelving
words, grammar, and syntax: (b) imagistic systems, including internal visual/spatial,
auditory/ rhythmic, tactile/kinesthetic. and other non-verbal representation of objects,
attributes, and relations; (c) formel notational systems, involving mathematical symbols and
rules for manipulating them; (d) a system of heuristic planning and executive control, which
encompasses strategic competencies as well as capabilities that are often termed
*metacognitive®; and (e) an atfective system, making possible the changing states of feeling
that occur during problem solving that can influence decision-making. An important feature of
the model is that representations of any one kind can stand for or symbolize those of any
other--for example, words can symbolize visualized objects, or mathematical notetion can
stand for kinesthetically-ancoded sequences of physical procadures. Systems of these five
types are seen as developing over time through three stages of construction: (1) inventive-
semiotic, in which characters in a new system arae first given meaning in relation to
pteviously-constructed representations; (2) structural developmental, where the naw system
is *driven® in its development by a previously-existing system, which functions as a kind of
*template® for growth of the new system; and (3) autonomous, where the new system of
representation can function independently of its precursor,

The model was motivated by the desire to describe complex mathematical problem-
solving processes; but it would appear to contain features that are helpful in describing the
development of conceptual understanding. If we take children’s early number concepts as an
example, we can regard qualitative visual approximation/estimation by the child (e.g., of
whether one set of objects contained "more’, ‘lass®, or ‘the same® as another set) as a

complex, problam-solving process involving (a) verbal representation (making use of the
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terms "more”, ‘lass®, etc. and symbolizations for these terms previously constructed); (b)
considerable internal visual/spatial processing; (¢} at least some elements of exeacutive
control and decision-making; and {d) an affective component reflacting the child's pleasure (or
lack thereof} in the task, the child's interaction with tha investigator, etc. These processes can
then be analyzed into subprocessas. in a manner analogous to that which is possible in studying
problem-solving strategies: we can discuss the {visual) seperation between the two sets of
objecte. the mental construct of a “measure” of their size (e.g., in terms of a portion of the
visual field), and the act of (visual) comparison of such *measures”. Likewise, the ability to
carry out procedures such as placing physical objects in one-to-one correspondence, inveives
the construction of complex. internal kinesthetic contigurations, which eventually enable
abstraction 1o take place.

We see that the two modals, though deveioped for dilferent purposes, are capable of
addrassing some of the same phenomena. Our long-range goal in beginning the present
investigation is to achieve a full synthesis between the models for understanding and the mexiel
for problem-solving competence. This would enable us to describe the learning of more
advanced mathamatical concepts, as well as to understand the constructive learning process in
greater detail; it would assist us in understanding why some problem solving results in the
construction of important new knowledge. while other problem solving (though perhaps
equally successtul in reaching the problem goal} does not.

In our examination of what is known about children’s early arithmetic, we have
identified some key points of contact between the two models.

1 The relationship between the physical pra-concept tier, imagistic systams of
cognitive reprasen(ation, and developmental sequences:

First we distinguish carefully between exfernal representation (a structured
environment with which the child is interacting thai may include, for example, actual physical
objects to manipulate), and inlernal imagistic representation (a theoretical ccnstruct to
describe the child's inner cognitive processing). This is réminiscent of Piagets term
“interiorization®, which refers to the child's ability to re-enact mentally a sequence of actions
or operations. Next we ask. why is the physical tier a preconcept? The answer is that in
order for the child even to ask the question that leads to a meaningful construction (i.e., for the

situation to be a problem), it needs to have constructed certain internal, imagistic

representations. Consider for example, in the case of addition, the question *How many do we
have all together?" In order that “How many" be meaningful (i.e., for the words o represent

somsthing), there must be initially imagistic contigurations for sets of discrete objacts, and




for counting operations. For "all together” to be meaningful, the needed representations may
include physical partition (the two separate sets under discussion), physical transformation
(the act of maving the objects), disjoint union (the joining of the two sets into one set), and co
on. The construction of such imagistic representations requires interaction with external
physical objects. Thus the physical tier serves as a pré-concept because, for concepts of eatiy
mathematics, conceptual understanding necessarily involves imagistic configurations as
pracursors, which in tumn require external, physical configurations for their construction.

Furthermore, the young chiki does not yet have an elaborate formal notational system of
cognitive representation. Thus during the semiolic and structural-developmental stages of
representational development, it is necessary to build on imagistic configurations if anything
at all is to be built on; formal configurations cannot substitute for the imagistic.

For more advanced mathematical concepts, imagistic representation can ba, but is not
nacessarily. a precursor to formal representation. This is a cruciat ditference between early
mathematics and later development. For example, multiplication can be meaningfully
introduced as repeated addition (logico-mathematical procedure), using the formal notational
system of cognitive representation (for addition) as a precursor to construct new kinds of
formal configuretions (the notation and accompanying procedures for multiplicetion).
Physical modals (such es rectangular arrays) can follow lster. We emphesize thet we are not
saying this is the best wey 1o introduce multiplication; only that it is possible from a cognitive
point of view. Indesd, we would argus that an important goal of mathematics education should
be the development of powsrful imagistic sy of rep tation; never- thel the use of

formel representation e the precursor to further formal representetion in methemetics
inevitably bscomes more frequent as the mathemetics becomes more advanced.

2 The relationship betwesn the smerging h lcal p!t. formel syst: of
cognitive repre tion, and heutistk

Wae noted above it is poasible to engage in problem solving with or without constructing
significant new methemetical knowledge. Thus we would like to cheracterize when it is that
problem sotving resuits in such conetruction. Even in children’s serly erithmetic, we believe
it is possible to identify the emergence of complex heuristic sirategies such as trisl and error,
subgosi decomposition, stc. The °*counting on® stretegy for addition, when meeningfully
conewructed, Involves subgoal decomposition. In certain didectic situstions, as discussed by
Broussaeu (1981), such etrategies are invented o assimil ted and brought to bear when the
problem gosl itself provides a reason for the constructior of new knowledge. Formelizetion

(formal representation) occurs mesningfully when it assie 4 in achieving such a p blem goal.
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Howevar, it is also possible for children to use what seem !o be heuristic strategies
non-meaningfully. In work on addition (Bergeron and Herscovics, 1990), children were
shown a cardboard strip on which were glued 11 chips in a row. In front of their eyes, 6 chips
were covered at one end. While these were hidden, the children were told, “We are hiding 6
chips. Can you continue counting from here on?* Al of the children counted ‘7, 8, 9, 10, 11.°
Whan they finished counting, they were asked. “How many chips are glued on this cardboard?*

Most said they did not know. In response to the question, "Why don't you know? Wa just

finished counting,* the answer was forthcoming, *We didn’t count those (the hidden ones].* [n
this context. ‘counting on* was something the children coufd do. but only as a meaningless
procedure [more precisely, as a verbal procedure rather than a heuristic procedure to solve a
problem]. The starting point of counting had not been established as the cardinality of the
initial hidden subset: the children thus tearned ‘reciting on®, but did not associate what they
were doing with cardinality. The task was not a didactic situation. in the sense of providing a
learning outcome.

3 The role of aftsct:

I general, children /ike to play with the physical objects that serve to assist in the
construction of imagistic representations. Using the term "affect® in its broadest sense, we
conjecture that affect serves an imporiait role in both tiers of the extended model of
understanding, facilitating and guiding the construction of cognitive representations. To
provide just one example (Herscovics and Bergeron, 1988), Montréal kindergarien children
were observed counting sets of objects ‘visually* (with the eyes, or nodding with the head),
without physically partitioning the objects or touch-counting. When asked why they did not
use thesa other methods, some of them answered, “C'est trop bébé!* (It's too babyish.) Having
the choice of several counting procedures, they purposely chose the more difficult one--even
though they made more mistakes with visual counting. They selected procedures they falt were
more sophisticated, making the problem more challenging, as a way to enhance thair
self-image. This iilustrates how affect can actually be a determining factor with respect to the
*heuristic planning/executive control* system of cognitive representation (l.e.. with respect
to what are commonly called "metacognitive® processes).

Conclusion

This initial exploration of two theoretical models has found several important points of
contact in the domain of children's early arithmatic. The theory based on cognitive
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representational systems proves helpful in lending pracision to, and elaborating on, learning
processas described by the componants of the extendad model of understanding.

The authors have also begun a theoretical discussion addressing more advanced
mathematical concepls, in the context of exponentistion and the exponential function (Golkdin
and Herscovics, 1991). The goal of achisving a synthesis between models of understanding and
of problem solving appears to be deserving of further effort,
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High School
Comrunication
Function

CONTEXT AND STUDENT TALK ABOUT FUNCTIONS IN A HIGH SCHOOL
ADVANCED MATHEMATICS CLASS

Georgianna T. Klein
Grand Valley State University and Michigan State University

'mjspa.perzq;ompartotansu\rwu study in an high school
precalculus class students used materials dwz.gned to foster
camumnication. It reporta the nature of student talk during instruction
on mathematical functions and how talk differed in each of two distinct
inetructional contexts.

Introduction

The NTM Curriculum and Evaluation Stardards (1989) lists learning to
commumnicate mathamatically as one of five primary goals for all students.
Spoken language, an essential part of casmunication, is used for rwpresenting
matheratical ideas (Janvier, 1987; Lesh, Poet, & Bahyx, 1987), and as a vehicle
for instruction. To date, very few studies address the role of talk in
matheratics clasarocms. This paper, which is part of a larger ethnographic
gtudy, is about tha nature of talk during instruction of mathematical
functions and how talk is influenced by two distinct instructional contexts.

The study was conductad in a suiburban high school pre-caloilus class of
24 studants in which the teacher integrated matarials from The Language of
Rinctions ard Graphg (Swen, 1587) into the standard, taxtbook driven (Dolciani
et al, 1980) cwriculum. In the functions and graphs activities (1FG)
students created and intarpreted solutions to problems about functicnal

relationships that were representsd by verbel descriptions of situstions,
Cartasian graphs, ard tables. Students' work in mmll groups was followed by
full-class discuaaicn. In 'book math' the teacher, Mr. Damnis (not his real
name) , presented material through posing probless on a topic, by questioning,
and by eliciting sppropriate snswers to guide students to msolutions. Mr.

Demnis used the smme style to go over stulent-selectsd problems from the
homework.

Data and Amalysis
Data ware fleldnotes and axiio~recording of 10 weeks of classroom
chservations, written work of students, audio-recordings of teacher and
student intexviews, writtan pre and post tests, and an anoyaous
quastiormaire.
Thres generil catagories ware used as a framework o analyze talk in this
classroom:

1. the focus of talk during discussion of prcbless
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2. the extent to which talk was oriantad to a group purpose, and
3. aspects of students' knowledge that were exemplified.

Triangulation of multiple socurves of data were used to support or disconfirm
assertions that developed during data analysis.
Recults

I will use two instances of full-class talk, Picking Strawberries, an
activity from LFG, and a Droblem to identify the domain and range of a
function defined by its graph (See Fig. 1) from the standard curriculum, to
illustrate how talk differed between these two comtexts. Picking Strawberries
shows a man in a field. A balloon says, "ihe more pecple we get to help, the
soaner we'll finish picking these strawberries." Students were to sketch a
graph of the time it takes to pick the patch as a function of number of
pecple.

Figure 1.
Foqus of Talk

Problems played a central role in talk in both contexts as almost all
discussion of mathematics took place in the framework of working problems.
Yet the focus of talk about problems differed between contexts. In LiG, talk
was ¢ the problem, while in book math, even though talk was about problems
and their solution, it focused on oorrectness of definitions, leaming a
specific method of working problems, ard a specific way of thinking about the
topica.

In LFG students usually spent considerable time defining the prublem
situation. In Picking Strawberries, sbudents talked mainly about how to
define the picking situation and implicitly about the match between the
problem and the graph. Initially they offered five potential graphs and
eplainad their reasoning. As the discussion continued, they refined their
definitions of the problen situation. They discussed whether the number of
pecple should be a whole number, whether the number of pecple or the time to
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pick oould ever be zero, whether they must coneider pecple to pick at a
constant rate or whether their rates could be averaged. They discussed
whether the ¢raph should touch each axis, whather it should be curved or
straight, whethwr it should consist of dots, and to a lesser extent, tha
validity of notation used to represent their ideas on the graph.

In book math students talked apout problems, but talk focused on
correctnees and 'getting it'., When students called out answers to questions
posed by the teacher while he presented new matarial or went over hamework,
they appeared to be 'filling in the blanks'. At other times, they tested the
correctness of their understanding by asking the teacher specific questions,
such as how to write a specific set description or whether to use “and" or
llor“.

Sometimes students posed highly specific variations to problems, which
whan answered, could provide insight into whatever they were puzzling about.
For example, after it had bean established this graph represented a function
and the domain and range had been determined, Alex checksd his undarstanding
cf open circles.

Alext: Uh, the open circle's mean that it's (pause). If those were
closed circles right therwm and you do the vertical tast, do you
gat a function? (both circles are open)

Tehr: No

Alex: It wouldn't be a function?

Tohrs No.

Alex: It's a function ‘cause they're cpen?

Tehr: Yous.

Alex seamed to be checking that he heard correctly :-v whether he had 'got it'
in dealing with open circles.

Soastimes students zakei shat might be conceptual questions, kut sessed
satisfied with short resparnes from the teacher. Jchn asiced what seemed to be
a question about multiple functions defined ocn the sase damain. He asked, "
If you have that damain and range, can't you end wp with a different graph
sasehow?”  vhen Mr. Demnis suggestsd John was simply uncomfortable because he
didn't know the specific rule for the function, Jabn said, "Okay,” ard didn‘t
pursus it further. When rtudents chose homswonk problems to be discussed in
class, it is likaly they were chacking the answar or the solution process.
Infrecuantly they asked about concepts, and wary rarely students posed
probless that were an extension of that under discussion.
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orientation to a Group Purpose

Most full-class discussions centered arourd working problems, but
studentts had a different .atation to the group in each context. In LFG
talk seemed oriented toward a group ocutcome of resolving the problem. They
focused on investigating and discussing their ideas about a common problem.
At one point Dotg, prompted by Ned's coment that one was the smallest rumbex
of people poaesible, said you (wuldn’t have .2 pecple either. Several students
agreed. Iater in the discussion, Doug retrned to the issue and said:

If we are just conmidering 1.2 and all that, it oould be that if you just
had 0, 1, 2, 3, 4, 5 people, &d the tim2. It couid be just be the dots,
It would go on and off eitlvs: in a curve or in a straight line down. It
would just be dots, the rr e of pecple.

when Mr. Dennis asked him why he said curve or a straight line, and Doug
said he believed it would go down in a straight line. John said he had
samething to add and that it should be curved because if you had one person
and it tock ten hours, then two people would take five hours. A lot of
students began to talk at once; with at least same dissenting, Jahin contimued
with a new argument, camparing the differences in the relative increases in
total time when adding an additional person to 1 picker and to 100 pickers.
The students' talk was often directed to cther stidents, and they seemed to be
engaged in a joint effort of solving the problem at hard.

In book math, talk was directed fram individuals toward the teacher, and
less frequently toward each other than in IFG. Students asked for specific
homework prablems to be worked, sought answers to highly specific questions an
how to do a process or on the correctness of an answer. They posed
alternative problems to test their understanding, and the queried the teacher
about concepts they did not umderstand. Students' talk was oriemted to
meeting individual needs, Students seemed to have in common the purpose of
'getting it', but not to be engaged in a cammon grogp purpose.

Aspects of Students' Knowleddge Exemplified

In general, talk in these two contexts was oriented to exemplify
different aspects of students' knowledge. In IFG talk was focused on what
students knew, wheras in bock math, it was oriented to display what they digd
not Koo

In Picking Strawberries, students made canjectures about the solution,
explained their reasoning, and defended or debated the merits of solutions or
suggestions made about the prublem under discussion. For example, five
students gave their graphs for the strawberry prablem; each was differemt in
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same aspect. All were asked to explain some part of their graphs. Giving
their views on the problem at hand was a comon feature in each activity from
IFG. When students defended their positicns, as John did in the example
above, or debated the merits of a position, such as the role of average rates,
their differences we;w viewed more as disagreements about how to proceed since
talk seemed focused on the solving the problem rather than on whether stixlents
understocd a process.

Tentative solutions, even when incorrect, contributed to the resolution
of the problem. Three of the first graph, offered for Picking Strawberries
were linear. Yet talk about these three graphs and their three different ways
of handling end behavior of the function resulted in a rich discussion of many
points, such as John's justification of curvature of the graph. Ned's
description of how he left a gap at zero because the smallest mumber of pecple
was one led Doug to raise the issue of a discrete damain. Because ill~formed
conjectures contributed to solving the problems, they were view positively as

constituting knowledge rather than illustrating the lack of it.
’ In book math, however, the situation differed. Filling in the blanks, of
course, displayed what the students knew, and many students participated, but
often several would call out answers and a chorus of the correct answers would
gradually strengthen while other responses dropped aut. It seemed that same
students listened for the trend before participating. Since the talk focused
on correctness or a single way of doing things, it oriented students to focus
on what they did not know, so that participating incurred a risk of exposing
their failure. To ask for a hamework problem to be worked was to announce it
was not fully understood. Questions checking their solutions or finding out
how to f£ill in the gaps in their understanding focused on what students did
not know. While it could be argued that students sametimes asked questions to
show off, it appeared that only oane student engaged to any extent in this
behavior.
Accaunting for the Difference

I account for the differences in student talk between the two
instructional contexts by the nature of the curriculum, the source of the
tasks, and to a lesser extent, the teacher as a novice in using the materials
of the Lanquade of Functions and Grachs.

Nature of Quriculup

The materials in LFG contributed to the difference in students' talk.

They were specifically designed to be used in a collaborative way. Students
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mrkedinsnalquwpsa:ﬂmasxadmmupvithamsolutim. The
materials included suggestions, which Mr. Dernis followed, about how to mun
full-class discussions to facilitate sharing without devaluing any student's
ideas. suﬂentsmaskedtoexprssmirideasamwjustifymeir
reasoning. The tasks were irherently open-ended.

In book math, the activities were haavily dependent on the text. The
tasks set forth by the text were highly compartmental ized. Problems had
single correct answers. Connections between sections were implicit. The
tasksst\xjem'smregivenmﬁ'dividual. Each student turned in their own
hemework, and all workontismardquizzmwasmrried out individually.

'mesccialoxganizatimimexentinmetamasdefiradinmtw
contexts was important since students considered working together important.
Onanamwmsq.ﬁtiamiregivenatﬂ\eadotmytmm,suﬁemsm
askad"ﬁcwinponantorminportantuasmrrjminagmxp? vhy and in what
way?" Nineteen of the 24 students answered “very importamt' or *{mportant" to
the question, and 11 citad the value of collokoration as a reascr.
source of Activities

Ditferenoesinsﬁxdmttalkbe&emcaﬂxtsmightbeeqalajnedbyme
source of the activities. I had provided the LFG materials to Mr. Dermis, and
milehemsmmmweaktosuﬂentsottheirvaluearﬂmleinclass,
mmmwmmmmm. Several students indicated on
the questiormaire that the activities were 'add-ons' to the class. Since all
gndin;depudadmbookmam,stmelysuﬂmtsmmmlikalytofoasm
correct:ﬁsardtougageingettim"anws'matmightprwemmlm
quizzaarritststhanitunymidemdthnumdm.
Teacher as a Novice

Fimlly,ﬁnteadntmsusmmforthefustﬁm,mthadm@t
book math from this text for several years. As in any new situation, neither
ofus)uwmttoupectftmthestudumlinm. Sametines Mr. Dannis (and
I)wasverysurprisedbymeridmsofstxﬂmts' resgonses. On such
msin,m.mismﬂdbysimlyrepeaﬁmmdmphmunm
had just said, a style of replying that very effectively prampted students for
more of their ideas. simaﬁxiski:ﬂotmspaﬂirgocwnuimr.-aqmuy
\kxenrnsemdpxzzladarmrisedbysme' responses, his use of it may
baaresultothisi:m@trlmvithumkuﬂlofmurials.

Inbookmam,mtheoﬂzrhmﬂ,m.nunhmanuperiemedmadﬂ'
Mnhadusedﬂ\ismtforse\mlyeamuﬁhwuhathewantedforme




stidents. Thus, Mr. Dennis gave students more rues and mxch more direction.
Discussion

Students' talk in this class raises important issues related to learning
mathematics: what it contributes to teaching, what is their understanding of
what it means to study mathematics, and how they feel about doing mathematics.
Stdents' talk is important as a diagnostic tool for the teacher. Talk that
focuses on what they do not know can provide a teacher with useful information
about how confused students are, but when students explain their reasoning, as
in LFG, the teacher can learn both the nature of their difficulties and the
richness of their thinking.

Focusing on tentative solutions and wrestling with partially formed—
possibly incorrect-— ideas s closer to what those engaged in mathematical
problem solving do and might provide students with a more accurate picture of
what it means to do mathematics.

If classes discuss 'conjectures' rather than ‘answers', even students
traditionally perceived as poor in math can participate without risk to their
self-esteem since there is less risk in exposing their thinking. If stdents'
respanses, even though not campletely correct, are viewed as valuable, and if
other students provide support through joint efforts at final resolutions of
the problems, all students might feel that they are succeeding. Mare students
might participate in mathematics.

Finally, working in groups or orienting the class toward a group outcome
migiit help students succeed at math. On the questicnnaire, several students
gave the need for support as one reason why they felt working in groups was
important. One student added, "and the 'smart' kids were not always right,"
a powerful arqument for how orienting the class toward groups contributes to
students' self-esteem and possible success in mathematics classes.
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Inquiry
OPEN TO QUESTION: AN EXAMINATION OF TEACHER QUESTIONING

tinda Davenport and Ron Narode
portland State University

This study examines the questioning practices of three

mathematics teachers attempting to adopt an inquiry approach

to mathematics instruction. Analyses of classroom

transcripts and teacher journals suggest that although

teachers may ask many questions during instruction, their

practice remains traditional in many ways.

Ushering 1n a new paradigm 1S never an easy task (Kuhn, 1963,
Confrey, 1988) Although reform efforts in mathematics education abound
(NCTM, 1989; NCTM, 1991; NRC, 1989), the transition from the traditional
classroom which presumes a transmi-sion view of knowledge to a
classroom where students construct knowledge from genuine
mathematical inquiry and discourse Is exceedingly problematic.

The constructivist view of mathematics learning (von Glasersfeld,
1983) asserts that discourse fs 2 universal and critical feature of concept
development in mathematics. For discourse to occur, there must first
develop a "consensual domain” {(Maturana, 1978) whereby discussants
implicitly acknow ledge shared assumptions.

Richards (In press) describes communities in which qualitatively

different mathematical discourse occurs. This discourse inCludes
research math or the spoken mathematics of professional
mathematicians and sclentists; inquiry math, or the mathematics of
"mathematically Iiterate adults”; fournal math, or the language of
mathematical publications; and school math, or discourse consisting
mostly of “initlation-reply-evaiuation™ sequerces and "number talk". The
distinction between inquiry math and school math Is fundamental In the
appraisal of the success of present reforms in mathematics education.

This research was supportad by the Center for Urben Reseerch in Education at Portland Stete
University and the Ford Foundation.
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Open to Question

Research Framework

Because the inquiry approach presumes an emphasis on questioning

as the impetus to dialogue, we have chosen teacher questioning as a focus
for the current study. Our framework for describing types of questions
originates with Brousseau's (1981) description of educational social
situations and their corresponding cognitive functionings. These
situations include action, formulation, validation, and
fnstitutionalization (as described in Balacheff, 1990; Laborde, 1989,
and Cobb et al., in press). we see Brousseau's situations initiated in
questions of the type which promote the milieu.

In the table below we identify each of these question types, describe
the type, and offer sample questions. As we found many different types of
formulation questions, we differentiate among them using sub-types:
formulation/what, formulation/how, formulation/different, and
formulation/thinking.

Question Description = = Example
Iype

Action Poses problems for  How long would his
students to solve. property be? Could you
use your base 10 pieces to
show ..?

Formula- AskS that students (a)what: What can you
tion make their tell me about ...7; what
interpretations and  does parallel mean?
conceptualizations  (b)How: How did you do
explicit that?
(c)Dirferently: Did anyone
see it differently?
(d)Thinking How did you
decide..?; How did you
know..?; What were you
thinking when...?
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Validation Asks students for Can you go up to the
Jjustifications for overhead and prove
their solutions. that it's a hexagon?

institu- ASKS students to Dld you notice that the 2nd
tionaliza- recognize or confirm train was the same as a
tion an official truth. hexagon?; Can we use
another word to describe the
area around (a rectangle),
how about distance?
In addition to the above categories of questions, we identified factual
recall questions wnich ask students 1f they remember information
discussed earlier, repeat questions 1n which the last teacher-spoken
question is repeated, repeat student response questions in which the
teacher repeats the last spoken student statement with inflection;
general assessment questions which ask how well students are
understanding generally, and management questions which pertain to
classroom management and organization.
Research Methodology
The subjects In this study are three middle schoo! mathematics
teachers who are part of an on-going project Involving an effort to
impiement many of the recommendations contained In recent documents
such as the NCTM Standargs (1989). They were videotaped for three
consecutive days in October of 1990, January of 1991, and May of 1991 as
they taught a 6th-grade lesson. They also kept journals throughout the
year.
Two sources of data are examined in this study: (1} transcripts of
the first two lessons videotaped in the Fall and Winter, and (2} teacher

journals. Transcripts were analyzed in committee by two researchers and

two graduate students as to question type, with independent judgments

for selected segments compared until close consensus was reached
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Frequencies were summed over the two days {n each cycle for each
teacher. Journals were examined for teacher reflections about their
questioning and pertinent passages were identified.

Results and Discussion
Transcript analysis shows that all teachers asked many

formulation/what questions and institutionalization questions ana
few formulation/how questions, formulation/thinking questions, or
validation questions. All teachers aiso repeated questions often,
repeated students responses with inflection often, and asked relatively
few action questions. There are comparatively fewer factual recall
questions and general assessment questions. The number of management
questions varies among teachers and reflect differences in the degree to
which classroom discipline was a problem. Most apparent is the
observaticn that the teachers asked many questions. Total number of
questions asked by each teacher over the two lessons for Fall and Winter
ranged from 254 to 109 questions.
Schoot Mathematics

with regard to formulation/what guestions, an average of 39% for
all observations were questions of this sort. These questions tended to be
quite leading and typically required one-word responses. They seemed to
be used as a vehicle for calling student attentfon to what the teachers
saw as relevant information, such as in “What would the 100th tratn 100k
like?” Repeat questions tended to be formulation/what questions «1s0.
Institutionaltzation questions comprised 13% of ail questions asked,
tended to be rhetorical, and generally served as a technique for teachers
to transmit information In @ question form.

it 1s Interesting to note patterns in the sequence of questions in the
discourse. The sequence often began with an actfon question foilowed by
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an extensive series of formulation/what questions and then brought to

closure with an institutionalization question. This sequence is
remimiscent of the traditional discourse in which teachers initiate,
students respond, and then teachers evaluate and summarize for closure.
Inguiry Mathematics

Teachers asked very few questions that attempted to probe student
thinking Formulation/how questions account for only 2% of the total
questions, formulation/differently questions are 45% of the total
questions, and Tormulation/thinking questions are 0.8% of the total
questions Validation questions in whiCh siudents are asked to justify
their solutions using either formal or {nformal proof consisted only of
0.8%7 of the questions asked. There were few changes in the numbers of
these questions asked from Fall to Winter Overall, the questions which
one would associate with genuine mathematical discourse are
conspicucusly absent.

Probing questions posed many challenges for teachers. In their
journals, teachers discuss a number of 155ues which make asking such
guestions problematic Teachers felt that Students were not well-
prepared for open-ended questions which probed their thinking:

It makes 1t tough when you move to a setting that allows for 2
more open-ended approach. .. | think t am discouraged from
asking these kinds of questions from the poor quality of
response ! get on them. .. Once the k1ds have success, they
will try harder and it won't have to be structured the same
way.

Teachers used student lack of preparation and Classroom management
issues to justify a need for greater structure in the activities and
explorations. Structure was often interpreted to mean the use of
questions which were “set up” for students success. One teacher, towards

the middle of the year, expresses a concern about such structure:
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1 need to make sure I'm not structuring too much It 15 easy to
be too leading and feel ok about It because the kids seem
happy.. (! see) how hard it IS to ask questions and wait In
silence and how easy 1t is to fill th2 silence with direct
instruction.

Other teachers, over the year, show increasing awareness of the
limitations of their questioning:

| was asking lots of questions. But as | wrote down the
questions 1t seemed that almost none of them were probing
student thinking. Rather, on many of them | had a specific
answer in mind.

Analysis of the most recent cycle of ciassroom observations will indicate
the extent to which these teachers’ Insights are assoctated with changes
In classroom practice.
Conclustion

1t is our observation that inquiry-based curriculum and teacher
questioning do not necessartly result In inquiry math discourse. In spite
of the efforts of curriculum developers and teacher educators to
encourage teachers to foster such discourse, Instruction still bears many
of the characteristics of school math. Although the teachers in our study
religiously eschew the didactic approach to instruction in favor of teacher
questioning and student problem=-solving, an analysis of the frequency and
types of questions asked indicate that the ensuing discourse 1S “school

math”. we maintain that unless teachers change theifr fundamental

epistemologies, they will continue to negotiate classroom norms in which
the teacher 1s the director and the students passive players in a theatre
where the pose IS the problem.




Balacheff, N (1990). Towards a problematique for research on
mathematics teaching. JRME, v 21, 258-272,

Brousseau, G. (1984). The crucial role of the didactical contract in the
analysis and construction of situations in teaching and learning
mathematics. In Steiner et al (eds.) Theory of Mathematics
Education, occasional paper 5S4, Bielefeld, IDM, pp 110-119

Cobb, P, Wood, T., Yackel, E; & McNeal, B. (in press). Characteristics of
classroom mathematical tragitions an interactional analysis

Confrey, J (1988) Constructivism as a paradigm shift. Paper presented
at the Annual Meeting of AERA, New Orleans, LA.

Kuhn, TS. 1962) The Structure of Scientific Revolytion. Chicago, IL
University of Chicago Press.

Laborde, C. (1989) Audacity and reason: Frenchresearch in mathematics
education Eor the Learning of Mathemati¢s, v9 n3, pp 31-36.

Maturana, H (1978). Biology of language: the epistemology of reality In

G A. Miller & E. Lenneberg (¢ds) Psychology and Bioloqy of Lanquage
and Thought New York, NY: Academic Press, pp 27-64.

NCTM (1989). Curricylym and Evaluation Standards for Schoo!
Mathematics. Reston, VA, NCTM.

NCTM (1991). Professional Standacds for Teaching Mathematicg, Reston,
VA NCTM.

National Research Council (1989). Everybody Counts: A report tothe

Nation on the Future of Mathematicg Education, washington, DC:
National Academy Press.

Richards, J. (in press). Mathematical discussions. To appear in E. von
Glasersfeld (ed) Radical Constryctivism in Mathematics Edycation

von Glasersfeld, E. (1983) Learning as a constructive activity. inJ.
Bergeron & N. Herscovics (eds) Proceedings of the Fifth Anpyal
Meeting of PME-NA, Mantreal, pp 41-69.

BEST COPY AVAILARLE

Q

ERIC

PAFullToxt Provided by ERIC




Q

ERIC

PAFullToxt Provided by ERIC

Elementary
Spatial Visualization
Video Games

SPATIAL LEARNING IN ONE VIDEO GAME

Susan Williams, University of Houston
George W. Bright, University of North Carolina at Greensboro
Mathematics can be learned in out-of-class activities. Video games
are examples of highly stimulating environments that might be
exploited for mathematics instruction if we knew what

mathematics is used, and how that mathematics is used, by game
players. This study is a baginning investigation of that question.

Children of a!l ages choose to play video gamss of many types. Do video
games merely provide recreation or do some offer enjoyable training that
supports mathematics learning? This study of one child as he played TETRIS
was aimed at conceptualizing important research questions.

Theoretical framework, The svolution of spatial learning proceeds at two
different levels: perceptual and conceptual. Ferception refers to a situation in
which the senses gather static information from the environment and transmit
that information to the brain, analogous to a camera taking a picture. However,
perception is not simply transmission of a copy of an object (e.g., Del Grande,
1887). Instead, perceptions of static space are constructed. Thus, development
of perception seems to require the organization and coordination not only of the
activity involved in gathering that information but also of coded and stored
sensory information from prior experiencss.

Conceptions involve mental operations which consist of transforming what is
observed (Montangero & Smock, 1976). Representations of transformations are
possible only when conceptual development interacts with the perceptual image;

clear progress in representing transformations can be found around 7 years of

age. Generally speaking, learning spatial concepts seems strongly related to

attempts at representing spatial transformations.




Spatial Leaming: TETRIS

Spatial ability is a cognitive skill which involves the ability both to perceive
spatial refationships and to manipulate visual material mentally. McGee (1979)
identified two distinct factars of spatial abilities: griantation and yisualization.
Spatial orientation tasks rotate or translate an entire object. These activities
require a person to see that the pattern arrangement of a structure is
maintained even though the direction or angle of inspection has been changud. A
visualization task requires an understanding of how the parts of a structure can
chango position in relation to each other and yet not violate the way the pattern
connacts. A classic example is the visualized paper folding task in which a
person must anticipate what a pattern will ook like when it is foided.

Game dascription. TETRIS is a puzzle video game in which different
geometrically shaped game blocks fall down, one after the otherinto a 10 x 20
unit game field. The shape of the block that falls is randomly selected by the
computer. Each block is formed from four small squares (i.e., tetrominoes),
analogous to the well known pentominoes. For our purposes, the shapes will be
called by the following names: 4-bar, 4-square, L, reverse L, T, Z, reverse Z.

The abject of the game is to keep the blocks from piling up to the top of the
game field. To do this, one can (a) translate a playing block left or right and (b}
rotate it as it falls. As horizontal lines are filled, those lines are erased from

the playing field and points are awarded. A bonus is given for completing four

rows (the maximum possible number) simultaneously. Play continues until the

blocks pile up to the top of the game field.

At all times during the game two playing blocks are visible, the one that is
currently in play and the one that will appear next at the top of the playing field.
To become expert, one must visualize the placement of the current playing block
in order to plan for the placement of the next block. As players plan the
placement of both the current piece moving down on the screen and the piece
which will appear next at the top of the screen, changes in the board must be
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Spatial Learning: TETRIS

mentally cor structed for various placements of the pieces (i.e., visualization).
Since there is nat tima to generate physically all possible transformations on a
piece falling down the screen, players need to generate at ieast same of thase
transformations mentally (i.e., arientation) in order to use their time

efficiently. Mentai imaging of the placement of the current playing block in the
playing field is necessary in arder to "plan ahead" for the positioning of the next
block (i.e., spatial visualization). Thus, TETRIS requires the development of a
metacognitive skill, "planning ahead,” as well as both spatial orientation and

spatial visuaiization skills. Because TETRIS has a built in time factor, players

are rewarded for their ability to plan ahead in the ptacement of pieces. This

"looking ahead" strategy can be considered analogaus to the "looking back"

strategy frequently mentioned in discussions of prablem solving.
Procedures

Subiect. Carl, a seven-year-old Caucasian male, was interviewed and
videotaped twice for approximately two hours each time. Sessions were held in
August and January. Carl had been playing TETRIS for about six manths prior to
the first session. During the observations, he received no training an either the
game or transformational geometry terminalogy or concepts.

Method. At the beginning of each sessian, Carl was asked a variety of
quastions concerning his understanding of the game rules and the seven game
blocks. During the first session, Carl first played the game four times by
himself. Then he "played” one game by telling ane of the researchers whare to
place the pieces. This change in Carl's role was selected to determine if his
strategies changed when he was relieved of the burden of the f..aysical
manipulation of the control device and when the time factor was not as critical.

At the beginning of the second session, the Figure Rotations Test from NLSMA
was administered. This test was chasen because it matched the arientation

aspects of the game. Carl then played two games by himself, with one of the
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researchers watching and asking additional probing questions. He began a third
game by telling one of the researchers where to place the pieces. After placing
54 pieces, his frustration level at the speed of play was so great that he was
allowed to complete this game (191 additional pieces) by himself.

First Session

Pre-game questioning. Cart drew five of the seven playing pieces correctly.
He described the Z and reverse Z blocks, but he was unsuccessful at drawing
them. While drawing, he asked if he should "draw the blocks that could be
changed around.” Additional questioning revealed that Carl seemed to view the
same block ariented in two different ways as two separate figures. He was
aware that the shapes had been turned, but once they were turned, he no longer
recognized them as the same shape. Thus, he was unwilling to use a common
descriptor for a block in different orientations.

Observatigns. Carl always placed the first block against the left wall and
then positioned the next 2 or 3 blocks from left to right. During play, there were
cases when Carl appeared to mentally select a position for the playing block,
rotate and translate the piece so that it would fitinto that position, and then
rotate the piece again through a complete 360° turn. As he rotated the piece, he
would observe other openings in the fower portion of the piaying field and
occasionally reevaluate his original decision and move the piece to a new
position. Carl regularly performed this ritual with the L, reverse L, and T blocks.

Carl used only the B button on the control device (for counter-clockwise
rotations) during the first two and one-haif games. Then, for no apparent
reason, he switched in the middle of the third game to the A button (for

clockwise rotations) and continued to use that button through the end of the

fourth game. During his explanations of the rules Carl had said the "button A

moves the block to the right and button B moves the blocks to the teft.” Though

he did not use the more conventional terms, rotate or turn, Carl did make the
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Spatial Learning: TETRIS

appropriate clockwise and counter-clockwise turning motions with his hands to

illustrate these concepts.

When Carl assumed the role of direction giver for the placement of pieces, he
gave directions in terms of what a figure would look like once it was turned. For
example, Carl's explanation on how to orient the L block was to leave it as be (no
turn), put it in the L position (90° counter-clockwise tum), put it in the hangman
position (90° clockwise turn), or put it in the body or bed position (180° tum).

He described turns of the T black with similar everyday terms, but he realized
that the Z and reverse Z blocks had only two possible positions and did not
generate icon’c descriptions for their placement.

Second Session

Testing. Carl's responses on the figure rotations test were very good. On
each of the 14 items, there are 8 figures given; each figure must be classified as
a rotation or non-rotation of the item stem. Of the 112 responses, Carl
correctly classified 107.

Pre-game guestioping. Carl easily drew the seven blocks, though he continued
to use different descriptors for each pasition of a block. His explanations of the
directions for the game were clear and complete.

Obseryations. Carl used only the A button on the control device throughout
the second session. He explained that " only need one button.”

During the game in which Carl told the researcher where to position pieces,
his explanations were clear, to the point that the game did not need to be paused
to ask for clarification on where a garticular piece shovid be placed. When Carl
was probed about why he placed a piece in a particular position, he sometimes
said that it was because "the next piece goes here.” During similar questioning
in the first sassion he never mentioned accommodation of the next piece.

Relative frequencies of pieces that Carl rotated through 360° were similar in
the two sessions. In session one, 70% of these pieces were L, 10% were T, and
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20% were Z: in session two, 63% were L, 13% were T, and 25% were Z.
Conclusions

Carl's insistence on creating iconic descriptors for different orientations of
most of the blocks has potential implications for instruction. In particular, if
Carl's behavior is indicative of that of other children, then it is possible that
young children who are just beginning to develop operational understanding have
not buiit connections that will allow them to view, for example, a rectangle as
still a rectangle once the figure is rotated. ual-coding theory, which proposes
that visual representations may be generated from verbal cues as well as visual
cues corresponding to objects or events, suggests that the use of verbal
connectors in conjunction with visual connectors might assist a child in
developing stronger images of object transformations.

Carl's exptanation that he positioned one piece in preparation for the next
piece seems to support the notion that Carl had begun to plan ahead. Although
this strategy does not seem to be developed well in school mathematics
instruction, it may be one that mathematicians utilize regularly (a strategy that
may allow them to become expert in the field). The instantaneous feedback that
is provided in electronic games such as TETRIS provides a dynamic learming
environment for the practice of such a strategy.

Carl's tendency to rotate a figure through a complete 360° turn, even after he
had apparently decided where to place the block suggests that he was utilizing
both perceptual and conceptual reasoning while playing the game. This might be
important if other children also demonstrate similar reasoning.

Although the patterns observed in Carl's play are idiosyncratic to one-child's
organization of schemata. the importance is that organizational patterns appear
to have been formed. For example, more frequent rotation of the L block

suggests that this piece was more difficult for him to visualize. ltis our

opinion that continued study of additional subjects might reveal groups of
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organizational pattems that might have significant pedagogical implications.
Hypotheses raised. A variety of questions are suggested from these data. Do

most children begin by placing the first block against a wall? Do other children

initially position pieces across the bottom of the playing area? Wili players

choose to use both rotation buttons? Are there groups af children who prefer

one type of rotation aver the other? If so, what characterizes these groups?

Will older or mare experienced players interchange the use of the A and 8

buttons mare frequently? Does the asymmetrical shape of the L and reverse L

blocks cause equal placement difficulty for players who are developmentally

more mature? Do many children use real-world objects to describe the rotation

of the blocks? If so, does this have implications for geometry instruction? Wilt

the repetitive visual exposure to rotation and translation of blocks in this game

provide a sufficiently rich setting that will enhance the acquisition of spatial

concepts? Does TETRIS help students learn to plan ahead? If so, is there payoff

for perfarmance in content such as solving equations, performing geometric

constructions, or creating and organizing the steps of a mathematical proof?
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Parameterization
Geometry

ON THE UNDERSTANDING OF VARIATION
A TEACHING EXPERIENCE

Ricardo Cantoral and Maria Trigueros
INSTITUTO TECNOLOGICO AUTONOMO DE MEXICO
MEXICO

This paper deals with a research that pretends to explore the
strategles that favor the understanding of the representation of
parametric curves in the plane. We report the results of a three
years long teaching experience with college students where we
explore and explain the difficulties and strategles that students
have when faced with problems that involve parameterization,

§ 1. ABOUT THE RESEARCH PROBLEM

Students at college level have difficulties with understanding and
graphing curves, specially when they are given in a parametric
representation. Because of the importance of this material for the
understanding of other mathematical concepts as area, curve length and the
solution of differential equations and their use in application probiems, we
tried in the present study to find out why they have such a difficulty.

These difficulties can arise from situatlons related to different kinds
of representation In several contexts, with problems in the transfer of
information from one kind of representation to another or with the
understanding of the concepts of variable and variation.

in dealing with parametric representation, students are usually faced
with three different situations: They can have the parametric equations of a
curve and be asked to graph the curve, or they can have two different curves
for each dependent variable and be asked for the curve's graph or they face
a verbally stated problem that can be solved using parametric equations. We
are interested In finding out the strategies that students use in all the
situations and in differentiating between the strategies that are
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independent of the context in which they face the problem and those closely
refated to the context.

§ 2. ABOUT THE TEACHING EXPERIENCE

We worked during three semesters with Mathematics students who are
taking a mandatory course in Analytic Geometry. We chose this population
because they have already taken a pre—calculus course where emphasis is
given to the handling and graphing of one variable renl valued functions, so
they know how to graph.

We designed a small questionnaire to try to find out what they thought
when faced with parametric equations and what they did with problems that
require parameterization for their solution. We studied the answers to this

questionnaire and then interviewed the students about their difficultles.

We then gave them twe lessons on parametric curves, particularly in how
to graph them and on some methods to deal with problems. After the lessons
we gave them another questionnaire where we found that most of them still
had problems. We gave them four more lessons emphasizing the qualitative
reasoning associated with the constructlon of the graph of the curve and
some methods to deal with problems. After these lessons a new questionnaire
was given to them and we found that most of them were able to graph the

curve but still were not very successful In dealing with the problems.

After a year, because we wanted to analyze what they had assimilated
from the teaching experience, we chose a male student and a female student

who had been successful in solving the problems after the teaching sessions,

and by means of a new questionnaire and a clinical Interview, we analyzed

the strategies they used to solve the problems and we tried to isolate the
different episodes in their reasoning.

Flrst we found that when faced with parametric representations of
curves, students can graph each of the dependent varlable with respect to
the independent variable, but cannot find the graph of the interrelated
dependent variables, unless they are able to eliminate the parameter, and
they do not percelve the Interrelatlon of the dependent variables. They




think of them as two separate equations not dealing with the same problem
and they do not understand why they have to put the information in a single
graph. We also found that when faced with problems that require

parameterization they cannot break them in components, even the simple ones;

they always try to find a relationship between the two variables involved in
the problem. Even if you tell them to separate the problem, they are not
able to find a third variable on which the other two depend.

In the first questionnaire we asked the students some general questions
about what they think when they find the word parameter and how can they
explain In words what a line is and particular questions dealing with the
graph of a curve when the parametric equations are glven in a problem.

Some typical answers were,

"A parameter is:
a) a way to measure something”,
b) something that relates one thing with another®,
c) a constant that can take any value®, or
d)  something that you can change and as you change it you find
different points on a line”,

a) ‘algo que va derechito derechito’, (it is something that goes
straight).
b) Something that connects two points

When they have the parametric equations, all of them eliminated the
parameter and graphed the curve. When they could eliminate the parameter
they didn't graph the curve. When they have two curves, most of them tried
to find out and explicit relationship In algebraic terms, and then they
eliminated the prrameter. For example when given




Theywrltex-tz.y-t’t.hent-:\/x.soy-txmandgraphthe
curve.

In a first discussion session about their answers we confirmed the
difficulties already mentioned.

in the second questionnaire we tried to force them to think about the
problem In an essentially gsometrical context, so we asked them to graph a

curve from two arbitrary graphs for which no algebralc expression could be
found. For example, we gave them
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and found that most of them read some points from the graph, and made a
table showing some important points:

and they showed them In the x-y disgram. But If the cui-ve was not easy, as
in the example given, they ¢ldn’t know how to join those points.

In the last questionnaire we wanted to find out If the qualitative
techniques had been learned. However, we recognized that although some of




them could graph the curve, they only applied the techniques without any
understanding of the strategies.

Once we recognized these problems we designed a research protocol to
isolate the main strategies.
§ 3. ABOUT THE STRATEGIES AND THE LEARNING EPISODES

Since our objective was to anaiyze the representation strategies, in
the recent Interviews we searched for elements to explain why the students

cannot build graphs of parametric curves.

We found a sequential order in their sirategies shown in the following

scheme.

Function

\/

1
Fonstructlon of a tableJ
/. \
Elimination {dentif fcation

of formula for
of

the ¢ lete curve
Parameter omp

or for parts of it

I Graphing ths Foints I
!

| Construction of the curve I




As we sce there are two kinds of general strategles: one is of
algebraic nature, the other Is of geometrical nature, but both of them are
based on a numerical and quasl numerical approach.

We observed that students feel more confident If they can find a
relationship between the variables. For example one of the students thought
that it was always possible to eliminate the parameter from the equations,
and that given a difficult curve one can always break it In parts so one can

find plece wise relationships and eliminate the parameter from each of them.

The other student could not tell for sure If a point was part of the x-y

graph if he didn't have a formula for it.

The qualitative or geometric strategy was not present until we talked
about movement of a point. So It seems that the numerical strategy is
independent of the context, the aigebraic depends on the context but works
In two different ways: as 2 resource for the numerical strategy and as a
too! that is self sufficlent to solve a problem, and the geometric is not
spontaneous and Is closely related to the idea of movement.

The Interrelation of the dependent variables was not evident for them
until we made expllcit reference to the idea of movement, and even then, one
of the students couldn’'t see it. It may be that the understanding of
parametric curves Is made easier when it is closely assoclated with the
concept of movement.

After an analysis of their answers we think that although they can deal
with one variable problems, they do it mechanically. They do not have a
clear concept of variable, and this difficulty is made more evident when
several variables are involved. We are trying now to explore the student’s
response when dealing with these kind of problems when they are directly
related with concrete physical problems and to reiate the resuits with their
understanding of the concept of variation within a computer environment.
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. . L Life Histories
Math Life Histories Vygotsky

A VYGOTSKIAN FRAMEWORK FOR EXAMINING MATHEMATICAL
ATTITUDES AND THE NCTM STANDARDS THROUGH LIFE HISTORIES
Lyn Taylor, University of Colorado-Denver

Life historics are used to explore attitudes toward mathematics and tbe NCTM
Standards (1989). This methodology has been a valuzble tool in exploringattitude
development. The conceprual framework for this research is grounded in
Vygotsky's (1930-4/ 1978) social interactionist theories and mathematical attitude
research. A model of mathematical attitude development is presented and discussed.

In this PME paper [ will demonstrate how life histories can be used to study mathematical
attitudes and how these relate to the NCTM Standarc’s (1989). Vygotsky’s (1930-4/1978) social
interactionist theories and mathematical attitude research, especially Fennema(1989) and Reyes
(1984), provide the conceptual framework for this work. This framework and the analysis of
mathematical life histories guided the creation of my model of mathematical attitude development /see
Figure 1). Directly or tangentially, the framework and the analysis support the idca that studc...s'
attitudes develop when they interact with other persons and their environment. This constructivist
(actively creating knowledge) view also appears to be part of the framework supporting the
Standards (1989).

Vygotskian conceptual framework. Vygotsky's emphasis on how culture influences
leaming, provides a broad conceptual framework that can take us beyond a strictly cognitive focus
and challenge us to examine the leaming and teaching of mathematics in the context of cognitive,
affective and social dimensions. His Zone of Proximal Development (ZPD), the region betweena
person's current and potential achievement, is very helpful in gleaning relevant information from life
histories.

Attitude. Isecattitude as a "way ofthinking, feeling and behaving.” This broad multi.
dimensional definition goes beyond most definitions and suggests affect is only onc part of attitude.
When attitude is viewed simply as liking or disliking, the cognitive and behavioral components of
attitude are frequently overlooked. The formation of an attirude isa complex process involving the
interaction among many factors such as family, socialization, schooling experiences, and
relationships with mentors (see Taylor, 1988 & 1990 for further discussion).

Lifc historics and the Standards. My work researching the mathematical life histories
of twelve outstanding teachers, I believe illuminates the essence of the Standards, as well as the
context in which teachers apply the Standards. I found many of the goals and specific areas for
increased and decreased attention recommended in the Standards 10 be complementary with eventsin
the participants’ lives and with Vygotsky’s theories,

For example, Curtis told of a negative fourth grade math experience that affected his
mathematical development, especially his attitude. He remembered "multiplying two six digit
numbers... and I never could get all the rows straight! It was just terrible. I got bored with it, and

.
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While learning multiplication was an experience which was fun and exciting for Karen,
Bill, and Tom, it was not for Curtis. It concerned Curtis that in his el y math icscl
the product or answer was overly stressed, rather than understanding the process. This concern is

also discussed in the Standards; a process-oricntation is strongly emphasized.
Like Curtis, Joe's carliest schooling memory with math ics was notapl tone. "{

remember being embarrassed in the third grade, b- ng at the chalk board, trying to do one of the
very simple addition carrying problems, and T just, for some reason, could notdo it. It was nota
very good experience, [but] a humiliating one. I'llalways remember that, always! That may have
set the whole tone for the way I viewed math. I don'tknow, That really sticks out in my mind.”
Joe also remembers his elementary mathematics as “a lot of memory work, a lot of computation on
paper, and not a whole lot of application, I'm afraid.” He further feels the mathematics that was
stressed involved "the mechanics of doing things, as contrasted with understanding why you are
doing things.” When Joe became an elementary teacher, his negative elementary experiences
motivated him to provide his students with useful math experiences with concrete objects. He
stressed understanding the processes involved and the usefulness of mathematics.

Biil's elementary arithmetic experience also affected his development as an educator. "I

still have a real clear image of something I use today in my own teaching. The image is looking at

a page of exercises in a text book, this could be in a fourth or fifth grade book, seeing cn the page
at the top a whole lot of arithmetic problems that are written out explicitly, add two numbers,
multiply two numbers. Then at the bottom lower quatter of the page are the story problems:
suddenly you don't see numbers, but you see words... I know my own fecling at that time was
that the problems at the top were the casy ones; you were just asked to do some manipulation on a
couple of numbers. The hard ones wercat tl bottom: you had to read the words, formulate the
problem mathematically and then solve the problem. Those were the story problems.”

Students are often able to do rote lower level tasks as was emphasized in Bill's elementary
class, yet when they are challenged to apply their mathematical knowledge to solve problems they
often have difficulty. In Bill's words, "I know that in my own classes today it is the very same
way. People are good at working math problems when they are just stated mathematically, butit's
the problems with the words in them that the people just shuddered about. [ realize this was the
outlook I had back then. I 'see itin my own students today and I try to dispel it. I give them alot
of word problems and I tell them this is what math is all about. It's not multiplying two or three
digit numbers together, but it is taking the problem in the real world that's given to you in English,
visualizing that problem, what is being asked, casting it ina mathematical form, and then solving
it. Thatisa completely different process! Some people can multiply four digit numbcss in their
head, but when it comes to translating story problems they may be useless. Converscly, some
people are good at the modeling aspect but are very slow at doing calculations. That's my own
attitude about math. It is not there to just simply do manipulations on numbers and symbols; itis
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you never get the right answer if the rows are not straight!” Cuntis felt that he and many of his
"classmates got turned off 10 mathematics at that point.” Yet, he remembered that before he was
"taught” multiplication in school itintriqued him. "l actually figured out what multiplication was on
my own when [ was in third grade... [ thought that was neat! [ used to play marbles and [ remember
putting them in rows of four and I figured it out by looking at the rows.” The Standards (1989)
would not support assigning a tedious six digit multiplication problem. In fact, they suggest teachers
place decreased attention on "complex pencil-and-paper computations” and isolated treatment of such
computations. The purpose of computation is 10 solve meaningful problems. Therefore, we are
challenged to reduce the computational emphasis 3o often used and focus more on "the thoughtful
use of operations and numbser relationships” (p. 47).

Developing an understanding of the underlying concepts of multiplication is important.
Curtis's marble story illustrates his conceptual understanding of multiplication. The Standards
(1989) also emphasize the importance of linking concepts to the paper-and-pencil procedures. This
was not "taught” in Cunrtis’ class.

While the Scandards challenge us to demphasize drill, it is important to keep this
recommendation in perspective. Some students are particularly fond of drill activities and even
find them "exciting” and "meaningful.” For example the carliest mathematical memories forthree
of the mathematicians in my study involved basic arithmetic drills Karen’s memory was a
pl one. "It standing up and having tosay 9 x 1 =9, 9 x 2 = 18, etc.... [ just
thought it was so much fun doing that. I never thought it was boring. I never thought it was dull,
even though [ know that a lot of kids {now and then] think it is boring. Ijust thought it was fun!
Exercising the memory.”

N

Bill remembered leaming the multiplication tables i= fourth grade. "I can clearly remember
learning the multiplication tables. There was a big bulletin board in the comer and down one side
were all the students names. and across the top were the multiplication tables from 1 to 12. As
soon as students passed a test in the multiplication table they put an X up on the boxrd. I cea siill
tet; that... It was something everybody had to do and some people finished sooner than otjiers. I
can’t really picture any tasks we had to do. I guess it was an exciting challenge to be working on
« * fours table and sec way down at the end the table of 12s, and to realize that there was a sort of
unknown tervitory out there was kinda exciting to me. It was that kind of thing that motivated me,
secmed to be a good incentive to keep going and get to the end of the tables as quickly as I could *

Tom also felt that it was fun doing basic arithmetic. His earliest mathematical memory was
during the addition, subtraction, multiplication, and division "era", but it took place at home
working with his dad and aslide rule. He enjoyed doing basic mathematics with his dad and 2
slide rule. "I could usually come up with the right answer most of the time. Maybe that{s why it
was fun.” One wonders if the basic facts woild have been so much fun for Karen, Bill, and Tom
if they weren't so successful,
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not valuable unless you are taking real problems given to you in English, perhaps by a non-
mathematician, and using math to solve it.” Today, Bill is an applied mathematician, Tt scems

clear his interest in applying mathematics developed more strongly over time. Possibly his early

experience during his elementary school daystriggered this development. Bill's emphasis on
applications and problem solving isadvocated in the Standards.

Priscilla’s response, when asked "what would you say is your earliest memory regarding
math?”, involved a detailed description of an influeatial teacherand some of the activities in her
class. "That's an interesting question. Let me think. Idon't think Thave any real memories about
it until I was in junior high, seventh grade. Ireally don'thavea lot of memories of anything until
junior high.... When I was in seventh grade [ had a wonderful math teacher. His name was Mr.
Sweat. We played after school and at lunch time. We would sitaround with him and do things
like discover unique pattems witl: numbers, like the nines, and tricks for getting the multiplication
done faster or division faster, and all those really fun things. Those were puzzle solviag, but it
was still eminently obvious how it [the experience] could be used in real life and how itdescribed
real things.” Mr. Sweat appeared to be a teacher who was "ahead of his time" and who was
teaching a curriculum advocated in the Standards.

Secing the usefulness of mathematics was very important not only to Priscilla and Bill, but
also 1o the other ten participants. In fact the foursncial scientists in the study all elected to not
pursue math when they did not perceive it was useful. Fennema (1981) and the Standards (1989)
have documented the importance of the perceived usefulness of mathematics. Some students stop
taking mathematics when they do not perceive itas useful to them (Sells, 1979; Fennema, 1981).
In the Standards uscfulness is exemplified by mathematical connections and applications.

Concesrn over the way "school mathematics” is, and has been, taught is not unique.
Tauskky-Todd (1980) enjoyed studying and using mathematics on her own, yet was not very
interested in the "school math” she was studying as a secondary student after World War 1. In her
words "The work at school was really not that difficult if one applied oneself to it, but it was so
uninteresting that you could not wish 10 apply yourself. I felt there was another mathematics” (p.
313). This other mathematics was the one that she was pursuing on her own and with her father at
his vinegar plant; it had meaning and relevancy for Olga Tauskky-Todd, and it was connected o
her life.

Nancy, a mathematician in my study, also found the math she studied at home to be
especially interesting. Her father was a “jack-of-all trades, like many laborers. His primary job
was sheet metal. He was always laying plans on the metal, and T was always tagging along with
my Dad and he would fold the metal up and come up with these nice boxes like anair conditioner
box. T'd see it laid out, thea T'd try to » ualize what it would look like when he finisbed with it.
He was always planning this out on paper an! [ always thought that it was neat! So, [ would
duplicate that behavior with cardboard and stufl like that. Being that we were not from a well-to-
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do family we had to invent our games.... If we wanted to play anything we would have to build
ourown objects.” It is clear that Nancy’s interest in spatial visualization and geometry developed
at home as a young child helping her father.

Itis notuncommon for children to develop an early interestinan  -2a through their active
involvernent with a parent of relative. For Nancy, Tom, and Olga Tauskky-Todd, interactions
with their fathers facilitated their mathematical interests. John-Steiner (1985) and Vygotsky (1930-
34/1978) have discussed the importance that a relationship with a significant adult can play in the
development of a person’s interests. These adults may or may not be family members. For
Priscilla, her teacher facilitated her mathematical interest. Each participant in the study had
significant mentors.

Einstein’s early interests were encouraged by his family and a friend of the family. His
Uncle Jake introduced him to mathematics and his mother introduced him to music and literature.
Max Talmey, a poor Jewish medical student who came to dinner at the Einstein home in Southem
Germany when Albert was twelve, brought with him a number of books on science which he
showed to Albent. "And more significantly Max followed up Uncle Jake's teaching of algebra with
a book on geometry. With Talmey’s assistance Albert worked through Speiker's Plane Geometry
and later went on to teach himself the elements of calculus” (Schwartz, 1979, p. 30). The
interaction with older people fostered Einstein's early interest in mathematics and science.

Not all childrendevelop an interest inan area through their active involvement with a person.
Some children, such as Curtis with his marbles, may have an experience that facilitates their
mathematical interest.

Model Prescatation. My workingmodel of attitude development emerged from the life
history research and is, [ belicve, very much in line with the five essential goals of the Standards.
These goals assume that students’ should not only be able to solve problems and reason
mathematically, butalso to become confident and vaiue mathematics, communicate iteffectively.
make eonnertions and become aware of how mathematics has impacted their lives. ] believe these
goalsilluminate the importance of and the connections among thoughts, feelings and behaviors (the
components of attitude). Therefore, the goals of the Standards suggest we be concerned with
attitudes.

Itappearsthat attitude change, specifically mathematical attitude change, is ofien a function
of significant social interactions. Below is a model that provides the underlying conceptual
framework that iliustrates the attitude development process. Elements of this framework include:
attitude which is viewed as a complex construct including thinking, fecling, and behaving; and the
ZPD which s defined as "the distance between the actual development level as determined through
independent problem solving and the level of potential developmentas determined through problem
solving underadult guidance or in collaboration with more capable peers” (Vygotsky, 1930-
4/1978, p. 86).
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The double arrows in the model are needed to show the complex interactions. Inaccordance
with Vygotsky’s emphasis on the importance of the environment, particuta:ly the culture and other
persons within the environment are depicted as shaded areas surrounding and affecting attitudes.
Thus, a person's attitude is affected by hivher environment. This includes experiences within the
environment as well as the culture of the enviconment itself. Other persons are alsoa part of the

environment. /‘Fsm

This model emphasizes the larger cultural context i \
within which an individual's development occurs, firstona // ' \
social level, between peopie, then on an individual level as / : \
internalization occurs. The arrow through the ZPD depicts .\ Zameof ?"“zfi Jevelopzent I
the meta-awareness an individual develops when she '\\ ' /
bridges his/her ZPD. Meta-awareness involves reflecting N I

on one’s thoughts, feelings, and behaviors. Arrows are
included from meta-awareness back down to attitude to Tunaog —”‘T"TUDE < Behamac
represent the continual interactions people experience. ‘\ Fealiog ! ——/

Therefore, an individua) can repeatedly bridge hivher ZPD ~ SWRCHENT -

to a meta-awareness state and then have an attitude thatis

Figure | - -‘\modelof malhemauml
: ; i attitude development depicting the
Nancy, and the others discussed, this means that their components of artitude, bridging the
ZPD to meta-awareness and factors
influencing this process.

further developed. Foran individual such as Curtis,

attitudes toward mathematics, including their feelings,
thoughts, and bebaviors have changed.

Educational Implications and Conclusion. Vygotsky has been called a “genius”
who lived ahead of his time. A Vygotskian perspective presentsan integrated theoretical
framework which iooks at the whole rather than dwelling on the parts. In this age cf fragmentation
and specialization it is important to keep the complex picture in mind. This view is one which is
complementary to the Stacdardsemphasis on the importance of mathematical coanections,
usefulness, cc jcation, r ing, problem solving, and attitudes.

In Frye's (1989) words implementing the Standardsimplies the use of: "Words like
explore, communicate, construct, use, and represent, stress the involvement of students on the
active "doing” of mathematics. Words like collaborate, question, express, value, shate, and enjoy,
bring a new flavor to the work of the students. Words like reflect, appreciate, connect, apply, and

. extend, build a new attitu ward rmathematics and its uses” (p. 59).

Further, a Vygotskian perspective supports the importance of alternative teaching strategics
such as using cooperative groups, providing opportunities for significant peer interactions, and
posing problems beyond students’ understanding. This maximizes leaming and facilitates students
bridging theirzones (ZPDs). Vygotsky believed that "creative imagination grows outof the play

of young children” (Williams, p. 117). This perspective also stresses the importance of play and
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our cultural environment in students’ development. It is the interactions among one's thoughts,
feelings, and behaviors (attitude) emersed in culture thatis significant.

The stories, model and thoughts presented in this paper offet ways of extending Vygotskian
thought to mathematics educationand theaffective domain. Mathematical life histories can be used
as a 100l 1o explore mathematical attitudes and the Standards, as well as in altemnative classroom
assessment.
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Running Head Age level NA

Mathematics Teacher Researcher Identifies #1: Teachers
Psychology
of Learning

Identifies #2: Math Teacher
Researcher

THE MATH TEACHER AS RESEARCHER: A CHANGE IN
PERSPECTIVE WHICH IDENTIFIES THE MATH TEACHER'S
PSYCHCLOGY OF LEARNING AS A NEGLECTED AREA FOR
MATHEMATICS LEARNING

Egon Mermelstein Ingrid Thompson
College of Aeronautics

Abstract

A case is presented for the teacher-researcher.
As researcher, the teacher is made aware of his/her
psychology of learning. The narratjve is the method
used to promote an understanding of the teacher's
psychology of learning. Two narratives, one by a writing
teacher, and one by math teacher, are examined by the
technique of phemonological exegesis. The findings
indicate that their psychology of learning, the exploration
of error, influences the course content and the students
learning of of that content.

That university researchers should collaborate with
elementary and secondary school teachers has been suggested by
Noddings (1588) and others. More recently, the National Council
of Teachers of English has awarded its 1990 David Russell Award
for distinguished research in the teaching of English to Nancy
Atwell, a former 8th grade teacher, for her book In the Middle:
Writing, Reading, and Learning with »dolescents. 1In her
acceptance speech, Ms. Atwell descriw.d her award as representing
an acknowledgement that "observaticns and reflections of classroom
teachers count as research" (Rothman, 1990). Implicit here is the
notion that teachers can and should be the generators of classroom
research.

Indeed, with the increased interest in teacher
professionalism, a growing number of teachers are undertaking
critical analyses of classroom practices. In many cases,
according to Education Week reporter Rothman (1990), these
teachers are also writing up and reporting their findings. These
efforts, teachers say, have given them a deeper understanding of
how students learn and how teachers can contribute to learning.
Led by such interest, a number of organizations such as the A.F.T.
and the N.C.T.E. have created grant programs to sponsor teacher
research. As Rothman notes, research should be seen as part of
the teaching act.
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The issue of teachers' perspectives toward knowledge, their
view of themselves, and their students as knowers has recently
bean acknowledged as important to pedagogical thinking (Lyons,
1990). The method employed for understanding the teachers!'
perspective is the narrative: narratives produced by teachers
promote an understanding of the psychology of learning that may be
missed in more analytical forms of research. Indeed, as Tappan
and Brown (1989) note, the authorship of narratives (stories)
provides a new vision of the relationship between developmental
psychology and education.

Individuals give meaning to their experiences by representing
them in narrative form. In fact, narratives play a role in
helping us to understand human acticiis, both the actions of
oneself and the actions of others. That is, learning how you work
helps you to see how others work. It is in the awareness of one's
own biases toward knowledge, learning, and education revealed in a
narrative that objectivity can be found and understanding
communicated. In this way, teachers may be restored to the role
of "reflective practitioners" (Rothman, 1990). When they are
reflective practioners, part of the "content” must be the
teachers' psychology of learning, not an aspect usually recognized
by traditional non-teaching researchers.

This presentation will take a developmental approach. First
we will look at the work of teacher-researcher Mike Rose, whose
narrative Lives on the Boundary (1990) provides a model of a
teacher's psycholdogy of learning. The next step will be to look
at the ongoing narrative of a Piagetian researcher (supported by
federal and university funds), who is also a mathematics teacher,
and more recently, a mathematics teacher-researcher.

‘'The method for pursuing such a developmental approach is
phenomenological exegesis, that is, a line by line reading of a
text that encourages "asking the right question." The key idea
behind this approach is two-fold: first, the setting forth of
details allows the voice of the text or narrative to come through
(which does not happen so clearly with the act of abstraction);
second, the process of working through the text by accurately
describing it allows for an understanding of text (and not
explanation, which is often the end result of analytical
criticism). Therefore, first the readers let the text speak; then
the readers dialogue with the text so that understanding may
emerge.

To illustrate, we have selected passages from three chapters
of Mike Rose's Lives on the Boundary. 1In the first "text", Rose
is himself a student In an urban, economically disadvantaged
school; in the second "text", he is a new teacher in a non-
traditional setting (instructing Vietnam War veterans); in the
third, he is a more mature teacher working in a university
remediation program.

An exegesis of the first "text" (see Narrative 1 ) reveals
Rose in the "role of mediocre student, the survival mechanism he
has developed in an academic setting which seems to be alien and
perhaps hostile territory. 1In this foreign terrain he understands
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that he does not know how to do some things and does not know how
to do some thing "the right way" (error free). He believes he is
responsible for these academic deficiencies; he is the author of
his own "faulty and inadequate ways." As a result, Rose's defense
is to construct his own ignorance by the self-concocted "wagic" of
using only half of his mind's capabilities. He sabotages himself
to conform to the expectations made of him: he lives down to
those expectations and in that way renders himself "average."
Therefore, at this stage of his development, Rose's psychology of
learning is that of limitation as survival, not growth. certainly
that kind of thinking is a non-national, induced magic, as all
living organisms generally survive by growth.

In the second "text", Rose as a new teacher has now become
part of an academic authoritarian system which decrees what
constitutes acceptable levels of learning. 1In this system, errors
constitute a rational scientific explanation of students'
deficient performances. However, a nagging sense tells Rose that
mere mechanics that are either "right" or "wrong" cannot truly
indicate a received education. The standard "proofs" of
educational acceptance - being free from error -may nhot be true
indicators and may in fact restrict students' true abilities.
Thus, Rose's psychology of learning has started to shift. He
still feels the burden is on him, as he did as a student, but now
he is in the position of both imposing and lifting the burden,
Indeed, he would blame himself if his notion of learning remained
that of making students "free of error," for his students would be
doomed to failure. It is here that he must try to restore or
reclaim expectations more appropriate to a true learning
environment.

In the final “text", as Rose works with his adult remedial
students, his perceptions about the notion of mistakes shift even
further. Rather than regard them in a pejorative way as
indicators of deficiency, he sees mistakes as forms of
communication which render his students' worlds and expectations.
This allows a dialogue of understanding between teacher and
students to develop: it isn't just the teacher telling them what
they need to know to be acceptable but the students educating the
teacher through their texts about the stories of their lives. As

Rose suggests, mistakes are a map through the landscape of their
lives: like life itself, mistakes are just part of an ongoing
process. If so, students can begin to feel like they have some
control over their learning. In this way, errors provide
understanding for both students and teachers. With these
boundaries between teacher and student lessened, their worlds may
intersect so that a shared academic community may emerge.
Consequently, the next stage in Rose's psychology of learning is
based upon collaboration: "he listens, helps, and facilitates as
students try to achieve modest but desired goals.

A developmental scise of the psychology of learning also can
be gleaned by tracing Mermelstein's narrative (see Narrative 2).
Like Rose, he has constructed a psychology of learning from his
classroom experiences. Also, as with Rose, it is ongoing.




In the first "text," (see Narrative 2, paragraph 1)
Mermelstein while teaching students mathematics and employing the
lecture method, at the same time makes use of Piaget's clinical
method of questioning on conservation of quantity tasks. On the
one hand he tries to explain mathematical content to the students
and on the other hand he attempts to understand the students!
quantitative thinking. Mermelstein's psychology of learning
vacillates between the reduction of error illustrated by his
explanations of mathematical content and his explorationh of error
with the clinical method of gquestioning on Piagetian quantitative
tasks.

In the second "text" (paragraph 2), Mermelstein
denmonstrates the role of trial and error in his conservation
research to resolve problems in the conservation tasks. Thus, his
psychology of learning now represents trial and error as a method
for understanding.

In Mermelstein's third "text" (paragraph 3), it is the
presence of non-aggressive humor in the mathematics classroom
which encourages trial and error learning. At this stage of
Mermelstein's thinking, the importance of humor to relax students
is explicit while the importance of errors or mistakes as vehicles
for understanding is yet to be made explicit.

In the fourth "text" (paragraph 4), after a period of
reflection, Mermelstein integrates non-aggressive humor, mistakes,
and a sense of community. Humor takes the worry out of being
mistaken and communicates a sense of caring, thereby creating a
feeling of community. These reflections have been shared not only
with students but with other colleagues at professional meetings.
Mermelstein has progressed from where he used trial and error
learning in a mathematics classroom only with Piagetian
conservation experiments to trial and error learning in his own
conservation research, and to finally focusing on trial and error
(mistakes) in a mathematics classroom while using this classroom
as source for research problems. Clearly, Mermelstein's
psychology of learning views the making of mistakes as central for
learning of mathematics.

In the final "text" (paragraph 5), Mermelstein generates a
research problem in which his college students are collaborators.
These college students, in an attempt to understand the source of
their math anxiety as well as the anxiety of elementary school
children, tutor 5th grade students in an neighboring elementary
school, thereby enlarging the scope of the caring community.

In summary, Mermelstein's psychology of learning provides a
sense of community in which teacher and student have "listened" to
each other and learned each other's point of view. Not only are
one's own mistakes accepted and examined in this context but
others' as well. In this way an understanding of mathematical
ideas may be provided.

vhen a teacher’'s psychology of learning stresses the
students' "understanding™ or discovery, it emphasizes exploration




of errox or mistakes. On the other hand when a teacher's
psychology of learning stresses explanation, it seeks to minimize
students' error and thereby precludes understanding. Yet
understanding provides the global context in which an explanation
makes sense.

Therefore, what a mathematics teacher-researcher uncovers
is that there is an interaction between his psychology of learning
and the mathematical context, that is, mathematics content is not
independent of the observer presenting that material. Teachers
can discover this important perception only by observing and
recording their own development of a psychology of learning. As
we encourage students to be the foremost interpreters of their own
experience, so should we allow teachers, in the role of
researchers, to be amongst the foremost voices in the complex
arena of educational psychology.
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NARRATIVE 2

After conducting Piagetian research on guantitative thinking
in children and teaching at the college level, I returned to
teaching mathematics to elementary and junior high school children
in two inner New York City schools. In addition to the
traditional mathematics, many of the children were provided with
Piagetian conservation experiments: conservation of quantity,
length, and number. My purpose here was to provide them with an
understanding of the foundations for mathematics reasoning. The
clinical method of questioning used for the Piagetian conservation
experiments provided an opportunity for a dialogue between
students and myself.

After two years of teaching {1973-75), a government grant for
continuing conservation research led me to further explorations
regarding conservation of liquid quantity and licquid volume, It
was while examining the children's responses to these experiments
that questions arose regarding the appropriateness of the existing
Piagetian conservation of quantity experiments. My research at
this time was punctuated by trial and error experimentation. I
would try one approach, discuss it with a colleague discard it,
and then try another approach. As a result of such trials and
errors slowly an understanding of the conservation problem
emerged. What was implicit for me was that mistakes were
necessary ingredients for understanding.

After four years of research (1975 - 1979), I returned to the
mathematics classroom in a private school (grades 6-12). Many of
these students had learning difficulties in mathematics or '"hated"
math. I noticed that humor seemed to relax them and free them to
concentrate. Nonsense humor seemed to relieve their tension and
make it easier for them to learn. During my time at the school I
sensed the students! reluctance to put their work on the black
board. They needed to be correct or right. Unless there were
guarantees of correctness they refused to show their work, only
their answer.

In 1983, after four years at the private school, I taught
students who also had difficulties in mathematics at the College
of Aeronautics. At the college of Aeronautics I had more time to
reflect on my activities in the classroom. The writing about
humor in the classroom forced me to articulate a relatlonship
between humor, the making of mistakes, and learning. The conflict
generated by society's need to curb mistakes and the individual's
need to make mistakes I defined as math anxiety. Further, because
mistakes are "I" openers and because humor takes the worry out of
being mistaken, mistakes are "all right." This liberating notion
promotes a caring relationship among students themselves and
between teachers, thus enhancing learning.

Most recently this attempt to relieve math anxiety in college
students as well as in elementary school students has resulted in
a 5th grade class from a neighboring school "to be tutored" by the
college students in my math class. The eagerness with which both
grougs interacted with each other holds forth considerable

promise.
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Age level: Undergraduate
Identifier #1: Randomness
Identifier #2: Statistical Thinking

NOVICES VIEWS ON RANDOMNESS
Clifford Ronold, Jill Lohmeier, Alexander Pollatsek, Arnold wWell
University of Massachusetts, Amherst
Ruma Falk Abigail Lipson
Hebrew University of Jerusalem Harvard University

Novices and experts rated 18 phenomena as random or non-random
and gave justifications for their decisions. Experts rated
more of the situations as random than novices. Roughly 90% of
the novice justifications were based on reasoning via a) equal
likelihood, b) possibility, ¢) uncertainty, and d) causality.

Much of the prior research on randomness has focused on people’s ability
to generate and identify strings of random characters (Falk, 1981;
Wagenaar, 1972). The major finding has been that people hold non-
normative expectations about the production of random strings. For
example, a random sequence of heads and tails typically contains longer
runs than people expect would occur by chance. These studies have
recently been criticized on a variety of accounts, including the argument
that since a random sequence cannot be rigorously defined, it makes
little sense to speak of people’s inability to generate one (Ayton, Hunt,
& Wright, 1989).

“Randomness,” in fact, comprises a family of concepts. In this
study we explore in particular the use of the word as it is used in the
phrases, “random phencmenon,” “randomizing device,” and “random sample.”
In this sense, randormess is a collection of abstract models which can be
applied to various situations. Sometimes we identify these models
closely with some physical system, like a coin toss, or blind drawings
from an urn filled with balls. In actuality, such physical systems are
imperfect instantiations of some “ideal” random-generating system that is
only realized in the abstract. Thus, we don’t talk about flipping a
coin, but flipping a “fair” coin.

Randomness, as an application of an ideal model to some phenomenon,
is best thought of a3 an orientation we take toward, rather than as a
quality that belongs to, the phenomenon. This meaning is inherent in the
notion of a model. When we apply a model to some situation, we do not
regard the model as iscmorphic to the target situation as a whole, but
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Views on Randomness

only to certain aspects of the situation. This view of randommess
explains why most experts are not bothered by the idea of “psuedo~random”
numbers. These numbers are produced in perfectly determined ways, yet
remain unpredictable to those who do not know the seed and multiplier
used to produce a particular sequence. Such a system is not random,
except in regards to the orientaticn adopted by the observer.

While admitting that the notion of randomness is ambiguous and
complex, we maintain that variants of the concept are nevertheless at the
heart of probabilistic and statistical thinking, and that people’s
beliefs about randomness must be figured into attempts to teach these
topics (Falk, 1991; Falk & Konold, in press; Pollatsek & Konold, 1991).

In this article we present preliminary results of an exploratory study of
people’s subjective criteria of randomness. We asked both novices and
experts to categorize a variety of situations as either random or not
random, and to give rationales for categorizing each situation. Our
primary objective was to identify, in the justifications of the novices,
defining features of random and non-random situations.

Some potentially critical features of randomess for the novice
have been suggested by Nisbett, Krantz, Jepson, and Kunda (1983), who
found that subjects are more likely to employ statistical reasoning to an
event when it a) imvolves a repeatable process with a finite get of
symmetric outcomes (e.g., rolling a die), b) consists of outcomes that
are produced via a mechanism that is associated with chance (e.g.,
blindly drawing from a set of well-mixed objects), and c) has been
identified within the culture as largely unpredictable and capricious
(e.g., the weather).

Hethod
Twenty subjects (twelve women and eight men) were recruited from
undergraduate psychology courses at the University of Massachusetts.
Subjects were given 18 cards on each of which was written a brief
description of some situation (see Table 1) and were asked to sort the
cards, one at a time, into “random” and “non-random’ piles. After
placing a cazd in a pile, they were asked to give a brief justification
for their categorization. The sessions were videotaped. The same
sorting task was given +o five experts, four of whom teach graduati-level
statistics in psychology departments; the other is a gtatistician.

RIC




Views on Randomness

Results and Discussion
Randomness Judgments
A basic question is whether salient features of the items were predictive
of subject categorizations. Table 1 shows the percentage of novices and
experts that categorized each item as randam. Experts categorized more
items as random than the novices (62% compared to 53%). The largest
differerces occurred with situations involving real-world phenomena. For
example, 80% of the experts judged Item 12, which involved occurrences of
earthquakes, as random compared to 20% of the agovices.

Item Group
Novice Expert
Whetihier or not a planted seed germinates. 35 40
The number showing up on a die that has already been
rollec but that you can‘t see. 95 20
The number of tomatoes you get in your serving of
tossed salad at a restaurant. 35 40
The winner(s) of next week’s megabucks state lottery. 95
Selecting one of a variety of available flavors of
ice cream given that the stranger in the line in
front of you is doing the selecting. 80
Selecting one of a variety of available flavors of
ice cream given that you are doing the selecting. 5
The number of heads that occur in 100 tosses of a
fair coin. 85
Dividing a group of players into two basketball
teams such that one team is not obviously better than
the other. 0
The next geatr a car with 5 speeds is shifted into
given that it is currently in 4th gear. 20
10. wWhether or not it rained in Amherst on April 3, 1936. 45
11. wWhether it will rain tomorrow in Amherst. 35
Whether a large magnitude earthquake occurs in Boston
before cne occurs in Los Angeles. 20
13. Picking a white marble from a box that contains 10
black and 10 white marbles. 100
14. Ppicking 2 white marble from a box that contains 10
black and 20 white marbles. 70
15, saying the first thing that comes to your mind. 30 40
16. Whether or not you get the flu in the next month. 40 80
17. wWhether or not you get exposed to the flu in the next
month. 65 40
18. The outcome of the fifth flip of a fair coin that has
landed with heads up on the previous four flips. 100 100
Table 1. Percentage of novices and experts who rated each item as random.

The items can be grouped into “real” (Items 1,3,5,6,8-12,15-17), and
“stochastic” situations. The stochastic items correspond roughly to
those that Nisbett et al. (1983) would rate high on their three features
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Views on Randomness

as summarized above. Table 2 shows the mean percentage of items of each
type that were rated as randam, along with the standard deviations over
subjects. As can be seen in Table 2, a higher percentage of stochastic
items than real items were classified as randam by both experts and
novices. This is not surprising given that many of the real items were
chosen because they seemed characteristically non-random.

Group
Item type Novice Expert
Mean$ D Kean$ D
Real 37.3 22.4 43.3 33.0
Stochastic 90.8 14.8 93.3 9.1
Symmetric 97.5 11.2 95.0 11.2
Non Symmetric 77.5 _ 34.3 50.0 22.4

Table 2. Mean p-icentage of random ratings by experts
and novices as a function of item type.

The stc ‘hastic items were further broken down into those with
symmetric outcomes (2,4,13,18) and non-symmetric outcomes (7,14). This
feature seemed to make little difference in th~ categorizations of the
experts. However, the novices were more likely to rate a stochastic
situation as random when its outcomes were symmetric (97.5%) than when
they were non-symmetric (77.5%). This finding is borm out in the
analysis of subjects’ justifications.

Analysis of Justifications

Subject justifications were transcribed from the videctapes, and various
response categories were developed to capture basic rationales that wexe
used repeatedly by novices. Table 3 shows the number (and percentage) of
justifications of the various types for both the novices and experts.
pelow we describe these categories and provide examples from the

transcripts.
Justification Group
Novice Expert

Equally-likely 64 (17.2) 3 (3.3)
Possibility 63 (16.9) 1 (1.1)
Uncertainty 82 (22.0) 25 (27.2)
Causality 128 (34.4) 20 (21.7)
Model 11 (2.9) 17 (18.5)
Other 24 (6.5) 26 (28.3)

Table 3. Number (and percentage) of various types
of novice and expert justifications.

.170-

0]

o 4

ERIC

A FullToxt Provided by ERIC




Views on Randomness

Equally likely. According to the "equally-likely” justification, a
phenomenon is random only when each of its outcomes have the same
probability. This reasoning, which mirrors early historical development
(Zabell, 1988), is exemplified by responses of Subject 9 on Items 13 and
14. BPBrief item descriptors appear in parentheses.

13. (10/10) “Random. You have an equal chance of getting white or black.”
14. (10/20) “Not random. You have a greater chance that you‘ll pick white.”

This reasoning, used rarely by the experts, was used by novices to
justify 17% of their categorizations, and was not limited to stochastic
items. For example, Subject 6 categorized Item 1 (Seed) as random
because, “Each seed has an equal chance of growing or not growing.”
Subject 13 categorized Item 9 (Gear) as not random because: “Usually you
are going to go to a 5th or a 3rd. First and second don’t have the same
chance.”

Multiple possibilities. According to the justification of “multiple
possibilities,” a phenomenon is random when there is more than one
possible outcome and is not random when there is only one possible
outcome. In justifying a “random” categorization, subjects typically
noted that any of the multiple outcomes were possible. Responses by
Subject 6 are shown below as examples.

9. (Gear) “Not random. Has no choice — it has to go into 5th gear.”
11. (Rain tom.) “Random. It may or it may not.”

Justifications based on possibili‘y were rare in the case of the
experts (only one instance). This reasoning, as well as the equally-
likely rationale, may be related tu an informal interpretation of
probability that has been described as the "outcome approach” in prior
research by Konold (1989a; 1989b).

Uncertainty. According to the “uncertainty” justification, a
phenomenon is random when there is no prior knowledge about the outcome,
and thus no ability to predict. when prediction is possible, the
phenomenon is non-random. This justification, erxempliefied below by
responses of Subject 20, was used in 22% of the novice and 27.2% of the
expert categorizations.
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(Rain ‘36) “Non random, because there is a way to predict the
weather.”

(5th flip) “Random. There is just no way to determine what is going
to happen.”

Caysality. According to this justification, situations are random
when no causal factors can be identified, and thus there is no potential
to control the result. If causal fac;:ors are present, and/or control is
possible, the situation is considered non random. For the novices, this
was the most commonly-used justification (34.4%), and was also used
frequently by the experts (21.7%). The examples below are statements
made by Subject 18:

1. (Seed) uNot randem, because it depends on soil and all kinds of
other things.”

7. (# Heads) *“Random, because I have no control over what the coin is
going to do.”

The four categories of justification described above were developed
on the basis of analyses of the novice justifications, and for this
reas-n account for a higher total percentage of the novice than the

expert justifications (90.6% vs 53.3%). Based on a separate analysis of
the expert justification, we added a fifth rationale, as described below.
Model. By this reasoning, the randomness of a situation is
establisied by comparing it to scme standard model of randomness. In the
cage of Expert 3, situations we e frequently compared to a “box mdel.”

4. (Lottery) spandor. It is determined by a random device, or a
pre.cy good approximation of one.”

5. (Stranger ice) “Non random. He doces it by some kind of rule, unknown
to ywe, but you don‘t have ary gerious box model.”

As might be expected, the experts used this rationale more
frequently than the novices (18.5% compared to 2.9%). However, even with
the addition of this response category, roughly 28% of the expert
justifications did nct fit into any of the five categories. Several of
the experts expressed their dissatisfaction with having to categorize
itams as either randok. or not random. They tended to view randomness as
an entity that can be present in degrees, rather than as a categorical
attribute, and described several of the situations as consisting of both
random and non-random components.
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Indeed, an important idea in statistics is the notion that scores or
measures can be decomposed into two sources of variation: systematic
(explained), and random (unexplained). One of our objectives in future
analyses of these data is to identify aspects of novice thinking that
present barriers to the development of this “component” view of
phenomenon. Subject reliance on “possibility” and “equal-likelihood” are
two possible barriers that we are currently exploring. Seeing rancomness
in terms of possibility might lead students to overgeneralize the
concept, viewing any situation as random as long as there is more than
one possible outcome. On the other hamd, reliance on equal-likelihood
restricts the notion of randamness. Introducing students to a wider
range of prcbabilistic situations, including ones in which outcomes are
not equally likely, is an approach we are currently testing which may
help students develop probabilistic intuitions that can be successfully
transferred to statistical thinking.
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K-12
Black & Math
Math Failure

TOWARD A FRAMEWORK FOR ANALYZING THE UNDERACHIEVEMENT OF
AFRICAN AMERICAN STUDENTS IN MATHEMATICS

SUNDAY A, AJOSE
EAST CAROLINA UNIVERSITY

Disparate results of research on the issue of Blacks and mathematics are
synthesized. A comprehensive framework for analyzing e
underachievement of African American students in mathematics is
presented.

Few, it any, would deny that current mathematics education programs do not
work for the African American (black) students. One consequence of this failure is
the long-standing and continuing under participation, underachievement, and
underrepresentation of Blacks in the mathematical sciences (Anick et al., 1981,
Matthews, 1984). Many attempts have been made to explain why black students
have not had much success with mathematics, but these efforts often suffer from the
use of false assumptions, faulty logic, or the lack of a comprehensive framework for
examining the issue. The purpose ot this paper is to propose a comprehensive
framework analyzing the performance of African American students in
mathematics.

Research And Speculation Concerming Blacks and Mathematics:

One "explanation” for the relatively poor performance of Blacks in
mathematics stems from an old opinion, still widely held, that Blacks are an inferior
race, with low intellect; scarcely capable of abstract reasoning of learning. This
belief is further reinforced by data from tests of "intelligence” such as 1Q tests.
Because Blacks usually score lower than Whites on these tests, some researchers
conclude that Blacks are less intelligent than Whites, and that the lower scores for
Blacks rmust be due to inferior genes (Jensen, 1963). Set in this belief, some
teachers anc school officials iust attribute the difficulties that black students
encounter in any academic task or subject, ke mathematics, to low intellectual
endowment, genetic handicaps (Jensen, 1969), or innate tearning drfficulties
(Coleman et al., 1966).

A major weakness of tnis explanaticn is that it ignores or belittles - qnificart
wavironmental and school-related factors which affect learning ard intellectual
perormance. Scarr and Weinberg, (1976) demonstrate the paramount importance
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of environmental tactors in the development and performance of African American
children. Flynn's (1987) analysis of the data compiled from a major study of [Q, also
reveals the influence of “potent”, “unknown environmental factors” on IQ test
scores. According to Fiynn, "the hypothesis that best fits the results is that 1Q tests
do not measure intelligence but rather a correlate with a weak link to intelligence”
(p. 171)

Thus, granted that IQ may indeed influence mathematical performance, to
understand why many black students do poorly in this subject, one would have to
look far beyond speculations based on race.

Apart from race, other factors have been blamed for the underachievement
of Blacks in mathematics. Matthews (1984) referred to “three clusters of variables”
pentaining to parents, students and schools, that are believed to influence black
pariicipation and achievement in mathematics, Factors within the parent cluster
include parents’ levels of education, attitudes towards mathematics, beliefs about
their children's ability in mathematics (McBay, 1990), child-rearing practices (Bell,
1975), socioeconomic status (Bond, 1981), home language, and culture (Orr,
1987). It is still unclear how much each of the factors contributes to
underachievement because there are minority groups who face similar barriers,
whose children nonetheless do very well in school (Ogbu, 1990).

Within the student cluster, the major factors are attitudes towards
mathematics, self-concept with respect to mathematics, and perception of the
usefulness of mathematics. There is evidence of positive correlation between self
esteem and mathematical achievement ( Reyes, 1984). Self-esteem is also a
strong predictor of whether a black student will take advances math courses in high
school (Griffin, 1990). Some studies show that, for the past twenty years or so,
black adolescents have been registering “moderate to high levels of self esteem”
(Graham,1988). Yet, neither achievement nor even course taking patterns in
mathematics match the levels of self esteem found among African American
students! More research is needed to determine whether the observed disparity
between performance and the level of self esteem is a sign of "self-delusion”, or,
perhaps, an index of unrealized potential in mathematics.

in the third cluster of factors are the mathematics curriculum, teacher
attitudes toward black students, teacher expectations of black students, and
classroom processes. Each of these is very impontant because each by itself can
significantly influence learning outcome. Take teachers’ expectations for instance.
It is well known that many teachers have low expectations of black students.
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(Oakes, 1985). Because of this, black students are often tracked into non academic
classes, where they are taught less material, at a slower pace, in ways that are not
conducive to the development of the intellect (Braddock Il and McPartland, 1990).

Certain classroom processes can aiso limit the attainment of black. students
in mathematics. Some studies suggest that black students, like their white
counterparts, start school with the cognitive skills they need to succeed in
mathematics (Ginsburg and Russell, 1981: Enstwisle and Alexander, 1988). By the
end of the first grade, however, black and Hispanic stucents are already falling
behind white ard Asian students. Although tha reascss for this phenomenon are
not yet known, fincings from the study by Entwiste and Alexander strongly indicate
that teachers’ judgement of Blacks' “personal maturity” and “conduct” may be
critical factors in the students’ mathematical performance.

There have been some notable attempts to integrate the disparate findings
conceraing the mathematical performance of Blacks. In two related papers, Reyes
and Stanic (1985, 1988 ) present a moael to explain differences in mathematics
achievement based on the race, sex, and the socioeconomic status (SES) of
students. They attribute the aifferences to (1) scncol factors - teacher attitudes,
mathematical curricula, and classroom processes (2) student attitudes and
achievement-related behaviors and (3)'societal influences that senc different
mc sages apout the aptituc ¢s and expected tevels of achievement for students
pased on race, sex and SES

Clark (1988) paints out how important student behavior and attitude are to
school success. Citing the resul’s of his research on home and community
influences on schcal achievement, Clark asserts that a disadvantaged student will
succer-d to the extent that he or she spends about 35 hours a week engaged in
“constructive learning activity.”

Cummins (1986), critically explorcs why minonty students fail in schoal. and
why various attempts made in the Unitec States to reverse the trend have been
unsuccessiul. He conzludes that minority students fail because they are disables
by schoot/minarity student and school‘minority community relations that are
exclusionary rather than collaborative, a transmission-oriented pedagogy that
confines studer'ts to a passive role. and assessment processes that do rot serve
the interests of ~unonties

Gentile and Monaco {19838) use a psycholog.cal construct - “learned
helplessness” - to shed some hght on the nature of mathematical '
underachievement. Learned helplessness sometimes develops in people who
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have been exposed to “uncontrollable failure experiences”. In their study (Monaco
and Gentile, 1987), the two scholars show how frequent exposure to uncontrollable
failure in mathematics creates conditions that tend to produce more failures.

Powell (1980) also proposes a model, based on learned helplessness
theory, to explain the low 2chievement of African Americans in mathematics and
science. Many young African Americans, she asserts, learn early in life that they
just don't do weli in mathematics and science. As a result, many blame themselves
when they fail in math, and attribute their lack of success to low intelligence,
thereby paving the way for learned helplessness syndrome.

From cross-cuitural research comes the assertion that even though 1Q, SES,
language and culture may influence school achievement, none of these factors can
explain the poor performance of African American students in mathematics {Ogbu,
1978, 1983, 1990). Ogbu states that Blacks, like involuntary, maltreated minorities
in other societies, develop “ambivalent or oppositional social identity vis-a-vis the
social identity” of the dominant group. This can make adjustment to the school
culture and success rather difficult for black students.

All these factors are taken into account in the framework presented below.

A Framework for Analyzing Black Underachievement in Mathematics

The structural elements of the framework are:
The Society at Large {SL) The African American Community (AC)
The School System (SS) The African American Student (AS)
The relationships among these elements are represented by the
multidimensional variables - A, B, C, X, Y, Z. as follows:
A between SL and SS X between AC and SS
B between SL and AC Y between AC and AS
C between SL and AS Z between AS and SS
Each of these relationships may be strong or weak, and may have a positive or
negative etfect: one may strengthen or weaken another. When the cumulative effect
of these relations is positive, 1l is enabling to the African American student and, as a
consequence, produces good aducational culcome in mathematics (E0).
Otherwise the student is disabled, resuiting in poor educational performance.
Vanable A includes (1) societal “theones™ about the cognitive capability,
“educability” and “inferiority" of black students: and (2} differential schoo! funding
based upon race and’or SES.




B includes: (1) racism in the social, economic and political arenas; (2) societal view
of Blacks in world history, and especially African Americans in U.S. history; (3)
societal view of black culture, and (4) status of Blacks.

Figurs 1
A Framework for Analyzing the Underachievement of African American
Students in* Mathematics

C includes: (1) media images and messages concerning African Americans in
general, and black males in particular; (2) racism

X includes: (1) schoob/black community relations

Y includes: (1) “entry behavior™; (2) “effective entry characteristics™ (Eloom, 1971, p
14) of black students.

Z includes: (1) curriculum (2) quality of instruction; (3) teacher expectations; (4)
teacher/black student relations; and (5) opportunity to learn.

Discussion
Variables A,B, and C exait a powerful influence on black students’ learning
and achievement even though Blacks have very little control over them. They pose.
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for the black student, a formidable barrier to learning and educational attainment by
attacking his self concept and confidence. Thus any attempt to enhance black
achievement in mathematics has to find a way to neutralize the effects of these
variables.

Within this framework, Cummins' empowerment model involves only the
variables A, B, X and Z, Variables A, C, and Z incorporate the model developed by
Stanic and Reyes, while C and Z address Powell's “learned helplessness™.

The model also suggests possible paths to successful mathematics
education of African American students. Cummins (1986) implies that black
students will succeed in academic work if X and Z are positive. This implication is
supported by the work of Hilliard (1990), who describes instances of successful
learning that occurs when individual teachers ignore the negative messages of A,
B, and C, change the way they relate to black students and communities, and
institute good curriculum and instruction. In fact , when school effects () are
strongly positive, black students succeed in spite of the negative effects of all other
variables. Ogbu's research, citad eariier, also shows that black students can
achieve academic success, if they , like many immigrant minorities, rise above the
negative effects of A,B, and C, and develop behaviors and characteristics, (+Y), that
facilitate adjustment to school cuiture and learning.

Itis clear from the foregoing discussion that itis erroneous, or at least far too
premature, to ascribe the current underachievement of black students in
mathematics to anything but the intolerably difficult circumstances undes which
they have to learn. Blacks are, perhaps, the only people whose cognitive abilities
are rautinely questioned and ridiculed even in the popular press. The assaults on
their self esteem are relentless; so much so that even representatives of foreign
governments get in on the act, and denigrate black people with impunity, without a
formal protest! It is remarkable that African Americans achieve as much as they do
under these hellish circumstances. Perhaps, this is why Anderson (1990)
confidently asserts that "if minority (black) students were encouraged to attain
scholarship and achievement in mathematics as widely as they are encouraged to
attain stella: achievementin sports, their performance in mathematics would shock
this country” (p. 265)
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Stimulating Action Research Frameworks

STIMULATING ACTION RESEARCH ON TEACHING
MATHEMATICS
THROUGH THE USE OF EXPLICIT FRAMEWORKS:
TEN YEARS OF OPEN UNIVERSITY EXPERIENCE

Presenters: David Pimm and John Mason

Since 1982, the Centre for Mathematics education has supported the
professional development of teachers of mathematics at all age levels from
Kindergarten to Tertiary through the provision of undergraduate course
materials, videotapes of classrooms and mathematical and didactic packages
designed to stimulate teachers' thinking and awareness.

Producing materials for study at a distance, or for use by other tutors, is
relatively easy. What distinguishes our materials is the underlying approach:
the provision of initial frameworks to stimulate teachers to become wore
aware of opportunities in their classrooms for altering their behaviour.

The format will be a participatory-workshop with time for discussion, and will
i lude as much of the following as time permits. Kaference will be made to
ways in which frameworks have been used by teachers talking our courses in
order to research their own practice, and to develop their teaching.

THE USE OF FRAMEWORKS

Language frameworks focus on the particular affinity of language with
mathematics in both expressing thoughts, meanings and images in order to
communicate with others, and in the linguistic nature of much mathematics
in creating the reality of which the language then speaks.

A framework such as See, Say, Record focuses on an implied temporal
ordering of images and perceptions, spoken utterances, and written records,
and carries with it messages about relative priority and sequence in
mathematics teaching. Conversely, focus on the nature of language paiterns
illustrates the importance of gaining access to the mathematics register as a
critical component of learning mathematics, with teachers attending to the
particular discourse patterns that pupils have to acquire in order to
participate in particular mathematical areas.

This dual, but shifting, emphasis on both symbol and referent (related to the
persepctives labelled as ‘metonymic’ and ‘metaphoric’ in the language of
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Roman Jacobson) marks an important interplay for a teacher in working in
any of the main mathematical areas of number, algebra or geometry.

Mathematical Frameworks
Specialising, Generalising and Conjecturing are fundamental processes in
mathematical thinking, which have been isolated and promoted by many
authors. They are introduced via short mathematical questions, and related to
past experience, particularly of getting stuck, in order to constitute a
framework which activates the corresponding activity for teachers and purils.

Mental imagery acts as a mediator between written/spoken mathematics and
mathematical ideas. It is illustrated through mathematical activity, and
invoked in our methodology for personal action research into teaching.

Psychological Frameworks
The psychological divisions of psyche into cognitive, affective and enactive
dimensions reflects two thousand years of informal and formal psychological
research. We have found it useful to recast these for use in a fresh framework
for use by teachers to study their teaching, to provide a structure for preparing
oneself to teach a mathematical topic. Attention is drawn:

to the language patterns which pupils will be expected to have
integrated into their thinking, and connections to language with
which they are already familiar, and to techniques which they need
to master (and ones which they tend to construct for themselves),
complete with inner incantations which drive those techniques;

to the original questions which people wanted to answer and which
gave rise to the topic as we now know it, and to a variety of contexts in
which that topic appears;

to images and fuzzy ‘senses of one would like pupils to associate with
the topic, as well as confusions and obstacles which pupils
encounter.

Through mathematical activity, the use of the distinction between giving an
account of something and accounting for it will be demonstrated and reference
made to applications both in mathematics it:.clf and to the conduct of personal
action research into teaching.
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ANALYZING AND DESCRIBING STUDENTS' THINKING IN
GEOMETRY: CONTINUITY IN THE VAN-HIELE LEVELS

Michael Shaughnessy and William Burger--Oregon State University
Angel Gutierrez and Adela Jaime--Universidad de Valencia
David Fuys--Brooklyn Coilege

This Symposium is dedicated to our colleague Bill Burger, researcher,
mentor, and friend. We ail miss him very much.

While the results of first efforts in van Hisle research generally confirm the valicity of the
model for describing studants reasoning processes in geometry, several unanswered
Questions have emerged. Is there a way to describe a students’ progress through the van
Hiete lovels as a continuum, so that the model accounts for students who are acquiring more
than one level at a given peint in their geometric development? Can some combination of
clinical and traditional methodologies be used to devise a reable, yet flexible and valid, test for
measuring students’ van Hiele levels? This symposium wil be & research-workshop on some
new approaches to assessing van Hiele levels. Participants will actually become co-researchers
with the presenters, investigating these two quastions during the symposium.

Overview

The van Hiele mode! has proﬁded a framework for Investigating children's and
adclescent's thinking in geomtry (the levels), and also has suggested a pedagogical
rmodei for teaching geomaetric concepts (the phases). Within the past decade,
research based on the model Indicates that the description of thought processes in
geometry is a fertile area for the interaction of psychologists and mathematics
educators alike (Usiskin, 1982; Mayberry 1983; Shaughnessy & Burger 1985; Senk
1985, 1989; Burger & Shaughnessy 1986; Crowley 1987, 1990; Fuys et. al. 1988;
Wilson, 1990; Gutierrez et. al., in press). Thus, the van Hiele model provides a
particularly useful framework to investigate the crossroads between theory and
practice in teaching and learning geometry. There Is concurrent interest among both
teachers and researchers on the potential usefuiness of the model for providing both
diagnostic information about stud/:nts’ thinking In geometry, and also prescriptive
information about how to redesign the geometry curdculum to facilitate students’
geometric development.

The first early work on researching the van Hiele levels focused on attempting
to identify the existence of these reasoning jevels in studants, to validate the model, to
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describe level indicators of reasoning, and to use the five pedagogical phases in
teaching experiments to help move students through the levels of reasoning. In all of
this work, tasks were developed to allow students to reason in a geometric
environments. Some of these tasks were purely paper and pencil tasks, some were
interview tasks of a more open ended nature. The results of these first efforts generally
confirmed the validity of the model for describing students reasoning processes in
geometry (Usiskin, 1982; Burger & Shaughnessy, 1986; Fuys et. al. 1988). However,
several unanswered questions emerged from this first series of research efforts.
Among them are two that we wish to address in this symposium.

First, the van Hiele levels do not appear to be entirely discrets. Several of the
researchers mentioned above found that students often flip-flopped between levels
from one task to another, or even within the same task. Also, many students seem to
have a "preferred level of reasoning” on certain tasks. That is, they may prefer to
respond in an analytical way when they are perfectly capable of verifying some
argument by deduction (second Level preferred over higher levels), or they may
respond purely visually when they could just as well have talked about properties of
shapes or relationships among those properties had they been required to do so (first
level preferred over higher levels). Thus, the process of determining a students’ van
Hiele level is much more complicated than just assigning a single level on a few tasks.
There are also task variables and content knawledge variables, so that students who
reason at a level on one task do not necessarily exhibit that same level of reasoning
on a subsequent task. This raises the question: Is there a way to describe a students'
progress through the van Hiele levels as a continuum, so that the model accounts for
students who are acquiring more than one level at a given point in their geometric
development? This view presupposes that their are passages between the levels, and
that students can reason partially at one level, and partially at another.

A second question that has been researched more recently is the problem of
devising a suitable test to assess van Hiele levels, the development of valid, reliable
tasks. Both pencil and paper tests and clinical interview tasks have demonstrated
certain strengths and weaknesses in van Hiele research. The former may sacrifice
detail and/or reliability for convenience and speed. The latter while lending itself well
io detailed probing can prove cumbersome and time consuming to administer to large
aumbers of students. Perhaps some combination of both methodologies is needed to
Jevise a reliable, yet flexible and valid, test for the van Hiele levels.
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In this symposium we will focus on describing the continuous development of
students' passage through the van Hiele levels. Gutierrez and Jaime (in press) have
developed a method of analyzing students' written responses to geometric tasks that
includes a first attempt to quantify the passage between levels. After an introductory
phase which recaps the attempts of several projects (both in the USA and in Spain) to
identify students’ van Hiele levels, the participants in this sympesium will be put to
work in a research-workshop. Participants will be given the opportunity to analyze and
discuss students' responses on tasks, both pencil and paper tasks and audio taped
tasks, while learning about and using the analysis approach ot Gutierrez and Jaime.

After group discussion, the presenters will share their own interpretations of the
task resuits with the participants. The symposium will conclude with suggestions for
merging the best parts of both methodolocial approaches—interview and paper and
pencil—for researching students' continuous passage through the levels. This
approach has recently proved quite valuable in obtaining a more accurate picture of a
students' van Hiele levels.

Conduct of the Symposium

The symposium will evolve in three phases.

Bhase1,
Mike Shaughnessy and Bill Burger

Shaughnessy and Burger have pianned the introc.x ,n and overview for the
symposium. Prototype instances where students are between van Hiele levels on
certain tasks will be presented. Sample student responses to particular tasks will be
used to introduce the dilel..a1ma one taces when a student appears to be between
levels. Responses to tasks presented in taped interviews (developed In the USA) and
pencil and paper tasks (developed in Spain) will be considered. The interview tasks
are similar to the pencil and paper tasks, but not all are identical. Some general
comparisons of the two different methodologies for determining van Hiele levels will
be mentioned. (Time: about 30 minutes)
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Angel Gutierrez and Adela Jaime

Gutierrez and Jaime will provide a brief background on their research, and
desribe their scheme of "levels and types" for quantifying the passage of students
between van Hiele levals. In this scheme, a students’ response to a particular task is
assigned both a van Hiele level and a "type" of answar. The types reflect both the
strength and clarity of the predominant van Hiele level on that task, and also the
mathematical completeness and accuracy ol the response. The types are quantified to
indicate how complete a student's aquisition of a level is. This scheme will also makes
aliowances for task variables and the potential range of thinking levels that may be
used to answer a particular question. Each task can be pre aseigned a potential
“range of levels” of response. Thus, a question could be answered at, say, van Hiele
levels 2,3, or 4 (using 1-5 numbering), and if a student answers it at level 3, a complete
aquisition of level 2 is assumed, a partial aquistion of level 3 (depending on the "type"
of answer) is assumed, and no aquisition of level 4 is inferred on that task. Using the
"types’it becomes possible to quantify a students responses and to talk about a
student's "degree of aquisition™ of each of the four (1-4) van Hiele levels.

Gutierrez and Jaime will give specific examples of studsnts’ responses that they
have coded by levels and types, and the correspending degree of acquisition of the
levels, in order to provide the necessary information for the second phase of the
symposium in which the participants themseives wiil "do” some van Hiele research
using this scheme. (Time: about 30 minutes)

Phase 2,

Participants will be given taped responses of a student’s work on a geometric
task(s). The participants will be asked to evaluate the “type and level” of the student on
each task. The participants will work in pairs on this activity, first noting their own
responses, and then interacting with their partner.

(Time: about 30 minutes)

In the second part of phase 2, the participants will share the results of {heir pair-
wise analysls with the large group. The symposium organizers wiil also shae their
own analyses of the same task(s). (Time: about 30 minutes)

Phase 3
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David Fuys

David Fuys will play the role of reactor. His remarks will be partly devoted to
methodological considerations, with special attention to a "marriage” of certain aspects
of the interview and paper & pencil methodologies. When post hoc structured
interviews are administered to students after they have answered paper and pencil
van Hiele tasks, the in depth probing allowad in the interview format may help to ctarify
a students' true acquisition of the van Hiele levels. Fuys will discuss examples of
students where this was indeed the case. He will also reflect on the process of
attempting to quantify the passage between van Hiele levels, and in patticular, the
process in which the participants have engaged during phase 2.

(Time: about 30 minutes)

The final part of the symposium will be devoted to open discussion about the
process of researching van Hiele levels, focusing on the method of quantifying a
student's passage between and through the continuum of levels. (Time: abut 30
minutes)
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School Division Expectations: How are they communicated?
What kind of responsss do they elicit?

Bob Underhill, Virginia Tech, Organizer and Presenter
Pat Agard, Virginia Tech, Presenter

Kari Cox Beaty, Virginia Tech, Presenter

Doug Jones, University of Kentucky, Presenter

Hilda Borko, University of Colorado, Moderator

Untangling the complexities of learning to teach necessitates a
deeper understanding of communications networks among central
administrators, principals and teachers. In this symposium, wa
will examine the styles of two central administrators and follow
the chair of reactions and impressions of subordinates as goals
are translated and implemented at subsequent levels in two
elementary schools.

As social institutions, schools create and sustain patterns of
professional culture and social organization. Leaders 2t each level attempt
to influence behavior at lower levels and persons on lower levels interpret
those influences .hrough their unique personal and professional filters.
Individuals will behave in ways which reflect their commitments to shared
goals by seeking to implement the letter or the spirit or both. They may also
do what is minimally required so as to look okay {Lacy, 1977; Desforges &
Cockburn, 1987). Eisenhart, Behm, & Romagnano (1991) have explored some of
these issues within two frameworks for training professional teachers, and
Goodman (1985) and Britzman (1986) have explored some of these issues in the
process of becoming teachers.

In this symposium, several members of _he NSF Learning-to-Teach
Mathematics research team will examine two central-level administrative styles
and examine how the perceptions and actions of administrators influence
ultimate classroom behaviors and perceptions of teachers in two elementary
schools. The following format will be used:

10 minutes - Doug Jones - Overview of NSF project/broad context

20 minutes - Bob Underhi1l - Division level context

10 minutes - Pat Agard - Elementary School Context 1
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10 minutes - Kari Beaty - Elementary School Context 2
10 minutes - Hilda Borko - Comments
Remainder - Audience Discussion

Project Context - Doug Jones

The Learning to Teach Mathematics project (NSF: MDR 8653476) was
designed to investigate the experiences of a small group of teachers as they
were learning how to teach. The researchers studied four beginning middle
school mathematics teachers for two years, their senior year in a K-8
certification program (Year 1) and their first year as full-time teachers
(Year 2). During Year 1, each teacher had four 7-week long field placements,
3 of which were in the middle grades; all placements were in the same school
system. In an effort to understand the teachers’ orientations and possible
influences on their development as middle school mathematics teachers, a wide
range of data concerning background, university experiences, and classroom
experiences were gathered during both years of the study (see Jones et al.,
1989 and Borko et al., 1990 for details concerning data collection and
analyses). This symposium focuses on data collected during Year 1 and
examines possible influences on beginning teachers of administrative styles
and the ways in which goals are expressed and implemented at the central
administrative level, the building level, and the classroom level. Interviews
concerning the sociocultural climate of the schools and social organization of
mathematics teaching that were held with the beginning teachers, their
university supervisors, their cooperating teachers, mathematics department
chairs, building administrators, and central administrators were supplemented
with artifacts from the teacher education program, the schools, and the school
system.

School Division Context - Bob Underhill
In the elementary schools, there were two line-and-staff tracks as
follows:

Hathematics Non-Mathematics

Assoc. Supt. Dir. of Personnel and Staff Dev.
Math Supervisor Dir. of Elem. Admin.
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Principal Principal
Teachers Teachers

The leadership style of the Associate Superintendent could best be
described as "persuade, coax and support.” And the leadership style of the
Director of Personnel and Staff Development could best be described through an
"accountability” model.

The Associate Superintendent had a mathematics background. He really
wanted to improve mathematics teaching and Tearning. He worked closely with
the mathematics supervisor to provide considerable in-service and resources;
their shared goal was to motivate teachers to change.

The Director of Personnel and Staff Development believed that the way to
get change was to mandate it. If you want a particular approach to teaching
(a variation of the effective teaching medel), train the teachers and require
evidence of its use in administrative evaluations. The follow-through was
provided through the office of the Director of Elementary Administration.

School No. 1 - Pat Agard

The principal viewed himself as an instructional leader. He sought to
understand division-Tevel administrative and teacher perspectives and to
provide resources and support for implementation. He valued the use of
manipulatives to teach mathematics, so he purchased many manipulatives ard
encouraged teachers to requisition and use them. He accepted the effective-
teaching mandate, believed in the value of the model, and included evaluation
of its components in his teacher evaluations.

The classroom teacher at the 6th grade level used virtually no
manipulatives. She beliaved the effective teaching model to have considerable
merit and used 1t in h.~ daily instruction.

School No. 2 - Kari Bezty
The principal viewed himself primarily as a manager. He thought
manipulatives were mainly for use with primary grade children, so the message
from “downtown" was Tost for the intermediate grades. On the other hand, he
was well aware of the effective-teaching mandate and carried through with its
required use in his administrative teaching evaluations.
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The classroom teacher used virtually no manipulatives. He valued the
effective teaching model and used it in most of his lessons.

Reaction - Hilda Borko

The trends within the school division on the selected set of issues
presented will be summarized and attention will be drawn to the probable
impact of leadership styles, how expectations are communicated, and how the
perceptions of principals and teachers effect implementation at the school and
classroom levels. A discussion will ensue concerning the power and importance
of these issues in teacher education research and, as time permits, in teacher
education program design.
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THE NATURE AND PURPOSE OF RESEARCH IN MATHEMATICS
EDUCATION: IDEAS PROMPTED BY EISENHART'S PLENARY ADDRESS

Frank K. Lester, Jr.!
Indiana University - Bloomington

It is an honor for me to have been afforded the opportunity to react to Professor
Eisenhart's ideas concerning the value of conceptual frameworks for educational research. She
has established herself as a leading advocate for the rescarch tradition of ethnography and its
application to education in general and, in particular, to mathematics education (Eisenhart,
1988). Indeed, in her earlier writings as well as in this paper, she has added some much
needed clarity to the ongoing discussion of the underlying assumptions, goals, and methods of
ethnographic research. But in my opinion her contribution extends far beyond this, She is
(implicitly at lcast) forcing us as mathematics educators to come to grips with two fundamental
questions: What should mathematics education research be abow? and How should we go
about the business of doing research in mathematics education? As the incoming editor of the
Jourral for Research in Mathematics Education T will be faced with questions such as these
when: choosing reviewers, assessing their comments, responding to authors and, ultimately,
deciding to accept or reject manuscripts. Thus, it may not be surprising to learn that thesc two
qQuestions were uppermost in my mind when I began to think about the sort of reaction paper I
would prepare.

Knowing that Thold her views in high regard, it should come as no surprise that this paper
docs not offer a counterpoint to the positions and arguments she puts forward. Rather, I intend
to do two things: (1) discuss several issues raised by Eisenhart about which I agree almost
completely, and (2) pose two questions gencrated by her ideas.

POINTS OF AGREEMENT

Among the several issues Eisenhart discusses, four are central to my interest in the nature
and purpose ¢f mathematics education research. These issues relate to: (1) the nature of
frameworks for research, (2) the constraining nature of theoretical frameworks, (3) the nature
of conceptual frameworks, and (4) the importance of interdisciplinary research. Each issue is
discussed in turn in the following paragraphs.

: Basi W

Eisenhart insists that some kind of framework (i.c., "skeletal structure") is essential to the

research process. Iagree wholeheartedly and wish to suggest that the extremely slow pace at

11 am indebted to my colleagues, Peter Kioosterman and Diana Lambdin Kroll, for their
helpful comments on a draft of this paper. 193
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which we mathematics educators have been able to move our ficld foiward may be due in large
part to the lack of clearly described frameworks, conceptual o othierwise, in much of our
research, During my nineteen years of university teaching I have had the pleasure of working
with many very goad doctoral students. It is no exaggeration to say that as they begin their
doctoral dissertations almost all of them have very little, if any, understanding of what it means
to have a conceptual or theoretical framework for their research. Of course they are not at fault
for this condition since they are rarcly taught anything about frameworks in their classes and
seminars, and they only very infrequently see evidence of explicit frameworks in the published
research papers they are asked to read. [ attribute this unfortunate state of affalrs in large part
to the fact that there is no well-defined research tradition within mathematics education 1o guide
them in conceptualizing their studies. Further, I suggest that over the years the best doctoral
research has been conducted at those universities in which the mathematics education programs
have been willing to ground their research in traditions that have been clearly established in
other disciplines. (By and large, it is at these same institutions that the best faculty research is
done.) 1 will add a bit more about the importance of research tradltions in the discussion of the
next point.
The Constnining Nature of Theoretical Frameworks

In her argument against the appropriateness and usefulness of theoretical frameworks,
Eisenhart points out that such fraineworks often are “used by academics to set a standard for
scholarly discourse that is not functional outside the academic discipline” (p. 6). I agree with
her to some extent, but the issu¢ at hand may really be a matter of research tradition, not one of
the appropriateness or usefulness of theoretical frameworks. For quite a iong time (at least
since the days of Thomdike), mathematics educators have looked to the research traditions
established in experimental psychology (and more recently to its offspring, cognitive
psychology) for guidance in determining what the Important research questions are and how
they should be studied. In my view, the frameworks used by psychologists have ofien not
been functional for studying questions of fundamental interest to mathematics educators (cf.
Kilpatrick, 1985). But this is not a shortcoming of frameworks! Rather, it is a problem of
perspective. As I have noted elsewhere, “a researcher who has taught mathematics and studied
it seriously will necessarily have a d:fferent perspective about the nature of mathematics . . .
than someone who has neither taught nor studied mathematics in any depth. It is natural that
non-mathematicians would introduce views about the nature of mathematics that are quite
different from those held by mathematicians or mathematics teachers" (Lester, 1988, p. 116).
Thus. when a theoretical framework becomes non-functional, the problem may actually stem
from the researcher having adopted a research tradition that has a very different way of looking
at problems related to mathematics learning and teaching than is customary.
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That mathematics educators borrow frameworks from elsewhere is both natural and
inevitable because mathematics education itself is not a discipline. Rather it is a field of inquiry
that borrows frecly from well established disciplines such as history, philosophy, psychology,
anthropology, and sociology, among others. We mathematics educators, then, must take care
to give ample attention to the perspectives and assumptions underlying a particular discipline
before we decide to use itto investigate questions of interest (o us.

Justificat Explanati

Eisenhart describes a conceptual framework as “‘a skeletal structure of justification, rather
than a skeletal structure of explanation” (p. 10). Furthermore, it "is an argument including
different points of view and culminating in a series of reasons for adopting some points . . .
and not others” (p. 10). Ithink this distinction can be an extremely useful one for mathematics
educators inasmuch as it suggests that justification should (for now at least) be of paramount
imponance to educational research. Heretofore this has not been the case. It may be the case
that rescarchers in our field have been 100 concerned with coming up with good "explanations”
and not concerned enough with justifying why they are doing what they arc doing. In my
experience reviewing manuscripts for sublication and advising doctoral students about their
dissertations, I have consistently found that the most glaring weaknesses in the research are
often lack of attention to clarifying and justifying why a particular question is proposed to be
studied in a particular way and why certain factors (e.g., concepts, behaviors, attitudes,
societal forces) arc more important than others. Eisenhart's discussion of the nature of
conceptual frameworks and the advantage of them over theoretical or practical frameworks (see
pages 10-14) is quite lucid and almost compelling (my reservations are raised in the last section
of this paper).

But there is more to what Eisenhart is suggesting than simply recommending that
rescarchers devote niore attention to providing good arguments to support their research
studies. In fact, she is arguing that the very purpose of our research efforts needs to be
reconsidered. I have a bit more to say about this later in this paper.

Thel { Interdiscipli Researc!

In her plenary paper and elsewhere (Eisenhart, 1988), Eisenhart argues convincingly for
collaborative, interdisciplinary research efforts in mathematics education. If her
recommendation is taken seriously, it could have far-reaching implications for doctoral
programs in mathematics education. As I see it, since mathematics education has borrowed,
borrows now, and will continue to borrow liberally from several disciplines, it seems essential
that the training graduate students receive must include direct and substantial attention to the
research traditions of several disciplines (anthropology, psychology, and sociology are the
most prominent examples, but history and philosophy wouild also need to be considered).
But, it is unreasonable to expect graduate research programs in mathematics education to
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provide adequate preparation in conducting research based on so many different traditions.
Consider the case of ethnographic research, which has arisen largely from anthropology. 1
become very worried when one of my students announces to me that her dissertation will be an
cthnographic study. It is worry enough that I know so li ¢ about doing this sort of research,
but this is not the source of my concern. Rather, it stems from the likelihood that the student
will have had at most one seminar related to conducting ethnographic research. Is she an
ethnographer and can she be expected to do a truly first-rate ethnography? I think the situation
is very much the same as calling someone a carpenter based simply on the person having read
about what carpenters do, having an interest in carpentry, and (possibly) having hammered a
few nails into some boards. “True" carpenters are trained in the traditions of carpentry by
working for long periods of time (usually years) with other carpenters; that is, by serving as
apprentice carpenters. Our doctoral students rarely serve any kind of real research
apprenticeships and so they have no opportunity to develop a sense of any legitimate research
tradition, much less multiple traditions. In his thoughtful discussion of the nature of
ethnographic research in education, Wolcott notes, it is “useful to distinguish between
anthropologically informed researchers who do ethnography and educational researchers who
frequently draw upon ethnographic approaches in doing descriptive studies” (Wolcott, 1988,
p. 202). The former types of individuals would expect to be interested in a broad cultural
context, an expectation arising ;rom having been trained in a research tradition that too often is
alien to the latter types2.

Another concern is that even being reasonably well-versed in the techniques of a research
tradition does not make an individual an ethnographer, a historian, a philosopher, or a
specialist in whatever discipline is being drawn upon. Much more is involved. For example,
familiarity with the special language that often is associated with a tradition and awareness of
the underlying assur-ptions and purposes of research within the tradition help define what it
means to do research based on that tradition (cf. Eisenhart, 1988; Wolcott, 1988).
Consequently, unless the researcher has developed a good sense for these kinds of things,
there is the danger that the research will not be particularly well-informed. In a review of Alan
Bishop's recent book, Mathematical Enculzuration: A Cultural Perspective on Mathematics
Education (Bishop, 1988), Jeanne Connors points out that problems often arise from
uninformed interdisciplinary dialogue. In particular, she notes that when researchers in one
field borrow ideas from another, the results are often unsuccessful. She suggests that the lack
of success often stems from the fact that:

2 A similar situation also develops when mathematics educators attempt to use research
methods borrowed from disciplines such aslhz)sg)ry, philosophy, sociology, etc.
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A researcher in one field is not always aware of the issues surrounding, or the current

status of, a particular paradigm in another. Every discipline is dynamic. A theoretical

framework is posed, examined by scholars, etaborated upon, and then may be discarded
in favor of newer ideas. Unless the "borrower” is awarc of this disciplinary debate, the
result can be the application of an outmoded idea to a new field, where it may very well be

accepted, and perpetuated, by naive readers (Connors, 1990, p. 462).

Connors goes on to suggest that Bishop used a largely discredited anthropological theory
to inform his analysis (viz., Leslic White's science of culture) and that “anthropology has
moved away from the 'easy’ answers of the first half of the century and is beginning to realize
that the 'real’ world is messy, complex, and impossible to model as simplistically as White had
hoped" (p. 462). Does this mean that Bishop's conclusions are wrong or misguided?
Perhaps, perhaps not. The point is that when researchers borrow theories from another
discipline, they should be aware of the status of those theories within that discipline. Thus, my
enthusiasm for interdisciplinary inquiry is tempered by my concern that, however well-
intentioned, the inquiry may be naive and ultimately fruitless.

I suspect that Eisenhart would not disagree with my concems about interdisciplinary
research. In fact, her remarks in her paper make it clear that she is calling for collaborative
interdisciplinary research of the sort that apparently is taking place in the "Leaming to Teach
Mathematics” project. This collaboration involves a team of researchers, each with her or his
own special expertise, working together to try to better understand the changes that take n'ace
in the process of moving from being a prospective mathematics teacher to being a certified
mathematics teacher.

SOME QUESTIONS

In the preceding section I have discussed several areas about which I am in basic
agreement with Eisenhart. It should be clear that instead of attacking her ideas and positions,
for the most part I have simply elaborated upon them. In this section I raise two questions that
seem central to the theme of her paper.

What Role Should Theory Play in Research?3

At the beginning of this paper I seggested that Eisenhart's ideas should cause us to think
seriously about what it means to be a mathematics educator and to engage in research in
mathematics education. Central to this deliberation is the concern about the role of theory in
research. I am a bit worried that some readers of Eisenhart's paper will interpret her remarks
against the use of theoretical frameworks as meaning that it is acceptable, perhaps even a good

3 1 am grateful to my colleague at Indiana University, Thomas Schwandt, for sharing with me
his ideas about the role of theory in educational research. Thesc ideas served as the basis for
this section of the paper.
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thing, for research to be athearetical. Consequently, I think it is reasonable to make a few
comments about the role theory should play in research in mathematics education. For a start, I
don't think Eisenhart is suggesting that good research can (or should) be completely
atheoretical®. Instead, she is arguing against the sort of rigid, blind adherence to a theory that
characterizes ruch theory-based research. In an indirect way she is also arguing for having
theory play a different role in educational research than it has played historically. Martyn
Hammersley, an cthnographer, insists that it is the duty of sociologists "to attempt the
production of well-established theory” (Hammersley, 1990, p. 109). Furthermore, he argues
that this "gives us the best hope of producing effective explanations for social phenomena and
thercby a sound basis for policy" (Hammersley, 1390, p. 108). Thomas Schwandt, a
philosopher of education, argues that Hammersley is suggesting that theory development “is
the raison d'etre for the practice of social inquiry” and “to talk of theory is not simply to talk of
some feature of scientific investigations, but to talk of a pervasive and dominant intellectual
oricntation to social . . . inquiry” (Schwand, in preparation). Moreover, this view has been
the dominant position among educational researchers for some time. Thus, to question, as
Eisenhart does, the importance of theory development in mathematics education is tantamount
to questioning the very purpose of research in the field.

The debate about the role of theory should be a lively and interesting one as tae community
of researchers interested in issues and problems related to mathematics education begins to
think seriously about the nature of rescarch in the field. It is clear that some notions will be
discarded in favor of others— this is after all one way that progress is made. But, let us hope
that when the debate is settled we are not left with the fecling that the baby has been thrown out
with the bath water.

Do Eisenhart's Notions about Frameworks Apply to Traditions Other than Anthropology?

In an essay about the relations between the history and philosophy of science, Thomas
Kuhn writes:

The final product of most historical research is a narrative, a story, about particulars of the

past. In part it is a description of what occurred . . . . Its success, however, depends not

only on accuarcy but also on structure. . .. In a sense to which [ shall later return, history
is an explanatory enternrise; yet its explanatory functions are achieved with almost no
recourse to explicit generalizations. . . . The philosopher, on the other hand, aims
principally at explicit gencralizations and at those with universal scope. He is no teller of
stories, true or false. His goal is to discover and state what is true at all times and places

4 Garrison (1988) provides an interesting and somewhat compelling argument that itis
impossible for scient.fic research to be atheoretical. A similar, if not the same, argument might
be made for educational research.
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rather than to impart understanding of what occurred at a particular time and place (Kuhn,
1977, p. 5).

Later in the same essay, Kuhn comperes and contrasts the processes involved in writing
rescarch articles in physics, history, and philosophy. He states that "I have myself, at various
times, written articles in physics, in history, and in something resembling philosophy. In all
three cases the process of writing proves disagreeable, but the experience is not in other
respects the same" (p. 8).

A part of Kuhn's message is that a particular discipline can be distinguished from others in
some fundamental ways. It seems to me that disciplines differ with regard to:

* The nature of the questions asked within a discipline.

+ The manner in which questions are formulated.

* The way the content of the disciplines is defined.

* The principles of discovery and verification (justification) allowed for creating new

"knowledge" within a discipline. .

With this in mind I begin to wonder about the applicability of Eisenhart's ideas to various
research traditions. For example, it seems quite possible that as appropriate as Eisenhart's
ideas may be for research conducted in the tradition of anthropology, they may not apply to
some other traditions. In order to stimulate discussion about this question, I will end this
reaction paper by identifying four broad types of reseaich questions for mathematics education.
Eour Types of Research Questions

When we consider secking guidance from experts, like Margaret Eisenhart, in other
disciplines, in order to pursue answers to the :mportant questions in our field, it may be useful
to think of four types of questions: What was? What is? What would happen if? and Whar
skould be?

Iyvpe . What was? Questions of this type might be addressed by means of historical
inquiry, a research tradition that has been all but ignored i mathematics education, Ilustrative
of the sorts of questions that might be addressed are What forces led to the creation of the
NCTM Standards documents? and What was the place of mathematics in the development of
the public school systen in the United States? Individuals interested in historical inquiry will
find Kaestle's discussion and the readings that accompaay it quite useful (Kaestle, 1988).

Type I Whatis? There are at least two sub-questions associated with this question:
What is going on in ? and What is the state of affairs with respect to ? A number
of research methods developed within several different traditions seem appropriate for
investigating type I questions; notably, ethnographies from anthropology, case studies from
psychology (among other traditions), and surveys from sociology. But Type II questions
should not be limited to these traditions alone. Philosophy, for example, might be drawn
upon as well. Recgtﬁ research by Cobb, Wood, and Yackel (1991) is a case in point. They
-199-
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used analogies from the philosophy and sociology of science to help them understand students’
motivations, emotions, and belicfs as they develop in the classroom.

Type HI: What would happen if? Quasi-experimental research methods developed in
experimental psychology (as well as in other "behavioral and social sciences") have been used
for quite a long time to study questions of this type. Oftentimes questions of this type arise
from efforts to identify different (e.g., more effective, more efficient) ways to offer various
aspects of instruction (c.g., What would happen if students worked together in small groups?).
In particular, questions involving the standard comparison of treatments are of this type (c.g.,
Which is better: treatment A or treatment B?). Itis clear that quasi-experimental methods are
not the only ones suitable for addressing questions of this type; cthnographic techniques,
which are referred to throughout Eisenhart’'s paper, as well as other methods can also be
useful.

Type IY: What should be? Philosophical methods can be of great value for questions in
which an attempt is to be made to make a case for a particular position. For questions-of this
sort, arguments from analogy and the method of examples and contrasts, two fundamental
tools of the philosopher, would be invaluable (Scriven, 1988). for example, the philosopher’s
tools could be used to argue for or against the statement, "Problem solving should be the focus
of school mathematics.”

Mathematics education, then, is a field of inquiry concerned with a very wide variety of
types of questions, and to a certain extent these types determine the nature of the research that
can be conducted. Mathematics education researchers should not be expected to becomne
experts in the use of all, or even many, of the daunting array of research methods available.
However, it is vital that we: (1) recognize that our field needs to draw upon many research
traditions; (2) acknowledge that the most effective research programs are likely to be those
characterized by applications of “disciplined eclectic” (Shulman, 1988, p. 16); and (3) actively
seek to collaborate with researchers who have been train:d in traditions different from our
own.

REFERENCES

Bishop, A. J. (1988). Mathcmatical enculturation: A cultural perspective on mathematical
education. Dordrecht: D, Reidel,

Cobb, P, Wood, T, and Yackel, E.“(('i9—9‘1). Analogies from the philosophy and sociology of
science for understanding classroom life. Science Education. 75(1), 23 - 44, -

Connors, J. (1990). When mathematics meets anthropology: The need for interdisciplinary
dialogue. Educational Studies in Mathematics. 21, 461-469.

Eisenhart, M, A. (1988). The ethnographic research tradition and mathematics education
research. Journal for Research in Mathematics Education, 19(2), 99-114.

-200-

LRI

PAFullToxt Provided by ERIC




Q

ERIC

PAFullToxt Provided by ERIC

Reactions to Eisenhart's Address

Eisenhart, M. A. (1991, October). Conceptual frameworks for research circa 1991: Ideas from
a cultural anthropologist; Implications for mathematics education researchers (Plenary
address). Proceedings of the Thirtcenth Annual Meeting of PME - NA. Blacksburg,
Virginia.

Garrison, J. (1988). The impossibility of atheoretical science. The Journal of Educational
Thought, 22, 21-26.

Hammersley, M. (1990). From ethnography to theory: A programme and paradigm in the
sociology of education. In M. Hammersley, Classroom ethnography (pp. 108-128).
Milton Keynes: Open University Press.

Kaestle, C. F. (1988). Recent methodological developments in the history of American
education. In R. M. Jaeger (Ed.). Complementary methods for research in education (pp.
61-73). Washington, D.C.: American Educarional Research Association.

Kilpatrick, J. (1985). Editorial. Journal for Research in Mathematics Education, 16(4), 242.

Kuhn, T. 8. (1977). The essential tension. Chicago: University of Chicago Press.

Lester, F. K. (1988). Reflections about mathematical problem-solving research. In E. A.
Silver & R. I. Charles (Eds.), The teaching and assessing of mathematical problem solving
(pp. 115 - 124). Reston, VA: National Council of Teachers of Mathematics.

Schwandt, T. A. (in preparation). Theory for the moral sciences: Crisis of identity and
purpose. In D. Flinders & G. Mills (Eds.), Theory and concepts in qualitatitve research.
Ablex Publishing. Co.

Scriven, M. (1988). Philosophical inquiry methods in education. In R. M. Jacger (Ed.),
Complementary methods for research in educarion (pp. 131 - 143). Washington, D.C.:
American Educational Research Association.

Shulman, L. S. (1988). Disciplines of inquiry in education: An overview. In R. M. Jaeger
(Ed.), Complemertary methods for research in education (pp. 3- 17). Washington, D.C.:
American Educational Research Association,

Wolcott, H. F. (1988). Ethnographic research in education, In R. M. Jaeger (Ed.),
Complementary methods for research in education (pp. 187 - 206). Washington, D.C.:

American Educational Research Association.




CONCEPTUAL FRAMEWORKS FOR RESEARCH CIRCA 1991: IDEAS FROM A
CULTURAL ANTHROPOLOGIST; IMPLICATIONS FOR MATHEMATICS EDUCATION
RESEARCHERS

Margaret A. Eisenhart
University of Colorado, Boulder

Paper to be presented at the Psychology of Mathematics Education - North Arerica
Meeting, October 16-19, 1991

Some of you are probably wondering: What is a conceptual framework and why all
the fuss about whether you have one for your research project? Is it simply politically
correct to have a conceptual framework or is there more to it? Perhaps some
interpretivists out there are wondering whether concerns about conceptual frameworks
aren’t just another means for positivists to reassert their way of doing things in educational
research. And you closet positivists are secretly hoping it’s so.

I am a qualitative researcher, an anthropolegist of education, an ethnographer, and
someone firmly committed to the value of explicit conceptual frameworks for educational
research. In this paper, I hope to give you some idea why I feel this way and what
difference conceptual frameworks, particularly those informed by some recent work in
cultural anthropology, might make in mathematics education research.

What is a “ramework?

According to my dictionary, a "framework” is defined as a "skeletal structure
designed to support or enclose something" (The Random House Dictionary of the English
Language, 1979). As used metaphorically by researchers to "support or enclose” their
investigations, frameworks come in various shapes and sizes; may fit loosely or tightly; are
sometimes made explicit, sometimes not. In this paper, I will compare three kinds of
frameworks—theoretical, practical, and conceptual. I use the comparison to suggest the
special potential of conceptual frameworks. In the second part of the paper, I will argue
for the importance of including particular elements in conceptual frameworks for current
research in cultural anthropology. The elements I focus on are derived from a set of
issues—which I refer to as the "structure/agency problem"~that is at the center of current
debates affecting all the social sciences and philosopiy. In the third and finai section of the
paper, I will suggest how these elements might also be valuable for conceptual frameworks
in mathematics education research.
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A Note on the Research Process

Before beginning the main part of my discussion of frameworks, I need to say a few
things about how I conceive of the research process, so you can understand how I think
frameworks fit into it. As I see the research process, it has three primary governing
conceptual steps-by which I mean key steps that demarcate the study and require
considerable mental planning.! First, a researcher must decide what is to be explained by
the study (establish the research problem). In mathematics education, the range of
research problems in need of explanation is broad: Why do girls eschew mathematics in
greater numbers than boys? Why do U.S. students score lower than those from Japan or
Hong Kong on international comparisons of mathematics test scores? What is the best way
for students to learn and appreciate mathematics? What kinds of instructional changes can
be stimulated and supported with policy initiatives, what kinds with site-based (Jocally-
specific) initiatives? It's unlikely that a researcher would attempt to provide explanations
for all these research problems in one study; instead, he or she selects one problem to
concentrate on.

Deciding on the research problem does not automatically determine the perspective,
or angle, from which the investigation will proceed. Each problem listed above could be
investigated from numerous perspectives. For example, the researcher might choose a
discipline-based perspective, e.g, one from psychology, sociology, or anthropology; a
practice-oriented perspective, e.g., a formative or summative evaluation; a philosophical
perspective, e.g, a positivist, interpretivist, or critical epistemology; or a pedagogical
perspective, e.g., a constructivist or foundationalist approach. In the second conceptual
step of the research process, the researcher must decide what perspective to use. At this
point, an explicit framework becomes important: It is the (metaphorical) structure that
defines the perspective taken and thereby guides the data collection for the study. The
framework is composed of ideas or "concepts," i.e,, abstractions, such as self-esteens,
interactive thinking, culture, social organization, or pedagogy. These abstractions and their
assumed interrelationships stand for the relevant features of a phenomenon, as defined by
the perspective. In selecting a perspective/framework, the researcher is deciding upon the
abstractions and relationships that will be used 'to enclose or support’ the study and, in

V1 have identific” *he steps separalcly and in a chronological order for the sake of clearly describing
them, not because they wo or must proceed in exactly this way.
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turn, the data that will be collected.

To sum up the sccond step by way of example, a researcher might select a
perspective from psychology that focuses on self-esteem as a framework for studying the
research problem: Why do girls eschew mathematic- in greater numbers than boys? For
the same research problem, another researcher mig:. sclect a framework from sociology
that focuses on peer group socialization. In making the first selection, the researcher has
decided to rely upon the abstraction, self-esteem, and to collect data about self-esteern and
its differential impact on boys’ and girls’ attitudes and achievement. By choosing peer
group socialization instead of self-esteem, the second researcher has decided to focus on
such things as differential peer group norms for boys and girls and their influence on
attitudes and achievement (cf. Shulman, 1988). In broad strokes, this is how frameworks
“work" in the research process.

The third conceptual step in the research process begins when data analysis begins.
At this point, the researcher must decide how to reduce the empirical data collected into
meaningful categories, how relationships among categories of findings will be specified, and
what form the explanation for the empirical data will take. Depending on the
epistemological perspective chosen in step two (e.g, positivist or interpretivist), the
originally specified research framework may or may not continue to serve as a guide for
data analysis and explanation, but some framework—some coherent way of thinking about
how to organize and interpret the data—must.

Recent critics of research practice have argued that an adequate explanation for
empirical results must convincingly show that the data occur as they do because of the
processes described by the explanation, and not accidently or coincidently (Liston, 1588).
To meet this requirement, the researcher cannot simply describe or identify data in terms

of a framework, nor unquestioningly accept a predetermined framework, as either would

be to assume, rather than to demonstrate, that an explanation derived from the framework
is adequate.

In brief then, I consider some kind of framework basic to both the second and third
conceptual steps of the research process. With this background ubout the rescarch process,
I'd like to turn to the three kinds of frameworks: theoretical, practical, and conceptual.
What are they and how are they used?
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Kinds of Frameworks
Theoretical Frameworks

A theoretical framework is a structure that guides research by relying on a formal
theory; that is, the framework is constructed by using an established, coherent explanation
of certain phenomena and relationships, e.g., Piaget’s theory of conservation, Vygotsky's
theory of socio-historical constructivism, or Newell and Simon's theory of human problem-
solving. In the second step of the research process (described earlier), the research
problem would be rephrased in terms of the formal theory selected for use. Then research
hypotheses or questions would be derived from the research problem Qua theory, relevant
data would be collected, and the findings used to support, extend, or revise the theory. In
selecting a theory as the basis for a research framework, the researcher is deciding to
follow the programmatic research agenda outlined by advocates of the theory. That is, she
or he is choosing to conform to the accepted conventions of argumentarion and
experimentation associated with the theory. This choice has the advantage of facilitating
communication, encouraging systematic research programs, and demonstrating progress
among like-minded scholars working on similar or related research problems. Researchers
testing the applicability of Piaget’s theory of conservation in different settings and with
different people, for example, work together with a shared set of terms, concepts, expected
relationships, and accepted procedures for testing and extending the theory.

However, there are some disadvantages associated with the programmatic use of
theoretical frameworks. Howard Becker, a fieldwork sociologist and ethnographer, has
recently summarized the value of relying on theory and one of its drawbacks--that
important information may be omitted or ignored when researchers rely too much on
formal theory to guide their work:

Whenever scientists agree on what the questions are, what a reasonable

answer to them would look like, and what ways of getting such answers are

acceptable—then you have a period of scientific advance...[at] the price, Kuhn

is careful to point out, of leaving out most of what needs to be included in

order to give an adequate picture of whatever we are studying, at the price

of leaving a great deal that might properly be subjected to investigation, that

in fact desperately needs investigation, uninspected and untested. {1991, p.3)

Dan Liston (1988, p. 324), a sympathetic critic of radical theories of schooling and a
teacher educator, has argued (following Crews, 1986) that scholars who use Marxist
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theories of schooling (e.g, Bowles and Gintis, Apple, Carnoy and Levin), tend to address
and explain research problems by theoretical decree, rather than with solid evidence to
support their claims. John Van Maanen, another fieldwork sociologist and ethnographer,
has lodged the objection that data collected under the auspices of theoretical frameworks
have to "travel," by which he means that (unfortunately, from his point-of-view) data must
be stripped of their context and local meaning in order to serve a theory.

Events must be specified, simplified, patterned, and to a large degree

stripped of their context if they are to travel well and serve as fodder for

formal theory. Such is true for all description, of course, but theory itself can

be a formidable taskmaker. (1988, p. 131)

Another difficulty with the use of theoretical frameworks is the tendency for them
to be used hy academics to set a standard for scholarly discourse that is not functional
outside the academic discipline. Conclusions produced by the logic of theoretical discourse
about cducational practice, for example, are often neither practical nor helpful in day-to-
day practice. House (1991) makes the following pertinent observations about the
relationship between the concerns of academic disciplines and those of practitioners.

A discipline is composed of groups and subgroups of scholars linked together

through common communication--journals, meetings, associations, informal

contacts, e-mail....At the center...are the leading authorities of the disciplines,

the Cronbaciis and Campbells, if you will. Those at the center are the

gatekeepers who influence the others. The discipline changes as people in

the field argue and debate new ideas....All [theories] in the field are subject

to change over a period of time, subject to the critique of the group, so there

is no certain foundation of knowledge, just the continual debate, dialogue,

and argument, the disciplinary [theoretical] discourse.

So we end up with disciplines in which there is theory which is often
irrelevant to the experience of practitioners. Some of this theory is..necessary for
[academic] legitimation. [But, if] or.z waits until all the debates are over to do the
work, then one will wait forever. (pp. 3-5)

Practical Frameworks
It is just this kind of irrelevance for practitioners and practical matters that has led
some researchers, like educational evaluator Michael Scriven, to object to theoretical
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(disciplinary) research as the model for educational research and to suggest practical
frameworks as an alternative. Scriven’s low regard {or the value of theoretically-driven
social science research to educational practitioners is clear:

wpractical problems are defined by reference to several parameters

concerning which the basic scientist gathers no data and rarely has any

competence. These include the not-entirely-independent parameters of cost,
ethicality, political feasibility, the set of practicable alternatives, system

liability, and overall practical significance. (1986, p. 54)

Scriven’s alternative is what he calls a "practical research approach" that would focus
research efforts on "problems that really pay off for practitioners," and relegate “the search
for...theoretical understanding...to a secondary position by comparison with the search for
improvements" (p. 57). He further compares theoretical and practical research as follows.
Let us consider..the difference between the ivory-tower research
approach to {a] particular problem and the practical research approach. The
problem...is...how to improve the teaching of handicapped children....] have
frequently posed this problem to groups of educational researchers....In all

cases, the results are about the same. What one must do, they suggest, is

find out--from the literature or by developing a theory--which variables

control the outcomes in question and then modify those variables. Iask: Is

there any way to find that out besides the ways that researchers have been

trying for decades? Well, basically, No, they say; except to do it better: the

literature search, the design, the run, the data crunch. But there is a much

better way, and the fact they do not think of it immediately shows how far

we have come from commonsense. You must begin by identifying a number

of practitioness who are outstandingly successful at the task in question; you

must then use all the tricks in the book to identify the distinctive features of

their approach...; you then teach new or unsuccessful practitioners to use the

winning ways and retest until you get an exportable formula. (pp. 58-59)

A practical framework, then, guides research by using “what works" in the
experience or exercise of doing something by those directly involved in it, e.g, in the case
of educational research: by using “what works" in teaching, administering, trying to change
schools, being the helpful parent of a school-aged child, as a "kernel” idea or action that,
if extended to other teachers, etc., could help to alleviate some educational problem. The
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study is structured to determine key features of the practice, and whether, or in what
circumstances, a practice (behavior, technique, strategy, way of thinking, style of teaching,
etc.) works as expected or envisioned. This kind of framework is not informed by formal
theory but by the accumulatcd practical knowledge (ideas) of practitioners and
administrators, the findings of previous research, and often the viewpoints of politicians or
public opinion. Research hypotheses or questions are derived from this knowledge base,
and research results are used to support, extend, or revise the practice. In selecting
practicc as the basis for a research framework, the researcher is deciding to follow
conventional wisdom as understood by people who are stakeholders in the practice.

Although this approach has at least one obvious advantage over a theoretical
framework--the problems and the discourse are those of people directly involved, it shares
some of the same drawbacks. Like the work based on a theoretical framework, the
existing knowledge base-—in Scriven’s example, the accumulated wisdom of practitioners and
interested lay persons--will constrain the topics of study, the data collected, and often the
conclusions drawn. Again, there is the danger that conclusions will describe the data in
terms of preexisting practitioner knowledge rather than provide convincing evidence that
a particular teaching practice is best, all else considered. Further, results obtained from
research based on practical frameworks are expected to "travel," as Scriven indicated. This
is another dangerous situation. In the absence of theory, there is no systematic way to
think about how well, or under what conditions, the results might or might not travel; there
is also no readily available discourse to explain why the practice works or why anyone else
should adopt it. Proponents would be in the position of imposing a practice on the (slim)
grounds that it worked somewhere else.

Another more serious and perhaps more subtle difficulty with practice-driven
research is one shared with research guided by a theoretical framework of extreme
interpretivism.? Like extreme interpretivism, practice-driven rescarch depends on the
insiders’ perspective--in Scriven's example, the insiders’ perspective would be constituted
by the views of various stakeholders in educational practice. Whereas insiders know the
behaviors and ideas that have meaning to people like themselves who regularly participate
in the practice, they are unlikely to recognize the patterns of group life of which their

2 “Interpretivism® is used bere, following Eiscnhart, 1988, Howe & Eisenhart, 1990, and Howe, in
press, to refer to the epistemological position that privileges the *insider’s perspective™ on the meanings and
implications of social cvents and arrangements,
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actions are a part (Eisenhart & Borko, 1991, p. 147). Insiders rarely consider the structural
features and causes of social practices or the norms which they unwittingly internalize and
use in communication and action (Howe, in press, following Fay, 1975). These features,
causes, and norms are part of the taken-for-granted backdrop of insiders’ lives. Because
insiders take these constraints for granted, practical frameworks-built up as they are from
insiders' perspectives--tend to ignore macrolevel constraints on what and how insiders act
and how they make sense of their situation. [ will return to this point when | take up
current issues in cultural anthropology.

~eptual Framew

A conceptual framework is a skeletal structure of justification, rather than a skeletal
structure of explanation based on formal logic (ie., formal theory) or accumulated
experience (i.e., practitioner knowledge). A conceptual framework is an argument
including different points of view and culminating in a series of reasons for adopting some
points--i.e., some ideas or concepts--and not others. The adopted ideas or concepts then
serve as guides: to collecting data in a particular study, and/or to ways in which the data
from a particular study will be analyzed and explained.

Crucially, a conceptual framework is an argument that the concepts chosen for
investigation or interpretation, and any anticipated relationships among them, will be
appropriate and useful, givcn the rescarch problem under investigation. Like theoretical
frameworks, conceptual frameworks are based on previous reseaich and literature, but
conceptual frameworks are built from an array of current and possibly far-ranging sources.
The framework may be based on different theories and various aspects of practitioner
knowledge, depending on exactly what the researcher thinks (and can argue) will be
relevant to and important to address about a research problem, at a given point in time
and given the state-of-the-art regarding the research problem. For example, researchers
developing a conceptual framework might build an argument for assessing the power of
several different theories or explanations for an important research problem, such as why
US. minority students are, as a group, less successful in school mathematics than their
mainstream counterparts. In this case,® a list of currently relevant theoretical propositions

3 My idcas here are adapted from Denzin who calls this approach *theoretical triangulation* (1978, pp.
297-301, following Westic, 1957).
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and practitioner explanations would be compiled; their strengths, weaknesses, and
appropriateness described and assessed; and an argument built for making some subset the
focus of emrirical investigation. Then, data would be collected to determine which
propositions could be supported by empirical evidence. Finally, a record would be made
of those propositions that passed and failed the empirical tests, and a theoretical system
reformulated based on all the findings of the empirical tests.

The arguments of a conceptual framework also must be timely; that is, they should
reflect the current state-of-affairs regarding a research problem. For this reason,
conceptual frameworks may have short shelf-lives; they may be revised or replaced as data
or new ideas emerge.

To illustrate the preceding points: In the NSF-sponsored study, "Learning to Teach
Mathematics,” that I am conducting of novice mathematics teachers with Hilda Borko,
Cathy Brown, Bob Underhill, Doug Jones, and Pat Agard, we have developed a series of
conceptual frameworks that draw on specific ideas from cognitive psychology, mathematics
education, and educational anthropology (see especially Brown, et al., in press). To build
our first framework, each of us consulted the literature in our respective fields (Borko-
psychology; Brown, Underhill, Jones, and Agard-mathematics education; Eisenhart-
anthropology) 2nd wrote position papers on the concepts or ideas we considered most
relevant to the research problem (which is: What kinds of changes occur as mathematics
education students become mathematics teachers and what or who influences the
changes?). As a group we read each others’ papers and debated the merits of each idea
for our study. We discarded some ideas (we couldn’t study everything) and, for those
retained, tried to organize them in a coherent way. The resulting framework guided the
data collection during Year 1 of our two-year project (see Brown, et al, in press, and
Eisenhart & Borko, 1991, for more information about the content of our framework). At
the end of Year 1, we reconsidered the framework, revised and refined it in light of the
data we had collected and new ideas that were emerging in our respective fields. The
(temporarily) "chosen" ideas were then categorized into the six boxes represented in Figure
1 and, in their present incarnations, are serving as guides for the data analysis in which we
are presently engaged.

Conceptual frameworks then, iike the one represented in Figure 1, intentionally are
not constructed of steel girders made of theoretical propositions or practical experiences;
instead they are like scaffoldings of wooden plank that take the form of arguments about

-210-

Q

RIC




what is relevant to study and why—in our case, about novice mathematics teachers--at a
particular point in time.* As changes occur in the state-of-knowledge, the patterns of
available empirical evidence, and the needs with regard to a research problem, used
conceptual frameworks will be taken down and reassembled.

Relative to theoretical or practical frameworks, conceptual frameworks facilitate
more comprehensive ways of investigating a research problem. By coordinating concepts
from anthropology and psychology in the conceptual framework for our Learning to Teach
Mathematics project, for example, we were able to investigate a broader range of potential
influences on novice teachers than would have been possible using a theoretical framework
from either discipline alone (for more information on our collaboration, see Eisenhart &
Borko, 1991).

Similarly, and unlike either theoretical or practical frameworks, conceptual
frameworks routinely accommodate both outsiders’ and insiders' perspectives. Because
conceptual frameworks (merely) outline the kinds of things that are of interest to study
from various sources, the argucd-for concepts and their interrelationships--regardless of
their source--must uitimately be defined and demonstrated in context in order to have any
validity. Users of conceptual frameworks, then, must adopt what Norman Denzin (1978),
another fieldwork sociologist, refers to as a "sensitizing approach":

If I choose a sensitizing approach to measuring intelligence [for example], I

will leave it nonoperationalized until I enter the field and learn the processes

representing it and the specific meanings attached to it by the persons

observed. It might be found, for example, that in some settings intelligence

is measured not by scores on a test but rather by knowledge and skills

pertaining to important processes in the group under analysis. Among

marijuana users irtelligence might well be represented by an ability to

conceal the effects of the drug in the presence of nonusers. (p. 16)

This sensitizing feature of conceptual frameworks encourages the researcher to tack
between the concepts advanced or assumed and the meanings given or enacted in context.

* Itis also important 10 notc here that our analysis stratcgy depends on some additional decisions
not reflected in Figure 1. For example, we decided to focus on “critical incidents® as a mean: to identify the
sources of influence on the novice teachers. We also decided 10 focus on “ease profiles® as a means to identify
changes in the novice teachers over time. These methodological decisions and the way they have been
integrated with the substantive cl of our conceptual framework arc described in Borko, ct al,, in press,
and Jones, ct al, in preparation.
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In this way, outsiders’ and insiders’ presuppositions, as well as their respective
interpretations, have a place in the research project.

The inclusive and sensitizing features of conceptual frameworks also make it less
likely that researchers who rely on them (compared to those who rely on theoretical or
practical frameworks) will draw unwarranted conclusions or offer unsupported explanations
for their empirical results. Westie summarized the advantages of these features as follows,

[Use of a conceptual framework] minimizes the likelihood that the

investigator will present to himself [sic] and the world a prematurely coherent

set of propositions in which contradictory propositions, however plausible, are

ignored. (1957, p. 154, quoted in Denzin, 1978, p. 300)

In other words, it minimizes the likelihood that empirical evidence will be explained by
decree, convention, or accident. In sum, then, I find conceptual frameworks better suited
than theoretical or practical frameworks for research in applied areas such as education,
at least at this point in time. Because of the various perspectives and disciplines that can
be brought to bear on educational issues and the seriousness of educational problems,
research frameworks that outline and enable comprehensive, inclusive, sensitive,
appropriate, useful, and timely approaches to the problems of the day would appear to be
especially valuable. In the next section, I tumn to one potentially useful conceptual
framework that is currently being constructed for research in cultural anthropology.

The Structure/Agency "Problem" as a Basis for One Conceptual
Framework in Cultural Anthropology

Epistemology

At this point in historical time and space, many social scientists, including cultural
anthropologists, are grappling with what is sometimes referred to as the "structure/agency
problem," where "structure” is defined as constraining or enabling macroievel forces—
outside individuals but affecting what they do--and "agency” as (microlevel) individual
intentions. The structure/agency problem derives from the insights of postpositivist and
postinterpretivist epistemological debates. The root of the current debate is the definition

of human nature and is described in broad strokes by Howe (in press) as follows:
..a theory of human nature specifies the kinds of beings that a theory of
social ecientific explanation has for its subject matter. Positivism, with its
"spectator view” of knowledge [e.g., humans as molecules in motion] and
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Humean conception of causation [where causes and effects have no
conceptual connection], encourages a view of humans as passive and
determined by exogenous causes; interpretivism, with its constructivist [self-
created] view of knowledge and intentionalist conception of causation [where
human intentions can “cause”" things], encourages a view of human as active
and self-creating...The correct view, or so I shall argue, acknowledges
clements of truth in both of these views but rejects each as one-sided.

Intuitively, human beings are neither wholly passive and determined nor
wholly active and self-creating. Instead, they exhibit these two characteristics in
varying degrecs..."[HJuman nature" is partially determined by how humans see
themselves and partially determined by things of which they are unaware and over
which they have no control. Accordir. %y, insofar as interpretivism remains trapped

within the first perspective and positivism, within the second, neither view can give
an adequate account of human nature. (p. 10)
Later in the same article,

[A new "compatibilist"] conception of human nature...concedes to the
natural science model mechanistic (e.g., structural-functionalist) accounts of
human behavior, preserving a place for the self-determined, "active” side of
humsn nature. On the other hand, it concedes to interpretivism intentionalist
accounts of buman behavior, preserving a place for the self-determined,
"active” side of human nature..[and] insofar as human behavior is an
admixture of active and passive ingredients, a conception of [social science]
explanation should capture both. (p. 12)

Following Howe then, an adequate social science explanation should (now) aim to account
for both structural forces (positivism's ’exogenous causes’) and human agency
(interpretivism’s self-created constructions’). To develop such an explanation with empirical
evidence--as required in (empirical) research, frameworks for rescarch must accommodate,
and guide investigations and interpretations of, both structure and agency.

Cultura] Anthropology

In cultural anthropology, the structure/agency probiem can be phrased as: How is
it possible to represent the embedding of richly described local cultural worlds (including
individuals’ intentions and a third concept, "culture,” the anthropologists’ favorite) in larger
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impersonal systems of political economy (Marcus & Fischer, 1986, p. 77)? In summarizing
recent trends in anthropologists’ experimentation with ethnography, Marcus and Fischer
explain the "problem" further:
..one trend of experimentation is responding to the imputed superficiality or
inadequacy of existing means to represent the authentic differences of other
cultural subjects; the other is responding to the charge that interpretive
anthropology, concerned primarily with cultural subjectivity [insiders’
perspectives}, achieves its effects by ignoring or finessing in predictable ways
issues of power, economics, and historic context. While sophisticated in
representing meaning and symbol systems, interpretive approaches can only
remain relevant...if they come to terms with the penetrations of large-scale
political and economic systems that have affected, and even shaped, the
cultures of ethnographic subjects almost anywhere in the world. (p. 44).
Marcus and Fischer suggest why the task is difficult:
This would not be such a problematic task if the local cultural unit was
portrayed, as it usually has been in ethnography, as an isolate with outside
forces of market and staie impinging upon it. What makes representation
challenging and a focus of experimentation is the perception that the "outside
forces" in fact are an integral part of the construction and constitution of the
"inside," the cultural unit itself, and must be so registered....(p. 77)
In other words, processes of communication and meaning are thought to be constitutive
of structures of political and economic interests and these interests, in turn, both enable
and constrain individual intentional processes.
At the present time, debates among anthropologists about these issues are self-

consciously taking place in the absence of grand theories. As in other social sciences,

literary criticism, architecture, and even the natural sciences to some extent:
{the] authority of "grand theory" styles seems suspended for the moment in
favor of a close considcration of such issues as contextuality, the meaning of
social life to those who enact it, and the explanation of exceptions and
indeterminants rather than regularities in phenomena observed....(Marcus &
Fischer, 1986, p. 8)
The need for conceptual frameworks that can more adequately address "structure,”

"agency,” and "culture,” and guide research including these elements, in cultural

-214-




E

anthropology is exemplified in the limitations of many familiar works, including Shirley
Brice Heath's educational ethnography, Ways with words (1983).5 In the book, Heath tells
a story of literacy teaching and learning in three Southern (U.S.) communities. Her study
was framed by an implicit theory of cultural difference; that is, consistent with cultural
difference theory, she expected that reasons for children's differential performance in
school could be found in differences in the ways of life and speaking (the cultures) they
learned at home. By revealing the many ways in which the cultures of the three
communities were different and how cultural elements learned at home matched (or did
not) those expected at school, she intended: a) to explain the sources of children’s early
school success and difficulty: and b) to help teachers find appropriate ways to bridge the
home-schoo! gaps she found. Heath achieved both her goals, but in the book's Epilogue
she acknowledged that the understandings and changes she helped produce were not
sustained by the teachers for very long. She noted that the focus of school district policy
changed, apparently eliminating the opportunities and rewards for teachers that had
enabled their involvement in the kind of work she (and they) had begun and believed in.
By ending the book with this discussion, Heath seemed to recognize some role for
structure in the explanation of her findings, but it was a role that the theory of cultural
difference had not prepared her for and could not account for. Heath’s theoretical
framework also was not able to account for individuals who did not fit the school
performance profile predicted by her cultural difference analysis, nor for subgroups within
each community that might have constructed an oppositional culture or resisted the
dominant position within the group. Finally, she used "culture" to mean "tradition," as if
"culture" had no dynamic or emergent characteristics. In Ways with words, individuals were

-~ always following their community’s traditions (culture), as if tradition fully determined their
intentions and actions. Use of this kind of cultural difference or cultural determinist theory
is very common in educational anthropology and is analogous to the economic determinism
of "structuralist correspondence" theories such as Bowles and Gintis’ (1976), in which
individuals are always following the dictates of their class position (see also Foley, 1991).
(In work inspired by psychology of course, there is a corresponding tendency to focus on
the processes of individuals as deterministic.)

5 I find Heath's book very powerful and wish to acknowledge its considerable contribution to cducational
research. I use it bere for illustrative purposes because so many people in education are familiar with it.
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The special contribution of Paul Willis’ ethnography of schooling, Leamning to labor
(1977), for educational anthropology was his conceptual framework in which “structure,”
"culture," and "individuals" were conceived of and investigated as separate though
interrelated phenomena. For Willis, "structures” are relatively fixed, enduring, and broadly
constraining features of a society—~features such as class stratification or patriarchy;
"individuals" are viewed as semi-autonomous from structure (i.e., capable of considering or
reflecting upon structures) and thus potentially able to choose (actively produce) their own
"cultural" response to structures, where "culture” is conceived of as a medium in which
individuals act and interpret the world as given and, simultaneously, as the medium through
which structure passes in and out of individual lives (sce also Foley, 1990; Holland &
Eisenhart, 1990).

The relevant implications of this work, for my purposes in this paper, are that an
adequate conceptual framework for research in cultural anthropology, including educational
anthropology, must now include: 1) some conception of the structures that exist and have

existed over time, recognizing that they act both to constrain and to enable the actors
situated within their influence (these structures might include class and racial stratification,
patriarchy, and the social organization of academic disciplines, e.g., mathematics); 2) some
conception of the cultures that serve as mediums within which individuals and subgroups
respond ‘o the structures surrounding them (these cultures might include class culture, peer
group culture, the culture of teaching, the culture of being a student, or the culture of

school subjects or (specifically) mathematics; and 3) some conception of the meanings and
actions of individuals (including individual "voices,” individual intentions, and subjectivities).

Implications for Mathematics Education Research

Conceptual frameworks that direct attention to structures, cultures, and agency in
this way have some important implications (I think) for research in mathematics education.
For example, the activities and discourse through which children (and teachers, parents,
etc.) construct their understandings of mathematics would have to be viewed and
investigated as deeply embedded with historical and social contradictions and inequalities.
If structures, e.g., class stratification, patriarchy, or academic disciplines, are conceived of
as enduring constraints on and resources for the activities and discourse of individuals, then
it is not adequate tc study classroom teaching and learning in isolation or without reference
to these structures. Although individual actions will be much more fluid and variable than
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the surrounding structures, they will always be affected by them. I think we would also be
asking our research programs to help us to understand how teachers and students rely,
often inadvertently, on these structures in teaching and learning mathematics. In addition,
we might ask: How are teachers and students (as groups or individuals) responding to
these structures? What cultures of mathematics or of schooling are their mediums for
interpreting the mathematical school work they are doing? To what extent ~re novice
mathematics teachers learning that judgments of their competence as teache's end on
acquiring the characteristics of existing (conservative) teacher culture (cf. V/hite, 1989)?
And, to what extent are studen. ° ~rning that assessments of their school competence
depend on acquiring the characteristics of existing (conservative) student culture?

Related questions might include: To what extent are "active" (enthusiastic,
conscientious, well-intentioned) mathematics teachers merely "making do" (merely tinkering,
or doing what Hatton, 1989, has recently referred to as bricolage, following Levi-Strauss)
with what is available within a limited and fixed structure of schooling and curriculum (see
also Kutz, 1990)? To what extent are mathematics teacher educators doing the same
thing within the context of their university or college work (cf. Eisenhart, Behm, &
Romagnano, 1991)? To what extent do these conservative learnings (constructions), along
with enduring structural features of schools, constitute teachers’ and students’ "resistance”
to (decisions to refuse to act in accord with) innovations such as those proposed by the
NCTM standards? Is there any potential or some "language of possibility" (Giroux &
McClaren, 1986) in these constructions that would enable the desired changes?

It would also be important to discover why individual students are doing the
particular work they are doing in school, c.g, do they have worthy motives in doing it?
Do teachers have worthy motives in guiding it? Who is advantaged or disadvantaged in
the process?

I believe these questions are very important ones for mathematics educators to
answer. I also believe that answers to these questions can be obtained, at ieast in part, by
using ideas from cultural anthropology to huild conceptual frameworks to guide the work
that mathematics education researchers do.
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Abstract

In education, or in the leamning sciences generally, theory is in a poor state, We have not reached
deep theoretical understanding of knowledge or of the learning process, and it is important that
we recognize this. Even more importantly, our community does not scem particularly intent or
armed to change the situation. This paper is aimed at raising the issue of intent, arguing for new
dedication toward thcory. It is also aimed at a modest contribution to our toolkit for a more
theoretically attentive practice of education research.

Introduction

I view the educational reseiarch community as demonstrating only minor concem for theory and
its development. That should not be so. Minimally, I hope with this paper to spur discussion of
the issue; at best, I hope to participate in building a consensus about the importance of theoretical
thinking to our goals, and about what kind of theoretical thinking makes most sense.

My approach will be personal and more than usually assertional for two reasons. First, I hope to
raise issues provocatively and rclatively sharply, Second, there are deep and complex
cpistemologieal issues here that I simply cannot enter into int any great detail. [recognize I will
mostly be staking ground rather than uncovering, explicating or settling the issues involved.

Theory has a somewhat deservedly bad reputation in educational circles. The relation of theory
to practice is problematic. Many times the best practitioners don't have any explicit theory at all,
Alternatively, it may not be at all clear that the theory they espouse "does the work” in their good
practice, as opposed to their practical expertise. Others with the samc theory may not be nearly
as good at teaching. Some of the best, or at least, best known theories, such as Piagetian stages,
have often seemed to put a straightjacket on instruction rather than offering many productive
suggestions. To practitioners, and all too often for researchers as well, "in theory” is more 4 lazy
lament that some expectation has gone awry rather than an appeal to some felt-to-be necessary
and well-elaborated set of ideas.

Along the same lines, theoretically inclined rescarchers seem often to ignore the most obvious
common sense. They do "silly things,” if they do anything at all, and discover those things don't
work. Or they do clever things and hide their cleverness behind theoretical claims that just do
not secm refined or appropriate cnough to caich their own clevemess.

I want to claim that whatever might ail both theory itself and its relation to practice is not
incorrigible. For many enduring reasons, theoretical development is a principal hope for the
future. An uncertain relationship between theory and practice should be viewed as an indicator
of t?o llitdc and insufficiently sharp theoretical thinking rather than an indicator that theory is not
useful.

1 advocate cultivating community skills and predilections for theory. In this I am certainly not
alone, although I feel I am in the minority.

I begin assuming that there is face value in having good theory, and assess the current situation
in that light. Then I examine in more detail the standards by which my judgments are made. At
that point, I will briefly return to buttress the assumption that theory is valuable and not just an

1. There was no sharp boundary between Aristotic’s ciucs and his physics. After Newton
sharply formulated his physics, it is clear to us that it helps specifically with designing
effective and efficient automobiles, but it should not be expected to decide whether it is our
right to pollute.
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annoyance. Finally, I wn w0 how we might pursue being more theoretical. These last
suggestions are particularly important as they help define the practice of being theoretical as I see
it, and also provide some doable steps short of directly inventing deep and excellent theorics.

The State of the Art

Baldly, I think the state of the art with respect to theory is, indeed, quite poor. There are two
sides of this. First, there is no gencral agreement at the level of theories of learning or
instruction. There just aren’t any strong, broadly respectable and workable theories around.
Tom Romberg commented on one of the most thoroughly researched areas, children's arithmetic,
in a collected volume that represented the state of the art in 1982:

This copious literature has lacked an implicit body of intertwined theoretical and
methodological beliefs that permit selection, evaluation, and ¢riticism. (p. 1)

His hopes that the situation was imminently to change, on the "route to normal science," have not
been realized. As evidence, [ note that several of the contributors to that volume have moved
strongly away from their orientation at that time, and the rest have not converged into anything
like the common frame Romberg hoped would emerge. In areas closer 1o my own, like
“misconceptions” and conceptual change in science, [ am willing to be cven more aggressive in
asserting the theoretical backdrop is fragmented, diverse, and, if for no other reason than that,
unsatisfactory.

[ strongly believe that there were theoretically interesting threads in 1982, as there iare now.2
Several of the participants in the volume noted above had and have what I judge to be insightful
theoretical frames. Case and Steffe, et al., have, in their particular areas and in their own ways,
done Piaget one better.  Vergnaud's theoretical work on conceptual fields and “theorems in
action" is related to soine of my own thinking, and appeals to ine. The computationally-oriented
VanLehn and Greeno (Greeno, vintage 1982!) bridge to another powerful community of
theoretical thinkers who deserve attention and respect.

Yet, the list is awkwardly long if it is to represent strong and broad theoretical lines. The list is
alse labelled mostly by individuals who, for the most part, are the only ones pursuing their
theoretical lines, There is enormous diversity of styles and aesthetics evident, even if 1 limit
myself to what is represented in that one volume. All these facts show severe limitations in what
the research community can claim about its theoretical state.

Rather than theorics, there are broad communitics with similar and, arguably, swong meta-
theoretical commitments. Certainly there is an uministakable family resemblance among
"Pittsburgh school” computationalists, although you must chosc among ACT*, SOAR, etc.
Closer to home, many call themselves constructivists these days. However, constructivism is not
a well-developed theory, or even a class of theories. It lacks specificity, to take one obvious and
important measure. It never really comes down to saying, as far as [ can tell, exactly what and
when people will learn. That is why Case, Steffe, von Glasersfeld, myself and others who are, in
some ways, dyed-in-the-wool constructivists all pursue different theoretical lines.

Social constructivists, who arc increasingly visible in the cognitively oriented cducagion
community, or those who advocate a situated view of cognition, also share meta-theoretical
commitments. Yet there is precious little that even claims to be a compactly articulated theory,

2. Logking at the contributions, it's striking how little, in some sense, the situation has changed
in 9 years.
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as opposed to an elaborated point of view, and I am skeptical about the well-formedness and
clarity of these views.

So, we have precious litue in the way of “hard core” theory. I am not demcaning pre-theoretical
or "mere” meta-theoretical points of view. As a matter of fact, I expect that theories can only
emerge as claborations of these points of view, so we aeed to cultivate them as a means to better
theories. But they are not the theories we need.

There is no shame in the fact that we do not have broad and deep theories. I believe theory
development about learning and instruction is among the deepest and most difficult topics of
contemporary investigation. That anyone has only paliry theories to offer is disappointing, but
not surprising.

The second feature of the contemporary landscape of theory development is less cosmic than the
inherent difficulty of understanding knowledge and its development, and our current “pre.
Galilean" state with respect to this, That feature is, therefore, perhaps more something about
which we can and should immediately do something. The general level of theoretical awareness
and concemn in cducation and learning-oriented communities is quite impoverished. In the
extreme, investigators don’t know or care that they have no systematic framework to guide their
work, let alone a theory. They feel the most schematic principle deserves the name “theory.”

[ have been particularly struck with both the lack of theory and the lack of concem and critical
judgment with respect to theory in the context of reviewing papers for journals. The influence of
experimental psychology is strong. Experimental methods are well-developed, and there are
good criteria for having adequately carried out an experiment. Reviewers are attentive to the
apmess of particular statistical tests and general experimental design principles. Even most
standard paper organizational formats derive from what is nceded to present an experiment
coherently, Or course, this is not troublesome exvept in contrast to the way theoretical 1deas are
handled. © Ad hoc criteria abound, if any arc applied at all. As I suggested, I think quite
incoherent or simply unclear points of view are proposed as theories. Almost anything may get
past reviewers theoretically, while experiments are thoroughly vetted for cultivated community
practices and standards. Expsrimentally, confounds in experiment 1 are acknowledged and
mnevitably lead to a revised control in experiment 2. Theoretically, I long for the day that we
similarly a{knowledgc familiar gaps in our positions and invoke standard repair strategics for
future worl

I can cite a couple of other points at which the lack of concem for theory is vexing to me. I find
it amazing that graduate school requireraents are filled with "methodology" courses, while I've
not yet heard of one that focused on the development of theory. That indicates a feeling that
theory is either too easy to deserve attention, or else it is hopeless, at best an art that only the
tiniest fraction of researchers will develop.

1 also find that the way literature »s cited betrays a deeply empiricist and a-theoretical bent.
Articles are cited as "X showed that Y," where Y is some easily statable fact. My own reading of
these articles is almost always full of nuance. They might have suggested terms for analysis and
interpretations of data, but it is harglg ever compellingly clear that their terms of analysis are
optimally appropriate, or that very ditferent interpretations might not be as apt. Almost all the
work in providing other interpretations and, more important, pursuing the meanings of terms,
their integrity and general utility is left to the theoretically reflective reader. Similarly, much
research provides phenomena without explanations. Experts do this; novices do that. Any
theoretically inclined reader wants to know why?

In l:m nutshell, not many people care much about theories. Standards of practice are sorcly
lacking.
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How Do We Know Theoretical Work When We See 1i?

Given the diversity of standards of theory, I feel obligated to elaborate mine. All my educational
training was in physics, which may be the best developed empirical science in terms of theories.
There is danger in sayir =ny social science should be in any respect like any physical science,
but standards do not arise vy fiat.

I take three things from my experiences with physics. Each of thcse provides a “place to look"
and a "judgment to make" with respect to the state of theory in an empirical science. The first
has to do with the “texturc” of theories, their scope and structure as complex systems of
knowledge. The second concms how the quality of theory may be judged by the quality of data
that is acquired in its service. The third concems some signs that indicate genuine theoretical
progress Over COMMON $ENSe.

Theories are richly interconne -4 collections of ideas and are substantial precisely because of
their unusual integratios. 1 wwued from physics how much it takes to create an adequate
theoretical frame. This is nu: Jone in a day of thinking or in a flash of insight. It is not
explained in a paragraph or two. When scientists seem to have flashes and create revolutions,
usually it is easy to see how much his/her own work and that of the community has gone into
preparing for the "fiash." It is trivial, I think, to understand how cven Einstein’s stunning "de
nova" creations were tied in many and deep ways to cumulative work. And filling out the system
orcleaning up the foundations has typically taken at least decades, if not generations.

Fundamental physical theories are as rich and compelling (to those who hold them} as world
views. They are intricately connected to a stunning degree. There are many ways to present
them, yet there is such a solidity in their interconnected nature that, among adherants, some
experiments at least have entirely unambiguous interpretation and cleanly prescribed results.?
Every Newtonian knows the outcome of billiard ball collisions.

That kind of clarity sometimes allows decisive experiments within the general theoretical frame.*
Consider that so many scientists can agree that a little quiver of a meter reading can mean a
theory of stellar evolution has been substantially confirmed. Here, I'm thinking of the detection
of less than a score of neutrinos which has recently contributed vital substantiation to hypotheses
related to stellar evolution and super novas. That "little quiver” (metaphorically) represents the
detection of a neutrino, a massless particle that travels at the speed of light and can easily
penetrate the earth. The quiver rests on a strong fulcrum consisting of a stnningly reliable
understanding of the contexts of quivering, a transparent understanding of so many
interconnected, invisible but theoretically sensible ideas (like neutrinos), and a web of thousands
of experiments in which basic facts of quantum mechanics, relativity and particle physics have
not given us enough pause for concern that one would ordinarily think the experiments were
even about those fundamental theories. The fulcrum is so strong that it can be leveraged to
confirm a theory about stars, where we have never been. How remarkable!

3.1 am not talking about paradigms being overthrown (or confirmed) by critical experiments.
Instead, I am more referring to experiments whose outcome are 50 obvious that no practitioner
would bother performing them except to illustrate a fundamental point to a student. It would
be extramely unlikely that a competing theoretician would bother trying to upset a theory on
these core grounds.

4, Again, these are decisive within the paradigm.
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I will be critical of learning theories until they have some similar integrity. As a consequence,
for a long time to come we will be able, if we chose to, to critique the adequacy of given and
proposed theories. We should chose to do so as a means of advancing our understanding.

A practical implication of this position is that it should be natural and acceptable, if not expected,
that those advancing theories should spend as much time explaining the limits of their ideas as
expounding them. Much more than where the theory is empirically weak (e.g., what experiment
should be done next), this means exploring where it is conceptually weak, where it is unsharp,
hard to articulate, in danger of incoherence, and so on. Only if we iower our standards
substantially do these critical pursuits not seem worthwhile. Only if we pretend we are much
farther along than we are can it be seen as a sign of weakness to discuss these issues with respect
to our theoretical proposals.

There is no data withour theory. As much as science involves experiment, it is not a purely
inductive enterprise. This is so obviously true in contemporary physics that it hardly bears
remarking on. If one didn’t have a very well-developed notion of what those invisible neutrinos
were all about, the "data” of meter twitching I remarked on above would not be data at all. The
whole raticnale for the experiment and set of observations would not exist, nor would the fabric
of reasoning that makes the observations informative. Nobody would have been looking for the
quiver, and it would have been incomprehensible if they had accidentally seen it.

There are two things that tend to undermine the influence of the above observation. First,
scientific formulations in physics look like empirical generalities that one could stumble on by
doing a lot of measurements and finding a pattern in the results. One just has to measure a bunch
of forces, masses and accelerations and find out that, reliably, F = ma. Or you make a bunch of
resistors and “discover” Ohm’s Law. Why can’t we find the laws of leamning by correlating
parameters? 1 have only space for a "one-liner": It made no sense and would have been
impossible to measure forces or mass before at least some features of the theoretical framework
of which they were part existed. Measuring X requircs a lot of commitments about the nature of
X, the very first, but highly non-trivial part of which, is to believe X exists.’

The power of intuitive or commonsense knowledge aiso undermines the appreciation of how
important and necessary theoretical frames are in the production of data. That is, common sense,
or some slightly refined species, can substitute for a theoretical frame so easily that we just don’t
notice it. Every one of us is full of intuitions about the mind and learning. Some of these are
cultivated by the language we inherit -- "concepts,” "beliefs," even "to know"” and "knowledge" -
that have adequate purchase on the world to justify their everyday use. Some roots of these
frameworks arc probably more private, extrapolations of our own experiences in thinking and
learning, or exwrapolations of what we observe in others. We can, in these intuitive frames,
"observe things" and draw fairly adequate conclusions under some circumstances. For example,
we arc not outstripping the power of common sense when we say with conviction, "He doesn’t
know [ went out with his girl friend."

It is common to say any observation implies a theory. Observations certainly imply a framework
of ideas, but not at all a deep theory by the standards implied above. (Hence a-theoretical
empiricism does not mean without a framework, but without an adequate scientific one.) The
problem is that intuitive frames are not powerful enough to constiwte sufficient theories of the
mind in general and of learning in panicular. We should draw them out when we rely on them,
and critique and refine them to produce more scientifically adequate frameworks.

5. See diSessa, 1991-b, for an articulation of what might be involved in thinking to measure a
quantity und carrying that process out.
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Since theory, in some respects and on some occasions, defines data, we can sometimes judge the
quality of theory by the quality of its data. I provide a brief and clearly elliptical example where
I judge the problem with learning data is in the theory on which the data depends. In this case.
the problem seems to me to be both the clarity and integrity of the ideas themselves, and also
hidden intuitive presumptions that, when brought to light, seem dubious.

Some “theories" of learning provide -hat learning occurs when the learner is disequilibrated by
new ideas or observations that compete, in some sense, with old ones. I think the commonsense
roots of such ideas are evident. Everyone knows the feeling of being presented with
"destabilizing" information that doesn’t jibe with our current take on the world. We all, also,
sometimes follow that feeling with a consideration of the circumstances of our knowing what we
think we know, and we sometimes “resolve” the difficulty by realigning our existing "beliefs.”
Some likely inadequacies of this kind of theory (as sketchily as I've presented it) are not hard to
find. First, it is drawn from a particular class of experiences where we have reflective access to
our epistemic state: We are aware something is wrong. I take it as the right minimal assumption
that this awareness is only possible in certain circumstances where our meta-awareness of
knowing processes is above a certain threshold. Second, we must also consider the generality of
the processes by which we "decide" to reorganize our beliefs, and thc means by which "we"
carry out that reorganization. Indeed, the sense of self that is indisputable in commonsense
thinking about thinking is hardly something we can, to be theoretically self-conscious, take for
granted. Sometimes we can act as an agent on our thoughts in a semireflective way.
Sometimes, I am quite sure, we cannot. More technically, we could ask what exactly constitutes
the state of disequilibrium. If we deprive ourselves of the common sense that says "I've had that
feeling!" how do we describe in any generic terms what constitutes that feeling, especially in
such a way as to apply to every event of leamning? I could also enter into discussion of the
empirical limitations of such theory. To put it crudely, there are such a host of details about
learning that depend on the specifics of the knowledge to be learned and the individual as he/she
comes to the leaming context, that it seems unlikely that disequilibration can possibly account
for them. If disequilibration uniformly exists, I believe there must be hundreds of different kinds
of it. At least, this is a thing to be seriously worried about.

Respectable theory, when we get it, cleanly transcends common sense. My last point of
extrapolation from physics to our expectations for theory in education really follows from
discussion of the above two points. Unless we can unamuiguously point to how we have
transcended -- in generality, precision, clarity, and justfiability -- the intuitive sense of
mechanism we all build in daily life observing and thinking about psychological matters, we just
won’t have adequately prepared theoretical ground. I'll pick one focus for this exposition, but I
think the point is much broader. Commonsense vocabulary just won’t do the job of providing
the technical terms of a theory of learning. When we stop with "beliefs,” "knowledge,"
"conc?ipts," and so on, even with a few phrases of claboration, we are on extremely shaky
groun

To put an edge on this, physics theorizing has always involved ontological innovation. The
“force” in Newton's theory is a new entity that simply does not exist in common sense. Even
mass took on a much refined interpretation to make sense in that theory. More cvidently,
quantum wave functions did not exist before quantum mechanics. My presumption is that we
will not have adequate theoretical purchase on learning until concepts, facts, beliefs, skills, and
all the rest of our commeon sense about knowledge and leaming become reinterpreted within a
fabric of more precise and less intuitively loaded terms. Please, do not mistake: I'm not
appealing for obscure language, or for proliferation of new words. I'm appealing for the clarity
that can come with ontological innovation.
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Defending Against "Social Science Is Different”

I have three defenses against the claim that the above is simply an unwarranted extrapolation
from physical to social sciences, which I can only briefly pursue. First, I believe all of those foci
are epistemological, not just saying "cognition should be like physics.” That is, they can be
given motivation independent of their appearance in physics. I don’t think, for example, that the
theory dependence of data is at all unique to physics. I do believe that transcending
commonsense frameworks is an important task to pursue, and a reasonable measure of success
for any empirical science.

Second, let me demonstrate the care involved in selecting these points to exwrapolate by listing
characteristics I do not extrapolate.

1. Mathematics. 1 deliberately did not pick mathematization as a core characteristic to
extrapolate. In the first instance, 1 believe explanation is a higher priority goal than
mathematization. As well, I don't believe the mathematics of mind descriptions will be
very much like the mathematics of physics; I expect it will be more like the formalisms of
computation. This is, of course, a long story of its own, but it at least means
simpleminded expectations about the form of knowledge and learning theories are to be
guarded against.

2. Sense of mechanism. 1 don't believe the basic sense of what terms and forms are
explanatory can be imported from physics. In particular, I don’t expect that reductionist
accounts, for example, a purely "brain science" approach to mind, will prove successful.
The distinction between correlation and explanation is fundamental to any science, and
deciding which is which is not a matter to prejudge on the basis of other sciences. My
advocacy of theory in this paper is precisely to say we must do this for ourselves.

3. Methods. Every science needs its own methods adapted to its own theories and to the
observational circumstances available to it. We can’t blindly appropriate empirical
techniques that work for sciences that have much more theoretically sound, or simply
different, ontologies. In contrast to physics, I believe "empathetic techniques” that use
(carefully and with many qualifications) our ability to sense our own thinking, and react
instinctively to aspects of others' may be quite helpful. We don’t have recourse to this in
most areas of physics (though we do, in some degree, in our kinesthetic senses for the
case of Newtonian mechanics).

Third, I explicitly recognize the many arguments against expecting theories in social sciences to
be at all like those of physical sciences: "Social sciences are too complex and contingent to
admit of theories of the sort we find in physical sciences.” Or, "Social sciences are and must be
fundamentally interpretive, not predictive." Without pretending to argue the points, I note that 1
simply have not found the arguments compelling for reasons like the following:

1. Such claims are too often simply assertional, without providing a theoretical basis for the
meaning of the "fundamentally differentiating auribute,” or how it opposes its supposed
antithesis in the physical sciences.

2. Even if the distinctions turn out to be well-founded, one has the obligation to explain why
they bear on the possibility of good theories. 1 don’t see why the observer's being like
the observed means that there can be no clean conceptualization of the observed.

3. Claims of inwrinsic difference between social and physical sciences often are drawn from
caricatures of physical science, far from what I experienced as a physicist. My

experience of physics was of highly integrated explanatory systems that involved
important ontological innovation. [t was not of "narrow and mechanized prediction.”
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Similarly, to think that physical systems are easy to observe simply does not jibe with the
fact that the appropriate thing to "observe” may be a wave function! There was plenty of
argument and "interpretation” around in the early stages of any of the foundational
physical theories.

Physical theory deals with systems of 10% particles and chaotic systems that are, in some
ways, strictly unpredictable. How, exactly, is the complexity of human systems
fundamentally different so they are intractable by theory that resembles, only in some
basic epistemological senses, physical theory?

4. Many of these claims seem to be simple restatements of the fact that we don’t have good
theories, drawing the conclusion, somehow, that we can’t have such theories. "History
shows that learning theory has had a poor track record in its application, in education.”
Of course it does. It also shows this has been true of every field of inquiry before it
developed deep scientific foundations.

I've explained and, to some extent, justified my standards and judgment that we don’t have
excellent theories yet, but that they might be achievable. It is possible to think we are so far from
that kind of theory that applying such standards to educational or psychological theory is
ludicrous. I think, in contrast, that we may develop a tremendously helpful set of at least interim,
if not absolute, standards and heuristic moves to advance our understanding out of the realization
that we are not done yet. Realism is almost always the best policy. Although it is exciting to
believe we're on the edge of really major breakthroughs, if we have not made them already, it is
probably more important to have a cultivated sense of how far we have actually gone, and how
far and in what directions we need to move. 1 prefer to avoid accepting "wimpy" epistemological
standards that claim social sciences just won’t ever and shouldn’t strive to meet at least some
strong standards in some respect like those physics has achieved.

As I have indicated how difficult I believe it is to achieve deep theoretical understanding, I am
quite sure we will never achieve it if we don’t set our minds to it. This is a kind of P