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nal Preface11111111
MUM

This book grew out ofa conference sponsored by the Educational
Testing Service and tne University of Wisconsin's National Center for
Research in Mathematical Sciences Education. The conference was held in
Princeton, New jersey, and its purpose was to facilitate the work of a group
of scholars who are especially interested in the assessment of higher-order
understandings and processes in foundation-level (pre-high school) math-
ematics. The conference brought together an international team of scholars
representing diverse perspectives: mathematicians, mathematics educators,
developmental psychologists, technology specialists, psychometricians, and
curriculum developers.

Discussions at the conference focused on issues such as the
purposes of assessment, guidelines for producing and scoring "real-life"
assessment activities, and the meanings of such terms as "deeper and higher-
order understanding," "cognitive objectives," and "authentic mathematical
activities." International trends were highlighted, as well as current prob-
lems, challenges, and opportunities within the United States.

Assessment was viewed as a critical component of complex, dy-
namic, and continually adapting educational systems. For example, during
the time that chapters in this book were being written, sweeping changes in
mathematics education were being initiated in response to powerful recent
advances in technology, cognitive psychology, and mathematics, as well as to
numerous public demands for educational reform. These changes have
already resulted in significant reappraisals of what it means to understand
mathematics, of the nature of mathematics teaching and learning, and of
the real- life situations in which mathematics is useful. The challenge is to
pursue assessment-related initiatives that are systemically valid, in the sense
that they work to complement and enhance other improvements in the
educational system rather than acting as an impediment to badly needed
curriculum reforms.

To address these issues, most chapters in this book focus on
clarifying and articulating the goals of assessment and instruction, and they
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stress the content of assessment above its mode of delivery. For example,
computer- or portfolio-based assessments are interpreted asmeans to ends,
not as ends in themselves, and assessment is conceived as an ongoing
documentation process, seamless with instruction, whose quality hinges
upon its ability to provide complete and appropriate informationas needed
to inform priorities in instructional decision making.

This book is intended for researchers and curriculum developers
in mathematics education, for teachers of mathematics, for those involved
in the mathematical and pedagogical preparation of mathematics teachers,
and for graduate students in mathematics education. It tackles some of the
most complicated issues related to assessment, and it offers fresh perspec-
tives from leaders in the fieldwith the hope that the ultimate consumer in
the instruction/assessment enterprise, the individual student, will reclaim
his and her potential for self-directed mathematics learning.

We are grateful to the authors of these chapters, who contributed
their expertise and energy to this project, and to Gail Guadagnino at
Educational Testing Service for typing and preparing the manuscripts.

Ridsard Lesh
Susan f. Lamm

April 1992

Note: The work described in chapters 2, 3, 4,10, 11, 12, 13, 14, 15, and 16 was
supported in part by the National Science Foundation. Any opinions, findings,
and conclusions expressed are those of the authors and do not necessarily reflect
the views of the National Science Foundation.
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INTRODUCTION

Trends, Goals,
and Priorities
in Mathematics
Assessment

Richard Lesh and
Susan J. Lemon

Today, there are strong pressures to move away
from traditional multiple-choice or short-answer tests, toward alternative
forms of assessment that focus on "real-life" situations, "authentic" math-
ematics, and "performance" activities. However, in spite of the fact that
organizations such as the National Council of Teachers of Mathematics have
made significant progress in reaching a national consensus on curriculum
and evaluation standards for school mathematics (NCTM, 1989), what we
want to move away from is clearer than what we want to move toward in
assessment reform. For example, in the first sentence of this paragraph,
each of the words in quotation marks tends to be a subject of debate among
mathematics educators.

What is meant by real-life situations? or authentic mathematics?or
performance activities? The main purpose of this book is to address these
kinds of questions in a form that is relevant to priority decision-m ng
issues that arise during the construction of new modes of assessYfient.
Authors in this book were chosen partly because of the leadership roles they
have played in reform efforts aimed at high-stakes testing programs in the
United States, Great Britain, and the Netherlands. But they were also
selected because of their interests and experience in developing materials
that contribute to both instruction and assessment in the classroom.

3
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4

This chapter is divided into three sections. The first section
describes the main types of assessment emphasized throughout this book,
and several distinctions are described that have influenced mathematics
educators' views about the purposes of assessment For example, some
especially relevant distinctions are reflected in similarities and differences
among the words examine, document, assess, evaluate, test, and mann. The
second section emphasizes several ways that current assessment interests
developed out of earlier curriculum reform efforts. For example, in past
attempts at curriculum reform, it became clear that piecemeal approaches
seldom succeeded, especially if the neglected areas involved assessment and
teacher education. Such lessons are especially relevant, because it seems
unlikely that piecemeal approaches to assessment reform will work any
better than they did for curriculum reform in general. Even when attention
is focused on assessment, teacher education, program implementation, and
the improvement of curriculum materials and instruction must still be taken
into account The third section gives an overview of the remainder of the
booknew views about the objectives of instruction and assessment, new
types of items and assessment procedures, new perspectives about class-
room-based assessment, new types of reports and response interpretation
schemes, and future directions for research and development related to
assessment.

SOME DISTINCTIONS THAT INFLUENCE VIEWS ABOUT ASSESSMENT

The aim of educational assessment is to produce information to
assist in educational decision making, where the decision makers include
administrators, policy makers, the public, parents, teachers, and students
themselves. None of these consumers of assessment information can be
ignored. But even though the high-stakes, accept-or-reject decisions of
administrators and other policy makers are important, the authors in this
book generally consider the needs of students, parents, and teachers as
priorities, because their main goals are to facilitate learning.

In an age ofinformation, educational assessment systems must be
able to gather information from a variety of sources, not just tests, and they
must provide information about individual students, groups of students,
teachers of students, and programs for students. Also, the information itself
must often include multidimensional profiles of a variety of achievements
and abilities, and descriptions of relevant conditions under which individual
profiles were developed. Furthermore, the information must be displayed
in a form that is simple without being simplistic, and that also meets the
needs of a variety of decision makers and decision-making purposes.

14



Leah and Lamon

No single source of information can be expected to serve all
purposes, and no single characterization of students (or groups, or teachers,
or programs) is appropriate for all decision makers and decision-making
issues. For example, in the assessment of individual students, when the goal
is to document developing knowledge and abilities, some of the most useful
sources of information involve problem-solving activities in which students
simultaneously learn and document what they are learning. But when
activities contribute to both learning and assessment, traditional concep-
tions of reliability must be revised or extended, because performance does
not remain invariant across a string of equivalent tasks and the difficulty of
a given task depends on whether it occurs early or late in the sequence.

Similarly, when attention shifts from multiple-choice or short-
answer tests to project-sized activities (such as those that are emphasized in
portfolio forms of assessment), the notion of validity generally needs to be
expanded to include at least the following issues:

Construct validity: Are the constructs that are being measured
(or described) aligned with national curriculum standards? Do
the understandings and abilities that are emphasized reflect a
representative sample of those that contribute to success in a
technology-based age of information?

Decision validity: Is the information collected, analyzed, orga-
nized, aggregated, and displayed in a form appropriate to the
entities that are being assessed? Are the results appropriate for
the decision-making issues that are priorities to address?

Systemic validity: Does the assessment program as a whole help
to induce curricular and instructional changes that foster the
development of the constructs that are being monitored?

Predictive validity: Are results of the assessment correlated with
performance in other relevant areas (such as success on tests in
beginning college courses)?

When attention focuses on instructional decision making by
teachers (and others who are familiar with students) rather than on policy
decisions by administrators (and others who are not familiar with students) ,

the risks and benefits associated with assessment results tend to change. For
example, rapid turn-around times sometimes become more important than
high precision or high accuracy or high reliability, and rich and meaningful

5
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reports often become more important than those that simply use "g"
(general aptitude) as a euphemism for not knowing what is being tested.

In a technology-based society, assessment opportunities are influ-
enced by the fact that reports can achieve simplicity without reducing all
information to a single number. Simplicity can often be achieved by using
reports that are computer-based, graphics-based, interactive, and inquiry
oriented, and that focus on specific questions from specific people in
specific situations.

For the alternative approaches to assessment that are emphasized
in tfOs book, it is important to underscore the fact that the authors are not
simply concerned about developing new modes of assessment They are
primarily concerned about changing the substance of what is being mea-
sured. That is, they are not simply concerned about making minor changes
to testing strategies (such as discontinuing the use of multiple-choice items,
or focusing on computer-adaptive sequences of questions rather than fixed
pencil-and-paper formats). They are concerned about the fact that, when
most large-scale, high-stakes standardized tests are evaluated in terms of
their alignment with the nationally endorsed Curriculum and Evaluation
Standards for School Mathematics (NCTM, 1989), the understandings and
abilities that are assessed tend to represent only narrow, obsolete, and
untypical conceptions about (i) the nature of mathematics, (ii) the nature
of real-life situations in which mathematics is useful in our modern world,
and (iii) the nature of the knowledge and abilities that contribute to success
in the preceding kinds of situations.

In one way or another, nearly every author in this book focuses on
fundamental issues that involve clarifying the nature of children's math-
ematical knowledge; they also focus on developing operational definitions
ofwhat it means to "understand" the foundations of elementary mathemat-
ics when special attention is given to "deeper and higher-order conceptions"
of foundation-level concepts, procedures, and principles. The authors in
this book are mainly interested in (i) examining students' abilities, (ii)
documenting their achievements, and (iii) assessing their progress. They are
not especially interested in testing measuring, and evaluating. Although
these words are often used interchangeably, their meanings are not identical.

Examining, Documenting, Assessing, Testing, Measuring, Evaluating

Unless certain distinctions are sorted out with respect to the
preceding words, they are likely to cause confusion when readers try to
interpret the chapters in this book. Therefore, it is useful to consider the

16
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following contrasting definitions.

Examining: To examine something means inspecting it closely.

Documenting: To document something means gathering tangible
evidence to demonstrate what occurred.

Assessing. To assess something means describing its current
stateprobably with reference to some conceptual, or proce-
dural, or developmental landmarks.

Is Testing: To test something means creating an ordeal (or a
barrier, or a filter) to inform decisions about acceptance or
rejection, passing or failing.

Measuring: To measure something means specifying both "how
much" and "of what" (using some well specified unit).

Evaluating: To evaluate something means assigning a value to it.

The point of emphasizing the preceding distinctions is that it is
possible to examine students, and to monitor their progress, without relying
on a test (or ether nonproductive ordeals). Also, it is possible to document
students' achievements and abilities without measuring them in terms of
some hypothesized abstract quantity and without reducing relevant infor-
mation to a single-number score (or letter grade). Furthermore, it is
possible to assess where students are and where they need to go (with respect
to well- known landmarks of mathematical understandings and abilities)
without assigning values to their current states and without comparing
students with one another along a simplistic "good-bad" scale. In fact,
individuals who are 'good " in mathematics often have exceedingly different profiles
of strengths and weaknesses; learning progress can occur along a variety of paths and
dimensions; accurate interpretations of achievements and abilities usually depend on
the conditions under which development occurred.

In current assessment reform efforts, the goal is not simply to
produce new kinds of tests. The authors in this book generally have in mind
a two-pronged approach to assessment reform: first, to increase the authen-
ticity of tests, where authenticity is measured in terms of alignment with
standards such as those published by the National Council of Teachers of
Mathematics; and second, and equally important, to increase the credibility
and fairness of assessment-relevant information taken from other sources,
such as students' extended projects, or teachers' classroom observations.

17
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LESSONS FROM PIECEMEAL APPROACNES TO CURRICULUM REFORM

Leaders in mathematics education have come to realize that
piecemeal approaches to curriculum reform seldom succeed. The Math-
ematical Sciences Education Board writes:

Few traces remain of the expensive, major curriculum development
projects so prominent in the 1960s and 1970s. These free-standing
curricula, which were intended to be adopted intact by schools, were
naive about the process of change. Teachers were not directly
involved in the development, and acceptance ofnew curricula was
viewed as a top-down imposition. [Also] commonly employed methods of
evaluation were themselves obstacles to the teaching of beyond- minimum
competencies. (MSEB, 1990, p. 12; emphasis added)

Similarly, in the National Council of Teachers of Mathematics'recent series,
Setting a Research Agenda for Mathematics Education (1989), Romberg
describes another reason why many past curriculum reform efforts seldom
achieved lasting success:

In spite of the best intentions of developers and implementors, it
was unreasonable to expect that new products or programs would be
used as intended in most schools and classrooms. Thereason for this
is that public schools as they now operate are integrated social
systems. Tinkering with parts, such as changing textbooks or the
number of required courses, fails to change other components of
the system. The traditions of the system force new products to be
used in old ways. Current educational practice is based on a coher-
ent set of ideas about goals, knowledge, work, and technology that
came from a set of "scientific management" principles growing out
of the industrial revolution of the past century. These ideas about
schooling need to be challenged and replaced with an equally
coherent set of practices in light of the economic and social revolu-
tion in which we are now engaged. Current schoolmathematics operates
within a coherent system; reform will happen only ifan equally coherent
system replaces it. (NCTM, 1989, p. 21; emphasis added)

High-stakes tests are widely regarded as powerful leverage points
to influence curriculum reform, because such tests tend to be aimed
precisely at the infrastructure of schooling. First, tests are used to inform
critical policy decisions that mold and shape the education system, and
second, tests are used to define, clarify, and monitor goals of the system that
is created. Therefore, for better or for worse, it is clear that high-stakes tests

13
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strongly influence both what is taught and how it is taught in mathematics
education (Romberg, Zatinnia, and Williams, 1989). Such tests are not
simply neutral indicators of learning outcomes. When rewards, punish-
ments, and opportunities are at stake, they tend to become powerful compo-
nents of instruction itself. Consequently, relevant professional and govern-
mental organizations are increasingly making demands, such as "Discon-
tinue use of standardized tests that are misaligned with national standards for
curriculum" (Mathematical Sciences Education Board, 1990, p. 21).

Even though mathematics educators have come to realize that
piecemeal approaches to curriculum reform are not sufficient, it is not
widely recognized that piecemeal approaches to assessment will be equally
unlikely to succeed. Recent policy statements from relevant professional
and governmental organizations have made significant progress toward
clarifying the nature of the most important goals of instruction, and
innovative testing programs have produced a number of examples of test
items and tests. However, a number of important issues that extend beyond
the level of individual problems and isolated objectives need to be ad-
dressed. Consider the following:

Adopting new statements of objectives may do little good if
these objectives continue to be expressed as simple unorga-
nized and unweighted lists of rules that convert to test items
focusing on either (i) complex strings of low-level facts and
skills which continue to be treated as though they should be
mastered one at a time and in isolation, or (ii) global heuristics,
strategies, or processes which are treated as though they
function independently from any substantive mathematical
ideas.

Not using multiple-choice items may do little good if we con-
tinue to use problems and scoring procedures that impose
artificial constraints by allowing only a single type and level of
correct answer, because such constraints tend to trivialize the
interpretation and model-refinement phases of problems where
deeper and higher-order mathematical understandings tend to
be emphasized.

Gathering assessment information from new types of situations
(such as students' project portfolios, or teachers' classroom
observations) may do little good if the conceptually rich and
instructionally relevant information that is gathered continues
to be either collapsed onto a single number line, or left in an

9
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unsimplified or uninterpreted form that fails to address the
needs of many important types of educational decision makers.

For assessment, just as for instruction, special attention should be
focused on components of the system that directly improve the infrastruc-
ture of our education system. This goal can only be accomplished by dealing
directly with the knowledge and beliefs of teachers, students, parents,
administrators, and pclicy makers, especially their understandings about (i)
the nature of mathematics, (ii) the nature of real-life learning and problem-
solving situations, and (iii) the nature of abilities that contribute to success
when new types of mathematical ideas and tools are used in new kinds of
problem-solving situations.

To address such issues, it is useful to shift attention beyond
traditional "bottom-up" approaches to assessment that begin by developing
new types of objectives and then proceed to introduce new types of test
items, tests, and reports. Sometimes it is useful to adopt a "top -down"
approach that emphasizes the following questions: (i) What decision-
making issues are priorities for educators to address? (ii) What kinds of
reports are needed to inform these decisions? (iii) What types of informa-
tion and data sources- -testing formats, item types, scoring procedures,
aggregation techniques- -are appropriate for such reports?

If the bottom-up and top-down approachesare coordinated, then
issues that need to be addressed include the following:

:Jew levels and types of instructional objectives need to be empha-
sized, including deeper and higher-order understandings of
cognitive objectives that are not simply complex sequences of
behavioral objectives and that are also not simply global process
objectives or affective objectives.

New levels and types of problem-solving activities must be empha-
sized, ranging from clearly defined pure mathematics problems
to more complex and open-ended real-life projects in which
realistic time, tools, and resources are available.

New sources of documentation for achievement must be consid-
ered, including not only innovative new types of tests, but also
students' project portfolios, teachers' classroom observations,
one-to-one clinical interviews, and computer-based instructional
activities.

11 20
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New types of response interpretation procedures must be developed,
including those that go beyond assigning one-dimensional
scores or letter grades to identify profiles of strengths and
needs for individual students.

New data analysis mc 'ids and procedures must be developed based
on assumptions that consistent with (or at least not flagrantly
inconsistent with) accepted views about the nature of mathemat-
ics, learning, and problem solving in real life situations.

New types of learning progress reports must be generated that are
simple and yet not simplistic, and that (i) integrate informa-
tion from a variety of sources, (ii) focus on patterns and trends
in data, and (iii) inform a variety of decision makers and
decision-making issues.

New decision makers and new decision-making issues must be treated
as priorities, where the decision makers indude students, teachers,
parents, and administrators, and the issues range from program
accountability to diagnostic analyses of learning progress for
individual students, with emphasis on equity and validity.

AN OVERVIEW OF THE BOOK

This book is divided into five parts. The first part describes some
critical conceptual foundations for a new view of assessment in mathematics
education. The second part focuses on innovative new items and assessment
procedures. The third part describes several emerging new perspectives
about classroom-based assessment. The fourth part focuses on examples of
some new kinds of reports and response interpretation schemes that will be
needed to support these broader views of assessment. Finally, the fifth part
shifts attention toward some important future directions for assessment-
related research and development and toward some practical matters that
can subvert even assessment programs that are based on strong and sound
conceptual foundations.

Foundations for a New View of Mathematics Assessment

Opening chapters of this book focus on recent developments in
cognitive science, where a great deal of attention has been given to investi-
gations dealing with the nature and development of studen ts' mathematical
knowledge and abilities. A prominent theme is that a clear de finition of what
is being assessed should guide the assessment process.
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In chapter 2, Lesh and Lamon describe useful ways to think about
the nature of authentic mathematical activities. In particular, they focus on
responses to the following kinds of questions: What are examples of impor-
tant cognitive objectives in mathematics instruction? How are cognitive
objectives different from (yet related to) behavioral objectives, process
objectives, or affective objectives which have been emphasized in the past?
What does it mean to develop deeper or higher-order understandings of
elementary cognitive objectives in mathematics? How can instruction and
assessment be designed to elicit information regarding students' higher-
order understandings?

In chapter 3, Goldin extends his earlier research on task ii.riables
and proposes a more comprehensive assessment framework built upon not
only task analyses but also idea analyses and response analyses. He also deals
with questions of the following type: How can the cognitive processes
themselves become the objects of assessment? How are these process objec-
fives linked to content understanding and to the growth of more sophisti-
cated conceptualizations of mathematical ideas?

In chapter 4, Chazan and Yerushalmy focus on the domain of
geometry and provide examples in which cognitive processes, such as
verifying, conjecturing, and generalizing, are the objects of assessment.
They also describe ways to assess higher-order inquiry skills which are some
of the main instructional goals of innovative, computer-based instruction
with computer-based tools such as The Geometric Supposer.

lesevative New Types of Items and Assessment Processes

The second part of this book highlights recent British and Dutch
experiences in innovative, large-scale assessment. The juxtaposition of a
specific-to-general approach and a general-to-specific approach to assess-
ment reform also provides a tacit comparison of two research and develop-
ment paradigms.

In chapters 5 and 6, Bell, Burkhardt, and Swan describe numerous
examples of assessment tasks and marking schemes that have been used by
examination boards in the United Kingdom, and in chapter 7, they also
reflect on assessment-related issues that need to be addressed to effect
curriculum change. In particular, they describe problems encountered in
their assessment reform efforts and solutions that have proven to be
effective in dealing with such problems.

In chapters 8 and 9, de Lange and Streefland give details and
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examples to illustrate the types of mathematics assessments that have been
emphasized in the Netherlands, where the development of well-articulated
assessment goals and procedures have been closely linked to instructional-
based research and curriculum development. De Lange discusses several
creative formats for assessing high-level goals, including free productions,
two-stage tasks, and test-tests (tests that consist of designing tests). Streefland
explains the nature of realistic instruction designed to facilitate thinking
strategies and progressive mathematization.

New Perspectives Abut Classroom-based Assessment

In contrast to preceding chapters on macroplans for assessment
reform, the chapters in Part III focus on assessment-relevant information
that is based on classroom observations in American schools and on one-to-
one teacher/student interviews. A common theme in this section is that an
accurate profile of a student's mathematical understandings depends on
the use of multiple techniques that are explicitly designed to overcome the
limitations of any one method of capturing students' knowledge and
thought processes.

In chapter 10, Maher, Davis, and Alston examine assessment on a
microscopic level. That is, one teacher, on the basis of a brief classroom
observation, makes judgments about the correctness of children's thinking.

In chapter 11, Ginsburg, Lopez, Mukhopadhyay, Yamamoto, Willis,
and Kelly describe how combinations of screening instruments, probes,
modified clinical interview techniques, and classroom observations can help
teachers assess students' thinking in whole-class situations. They address
questions such as, How can standard tests be improved to reflect a broader
conception ofwhat it means to think mathematically? How can information
from multiple sources be integrated to give a more complete description of
diverse aspects of understanding?

New Types of Reports led Response Interpretation Schemes

The fourth part of the book focuses on the interpretation, analysis,
and reporting of assessment information based on new types of statistical
models built on assumptions derived from modern cognitive psychology.

In chapter 12, Mislevy, Yamamoto, and Anacker discuss several
recent advances in measurement and statistics that have been made by
researchers who are aiming to connect quantitative models to qualitative
differences in student thinking. Questions addressed include the following:
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What kind of statistical models seem particularly promising to describe
. children's mathematical thinking? How can measurement procedures cap-
ture distinctions between critical states of understanding?

14

In chapter 13, Lesh and Lamon use the theoretical perspectives
described in earlier chapters to focus on specific problems about ratio and
proportion. Questions that are addressed include the following: What are
some of common misconceptions about the formulation of "good" prob-
lems and "good" responses? What are some specific cognitive objectives of
instruction about ratios and proportions? How can reliable scores be
produced for problems with multiple solution paths which have different
levels of difficulty?

In chapter 14, Lesh, Lamon, Gong, and Post describe one way to
represent complex profiles of student abilities and achievement. They use
computer-generated "learning progress maps" which succeed in being
simple (from the point of view of educational decision makers) because they
are graphics-based, interactive, and inquiry oriented, with details that are
displayed only when they are requested by individual decision makers. That
is, the reports are versatile enough to aggregate and display information in
alternative ways to address a variety of decision-making issues.

Future Directions aad Practical Concerns

In chapter 15, Lesh, Lamon, Lester, and Behr describe some of the
most important assumptions underlying traditional types of standardized
testing compared with the types of alternative assessments emphasized in
this book. Chapter 15 also describes several priorities for future research
(with special attention being given to issues related to equity, technology, and
teacher education), and it concludes wi th specific examples taken from three
current closely related projects thatwere explicitly designed to find practical
ways to implement recommendations made in other chapters of this book.

In chapter 16, Schwartz summarizes conclusions reached by a
series of recent projects focusing on "The Prices of Secrecy: The Social,
Intellectual, and Psychological Costs of Current Assessment Practice"
(Schwartz and Viator, 1990).

SUMMARY

It is our hope that this book will provide both general principles
and specific examples to help support curriculum reform efforts that
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go beyond testing (for screening) to assessment (for informed
decision making);

go beyond a few discrete assessment events to the seamless
integration of instruction and assessment;

go beyond behavioral objectives to cognitive objectives;

go beyond multiple choice tests to realistic tasks;

go beyond right answers to reasoned answers;

go beyond one-number scores to multi-dimensional profiles;
and

go beyond report cards to learning progress maps.
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Assessing
Authentic
Mathematical
Performance

Richard Lesh and
Susan J. Lemon

This chapter addresses the following four ques-
tions: What are authentic mathematical activities? What kind of instruc-
tional objectives are priorities to address? What kind of problems are
particularly useful for examining these priorities? What are some rules of
thumb for creating such problems? To explain our answers to these ques-
tions, it is necessary to focus on the concept of modelsin mathematics, in
cognitive psychology, and in everyday situations.

CHARACTERISTICS OF AUTHENTIC MATHEMATICAL ACTIVITIES

Authentic mathematical activities are actual work samples taken
from a representative collection of activities that are meaningful and
important in their own right. They are not just surrogates for mathematical
activities that are important in "real-life" situations.

To verify the mathematical authenticity of a collection of activities
(beyond simply evaluating the authenticity of isolated items), both positively
and negatively oriented criteria are relevant. That is, the activities as a whole
should require students to use a representative sample of the knowledge and
abilities that reflect targeted levels of competence in the field, and at the
same time, the activities should avoid narrow, biased, obsolete, or
instructionally counter-productive conceptions about the nature of mathe-
matics, the nature of realistic problem-solving situations in which mathe-
matics is useful, and the varieties of mathematical capabilities that are
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productive al these situations. Stated simply, authentic mathematical activi-
ties are those that involve: (1) real mathematics, (ii) realistic situations, (iii)
questions or issues that might actually occur in a real-life situation, and (iv)
realistic tools and resources. The most important kinds of problem-solving
activities that we have in mind have the following characteristics:

The problem solutions tend to require at least 5 to 50 minutes
to construct.

The contexts might reasonably occur in the students' everyday
lives.

The issues fit the interests and experiences of targeted students.

The tasks encourage students to engage their personal
knowledge, experience, and sense-making abilities.

The objectives emphasize deeper and higher-order under-
standings and processes in elementary mathematics.

The solution procedures allow students to use realistic tools and
resources (such as hand-held .calculators, pocket computers,
notebook computers, consultants, colleagues, or "how-to"
manuals).

The activities generally require more than simply answering a
specific question. They involve developing a mathematical
model that can be used to describe, explain, manipulate, or
predict the behavior of a variety of systems that occur in every-
day situations.

The activities contribute to both learning and assessment.

The evaluation procedures recognize and reward more than a
single type and level of correct response.

CHARACTERISTICS OF PRIORITY INF ,RUCTIONAL OBJECTIVES

As noted in chapter 1, the revolution in mathematics education of
the past decade resulted from powerful advances in technology, cognitive
psychology, mathematics, and mathematics education, together with dra-
matic changes in demands fora,, competitive work force. Behavioral psychol-
ogy (based on factual and procedural rules) has given way to cognitive
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psychology (based on models for making sense of real-life experiences), and
technology-based tools have radically expanded the kinds of situations in
which mathematics is useful, while simultaneously increasing the kinds of
mathematics that are useful and the kinds of people who use mathematics
on a daily basis.

In response to these trends, professional and governmental orga-
nizations have reached an unprecedented, theoretically sound, and future-
oriented new consensus about the foundations of mathematics in an age of
information (see, for example, National Council of Teachers of Mathemat-
ics [NCTM], 1989). To address the new goals of mathematics instruction,
alternative assessment programs are being demanded, created, and refined
from California to Connecticut, from Chicago to Houston, and from
Australia to the Netherlands.

A hallmark of most new programs is a focus on "authentic
performance" rather than on simply measuring some undefined factor. In
general, new programs emphasize that it is not sufficient merely to replace
multiple-choice items with fill-in-the-blank counterparts. Realistic applied
problems are not created by just starting with an abstract algebraic (or
arithmetic, or geometric) sentence and replacing the abstract symbols with
the names of real objects. Unfortunately, clarity about goals for instruction
does not necessarily result in equally clear operational definitions (that is,
procedures and criteria) for measuring the extent to which the goals are
being met. In spite of the enormous progress that has been made in
specifying curriculum and evaluation standards for school mathematics
(NCTM, 1989), what is not desirable continues to be far clearer than what
is. In debates among leaders in current mathematics education reform
movements, a great many issues remain to be resolved about the nature of
"real" mathematics, realistic problems, realistic solutions, and realistic
solution processes, as well as what it means to have a deeper or higher-order
understanding of an elementary mathematical idea. For example:

According to recent reports from professional and governmen-
tal organizations, harsh criticism iias been aimed at the kinds of
content-by-process matrices that have been used in traditional
forms of assessment and instruction. But what is missing from
such matrices? And how can alternative objectives frameworks
avoid these deficiencies?

In mathematics education today, it is fashionable to be a
"constructivist." But what is it that students are expected to
"construct"? Similarly, twenty years ago, mathematics laborato-
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ries focused on concrete "embodiments" to help students
understand foundation-level mathematical concepts and
principles. But what was it that the concrete materials were
supposed to embody? When "discovery learning" was empha-
sized, what was it that students were supposed to discover?
Surely the answer in each case must include something more
than simply facts and procedural rules.

As a reaction to instruction and assessment that focuses on
decontextualized abstractions, cognitive scientists often empha-
size the importance of situated knowledge (Greeno, 1988, 1988b,
1987). But what is an example of a situated understanding that is
not simply a specific fact or rule that fails to generalize to other
situations?

In the past, college mathematics courses for preservice elemen-
tary teachers have often been characterized by superficial
treatments of advanced (college level) topics rather than
deeper or higher-order treatments of elementary (K-8) topics.
But what does it mean to have a deeper or higher-order under-
standing of an elementary mathematical idea?

When students are encouraged to use technology-based tools in
instruction and testing, these tools tend to be "capability amplifi-
ers" which are both conceptual and procedural in nature. For
example, in realistic problem-solving situations, when students
use tools such as pocket calculators (with graphing and symbol-
manipulation capabilities) or notebook computers (with word
processors and spreadsheets and other modeling or simulation
tools), the tools often introduce new ways to think about givens,
goals, and possible solution pathsin addition to providing new
ways to get from givens to goals. They are much more than new
ways to achieve old goals using old mathematical ideas. Further-
more, the psychological characteristics of a student-without-tools
may be quite different from those of a student-with-tools.
Mathematics educators have only recently begun to do extensive
research on real-life problem solving involving these new breeds
of students with amplified abilities. What ideas and processes
should be emphasized, in teaching and testing, when students
have access to powerful technology-based tools?

The pendulum of curriculum reform tends to swing back and
forth between basic skills and general problem-solving pro-
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cesses. While each extreme has some merit, both also have
some serious shortcomings. For example, the atomization and
fragmentation that tend to accompany an emphasis on discrete
basic skills tend to undermine long-term learning. On the other
hand, when attention focuses mainly on content-independent
problem-solving processes, questions like, "Where is the math-
ematics?" often arise.

To avoid such pendulum swings, it is important for teaching and
testing to emphasize cognitive objectives (Greeno, 1976, t980,
1988) that are not simply behavioral objectives (factual or proce-
dural rules) and that are not simply reducible to general process
objectives (content-independent rules). But how can cognitive
objectives be stated in a form that is both dear and precise from
the point of view of assessment, and instructionally sound and
meaningful from the point of view of teachers and students?

According to the theoretical approach that will be emphasized in
this chapter, all of the preceding questions are variations on a single theme,
and a single idea is the key to answering all of them. For example, consider
the question, "What characterizes a cognitive objective that distinguishes it
from a behavioral objective or a global process objective?" Our answer is a
model (that is, a complete functioning system for describing, explaining,
constructing, modifying, manipulating, and predicting our increasingly
complex world of experiences) . In other words, to answer the questions that
were stated at the beginning of this chapter, a primary goal will be to clarify
what it means to base the most important cognitive objectives of mathemat-
ics instruction on the construction of mathematical models.

THE NATURE OF COGNITIVE MODELS

A principle that is a cornerstone of modern cognitive science is
illustrated in Figure 1that is, humans interpret experiences by mapping
them to internal models. For example, what a person "sees" or "hears" in a
given situation is filtered, organized, and interpreted by the cognitive
models that he or she has constructed, based on past experience. Therefore,
two people often interpret a single situation in quite different ways. If a
person has only developed primitive models that fit a given situation, then
the way this person thinks about the situation will tend to be relatively barren
and distorted. In such cases, as suggested in Figure 1, the information that
is available may not be noticed, and patterns that are not appropriate are
likely to be perceived even though they are not objectively given.
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Figure 1. Humans Irderpret
Experiences By Mapping to
internal Models

In language-
oriented areas of artifi-
cial intelligence re-
search, frames of refer-
ence are often referred
to as scripts, or frames,
or as other types of rep-
resentational systems,
such as Schank's stories
(1991). In mathematics,
there has been a long
history of using a variety
of representation sys-
tems to describe, ex-

plain, or predict experiences in real or possible worlds. These representa-
tional systems are usually referred to simply as models, because they are used
to model structurally rich phenomena. No matter which of the preceding
terms is used, the point is that humans generate interpretations that are
influenced by both external data and internal models, and in many prob-
lem-solving/decision-making situations, the information that is relevant is
based on hypothesized patterns and regularities beneath the surface, not
just on calculations or deductions based on isolated pieces of data.

THE IMPORTANCE OF MODELS IN AN AGE OF INFORMATION

The principle that is illustrated in the figure above has also been
described in a number of recen t popular publications. For example, the best-
selling book, Megatrends 2000, describes the principle in the following way:

We are drowning in information and starving for knowledge....
Without a structure, a frame of reference, the vast amount of data
that comes your way each day will probably whiz right by you.
(Naisbitt and Aburdene, 1990, p. 13).

In many real-life problem-solving and decision-making situations,
an overwhelming amount of information is relevant, but this information
often needs to be filtered, weighted, simplified, organized, or interpreted
before it is useful. Sometimes needed information may not be provided, yet
a decision may need to be made anyway, and made within specified time
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limits, budget constraints, risks, and margins for error. Models are needed
to provide meaningful patterns that can be used (i) to make rapid decisions
based on strategically selected cues, (ii) to fill holes or go beyond a minimum
set of information, (iii) to provide explanations of how facts are related to one
another, or (iv) to provide hypotheses about missing (or hidden or dis-
guised) objects or events that may need to be actively sought out, generated,
or (re)interpreted.

The essence of an age of information is that the models humans
develop to think about the world also mold and shape that world. This is why,
in professions ranging from business to engineering to law to music, many of
the patterns and regularities that exist in the world are not simply preor-
dained laws of nature, they are model-based products of human construc-
tions. In fact, as the year 2000 approaches, many of the most important
systems that humans must learn to understand (that is, construct, analyze,
explain, manipulate, predict, and control) are businesses, communication
networks, social systems, and other systems that are based on models that are
themselves constructed by humans. Furthermore, many of the most impor-
tant characteristics of these systems are based on patterns and regularities
beneath the surface, not just on surface-level perceptions.

Increasingly, problem solving and decision making require model
construction, model refinement, and model adaptation. In fields ranging
from business to engineering, and from the arts to the sciences, many of the
most important goals of education involve the construction of models that
provide conceptual and procedural amplifiers for interacting with our
increasingly complex worlds of experience.

FACILITATING THE CONSTRUCTION OF POWERFUL MODELS

Many professional schools, such as our nation's leading business
and engineering schools, furnish a wealth of eramples of teaching models
for thinking about the world. The value of such models is easy to recognize
if we imagine a well-educated modern business manager or engineer sent
back in time. Modern professionals would often appear to be unusually
intelligent compared with their counterparts in earlier centuries. Their
enhanced capabilities would not be the result of higher general intelli-
gence. Instead, their enhanced capabilities would result from their use of
the powerful, elementary-but-deep models and tools that our culture en-
ables students to construct.

In fields where the most important goals of instruction are associ-
ated with the construction of models for making (and making sense of)
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complex systems, case studies are often used to help students construct
models that have proven to possess the greatest power and utility. In business
schools, for example, students often use spreadsheets or similar tools to
construct models to explain trends or patterns in systems which can then be
used as prototypes for making sense of other structurally related situations.

Models develop from concrete to abstract, from intuitions to
formal systems, and from situated knowledge to decontextualized under-
standings. To encourage their development, the situations that are used
resemble the concrete embodiments which are familiar to mathematics
educators from their experiences in mathematics laboratory forms of
instruction (Dienes, 1957; Lesh, Post, and Behr, 1987).

THE NATURE OF "REAL" MATHEMATICS

In a series of recent reports from the National Council of Teachers
of Mathematics (1989), the Mathematics Association of America (Steen,
1988), the American Association for the Advancement of Science (1989),
and the Mathematical Sciences Education Board (1990, 1990a), the mathe-
matics education community has reached a new consensus about the nature
of real mathematics (Ernest, 1991). The key characteristics that distinguish
mathematics from other domains of knowledge can be summarized as
follows:

Mathematics is the science and language of pattern.... As biology is a
science of living orgarsms and physics is a science of matter and
energy, so mathematics is a science of patterns.... To know math-
ematics is to investigate and express relationships among patterns: to
discern patterns in complex and obscure contexts; to understand
and transform relations among patterns; to classify, encode, and
describe patterns; to read and write in the language of patterns; and
to employ knowledge of patterns for various practical purposes....
Facts, formulas, and information have value only to the extent that
they support effective mathematical activity. (Mathematical Sciences
Education Board, 1990, p. 5)

From this perspective, a simplified view of mathematics learning and
problem solving would involve the construction, refinement, or elaboration
of models (Figure 2), plus (i) mappings from "real-world" situations into a
"model world," (ii) transformations within the model world, and (iii)
explanations or predictions from the model world back into the real world
situation.
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s Doing *pure" mathematics means investigating patterns for
their own sake, by constructing and transforming them in
structurally interesting ways, and by studying their structural
properties.

Doing *applied" mathematics means using patterns as models
(or structural metaphors, or quantitative structures) to describe,
explain, predict, or control other systemswith refinements,
extensions, and adaptations being made t,.) these models when
necessary.

Figure 2. A Simplified View of Mathematical Modeling

Real World

Interpretation

Prediction

Model World

Of course, this description of mathematical problem solving is too
simplEtic for many purposes. For example, when humans use a given
mathematical model to describe/explain/predict/control a given learning
or problem-solving situation, their models tend to be partly internal and
partly external. Also, several unstable and possibly conflicting models are
often used in sequence and/or in parallel, with each model emphasizing or
deemphasizing somewhat different aspects of the situation or of the under-
lying abstract system. Furthermore, a given (abstract) model tends to be
embedded simultaneously within a variety of interacting notation systems
(for example, involving written symbols, spoken language, manipulatable
concrete models, static pictures or diagrams, or real-life systems, prototypes,
or structural metaphors) each of which again emphasizes or deemphasizes
different aspects to the modeled situation. Therefore, solutions to realistic
problems often involve (i) parallel and interactive uses of several distinct
notation systems and/or problem interpretations, (ii) partial mappings
between components of the modeled situation and corresponding compo-
nents of the model and/or notation system, and (iii) constructing, adapting,
extending, integrating, differentiating, and/or refining of a series of mod-
els that gradually become more complete, accurate, and sophisticated.
However, for the purposes of this chapter, the simplified portrayal of
mathematical modeling is sufficient The essential points are the following:
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Many of the most important mathematical "objects" that
students are expected to study are not simply isolated factual
and procedural rules or general problem-solving processes.
They are models (or patterns, or structural metaphors) that are
useful for building and making sense of real and possible
worlds.

Mathematical models are complete functioning systems, which
consist of: (i) elements (for example, quantities, ratios of quanti-
ties, shapes, coordinates), (ii) relationships among elements
within the system, (iii) operations or transformations on elements
in the system, and (iv) patterns that govern the behavior of the
relations, operations, and transformations.

AN EXAMPLE OF A MATHEMATICAL MODEL IN ELEMENTARY MATHEMATICS

Cartesian coordinate systems are examples of elementary mathemati-
cal models that provide powerful ways to describe (or think about) real or
possible worlds. That is, by imposing rectangular coordinate systems on the
world, it is possible to use equations and numbers to describe whole new
classes of situations, locations, or relationships.

An important point to notice about elementary-but-deep models
is that it often takes the genius of someone like Rene Descartes to introduce
the models on which the conceptual system is based. Yet today, it is relatively
easy to help average-ability middle schoolers construct these powerful
models. Furthermore, if these middle schoolers could be sent back in time
to a period prior to the birth of Rene Descartes, they would often appear to
be geniuses, because, in a wide variety of structurally complex situations,
they would be able to generate descriptions, explanations, and predictions
that would seem miraculo is to people in ancient civilizations.

Some other important points to notice about Cartesian coordi-
nate systems include the following:

Cartesian coordinate systems are capability amplifiers that
function in much the same way as pocket calculators. But while
pncket calculators tend to emphasize procedural capabilities,
Cartesian coordinates tend to emphasize conceptual amplifiers.
Still, both are capability amplifiers that involve conceptual and
procedural components.

Even though Cartesian coordinate systems are often repre-
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sented using diagrams that look something like game boards
for checkers, mathematicians often work with Cartesian systems
without using such diagrams; the diagrams are only embodi-
ments in which the abstract system is embedded. The model is
the underlying abstract system itself.

Even though Cartesian coordinate systems are linked to a
variety of rules for comparing, ordering, organizing, combin-
ing, and transforming data, their primary function is not really
data processing. Their primary function is to provide a descrip-
tion or interpretation for making sense of underlying patterns
and regularities, and for expressing them in a form that is
generative and easily manipulatable.

Even though Cartesian coordinate systems are obvirAsly human
constructions that are not inherent parts of nature, educated
citizens in the 1990s often have difficulty remembering what
the world was like before these powerful conceptual systems
were such familiar parts of our cultural heritage. In fact, today,
many people even think it's obvious to view the world within a
four-dimensional framework in which time is the fourth dimen-
sion. In science and mathematics, things that are "obvious"
have evolved dramatically from one era to another as a function
of the conceptual models that we use to describe and explain
our experiences.

AN EXAMPLE OF A MATHEMATICAL MODEL IN ELEMENTARY ARITHMETIC

In elementary arithmetic, there are many elementary-but-deep
models of a type similar to Cartesian coordinate systems. While the elements
in Cartesian coordinate systems are coordinates of the form (n,m), the
elements in other mathematical models may be mathematical entities
ranging from signed numbers, to ratios, to proportions, to functions, to vectors, to
shapes, to sequences. Some of the models that underlie arithmetic become so
familiar to citizens of modern societies that they seem to be part of nature.
However, the names of our number systems are strong reminders of the
historic obstacles that had to be overcome before the underlying models
associated with them gained acceptability. For example:

In the beginning, there were natural numbers (1,2,3,4,...). The
invention of zero occurred much later. Negative numbers were
looked upon negatively, and fractions were considered to be
unacceptable in polite society.
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Later in history, as fractions and negatives began to seem
sensible (or rational), they were were described as being
rational numbers, as opposed to irrational numbers (like 42 and it)
that just didn't make any sense to most people.

As more time passed, even irrational numbers were included in
the set of real numbers, even though imaginary numbers (such as i
or 4-1) ...ontinued to be treated as unreal.

Eventually, complex numbers proved to be very useful to describe
important events in nature, even though they included num-
bers that had previously been called imaginary.

In the history of mathematics, it took centuries to construct the
notation systems and underlying models that citizens of twentieth century
societies take for granted. Furthermore, before these models were con-
structed, earlier civilizations were often severely limited in the kinds of
economic, social, technological, or scientific systems that they were able to
create, and they were often similarly hampered in their attempts to make
sense of many kinds of patterns and regularities that occurred in their worlds
or experience.

Figure 3 suggests that many students in our schools today have
limitations similar to those that were experienced by citizens of ancient
cultures because what they see or hear is filtered, organized, and interpreted
by the cognitive models that they have constructed, and because their
primitive models are only able to produce barren and distorted interpreta-

tions of their experiences. For

1.8
example, extensive research on
the development of students'
knowledge reveals that a large
share of the American popula-
tion is often extremely restricted
in their reasoning abilities if they
must make judgments about sys-
tems that involve more than di-
rectly observable counts and mea-
sures (Lesh, Behr, and Post, 1987).

Figure 3. Humans Interpret Underlying
Patterns I Regularities By Mapping To
Mathematical Models
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Even for middle school teachers whose relevant computational
abilities tend to be flawless, reasoning abilities are often extremely restricted
if the emphasis shifts from systems whose elements are directly perceivable
quantities to systems whose elements involve higher-order entities such as
ratios, rates, or functions (where the elements involve relationships among
several quantities). For example, consider the tasks shown in Figure 4, which
are typical of those for which success rates have been consistently below 50
percent for large samples of 8th graders or adults, including middle school
teachers (see, for example, Lesh, Post, and Behr 1988; Post, Behr, Lesh, and
Harel, 1991).

Figure 4

Assume that each of the squares below is colored either red or blue.

if the ration of blue to red is 3:2, what is the number of blue squares?

DOODOEIEJ
OCICIDOODO

The shaded squares below stand for cans of orange juice concentrate,

and the white squares stand for cans of water. Select the true

statement following the picture.

Mixture A Mixture B

111111111111111111111.1111

MOO
I I Mixture A has a stronger flavor than Mixture B.
( I Mixture B has a stronger flavor than Mixture A.

I. 1 Mixture A has the same flavor as Mixture B.

I I I unable to tell which mixture is stronger.

Many more examples could be given that emphasize conceptual
rather than procedural proficiency, and similar results could be cited based
on more realistic ethnographic observations in real-life settings (see, for
example, Saxe, 1991; Lave, 1988) or on clinical interviews involving con-
crete materials (Lamon, 1990; Lesh, Landau, and Hamilton, 1983). The
results of such studies reveal how weak the conceptual foundations are
underlying many students' procedural facility. It is important to note that
some students who perform poorly on the conceptually oriented tasks may
be highly capable individuals. But, like intelligent citizens of early cultures,
they have simply never had the opportunity or the need to construct
mathematical models whose elements involve anything more sophisticated
than simple counts and measures.
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Unfairness on tests is easy to recognize if some students have access
to powerful electronic tools that arc unavailable to other students. But
unfairness of another sort occurs when some students go into tests equipped
with powerful conceptual models that other students have never encoun-
tered. The situation is further exacerbated when deficiencies with respect to
such capability amplifiers are portrayed as differences in native abilities.

DEEPER AND HIGHER-ORDER UNDERSTANDINGS OF A CONCEPTUAL MODEL

To clarify what it means to have a deeper or higher-order under-
standing of a mathematical model, it is useful to return to fields such as
business and engineering where there is a long history of treating acquisi-
tion of models as a key goal of instruction. In such fields, it is common for
the most powerful models to be accompanied by (i) technical language to
facilitate communication about basic models and the systems they describe,
(ii) specialized notation systems to expedite the construction and manipu-
lation of particularly important models and systems, (iii) diagrams or
descriptions that focus attention on holistic characteristics of the system-as-
a-whole, and (iv) formulas, computation tools, spreadsheet programs, or
other simulation and modeling tools that can be used to generate hypoth-
eses, descriptions, or predictions in typical decision-making situations.
However, it is clear that understanding the underlying models involves far
more than simply being able to remember and execute rules within the
notation systems, diagrams, rules, and tools. In fact, in realistic settings,
when the purpose is to get from specifically stated givens to clearly identified
goals, the relatively simple job of executing the relevant procedures is
regarded as a low-level clerical task; if "data crunching" is necessary,
powerful technology-based tools tend to be used. Therefore, in our nation's
leading schools of business and engineering, expert job interviewers whose
goal is to hire individuals capable of higher-level skills, including on-the-job
problem solving and decision making, tend to focus on questions that
emphasize the following types of deeper and higher-order understandings:

Students are asked to interpret standard and nonstandard
situations using traditional models that have the greatest power
and usefulness.

Students are asked to construct new models, or sort out and
integrate existing models, to determine (i) which kind of
information should be gathered, (ii) how the data should be
interpreted, quantified, and analyzed, and (iii) whether trial
results are sensible and useful.
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Students are asked to analyze or critique competing interpreta-
tions of a given situation, for example, by detecting significant
model-reality mismatches using standard models, or by evaluat-
ing risks, benefits, and underlying assumptions associated with
alternative models and suggesting appropriate'modifications or
extensions to the model.

Students are required to perform tasks in which fact/skill-level
understandings and abilities must be embedded within flexible,
adaptable, and well-integrated systems of knowledge rather
than treating lower-level definitions, facts, and rules as rigid
and isolated pieces of dogma.

In such situations, it is usually easy to recognize that (i) every model
deemphasizes and simplifies some aspects of reality in order to emphasize and
clarify other aspects, and (ii) every model is based on some assumptions that do
not completely fit the realities in the problem situation. Therefore, when models
are important cognitive objectives of instruction, one of the main goals of
assessment is to probe the nature of the interpreting models that individual
students have constructed to determine thc:ir accuracy, complexity, complete-
ness, flexibility, and stability when they are used to generate descriptions,
explanations, and predictions in a variety of problem-solving settings and for a
variety ofpurposes under differing conditions. For example, when explanations
are generated, the quality of responses depends on the following kinds of
criteria: (i) How much information wasnoticed? How Nell (and how flexibly)
was the perceived information organized? (iii) How sophisticated, or complex,
or rich were the relationships that were noticed? (iv) Were observations and
subjective relationships perceived that were not objectively given?

To assess the types of models that individual students have con-
structed, and to assess the stability of these models in a variety of situations and
conditions, assessment must go beyond testing the amount of information that
a student notices in a given situation; it must also assess the nature of the patterns
of information that are noticed and identify valid and invalid assumptions that
are made about underlying regularities. Similarly, the goal of instruction is not
simply to get students to master more factual and procedural rules, but rather
to help them construct powerful models that provide conceptual/ procedural
amplifiers in priority types of problem-solving and decision-making situations.

DEEPER AND HIGHER-ORDER UNDERSTANDINGS IN ELEMENTARY MATHEMATICS

Exploring similarities between the kind of models that occur in
elementary mathematics and the kind that are emphasized in professional
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schools (or in other disciplines) has helped to identify the following six types
of deeper and higher-order understandings:

Students should use models to interpret real-life situations. That is,
they should go beyond school math problems (in which the givens,
goals, and available solution steps are clearly specified) to also deal
with real-life problems in which models must be constructed to
generate descriptions, explanations, and predictions.

Students should think about underlying models. Students should go
beyond' t;iinking with a given mathematical model to also think
about i.xv model as a complete functioning system, for example,
by investigating the accuracy, precision, and goodness of fit of
the descriptions that are generated for given problem-solving
situations, and by investigating structural properties of the
model (or system as a whole).

Students should explore similarities and differences among alternative
representation systems associated with a given model. Because most
mathematical models can be embodied within a variety of
alternative notation systems (involving spoken language,
written symbols, static graphics, manipulatable concrete materi-
als, or real-life prototype experiences), students should go
beyond executing factual and procedural rules within a given
notation system and should also investigate (i) translations
from one notation system to another, and (ii) strengths and
weaknesses associated with alternative embodiments.

Students should think about thinking. That is, they should think
about the processes that are needed to construct and refine an
adequate model, and plan, monitor, and assess the construction
process.

Students should think about systems of knowledge. They should go
beyond learning lists of isolated facts and rules to also develop
well organized and clearly differentiated systems of knowledge.
In particular, they should go beyond constructing isolated
models to also develop coherent systems of models, for ex-
ample, by investigating similarities and differences among
alternative models in a variety of problem-solving situations.

Students should think about the nature of mathematics and assess their
own personal capabilities. Beyond constructing and investigating
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mathematical models, students should also form accurate and
productive beliefs about (i) the nature of mathematical models
(for example, concerning their power and limitations in real-
life problem-solving situations), and (ii) the nature of their own
personal problem-solving and model-constructing capabilities.

When cognitive objectives of instruction include the construction
and modification of models for describing, explaining, constructing, modi-
fying, manipulating, and predicting patterns and regularities that govern
the behavior of complex systems, the six categories described above repre-
sent distinct types of deeper and higher-order understandings associated
with models and modeling. Furthermore, as Table 1 shows, they also
correspond nearly one-to-one with the most interesting new categories of
objectives emphasized in the Canicula= and Evaluation Standards for School
Mathematics published by the National Council of Teachers of Mathematics

Table 1. Relationships Between NCTM Standards and Model -Rued
Knowledge and Abilities

New Categories of
MTN Objectives

mathematics as
problem solving

number sense
& estimation

mathematical
structure

mathematics as
communication

mathematics as
reasoning

mathematics as
connections

mathematical
disposition

Higher-Order Understandings

of Cognitive Objectives

think about
"real life" situations

A

think about
models

think about
representation systems

think about
thinking

think about
systems of models

think about
real world applications

< -> think about mathematics
and personal capabilities

4 2

<=>

Model-Based
Process Objectives

analyze & interpret
problem situations

<-> generalize & extend
overall solutions

<-> translate within and
between modes of

representation

< -> plan & execute
solution steps

monitor & assess
intermediate & final

results

< -> Identify similarities
and differences

<-> translate and interpret
between models and

the real world
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(NCTM, 1989). The table also shows how the seven categories of NCTM
objectives correspond with model-based process objectives that we have
identified in past publications (Lesh, 1990).

ACTIVITIES THAT ENCOURAGE THE DEVELOPMENT OF MATHEMATICAL MODELS

This section contains several examples of model-eliciting activities
in real-life situations (Problems 1-4). Each example has been used with
middle school students through adults, with problem solvers working either
individually or in three-person teams. Each activity takes at least 30 to 60
minutes to complete. The solutions involve constructing interpretations
that are based on ratios or proportional reasoning (A/B=C/D). No artificial
restrictions are placed on time, tools, or resources; in particular, calculators
and computers are available. The goal is not simply to produce answers to
specific questions. Instead, the responses involve producing a description,
or an explanation, or a prediction which requires students to document
explicitly how they are thinking about the situations. Then the descriptions
and explanations that students construct are used as models to interpret
other structurally similar situations. In other words, the problems are more
like case studies in professional schools than they are like traditional kinds
of textbook word problems.

Problem 1
THE BANK ROBBERY PROBLEM

Students were shown the following newspaper article.

Two gunmen held up the Second National Bank, around
ten thirty this morning. One was a middle-aged man in a grey
suit, who pointed a large handgun at a frightened teller and
demanded cash. Another man pulled a shotgun out of a laundry
sack and held it on the customers, while tellers filled the sack
with money, most of it in small bills. The two perpetrators
escaped before police arrived.

"It was awful!" exclaimed Louise DiChello, head teller for
Second National. "I pushed the alarm button. Where are the
police when you need them?"

Responding to charges of slow response to emergency calls,
Police Commissioner Tyrone Campbell claimed that the bank's
silent alarm did not go off during the robbery. "If the hardware
fails, the police get the blame."

Bank President George Bromley stated that, according to his
accounting, the amount stolen was close to a million dollars.
'The bank's insurance will cover the loss. But it's sad to see
thieves and thugs get awt y with crimes like this!"

Anyone having information about today's robbery should call
the CrimeStoppers HotLine 1-800-STOPIT.

Problem A: Could the events really have happened as told in the
newspaper story? Could two robbers escape with a million dollars in
small bills in a laundry sack as reported? - - - Analyze the situation.
What suggestions would you offer for solving this crime? Write a
note to the detectives on the case explaining your reasoning. Give
details so they will understand.
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Problem B: Imagine you are a detective investigating the crime. An
employee of the bank tells ycu that Bank President Bromley has been
suffering financial setbacks recently. She wonders if the robbery was
fake. You wonder about the large sum reported stolen, and do some
calculations to deduce whether it would have been physically possible
to carry out a million dollars in small bills as described. You figure an
American dollar bill weights about I gram. If 50% of the stolen
money was $1 bills, 25% was $5 bills and 25% was $10 bills, estimate
how much the loot would have weighed. Would it have been
possible for 2 robbers to carry this amount out of the bank?

THE CD TOSSING GAME

For a popular carnival game, a player
tosses a coin onto a gameboard that
looks like a checker board. If the coin
touches a lines on the gameboard the
player loses. If not, the player wins!
Players get three throws for a dollar!

You've been asked to design a similar
game for a fund raising carnival at your
school. For prizes, a local record store
will sell up to 100 CD's to your class for $5 per disc. You can choose any
discs you want just as long as the regular price of the CD is less than
$20. To make the game more fun, you've decided to let players throw
old scratched CDs rather than coins. Two sizes of CDs can be used
(3 inch discs and 5 inch discs). So, the cost of three throws can depend
on which size a player chooses to throw.

All plans for games must be approved by the carnival planning
committee. You want to make as big of a profit as possible. But, if too
few people win, people won't want to play the game. Write a plan to
submit to the cat aival planning committee that includes details about
the size of the game board, the cost of throws, the chances of winning,
and an estimate of the expected profits.

THE SEARS CATALOG PROBLEM

Problem: Fred Findey began teaching here at the high school 10 years
ago. He and his new bride rented an apartment at 318 Main Street for
$315 per month, and he also bought a new VW Rabbit for $6,200. His
starting salary was $16,300 per year. This year, Fred's sister, Pam, also
began teaching at the high school. Pam, too, just got married. In fact,
she rented the very same apartment as her brother did 10 years ago,
only now the rent is $610 per month. She also bought a new VW
Rabbit that sold for $13,700. Using this information, and these (see
items below) newspapers and catalogs, write a letter to the School
Board recommending (and justifying) how much you think Pam
should get paid.

note: Students were given: (i) a calculator; (ii) two Sears catalogs -- one
current, and the other from 10 years ago, and (iii) two
newspapers - one current, and the other from 10 years ago.
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Problem 4
DON'T DRINK & DRIVE HOTLINE

To prepare for the problem, show students the following newspaper
article.

Drunk Driving Laws for the New Year

The new drunk driving law will go into effect at 12 midnight
January 1, meaning New Year's Eve celebrators should have
designated non-drinking drivers in their group. A driver who is
found to have a blood alcohol level of 0.05'g. or more will be subject
to a $500 fine and will risk prosecution and a possible prison term

New Year's Eve party-goers should be aware of a few facts. A 12
ounce can of beer, a 5 ounce glass of wine and a 1 ounce glass of
hard liquor should each be counted as one drink. The effect of one
drink on a heavy person is much more than the effect of one drink
on a lig tt person.

Experts point out that once a person has stopped drinking, the blood
alcohol l vel drops about 0.015% every hour. For example, a 140
pound person with a blood alcohol level of 0.10% would have a
blood alcohol level of 0.085% after one hour and a blood alcohol
level of 0.070% after two hours.

While a person can legally drive at blood alcohol levels of 0.041 or
lower, experts emphasize that impairment is still possible, and the
best policy is to not drink and drive.

Most restaurants and banquet halls are offering free soft drinks to
designated drivers and free taxi rides home upon request. For party-
goers who prefer to avoid driving or riding with others, overnight
packages are available at most local hotels .

Blood Alcohol Concentration ( %)
Within One Hour

Body Number of Drinks
Weight 1 L 2 { 3 I 4 1 5
100 0.04 0.09 0.15 0.20 0.25
120 0.03 0.08 0.12 0.16 0.21

140 0.02 0.06 0.10 0.14 0.18
160 0.02 0.05 0.09 0.12 0.15
180 0.02 0.05 0.08 0.10 0.13
200 0.01 0.04 0.07 0.09 0.12

Problem. Your community has decided to start the Don't Drink &
Drive Hotline. As part of this group effort your class has been asked
to develop a method so that hotline workers can quickly estimate a
caller's blood alcohol level. Develop useful tools (for example,
tables, graphs, computer software, etc.) that will be helpful to
hotline workers and describe how to use your tools/method for
scenarios like those below.

Test Your Materials: After developing your tools/method for
estimating a caller's blood alcohol level, test your materials by role
playing a telephone call. Have someone (a friend, a classmate, a
parent, etc.) read one of the scenarios below and pretend to call you.
You should pretend to be the hotline employee who answers the
call. Ask questions to gather the information that you need and use
your quick-and-easy-to-use method to estimate the blood alcohol
level of the caller.
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SCENARIO I. Jake ate lunch between 12:00 and 1:00 and had two
glasses of beer. He weighs 240 pounds. It is now 3:00. Pretend that
you are Jake and are calling the DDD Hotline.

SCENARIO II. Shortly after arriving at a friend's house at 6:00,
Regina had a cocktail. Dinner was served from 7:00 to 9:00. With
dinner she drank two glasses of red wine. Regina weighs 112
pounds. It is 11:00. Pretend that you are Regina and are calling the
DDD Hotline.

To create effective model-eliciting activities, one of the main goals
is to create problems that encourage (and do not discourage) sense-making
based on students' personal knowledge and experience. A second rule is to
focus on problems that encourage the construction and investigation of
elementary mathematical models that are likely to have the greatest power
and utility (short-term and long-term) for the students who are involved. A
third rule is to create tasks in which students go beyond (unconscious)
thinking with the models to also (consciously) think about them, for
example, by constructing them, by modifying and adapting them for a
variety of purposes, and by investigating their structural properties in a
variety of meaningful situations. A fourth rule is to ensure that an appro-
priate range of problem types, response types, and interpretation possibili-
ties are represented, and, in particular, to ensure that realistic types of
givens, goals, tools, settings, or procedures are not neglected. A fifth rule is
to avoid problems that have only a single level and/or type of correct
response.

The last rule is especially important because, in general, the only
way to create problems with only a single correct answer is to eliminate the
phases of problem solving that focus on processes such as problem interpre-
tation, or response justification, or the testing and refinement of hypotheses
about underlying patterns and regularities. In other words, to eliminate the
possibility of more than a single correct answer, it is usually necessary to
eliminate exactly those phases of problem solving in which attention is
focused on the underlying mathematical structure of the problem and on
deeper and higher-order mathematical understandings of the mathemati-
cal structure.

To create activities that encourage students to construct signifi-
cant mathematical models, authors should ask themselves, "What kinds of
situations create the need for people to create models, whether they are
working in mathematics, in science, in business, or in everyday life?"Answers
to this question include the following:

s Models are needed when it is necessary to make predictions based on
underlying patterns or regularities, for example, to anticipate real
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events, to reconstruct past events, or to simulate inaccessible
events.

Models are needed when constructions or explanations are requested
explicitly, for example, for describing hypothesized patterns and
regularities, or for describing decision-making situations in
which too much or not enough information is available.

Models are needed when it is necessary to justify or explain decisions,
for example, by describing underlying assumptions, conditions,
and alternatives.

Models are needed to resolve interpretation mismatches, f r example,
between hypotheses and reality or between two competing
interpretations, predictions, or explanations of a given situation.

Models are needed when it is necessary to recreate and critically analyze
conclusions or descriptions generated by others.

In general, to develop effective model-eliciting activities, one of the major
goals is to create meaningful contexts in which students will recognize the
need for a model. Then model construction tends to follow naturally.

RULES OF THUMB FOR WRITING EFFECTIVE MODEL-ELICITING ACTIVITIES

Twenty years age, when authors of this chapter first began to
conduct research on problems that people today refer to as authentic
performance activities, we usually cited reality as our primary criterion for
distinguishing "good" problems from "bad" (see, for example, Bell, Fuson,
and Lesh, 1976). We still consider realism to be a praiseworthy goal, though
realism is a principle that is not so simple and straightforward to implement.
To see why, consider the following:

Problems that are real for authors or teachers often have little
to do with a middle schooler's reality. For example, a teenager's
main interests often center around fanciful situations, or
around "what if" distortions of the real world, rather than
around reality in the more traditional sense.

A topic that is timely (or "hip") one year often is treated as old
fashioned the next, and one student's reality is often quite
different from another's. For example, a rural middle-class white
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male's reality tends to be considerably different from that of an
inner-city, lower-SES black female.

Videodisc portrayals of real-life situations sometimes encourage
students to suspend their reality judgments in the same way that
they do when they watch movies and television. Explorations
with concrete materials (such as Cuisenaire rods) frequently
turn out to be as abstract as if they had been done with written
symbols.

Computer-based explorations sometimes become very real to
students, even though they often make no reference at all to
objects or events in students' everyday lives.

Problems that focus on skills for low-level employment often
turn off the very students who were expected to consider them
relevant. On the other hand, pure mathematics activities (for
example, involving pattern exploration in number theory)
often give students a realistic view of mathematics as it really is
for a research mathematician, even though the experiences
might seem far removed from the students' everyday life.

Over the years, another problem attribute proved to be even more
fundamental than arealityfor describing of the kind of problems that we
want to emphasize. That is, the real purpose of emphasizing realistic
problems was to encourage students to construct and investigate powerful
and useful mathematical ideas (that is, models and principles associated
with models) based on extensions, adaptations, or refinements of their own
personal knowledge and experience. Therefore, we refer to our most
effective problems as model-eliciting activities (Lesh and Kaput, 1988) because
their solutions involve constructing, transforming, investigating, modifying,
integrating, differentiating, or using mathematical models or patterns. For
example, typical solutions to the Sears Catalog Problem, described in the
preceding section, illustrate the kinds of mathematical ideas students invent
in model-eliciting situations.

When we first began to gather information about students' solu-
tions to the Sears Catalog Problem, the main model (or reasoning pattern)
that we expected students to construct had to do with proportional reason-
ing of the form A/B--.C/D. In fact, most of the students we observed did
indeed end up thinking about the problem using some type of proportional
reasoning model. But a high percentage went far beyond an interpretation
of the problem based on simple ratios, proportions, or linear equations. For
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example, to find a useful way to think about the situation, students often
invented ideas such as weighted averages, trends, interpolation, extrapola-
tion, data sampling, margins of error, or others that their teachers thought
were too sophisticated for youngsters to learn.

In their solutions to the Sears Catalog Problem, students also
invented surprisingly sophisticated ways to deal with the following kinds of
issues:

Data sampling. For example, how many, and which, items should
be considered? Which should be ignored? What should be
done about unusual cases (such as the fact that the cost of
pocket calculators decreased, while the cost of most other items
increased)? How should the data be classified or organized?
What kinds of patterns and relationships (for example, additive,
multiplicative, exponential) should be hypothesized?

The quantification of qualitative information. For example, what
weights should be assigned to various kinds of information?
How can information be merged that is based on different
kinds of quantities or units of measure?

Conditional results. For example, because of equity issues, or risks
and benefits associated with alternative answers, final decisions
about salaries should depend on additional information about
conditions in the past and perhaps on assumptions pertaining
to the present and future.

In fact, we found that, when model-eliciting activities are used to
encourage students to make sense of problem-solving and decision-making
situations based on their own personal knowledge and experiences, stu-
dents who had been labeled average or below average often emerged as
extraordinarily talented, because they routinely invented (or significantly
extended, modified, or refined) mathematical models that went far beyond
those that their teachers believed they could be taught. (Lesh and Akerstrom,
1982; Lesh and Zawojewski, 1987)

AN EXAMPLE: TEACHERS SOLUTION OF A MODEL-EUCMNG PROBLEM

Many K-8 teachers have not had much experience working on
project-sized, model-eliciting problems. Therefore, before they try to create
such problems for their own students, and before they try to assess students'
responses to such problems, it is useful for them to participate (as students)
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in a few problems that were explicitly designed to fit their own everyday
decision-making activities.

The Math Placement Problem (Problems 5A-5D) was designed
especially to help teachers gain firsthand experience with realistic model-
eliciting problems. It was also designed to focus on two questions that are
special concerns for many teachers: (i) What understandings and abilities
should be emphasized when students are allowed to use technology-based
tools? (ii) What understandings and abilities should be emphasized when
students are allowed to work in teams?

Problem 5A

THE MATH PLACEMENT PROBLEM

Problem A: Imagine that you are the teacher at a middle school that
has developed its own performance assessment program. The tests are
not multiple-choice, and students' achievement scores reflect not only
test performance but also teachers' classroom observations and
evaluations of students' work portfolios. You've been given the
following assignment.

Your school offers three sections of 9th grade mathematics classes.
Your assignment is to work with the school counselor and another
teacher to develop a policy for assigning students to one of these three
sections. Write a letter to the principal describing the policy that you
recommend for assigning students to the available courses. Then,
demonstrate how your policy should be applied to the students whose
test scores are shown in the following data sheet.

Math and Reading Achievement (Grade Level Equivalent Scores)

215_4racts 8th Grade 5th Grade Lth Glee 7th Grade laraliale.
Math Bud Math Bud Meth Bud Math Bud kWh Bad MAUI Bud

Al 2.1 3.0 2.9 3.5 3.3 5.0 3.6 6.2 5.9 7.8 8.6 8.2
Barb 3.8 3.1 3.8 3.1 4.5 4.8 4.8 5.5 5.9 6.1 5.8 6.1
Carl 4.8 5.0 5.7 6.2 6.8 7.2 7.6 8.0 8.8 9.1 10.8 9.2
David 4.8 4.9 5.0 5.8 5.5 7.8 6.1 9.6 7.5 10.8 8.8 12.6
Edith 5.0 5.9 6.8 7.1 8.0 8.8 10.2 11.0 10.8 12.1 11.0 12.2
Fran 5.0 5.3 5.8 5.9 6.6 6.6 7.2 7.3 7.5 7.8 8.0 8.1
Greg 1.5 2.3 2.6 3.5 4.2 4.5 4.8 5.0 7.0 7.5 8.5 8.8
Hank 2.3 1.5 5.8 6.0 9.8 8.8
Ida 3.3 3.1 4.5 4.8 5.6 5.5 6.8 6.9 7.8 8.1 8.9 9.2
Jan 5.6 5.1 7.9 7.0 9.0 7.5 9.6 8.0 10.8 8.3 8.0 7.8

COMMENTS FROM PREVIOUS TEACHERS

AL Al works hard. He always turns in his homework, and he even comes in
after class for help. But, math has been difficult for him. - - The
ro' is in his rtfolio are not ins ired; but t show his dedication.

BARB Poor attendance. Often late for class. Since her mother died two years
ago, Barbara has had to take care of her younger brothers and sisters at
home. Her homework Is rani finished.

CARL Charles has consistently worked hard and is a very productive contributor
to class discussions. He seems to know a great deal more than he has been
able to demonstrate on testa.

DAVID David is gaining confidence in himself. His success in sports seems to be
rubbing off on other activities. David is a leader.
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Problem 5B

EDITH Edith is a gifted student. Recently, however, she seems to have lost
interest In her work. Although she finishes assignments on time, she
doesn't seem to devote much time to them.

FRAN Fran Is working to the best of her ability, but she needs work on basic
skills. She spends too much time on low level skills, and mill low level
mistakes tend to hurt her performance on tests and projects.

GREG Greg's projects are the best in the class. He is also good at creative types of
problem solving - especially in geometry. Greg's immature behavior has
Interfered with his progress this year and has occasionally disrupted the
whole group. He is the class clown.

HANK Hank only spoke Spanish when he moved here three years ago. He has
shown tremendous improvement this year, but his previous training has
been rather weak so he still has a lot to learn. If his remarkable
improvement continues he could become the best in the class.

IDA Ida has a lot of natural ability but she hasn't worked up to her potential
because of failure to complete assignments and to pay attention in class.

JAN Ian has discovered boys. She can be a good student when she wants to;
lately, she seems to have lost interest. She often falls asleep in class.

Problem B: After writing a trial policy for sorting students into your
school's three levels of mathematics courses, the other teachers you've
been working with got a new idea. They transformed the students'
scores as shown below. Look at what they did. Then rewrite your
policy In any way that you believe is appropriate to take into account
the new information.

Math and Reading Scores Compared to Actual Grade Level

3rd Grade 4th Grad" Sth Grade 6th Grade 7th Grade 6th Grade
Math Read Meth Read Mails Read Math Read Math Bead Math Read

Al -0.9 0.0 -1.1 -0.5 .1.7 0.0 -2.4 0.2 -1.1 0.8 0.6 0.2
Barb 0.8 0.1 -0.2 -0.9 -0.5 -0.2 -1.2 -0.5 -1.1 -0.9 -2.2 -1.9
Carl 1.8 2.0 1.7 2.2 1.8 2.2 1.6 2.0 1.8 2.1 2.8 1.2

David 1.8 1.9 1.0 1.8 05 2.8 0.1 3.6 0.5 3.8 0.8 4.6
Edith 2.0 2.9 2.8 3.1 3.0 3.8 4.2 5.0 3.8 5.1 3.0 4.2
Fran 2.0 23 1.8 1.9 1.6 1.6 1.2 1.3 0.5 0.8 0.0 0.1
Greg -15 -0.7 -1.4 -0.5 -0.8 -0.5 -1.2 -1.0 0.0 05 05 0.8
Hank -3.7 -4.5 -1.2 .1.0 1.8 0.8
Ida 03 0.1 0.5 0.8 0.6 05 0.8 0.9 0.8 1.1 0.9 1.2
Jan 2.6 2.1' 3.9 3.0 4.0 25 3.6 2.0 3.8 1.3 0.0 -0.2

Problem 5C

riobleinSa The school counselor you've been working with has found
some other ways to simplify (and graph) the data you were given. For
example, an average score was calculated across all six grades; and the
following graph was drawn. Again, modify your policy in any way that
you believe is appropriate to take into account all of the information that
is now available.

Math Scores (Only) For All Grade Levels

3rd ith 5th 6th Zth 8th &LULU
Al -0.9 -1.1 -1.7 -2.4 -1.1 0.6 -1.1

Barb OS -0.2 -0.5 -1.2 -1.1 -2.2 4).7

Carl 1.8 1.7 1.8 1.6 1.8 2.8 19
David 18 1.0 0.5 0.1 05 0.8 0.8

Edith 2.0 2.8 3.0 4.2 3.8 3.11 3.1

Fran 2.0 1.8 1.6 1.2 0.5 0.0 1.2

Greg -15 -1.4 -0.8 -1.2 0.0 0.5 -0.7
Hank -3.7 -1.2 1.8 -1.0
Ida 0.3 0.5 0.6 0.8 0.8 0.9 0.7

Jan 2.6 3.9 4.0 3.6 3.8 0.0 3.0
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problem D: While playing around with the graphing capabilities of the
spreadsheet you've been using to graph the data shown in problem 3,
the computer constructed the following graph. Does it show anything
new that you should consider? Again, modify your policy in any way
that you believe is appropriate to take into account all of the
information that is now avaibble.

Trends In Math Scores Across All Grades

S.(

4.(

321A

iiiillipaimmim
P.r.AP.n li

1.

iii&aMIe

, ag1---MEcia3M
E1 rt

urn

2 1
CE2:illiMPIPAIVlial14ag=

3..

3rd 4th 5th 6th 7th 8th

One Solution to the Math Placement Problem

One group of teachers used the available analyses and graphs to support
the recommendation that the school should abandon its previous the
policy of sorting students into low, middle, and high ability groups.
Instead, the recommendation was made that three equivalent math
groups should be created, with "difficult" students being distributed
equally in the three sections.

To help teachers recognize the strengths and needs of each student, the
teachers also recommended that executive summaries of the preceding
graphs and analyses should be made available to teachers.
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Because solutions to the Math Placement Problem involve using
powerful computer-based tools, problem solvers no longer needed to be
preoccupied with routine calculation and graphing skills. Instead, they are
able to focus on conceptually oriented activities such as constructing
appropriate and useful ways to think about the information that was
available, or such as analyzing and interpreting results produced by comput-
ers or colleagues.

An important attribute of the Math Placement Problem is that the
givens involve more than just pieces of data. They also involve patterns of data;
and, they involve more than a single type of qualitative or quantitative
information. Furthermore, the goal involves more than simply producing a
specific answer to a particular question. It involves creating a policy that can
be applied to a whole class of specific cases. In fact, appropriate responses
involve more that just making decisions (or giving answers). They also
involve justifying and explaining decisions (or answers); they involve con-
structions in which students explicitly describe the data, patterns, and
relationships that their interpretations of the problem take into account. In
other words, students use the computer-based tools to construct responses
in much the same way that geometry tools are used to construct geometric
objects. In this way, the quality of responses depends on constructions
themselves as well as on decisions based on the constructed information.

Because the Math Placement Problem involved a familiar situa-
tion for the teachers who worked on it, they noticed that many of their own
most important decision-making activities involved interactions with mem-
bers of their groups and with technological tools (for example, spread-
sheets). They also noticed that people who were good at dealing with the
problem situation were not necessarily those who were bestat textbook word
problems because different kinds of knowledge, abilities, skills, and person-
alities were often needed. For example, in the Math Placement Problem,
when they worked together in three-person teams, and when they used
computer-based tools, different people generally assumed different roles
(information gatherer, manager/coordinator, data cruncher, reality
checker), which often shifted throughout the problem-solving process.
Therefore, many of the most important abilities that were emphasized
involved coordinating and communicating plans, processes, and results
among people playing different roles.

When problem solving focuses on the development of models for
thinking about realistic decision-making issues (rather than on linking
together factual and procedural rules for getting from givens to goals),
technology-based tools generally make it easier for students to focus on
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higher-order mathematical activities by minimizing distractions associated
with computational drudgery. Technology-based tools not only change the
computational and procedural demands associated with problem-solving
activities, they also change the conceptual demands, for example, by
creating new possibilities for selecting, organizing, 1.nd interpreting infor-
mation and by forcing students to externalize (and be explicit about)
interpretation frameworks that otherwise may have remained internal.

AN EXAMPLE: TEACHERS' IMPROVED VERSIONS OF EXISTING PROBLEMS

To help teachers create realistic problems that focus on authentic
mathematical modeling activities, it is useful to begin by analyzing (and
trying to improve) problems from exemplary resources such as the projects
that are described throughout this book. For example, Problem 6A was
taken from the NCTM's 1989 Curriculum and Evaluation Standards for School
Mathematics. A transcript of one teacher's report and revised problem follows.
(Note: The woman submitting this report was actually a softball player ?)

Problem 6A

The Original Softball Problem

The table gives the record for Joan Dyer's last 100 times at bat during
the softball season. She is now coming up to bat. Use the data to
answer the following questions:

What is the probability that loan will get a home run? What is the
probability that she will get a hit? How many times can she be
expected to get a walk in her next 14 times at bat?

Home Runs 9

Triples 2

Doubles 16

Singles 24

Walks 11

Outs
Total 100

One T.:aches Analysis Of The Softball Problem

Critique: On the surface, this problem appears to be embedded in a real-
world situation: Joan is coming up to bat, and the problem description
gives some data about her prior performances. But, in a real situation,
it wouldn't be sensible for snmeone (other than a math teacher) to want
to know the answer to the questions as they are stated (concerning prob-
ability of a home run, or the probability of a hit). In fact, simply comput-
ing this "probability' using the intended rule depends on ignoring
common sense and/or practical experience. In reality, the probability
depends on who is pitching (Are they left handed or right handed?), on
field conditions or the weather, and on a lot of other factors that people
who play softball are aware of (Who is in a slump or on a streak? Who
is good under pressure). Furthermore, since we don't know who is
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Problem 68

asking the question, or why, we can't know what to take into account,
or how accurate the answer needs to be, or what the risks or benefits
might be. Therefore, the criteria for judging the quality of answers are
not implicit to the situation; and, solutions must be judged according to
whether they conform to the calculation that was expected, rather than
according to whether they succeed in any practical or meaningful sense
of the word.

Overall, I do not think such a problem is realistic, or that it promotes
authentic performance. Real softball players would actually have to
turn off their "real life" knowledge and experience.

Analytic: In this problem, it is not particularly necessary to have Joan
coming up to bat right now. In fact, for the third question we might
wonder what coming to bat, at this particular moment in time, has to
do with expectations about walks for the next 14 times at bat, which
may not even happen in the same game. Is there some reason, now
that Join is coming up to bat, to want to know her expected number of
walks for the next 14 times at bat? Why not the next 15 times at bat? Is
it possible that having Joan at bat in the first place was only the
awkward result of an well-intentioned effort to create a life-like
context (for a problem with essentially one appropriate solution path
that leads to a single "right" answer)? Or was it a superficial gesture to
sug;est that even girls play sports? If not for either of these reasons,
why it is there?

Possible Improvements: Here is a suggestion for improving this
problem. Notice that the "math answer" is not an end in itself. It is a
means to an end (or a tool for informing actions, decisions, and
judgments). If Joan really is coming up to bat now, the mathematics
should address a plausible question that might occur in that situation.
I think that the revised item asks a more authentic question in the
sense that it asks for a decision that might be required in the context.

The Improved Softball Problem

You are the manager of a softball team. It is the bottom of the ninth
inning, two outs gone, and no one is on base. Your team is one run
behind. You plan to send in a pinch hitter in hopes of scoring the tying
run. Your possibilities are Joan, Mary, and Bob. Their batting records are
given in the table below. Who would you choose to bat? Explain your
reasoning.

ism Mary Rob
Home Runs 9 15 6

Triples 2 5 3

Doubles 16 11 8

Singles 24 34 18

Walks 11 20 12

Outs 38 85 36

The main difference between the original softball problem and the
modified softball problem is that the original asked a "school question" but
didn't provide any clues about the real-life issues or decisions that the
response was intended to inform. By contrast, the modified problem (6B)
calls for a realistic response to a situation that might really occur in the lives
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of the people who were asked to work on the problem. It is the problem
solver's responsibility to identify and address relevant mathematics questions.

One of the main reasons for emphasizing realistic decision-mak-
ing situations is to encourage students to make sense of the problems based
on extensions of their own personal knowledge and experiences; embed-
ding problems in such contexts tends to be the only way for sensible
judgements to be made about such things as: (i) how accurate the answer
needs to be, (ii) what the consequences of making an error might be, and
(iii) how quickly a response must be generated.

In real-life situations, people's three-second answers tend to be
quite different from their five-minute answers, or their sixty-minute answers;
high-stakes answers tend to be quite different from low-stakes answers. This
is why one of the most important abilities associated with real-life problem
solving involves sizing up problems in appropriate ways; it is also why some
of the most important kinds of estimation skills are used to support these
sizing-up processes.

THE NATURE OF REALISTIC SITUATIONS IN WHICH MATHEMATICS IS USEFUL

The problems in the preceding sections illustrate a number of
important characteristics of realistic situations in which mathematical mod-
els are useful. This section will give a brief summary of some of these
characteristics as they relate to givens, goals, solution paths, and response
assessments.

Concerning the nature of realistic data sources: In realistic problem-
solving and decision-making situations (such as the Sears Catalogue Problem
or the Math Placement Problem), judgments often must be based on patterns
or trends in data, notjust isolated pieces of information, and on hypothesized
regularities beneath the surface of things, not just on information that is
given by direct perception. Also, the relevant information often involves
several different types of qualitative and/or partly-quantified information
that must be quantified or coded in appropriate ways before relevant
calculations can be made. Furthermore, an overwhelming amount of infor-
mation may often be relevant; this information may need to be filtered,
weighted, simplified, organized, or interpreted before it is useful. Some
relevant information may not be available, yet a decision may be needed
anyway, within specified time limits, budget constraints, and margins for error.

To create model-eliciting activities of the type described in this
chapter, problems must somehow create the need for the relevant models,

c V.
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so that meaningful patterns can be used to (i) base rapid decisions on a
restricted set of data, (ii) fill holes or go beyond a minimum set of
information, (iii) provide explanations of how facts are related to one
another, or (iv) provide hypotheses about missing or hidden objects or
events that may need to be actively sought out, generated, or (re) interpreted.

Concerning the nature of realistic demands on knowledge: Realistic
problems tend to emphasize the use of organized systems of knowledge, not
just isolated facts, skills, or bits of information. In fact, model-eliciting
problems generally cannot be solved using a single computational formula.
Instead, relevant knowledge usually must be integrated from a variety of
topics. For example, in mathematics education research on children's
natural solutions to real problems, it has been shown that solutions often
draw on mixes of ideas and procedures from a variety of topic areas ranging
from arithmetic, to measurement, to statistics, to geometry, to' deas and
procedures that are not taught in schools (Carpenter, Moser, and Romberg,
1982; Confrey, 1990; Fuson, 1988; Lesh and Akerstrom, 1982; Steffe, 1988).
Similar observations have also been made by educational anthropologists
who have studied the everyday problem solving behaviors of tailors, carpen-
ters, cooks, shop keepers, shoppers, or other ordinary folks (Carraher,
Carraher, and Schliemann, 1985; Rogoff and Lave, 1984; Saxe, 1991). In
both higher mathematics and everyday problem solving, solutions to real-
life problems often reside at the borders, intersections, and fringes of
traditional curriculum categories.

In general, the most effective model-eliciting problems can be
interpreted/quantified/modeled in several alternative ways, and the inter-
pretations are based on models that are created by extending or refining
students' real-life knowledge and experiences.

Concerning the nature of realistic tools and resources: In real-life situa-
tions, few problems occur in an isolation booth where the only available tools
are pencils and paper. In fact, in most real-life problem- solving situations, the
tools and resources that are available include not only pocket calculators but
also computers, resource books, and colleagues or consultants.

When such tools and resources are available, new types of concep-
tual capabilities, generally quite different from the pencil-and-paper com-
putational abilities traditionally emphasized in schools, become important.
For example, when a graphics-oriented spreadsheet is used in problems
such as the Math Placement Problem, trial results are often fast and easy to
generate and what-if explorations easy to conduct. Therefore, attention can
shift away from the production of results toward higher-order processes
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such as (i) analyzing the appropriateness of alternative assumptions or
interpretations of data, (ii) planning, monitoring, and assessing procedures
that are executed, (iii) conducting explorations about alternative levels and
ways of collecting, organizing, or coding available information, or (iv) testing
and revising interpretations and trial solutions to adjust the precision,
accuracy, risks, and benefits associated with hypotheses and predictions.

In general, when students have access to realistic tools and re-
sources, the natural tendency is for deeper and higher-order model con-
struction processes to emerge. The kinds of skills that are emphasized go far
beyond number crunching to involve processes such as quantifying qualita-
tive information, estimating quantities and measures, drawing informative
diagrams or graphs, generating symbolic descriptions (using written or
spoken language), or generating sequences of commands to be executed by
a computer, a colleague, or an assistant In fact, the kinds of skills that
emerge as important often involve far more than simply getting from the
givens to the goals that are specified by others. For example, relevant skills
often involve giving commands and finding useful ways to think about givens
and goals.

To create problems that are model-eliciting and that also involve
explicitly documenting the model that is elicited, computer-based tools are
often quite useful. They make it possible for students to produce complex
constructed responses in which they explicitly reveal how they are thinking
about the problem situations. For example, in situations similar to the Math
Placement Problem, model-eliciting problems should be stated so that the
spreadsheets and graphs that students produce will provide direct evidence
about (i) what information is being considered, (ii) how the information is
being interpreted, (iii) what relationships or patterns are being taken into
account, and (iv) what operations or transformations are considered to be
appropriate. In other words, the spreadsheet and graphs can sometimes
explicitly reveal what models (or systems) students use to interpret/de-
scribe/explain problem situations.

Concerning the nature of realistic settings: In real-life situations that
are relatively complex, people often work in groups in which differentgroup
members have different interests, e.cperiences, and expertise. When diverse
groups work together, certain higher-order capabilities tend to be empha-
sized such as (i) partitioning problems into smaller pieces that can be
attacked by different people, (ii) partitioning solution processes into differ-
ent roles and functions so that people with different expertise and tools can
work together cooperatively, (iii) defining questions, givens, and goals so
that outside help can be sought, and (iv) communicating, planning, moni-
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toting, and explaining results to others inside or outside the group. Also,
because information must be shared among members of the group, there
tend to be both the need and the opportunity to externalize internal
reasoning processes and to think about thinking. In particular, activities
tend to be emphasized that the NCTM's Curriculum and Evaluation Standards
for School Mathematics refer to under headings such as "mathematics as
communication" or "mathematical connections."

To create the kind of model-eliciting problems described in this
chapter, it is often useful to design the situations in such away that students
assume a variety of different roles. Sometimes this can be done by assigning
one student to be the manager; while preparing ahead of time for other
students to be proficient in the use of a potentially relevant tool (such as a
spreadsheet) or collection of relevant background information.

Concerning the nature of realistic solution processes: In realistic situa-
tions that require the construction of a model, several modeling cycles may
be needed to create an adequate way to think about (or describe) the givens,
goals, and solution paths. For example, in cases similar to the Math
Placement Problem, each cycle may involve goal clarification, question
refinement, trial solution evaluation, data (re) interpretation, and a variety
of other sensemaking activities. That is, students go beyond simply using
models that already exist: they construct new models by modifying, extend-
ing, integrating, or refining existing models. In fact, even when it is possible
to use an available model without modification, some noncomputational
activities generally emerge as important, such as (i) mapping data from the
real world into the model world (for example, by filtering, interpreting,
parsing, coding, and organizing available information), (ii) carrying out
explorations within the model world (for example, by formulating ques-
tions or hypotheses that can be verified or rejected), or (iii) mapping from
the model world into the original problem situation (for example, to
evaluate explanations, hypotheses, trial results, or predictions).

To create the kind of model-eliciting problems described in this
chapter, it is important for students to go beyond thinking with a given
model (graph, table, or symbolic description) to thinking about the model
and its underlying assumptions (Campion e, Brown, and Connell, 1989).

Concerning the nature of realisticgoals: When people shop for grocer-
ies, purchase automobiles, or engage in other everyday decision-making
situations, the goals often involve far more than simply producing an
explicitly requested mathematical answer to someone else's well-formed
question. Justifying or explaining decisions is often as important as simply
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making them. To decide whether to believe conclusions cited in newspaper
editorials and advertisements, for example, it is important to ask insightful
questions and to critically analyze, critique, or explain answers produced by
others.

At a time when newspapers such as USA Today are beginning to
look more and more like spreadsheets with graphics, studies of adult literacy
confirm that it is naive to assume that the only kind of mathematical objects
that ordinary people find useful are whole numbers. For example, even to
do nothing more than intellige.. rea6 the sports pages of a newspaper, the
kinds of mathematical products that may need to be generated include (i)
numbers that are based on patterns or trends in data rather than on isolated
and explicitly stated facts; (ii) estimates that may involve ratios, or rates, or
functions involving relationships among several quantities, rather than only
quantities or measures that can be observed directly; (iii) questions or
hypotheses or predictions that can be verified or rejected; (iv) rules to explain
patterns or regularities that are embedded in diagrams or written/spoken
statements; (v) organizational schemes based on tables, graphs, rankings, or
coordinate systems that clarify, highlight, or make some factors easy to see,
at the cost of distorting, disguising, or eliminating other factors; (vi) graphs,
arithmetic sentences, equations, diagrams, or other concrete or symbolic desaiptior.
or representations that explain (or make sense of) a given situation; (vii)
statements that are logically deduced from known facts, rather than being
calculated; (viii) probabilities that describe the occurrence of given
nondeterminant events; (ix) statistics that summarize or describe informa-
tion about collections or patterns of data rather than simply reporting the
measures of pieces of data; or (x) shapes (or measures, or coordinates, or
constructions) that fit specified conditions.

Furthermore, when such objects are recognized as legitimate and
useful products of mathematical activities, the kind of problem-solving and
decision-making goals that are addressed include (i) optimizing the results of
given processes, (ii) simplifying or modularizing the procedures needed to
produce given results, (iii) finding detours (or alternative ways) to use under
alternative conditions, (iv) finding fair ways to partition given quantities, (v)
diagnosing or correcting errors in other peoples' results or conclusions, (vi)
specifying parameters that result in desirable outcomes, (vii) comparing, choos-
ing, or ranking different kinds of objects or events, or (viii) manipulating a
given system in ways that presumably improve its functioningeven though
the results of alternative policies might not be possible to observe.

Concerning the nature of realistic assessments of results: In realistic
problem-solving and decision-making situations, students seldom need to
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rely on the judgment ofan external authority (such as a teacher, or textbook
author, or test maker) to tell them whether their answers are acceptable.
Consider the case where the goal is to generate a plan, or a description, or
an explanation of a real-world situation. A variety of different types and
levels of responses arc usually possible (for example, using verbal rules,
symbolic equations, diagrams or graphs, or concrete models). Yet, in most
cases, there still tend to be clear and objective criteria to determine whether
responses are good enough for a given purpose. For example, the quality of
a response usually depends on factors such as (i) the type and amount of
information taken into account, (ii) judgments about risks and benefits
associated with alternatives, (iii) the problem-solver's awareness of possible
sources of errors (for example, due to over-simplifications or assumptions),
(iv) hypothesized trends and patterns that explain regularities beneath the
surface of things, (v) awareness of conditions that might result in different
opportunities or constraints, (vi) resources that are or are not available (for
example, time, money, tools), and (vii) purposes and preferences of stu-
dents themselves. Also, the quality of responses often depend on answers to
questions such as, Is it more important to generate answers quickly or with
high degrees of accuracy? Can trial answers be tested and revised? Are
overestimates preferable to underestimates? Should different answers be
given under alternative conditions?

To create effective model-eliciting problems, one of the key tricks
is to ask a real question that is neither too vague nor too specific. Productive
goals for model-eliciting problems should be similar to productive goals for
businesses or government or adult-level, on-the-job projects. They should
clarify how you will know when you are done, and when you are expected to
be done (date and deliverable). The criteria for evaluating the quality of
work should also be clearly understood. Contrast President Kennedy's goal
to "put an American on the moon by 1970" to President Bush's goal of
"making American students first in the world in mathematics and science by
the year 2000." In the first case, the criteria for success are clear, while in the
latter, they are not.

HOW MATHEMATICAL MODELS DIFFER FROM OTHER MATHEMATICAL SYSTEMS

In the research literature on mathematics learning, problem
solving, and instruction, one issue that strongly influences both the obser-
vations that are made and the conclusions that are reached has to do with
the "grain size" and the type of objects under investigation. For example:

If mathematics is thought of as (nothing more than) a collec-
tion of condition-action rules, then thinking tends to be
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equated with information processing, and learners tend to be
treated as information processing units. Also, distinctions
between experts and novices tend to be characterized in terms
of the presence or absence of specific factual and procedural
rules, and students' misconceptions are often interpreted as
being similar to "buggy" computer programs (see, for example,
Brown and Van Lehn, 1980).

If mathematics is thought of as being based on a relatively small
number of general cognitive structures and reasoning patterns,
then the most important aspects of thinking tend to focus on
the construction and adaptation of these structures (see, for
example, Piaget and Beth, 1965; Steffe, Cobb, and von
Glasersfeld, 1988) and misconceptions tend to be explained by
determining which of several alternative conceptual systems
students are using.

If attention focuses on entire conceptual fields, such as those
associated with multiplicative relationships, or additive relation-
ships, or exponential relationships (see, for example,
Vergnaud, 1988), then attention tends to focus on meanings
that are derived from organized systems of ideas rather than
being derived from additive combinations of isolated ideas or
procedures.

This chapter is based on the notion that to study the nature of
students' mathematical knowledge (plus the um.' erstandings and abilities
that are needed to use this knowledge in everyday situations), the most
appropriate unit of analysis is at the level of mathematical models rather
than at the level of (i) information processing rules, (ii) general Piagetian-
style cognitive :structures, or (iii) entire conceptual fields.

Mathematical models are closely linked to each of these three
perspectives, yet they are also distinct from each. For example, a collection
of factual and procedural rules is associated with any given mathematical
model, yet understanding the model means far more than simply learning
a list of isolated rules. Also, because real-life problems seldom fall into neat
and tidy disciplinary categories, the mathematical models that students
construct generally emphasize the kind of integrated knowledge that is
emphasized by those who focus on conceptual fields (see, for example,
Vergnaud, 1988). Finally, all mathematical models are complete, function-
ing mathematical systems (of the type referred to in Table 2) and all
mathematical systems are potential models for describing and explaining
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real or possible worlds. Yet in real-life situations, the models that students
construct tend to be somewhat different from both general cognitive
structures (of the type described by Piaget) and general mathematical
structures (as typically described in mathematics textbooks).

How are the cognitive/mathematical models that have been
described In this chapter different from other (more "pure") types of
mathematical systems? Our answer is that mathematical models are situated
mathematical systems. On the one hand, they provide powerful structural
metaphors for describing, constructing, explaining, predicting, and con-
trolling real-life situations. On the other hand, they can also be explored
without reference to external events.

Whereas pure mathematical systems are abstractions that are
distinct from the notation systems in which they are embeddedas well as
being independent of the -mind of any particular humanmathematical
models do not function its the abstract. That is, in nontrivial situations,
mathematical models are always embedded in representational systems
(written symbols, spoken language, diagrams or pictures, concrete or
manipulatable materials, or real-life prototype experiences); and, for a
given student, potential models (that is, mathematical systems) do not really
become actualized until they are used to model some external phenom-
enon. Furthermore, in the minds of the humans who construct them, the
meanings of mathematical models are always influenced by the purposes for
which they are constructed and by situations in which they are constructed.
Therefore, the kind of mathematical models emphasized in this chapter are
usually more concrete and more closely linked to students' specific prob-
lem-solving experiences than the general systems typically described in
mathematics textbooks.

Table 2

Basic Mathematical Systems Underlying Ideas in Precollege Textbooks

Elements Relations Operations
Representations, Notations,
Definitions, Computations,
and Transformations

simple counts =,s,<,> +,-,x,+, J base ten numeration

composite counts =,*,<,> +,-,x,+ 24 eggs => 2 dozen

simple measures =,*,<,> +,-,x,+ feet, inches, centimeters

derived measures =,*,<,> +,-,x,+ 7cm => .7dm = .07 in

very large/small numbers ,,,,=,x,<,> ^,+,-,x,+ scientific notation

signed numbers =,*,<,> +,-,x,÷ -n, I n I,±

coordinates (locations) I p-q I, e +,-,x,.. IP9I
fractions =,*,<,> +,-,x,+, / 2/3
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decimals & percents %, S

ratios .,=,*,<,> a:b,

rates =,x,c> +,-,x,+ miles-per-hour

vectors =,=.,:<,> ,,+,-,x,+ (a,b)

matrices & operators .,=,*,<,> ,.., 0 1 a,b 1

real numbers .,..,,e,<,> A,+,-,x,+ n,,I,e

complex numbers .,=,*,<,> A,+,-,x,+ i

probabilities (measures of
the frequency of events)

=,=,*,<,> ,+,-,x,, P(A), P(A/B), P(A')

statistics (measures of sets
of data)

.,=,e,<,> +,-,x,+ graphs,

sets (& elements of sets) a Li, rt, E. S2,0

logical propositions =>,-> A,v,-. V, 41, 3.:., -4:, 3

programming commands =>,-> A,v,-. V. 0, 3, .4., ,:, 3

'shapes in a plane symmetric

a, +-, a

0, n, L,1 constructions, reflections,
translations, expansions

shapes in 3.0 space symmetric, LI, (1, constructions, reflections,
translations, expansions

algebraic expressions A,+,-,x,+ substitute, simplify,
commute, distribute, etc

algebraic equations =>, = +,,X,+ transform

algebraic functions -,=> o, , +,-,x,+ simplify

trigonometric expressions =,*,. A,+,-,5,+ SIN, COS, TAN

trigonometric functions .,=> o, *, +,-,x,+ simplify

exponential & logarithmic
expressions

=,a,- A,+,-,x,+ LOC, e

exponential & logarithmic
functions

-,=> compose,
+,-,x,+

simplify

sequences ,=,<,> +,-,x,+ ..., >,
series -,=,c,> +,-,x,+ z,n,, >, ...
continuously changing
quantities (derivatives)

=,,. +,-,x,+ ay/ax,A

accumulating quantities
(integrals)

=,.. +,-,x,-1- J, E

In Table 2, which gives basic mathematical systems, all of the
mathematical systems (including the kind of mathematical models empha-
sized in this chapter) consist of three kinds of entities: (i) elements, (ii)
relations among elements, and (iii) operations on elements. Consequently,
one convenient way to distinguish one mathematical system from another
is simply to name the elements, for example, simple counts, simple mea-
sures, ratios, rates, signed numbers, and so on. Another way to distinguish
one mathematical system from another is to list the factual and procedural
rules that govern the behavior of elements within the system. Nonetheless,
the real mathematical objects are neither the elements nor the represent-
ations, notations, definitions, computations, and transformations that de-
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scribe their behaviors. The real mathematical objects are the underlying
patterns that the symbol systems describe. Doing mathematicsmeans inves-
tigating the structural properties associated with these patterns (or models)
and constructing and adapting these patterns (or models) for a variety of
situations and purposes.

The mathematical systems described in Table 2 tend to be both too
large and too small to serve as the proper unit of analysis for most situations
in learning and instruction. They are too small, for example, because
nontrivial real-life problems seldom fall within neat disciplinary topic areas.
Therefore, to describe or explain most real-life problems, it is usually
necessary to construct a model that is based on combinationsand adaptations
of several pure mathematical systems. The systems are too large, because it is
only at an extremely advanced stage ofconceptual development that students
become able to think in flexible ways using conceptual models that are as
large and complex as (for example) the system of rational numbers. In
general, the past decade of cognitive science research has revealed that
mathematics learning and problem solving are far more situated and piece-
meal than earlier researchers had recognized (Greeno, 1988).

Finally, these systems are sometimes simultaneously too large and
too small, because, when students and educators are forced to work prema-
turely with mathematical systems that are as large and complex as those in
the table, they often lose sight of the forest because of all of the trees. In
particular, they tend to lose sight of the underlying patterns (or models) that
are intended to be described, and instead focus on simply knowing and
executing isolated factual/precedural ruleswithin the system.

From the point of view of mathematics learning and instruction,
substantial effort must be made to focus on underlying systems that are
sufficiently small and concrete so that students do not lose sight of the
underlying systems-as-a-whole, while, at the same time keeping these systems
sufficiently large to have impressive power, utility, and generalizability. But,
how large is too large? And how general is too general? The answers depend
on the level of development of individual students. In principle, a student
might someday reach a level of developmentwhen virtually all of the systems
referred to in the table have been integrated into a single supersystem. For
example, elements in one system (for example, the natural numbers) are
often embedded within another system (for example, fractions, or signed
numbers) which are in turn included within still other systems (for example,
real numbers, complex numbers, vectors, or matrices). On the other hand,
as this process of subsumption takes place, the meaning of symbols such as
+ and = often differ considerably from one level to another (or from one
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situation to another), so that, if a single integrated system could ever be said
to exist in the mind of a given student, this system would have to involve
notions such as levels and types of equivalence" and "levels and types of
combination" which apply under different conditions or in different situa-
tions.

SUMMARY

To close this chapter, we will review answers to some of the main
questions that were posed at the beginning of the chapter.

Question: What are the most important objectives that students
should learn (and that assessment instruments should measure) in math-
ematics instruction?

Answer: According to the point of view that was adopted in this
chapter, the most important goals of modern mathematics education are to
help students construct models that provide powerful conceptual/proce-
dural amplifiers for making sense of their increasingly complex worlds of
experience. For example, within most mathematics courses, or at any given
grade level, there tend to be no more than ten to twenty basic models that
underlie nearly all of the specific concepts and procedures that students are
expected to learn. It is the development of these models that should be
emphasized in both assessment and instruction.

Unlike earlier periods when students were expected to demon-
strate their knowledge and ability by showing how many facts and skills they
knew, increasingly, the main mark of intelligence is considered to involve
the ability to analyze, manipulate, synthesize, and critically interpret infor-
mation in the interest of real-life problem solving. Specific facts and skills are
associated with each of the preceding models, but these models themselves
are not merely condition-action rules. They are complete, functioning,
systems-as-a-whole whose properties are not simply derived from their parts
and whose purposes are not simply to provide rules for getting from givens
to goals during the process of answering questions posed by others. Instead,
their purposes usually involve describing, explaining, predicting, manip-
ulating, and controlling real or possible worlds of experience.

Question: What types of activities are particularly promising for
assessing the preceding dimensions of understanding?

Answer: Fora given student, to assess the extent to which a given
model has been constructed (or to assess the level of development of the
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model), one kind of activity that has proven to be especially useful is a model-
eliciting activity in which students go beyond simply giving an answer to
construct a response using available information, objects, tools, and proce-
dures. Often, these constructed response activities tend to be quite similar
to activities involving the construction of geometric figures. For example,
in the Math Placement Problem described earlier, teachers began to
constructs response by explicitly selecting, filtering, coding, and organizing
relevant data within a s weadsheet; next they recoded and reorganized the
information in a variety ofways; then they constructed graphs and reasoning
paradigms to support their constructed decision-making strategy. Finally,
they looked for other structurally similar problem-solving situations in
which the model they had constructed might provide insightful explana-
tions, predictions, or interventions. Consequently, to evaluate the quality of
a given person's response to the Math Placement Problem, it is necessary to
evaluate the model that was constructed, and the construction process itself,
in addition to evaluating isolated answers or specific decisions that were
based on the model.

Question: How can the construction of significant models be
facilitated?

Answer: For fields in which the most importantgoals of instruction
focus on the constru, don of models for describing, predicting, and control-
ling the behavior of complex systems, case studies are often used as model-
eliciting activities to help students develop powerfulstructural metaphors to
make sense of actual or anticipated worlds of experience. For example, in
business schools, this development process often involves the following
three phases:

The model-development phase: Using a variety of conceptual
frameworks and technology-based tools, students construct
models to describe, explain, manipulate, and predict the
behavior of structurally rich systems. That is, they are case
studies that provide prototypes (or structural metaphors) for
interpreting other important problem-solving situations.

The model exploration phase: Models that have been constructed
are investigated for their own sake (as in a pure math activities)
to extend their power and utility by focusing on underlying
patterns and regularities.

The model application phase: Models that have been refined and
elaborated are applied to new problem-solving situations which
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could not have been dealt with adequately in the absence of the
newly constructed model. That is, students actively look for new
situations that can be described or explained using the model
they have constructed.

After these three phases, similarities and differences are often
explored comparing the original problem, the pure math model, and the
final application. This process is depicted in Figure 5.

Figure 5. Three Stages In A Modeling Approach To Mathematics Instruction

The preceding modeling approach to instruction is similar to
instructional approaches that Dienes (1957) advocated for use in mathemat-
ics laboratories. As Figure 6 suggests, Dienes' instructional techniques fo-
cused on use of concrete manipulatable materials which served as embodi-
ments of targeted mathematical systems. That is, students explored two or
three sets of structurally rich materials, then they investigated similarities and
differences among structurally isomorphic activities with these materials.

Figure 6. Dienes' Multiple Embodiment Approach To Mathematics Instruction

Embodiment *1 Embodiment #3

The preceding two approaches to instruction are clearly quite
similar. For example, both focus on mathematical systems-as-a-whole; both
emphasize the use of con crete materials; both concentrate on mathematical
systems that provide conceptual foundations for the most important under-
standings and processes that are priorities for children to learn. The main
difference between the two approaches is that Dienes' principles focus on
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pure mathematics activities (in which the symbols are concrete objects rather
than abstract notation), whereas two of the three stages of our modeling
approach focus on applied mathematics activities (which are explicitly based
on children's' real-life experiences), even though all three stages are aimed
at demonstrating the power of pure mathematical activities.

Our modeling approach to instruction is deliberately consistent
with the way modem mathematicians think about their own activities in
mathematics and mathematical modeling. Also, it was explicitly created to
be consistent with three of the most basic principles of modern cognitive
science, namely, (i) humans interpret their experiences by mapping them
to internal models, (ii) these internal models must be constructed, and (iii)
constructed models result in situated knowledge that is gradually extended
and decontextualized to interpret other structurally similar situations.
Moreover, our modeling approach to instruction is also consistent with a
constructivist philosophy about how human knowledge develops.
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INTRODUCTION

Toward an
Assessment
Framework for
School Mathematics

Gerald A. Goldin

There is increasing recognition that the methods
currently used most widely by schools for assessing student mathematics
achievement are having a substantial negative impact on meaningful learn-
ing. Often it is assumed that the situation can be improved by replacing tests
that measure low-level skills, computational algorithms, and routine prob-
lem-solvingwith new instrumen ts containing more sophisticated, nonroutine
problems. Ideally, with an appropriate pool of test items, it is suggested that
"teaching toward the test" would no longer compromise the goals of the
assessment and that a student's successful performance would unquestion-
ably reflect a deep mathematical understanding.

This chapter argues against this approach and stresses the need
for a sound cognitive model as the basis of a framework for assessing meaning-
ful mathematics learning and understanding in schools. Exploring in detail
a few mathematical assessment items illustrates how the outcomes of any
assessmenttraditional or nontraditionaldepend on the teacher's prior
understanding of what is being assessed. Particular cognitive processes can-
not be identified with a mathematics problem that elicits them, nor can they
be assumed to be necessary to solve the problem. It follows that reform of
assessment involves much more than the creation of new instruments. What
is needed is not only an appropriate cognitive model, but also an under-
standing among teachers, school administrators, students, and the general
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public of mathematical processes as well as content, and of how new methods
of assessment are intended to address these processes.

Based on the examples explored here, we shall discuss an assess-
ment model entailing several different kinds of broadly applicable cognitive
representational systems drawn from an earlier model for problem-solving
competence (Goldin 1987, 1988) together with domain-specific capabilities
organized into conceptual schemes.

Background

The past fifteen years have seen some substantial changes in the
intellectual leadership of mathematics education in the United States.
Among other positive developments has been a transformation in the
prevailing educational perspective on what it means to learn and to under-
stand mathematics.

By the mid-1970s, a behaviorist view had come to predominate in
school mathematics. Influenced by the claims ofbehavioral psychologists to
scientific rigor, some educators became advocates for the position that
vocabulary purporting to describe students' mental states or cognitive
processes should be discarded from the lexicon (Mager, 1962; Sund and
Picard, 1972). Many schools rewrote their curricular goals accordingly.
Understanding in mathematics (and in other school subjects) became virtu-
ally identified withperformanceor, more precisely, with the student's achieve-
ment of sets of performance objectives, most often expressed as the reliable
and rapid attainment of correct answers to mathematical problems of
various types. This view might not have become so prevalent had it not had,
as a source ofwide political support, its extraordinary compatibility with the
"back to basics" reaction against the "new mathematics" movement of the
1960s (a movement which itself had had mixed results in fostering math-
ematical understanding in the majority of students). The behavioral objec-
tives approach lent itself well to reliance on standardized skills tests in
mathematics, both to define the goals of instruction (basic skills), and to
provide the assessment of success in achieving those goals.

The results on balance have been quite negative, even by perfor-
mance objective measures. Not only did insightful mathematics learning
virtually disappear from many classrooms, but a substantial number of
children did not acquire or retain even the skills they were taught as rote
procedures. Today, as a partial consequence, our society confronts a real
crisis in mathematics teaching and learning. But the prevailing view of
mathematical understanding has changed. Meaningful mathematical un-
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derstanding is now widely seen by many educators (as well as cognitive
theorists) as entailing a complex system of elaborately constructed cogni-
tions, developed over time, involving not only overt concepts and proce-
dures but considerable tacit knowledge that can be brought to briar without
the conscious awareness of the teacher or the student (for example, Lesh
and Landau, 1983; Davis, 1984).

Obviously the current thinking requires substantial, fundamental
revision in several aspects of mathematics education, including not only the
objectives of instruction and the preparation of teachers, but also our
assessment techniquesat least if we desire to observe in some systematic
way the nature of the student understandings that are the outcomes of
learning. The objectives of mathematics education have been addressed in
some detail in a number of recent public documents (for example, NCTM,
1989; NRC, 1989). Attention has also been given to issues in mathematics
teacher development through national publications (NCTM, 1990; Davis,
Maher, Noddings, 1990), and through many innovative regional institutes
for teachers. To date, in 1992, there have been only isolated and preliminary
efforts toward the fundamental reform of assessment techniques.

DEVELOPING NEW ASSESSMENT TECHNIQUES: OPPORTUNITIES AND DANGERS

It can of course be maintained that the assessment of a student's
understanding is fundamentally a matter of qualitative judgment based on
long-term, personal interaction and is therefore best accomplished by the
individual classroom teacher. Perhaps it is a mistake to try to assess under-
standing systematically or to develop a framework for doing so. This
possibility should not be dismissed out of handwhile leaving assessment to
the classroom teacher seems a radical idea in the United States, it is generally
the method of choice in, for example, the Federal Republic of Germany.
There are, however, some strong arguments for taking the present oppor-
tunity to develop new instruments and modes of assessment, provided the
appropriate cognitive and teacher development foundations are laid.

First, with the setting of goals for mathematics education tran-
scending mere computational speed and accuracy, a well-designed system
for measuring understanding descriptively could be a useful resource. It
could in principle not only provide feedback to society as to how well
educational institutions are achieving their more ambitious objectives, but
also inform and consequently enhance the classroom teacher's judgments
enabling the teacher to build on individdal students' strengths while
addressing cognitive obstacles more effectively.

p."
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Second, new assessment frameworks may permit us to replace our
current system of tests with a much better alternative. This is an urgent
necessity for real mathematics education reform. To the degree that present
assessment techniques rely on routine computational, algorithmic,or word
problem tasks, or can easily be misconstrued as doing so, they continue to
function as powerful inhibitors of teaching for mathematical understanding
in schools. School boards, administrators, and teachers are reluctant to
devote class time to conceptual understanding, exploratory activity, con-
struction of mathematical meanings, or mathematical invention, because
they (often correctly) perceive these activities as untested and irrelevant to
the test scores that are the short-term bottom line in mathematical achieve-
ment. In the long run, of course, the damage shows up in many forms,
including low scores even on the standard test items, because students have
not developed adequate conceptual foundations.

An immediate example is provided by some of the K-8 national
mathematics testing series released in the United States in 1991. As a
consequence of the current movement toward mathematics education
reform, these now include more complex, nonroutine topics and problems,
and they develop some important mathematical ideas both computationally
and conceptually. Whle textbook publishers deserve their share of past
responsibility for overemphasizing rote computation in mathematics, the
1991 series offer a potentially significant opportunity for change at the
classroom level. Unfortunately, experience suggests that, in many schools,
despite national recommendations to the contrary, conceptually based
activities will be culled from the curriculumand treated as "enrichment"
for occasional use only, with selected studentsas if the understanding and
doing of mathematics (as opposed to the rote learning of skills) were not
central to our educational goals, but merely an optional add-on. This
anticipated outcome is made more likely by the fact that, due to traditional
format restrictions, complex problem strategies and conceptual under-
standing are by and large deemphasized in textbook chapter and unit tests,
that are th..- only immediately provided assessment methods in the K-8 series.
Furthermore, items included on textbook tests that might be considered as
addressing higher-level or deeper understanding are easily misconstrued as
intending to measure lower-level skills or memorized terminology. An
assessment framework accessible to teachers could be just what is needed to
overcome such difficulties.

But a note of caution must also bc: sounded. There are dangers as
well as opportunities in developing new instruments for assessment that, in
practical use, can be harmful as well as helpful. Assessment instruments must
never substitute for the teacher's own understanding of mathematics, nor for the
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teacher's own model of student understanding. A teacher who does not ad-
equately comprehend a mathematical idea, or have a good cognitive
model ofwhat it means for a student to understand a mathematical concept,
will not be able to compensate successfully by teaching toward the test,
especially when the test is a nontraditional instrument designed to assess
higher-order or deeper understandings. And teachers or administrators
who do have such understandings must be able to use the information
gained from new instruments to enhance and supplement their perspec-
tives, not to replace them.

Having agreed at last to attend to the inner cognitions of students,
mathematics educators must recognize that the assessment is not the set of
goalsit is only a means of gathering information related to, but different
from, the set of goals. It would be a poor doctor who thought that the
objectives of medical treatment were mainly to obtain satisfactory readings
on descriptive. instrumentsthermometers, stethoscopes, and so on
without a physiological model that distinguished health from disease. Such
a practitioner, seeking only to alleviate the symptoms of illness, might
succeed in the short run in relieving symptoms, but would fail spectacularly
in achieving healthy patients. In developing an assessment framework for
mathematical understanding, this medical analogy can help us take account
of the following general principle: No matter how sophisticated the mathematical
problems we may pose (so that they seem to require higher-level thinking,
strategic problem solving, and/or conceptual understanding for their
solution), it is conceivable to deviseand to teachpractical, rule-based,
noninsightful procedures for solving them. Under these conditions successful
performance does not reflect understanding. Indeed, in such circum-
stances the purpose of the assessment is defeated just as surely as lowering
a patient's fever through aspirin, or an ice bath, prior to a medical exami-
nation would defeat the purpose of taking her temperature. In schools, such
misuses of assessment are most likely to occur when educators do not
themselves understand what is actually being assessed, or why. These are
major dangers in developing a new assessment framework, and they must be
carefully avoided.

INGREDIENTS OF AN ASSESSMENT FRAMEWORK

The following are some of the perspectives for which I wish to
argue in approaching the issue of a useful assessment framework:

Assessment that is no longer limited to discrete, low-level
mathematical skills requires not only an idealized, structured
model for a mathematical con tent domain, but a sound cogni-
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tive model for describing the capabilities to be assessed. While
such models can become very complex, it is important that the
resulting assessment framework be simple enough to be useful
at the same time that it is sufficiently detailed to reflect what is
involved in doing the kind of mathematics we want to encour-
age.

A useful cognitive model for this purpose can be developed
based on two dimensions, which cut across each other: (i)
mathematical conceptual schemes, reflecting the organization
of domain-specific cognitive capabilities, and (ii) several
different kinds of cognitive representational systems, which
characterize capabilities for broader problem solving and
transfer to novel situations. A framework for assessment based
on such a model can be reflective in taking account of the
student's analysis of his or her own cognitive strategies. It also
provides the basis for a more descriptive assessment, so that we
can obtain useful profiles of a student's mathematical develop-
ment as we evaluate insightful problem solving and depth of
understanding.

I shall also try to illustrate these ideas with a few examples.

The Need for an Explicit Cognitive Model

There are several reasons why it is important to set forth a cognitive
model as a prerequisite to creating an assessment framework. The first, as
mentioned above, is the need to prevent the measure of achievement the
test or the assessment frameworkfrom being identified or taken as synony-
mous with the central goals of the curriculum. In part this happens because
we have no other independent characterization of those goals. To be specific,
consider a nonstandard, exploratory problem about egg timers (Problem 1) .

Problem 1. You have two egg-timers, in which
fine sand runs from one compartment to
another in a fixed interval of time (see
illustration). ft takes exactly 4 minutes for the
sand to run through one timer, and 7 minutes
for it to run through the other.

What other intervals can be timed? Can you
use these timers to measure an interval of
exactly one minute? Explore different pairs of

4 -minute timer 7-minute timer egg-timers.
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Let us ask what the purpose would be of such a problem activity in a teaching
lesson. What might we be assessing if this problem were used in an individual
interview, as a group problem-solving activity, within a student project, or on
a test?

As mathematics educators interested in higher-order and deeper
understandings, we might expect that such a problem is intended to develop
or assess a student's ability and willingness to do at least some of the
following (listed in no particular order):

Explore a new concrete situation.

Try a number of specific procedures.

Visualize the outcomes of particular sequences.

Organize and record the outcomes of trials in a useful way.

Make appropriate use of addition and subtraction of numbers,
in the specific context of comparing and concatenating inter-
vals of time.

Modify the order of steps in particular sequences.

Make conjectures from special cases.

Investigate a conjecture systematically.

Put together a strategy for systematic study of the problem.

Arrive at a mathematical generalization based, in this case
(tacitly or explicitly), on the fact that the numbers 4 and '7 are
relatively prime (involving structures of multiplication and
division).

Generalize spontaneously from one problem to a family of
related problems.

Try to understand why a conjecture might be true (intuitive
precursor of the idea of mathematical proof).

Proceed with an investigation without fear of being wrong.

i.
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Be influenced by the problem's internal logic, rather than by
the perceived expectations of the teacher.

Participate constructively in group problem-solving interactions
(depending on the mode in which the problem is addressed).

Have fun with such an exploration, and so on.

Depending on which cognitive objectives are highlighted, the
context or mode of presentation of the problem may change. A list such as
the above is based on at least a tacit model for the kinds of things that
constitute mathematical understanding or sophistication. Without such a
model, a teacher even with the best of intentions in preparing students to
solve such a problem during an assessment, can do many things that defeat
the preceding objectives. For example, the teacher may

show the student a number of ways to use the timers in se-
quence (so that there is no need to explore spontaneously),

demonstrate a number of specific procedures (so that the
student tries them only in imitation of the teacher),

decide the outcomes of particular sequences for the students
(so that the students need not anticipate, or visualize, or reason
to consequences),

set up a chart for the students to record the outcomes of trials
(so that the students themselves only enter numbers), and so on,
until finally, the students have no sense of fun or accomplish-
ment in the problem-solving, and see only a routinized method
for solving a class of "egg-timer problems" along with other
problem types such as "money problems," "rate problems," and
so on. Perhaps a student, having been thus prepared, will solve
the problem correctly during the assessmentbut what is
measured will be recall of a demonstrated, rule-based procedure -
rather than any of the desired cognitive processes.

A second reason to have a cognitive model in advance of develop-
ing an assessment framework is to be able to discuss the goals of instruction
(and consequently the goals of the assessment) explicitly, and to the extent
feasible to decide these goals consciously rather than tacitly. For example,
we have heard much about the need for real-life problem solving in the
curriculum, as though the immediacy and verisimilitude of application were
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the most important criteria for what should be taught. But are they? No one
doubts that one goal of mathemati s education should be to develop the
student's ability to treat real situations mathematically, but is it justified to
declare this the most important or cognitively valuable goal? Might not an
exclusive focus on real-life mathematics problems preclude the student's
achievement of mathematical understanding, of abstraction from specific
situations, of transfer to new situations, or of insight into the beauty and
simplicity of mathematical reasoning? Or are these envisioned as automatic,
but incidental consequences of an emphasis on real-life mathematics? The
new textbooks and their accompanying tests, even as they have increased the
complexity and conceptual depth of their treatments, have also sought to
place more emphasis on realistic problems in realistic contextsbut these
may or may not encompass what we mean by higher-level or deeper
understanding. Having a sound cognitive model as the foundation of an
assessment framework can help us avoid oversimplified interpretations of
what it means to do mathematics.

A third reason for a cognitive model is that new approaches to
assessment can now make use of new technologyfor example, computer
environments can be designed for conducting individualized assessments,
with built-in elaborate contingencies based on student responses. The fact
that such schemes require major commitments to structured programs
suggests that it would be a good idea to invest some time in the design
elements, to determine just what it is we want to assess before we set about
building computer-based assessment systems. An adequate, accessible cog-
nitive model would seem to be a prerequisite. This is especially important
because the American public now tends to have little conceptual under-
standing of mathematics and to have a highly procedural/algorithmic
orientation toward what it means to do mathematics. Parents and policy
makers may tend to place their faith in new assessment schemes merely
because they are high-tech, and againwithout efforts to the contrarywe
may see the assessment procedure defining by default the cognitive goals of
instruction.

In short, we need a good way to characterize desifable cognitions
in mathematics, a characterization that captures the essential cognitions
that we as mathematicians and educators hope to develop in our students.
Then, and only then, should we seek to develop an assessment framework
that describes the extent to which these cognitions have actually been
developed. At the classroom level, we need teachers who understand what
the goals of instruction are, why they are what they arc, and how certain
kinds of assessment items are expected to measure particular instructional
goals.
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TRADITIONAL AND NONTRADITIONAL ASSESSMENT ITEMS

To make more concrete what we mean by a cognitive model, let us
next consider some further assessment items, comparing a traditional with
a nontraditional question. Again, most of the analysis that follows is inde-
pendent of whether the questions are posed on standardized tests, occur
within student projects, are presented in individual interviews, or form the
basis of group problem-solving activities.

Understandlag, Traditionally Assessed

Problem 2 is a routine story problem of a type that, in one form or
another, might have been given to middle school students at any time during
the past century to assess their understanding of school mathematics. It is
expected that (with pencil and paper) the student will calculate the two
products [4 x $3.79 and 3 x $4.85], subtract the latter result [$14.55] from
the former [$15.16], and obtain the answer [$.61].

Problem 2. Mixed nuts cost $3.79 per pound, while cashews cost $4.85 per pound. How
much more does a 4-pound bag of mixed nuts cost than a 3-pound bag of cashews?

On the surface, such an item does appear to assess the student's
understanding of multiplication and subtraction in a real-life context, as
well as his or her ability to perform and make use of routine arithmetic
computations. Undoubtedly this belief accounts for such problems having
survived generations of mathematics education reforms. When we look
more deeply, though, we can see that this characterization ofwhat is assessed
is too simple. On the one hand, solving the problem insightfully may involve,
for example, (i) the student's having some kind of broad heuristic strategy
(which some might call "metacognitive") for structuring such story prob-
lems, including the ability to extract the wanted and given information,
identify the goal information, and soon; (ii) the student's having the ability
to interpret the problem statement semantically, to visualize the problem
elements in th. cultural context of purchases being Lade; (iii) the student's
being able to regard specific aspects of the problem situation (not merely
the words) as calling for certain arithmetic operations, so that the "cost of
the mixed nuts" can be obtained by multiplication, the "cost of the cashews"
by a second multiplication, and "how much more" by subtraction of the
latter product from the former; (iv) the student's not only having the ability
to carry out the desired computations correctly, using standard algorithms,
but being able to monitor the meaning of the computations and the
reasonableness of the results through estimation and contextual reasoning;
so that (for instance) an answer of $1,455 would immediately be deemed
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inappropriate for the purchase of a bag of cashew nuts; and (v) the student's
being able to organize the information, keeping track of goals and subgoals
along the way, so that (for example) after each arithmetic operation is
performed, the student knows or can determine how the numerical answer
relates to the problem's goal structure and to which semantic element of the
problem situation it corresponds.

These procedures are, in and of themselves, sufficiently compli-
cated so that, if we accept the preceding as a partial description or "model"
of the needed problem-solving processes, it must be acknowledged that the
problem does require higher-order cognitive activity or deeper understand-
ing. In fact, many students experience considerable difficulty with such
problems, suggesting the complexity of the processes they do in fact involve.
However, despite the complexity of the requisite cognitive processes in this
description, there are some deeply unsatisfactory characteristics of such
problems used as assessment items, which we now mention.

First, many would point out that this task is not exactly the real-life,
practical problem it pretends to be. In an actual pricing situation, it is more
probable that an estimated answer rather than an exact answer would be
called for and calculated. Were a precise answer needed, it is likely that a
calculator would be at hand to obtain it more easily than through a
conventional calculation. In this case it would be necessary (in some states
of the United States) to consider additional complications such as the sales
tax. Furthermore, we are not told why the answer is needed, and it is difficult
to conjecture a real-life situation in which the precise difference in these two
prices would be the problem goal.

Second, the foregoing partial description of procedures suggests
numerous important, tacitunderstandingswhich may or may not be brought
to bear by the student. These are addressed only incidentally by the
problem. Learning or assessment based solely on the problem -as posed does not tell
us what failed and what succeeded. It might be well to make some of the
possibilities overt. For example, the problem anticipates that a 4-pound bag
of mixed nuts costs more than a 3-pound bag of cashews. Does the student
(i) take this for granted (and simply subtract the smaller product from the
larger, or the second product from the first), or (ii) monitor the calculation
and verify when the time comes that the cashews really cost less, or (iii) check
this assumption by estimation at the outset? What are the consequences of
each possibility? If (iii) occurs, for instance, the student might obtain 4 x $4
= $16 while 3 x $5 = $15, and conclude that indeed the mixed nuts cost more,
but not a lot more; while a sophisticated student might even note that since
the cost-per-pound of the mixed nuts was rounded upward in this estimation
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by more than the cost-per-pound of the cashews, one should not have total
confidence in the outcome of the estimate. This is just one of the large
number of tacit capabilities which, taken together, may characterize under-
standing of the mathematics of the task, but which success on the task itself
does not assess. Within certain modes of learning or assessment, such as
tutoring or individual interviews, it may actually be possible to measure such
outcomes; but it is necessary, then, to introduce a questioning or interview
procedure that seeks to elicit them.

Third, and perhaps most important, there is the entrenched
expectation that the problem is "routine." This term has two distinguishable
meanings. In the sense that problems like this one are frequently used for
assessment and are standard content in most textbooks, to be routine is not
a negative characteristicafter all, if ideal, nonroutine problems were to be
substituted in textbooks and assessment instruments, they would quickly
become routine in this sense. But there is a more intrinsic sense of routine
that pertains to this problemnamely, the expectation that its solution involves
only the straightforward application of previously learned computational rules, in
semantic situations where there is a standard one-to-one cotresp(mdence between the
callecl-for computation and the situational entity (see below). There are no new
mathematical constructions anticipated here and no difficult decisions are
anticipated as to the operations that are called for or what they mean. On the
contrary, the implication of routine is that any such constructions or
difficult decisions occurred long ago and have become automatic; if not, this
would bespeak a deficiency in the student's preparation to solve the
problem.

A Tacit Model

Because of the routine nature of Problem 2, it is thus possible to
bypass much of its cognitive complexityand some teachers and books tend
to do so. For example, the problem can be addressed without developing a
mature concept of the intensive quantity "cost per pound," if the student is
merely taught to interpret the phrase "4 pounds at $3.79 per pound" as a
purely syntactic instruction to multiply. [The general syntactic form here is
"x A's at y B 's per A," where x and y are numbers and A and B are nouns
describing objects, units of measurement (including money), and so on.]
We see this bypass attempt at its worst in the so-called key words approach
to story problemsan approach that has often been deplored but that
survives in many classrooms. It survives because, unfortunately, it works to
obtain answers to the routine problems most often used in classrooms. A
tacit (and .iighly inadequate) cognitive model underlying such approaches
to the problem is illustrated in Figure 1.'

74
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cognitive modal.
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The compartments with rounded corners
in Figure 1 refer to external configurations (the
verbal problem statement; formal expressions or equa-
tions generated by the solver; the written answer to
the problem). The rectangular boxes stand for inter-
nal systems of representation (verbal processing, in-
volving reading the problem and identifying relevant
syntactic expressions; formal /symbolic processing,
involving structured arithmetical computations). The
ovals refer to internal processes that interface be-
tween the internal systems and the external configu-
rations, or between two internal systems. The strategy
depicted is sequentialread the problem, translate
each part of the problem statement into an arithmeti-
cal procedure ("words" to "symbols"), and then per-
form the necessary arithmetic.

By making this frequently held tacit model
explicit and detailed, it becomes apparent how, with-
out a more adequate cognitive model to the contrary,
many teachers of mathematics would plausibly see
what is being assessed here as the conversion of word
problems about cost to formulas (translation of modes
of external representation), and the performance of
computations, rather than the understanding c,fmath-
ematical concepts, heuristics, problem-solving strate-
gies, or applications. This is another instance of the
above-mentioned general principle that no matter

how sophisticated the problem, one can devise a noninsightful procedure
for solving it.

For these reasons the exclusive focus on such problems as the
epitome of what it means to do mathematics at the middle school level is a
very bad idea, despite the potential complexity of the cognitions that might
be brought to bear.

Comparison with Nontraditional Assessment items

When a nontraditional problem (Problem 3, for example) is
introduced in the context of assessment, mathematics educators frequently
respond with approval or disapproval, making some implicit judgments
about the item's validity and at the same time projecting their assumptions
about what it would take to solve the problem. The purpose of the examples
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that follow is not to present good or bad items, but to make some of those
assumptions explicitthat is, to discuss what might be measured by certain
kinds of nonroutine items, compared to routine assessment items such as
Problem 2. We shall see that the cognitions to be assessed are very sensitive
to the conditions of the assessment. Without a clear characterization ofwhat
we want to measure, there is a great deal of ambiguity. We shall see that the
question to pose first is not, "What does the problem assess?" but "What are
we hyingto assess through the problem?" The answer is notobvious from the
problem itself.

Problem 3. Let the symbol 0 stand for the average or mean of two numbers. For
example, we shall write 6 0 8 - 7, because 7 is the mean of the pair 6 and 8. Is the
operation 0 commutative? Is it associative? Explain why or why not.

One possibility, in line with the recommendations of many educa-
tors, is that through Problem 3 (and others like it), one might assess
conceptual understanding of commutativity and associativity by asking that
these concr--s be transferred to a new and unfamiliar context. If this is
indeed the dJ.T.:ssment goal, however, the student should not have been
prepared for the problem (for example, as an examination question)
through prior exploration in class of the properties of as an operation.
Were the student to know before seeing the problem that the mean can be
treated as a binary operation, perhaps even having seen introduced a symbol
such as 0 to stand for the operation, having learned that it is commutative
but n ot associative, and having seen these properties illustrated for the mean
with examples and counter examples, then we are not assessing transfer to
a new context at all, but only how well the student learned what was taught
about the operation in this context. Thus, to accomplish the stated goal of
the assessment, we are to a limited extent testing the student on material that
has not been taughtsomething widely regarded as unfair, and whose
purpose is not well understood by the public.

But the issue is not limited to what the student has not seen. For
the problem to accomplish its assessment goal, it must also be understood
that the student has some prior understanding of "the average or mean of
two numbers." If not, the problem as posed may never address the transfer
of the concepts of commutativity and associativity to a new context, because
the intended context is itself not understood. It must also, of course, be
assumed that the student has some prior knowledge of commutativity and
associativity in other contexts, such as addition or multiplication. Thus what
the problem actually assesses depends sensitively on the student's prior
preparation; for the intended purpose, there is a fine line between prior
preparation that is necessary and that which is impermissible. These condi-
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dons are, at least to some extent, controlled directly by the classroom
teacher; thus what is accomplished by an assessment depends on the teacher's
understanding of the intent of the assessment.

Suppose that the prerequisites are in fact met: the student has
some understanding of the mean, but has not seen its properties as a binary
operi don discussed. Then a variety of complex cognitive processes can
occur. The student might employ any of a number of heuristic strategies.
One approach is to make trials to determine whether 0 is commutative: try
6 0 8 [which is (6 + 8)/2 = 14/2 = 7], and compare the result with 8 0 6
[which is (8 + 6) /2 = 14/2 = 7]. The decision to compare 6 0 8 with 8 0 6
through calculation would seem to require syntactic transfer of the commu-
tative property, as normally stated for the binary operations + or x, to the new
operation 0, using a procedural notion of binary operation, that is encour-
aged by the calculation of 6 @ 8 in the problem statement. Several further
trials might convince the student that commutativity holds, but this conclu-
sion maybe regarded (correctly) as a conjecture, or (in correctly) as a proven
fact, depending on the student's understanding (at a level of mathematical
logic more sophisticated than is generally appreciated) of what constitutes
an unfounded conjecture, what constitutes a conceptual reason for a
mathematical pattern, and what constitutes proof. At some point, the
student might reason by modeling the general on the particular (another
heuristic strategy) and ask, Why is the operation commutative? We are
dividing by two in all cases, in whichever order; thus 0 is commutative
"because a sum like 6 + 8 is always the same as 8 + 6"; that is, because addition
is commutative for the pair 6 and 8, and "the same argument" applies to any
other pair of numbers.

Similarly, associativity could be investigated by making trials, for
example, by comparing (6 0 8) 0 2 with 6 0 (8 0 2), by choosing three
different numbers more or less at random to test and test again, or by making
syntactic transfer of the meaning of associativity from a familiar domain. The
first calculation gives 7 @ 2 = 4.5; the second gives 6 5 = 5.5; thus, the
answers are different. If the stud entund erstands the role ofa counterexample
in disproving a conjecture made for all numbers, then it is demonstrated
that the operation is not associative.

We see that the problem, if used as intended, can assess not only
the transfer of the concepts of commutativity and associativity to the new
situation, but also the use of some problem-solving heuristics and the
understanding of mathematical reasoning at a fairly sophisticated level. And
indeed, such capabilities are an important, but often tacitly disregarded,
part of the conceptual understanding of structural properties in mathemat-
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ics such as commutativity and associativity.

As was mentioned, some prior acquaintance with the mean of two
numbers is assumed in this problem, but thus far only its procedural
interpretation using formal notational symbols has been discussed. Of
course, understanding the mean of 6 and 8 encompasses far more than the
procedure of adding and dividing by two. There is descriptive knowledge
about the mean, for example, the anticipation that the result is a number
between the original two. There is visualization of the mean, such as its
semantic interpretation as an intermediate height, or as the midpoint of a
segment joining the two original numbers on a number line; there is its
interpretation as a center of mass, and so on. Such representations can help
with the problem: If @ is seen as specifying the midpoint of a line segment,
for instance, the commutative property can be understood as the assertion
that the midpoint is independent of the order in which we specify the end
points. Similarly, understanding of commutativity and associativity can
involve descriptive knowledge, for example, the idea that if one of these
properties holds for a few generic examples it is probably true, but that
examples involving identity elements are not generic. It can involve imagery,
for example, visualizing the commutativity of addition as describing the
reversal of two rods glued together, automatically preserving the total
length. The problem posed can thus assess transfer of understanding to a
new domain, but the understanding whose transfer is assessed may be, but
is not necessarily, more than procedural/notational.

Minor variations of a problem like this one can lead to very
different conclusions about what is being assessed. After the knowledge
needed to solve the problem (or that is potentially helpful in doing so) is
analyzed into several components, it is instructive to consider what happens
when we provide students with elements of one or another component
within the question itself. For example, the following knowledge compo-
nents related to Problem 3 might be identified:

The calculation of (that is, a procedure for finding the
mean);

The definition of commutativity and associativity for a familiar
operation;

The definition of these properties for @ (entailing transfer of
the statement of each property);

The understanding that to suggest a possible property of an
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operation is to make a conjecture that can be investigated, not
to state a fact or convention that must have been previously
learned (so that the answer "I don't remember," or "We haven't
had that yet," is seen as inappropriate to this question, while it
might be appropriate to say "I don't remember" if asked to state
the commutative property);

The trying of special cases (use of a heuristic process that may
not be necessary but can be helpful here);

The seeking of mathematical reasons for a pattern;

The modeling of the general on the particular (a potentially
helpful process);

The construction of related representations of the operations
or of the properties (for example, the mean as the midpoint of
an interval); and so on.

The variation shown in Problem 3a seeks to remove its depen-
dence on prior acquaintance with the mean by including an explanation.
Let us consider what else happens: The change in the problem suggests a
change in our assumptions about prior knowledge, that is, the assumption
here may be thatwhile the student has prior acquaintance with the commu-
tative and associative properties in connection with operations such as
addition and multiplication, there is no prior acquaintance at all with the
mean. If this assumption is true, solving the problem then requires more
than the transfer of the concepts of commutativity and associativity to a new
domain. It requires, and assesses, the student's ability to construct the new
domain from the given verbal description of a new operation; and if this
ability is undeveloped, the assessment of transfer will never take place. This
represents a significant change in the originally stated objective.

Problem 3a. Let the symbol 0 stand for the average or moan of two numbers. This is
found by adding them and dividing their sum by 2. For exampli, 6 0 B 7, because 6 +
1 1:14, and 14 divided by 2 is 7. is the operation 0 commutative? Is k associative?
Explain why or why not.

In the next variation of the problem (3b), we also remove the need
to recall the statements of the commutative and associative properties for a
familiar operation. The result is to change the tacit assumptions still further.
In revising the problem this time, we have done more than assist the student
with recalling statements of the commutative and associative properties.
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Without some explicit statement to the contrary, we have also modified
drastically the assumptions about prior knowledge. From Problem 3b, it
might be inferred that because commutativity and associativity are defined
in the problem statement, we are not trying to assess anything about their
prior conceptual understanding at all, but to assess the student's ability to
construct mathematical interpretations of these concepts from new defini-
tions, to transfer the interpretations to a newly constructed domain, and to
use appropriate heuristic reasoning techniques.

Problem 3b. The operation of addition (+) is commutative because when two numbers
are added, theirsum is the same In either order. For example, 6 + 8 a 14 and 8 + 6
14. Adddion is also associative, because when three numbers are added it does not
matter which pair is added first. For example, (6 + 8)+ 2 =14 + 2 =16, while 6 + (8 + 2)
=6 +10 =16.

Now let the symbol @ stand for the avows or mean of two numbers. This is found by
adding them and dividing their sum by 2. For example, 6 @ 8 = 7, because 6 + 8 is 14,
and 14 divided by 2 is 7.

Is the operation @ commutative? Is it associative? Explain why or why not.

Problem 3c removes some of the dependence on knowledge about
conjectures, proofs, and counter examples. In this version, the student is
again asked to interpret a prior understanding of commutativity and
associativity in an unfamiliar operational domain (FP), but instead of having
to decide whether @ obeys these properties, using knowledge about the role
of conjectures, proofs, and counter examples, the result is provided and the
reasoning process is structured for the student within the problem state-
ment. The student must only try special cases to fulfill the stated conditions.

Problem 3c. Let the symbol @ stand for the average or mean of two numbers. For
example, we shall write 6 @ 8 = 7, because 7 is the mean of the pair 6 and 8. Give an
example (using two numbers) which illustrates the commutative property of the
operation @. Give an example (using three numbers) to show that @ is not associative.

Another variation of the problem (3d) stresses the use of a
representation other than formal mathematical notation. Under the right
conditions, a version such as Problem 3d assesses first a particular capability
of the studentthe ability to construct a number-line representation for the
new operation (@)and then assesses the transfer of prior conceptual
understanding of commutativity to the new context in relation to that
representation. This is distinct from the (rather less definitive) assessment
of the student's spontaneous decision to construct such a representation,
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which might or might not take place in the course of solving other versions
of the problem.

Problem 3d. Let the symbol @ stand for the swap or mean of two numbers. This is
found by adding them and dividing their sum lw 2. For example, 6 @ I.7, because 6 +
11214, and 14 divided by 2 is 7.

Draw a number line and, using two numbers as an example, show the meaning of
rah a diagram on the number line. Then explain what your picture raggests about
whether 0 is or is not commutative.

The above problem variations illustrate two things: First, beyond
the problem statement itself, it is the assumed conditions of prior learning which
in a major way determine the kinds of cognitive processes that solving the problem
elicits, and which the item thus assesses. Second, whether or not a problem assesses
a particular capability depends on whether the student actually reaches the point in
the problem where it would be appropriate to make use of the capability. Even if simple
recall of a concept (such .5 the mean) is part of what the item is intended
to assess, the assessment of other aspects of the student's understanding may
be contingent on a positive outcome for this one. In short, there are always
contingency structures implicit in assessment by means of complex tasks.

These observations apply to many modes of problem presenta-
tion. In some modesindividual interviews, computer-based assessment,
and possibly group problem-solvingthere is the possibility that specific
heuristic suggestions or hints can be provided to the problem solver along
the way. Then, whether or not particular cognitive capabilities are assessed
need not be entirely dependent on the student's prior successful exercise of
other capabilities on the same problem. Some of the many different things
that the above problem variations assess could, for example, be observed
within a single v ell -designed clinical interview through a series of carefully
structured questions. In such an interview, the most important design
principle is to permit the student, at each stage, maximum latitude for "free"
problem solvingproviding minimal suggestionswhen an impasse is reached,
so that spontaneous cognitive processes can occur and be observed.

Let us summarize the major points of similarity and difference
between the variations of the nontraditional question, Problem 3, and the
previously discussed traditional one, Problem 2. What is assessed by the
routine problem depends, like the nonroutine problem, on prior knowl-
edge; and it too has a contingency structure such that the opportunity for
successful application of some capabilities depends on other capabilities.
But in the routine problem, the prier preparation of the student is assumf:d
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to be as direct as possible; little that is new is expected to be constructed; and
the structure of capabilities (if regarded at all) is usually simplified as much
as possible, as in Figure I. In the nonroutine case, we expect new construc-
tions, but until we introduce a cognitive model, what they might be is only
implicit. Depending on the processes that we want to assess, it is possible
create numerous problem variations, even to provide suggestions along the
way, ensuring that whether certain capabilities are assessed is independent
rt the student's successful use of others. But some teachers, familiar with

me routine problems, may not expect new constructions, or may be
unable to specify the requisite capabilities. And if a nonroutine assessment
item is to be used for evaluation purposes, there may be considerable
pressure on the teacher to provide direct experiences, which can defeat its
purpose. With these comparisons in mind, we now turn to the issue of
creating an assessment framework.

TOWARD A FRAMEWORK FOR ASSESSMENT BASED ON A COGNITIVE MODEL

An assessment framework must be much more than a collection of
routine or nonroutine problems of various degrees of complexity in various
content domains. It should enable us to describe the capabilities that are to
be assessed, to make explicit the conditions of the assessment, and to explain
how the problem items are intended to be used to elicit and measure the
student's cognitive processes. Keeping in mind our earlier discussion, the
framework should have the following characteristics:

It should be based on an independent characterization of the
understanding that we want to assess, so that we can infer
cognitive capabilities from behaviors without identifying
abilities with behaviors.

It should be descriptive, that is, capable of informing us what the
individual student can and cannot do, and capable of describing
heuristics, representations, or concepts that are partially devel-
oped. We need to move toward a picture that lets us see each
student's emerging capabilities and how they are structured.

It should be reflective, allowing the student not only to grapple
with mathematical discovery and conceptual constructions but
to reflect on these processes. Thus, part of what is assessed
should be the student's own self-descriptions, and how the
student places mathematical activity contextually in his or her
own life.
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Systems of Cognitive Representation

To specify what is meant by mathematical thinking, that is, to
describe independently the understanding that we want to assess, requires
thatwe consider ways in which information can be represented internally by
problem solvers. We have previously discussed five kinds of cognitive repre-
sentational systems brought to bear during mathematical problem solving;
they are sufficiently different from each other to deserve separate mention
(Goldin, 1987; 1988): (i) verbal/syntactic, (ii) imagistic, (iii) formal nota-
tional, (iv) executive/heuristic, and (v) affective. These systems, together
with some important processes that interface among them, are depicted in
Figure 2. Such a model provides a way to organize and to characterize some
of the capabilities comprising mathematical understanding.

Before discussing briefly each type of representational system, let
me stress that the goal I propose is not to assess these separately and
discretely. Typically, any skilled problem-solving activity in mathematics
entails an interplay of several systems of cognitive representation. Thus, the
assessment goal is to provide opportunities for many such systems of
representation to be brought to bear, not only so that specific competencies
within particular systems can be observed, but to gain wholistic information
about the student's abilities in coordinating various representations, and in
appropriately recasting mathematical ideas from one internal system of
representation into another.

To treat cognitive representational systemsas components of an
assessment model relates directly to how we see the purpose of mathematics
education. It presupposes that we are not trying only to teach sets of
problem-specific skills, but to develop broad, powerful cognitive systems
that can enable the student to grapple with new situations as they arise, to
represent them internally in a variety of ways, and to think mathematically
by making use of the representations.

Let m' next comment briefly on Figure 2, and in doingso compare
it with the more naive model in Figure 1. Figure 2 omits external configu-
rations entirely (to keep the diagram to manageable size). The five rect-
angles refer to internal systems of representation, and the ovalsto processes
that interface between them. It is helpful here to think ofa representational
system as consisting of configurations of a certain kind, together with
higher-level structures that determine the configurations thatare possible
and the ways in which they can be processed. The processes in the ovals
describe how configurations in one system of representation can rtoke,
influence, or result in new constructions of those in another.
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Verbal/sytaadic system of representation. First we have verbal configu-
rations, equipped with syntactic structure. Certainly an important aspect of
mathematical understanding involves competencies associated with the
syntactic processing of ordinary language, ranging from identification of
declarative information and questions or goal statements in a problem, to
recognition of various kinds of mathematical phraseology. In discussing
Problem 2, for example, we criticized the attempt to characterize the
mathematical reasoning as purely syntactic translation (for example, from
a phrase taking the form "x A's at yB's per A," into an instruction to multiply);
but of course, the recognition and processing of syntax remains important.
In a capable solver, however, many other cognitive processes should be in
play, prior to and in addition to translation into formal symbolic procedures.

Imagistic system of representation. Imagistic representation includes
the construction and processing of visual/spatial configurations, tactile/
kinesthetic configurations, and so on. For example, when we discussed
various understandings of the mean (the operation in Problem 3), one
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possibility induded its visnali7ation as an intermediate height. There could
also be a kinesthetic component to such a representation (for example, the
student might imagine indicating the intermediate height with an out

hand). Construing the mean as the location of the center of mass
of two equally heavy objects at given locations suggests a kinesthetic configu-
ration, in which the student imagines balancing the two masses with a finger
on the midpoint of the segment connecting them. A conceptual under-
standing of "x A's at yB's per A" undoubtedly involves concrete, imagistic
models of extensive and intensive quantities, of units or groupings of
objects, and so on. Imagistic configurations can be evoked by words, by
symbols, by heuristic processes (for example, the "draw a diagram" strategy),
or by affect. It is certainly a mistake to omit them from an assessment
framework.

Formal notational system of representation. Formal notationalprocess-
ing refers to systems of mathematical symbols and theiruse (for numeration,
for arithmetical operations, for algebraic representation, and so on). Figure
2 is intended to suggest not only calculation and computation (for which we
can envision cognitive processes within the rectangle), but also the interpre-
tation of notational configurations imagistically, the monitoringof formal
procedures (for meaning, for reasonableness, and so on), the description of
formal processes verbally, and so forth, as represented by the ovalcompart-
ments. Traditional assessment schemes in mathematics have placed a lot of
emphasis on formal notational processing, but relatively little on the
interface between formal notational and other systems of representation.

Executive/heuristic system of representation. Executive decisionmaking
and control, monitoring of the student's own problem-solving processes,
and heuristic planning are considered as another cognitiv,. :-coresen ta-
tional system. Here we include complex, well-formulated stratej;,:.: such as
trying special cases, means-ends analysis, or drawing diagrams, as well as
more vaguely defined strategic decisions. When we speak of a reflective
framework for assessment, the intent is to include as a goal the description
not only of students' heuristic planning and problem organization capabili-
ties, but also of certain self-referential or metacognitive capabilitiestheir
concomitant monitoring of their own mathematical reasoning, their intro-
spections in relation to their own problem solving, and their discussions and
retrospective analyses of their planning processes.

Affective system of representation. Finally, it is important that an
assessment framework include the assessment of affectthe feelings or
emotional states that occur during mathematical activity, and the conse-
quences of those feelings. This should not be limited to long-term beliefs
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and attitudes about mathematics, but should address the changing states of
affect during mathematical activity: Does the student begin with a sense of
curiosity and anticipation of mathematical discovery, or with worry and self-
doubt? Does anxiety impede the student, and if so, what is its source? Does
the student make use of feelings of frustration constructively, to suggest new
heuristic processes (such as trying a simpler problem), or are they a signal
to give up? How much fun does the student have with mathematics? Clearly,
the assessment of affect must involve a great deal of sensitivity to the
individual, making use of modes of interaction very different from those
traditional in mathematical assessment.

Coaceptsal Uadcrstanding is Specific Coatent Domains

Cognitive representation does not take place in the abstract, but
always in a contextual domain of knowledge, sometimes referred to as the
mathematical content in the curriculum. For purposes of assessment, it is
useful to see conceptual understanding in any particular content domain as
involving configurations and processes that cut across many representa-
tional systems. For example, Problem 2 involved the multiplication and
subtraction of multidigit numbers in the context of money and making
purchases; such an activity would conventionally be taught as a story
problem exercise, addressing that content. However, we saw that the
representational capabilities that the problem assesses are not usually made
overt. The problem content can be formulated in complex imagistic and
heuristic ways, or its representation can be limited to formal notational
computation. For Problem 1, on the other hand, we listed a number of broad
capabilities, which could now be spelled out in considerably more detail
using the model in Figure 2. Only two of these, (addition and subtraction of
numbers, and the properties of numbers that are relatively primal) refer
specifically to what is commonly called mathematical content. It is clear that
the emphasis is not on these but on assessing a rather wide variety of heuristic
capabilities. In Problem 3, we saw how setting out to assess mathematical
content (commutative and associative properties) at a deeper level of
understanding leads into issues of heuristic and imagistic representation.

Structured collections of domain-specific capabilities, organized
into sets of related configurations in several different cognitive representa-
tional systems and accompanying information-processing action-sequences,
give descriptive meaning to what are sometimes called schemes. Thus, the
desired assessment framework can be visualized as a kind of Cartesian
product of domain-specific mathematical content with the cognitive pro-
cesses in several representational systems depicted in Figure 2. Traditional
mathematics tests have tended to emphasize the former while ignoring the
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latter; an assessment framework that achieves both is dearly necessary.

Mations for Research awl Dove !wont

A high priority should be to develop a working model of such an
assessment framework in a particular content domain (perhaps for a
standard curricular topic at the elementary or middle school level, such as
whole number multiplication) that can be tried on a small scale and then
extended. First, the cognitive model underlying the assessment framework
should be developed carefully, including precursor representations and
several different kinds of cognitive representation of the central concepts.
Then the framework needs to be implemented with a variety of methods for
assessing the key cognitive components (not in isolation, but in combina-
tion), such as structured interviews, concrete models, group problem
solving, creative projects and portfolio evaluations, as well as pencil-and-
paper tests and (perhaps) contingency-based interactive computer environ-
ments. A useful system must be able to provide accurate descriptions of what
students can do, as well as to identify weaknesses or inadequately developed
capabilities; the issue of the reliability or repeatability of the techniques also
needs to be addressed.

Ultimately, it will be not only our willingness to join broad,
adequately complex cognitive models with the more domain-specific math-
ematical content traditionally tested, but also our commitment to develop
understanding of new assessment goals and methods in teachers, adminis-
trators, parents, and the general public, that will enable us to assess
meaningful mathematics learning effectively.
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Research and
Classroom Assessment
of Students' Verifying,
Conjecturing, and
Generalizing in
Geometry

Daniel Chazan and
Michel Yerushalmy

When evaluating the effect of an educational
innovation, it is important to test for the goals that the innovation has set out
to accomplish. In the Supposer approach to teaching geometry (described
below), in addition to teaching the content of high school geometry,
teachers try to inculcate in their students mathematical and scientific
inquiry skills, beliefs, and attitudes that are helpful in solving inquiry
problems. These skills develop in students throughout a year-long course.
We would like to be able to assess the success of this approach in teaching
students to be good inquirers. The task is an extremely cliff cult one.

We begin this chapter with a short description of the approach we
favor for teaching high school geometry. We then provide a rough outline,
which we developed with a group of teachers, of the types of higher-order
skills (as well as beliefs and attitudes) involved in exploring an inquiry
problem. Having provided this background, we concentrate on students'
verifying, conjecturing, and generalizing skills. We first present a research
instrument designed to compare genera. ,zations created by students. After
presenting this paper-and-pencil test, we present a more thorough analysis
of the verifying, conjecturing, and generalizing skills used by competent
explorers of inquiry problems. This analysis derives from sessions with
classroom teachers as well as considerations suggested by the research

90



Research and Clamonm Aueument

literature on induction and thinking skills (Gentner and Gentner, 1983;
Holland, Holyoak, Nisbet, and Thagard, 1986; Kuhn, Arnsel, and O'Loughlin,
1988; and Nickerson, Perkins, and Smith, 1985). Finally, we suggest some
classroom methods for assessing students' progress in developing verifying,
conjecturing, and generalizing skills and a grading scheme for students'
reports designed to encourage the skills we wish to foster.

ONE WAY TO USE THE SUPPOSERS

The Geometric Supposers (Schwartz, Yerushalmy, and Education
Development Center, 1985) are computer programs that allow users to start
with an initial shape (for example, a triangle), create geometric construc-
tions (for example, draw all the altitudes), and make measurements of the
diagrams that result from the constructions. The programs also store a
record of users' activities as a procedure which then can be repeated on a
new initial shape (for example, any other triangle, see Figure 1). This repeat
feature allows users to test the generality of the conclusions they reach about
the results of a particular construction. (See Yerushalmy and Chazan, 1990,
for a more detailed description of the software and the ways it supports
students in using diagrams.)

With paper and pencil, one can do all that these
programs do, but not as quickly nor as accurately. This

difference in speed and accuracy makes feasible an ap-
proach to the teaching of Euclidean geometry only theo-

acute retically possible with pencil and paper. (For a compre-
hensive description of this approach, see Chazan and

Houde, 1989.) In this approach, student exploration

right
becomes an important part of the course. Classes

no longer meet only for teacher presentations to
the whole group or for review of homework

problems. Teachers pose open -ended inquiry
problems to students that, lead to fruitful

exploration. (For an exa:anination of such
problems, see Yerushalmy, Chazan, and

Gordon, 1988.) These, in contrast to
`Schoenfeld's (1988) description

1.

of tra-

Figure
ditional five-minute exercises, are

Altitudes in three usually explored for one or
different triangles. obtuse more classroom periods,

written about for
homework, and then
discussed.
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Students explore the problems with the aid of the Supposers,
usually in pairs in a computer lab, and generate conjectures. Some of the
conjectures are true and some are False. Some of the false conjectures are
easily modified to be true. In class discussions, students share their conjec-
tures and present arguments in favor of their ideas. As students are intro-
duced to mathematical proofs and as their facility with deductive proof
develops, they are expected to present deductive arguments (formal or
informal) for their statements.

In this approach, students do not sit down to prove statements that
they know are true and that they know have been proven year after year in
geometry classes. Some of the statements that they try to prove may not turn
out to be true; others may not be present in their textbooks and may be
unfamiliar to their teachers (Kidder, 1985). With this approach, there is a
new goal for students and a new standard for student performance: students
should become competent explorers of open-ended problems. This new
goal requires that students know how to work together and break down a
large task, generate hypotheses, use the computer to get feedback about
their hypotheses, formalize their hypotheses, generalize their hypotheses,
change and extend a problem, and argue for their conclusions.

Suppeser Inquiry Slat Aa Outline

We expirred this new standard with a group of teachers as part of
a three-year stud) conducted under the auspices of the Harvard Educational
Technology Center (ETC). Throughout the first two years of monthly
meetings, the teachers in the group referred to two sets of goals for their
students: the traditional curriculum and the Supposer curriculum. The
group divided the goals of the traditional geometry curriculum into two
parts. The first part encompassed the postulates and theorems of the course
in the order in which they are introduced. Students demonstrated a
knowledge of this part of the curriculum by being successful at problems
that ask them to write simple proofs. Students were rarely asked to write
complicated proofs of more than 10 steps or that require lemmas. The
second part of the traditional curriculum, a second avenue for student
demonstration of mastery of the course material, was
a numerical part. Students demonstrated mastery by
successfully solving problems that asked them to use
knowledge of the Jrems and postulates to find missing
measurements in figures when other measurements
are presented. For example, in the drawing at right, 0
is the center of the circle. Students are asked to find
length AC.
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When describing the Supposer curriculum, teachers used the
phrase "good explorer? to describe the expectations they had of their
students. Later the group began to call the Supposer curriculum the
"metacurriculum,' because the goals of the Supposer curriculum were not
related to the contentnumerical or theoreticalof a geometry course,
but were higher-order goals related to scientific exploration and the doing
of mathematics.

During our third year, we decided itwas important to become more
articulate about the types of skills and beliefs that students needed and were
lacking. As a result of group discussions (which included group exploration
of problems and documentation of skills used and necessary beliefs), we
created a list of types of inquiry skills and beliefs. We hoped that this list would
provide a set of goals toward which we would design activities to help students
become better inquirers. We decided on the categories in Figure 2.

Figure 2. Nino categories of Inquiry skills and beliefs. The group distin-
guished between verifying

Communicating General problem solving and proving. Verifying was
defined as an activity, fre-
quently involving measure-
ment, carried out on a spe-

Beliefs about Attitudes cific number of examples.
inquiry about self Proving involves deductive

reasoning about an infinite
number of individual cases.

Generalizing Proving The group also distingished
between conjecturing and

Thoughts about generalizing, a distinction
mathematics which will be explained

below. The group broke
down each of these nine categories into simple skills or beliefs. These are
given in Appendix I.

While this list of inquiry skills is clearly insufficient, it does
delineate the wide range of skills and beliefs that students need. (For a
theoretical discussion of the kinds of knowledgeresources, control,
heurstics, and beliefsstudents need, see Schoenfeld, 1985). Assessing
each of these nine kinds of skills and beliefs is an enormous task. Therefore,
in this paper we will focus on assessing three of the nine categories: students'
verifying, conjecturing, and generalizing skills.

First, we will present an instrument that we have used in our
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research and which was designed to help us compare students' generaliza-
tions. While this instrument was helpful for evaluating the innovation, for
comparing Supposer and non-Supposer students, it is not helpful for the
kind of assessment that teachers do in their classrooms, that is, ongoing
assessment to guide further instructional decisions. In order to do this kind
ofassessment, one needs a more careful description of the desired skills and
an evaluation scheme that focuses on these skills and not on outcomes. After
describing in greater detail the verifying, conjecturing, and generalizing
skills that we wish to promote, we will present an adaptation of our research
instrument that is designed for classroom use. However, before presenting
any assessment instruments, we will clarify the meanings we assign to the
words generalization and conjecture.

CONJECTURES IN GEOMETRY

We use the term conjecture to refer to statements whose truth
value is not known at a given time. Although the statements have been
explored and tested, there is, as yet, no reason to reject them (as opposed
to hypotheses that haven't been tested yet). In geometry, conjectures have
three key parts: the relationship described in the conjecture, the set of
objects for which the relationship holds, and the quantifier, which deter-
mines the members of the set of objects for which the relationship holds.
Conjectures are not always stated completely; sometimes one or more of
these key parts is not explicitly stated, but is understood.

People create conjectures in different ways; calling a statement a
conjecture implies no particular process of creation. A conjecture can result
from belief, experience, attempts at explanation, deductive proofs,1 or
generalization. Generalizations are a particular kind of conjecture, conjec-
tures created by using one of the following two generalization processes to
reason from the specific to the general.

TWO GENERALIZATION PROCESSES III MATHEMATICS

In mathematics, generalization processes do not produce defi-
nite, proven knowledge. Instead, they result in the creation ofa special kind
of conjecturea generalization. Though it is difficult to determine how a
particular generalization was made, we feel that it is valuable to distinguish
two ways in which generalizations are created:

Induction is a process for reaching generalizations by examining
instances or examples. The generalizer examines an instance or
a set of instances and identifies some of their properties. These
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examples are then identified as members of a larger set to
which they belong, and the properties of the examples are then
imputed to the larger set. Chi and Bassok (19891 argue that
induction (generalization from examples) is based on the
perception of similarity between examples.

Condition-simplibing generalizalion (Holland et al., 1986) is a
process that is carried out on a statement (in mathematics,
either a conjecture or a proven statement). This process
proceeds by the relaxation of conditions within the original
statement to produce new statements. Studies investigating this
generalization process suggest a connection between a person's
ability to generalize in this way and their disposition towards
constructing explanations for the original statement and their
ability to do so (Chi and Bassok, 1989).

in geometry, statements usually include a diagram or some nu-
merical information in addition to the written text. While the distinction
between the two generalization processes described above is clear in theory,
the presence of diagrams and numerical information causes this distinction
to blur when applied to geometrical statements. For example, when the
statement contains a numerical condition that is modified or relaxed,
induction seems to be an appropriate, or natural, description of the process.
In this view, the initial statement is one example, and any statement that
substitutes a different numerical value is another example. A more general
statement is reached by examining each of these specific cases. On the other
hand, when a diagram is presented along with a statement, it is difficult to
know whether a person involved in making a generalization is working from
the example in the diagram or from the statement. To draw conclusions in
such a case, one must infer what is taking place in the mind of the generalizer.

RESEARCH ON ASSESSMENT

We will begin our description of assessment instruments by de-
scribing a paper-and-pencil test designed by Yerushalmy (1986) that pro-
vides a structure for comparing outcomes (students' generalizations.) This
test was designed for use in comparison studies. We were interested in
assessing differences in competence at generalizing between Supposer and
non-Supposer students. (See Yerushalmy, 1986, and Yerushalmy, Chazan,
and Gordon, 1987, for results.) Given this goal, a paper-and-pencil test
seemed appropriate, since it can be easily administered to a relatively large
number of students. Also, as compared to an interview format, a pencil-and-
paper test is less liable to change students' performance. During the course
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of an interview, considerable learning may occur. Finally, a written test
forces students to formalize their thoughts in a way that does not necessarily
happen in an oral interview.

This test also allowed us to examine other interesting questions:
What kind of represen tations of geometric ideas do students choose to work
with? Do they focus on a visual representation, or do they work with the
numerical data that are given? Do students provide explanations for their
generalizations? if so, what types of explanations do they provide? Do
students present proofs as explanations for their generalizations? Since the
test was given in a pre/post format, we were able to examine differences
between students' performance at the beginning of a geometry course and
after one year of studying geometry. Also, we were able to compare students'
responses to problems that present numerical data and problems that give
students a statement as a starting point. (See Yerushlamy, 1986, and
Yerushalmy et al., 1987, for a discussion of these issues.)

While this test is by no means the last word on assessment of
students' generalizations and though it focuses on outcomesgeneraliza-
tionsand not on verification, conjecturing, and generalization skills, we
still feel that it represents an advance. First of all, to our knowledge, this is
the first test used with students in a classroom setting that focuses on
students' ability to make generalizations when given a statement or a small
amount of data and a limited amount of time. (See the description of the
instructions given below.) The fact that students were able to accomplish the
tasks set for them, that they produced generalization of different kinds, and
that the test seemed to indicate meaningful differences between different
treatment groups are all hopeful signs for future assessment of these types
of skills. (See Yerushalmy, 1986, and Yerushalmy et al., 1987, for these
results.) Also, based on this work, we have been able to design other types
of assessment that might be useful for classroom teachers interested in
assessing the level of their students' verification, conjecturing, and general-
izing skills.

A COlUECUIRE/GEMERAUZATION TEST

We will present the version of the test that was used in a study
carried out in 1985-86. (See Yerushalmy et al., 1987, for a description of the
study.) In this study, the conjecture/generalization test, along with class-
room observations, students' written work, an argument test, and teachers'
and students' comments, were data sources for observing the types of
generalizations students made in their geometry classes and for comparing
Supposer and non-Supposer students.
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A pretest and posttest were developed to assess students' ability to
make generalizations concerning given data or a description of a geometric
situation. The pretest and posttest consist of four and three problems
respectively, each presenting a statement, a group of mathematical facts, or
a mathematical idea from plane geometry, alongwith appropriate diagram (s).
The geometric content of the problems was familiar. Thus, the problemson
the pretest were about material covered in previous courses. The first two
problems on both tests included numerical data. They were designed to
provide insight into students' ability to generalize by induction based on
given instances. Students could generate new data for themselves by drawing
new instances, adding auxiliary lines, and following deductive lines of
rea ioning that made new information available. Problems 1 and 2 are from

the pretest. The remaining prob-
Problem 1. The numbers on the diagrams ferns (3 and 4) describe an idea
below represent the measure of angles, abstractly. These problems were
lengths, and areas. For example: The length designed to provide insights into
of AF is 3.85. The angle CAD is 41 degrees. students' ability to carry out con-
The area of triangle COG is 2.1 dition-simplifying generaliza-

tions.Lkst as many significant connected state-
ments as ycio can make.

A

Diagram 1
C

Diagram 2

Problem 2. The right
triangles on the grid below
have 3, 6, and 8 points on
their perimeter.

List as many significant
connected statements as you
can make.



Problem 3. A line which passu
through the center of a :gums and
is parallel to two of its sides
divides the area of the square Into
two equal areas.

List as many significant connected
statements as you can make.

(Taken from Bell, 1976.)

Malan and Yerushalmy

Problem 4. P, 13, and R are points on the sides of triangle ABC.

Diagram 1

}x x,
A

In diagram (1), triangle ABC and triangle PQR
are both equilateral. Al

Diagram 2

C

in diagram (2), triangle ABC is equilateral,
triangle PQR is not.

List as many significant connected statements as you can make.

The instructions on these tests ask students to list any significant
statement? connected to the problem. The instructions are deliberately
vague in order to ascertain what students consider "significant" and "con-
fleeted." We asked teachers to refrain from explaining or elaboratingon the
instructions when they administered the tests. In framing the instructions,
we wished to invite any plausible idea, not only generalizations, and as many
statements as possible. There were no constraints such as demanding that
the statements be true or be supported by arguments.

When these instructions were initially designed, a researcher in
the area of thinking skills examined them and suggested that in his view the
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instructions were too difficult and that students would not be able to follow
them (D. Perkins, personal communication, December 6, 1985). While the
instructions are certainly laconic, students did not seem to have difficulty
with them (Yerushalmy, 1986; Yerushalmy et al., 1987). In describing an
instrument for classroom assessment, we will present expanded instructions
designed to elicit specific inquiry skills.

Stahl. the Test

We will present here a refined scoring scheme used by Yerushalmy
and Maman (1988) in a study involving another version of the test presen ted
above. (Sec Yerushalmy and Mamman, 1988, pp. 40-43, fora more detailed
description of the scoring scheme.) The scoring scheme is predicated on the
assumption that on each problem students are likely to make more than one
statement.

Students' statements were scored using four central varia.." !s
defined by Yerushalmy (1986). Of these variables, changes made to the
original statement in order to create the generalization (cRANcEs) is scored
on a 0 or 1exists or does not existscale. The level of the generalization
( , its originality (ORIGINALITY) (called plausibility by Yerushalmy, 1986) ,
an, its correctness (cointEcr) are rated on a 0-4 scale. These variables are
related; we do not consider them to be distinct.

In order to assess CHANGES, for each problem on both tests, a list of
attributes was compiled using Brown and Walter's (1983) analysis of similar
problems in plane geometry. Each list was divided to three parts, using the
Structure-Mapping Theory developed by Gentner (1983) and the Defini-
tion of Spontaneous Analogy by Clement (198S). The three parts are (i)
geometric attributes, (ii) numerical attributes, and (iii) key (fixed) features.
Since students working with the Supposer are trained to see geometric
situations as involving an initial shape on which constructions are made, in
assessing CHANGES, we added one category to the scheme suggested by
Clement's and Gentncr's work. We broke out the object of interestthe
type of polygon given in the problemfrom the category of fixed variables.
Thus, we were interested in four types of changes that students might make
to the problem situation. (Examples of the first three types of changes for
the problems given above appear in Appendix E-2 of Yerushalmy et al.,
1987.) The four types of changes are as follows:

Object of interest. Replacement of the central geometrical object
with a more general one; for example, any triangle instead of a
right triangle.
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Geometric relationships. Replacement of one geometrical relation-
ship by another; for example, movement of a point from inside
a triangle to outside it.

Numerical variables. Treating a numerical aspect of a situation as
a variable.

Fixed variables. A catch-all category for unexpected changes; for
example, moving from two dimensions to three.

Students were given a 0 if their statement simply repeated the information
given and did not change any aspect of the given information. They were
given a 1 if they made any of the above changes.

The LEVEL variable examined how the students presented their
data (both the given data and data that they generated) and their commu-
nication of their statement. Students' written work was examined and was
assigned a LEVEL value from 0 to 4 according to the following scheme:

0: Students' do not write a statement. For the problems posed
abstractly, their statement is less general than the given statement.
For the problems posed with data, their statement simply repeats
the data.

1-2: There is some discretion here in deciding between a 1 and a 2,
depending on the type of change made and the number of
changes examined. Students sometimes change some aspect of the
problem, but do not make a more general statement. Students in
this category may change the same aspect of the problem in several
ways, but in their presentation of their data do not seem to
connect these different changes systematically. They seem to
address each change as a separate instance. For example, students
may replace the midpoint in a construction with subdivision into
four equal parts and then into six equal parts, but seem to consider
each of the statements to be a completely separate idea.

3: Students in this case change an aspect of the problem systemati-
cally, but do not write a get:eral conjecture that encompasses all of
the cases. For example, students may systematically replace the
midpoint Pith subdivision into 4, 6, and 8 parts. It is a matter of
interpretation to distinguish between a level 2 and a level 3. In
order to be scored as a 3, there must be some evidence, perhaps in
data organization, of a systematic exploration.
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4: There is a generalization that describes a general phenomenon,
such as, even numbers..., in any quadrilateral..., and so on.

The LEVEL measure is the value assigned to the most general
statement produced by the student on a given problem.

Oluctroisry is a measure of the connection of the statement to the
problem and to the school's curriculum. Thus, it is a function of students'
classroom experience with geometry. Statements connected to the problem
and not covered by the school curriculum receive a high score of 4, while
those that are poorly connected to the problem or that are trivial because
they were covered at length in class are rated at a low level of oluctraurv.
Once again, since students offered many statements, ORIGINALTIT is the value
of the most original statement on a given problem.

Comm' is a reflection of the percentage of student statements that
are true for a given problem. Scores range from 0 for all false to 4 for all true.

VERIFYING, CONJECTURING, AND GENERALIZING SKILLS: A CLOSER LOOK

In order to assess an innovation, it is important to keep in mind the
goals of the innovation. If one of the goals of the Supposer innovation is to
have students become competent explorers of open-ended inquiry prob-
lems and if that process, by definition, includes having students be nimble
conjecturers, it is important to have a better understanding of the verifying,
conjecturing, and generalizing skills that successful students have. One way
to understand which skills successful students have is to understand the
capabilities of the Supposer and examine the kinds of difficulties some
students have when exploring a problem. Below is a brief discussion of
several kinds of difficulties students have.

The Supposer allows students to create sample geometrical objects
easily and quickly and to generate data about these objects, but it does not
evaluate the types of samples students create to test a hypothesis. Thus,
students using the Supposer are prey to the kinds of sampling biases
described in the literature (Nickerson et al., 1985). For example, the
confirmation bias suggests that inexperienced students create limited samples,
which only serve to confirm their incorrect or naive generalizations.

The Supposer also does not tell students how to analyze the data
they have collected. For example, the Supposer cannot infer users' inten-
tions and cannot alert users who ignore information provided by the
Supposer that disconfirms their hypotheses. The Supposer cannot know
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when students will reject information because it contradicts a concept image
(Vmner and Hershkowitz, 1980) that they have. For example, many novice
inquirers seek control over the type of shape they are working with whenever
the "random" members of the class conflict with their concept images. Some
even choose to reconstruct a whole construction step by step on a new triangle
without using the REPEAT option because they refuse to believe the results of
the option. Only after seeing that they get the same result are they convinced
that the data provided by the "uncontrolled" REPEAT option is correct.

The Supposer also does not teach students to order their sample
in a particular sequence or add auxiliary lines to their figures. The SUpposer
does not suggest which numerical operations students should perform on
their data and cannot correct mistakes in students numerical manipula-
tions. For example, one student did not find a (correct) pattern which she
had expected because she had unintentionally computed the ratios of two
perimeters in two different ways. The first time her ratio was larger over
smaller and the second time she compared smaller to larger.

Students working with the Supposer need their teachers' help to
overcome the difficulties described above, yet it is helpful to have a positive
description of the inquiry skills and beliefs that students should develop.
Below, we describe the skills students should develop, not the difficulties
they must overcome. We will integrate the skills that the ETC teachers
thought important with dimensions suggested by research to outline the
considerations that students, using the Supposer toward the goal of making
general conjectures, have to take into accountwhen generating hypotheses,
deciding what data to collect, how to analyze it, and how to further their
investigation.

While for the sake of description it is necessary to divide competent
exploration into component skills, such a description does not capture the
complex interactions betweeL the skills which we are forced to describe
separately.

Geoeratlog Hypotheses

Typically, the open-ended inquiry problems we give students to
explore involve a geometrical construction. For example, we might ask
students to connect points that are one third of the way in from each vertex
of a square (Figure 3). (See Schwartz, 1989, for a description of student
exploration of this problem.)

Students must decide what relationships in the construction are
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Figure 3. Subdividing the sides of worth exploring; they must have some ini-
tial hypotheses to guide their data collec-

A don and some notion of which relation-
ships might be of interest. Students should
learn to look for the geometrical relation-
ships explored in the curriculum, for ex-
ample, congruence, similarity, parallelism,
types of geometrical figures (squares, right
triangles...). Students must also have strat-
egies for coming up with initial directions
when they are stuck and have no hypoth-

D C eses. Useful strategies include repeating
the construction on other figures to see if

there are visual invariances that strike the eye, systematically varying some
other aspect of the construction in search of interesting changes, and
scanning of the measurement options (area, angle, and length) to collect
data that might stimulate a hypothesis.

a square.

Creating Good Samples of Useful Data

Knowing what and when to measure. Once students have a hypothesis
in mind, they must know how to test that hypothesis in a single case. They
must use the definitions and theorems studied in class to know which
measurements to make. Competent explorers know how to test a conclusion
with the smallest number of measurements by investigating sufficient condi-
tions. At the same time, a competent explorer also realizes when a particular
measurement is unnecessary because it is directly entailed by the construe-
don. Thus, in Figure 3, if the E is one third of the way from B to A, then AB
= 3*EB by definition, and no measurement is
necessary. Figure 4. An

extreme

Considering extreme cases. People of- case.

ten fail to generalize appropriately because
they have only sampled stereotypic instances.
It is important that students learn to try extreme
cases in the set of objects they are conjecturing
about. For example, if a student thinks that for this
4(nstruction the resulting inner shape is a parallelo-

gram, it is important to try an original quadrilateral that
is not a parallelogram, a trapezoid, or a kite (Figure 4).

Collecting the 'right* number of examples. "How
should we determine that we have enough instances of a

1 1
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generalization?" (Holland et al., 1986, p. 232). This is a difficult question
debated by many who write about induction. Given the dynamics of most
mathematics-classes, it is an especially hard question for students to under-
stand. In most math classes, the amount of work required of the students in
order to complete a certain task is dearly specified. Furthermore, traditional
approaches to geometry do not make use of large quantities of information;
one diagram is often considered sufficient.

We do not suggest a particular numerical answer to this question.
Students should learn to make sure that their sample includes different types
of shapes and covers a range of cases. Students should also learn to ask
themselves if there is something special about the cases in their sample that
might influence their conjecture. Thus, the particular number of examples
examined is a function of students' knowledge of geometry and ability to
convince themselves that the examples in their sample are indeedrepresen-
tative examples.

Analyzing the Data

Data display and argal 'ization. As students collect data, it is impor-
tant that they organize it in a way that allows for easy analysis. Students
should make charts and collect visual data by making good sketches. They
can combine numerical and visual data by marking their measurements
right on their diagrams. A final useful technique is the ordering of diagrams
into a sequence based on a single characteristic.

Paying attention to negative data. The teachers we worked with made
sure to remind their students regularly that conjectures are statements that
are true for all members in the set of objects described in the given. (In high
school geometry, there are few existential statements.) Students must learn
to appreciate the power of a counterexample.

Manipulating numerical data. Being able to compare numbers is
essential for looking for patterns. Students need to learn to use arithmetic
operations to compare numbers; differences and ratios are especially
important. TA is also valuable to link geometrical objects and relationships
with numerical operations, for example, linking the Pythagorean Theorem
and the existence of a right triangle with squaring and addition. Students
should also remember to look for patterns other than equality.

Manipulating visual information. Students need to learn to look at
a diagram in differen t ways. For example, in looking at Figure 3, subdividing
the sides of a square, students should be able tosee it from inside out as made
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of four right triangles around a square or from outside in as a large square
with a smaller square inside it. Students should also be willing to add
auxiliary lines to diagrams. Adding auxiliary lines creates new geometrical
objects and sometimes allows new relationships to become evident.

Evelustieg Conjectures

As students develop and test a conjecture, it is also important that
they use what Schoenfeld (1985) calls control. It is important to make sure
that a result is not trivial. Is the conjecture something that has already been
proven? Is it a direct consequence of something we already know? Once a
conjecture seems supported, it is valuable to use the "what if not" strategy
(Brown and Walter, 1983) to generate other avenues for exploration. Is the
conjecture generalizable?

In geometry there are three aspects of statements that can easily
lead to a generalization. These aspects are type of shape, number, and type
of segment. Thus, when exploring the subdivision of the sides of a square
(Figure 3), it is valuable to think of other quadrilaterals or other types of
polygons. It is worthwhile to explore the numerical aspect of subdivision
into two. Maybe there are interesting results which generalize from two to
three or four. Finally, in conjectures that include median, for example, it is
useful to explore the substitution of angle bisector or altitude for median
(Brown and Walter, 1983).

CLASSROOM ASSESSMENT

There are many different types of assessment that are valuable and
important in a classroom, yet as suggested by the California Assessment
Program (Stenmark, 1989), classroom assessment should be assessment in
the service of learning. In addition to assessment that examines outcomes
and compares students' achievement, there is also classroom assessment,
which helps teachers make instructional decisions based on examining the
success of a particular instructional sequence in promoting certain student
behaviors. If students do not exhibit the desired behaviors, then further
instruction is necessary.

Turning now from research assessment instruments to opportuni-
ties for classroom assessment, we would like to sketch ways to assess the level
of inquiry skills of student.; working with the Supposer. The first assessment
tool that we will present allows a teacher to elicit some of the verifying, con
jecturing, and generalizing skillswe described above and to examine whether
any are lacking. Later, missing skills can be discussed or explicitly modeled.

J.
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The instrument we will describe is a paper-and-pencil test that has
five items. It is an a4P.ptation of the research intrument described above,
but with more focused and explicit instructions. ..k.ead of a scoring scheme
that assigns points for student responses, for each problem we will suggest
a list of skills for which a teacher can check. Since in our approach to
geometry students frequently work in pairs, it also makes sense to consider
giving the test to pairs or as a
take-home. Each paper should
have written comments, but
no numerical score. The most
important information for a
teacher is any pattern of miss-
ing skills and any unusual stu-
dent behavio worth sharing
with the whole class.

Since the literature
on induction (especially Chi
and Bassok, 1989) suggests that
the level of students' generali-
zation increas 'swhen they pro-
vide arguments for their gen-
eralizations, we suggest that the
instructions ask students to pro-
vide explanations. However, we
do not suggest that students
write two-column proofs, be-
cause in a limited amount of
time we prefer that students
generate interesting connected
ideas and argue for them rather
than spending time writing
detailed proofs. We also fear
that if asked to write proofs
students will not write compli-
cated conjectures that they do
not know how to prove.

Below (and at right)
we will present the five prob-
lems on the test and for each
problem, the important skills
it assesses. This version of the

Test problem 1. Below are a series of diagrams.
Write as many conjectures as you can that am
related to the diagrams given below. For each
conjecture indicate which diagrams are relevant
to the conjecture and explain your conjectures.

O
O

In examining students' conjectures, look for the
kinds ofpatterns students see in the visual data;
whether they make conjectures for which
counterexamples are present; whether they add to
their data by making new figures; whether they
add auxiliary lines to the figures; whether they
put the diagrams in a sequence.
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test is designed for students who have finished units on quadrilaterals and
areas of polygons and who have begun to study similarity. Similar questions
can be written for other diagrams and for other statements. In that sense,
this test is but one example of a general assessment strategy. To create other
tests, one would change the diagrams and statements, but not the instruc-
tions given with each question.

Test problem 2.
ABCD is a
parallelogram.
AC is a diagonal
of ABCD. E is
the midpoint of
side AL

In the diagram, length measurements are provided next to each
segment, and area measures are enclosed in a box.

What does this data tell you about this particular figure? Does the
data support the students' statements, or contradict them? Do the students manipulate
the numerical data? Do students discuss patterns of inequality? Do they use both
length and area measures? Are their statements trivial statements which can be
deduced from the givens presented in the problem?

Based on this one example and your knowledge of geometry, what
general conjectures do you have? Explain your conjectures.

Do students excwirse different types ofpolygons?Do students explore figures
with a different number of subdivisions to get point E? Do students examine any
relationships involving angles?

Test problem 3. This diagram describes the
following sentence:

115i :t
,.4.

A line which
goes through the center
ofa square and is parallel
to two of its sides divides
the square into two con-
gruent rectangles. Make
conjectures that are re-
lated to this sentence.
Explain your conjectures
and their relationship to
the original statement.
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Do Audents draw auxiliary lines? Do students change the type of polygon ?
the type of point? from a straight line to another type of line? Do they examine a
relationship other than congruence?

Test problem 4. ABC Is an acute triangle. BD and CE are altitudes
In the triangle. The lengths of segments are listed next to each
segment in the diagram. Angle measures are also provided. 1.

E
Use this data to make conjectures

about the relationships between the triangles
in the diagram. Explain your conjectures.

Do students see all of the tri-
angles that are in the diagram?

B

For each conjecture
you have made, present the data which supports the conjecture.

A

11

Do student data support their conjectures? Are there contradictory data
available that they are ignoring? Are their data sufficient? Do students manipulate
the data to get new data? How do they organize their data?

Test problem 5. The diagram
below illustrates the
following sentence: If AD is
the angle bisector of BAC,
then the length of the
altitudes in triangle ABD
(segment DE) and triangle
ACD (segment CF) are the
MC

Write a list of related geometrical questions that you would like to
explore and explain the relationship of these questions to the original
sentence. What types of generalizations do students make?

Explain how you would use the Suppos, : to explore each ques fir
you raised above. Do students describe an appropriate construction? How nufry
instances are they going to examine? What data will they collect ? How well is their data
sample constructed?

As illustrated by these five test problems, one can gather informa-
tion about students' performance in at least the following areas:
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Inductive resoning skills: data collection, sampling appropriate
examples, relating conjectures to supporting data, and organi-
zation of information.

Relationship to diagrams: willingness to add auxilary lines, organi-
zation of pictures in sequences, and seeing the same diagram in
multiple ways.

Numerical manipulations.

The number of connections that students are able to make between
different topics within the domain of geometry. Students
inclination to look for connections.

Students' inclination to use the 'what if not" strategy and investigate
related questions.

Knowledge of students' performance can suggest areas for concentrated
instruction.

Eyebaths' of Students' Performance

There are other types of assessment used in schools. Teachers
usually must evaluate their students and give them grades of different kinds.
Below, we present a scheme for grading students' lab papers. It is designed
for use in classes where students work in pairs using the Supposer to explore
problems in a lab setting and then write up their explorations individually.
This scheme examines many of the same issues as the test problems above.
It can be used with a wide range of conjecturing problems, though we will
illustrate it for only one:

The problem: Explore the figure formed by reflecting the inter-
section point of the altitudes in each side of a triangle and connecting the
three image points.

The procedure:

Construct an acute triangle ABC.

Draw the three altitudes.

Label G as their point of intersection.
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Reflect point G in each of the three sides of triangle ABC
producing points H, I, J.

Draw triangles DEF and

State your conjectures about the relationships among the
points, elements, and triangles.

Repeat this procedure for other types of triangles.

Assigning points

Figure 5 shows one scheme for assigning points to students'
written work after they have worked in the lab on this problem. Teacherscan
choose to weight the relative value of these categories differently according
to the needs of the class:

Figure 5. A matrix for assigning points.

Plausible, but
unsupported

Supported with
data

Supported with
arguments

x3

x6

Standard conjectures xl x2

Special conjectures x4 x5

Standard conjectures reflect students' knowledge of similarity.
They include the similarity of DEF and HIJ, the 2:1 raft() of
their sides, the 4:1 ratio of their areas, the parallelism of their
corresponding sides, and the equality of their angles.

Special conjectures might be about any of these: the type of
triangle created for a certain type of starting triangle (for
example, if ABC is equilateral, so is iHI and they are congruent);
formulas for the relationships between the angles of iHI and
DEF; the circle which circumscribes ABC; the altitudes of ABC
(which are the angle bisectors of DEF and, if they are extended,
of JIH);

The reason for the unsupported, yet plausible, category is that
some students may develop new conjectures while working at
home and have no opportunity to collect data. Conjectures
without supporting data should be recognized, but only if they
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are plausible. Otherwise, students might write any geometrical
statements to receive credit.

The teachers that we have worked with usually consider neat-
ness and clarity of expression in their students work.

Assigning grades

Once points have been assigned teachers can use a variety of
schemes for assigning grades. Below are two options that do not score on an
absolute scale and that take into account that, with the above scheme for
assigning points, there is no ceiling score. One option is to take the highest
score and declare it to be a perfect paper (100 percent) and then compute
percentages for every other score. This method reacts strongly to outliers.
One student's score may be much higher than those of the rest of the class.
Another method is to figure out the median score and assign it a median
grade. Higher and lower scores are graded in relation to this median score.

We have found that itis important that teachers using the Supposers
make clear to students that the work with the Supposer is an integral part of
the course. One way to do so is to grade students' lab papers. Schemes like
the one presented above help students' understand the types of expecta-
tions that their teachers have for them.

CONCLUSIONS

The goal ofour approach to teaching geometry is to have students
become competent explorers of inquiry problems and nimble conjecturers.
Therefore, we are interested in assessing students inquiry skills. As Hawkins
and Sheingold (1986) point out,

While a move from one specific content to another need not alter
measurement, a move toward emphasis on more general thinking
and problem-solving skills or toward more abstract skills within a
domain must change both standardized and less formal measure-
ment techniques. Teachers will need to devise new ways of knowing
how well their students are doing (p. 54).

Thus, ifwe really want people to try to teach geometry in the way thatwe have
described, we need to work on this hard problem. We need to define the
skills that we want to assess and then look at methods for assessing these
skills. Our work must be practical, that is, usefulki classrooms as they are now
structured. Currently, this means paper-and ikncil assessment, yet it is
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extremely difficult to create a pencil-and-paper task that allows the teacher
to follow the processes used by students. Furthermore, traditional assessment's
approach to peer collaboration complicates our task (see Hawkins and
Sheingold, 1986). Most of the high school teachers we have worked with now
grade for individual achievement. At the same time, when using our
approach to geometry they have students work extensively in pairs.

This paper represents our early efforts at assessing a small range
of higher-order mathematical thinking skills. We focused mainly on conjec-
turing, verifying, and generalizing skills. We described two practical ways to
assess the performance of students who have worked collaboratively. Both
assessment instruments are designed to be administered with paper and
pencil to individual students; one results in individual scores. We hope that
these ideas will be helpful to those teaching other topics; for example, we
believe that much of the analysis in this paper is relevant to suitably posed
algebra problems.

APPENDIX I: DETAILED UST OF INQUIRY SKILLS

The items in the following lists provide details for the nine
categories shown in Figure 2 in the text. They indicate the kinds of
behaviors, skills, questioning strategies, and beliefs that "good explorers"
exhibit. There are areas where these lists overlap, and no one student will
exhibit all of these strategies when solving a single problem.

These lists were developed by Harvard Educational Technology
Center's Geometry Labsites group.

Conjecturing

Using knowledge about geometryChecking the types of relationships
discussed in class.

Looking for patterns other than equality.

Remembering that conjectures are "for all" statements.

Adding to the diagramdrawing auxiliary lines.

Has it been shown before?

Is it a direct consequence of a known relationship?

.4.10,4441 111



Research and aasiroorn Amessment

Is it generalizable?

Verify!*

Using definitions to (i) know what to measure, (ii) know when measuring is
unnecessary.

Using sufficient conditions as shortcuts.

Understanding the power of counterexamples.

Making one's own charts.

Marking measurements directly on drawings to keep organized data.

beers' Problem Selo log

Getting organized to solve a problem.

Splitting a problem into parts.

Recording data in an organized way in a chart or on a diagram.

Working cooperatively on a problem.

Coma es !eating;

Working in pairs cooperatively.

Writing readable reports to summarize lab work.

Writing conjectures (in whatever form desired) that are intelligible to the
reader.

Writing informal and formal proofs.

Froth*

When does a statement need proof?

Isolating the "givens" from a drawing or construction procedure.

Determining the "to prove" from a conjecture.
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Writing informal proofs by using markings on drawings for necessary
conditioi (givens in one color, derived in another color).

Learning to sequence conjectures so that if the first one is proven, it is then
easy to prove the others.

Checking steps one is unsure of with Supposer measurements to gain
confidence in truth of the step (doesn't help with reasons).

Drawing auxiliary lines.

Beseraliziag

Recognizing when a conjecture might be generalizable.

Using three aspects to generalize: (i) number (subdivisions, sides in poly-
gon); (ii) type of line (e.g., altitude, median to angle bisector); (iii) type of
polygon (different types of triangles or quadrilaterals).

Attitudes about self

I can create/discover/develop mathematics.

I can participate and talk in discussions of math problems.

Beliefs about bigotry

It's good to explore on your own outside the bounds of the problem.

A textbook is a valuable tool when exploring.

The final goal of an exploratory problem is to create conjectures and proofs.
In such a problem, data are not enough, though theyare important.

It is good to use deduction to avoid measuring things that you can know
without measuring.

Measuring can't mathematically prove a "for all ..." statement.

A proof proves the statement for all of the drawings that satisfy the
given.

nougats about outbmaatics
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There are differences between definition, postuk...e, theorem, conjecture,
and observation.

Choice is involved in making definitions and postulates. These choices
determine what are theorems.

A proof proves the statement for all of the drawings that satisfy the given.

All Euclidean geometry has not been created/discovered/developed.
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INTRODUCTION

Balanced
Assessment of
Mathematical
Performance

Alan Bell, Hugh Burkhardt,
and Malcolm Swan

The implementation of higher-order thinking in
the school mathematics curriculum depends on the provision of appropri-
ate assessment material. Teachers' natural and laudable desire to see
students succeed at public examinations is bound to be reflected in their
teaching. Short, closed, stereotyped examination questions are bound to
encourage imitative rehearsal and practice on similar tasks in the classroom.
(WYTIWYG or "What You Test Is What You Get"). Conversely, a range of
high-quality tasks that assess a broader range of skills will convey messages
about the nature of the desired learning activities more powerfully than any
analytic description. It is hard for teachers to adopt new teaching practices,
even those that offer innovative learning experiences focused on higher-
level skills, if the teacher cannot see how the skills acquired will be recog-
nized in their students.

What are higher-order skills? First, they are those general strate-
gies and domain-specific tactics that govern the choices of lower-level
technical skills and concepts used in a given activity. They enable a student
to deploy mathematical knowledge and techniques effectively. They include
the ability over a range of domains to generalize, represent, abstract, prove,
check, generate questions, test a hypothesis, or practice a skill. They also
include the ability to formulate a question in mathematical terms, or in
terms appropriate for solving a problem, and to interpret a mathematical
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result in the context from which the problem originated. And they include
the capacity to be aware of ones' state of knowledge and skill ina particular
domain, and of ways of acquiring and retaining further knowledge. This is
already an extensive list, which we shall flesh out and illustrate in the course
of the following three chapters.

We cannot discuss innovative material for mathematics and its
assessment without considering other ways in which we wish to improve
currently conventional assessments. These include the following:

Practical relevance: Too much current material offers a situation
from real life, but then asks questions that have no practical
significance.

The coherence or fragmentation of the task Many tasks lead students
through a sequence of small, dosed steps, entirely removing the
decision load from the student. ("Solve equation A using method
B," and so on). Few tasks invite students to select from their
repertoire of techniques, carry through a chain of reasoning, or
compare alternative methodsthat is, show higher-order skills.

The range of possible responses: To what extent can we set tasks that
offer the opportunity for satisfying work to students ofa wide
range of ability and attainment? Traditionally, the level of
response possible has been largely determined by the task
rather than by the student.

The extent and value of the task Higher-order thinking is generally
displayed more in extended tasks than in short ones. Tasks that
occupy several weeks of school mathematics time are being used
in the United Kingdom to assess such skills, and this has led to
the realization that as more student (and teacher) time is taken
up by assessment, it is important that these activities should
themselves constitute valid and worthwhile learning experiences.

The mode of working on the task Traditionally, individual students
have worked on written tasks in silence. Such unnatural condi-
tions are imposed for the sake of "reliability," and this kind of
assessment will probably always be with us. There is a great
need, however, to explore how we might assess a student's
ability to work cooperatively, perhaps using oral and practical
forms of communication in a normal working atmosphere.
Again, these aspects are currently being explored in Britain.
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The aspects we seek to measure are key qualities that are sought by
employers and that we need as effective citizens in the modern world. They
represent higher standards than exist in most current assessment.

For the preceding kinds of reasons, we wish to focus not only on
higher-order thinking but, more broadly, on the notion of balanced assess-
ment of all those aspects of mathematical performance that are now widely
recognized and described in documents such as the Mathematical Sciences
Education Board reports (MSEB, 1989, 1990), the National Council of
Teachers of Mathematics Standards (NCTM, 1989), the California Frame-
work (California, 1985) and comparable guidelines in other tasks and
countries (see, for example, Cockcroft, 1982; DES, 1989; NCC, 1989). Our
key principles will therefore be

curriculum balance, in which each assessment package consists
of a set of tasks of varying length and style that, taken together,
reflect the curriculum objectives in a balanced way, and

curriculum validity, in which the assessment tasks themselves
represent learning activities of high educational value so that
the significant amount of time spent on them will represent a
benefit rather than a loss to students' learning.

Such packages must also satisfy reasonable constraints of reliability and
economy. While the development challenge is substantial, achievements so
far suggest that these objectives can be met.

The preceding approach is in many ways opposite to "the psycho-
metric ideal," where the assessment package takes very little time, measures
only a tiny part of the student's range of performance, yet provides a full and
reliable picture of his or her capabilities. This is not the place for a detailed
critique of that approach; suffice it here to say that such an approach not
only fails grossly to meet its own targets (correlation cannot carry so great a
burden), but it sends outvery unfortunate signals about the curriculum (see
the excellent analysis in Ridgway, 1988, 1987). As we have indicated above,
most customers of the psychometric approach are convinced that a narrow
focus on the kind of tasks included in such tests is the best route to success
in them, but the backwash effect on the curriculum can be disastrous.
Effective performance in mathematics needs much more than this.

Thus, the kind of assessment proposed here is a prerequisite for
widespread implementation of an effective curriculum. States and school
districts that have appropriate objectives in mathematical education must
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have tests available that match those objectives for both formative feedback
and accountability. Such assessments will also give an impetus previously
lacking to developers of textbooks and other materials by stimulating
demand for effective materials that meet the new standards.

It takes time to develop desirable materials. The issue of the
development of effective support for teachers and students in the transi-
tional period needs to be addressed at the same time, along with other issues
related to the dynamics of curriculum change and the implementation
process. In our chapter, "Moving the System," we focus on these later issues.
Overall, the work we describe reflects an established approach in the United
Kingdom and elsewhere, and it draws on a wide range of initiatives and
experience there and in other countries, particularly the Netherlands,
Australia, and parts of the United States. This area of work became a major
part of the Shell Centre activity over a decade ago, when we suggested
(Burkhardt, 1979, 1980) to the largest of the English examination boards
that it should take more seriously the curriculum responsibilities arising
from the influence of its examinations. Thus began a series of collaborative
developments in assessment design and curriculum support that continues
(Shell Centre 1984, 1986, 1987-89, 1989). This anecdote is useful in indicat-
ing the time scale of change achieved so far, which accords well with other
experience, for example, in the Netherlands. These assessment challenges
will not be solved in a year or two, but immediate progress can be made. So,
it is important to make a start.

DESIGN PRINCIPLES FOR BALANCED ASSESSMENT

The principles that we believe should be applied to the design of
balanced assessment of high curriculum validity, and which we have found
to work well, are really quite simple. Their aim is to encourage the intended
balance of mathematical activity and to observe the students' performance
in it, assigning credit according to value judgments based on the aims of the
curriculum. How is this done?

First, one must decide the range and balance of types of task that
the 'target group" of students should be able to do. Brainstorm and search
until a reasonable set of attractive possible tasks are found. Then devise a
form of presentation of each task that leads students to understand what is
required and how to tackle the task. Finally, try it out, observing what
happens, and revise the presentation, repeating this development cycle
until the range of student activity matches that intended (or the task has to
be abandoned). In the light of a sample of student responses (written or
otherwise), devise a grading scheme for assigning credit, then check that
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this works well with those who will be doing the gradingexternal examin-
ers, teachers, or students. Also, a monitoring or moderation procedure may
need to be developed. Imagination plus realistic empirical development is
the key.

In this process, notice how the nature of tasks is defined first, and
the marking schemes are designed afterwards, to reflect the objectives
sought. The creative talent needed to design such tasks and marking schemes
must not be underestimated. This may seem obvious, but often, in current
practice, we select only tasks that we know will be easy and cheap to mark using
existing practices. Many of the best tasks have thus been filtered out.

We should like to stress the creative challenge of the whole
process, of the design of beautiful assessment and associated support. So
much that is offered in the mathematics curriculum is mundane. (If the
English language curriculum were like this it would consist entirely of
readings from dictionaries.) This need not be so; mathematics itself is not
like that. It is possible to devise tasks that lift the spirit, that people will talk
about afterwards because they are interesting. We think it is worth the effort
to do so.

The Rage of Tasks

We shall not review here the target curriculum that authentic
assessment will serve; the descriptions in the documents referred to above
represent a broad consensus, mirrored worldwide, as to what is now needed.
Let us simply say that we recognize two broad types of task as representing
applied and pure mathematics. The former is a situation or problem arising
outside mathematicsperhaps an optimizing question, such as what is the
best route for a postman's round in a given district, or perhaps a route is
given and the question is what other routes are possiblewhere it is
appropriate to construct and manipulate a mathematical model and to
interpret the result in the original situation. The archetypal pure math-
ematical problem is to recognize relationships in a mathematical system and
to attempt to generalize them, altering the constraints and observing the
consequences. Our examples in this chapter will include both of th ese broad
types, and we shall invite appreciation of our examples as displaying the well-
recognized characteristics of authentic mathematical activity. In other
words, we hope readers will study these examples and say, yes, this is an
example of genuine pure or applied mathematical work at a level appropri-
ate to the students to whom it is offered, that is, it displays characteristic
modes of mathematical activity and deploys an appropriate range of math-
ematical concepts and skills.
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According to our approach, there is a belief that assessment
should emphasize positive achievementmeasuring what the students can do,
rather than what they cannot (Cockcroft, 1982). This is "inefficient" from a
psychometric point of view but not from a curriculum viewpoint The
emphasis will be on problems with an `'exponential ramp" of challenge, so
that every student who tackles a problem can make productive progress
while even the most able meet real challenges. Most tasks will involve the
students in a broader range of mathematical activities than is common at
prese-it--investigating the problem domain, organizing a systematic attack
on it, carrying it through with modifications in the light of experience,
collecting and analyzing data, checking and reporting the results.

Scoring and Masitaring

The methods for assigning credit to student responses are integral
parts of task design and development. General questions as to what aspects
of performance should receive what credit require value judgments that are
central curriculum issues. For example, in tackling a practical problem
using mathematics, should credit be assigned for the overall success in
solving the problem or only for the narrowly mathematical parts of the work?
Methods for grading involve technical issues as well as those of principle
for example, how far should the grader take a holistic view of the student's
attempt, and how far should it be analyzed under categories? The usual
range of questions of validity and reliability enter.

The development of grading schemes (or assessment schedules or
marking schemes or scoring rubricsthe terms proliferate) that enable
teachers as well as outside scorers to measure assessment with adequate
validity and reliability is a central part of the practical design of assessment,
as are mechanisms for monitoring teacher assessment in a cost-effective way.
(This process, if appropriately conceived and implemented, can contribute
to teacher development in an important way.) There is much experi
worldwide, from which to learn.

Assesskreat Packages

Many forms of assessmen t packages have been tried, and more are
worth investigating. We shall not attempt a comprehensive review; however,
it may be useful to indicate something of the range of produced
possibilities, which go well beyond the short test of multiple-choice items.
Many of the design principles outlined above will be exemplified in
chapters 6 and 7. Now, we turn to our first main theme, the range and
balance of types of task.
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TYPES OF MATHEMATICAL TASK

We aim to discuss this key issue through both exemplification and
analysis. The latter is helpful, but we beg the reader not to take it too
seriously. No classification scheme yet developed is adequate to capture the
nature and variety of mathematical performance, for example; and a lot of
harm has been done in the past through implementing both curricula and
assessments that sought to develop performance in students through teach-
ing the components of doing mathematics but without enough focus on
putting these components all together.

We give Much credence to balanced judge ent of the face validity of a set of
tasks as representing the kinds of things rue want students to be able to do, and we urge
readers to do so too. Accordingly we shall set out some examples of types of task
that seem to us to have an essential place in the assessment of mathematics,
emphasizing those that have been neglected in the past. To do this properly,
one needs to present the following:

Several task exemplars. The range of variation within the group of
tasks is very important. If the tasks are very similar, a routine
approach to teaching them, based on explanation and practice
alone, will seem attractive to many teachers. Whereas, if tasks
are more varied, this approach is obviously not enough, and an
investigative learning environment becomes essential.

Sample student responses. The responses of the students are
central to judging a task; they also provide the platform for
appropriate grading schemes.

Grading schemes. These procedures describe how credit is
assigned; that is, what aspects of performance are valued with
what weight.

In order to cover the necessary range of tasks here, we shall be able to give
only a partial picture; that is, we shall present some tasks with no more than
commentary, leaving the reader's imagination to fill in the rest. However, we
have chosen many examples from sources where the rest of the information
is published, so the dedicated reader may find it. Such references are
indicated by asterisks.

Dimension of Task Description

While we have stressed the importance of viewing tasks holistically,
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we shall begin by writing down some of the dimensions that need to be
covered in assembling a balanced set of tasks. These dimensions include the
following:

Task length. Doing and using mathematics involves tackling a
great variety of types of tasks, from the quick mental calculation
to the extended practical problem in which different parts of
mathematics are used from time to time. We think it useful to
distinguish short tasks (from a few seconds to, say, 15 minutes),
long tasks (which may take 15 minutes to 2 hours) and extended
tasks (which take many hours, often spread over several weeks).

Autonomy. While the traditional mathematics curriculum is
largely imitative, with students asked to tackle only tasks that
are very similar to those they have been shown how to do, the
need is for people who can use their skills and understanding
with flexibility and autonomy, since in real life most problems do
not present themselves in neat, standard form.

Unfamiliarity. Some tasks will be entirely familiar and thus
routine, but others need to be less so in order to develop the
students' abilities to adapt and extend their mathematics.
Nonroutine problem solving is thus closely connected with student
autonomy. It is important to recognize that such problems have
a high strategic load in finding a route through the problem, and
that the technical load must be correspondingly lighter if the
overall difficulty is to be the same. Equally, students can only
use autonomously those skills that they have thoroughly ab-
sorbed and linked to other aspects of their understanding. In
practice we have found there is roughly a four-year gap between
the level of autonomous technical performance of students and
that which they show in imitative exercises of a familiar kind.
This critical factor is often missed.

Practicality. Some tasks will involve the use of mathematics in
practical applications, while others will be purely mathematical.
Each supports the other.

Context. Applications of mathematics cover a very wide range of
practical contexts and assessment tasks should cover some of
that spectrum, particularly those that relate to the experience
and interests of the students.

3
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Mathematical content. This hardly needs stressing, but the tasks
should sample the whole range of strategies, concepts and skills
in the target curriculum.

In the rest of this chapter, we exemplify and discuss these characteristics for a
range ofshort and long tasks. (Extended tasks are discussed in the next chapter.)

IMPROVING SHORT TASKS

We start in the most familiar zone, with tasks that (1) take from a
few seconds up to 15 minutes or so, (ii) are focused on particular areas of
mathematical skill and conceptual understanding, and (iii) are meant to be
straightforward. We call these short tasks.

The principal way of testing student performance in the technical
skills of mathematics should be through their ability to recognize the need
for such skills, and their ability to select and deploy them effectively in
worthwhile IlesKS. However, there remains a need for the external assess-
ment system to embody some curriculum guidance derived from the
collective wisdom of longer and wider experience. For example, although
knowledge of table facts is constantly needed in classroom mathematical
work and in examination tasks, many students still do not possess these facts
at the level of fluency necessary for efficient work. It is not only higher-order
skills that need to be encouraged by appropriate inclusion in assessments.
Thus, we see a value in retaining, at least fora transitional period, some short
tasks that test technique directly, giving them a modest total weight (perhaps
20 percent). But even these can be greatly improved, particularly in devel-
oping flexibility and prk,..tical relevance beyond the standard types of "fill-
in-the-blank" problems such as

9 x 5 = , or simplify x3y<5/x2y.

For example, Examples 1 and 2 provide ample practice, and in
Example 2, a little thinking leads to some amusing features accessible to
children at the same stage (from The Power Series, Shell Centre/UCSM1-,
1991). Notice that Example 2 requires a calculator for posing the problem
but not, for most children, for its solution. Of course, part of the credit in each
case must be given for the mathematical insights, and Fart for reliable
technical manipulation. Furthermore, these possibilities must be clearly
indicated to the student. Such problems (from Tyler, 1984; Shell, 1984)
furnish particularly good examples of the exponential rampeveryone can
make quite a lot of progress but few students, or adults, will discover all its
possibilities.
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Example 1. Answer 5.

45

ODE

In box A put any number from 1 to 99

In %or B put any operation +, - x, or +.

In box C put any number from 1 to 9

How many di6erent ways can you get the result S?
e.g.

101
2."

Example 2. Target.

One calculator you are only allowed to use the keys

3 x

You can press them as often as you like.

You are asked to find a sequence of key presses that produces given
number in the display. For example, 6 can be produced by

3 54-3-3.

(a) Find a way of producing each of the numbers from 1 to 12. Clear
your calculator before each new sequence.

(b) Find more than one way of producing the number 10. Give reasons
why one way night be preferred to the other.

We have suggested that the degree of practical realism ofques-
tions should be improved. But if this is done, the reality must clearly be more
than cosmetic. For example, in the question illustrated in Example 3 from
a 1988 GCSE (General Certificate of Secondary Education) examination for
16-year-old students (Shell Centre/SEC, 1989), the ironing board does not
make the question any more real; it is stilla formal exercise in trigonometry.
Nonetheless, there is a good real question lurking here, namely, where one
should place the "stops" under the top surface so that the board can be
conveniently used by people of various heights. Of course, like all real
problems, this brings in other factors, but if mathematics isto be any use to
the students, they must be able to integrate it in this way. When looking at
a real question, one should ask "Why?" or "What use is the answer?"



Worse than in
the preceding case,
some other questions
require misconceptions
to yield a "right answer."
For example, consider
the 1988 GCSE question
shown in Example 4.
Example 4 is meant to
demand scale-reading
and simple extrapola-
tion based oil a linear
model. In fact, however,
the temperature will
pause at 0 C while the
ice melts. Also, freezers should operate below -18 C (0 F) This question
amounts to disinformation. Sensible questions can usefully be set in a
practical context that runs over several tasks; for example, the tasks in
Examples 5 and 6 use a series of questions to tackle a coherent theme.

Example 3.

Bell, Burkhardt, and Swan

1.--40cm-41

The diagram shows the side view of an Ironing board.
The two legs cross at °and are equal In length.
(a) Use the Information In the diagram to calculate

angle x °.
Give your answer to the nearest degree.

(b) Calculate the value of f.

Example 4.

NM un9uu

A freezer Is switched off at 0900 In order to defrost it.
The diagrams show the temperatures in the freezer at
0900 and one hour later at 1000.

(a) What is the temperature in the freezer when It Is
switched off?

(b) By how much does the temperature rise In the
hour between 0900 and 1000?

(c) The temperature rises by the same amount in
the next hour. What Is the temperature at 1100?
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Example 5. Before and after birth.

Task B: Growth,.

130

1. Before and after birth
The table below shows how a typical baby grows during the first months Inside its
mother's womb.

Month number 4 5
Len: in centimeters 4 9 16 25

(a) Describe any patterns you can see in the numbers in the table.

If this pattern continues, what length would the baby be at month 9?

(b) Luckily for the mother, this pattern doesn't continue!
For months 6 to 9, the approximate length of the baby is given by the formula

(Length in cm) - 4 x (Month number) + 6

Complete the table, using this formula:

Month number 6 7 8 9 (birth)
Length in centimeters

(c) The baby is born at 9 months.
During the first 6 months after birth, she grows 18 cm.
During the second 6 months, she grows a further 10 cm.
On the next page, draw a smooth curve to show how the babygrows from 0 months

to 21 months.

Thee task comes from two leathernatice thntugh Probiem &Axing examination (NEA. 1031 referred to in chapter 6.
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Example 6. College entrance.

Sample open-ended questions (and responses
from CAP Grade 12 Test, 1987-1989

James knows that half of the students from his school are accepted at the public university nearby.
Also, half are accepted at the local private college. James thinks that this adds up to 100 percent,
so he will surely be accepted at one or the other Institution. Explain why James may be wrong. If
possible, use a diagram in your explanation.

ens seuttonne
rossousa:

people accepted by Me public university
people accepted by both alt.
people accepted by the private college 4)
people not accepted 0

hums schoors acceptance
outcomeIt

AS MUCH AS 50%
MIGHT NOT tt
BE ACCEPTED

Imagine you we talking to a student in your dass on the telephone and want the student to draw
some figures. The other student cannot soe the figures. Write a set of directions so that the other
student can draw the figures exactly as shown below.

1111111111111111111111

11.4.6 111
1111011111111111111LINII11 1111

11.111111111111
1111T4 111111111111

rA11111111110111

11 111

John has four place settings of dishes, with each place setting being a plate, a cup, and a saucer.
He has a place setting In each of four colors: green, yellow, blue, and red. John wants to know
the probability of a cup, saucer, and plate being the same color If he chooses the dishes randomly
while setting the table.

Explain to John how to determine the probability of a cup, saucer, and plate being the same color.
Use a diagram or a chart In your explanation.

(This is a page from Assessment Alternatives in Mathematics, a booklet from the
California Mathematics Council and EQUALS.)
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These questions are essentially technical tasks in a practical con-
text. They should not be confused with questions that are practical in
purpose, where the emphasis is on understanding a real situation through
the languages of mathematics. For example, Example 7 is a 15-minute task
that has been widely discussed (from Shell 1986). Should we give credit in
mathematics for the quality of the commentary, as a commentary, or even
for an explanation? We should, if learning and performance are to be
advanced. The marking scheme for this question is designed to give credit
for the effective display of some of the following skills: (i)interpreting
mathematical representation using words or pictures, (ii) translating words
or pictures into mathematical representations, (iii) translating between
mathematical representations, (iv) describing functional relationships us-
ing words or pictures, (v) combining information presented in various ways
and drawing inferences where appropriate, (vi) using mathematical repre-
sentations to solve problems arising from realistic situations, and (vii)
describing or explaining the methods used and the results obtained.

Script C and Script E, shown in Example 8, illustrate two student
responses. Table 1 summarizes the features for which credit is given in this
particular problem and the marks awarded to six student responses, includ-
ing the two shown. A more extended discussion is given in the reference,
which also shows how such discussions can be used in a type of in-service
training session for teachers that is both popular and effective. Example 9
came from a student's own initiative.

Example 7. The hurdles race.

A
400

Distance
(meters)

60
Time (seconds)

r
A

C

The rough sketch graph shown above describes what happens when 3 athletes,
A, B, and C, enter a 400- meter hUrdles race.

Imagine that you are the race commentator. Describe what is happening as
carefully as you can. You do not need to measure anything accurately.

0 a
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Table 1. Suggested marking scheme applied to scripts based on Example 7.

Script

A B C D
E F

At start, C takes lead 1 I 1 1

I mark
for each
of these

After a while, C stops 1 1 1 1 1

Near end, B overtakes A 1 1 1 1

B Wins 1 1 1 1

A and B Pass C
i

t

2 marks
for 4 of
these, or
1 mark for
2 of these

C starts running again

C runs at slower pace

A slows down or B speeds up VVVVV
A is second or C is last V V V V

Quality of commentary
0 2 1 2 0 1

TOFAL
1 8 6 7 3 4

Example S. Sample scripts.

Script C (Simon). ikulttit.ES RACE

%era MAX t411. toi.o-dta fLa
fCcrt1,3 foitl, A a.ott'lAr''
A Lo

oto.-Eke, f.44.a.,,A. f.o-kio..14441 150 c07.4 'La

171 Aj3 ant tits, V
0- Late,

14O...
;, 123
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Script E (Jackie).

Athlete A on too first I o '''' 1 plaVI
he has peek .410 100 .Cl-S the

.4..* 10 sec....4 s Ns spa s t stsly,
11,31, I 11. 100 S I.. p SS as

100.. ../rK toac is .1vb So sseh4
N. 1`,ss 1,, . t,. .act In ol.k 1 moute 10 seCenis

Athlete B 14, .cirst 101.1 I et. ri
first loo +he ft Athl et e A I, 4.. of }a
IC lmut 20 st cittlt. His 7,.,1 stays 1t

sew. 41, 31, 1t.. ',art 100.1

passer it.. she lima IS I.e*At 60
sec.,.1 s .
He f,nshet the me 1.64 1.{C 5 sac./ a
3. in. I 4.41C Ktnati near 41,a aJ
AFt,ieke C tr 0,4 Ati.lete A, a

th t,,st 100 in at-
1, row stv I I but s ty.

*. la St 2.00 vt tla ft, I sh s
.6. set I wmtte 40 sacn/siM race

Example 9. Feelings.

These graphs show how a girl's feelings varied
dining atypical day.

Her timetable for the day was as follows:

730 am Woke up 1 30 pm Games
830 am Went to school 2A5 pm Break
930 ern Assembly 360 pm French
930 an Science 430 pm Want horn.

1020 and Break 6:00 pm Did homework
11:00 am Math 7:00 pm Want to 10 pin bowling
1230 pm Lunchtime 1030 pm Went to bed

5761111111111174 65765 can

7 O 1 16111,111 a 67 651611
11410415

Fn

171511111111/34457551511
Twee,

%I Gabe for Mathwaliel lauteltem, Usionity of NatImeue.19115

141'.'

(a) Try b n the *hap,
of each graph, as fully as
poseiblo

(b) How many mats old she eat?
Which moat was We biggest?
Did to eat at hnsaidmae?
How Fong Old Me spend

*sing lunch?
Width lesson did she enpy

to meet?
When was sheered and

dripreeser Why was this?
When was a/111'111.mq but

Poppy? Why wastes?

Make to some TOM U00I
No thaws, and give them to
your neigtbor to solve.

(0 show) graphs* show how
yam Wings change during
this day. Sae your
neighbor an he MOT
00(100/.
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Skert Tasks to Test Same Seem' Matkeetatical Strategies

Some aspects of mathematical strategy lend themselves quite well
to assessment by short tasks (Bell et al., 1978), and such tasks have been used
extensively in research studies and occasionally in public examinations. We
shall give some items related to proof and to symbolization.

We can distinguish three major dimensions of development in the
use of proof strategies. These are (i) the degree of regularity or rationality
expected by the pupil (some are unsurprised by stark inconsistencies) ;
the explanatory quality of the proof response (an awareness that a proof or
explanation must go beyond the restatement of a result in general terms,
that it must connect it with existing knowledge and must avoid circularities);
and (iii) the level of sophistication of the proof techniques or logical
transformations.

The problem "Add and Take" (Example 10) tests the ability to
distinguish two proposed arguments, one the checking of a number of cases,
the second a general argument applying to all cases. This item has been used
with various groups of students aged 11 to 15. Vagueness was the keynote of
many answers to this item, such as, "Brenda has explained it better," or
"Brenda's reason is based solely on facts." Some students argued for
whichever of the alternatives they found most simple a subjective view of
proof. The following are two typical answers, one fair, one poor:

Because Jane has assumed that just because two numbers (1 and 9)
work out as 20, then all other numbers under 10 must work out as
twenty whereas Brenda has given a detailed explanation.

Jane has explained it most easily than Brenda has.

These are typical responses; very few studentswere sensitive to the invalidity
of assuming what one is trying to prove.

Items that asked students to explain why certain well-known
principles were true elicited good responses from very few. For example, in
an item called "Adding a Nought," students were asked whether the prin-
ciple exemplified by 243 x 10 = 2430 was true for all whole numbers; they
were asked also to explain or justify their answers. Most simply gave a few
more examples of the use of the principle. Questioning the limits of the
truth of the principle was not on the agenda.

Recognition of circularity of argument in a geometrical proof is
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tested in Example 11. One good answer to the question said, "Step 2 is wrong
because if he can safely assume this, there is no need to do the tixoof in the
first place. Step 3 is wrong because everything falls apart at Step 2."

Example 10. Add and take.

Choose any whole number less than 10.
Add the number to 10.
Take the first number from 10.
Add the last two numbers.

Do the same beginning with 9.

Show that the answer is again 20.

choose
ens.
ans.
WS.

choose

JANE says, Begin with 1, answer is 20.
Begin with 9, answer is 20.
So begin with any number
between 1 and 9, answer will be 20.
The answer is always 20'.

BRENDA says, You have 10+ number.
You add 10- number.
You add and take the same number
so you wit) always be left with 2 tens.
The answer is always 20'.

II
9
20

El

(1) Who you think has given the better reason for the answer always
being 20? JANE / BRENDA

(2) Use the space below to explain why. (If you think they are equally
good explain why.)

Example 11. Angles.

Barry wants to prove that any two adjacent angles on a straight line make up 180°.

C

Hr. draws this diagram
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and aims to show that Q + Q =180°.

Barry's proof goes like this.

First he extends CD in a straight line to E to make his diagram look like
this.

A

Step 1 =0
Step 2 CI +0 = 180° since CE is a straight line.

Step 3 Combining steps I and 2, Q + Q =180°
Step 4 Hence two adjacent angles on a straight line add to 180°

For each of steps 2 to 4 explain why it is right or wrong.

Step 1 is right because they are opposite angles on a straight line

Step 2 is wrong because if he can safely assume this, there is no need
to do the proof in the first place.

Step 3 is wrong because everything falls apart at Stage 2.

Step 4 is wrong because of the reason for Step 3

Sensitivity to definitions is tested in Example 12, while the items in
Example 13 are intended to test ability to work with symbolic representa-
tions. "Turning the arrows" (Example 13) involves the first familiarization
with the movements P and Q, a half and a quarter turn respectively. Then,
by requesting lengthy combinations of these, the pupil is led to formulate
rules by which such sequences may be reduced. These rules are (i) the order
in which the symbols appear is irrelevant, then (ii) P2 is an identity
movement and so is Q4. This a typical process in which the thrust towards
generalization leads to the abstraction of relationships. Here, the expres-
sion of the generalizations is also asked for. One might reasonably assume
that some familiarity with the process of in terrelating the symbol system and
a geometrical situation, and with the process of reducing words using
algebraic rules, might lead to an improvement in the process.
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Example 12. Quadrilaterals.

In this question the meaning of quadrilateral is

Definition: A quadrilateral is what you get if

as given in the following statement.

you take 4 points A, B, C, D in a plane and join
them with the straight lines AB, BC, CD, DA.

Horace says, "the angles in a quadrilateral at A, B, C, D always add up to 360' .

quadrilateral
my proof.

made intoEvery ri
Here

2 triangles
lateral can be

iangles by joining a diagonal.
Each triangle has 180' and
2x180'=360'."

Warwick says, "Look at my quadrilateral.

B
60°

70° . 4
50°

A 60°

50"+70"+ 60'+60'= 240'
My angles make up 240'.
Horace is wrong."

C

(1) Has Warwick drawn a quadrilateral? Yes/No

(2) Is the first sentence that Horace says correct? Yes/No
Explain why or why not.

(3) Explain what is right or wrong about Horace's proof.

Example 13. Turning the arrows.

w

N

S

E

Two changes P and Q can be made to this arrow head

P turns it to point in the opposite direction.
Q turns it through a gaarter tum, clockwise.

It always starts by pointing north.

1. After din PQ (P then 01 which way does it poirt?

2. After doirg P2 (P Odra) which wry thee it point?
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Two changes P and Q can be made to this arrow had

P turns it to point in the opposite direction.
Q turns it through a quarter turn, clockwise.

It always starts by pointing north.

1. After doing PQ (P them Q) which way does it point?

2. After doing P2 (P twice) which way does it point?

"Roofs" (Example 14) is another item where the relationship
between a geometrical figure and a symbolic code is exploited. Here the
question asks what conditions on the numbers constituting the code are
necessary to ensure that a roof can be drawn. The conditions are A + B = C
and D = B. Students may argue the truth of these either empirically (by
looking at a number of usable codes) or structurally or deductively (by
arguing from the features of the diagram). Thus the different aspects of
proof come into this item too.

Example 14. Roofs.

001117 l14-4 l
4\+--

own 1 3
6/0

MrallOn

Roofs can be drawn in
different shapes and sizes,
using the dots provided.
The first one drawn at far
left is a2352.

The second is a3141.

(The first number tells you
how many units to draw in
direction 1, the second in
the direction 2, the third in
direction 3, and the fourth
in direction 4.)

146

1. Draw a 2242 and a 4151.

2. Try to draw a 3251 and
1434. Explain what
happens.
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A number of the above items were developed as part of a project
to evaluate achievements in process aspects of mathematics in a curriculum
for 11- to 13- year-olds in which problem investigation was the main way of
developing knowledge of the syllabus content (Bell, Rooke, and Wigley,
1978, 1979). Subsequently, some interview-type assessments were devel-
oped, complete with scripts specifying prompts and hints to be offered if
needed (Fowler, 1983). Such questions were used by the Freudenthal
Institute Assessment of Performance Unit in its national surveys, 1978-82.
Some twenty teachers were recruited and trained, and spent two weeks
interviewing, in different schools, about six students per day, each for 45
minutes, covering three topics. The valuable experience gained of the
feasibility and consistency (high) of their procedure is reported by Foxman
et al. (1989).

NONROUTINE PROBLEM-SOLVING TASKS

The development of mathematical performance demands flexibil-
ity and adaptability, as well as reliable technical performance and the ability
to communicate what has been tried, and what found. While the tasks set out
so far have demanded some flexibility, they have been essentially straightfor-
ward, with a fairly obvious approach to finding what is asked. We now want to
discuss tasks where the strategic demandfmding a successful approach to
and route through the problemis a major aspect of the task. Again, we
emphasize the importance of keeping the total cognitive load in line with the
student's abilities, and the "four-year gap" (between autonomous and imita-
tive performance) that this seems to imply for the technical level.

We consider first a mode of assessment in which the attempt is
made to test the various components of the generalization process through
a short investigation in a traditional examination setting. One early develop-
mentwas a joint project between one of the major British examining boards,
the Northern Universities Joint Matriculation Board OMB) and the Shell
Centre (Burkhardt, 1980). Each year one new type of question was included
in the JMB examination for abler 16-year-olds (the GCE 0-level). The Shell
Centre provided the questions and (equally or more important) a substan-
tial module of teaching material with guidance for teachers to support
preparation of students for this question (Shell Centre, 1984). The teaching
materials, designed to cover three or four weeks of mathematics time, are
based around well established problem-solving strategies. They offer sub-
stantial initial support for students (and for the teacher), with decreasing
support as experience develops. The set of strategies (cf. Polya, 1945) used
was (i) try some simple cases, (ii) find a helpful diagram, (iii) organize
systematically, (iv) make a table, (v) spot patterns, (vi) find a general rule,
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(vii) explain why it works, (viii) check regularly. The questions were in the
form of longer (20-25 minute) problems requiring an investigative ap-
proach. The grading schemes were based loosely on the preceding strate-
gies, giving credit for (i) understanding the problem, (ii) organizing an
attack, (iii) carrying it through successfully, and (iv) explaining or justifying
the solution.

In Example 15 (from Shell Centre,
1984), students, who have not seen this par-
ticular problem before, take a variety of ap-
proaches. Some break the "tower" into four
legs and a center, some take horizontal slices,
finding number patterns and generalizing
them into verbal rules with more or less suc-
cess. Few, in fact, express their verbal rule in
algebra, or sum their arithmetic progression,
even though they are able to do so if these are
presented as separate technical tasks. This is
an illustration of the four-year gap between
autonomous and imitative performance that
we have already notedthe technical level of
this question, apart from the last part, is at
elementary school level, but the whole task is
a suitable challenge for able students at age
16. It was also interesting to note how few
students (less than 5 percent) take a geomet-
ric approach, breaking off two opposite "legs"
and putting them upside down on the others
to form a rectangle.

Example 16, "Stepping Stones" is
another question that tests ability to general-
ize. The elements of the solution to this question consist of (i) explaining
how the girl will stop only on even-numbered stones, (ii) identifying values
of n that entail stepping eventually on every stone, that is, those divisible
neither by 2 nor '7, (iii) generalizing this to numbers that have no divisors in
common with the number of stones in the ringwith explanation. Thus, the
first part involves trying a given simple case, displaying understanding of the
problem; the second requires some systematic organization of trials of other
numbers to cover all significant cases, and the third involves making, stating,
and explaining a generalization. (In many such questions, a little algebra is
appropriate at this final stage, though surprisingly few students can translate
the rules they have found verbally into algebra (Shell Centre, 1986).

Example 15. Skeleton tower.

a. How many cubes are needed
to build this tower?

b. How many cubes are needed
to build a tower like this, but
12 cubes high?

c. Explain how you worked out
your answer to part (b).

d. How would you calculate the
number of cubes needed for
a tower n cubes high?
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Example 16. Slapping Manes.

A ring of stepping gloms' has 14 stones In it, as shown in the diagram.

A girl hope round the ring, stopping to change feet every time she has made 3 hops. She
notices that when she has been round the ring three times, she has stopped to change feet
on each one of the 14 stones.

0000 0
0 0
o 0
0 0 0 0

start

a. The girl now hops round the ring, stopping to
change feet every time she has mad* 4 hops.
Explain why In this case she wit not stop on
each one of the 14 stones no matter how
long she continues hopping round the ring.

b. The girl stops to change feet every time she
has machn hops. For which values of nwill
she stop on each one of the 14 stones to
change feet?

c. Find a general rule for the values ofn when
the ring contains more (or less) than 14
stones.

Such questions have some but not all of the characteristics of a
mathematical investigationgeneralizing from examples, and stating and
explaining the generalization are required, but with little formulation or
extension of questions and little choice of where next to go in the inquir/.
The steps to follow are prescribed. We may regard these as relatively closed
investigations testing a fairlywell defm ed set of strategies. Of course, this still
represents a substantial extension of the range of attainments normally
sampled in written examinations. Since the design and use of marking
schemes for such questions presents different demands from the more
traditional questions, the module of support material contains examples of
a number of such questions with mark schemes and students' scripts (Shell
Centre, 1984) as well as the classroom materials and some other in-service
support for teachers new to this kind of work.

In the next chapter, on extended tasks, we shall consider how
assessment can be made of those further higher-order skills and strategies
that are brought into play in extended pieces of work, particularly those in
which the openness of the situation leads to responses differing widely in
content and style. Such assessment is often nonspecific in some respects, and
some approaches entail an extensive moderation system, which we shall also
discuss.
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6 MT' Assessment of
MSS Extended TasksNMI

Alan Bell, Hugh Burkhardt,
and Malcolm Swan

INTRODUCTION

in this chapter, we discuss the assessment of ex-
tended tasks, by which we mean mathematical activities covering many
hours, usually spread over several weeks. Typically, this may range from
three to fifteen hours of class time, often with additional private study
outside. This type of task and its assessment has become a major focus of
attention in England over the past few years. Such work originated from the
desire of some teachers to increase the level of positive involvement on the
part of their students in mathematical activity. Discussion led by the teacher
was aimed at enabling the student to get started on the investigation of a
problem that students had, as far as possible, formulated for themselves and
adopted as their own. Ideally, each student would be exploring a different
problem, although in practice, several might have arisen from a discussion
of the same basic situation. Two examples of work initiated in this way are
given in the early part of this chapter. Originally, most such investigations
were located in pure mathematics rather than in applications, but in current
examination schemes, it is normal to require candidates to submit work
from several different fields. For example, one typical scheme (Shell
Centre/MEG, 1989) requires work from practical geometry, statistics, every-
day applications of number, and pure mathematical investigation. Since the
tasks are not specified, such work cannot be assessed by a content-specific
scoring scheme. Profile assessments are required, involving global evalua-
tion of the work under a number of headings. These will be discussed below.
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In Britain, all General Certificate of Secondary Education (GCSE)
examinations (for age 16) must include the assessment of extended tasks of
the preceding kind, but the schemes of the different examining groups
differ considerably in the amount of freedom allowed. For some teachers
this provision is the culmination of a long campaign to have students'
individual, autonomously chosen work recognized in the examination
system. For the majority, it is a new, substantial, and probably not entirely
welcome demand. To satisfy the need for support for innovations in
assessment, a number of publications have emerged recently. These offer
possible "starters" for investigations and, at best, some careful general
guidance about how to initiate investigation of a suitable field of activity and
to lead students to identify a particular problem of their own to pursue.
Some extracts from our own publication, Extended Tasks for GCSR Mathemat-
ics (Shell/MEG, 1989) developed with one examining board, will be given
below. This forms the second section of this chapter.

Another way in which extended tasks may arise is in the course of
work on a substantial class practical activity as, for example, in our Numeracy
through Probkm Solvingmodules (Shell Centre/JMB, 1987-1989) . In the third
and longest part of this chapter, we shall describe the approaches illustrated,
in particular, from "Plan a Trip," "Be a Paper Engineer," and "Be a Shrewd
Chooser." (Other modules are "Design a Board Game' and "Produce a Quiz
Show.") The pattern of classroom activity prescribed provides additional
support to teachers, but there is a wide scope for individuality of response in
the actual games designed, objects made, or products assessed, and in the
design methods adopted. The assessments for these modules are well de-
fined, covering a variety of modes; they take place in the course of the work
on the module, and afterwards, in a manner which will be described below.

Two Examples of Open Assignments

These examples (one of an "applied" problem explored by a 17-
year -old boy, the other of a "pure" problem investigated by a 13-year-old girl)
have been chosen because they show quite well the strategic choices being
made by the studen t--about what questions to ask, what next steps to take
and the explanation of the course of the investigation to a reader. The
authenticity and autonomy of the work shine through.

In "Filter Paper" (Example 1) , a 17-year-old boy investigates a
question concerning the standard way of folding filter papers in the
chemistry laboratory. He asks whether a cone containing greater volume
could be obtained from a different method of folding. He concludes that 80
percent more volume could be obtained, and he offers a brief suggestion
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about why this is not used in practice. The crux of the task is the modeling
stagethe identification of the relations among the vertical height, slant
height, and base radius of the possible cones as determined by the possible
folding, and the choice of a suitable independent variable (A to B in the
script). Following this, there is a consideration of the shape of the resulting
graph (B to C), and the application of the standard method of finding a
maximum point by differentiation (C to D). Dealing with the algebra
involving several quantities is a significant task which is handled well. The
last main section (D to E) considers the normal method of folding and
calculates the volume given for a paper of radius 1. Finally there is the
Summary of results (E to F; for further discussion, see Association of
Teachers of Mathematics, 1978*).

Example 1. Filter paper.

What is the cone of greatest volume that can
be made from a piece of filter paper of any
given radius?

A

"A piece of filter paper is a perfect circle, of
radius, let us say, L

FILTER

PAPER

f this piece of filter paper is folded Into a cone,
L becomes the slant height of the cone and the
centre of the circle becomes the apex of the
cone.

The cones which can be made from that sheet
of filter paper can vary a lot in dimension, but
the slant height will always be constant and
equal to the radius of the paper.

For a typical cone,

h = perpendicular height
r = radius of base cone
L = slant height

r

Now by Pythagoras, who stated that in a
right angled triangle (as In the case above)
the square of the hypotenuse was equal to
the sum of the squares on the other two
sides:

L2= h2 r2

whence r2 L2-h2

and h2 - L2- r2

1The formula for the volume of a cone -
3

lar-h
where r - radius of base of cone
h - perpendicular height of cone

r and h are variables in the equation, but for a
constant slant height, r may be expressed in
terms of h and vice versa so that we may

1 osubstitute in volume -Irr .h and hence end3
up with one variable.

Thus substituting r2 a L2 - h2 h Vol . 3 r2h

we get lc (L2 - h2) h X
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i.e. vol V = 3
h L2 -

3
h3

B

If a graph of V = h L2 -; h3 we drawn, i.e. a

graph showing how volume vanes with the
perpendicular height of the cone, (L always
remains constant for that piece of filter paper) a
cubic graph would be obtained since there is a
term in h;.1 present in the equation. This graph
will be of the form

y ax3 + bx2 + cx + d

we have V - 111.13 +7 2h
3

i.e. y exs + cx

Where the graph V = 731h3 + 7342h crosses the x

axis

V - 0 : kitting a, and 3 2 b

we get:
0-- attl+bh
dividing by h we obtain
0- ah + b

-b = -ah2

h24

-1
multiplying both sides by 7.f we obtain

a
= h2

±

.. h2 =
a

which means the h has real roots.

Also in V - 5113 + ac-L'2h when h 0, V = 0
3 3

h has three real roots, 0 being the third

On this graph of V- - 3 3 --Lic 2h
3

There are thus turning points on the graph,
hence a maximum and a minimum point.

C
Where there is a maximum point, here the V
co-ordinate is the maximum volume attainable
from the filter paper and the h co-ordinate
the corresponding height of that cone

14$

differentiate V -
3 3

h L2 - '10 with respect

to h remembering that L is a constant for
that piece of paper.

155,

remembering that I is a constant for that piece of
dV x 2 3xh2

Palm)" dh
_i

3

(L.2_ 3h2)

Thus there are turning points when
(L2 _ 3h2) 0

multiplying both sides by we obtain

L2 -3h2 = 0
= 3h2

2
h2

3

h = AP-2.
3

ii.e. h
3

or -cri-2-3

A

to find out whether A is a maximum point or
2V2 7,

not we find
d
w---12 of h - tr3

dV
- 7th2

dh 3

d2V
+

T2

dh2
-2xh whorl h E.

3

L2

thus = -2x
3

2

'

d2Vsince --,, Is a negative quantity,

when h there is the maximum point
3

hence the maximum volume

to check, substitute h for -q13:.
3

-2xh -d2
d112

V
3

when h -
3

there Is the maximum volume,

obtained from the cone of this height



D

Now compare the volume of the cone formed
by folding laboratory filter paper In the normal
way, to the volume of the cone that could be
made by folding it In such a way that the

\117height of the cone was , where L

equals the radius of the filter paper.

In the laboratory, the filter paper Is taken and
folded in half, it is then folded in halt again so
that a quarter segment of a circle is produced.
If this radius of the fitter paper Is L, as we have
supposed all along, the circumference - 2EL

the length of the quarter segment of the
1 xLcircle n-4-1 2xL =

Along (a), (b )there are 4 folds of paper, and
when the cone is produce from this paper, 3
folds are made to form one side, the 4th fold,
the other thus:

This Is bottom view of the cone, i.e.
from the other diagram looking down
on the lines along (a) (b) and
separating 3 lines (folds of paper) to
the right as in the diagram, and 1 to the
left.

Thus the perimeter of this circle at the base of
the cone

,IL EL 2EL
2 + 2 2

Let the radius of the base of the cone = r
circumference of this circle . 2kr
but the ckcumference also EL

Bell, Burkhardt, and Swan

Now if the radius of the base of the cone

and the slant height is L, pythagoras's

theorem may be applied to find the height of
the cone, h.

(12)2 + h2.

h2
4

h2.
4

.r. h .432

Now volume of the cone Is given by
1V =3 xr2h

Volume (given that r
2
I= ' 2

h. 1- 43)

.14102 Nr3-

go 15
8 3

Vol- EL3

8 .43

1.732

Vol in terms of x and L

13.856 units

41:TIf the paper is folded so that the height
3
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Referring back to page 2 of the Investigation

from equation X

Vol =
3

x(L2--h2)

substituting 3 we get

Vol =

xL3
x 7.794' cu MI6

since xL3 < L3
13.856 7.794'

E

Thus fitter papers in the laboratory, as regards
obtaining the maximum volume from them
when folded into a cone, if they were folded

so that the height of the cone was,
could be made to hold

(13.856 - 7.794),7.794) x 100% more = 80%
more.

However, the difficulty lies in folding the

paper so that the height ht = 3 , where Us

the radius of the paper, that is why, for
simplicity's sake, the paper is folded In the lab
how it is.

F

This example brings out several points. There is not only the initial
modeling and final interpretation, but also a continuing need to move
between the actual problem and the mathematical processing, keeping both
aspects in mind. Then there is the selection and use of appropriate knowl-
edge and technique at appropriate pointsPythagoras' theorem, volume
formula for a cone, cubic form recognized through a multiletter expression
with independent variable h, not x, the shape of a cubic graph, and the
crossing of the axis, the process of differentiating to find turning points,
presentation of results in percentage form, and in particular there is the
decision to make a temporary substitution to simplify the algebra. Each of
these could form the subject of a short test item, but it is ckar that the ability to recognize
their relevance and to deploy them in this way is a different, more demanding, and
essential accomplishment.

Our next problem is to describe and to evaluate this accomplish-
ment. One approach, for example, uses the description of mathematical
processes as comprising abstracting, representing, generalizing, and prov-
ing. For instance, the preceding example involves much representation,
some abstracting (if one includes in this recognizing relevant concepts and
methods), and some generalizing (if one so interprets the initial question,
"How could this situation be different?"). A more natural description would
be of an interplay of representing (modeling) and processing.

To qua iffy our evaluations we have to ask whether it makes sense
to describe a person as good or bad at generalizing or abstracting or
representing in general (or at least over some specified domains), and
whether such capacities can be improved simply through relevant expert-
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ence, or by more specific naming and practice of the processes. The
principle of devising such grading schemes is dear: founded on principle,
a grading scheme must give results of good face validity in practical use over a
representative sample of scripts. We shall return to these questions later.
Meanwhile, it important to have one or two further and different examples
before us.

The "Remainder Problem," described in Example 2, was investi-
gated by a 13-year-old girl. This work shows a number of characteristic
features of mathematical investigation. It starts with a particular problem
(4r2, 5r1) of modest interest which becomes more interesting as it is
generalized. The concept of least common multiple is almost, but not quite,
created in the course of the solution; and there is the arrival at an algorithm
(for the starting numbers) when a direct explicit procedure is not available.

Example 2. The remainder problem.

It always works in the same pattern.

numbers start here 11101R311

[Klan
This kind of table works for any numbers:

numbers finish here

11r011r111r211r311r411r511r611r711r811r911r10
4r0 0 12 24 36 4 16 28 40 8 20 32
4r1 33 1 13 2' 37 5 17 29 41 9 21
4r2 22 34 2 14 26 38 6 18 30 4%' 10
4r3 11 23 35 3 15 27 39 7 19 31 43

As we know how the table works we can predict what the first number is going to be by
working out from the table but not actually writing ail the numbers in. If the numbers are
large it would take a long time.

r'e ;Iso found a few cases that didn't work at all;

e.g. 5r0 3r2 4r3
10r1 6r4 8r1

But didn't really have time to go into this.

CalaCilU111211

I couldn't find a really efficient way of predicting what the first number Is going to be, only by
the method of the tables. What I found about the way the numbers go up has been
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mentioned earlier. When I tried using more than 2 counts the results seemed to be the same
and fitted in with my patterns or rules about two counts.

One of the things 1 didn't cover was when It was impossible to find any whole numbers
above 0 which would fit. This happened when there was two number of which one was a
multiple of the other with a completely different remainder. As there are no numbers there is
not much you can do with them.

I found out that In some cases you can predict what the last digit is going to be. In the last
example, 2r1 means It must be an odd number and 5r0 means to divided by 5 exactly, the
numbers must all end In 5 or 0. As 0 isn't an odd number, the number!: must alt end in 5.

This doesn't happen every time. But I did find that there was a pattern In the tables of first
numbers.

3r0 3r1 3r1 Ar0 4r1 4r2 4r3
5r0 0 10 5 5 r 0 0 5 10 15
5r1 6 1 11 5 r 1 16 1 6 11
5r2 12 7 2 5 r 2 12 17 2 7
5r3 3 13 8 5 r 3 8 13 18 3
514 9 4 14 5 r 4 4 9 14 19

The numbers go from 0 to (in this case) 19 in order In a pattern. The numbers go from
0 diagonally down from the top corner.

2r0 2r1
3 r 0 0
3 r 1 1

3 r 2 O

Then you want the next number down at 0 but as it goes off the table you have to look
horizontaNy across for the 2. Then the 3 goes off. the table so you look vertically upwards
from what the 3 should be. The 4 also goes off the edge of the table so you must look
horizontally across find N and then as usually diagonally down till you reach the bottom and
the table Is finished.

2r0 2r1 2r0 2r1
3r0 0 3 3r0 0 3
3r1 1 4- 4 3r1 4 1

3r2 2 3r2 2 5

I thought that when all the first numbers are prime numbers the numbers go up in those
numbers multiplied together, but when those number are not all prime numbers, the
numbers go up In half this multiple. But another case cropped up and put me off the trail:

3r1
10, 16, 22, 28, 34, 40, 46

6r4

This time the numbers should go up in :hird of 3 x 6

3 x 6 - 18 13 of 18 - 6

To test this rule we tried some more examples:

4r1 4r2 5r2
Ha Da lia
13,21,29 14,22,38 17,27,37
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The rule seemed to be correct. If the larger number is a multiple of the smaller number, then
the numbers always go up in the multiples of the two numbers divided by the smallest
number, e.g.

3r1
13,22.31,40,49,58

9r4

Nine is a multiple of three

3x927.27 27+3- 9

To multiply two numbers together and divided by the smallest always leaves you with the
largest number.

If the numbers have no connection, they go up in the multiples of the two numbers and rt
one number is a multiple of the second, the numbers go up in the largest number.

Next I tried using three or four counts. Here are a few examples of them:

3r2
4r1
5r3

53,113, 173, 233

3, 4 and 5 have no connection so the numbers go up in 60s - 3 x 4 x 5

2r0
3r1
4r2
5r3

58, 118, 178, 238

As 4 isamultipleof 2 the numbersgoupin 2 x 3 x 4 x 5 +2
In this next example, the number have no connection so go up in 2 x 3 x 5 x 7 - 210

2r1
3r2
7r4
5r0

305, 515

The original problem was:

When a boy counted his sweets in fours, he had two left over; when he counted
them in

frees, he had one left over. How many sweets did he have?'

I thought about this problem and wrote it out like this:

4r2
6, 26, 46, 66, 66 ...

5r1.

The first number of sweets he could have had was 6 but after that there were many more
numbers which continued to go up in 20s. I noticed that

5 x 4 20

and the numbers went up in 20s. To check this rule I tried a couple more examples:

3r2
gives 2, 14, 26, 38, 50, 62

4r2

8r4
gives 28, 100, 172, ...

9r1

3x 4 12 the numbers go up In 12s 8 x 9 72 It goes up In 72s.
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We looked at the problems:

1. How do you find what the starting number is going to be?
2. How many do they go up In each time?
3. What happens with three or more counts?

First I tried to find what the starting number Is going to be. But at first it didn't seem a
very easy problem.

There were exceptionally cases when 4r2 and 5r1 would add up to 6 the first number, but
this rarely worked.

For a while I left this and went on to the problem of what the number went up in. I had
found that the first numbers, when multiplied together made the amount the numbers went
up In But then I found these two cases

gave 22, 34, 46

gave 19, 31, 43,

4r2,

6r4

4r3,

6r1

This made us think that the numbers always go up either by the multiples of the two
numbers or half that amount.

When this example came up:

2r0

4r2
6, 10, 14, 18, 22,

Problems of grading such work depend somewhat on whether all
students in the group have been given the same starter, or have selected or
developed the question for themselves. The more natural situation with
work of this kind, in or outside school, is that the question has provoked the
person's curiosity, making for a self-motivated creative activity. This is an
important aspect to preserve; indeed, it is essential if we want students to
share the experience of genuine scholarly activity, of the pursuit of some
new aspect of knowledge for its own sakeor rather for their own sake. In
these circumstances one has to construct a grading scheme that is general
rather than specific to the problem. A number of such profile schemes have
been developed in recent years for the assessment in the 16-i- public
examination (the GCSE) of individual assignments, like those discussed
here. Two such schemes are shown on the following pages, one of them in
the version adapted for students' use. Such schemes are now in extensive
use. They provide quite well for the assessment of work on a wide variety of
topics, and they make it possible to display to the students the set of general
criteria of quality on which their work will be assessed. With these schemes

r
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an essential part of the procedure is a moderation process, by which samples
of work graded by different people are checked by others.

"Starters" and General Assessment Schemes

We now give two examples of practically oriented starters, to-
gether with some assessment schemes of the broad kind described above.
They come from a set of 10 books designed to support school-based
assessment of individual work (Shell Centre/MEG, 1989). These books
provide less classroom support than other Shell Centre materials referred
to earlier, but they suggest many examples of tasks (with brief teaching
notes) and provide substantial guidance on the assessment (illustrated by
student work at different levels with a commentary on each problem).

The "Cele-
bration" (Example 3) is
an example of a
"starter" that the stu-
dent might receive for
one such task (in fact,
this runs on for two fur-
ther pages of specific
suggestions of things to
investigate in the early
stage). "Orienteering"
(Example 4) isanother
specific suggestion
from another ex-
tended task, on maps
(A is a hill top). The
examples from the
board's grading
schemes (Figures 1-3)
give an idea of the type
and level of guidance
provided for teachers
by this board. The il-
lustrative examples of
graded studentwork in
the books have been
found to provide help-
ful, perhaps essential,
support to their inter-

Example 3. The celebration.

THE' CELEBRATION

As you complete this task you will be Involved In planning something like
a birthday celebration for a group of friends. You can go about this in any
way that you like.

You do not have to consider a birthday celebration, it can be anything that
you would like to organise, or you feel would be useful to you in the future.
You may choose to go in any direction that you wish. Basically you can
plan or organise anything that Interests you, for whatever reason and in
any way.

If possible, try to link It to something that you are going to have to do in
real life, whether it Is in the near future or just a possibility in the long
term. You will be able to gain a lot from this experience, even if it is only
a dummy run at organising something. You may be lucky enough to have
the chance of putting your plan Into action.

Don't forget to record all of your Ideas and decisions as you go along.
These need to be discussed in your final report. Your report should outline
your problem and how you tackled it. It should include any information
you collected, and decisions you made, comparislons of alternative.,
calculations made, and many more things.

0 Shell Center for Mathematical Education/Midland Examining Group 1989.
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pretation. (They are unfortunately too long to include even small extracts
here.) The last example (Figure 4) shows a similar approach that was
developed by the California Assessment Program (EQUALS, 1989).

Example 4. Orienteering.
ORIENTEERING

Orienteering Is sometimes described as the thinking sport Orienteers have to pass
through each check point, and complete the course in the shortest time possible. It
is a sportwhich is growing in popularity, because it demands both physical and mental
skiNs.

Map reading is very importnat Orienteering maps show contour lines, and orienteers
need to learn how to imagine what the land Is like from looking at these contours.

Orienteering maps also show what is growing on the land and whether you can run,
walk, or have to fight it.

Try to describe the journeys of three orienteers who travel to A from B, 0, and D.

Describe the route you would take to travel from B to D.

' You may find it Interesting to kerestigate a local orienteering course and to describe
your experiences,

o Shell Center for Mathematical Education/Midland examining Group 1989.

Figure 1. Scheme of assessment for come work component.

CLASSIFICATION MAXIMUM MARKS GUIDANCE FOR MARKING

OVERAU1 CES1GN
ANDSTRATEGY

4 Do you have a definite problem
that you are looking at?

Have you been following your
own ideas?

Have you asked and answered
your own questions?

Have you tackled your
problems In a sullable way?



IAATHEMATICAL
CCNTliff

ACCURACY

CLARRYOF
ARGUMENTAND
PRESENTATiCN

Figure 2. Summary profile.
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Have you uset 3 suitable range
of mathematics?

Have yog developed the
mathematics as you have gone
through the work?

Is your work accurate?

This can be calculations,
drawings, graphs, practical
work, collecting data, and
conclusions.

4 Have you explained in your
report what you were doing at
all times?

Have you explained the link
from one stage to another?

Have you an introduction and
conclusion?

Have you used mathematical
tables, graphs, diagrams,
language, symbols, etc.?

MATHEMATICS SUMMARY PROFILE

PUPIL'S NAME FORM GROUP DATE..
MODULE TITLE

(a) Planning

Foundation:

Intermediate:

Higher:

( b )

Foundation:

A.SSESSEDCOUFGENORK

requires assistance to write a plan to tackle the first stage of the
task and to choose appropriate equipment.

can plan the first stage of the task, recognizes further stages but
requires some assistance to tackle these. Can salad useful
equipment and information.

can write a plan, which is capable of modification, to deal with all
stages of the task.

Carrying out the task

can follow the plan carrying out some measurements and
calculations accurately. Can recognize familiar patterns, sometimes
with assistance.

Intermediate: can make reasonably accurate measurements and calculations and
write rules from the patterns observed with some help.

Higher: can make accurate measurements and calculations and write
algebraic rules from patterns observed. Can predict results, check
their accuracy and amend 11 necessary.

( c) Communication

Foundation: can write about the work done using tables, graphs, diagrams and
calculations where appropriate with some observations. Can talk
about the work.

r r
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Intermediate:

Riper:

can summarize the wodc in a logical sequence using techniques
Including tables, graphs, diagrams and calculations. Can explain the
method used and results. Can discuss ideas used In the task.

can give a detailed explanation of the reasoning behind each stage of
the task and results using a wide range of mathematical techniques.
Can discuss fluently the Ideas used In the task and possible
Implications.

PUPIL'S COMMENT: to comment on my most satisfying piece of work, any difficulties
experienced during 1h3 =dule and suggestions for improvement.

TEACHER'S COMMENT (to be discussed with pupil. May include comments about
working with others, ability to complete the tasks. homework and problem solving).

Figure 3. Internal assessment sheet.

TASK: WHY ARE WE WAITING? GCSE INTERNAL ASSESSMENT SHEET

CLASSIFICATION MAXIMUM MARKS GUIDANCE FOR MARKING

5

IDENTIFICATION

OF TASK AND

SELECTION OF

STRATEGY

5 - Shows dear undenitendre of the enrolees
involved by defining and classifying board
rang* of Queueing 11,0111,711 Clearly innsfyng
the weas for inresktation and to appropriate
quiretions robe ansoretod.

3 - Shows understarding of to task by defining and
dassifying a selection of quit-log systems and
showing awe ropreaation ol the effect ol
changing appointment internee. Ident5es
sufficient areas for invespation and deals with
sane of the appropriate questions lo be snetweed

- Shows poor understanding of tie talc km
examples of queueing *yearns and shoat inks or
no appreciation of the OK* of chenghg
appointment Intervale. Identifies insufatitax
areas for inteetigaticn and does not deal with the
appropriate lams and questions so be answered

10 Kt Generates and promises data exurately. Applies
sound reasoning in interpreting date and

IMPLEMENTATION recommends sable system.

6 Generates and promises data with few errors
AND Recommends viable system but with incomplete

reasoning or evalanaSpi.

COMMUNICATION 2 Generates Inaccurate or Inoomplete data wit
makes no recommoncleacn or provides a
recommendsion which is rot supported by
bound reasoning or explanation.

INTERPETATION

AND

COMMUNICATION

5 s - Selects an appropriate and dear meted of
recording results, with effective use of
mathematical language and notation, diagrams
lists and tablet. Stales results achieved and
supports results and mammon:lawns by day
explantione and reasoning.

3 S. cr. n appropnate method of recording
results, with adequate use of motorman]
language and notation, caverns, Gate and
tables. Stases results achieved and supports
results end recommendatons by some
explanation and reasoning.

1 Makes limited or no use of appropriate methods
of reporting results and draws Inv or no 'old
con:keens.
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Nun 4. EQUALS Scoring rubric.

General Scoring Rubric for Open-ended Questions
Used for Grade 12 CAP questions

Please Note For tads individual openended question, rubric should be crested to reset the
sped& important *temente of that problem. This general rubric is included only to give ample. of
the kinds of factors to be considered.

Recommendations: Sort papers first Into three stacks: Good responses (5 or 6 points), Adequate
responses (3 or 4 points), and indequate responses (1 or 0 points). Each of those three stacks then
can be re-sorted Into my stacks and marked with point values.

Pernonstrated Competence

Exemplarylesonse ... Rating .6
Gives a complete response with a clear, coherent, unambiguous, and elegant explanation;
includes a clear and simplified diagram; communicates effectively to the identified audience;
shows understanding of the open-ended problem's mathematical ideas and procesaes; identi-
fies all the important elements of the problem; may include examples and counterexamples;
presents strong supporting arguments.

Competent Response . Rating= 5
Gives a fairly complete response with reasonably clear explanations; may Include an appropri-
ate diagram; communicates effectively to the identified audience; shows understanding of the
problem's mathematical ideas and processes; identifies the most important elements of the
problems; presents solid supporting arguments.

Sallafarlutliklainle

Minor Flaws but Satisfactory ... Rating = 4
Completes the problem satisfactorily, but the explanation may be muddled; argumentation may
be incomplete; diagram may be inappropriate or unclear; understands the underlying mathe-
matical ideas; uses mathematical ideas effectively.

Serious Flaws But Nearly Satisfactory ... Rating 3
Begins the problem appropriately but may fail to complete or may omit significant parts of the
problem; may fail to show full understanding of mathematical ideas and processes; may make
major computational errors; may misuse or fail to use mathematical terms; response may reflect
an inappropriate strategy for solving the problem.

InadeQuate Respoon

kakis, But Fails to Complete Problem ... Rating - 2
Explanation is not understandable; diagram may be unclear; shows no understanding of the
problem situation; may make major computational errors.

Unable to Begin Effectively ...Rating 1

Words do not refekt the problem; drawings misrepresent the problem situation; copies parts of
the problem but without attempting a solution; fails to indicate which information is appropri-
ate to problem.

NilAllegtiat .RafillB =0

NUMERACY THROUGH PROBLEM SOLVING

This project development provides an example of a more tightly
controlled and varied assessment scheme with similar objectives. The project
has as its main aim the teaching and learning of numeracy, that is, the ability
to deploy mathematics and other skills in tackling problems of concern or
situations of interest in everyday life. It supports two impoitant recommen-
dations in the Cockcroft Report Ma,thmtialics Counts (Cockcroft, 1982):
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Most important of all is the need to have sufficient confidence to
make effective use of whatever mathematical skill and understanding
is possessed, whether this be little or much (paragraph 34).

Our concern is that those who set out to make their pupils "numer-
ate" should pay attention to the wider aspects of numeracy and not be
content merely to develop the skills of computation (paragraph 39).

The resulting scheme is modular and includes both curriculum
and assessment materials, although the former can be used separately. Each
module has a range of practical targets that require the students, usually
working in groups, to tackle a problem "for real." This means that the
students themselves are responsible for planning, designing, organizing,
and choosing within the module theme and have to live with the conse-
quences of their decisions. The teacher's role, meanwhile, becomes that of
advisor or counsellor, chairperson, encourager, and clarifier.

Five modules have been developed:

"Design a Board Game," in which each group of students
designs and produces a board game that can be played and
evaluated by other members of the class.

"Produce a Quiz Show," in which students, working in groups,
devise, schedule, run, and evaluate their own classroom quizzes.

"Plan a Trip," in which students plan and undertake one or
more class trips, and possibly some small group trips.

"Be a Paper Engineer," in which stuuents design, make, and
evaluate three-dimensional paper products, such as pop-up
cards, envelopes, and gift boxes.

"Be a Shrewd Chooser," in which students research and provide
expert consumer advice for clients in their class.

The modules are published by Longman Group (Shell Centre/JMB 1987-
89); details are obtainable from the Shell Centre.

Many contexts, designed to cover the areas of planning and
organizing, designing and making, and choosing, were considered and tried
in the early stages of development to see which led to the best balance of
classroom activities and learned skills. Those that were chosen all have a

16
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practical outcome, are interesting and relevant to the students' present
circumstances, and require the use of a wide range of skills while not making
unreasonable demands on classroom or school organization. We found that
practical situations with an element of fantasy, stimulating the students'
imagination, seem to work best; for example, in Produce a Quiz Show,
students tend to see themselves as television performers and producers. This
corresponds with our observation that people best develop the strategic
skills we seek in the course of solving problems that are realistic, stimulating,
and within their capabilities (Binns et al. 1987, 1989).

The learning activities typically fall into four stages.

Stage 1. Understanding the problem: An exploration and critical
review of existing examples to help students get to know the
variables and possibilities, to identify strengths and weaknesses,
and to suggest improvements.

Stage 2. Making a rough plan: Generating ideas (brainstorming),
sorting them out and making a rough plan for their own
solution to the problem.

Stage 3. Carrying out the plan: Detailed planning and design,
followed by implementation.

Stage 4. Evaluating the outcome.

The strategic skills generally needed in these processes, with some
indication of the criteria for success and for quality, are

understanding the problem, both general ideas and details;

following instructions precisely;

distinguishing between essential constraints and desirable
features;

generating and listing viable possibilities (brainstorming);

developing a rough plan, including reviewing the prepared
suggestions, reaching and recording agreed decisions; main-
taining a broad level of description and avoiding excessive
detail, identifying needed information and materials, making
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estimates of quantity and cost, and describing, testing and
evaluating the plan;

identifying faults;

correcting faults;

making the final plan, product, and/or detailed instructions
with comprehensiveness, accuracy, clarity, and quality; and

testing and evaluating the plan or product comprehensive:y.

In addition to a specific tactical realization of this set of general strategies in
the domain of the problem, each module brings into play some knowledge
and skill specific to the topic. In the assessment of students' attainment, one
has to take account of these specifics and to recognize that performance is
strongly context-dependent. It is in fact a question for research (which we
plan to carry out) to determine what aspects of strategy acquisition carry
through from one module to another; informal indications from the
development/research work suggest there is significant transfer. We shall
illustrate the scheme by outlining the assessment procedures for "Plan a
Trip," adding brief references to other modules.

The "Phut a Trip" Modals

Most school trips are organized and run by teachers, and the
educational objectives are met by activities that take place at the destina-
tions. The students therefore learn little about the processes that go into the
original planning. In this module, however, the students take on the
responsibility for planning, organizing, and going on a trip during school
time. The destination is largely irrelevant, as the main objective is to increase
the students' ability to make, implement, and learn from their own decisions
and thus feel more confident when moving beyond the immediate sur-
roundings of their own home, school, or town. The planning skills devel-
oped may also be utilized within other contexts. As outlined above, the
planning process is considered in four stages.

Stage I. Looking at trips. In a card game simulation, groups
undertake and record imaginary trips, encounter problems and
errors of judgment, then seek to correct them by better planning.

Stage 2. Making rough plans. Groups share ideas of possible
places to go and produce a leaflet explaining these ideas. The
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class then work together to reach a decision on the best destina-
tion and look at possible means of transport.

Stage 3. Making detailed plans. The class lists the tasks to be
done and shares them out Students working in groups under-
take the prepra-?..tory tasks that need to be done before the trip
can take place.

Stage 4. Going on a trip and evaluating it. The trip now takes
place, and afterward, the students reflect on what happened.

The classroom materials consist of student booklets which guide them
through the various stages, masters for photocopying "structured statio-
nery" of various levels to help the planning process, the "card game" packs
and a teacher's guide covering objectives, the classroom activity, developing
the mathematics involved, and assessment.

Assessing the "Plan a Trip" Module

The assessment procedures are designed to verify that a student
can, in the context of planning a class trip, meet the following criteria: (i)
evaluate a plan and identify faults in it (including expenditure of money

and time); (ii) generate lists of alternatives; (iii) devise a satisfactory rough
plan (including sensible costings and time schedules); (iv) use and describe
a decision-making process, obtaining and interpreting information from a
telephone directory, aural and written timetables, a street map, and a route
map; (v) identify omissions in given information; (vi) place given jobs in a
logical order; (vii) complete a clear and comprehensive final plan; (viii) take
an active part in the planning process; and (ix) evaluate the plan that has
been implemented.

Several methods of assessment were considered, including the
following:

Method 1. Teachers observing and/or holding discussions with
individual students while they work, and recording evidence of achievement
with a checklist of some kind. This method is often unsatisfactory for the
following reasons:

Each student's performance is affected by the nature of the
group he or she is in. A student may take an active role in one
group, but be overshadowed by a dominant personality in
another.

17'0 163
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When groups are working cooperatively, group members tend
to adopt complementary roles. This means that the teacher is
unlikely to see every student carrying out every task.

Teachers often find it difficult to reconcile/combine the roles
of assessor, helper, and supervisor in the limited time available.

Method 2. Written assessment tasks, administered during or after
the work. This has some disadvantages:

Some skills cannot be assessed in this war and

Many students have difficulty in expressing themselves fully in
writing, leading to responses that fail to reflect their true
abilities.

Method 3. Students carrying out self-assessments, describing those
aspects of the work in which they have made particular contributions. While
invaluable insights may be gained using this mode of assessment, its subjec-
tive nature makes it unsuitable for our purpose.

We finally decided on written tasks supplemented with teacher-
observation. During or at the end of each module stage, we offer a number
of short "coursework" tasks designed to suit 90-95 percent of all 14 to 16-
year -old students. These are administered by the teacher in as supportive a
way as possible. For students who have successfully completed the coursework
component of a module, there is an opportunity to demonstrate that they
have retained the skills they have learned and can transfer them to other
situations within the same context. This is done in the external examination
component. These are considered in more detail below.

The coursework assessment component

At convenient points in the work, a group of studen ts is split up and
its individual members are invited to complete a number of short tasks.
These tasks closely reflect the general planning processes the student has
recently followed. Students with learning difficulties may need help from
their teacher in reading the tasks or recording their answers, but they are
usually able to tackle the tasks successfully. Example 5 is designed to assess
criterion (iv), for example, and is administered at the end of Stage 2, in
which the students have themselves been considering the best destinations
for a class trip.
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Example 5. The vote.

Six people are planning a trip. Six different places have been suggested.

a) The ice rink d) A castle
b) Zoo e) Snooker hall
c) Bowling alley f) Swimming pool

In order to choose between these places, they decide to vote.
Each person is given a list, and they writs down their preferences.

This is what they write:

a) Ice Rink 6.19 their*
b) Zoo share
C) Bowling 3hi thole*
d) Castle 1,J ekvicit
e) Snooker 4s. aiwke
f) Swimming 50e Choke

Atike

a) Ice Rink yoh &ak
b) Zoo 61.
c) Bowling Z, ti wee
d) Castle 3.1 e&SCAMI
e) Snooker le eirwisa.

Swimming 1.1dnakft

a) Ice Rink V'. ctn.,.
b) Zoo 2.4
c) Bowling 5e,......
d) Castle
e) Snooker r
f) Swimming fiocaose.

Flaw
a) Ice Rink 6. thaia,
b) Zoo 3.1.
c) Bowling 2.4
d) Castle Le 1,44,
e) Snooker 4*, gscies
1) Swimming 5

naive
a) jot Rink 6, dwiu
b) Zoo 5.. thyme
c) Bowling la timed-0
d) Castle 2a
e) Snooker 4.
() Swimming 34.4,,,,,,

311,ftel

a) Ice Rink 6,,
b) Zoo 5.
c) Bowling 41.
d) Castle
e) Snooker 34 a...4
f) Swimming I le .1.1.ea-

Which place would be the best choice for their trip?

Explain how you get your answer:

In Stage 3, groups in the class carry out a variety of planning tasks
as they make detailed preparations for their trip. Here, it is natural to find
that each group is working on different planning tasks. While one group is,
for example, using the telephone to explore the possibility of hiring a coach,
another may be finding out costs and times of trains and buses. Thus, the
sharing of tasks prevents each student from demonstrating every skill. The
assessment tasks help to overcome this problem. In this stage, a "circus"
approach is used with individual students tackling a variety of tasks in their
own time in any order. These tasks include the interpretation of street maps,
bus route maps, timetables (including a prerecorded telephone "talking
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111

timetable"), identifying omissions in a "letter to parents," and the logical
sequencing of jobs (criteria (iv) to (vi); see Example 6).

Emmy', 6. Sorting out jobs.

You will need a set of 8 leisure centre job cards.

A class have chosen to go to a Leisure Cease for the morning.
Some want to go swimming, while others wait to play table tennis, squash, badminton or

snooker.
There axe 3 leisure otniras within a bus ride from their school.

They have written all the Jobs that need to be done on cards.

Try to sort your Job cards Into order oi pftrIty.
(Which Job needs to be done Brat? second? third? and so on.)

When you have done this, write down the lobs In order In the boxes below.
(The lkst one has been dons for you.)

El ri 11 Pi
L........ TIO mans that lob B swot be doe first.

LJ

During the course of their work, students are also asked to
complete "Brainstorming," "Rough plan," "Final plan," and "Evaluation"
sheets that refer to their own trip. As well as providing an impetus for group
discussions, these tasks are used to assess individuals' understanding of the
work of their groups.
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On the basis of good performance on the coursework tasks
(including taking an active part in the planning of the trip), students are
awarded a Basic Level pass. Nearly all students (over 90 percent) are capable
of passing at this level.

The external examination component

There are two examination papers for each module, set and
marked externally to the school, one at Standard Level and one at Extension
Level. About 80 percent of students should be able to pass at Standard Level
(where the examination tasks are fairly closely related to the module
context). Extension Level demands that students show the ability to transfer
skills to more complex, less closely related tasks; 40 percent of students
should be able to pass at this level.

Examples 5 and 6 show part of a Standard Level examination
paper for the Plan a Trip Module. Much of it requires students to discover
and correct mistakes in someone else's plan for a trip. In devising such
papers, we try to meet the following criteria:

The mathematical skills (that is, timetable reading, money
calculations, or geometrical skills) must be tested in real and
relevant contexts.

The tasks must be coherent and unfragmented.

The data used must be reproduced as they appear in everyday
life. (Numbers are not cleaned up, and redundant information
is included.)

The tasks should, if at all possible, be a valid and enjoyable
educational experience in their own right.

In addition, the marking procedures must be reliable and efficient in use,
and this sometimes means that a few compromises have to be made in
achieving these aims. The setting of such examinations involves much
development, and piloting, and thus the expense of a few highly skilled
person-weeks, but we feel it is necessary if real problem solving is to become
a part of every classroom.

In the remainder of this chapter we focus on the two modules, "Be
a Paper Engineer" and "Be a Shrewd Chooser." In particular, these two
modules illustrate how the teachers are provided with a secure structure
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within which to work, while the students are still allowed to retain "owner-
ship" of the fairly open problems being tackled.

The "Is a Paper FAWN" Modals

Geometry, at the secondary level, is almost always presented as a
static, two-dimensional subject (for a splendid exception, see de Lange, this
volume). On the few occasions when we leave this "Flatland," it is usually only
to construct a few polyhedra or to perform some sterile, abstract, technical
exercises. Students are rarely given the opportunity to explore a rich, three-
dimensional environment There are, however, some indications that this
situation is improving.

Recently, in England, national criteria have specified that all
examinations leading to a GCSE award in mathematics must assess practical
work. Some examination boards are now encouraging students to present
extended pieces of eoursework that involve a "practical geometry" task such
as designing a cardboard box to hold five tennis balls. (Even these tasks
sometimes give the feeling that mathematics is being "dragged in" in an
artificial way. For example, students are asked by their teachers to calculate
the volume of air in the box after the tennis balls have been introduced.)

In the "Be a Paper Engineer" module, we offer students the
opportunity to design and make a product from paper or thin card and then
produce a kit containing full instructions so that someone else can recreate
it. They may then, perhaps, set up a small business enterprise based on the
products. The design process is again arranged into four stages:

Stage 1. Looking at examples. Before designing an original prod-
uct, it is sensible to look at a few examples of existing products to stimulate

ideas and become fa-
miliar with the tech-
niques involved. In the
module package, we
provide a collection of
thirty-two pop-up cards
and gift boxes that may
be photocopied and
given to groups of stu-
dents. After making
these, students are
asked to find more ex-
amples from home,

Example 7. Two examples from Stage 1.

Be a Paper
Engineer

8. A Etarbocue Invitation
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and then reflect on structural dif-
ferences using a classification
game. Example 7 illustrates the
kind of products provided.

Stage 2. Exploring tech-
niques. In this stage students ex-
plore and develop, in more depth,
some of the techniques that have
already been introduced. They
may, for example, discover what
happens when they change the
positions and angles of both cuts
and fold lines when making pop-
up cards, and devise theorems that
must hold true if the products are
to function properly. Students are
expected to keep full written
records of all their discoveries,
including failures (Example 8).

Stage 3. Making an
original prototype. In groups, stu-
dents now brainstorm ideas for
their own products, then work
individually to prepare rough pro-
totypes. This process involves a
combination of the techniques
and theorems developed in stage
2 and trial and improvement,
where ideas are successively re-
fined until satisfactory results are
achieved (Example 9).

Stage 4. Going into pro-
du ction . Students now attempt to
draw accurate templates for their
products, accompanied by full in-
structions that enable other
people to recreate them. These
kits are now photocopied and
tested by other students in the
class.

Bell, Burkhardt, and Swan

Example 8. Extracts from the Student's
Booklet for Stage 2.

Stage 2
Exploring
techniques

In bit Mayo you oil work madly on your
coin using scene of to Eli:bran
bohnkpas shaft.

Y0.1 wY ty some

Inuadigallow., which ask you
orplaa oral happens when
you kid, out or slot Obis In
dam* war,
chslonowatich thaw you
imeAMIS 01 SnIshild wades
hat wat corn Iny lo make.

You wt abo

Champs
Try Omaha Na
whams porton

Mop record of worylthg you dimmer for use bier on, whorl you
sane b *Won your can awn.
(No td cassaba how b do Nab bob &W.)

KtEPINO A PIIICOAD

Reconi all you do in an otorciso bock or in a Wu. This oil holp you b
;mambm ohm yolya bond aut.
For example:

Keep sysylling you mats - wan be tangs lib to won,

Mimi a nolo of
what you Mod lo do.
nhal *vaned,
Oat you bort

You'll need al Oda Inknoodan ler Magi &
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Example 9. Extracts from the Student's Booklet for Stage 3.

Developing your Wes or s Out or envelope

eueses now mew wenn

So yes lone an kW ler a boa or envelope.
Han le one verb &Mop

Wee tea week
melon el Ow lox

ow** II pow.

lithe we lea rev
deer ell mark

Terkel hyperstroms
wet New Mao. sei

by lord NC

I wool melte
bee tee

semi MN..

Dowy; am asomele pion

1111 raw you *aid Mews admit. you we MeV/ dia.

You rem needle aped lee peleidee I nee you hew ear melee.
t i Wet drawee:6 Maot your doe* scoosey. a mot.

You etei need le dm, Nolo
Memel Wade dew

Squared*/ leciraldctkely
MOW wed hekt

Male see the yam
rtes Wee welt.

.1.

wan... II toted
te new to Wee

b sdet.
oder ma Ile
ee en

. .

Pea led al yea Itote set angles ow.moldy

800
Traneher yew deter oeb Yin
ceediteed M ptickie them*
"me dm* wet *meg bus
ledetete os plmedds.

I (..Lee.. there Wed >"

< Ate se
Mop, ello

pow detkeft

Gem pep 23.
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II I put owe Woe
vo doe Wok von
Ye ebb le leer

( not mew/ eel a rot.

Cola/ **pieces eed rower yew eetunee woolen.

During these four stages, students call on a variety of mathematical
and technical skills. These are likely to include

understanding and using angles and symmetry;

estimating and measuring lengths and angles;

following instructions presented in words and diagrams;

making and testing conjectures, explaining and proving;

a visualizing;

creating three-dimensional objects from two-dimensional
representations;

drawing two-dimensional representations of three-dimensional
objects;
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designing, making, and using levers and linkages;

writing clear, concise, and complete instructions using dia-
grams or photographs where appropriate; and

perspective drawing.

The level at which such skills are deployed depends both on the nature of
the product being made and on the ability of the student. Clearly, however,
there is a challenge here for students at every level of ability.

The "Be a Shrewd Chooser" Module

Students frequently face and make consumer decisions. Such
decisions arc often made on impulse, with little appreciation of the many
factors that could be taken into account to help the student make a better
choice. In mathematics lessons we often simplify the situation to comparisons
of prices per unit weight, a model that rarely applies to real situations. In this

module students reflect on how people
really make consumer decisions, and
they produce consumer reports to in-
form better choices. The material is again
presented in four stages.

Example 10. Extract from the
Midget's Booklet for Stage 1.

The Shrewd Chooser Radio they
Part I: Leaking at a Geometer report

Swim modems Ws yaws aswwwws wort 'Ad ToSidi
°nose
You al mod to colorwlitssyssbastodw tope.

In the nos pssisrme the shdrOs &sobs how they
Wend shops sad laded Is Om pubis Wawy.
asidodost salesmen prosy.
cosisi out SIM damson tome anwelnents.

Alsorhowlso *MM *soh ssoess *4 **raw, you M be Woad to
warm rramoipeler dw Madras dd.

Has my shoos (Id try WOO

Stage 1. Learning from expe-
rience. Students listen to a "radio show,"
recorded on audiotape, which contains
a number of interviews with people who
have justpurchased different items, and
an interview with two students who have
produced a report on choosing orange
drinks. This is supported by a written
copy of the report which students can
discuss critically. These activities enable
students to consider the factors and
methods involved in decision making
and the processes and difficulties in-

volved in writing a consumer report
(Example 10).
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Stage 2. Preparing the
research. In this stage stu,:,nts

begin to plan their con-
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sumer research based on items of their own choice. This choice has to be
restricted to ensure that a rich variety of classroom activities can take place,
using the following criteria:

People in the class must have some experience of choosing the
item.

The item must be cheap enough for samples to be brought to
school.

It must be possible to carry out tests/experiments on the item
to measure its quality.

Suitable items are confectionery, breakfast cereals or other foodstuff's, soft
drinks, batteries, writing instruments and other small, frequently purchased
items. The students then have to list their research aims and methods and
prepare any tables and questionnaires that will be required for data collection.

Stage 3. Carrying out the research. Students now carry out the
research they have planned. These are mainly surveys and experiments to
discover, for example, whether more expensive products perform or taste
any better than cheaper products. Students also need to choose appropriate
ways of presenting data, to draw conclusions from their data, and to prepare
a report. These activities give students the experience of using important
statistical concepts which may later be applied to other situations, such as
sampling techniques, graphical representation, graphical interpretation,
and measures of central tendency. Students may have experienced all of
these but are unlikely to have been asked when and where to use them.

Stage 4. Presenting and evaluating the reports. In this final stage
all the written reports are circulated around the other groups in the class,
and any group wishing to make an oral presentation does so. The reports are
then evaluated by the class, and each group is given an opportunity to
improve its own report taking these comments into account.

During this module, students are likely to call on a variety of
mathematical and technical skills, including

devising questionnaires and conducting interviews;

designing and carrying out experiments;

analyzing and presenting data in various ways;
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selecting and using sources of information;

interpreting data and presenting clear and reasoned recom-
mendations; and

handling money, other everyday measures, percentages, statis-
tics, graphical representation, ratio, and proportion in real-life
contexts.

SOME ASSESSMENT ISSUES

The scheme has been designed to assess strategic skills (for ex-
ample, the ability to plan and design) as well as the more traditional technical
skills (for example, the ability to measure accurately). The procedures are
designed to assess whether or not a student can satisfy a number of criteria.
In Figure 5 we list some of these criteria as they appear in the two modules
under discussion. (Gillespie et al., 1989, give details about criteria and other
assessment issues relating to the Plan a Trip module.)

Figure 5. Assessment criteria for two modules.

The module criteria - students are given the opportunity to show that
they can...

in Be a Paper Engineer

i follow instructions

i cut, fold and glue accurately to
assemble a 3-dimensional product

i make a 3-dimensional object from a
2-dimensional representation

i v recognize structural features of a design

v draw a 2-dimensional representation
of a 3-dimensional product

vi give a reasoned explanation for design
features

vii identify and correct design faults

viii develop an existing idea for a paper
product

ix generate possibilities for a design
with original features

x draw a design to an acceptable degree
of accuracy

xi construct a prototype with original
features

x I I devise instructions to enable someone
else to make the product

in Be a Shrewd Chooser

i identify important factors and methods
involved in decision -
making

i obtain and interpret information from
oral interviews

iii obtain and interpret information
from tables and graphs

identify possible research aims

select appropriate research methods

devise suitable methods for the collection
and organization of data

vii present a summary of rcseirch data
in a clear, organized way

viii draw sensisle conclusions from a
collection of research data

ix take an active part in compiling
their own reports

x evaluate a report and suggest
Improvements to it.

iv

v

vi
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Such criteria assist in providing a useful profile of relative strengths
and weaknesses, but they have little absolute meaning without specifying the
context, the frequency of success, the amount of help that was given, the
distance of transfer from the student's previous experience and the mode
of response (written or oral). As the students work through the modules in
this series, they are likely to demonstrate similar strategic skills in a variety

of different contexts. This
enables the teacher to make
more general statements
about the students' progress.

Example 11. A basic-level task from Be a
Shrewd Chooser.

Tea bags
Two students have done a small shopping survey
to find out the different kinds of tea sold at a
supermarket.
They have made notes on scraps of paper.

os kr (24
$464."1108$0;065 1, 3.07

Tael 4 IS
IV".

y107

(These figures were
obtained In October 1988)

'rsix1FP'r.egay
SO igpfor.4 LOS

ttrrwgptr us-A,
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.C41/0 Age 62 (250rwm)
for Laid JO Sop TS? (250parss)

Make a table showing all this information as clearly
as you can. Which way of buying tea is most
economical?

What other factors would you take into account
when buying tea?

Each module is ac-
companied by a collection
of short, basic-level assess-
ment tasks, some of which
are completed in the nor-
mal course of the work and
some tich are adminis-
tered at the end of the ap-
propriate stage in the mod-
ule. These are intended to
be accessible to the vast
majority of students. They
are supplemented by two
written examiration papers
at Standard and Extension
levels, which about 80 per-
cent and 40 percent of stu-
dents respectively should be
able to pass (although these
are not norm referenced).
One (or both) of these pa-
pers is sat during the term
following that in which the
student completed the mod-
ule. On the basis of these
assessments, a student may

be awarded a short Statement of Achievemen t for each module. This lists the
criteria that a student has satisfied. If a student has been successful in three
or more modules then he or she may be awarded a Certificate in Numeracy
through Problem Solving which gathers together in a more generalizable
form the entire collection of criteria that have been satisfied. This assess-
ment scheme has proved popular with the schools that have been involved.
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In Examples 11 and 12 we give examples of a basic-level task from "Be a
Shrewd Chooser" and part of a standard level examination paper from "Be
a Paper Engineer."

Example 12. A basic-level task from Be a Paper Engineer.

A Pop-up castle
The picture shows a Castle pop-up card which
Ann and Steve are making.
When the card is closed,

the castle must not stick out beyond the
edges of the card,

the card must fit into an 8 1/2 cm by
161/2 an envelope.

1. Using a copy of the design, cut out and make the card. Now complete the design
for the card
hill folds,

shown below as accurately as you can. (Use for outlines,

.

for
- - - - for valley folds.)

A OOOOO
11Vaame "PI

ime "emit
NIP, OR II II prase 111 IP s 910

wellitprautsum-Iiiral Ivy!
IOW Isoll* it JOS Imam lam
010111tdcaosr-,- ware,
sammesuer/;,,.;.,31.1paimp.vele morel

.

inip Opal til,!111111100111111ri1. Mani 11111111111111111
111111111111181111t.tr'?,!i 11111111111111.11
g MN. so in amp.ap skip limo.
!""1!.5011.1"1"0 "IT 111!"!""1!

OOOOO O

2. Here are four instructions (A, B, C, D) to help someone else make the card
from the design:

A B C 0
Fold along those lines Fold 'lamps's, linos Scots along Cu t across 1

- - - - to maks Nalittys* to make 11111s* told linos Noss

V!:11 41--A

In what order should the instructions be?

3. Ann and Steve decide to change their design by making a bridge which leads to the
door. Add this bridge to the card yeu have already made.
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Postscript

The importance of group WO* In one respect our thinking has moved
on, spurred by the importance of the ability of people to work effectively in
groups. We took the decision not to include assessment of group achieve-
ments (such as the Board Game design, for example) because of the
evidence that a given individual performs differently according to the group
he or she is in. We recognize that this omits a key element in the assessment,
which we tried to cover in other ways, for example, through the ability to
transfer to related tasks in the external examination component. We should
now choose to give credit for group achievements to all the students involved
in the group. Varying group membership reduces chance elements.

A final comment: The main approach that the Shell Centre has
adopted in the developments dercribed in these two chapters has been
based on successive small-but-profound annual changes over several years.
Experience seems to confirm its soundness. As well as the new kinds of task,
it involves developing support that enables typical teachers to face and
absorb the required extensions of their teaching style, effectively and
enjoyably.
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Malcolm Swan

INTRODUCTION

In the two previous chapters, we discussed the
principles and examples that are typical of some recent efforts to design
external assessment that reflects curriculum objectives in mathematical
education in a balanced way. Here, we want to review the processes of
implementation and the roles of assessment in the dynamics of educational
change, illustrated mainly from experience in the United Kingdom.

We have already noted the heuristic observation that the imple-
mented curriculum is strongly influenced, perhaps even dominated, by the
nature of any assessment procedures whose results directly affect the
students and teachers involved. This is, of course, neither surprising nor
accidental. Since public assessment represents an official measure of the
achievement of students and (although there are other obvious important
factors) the performance of their teachers, it is a brave teacher who will
devote much time to aspects of mathematical performance for which no
direct "credit" accrues. Indeed, some would regard it as irresponsible to do
so, although there are groups of dedicated teachers who regularly include
other elements of the curriculum that are not tested because of their
perception of the educational benefits that these elements offer. Politicians
have long recognized, and used, assessment as a powerful lever for putting
pressure on those who work in the education system.
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In such a climate, the hope that "teachers will not teach for the
test," frequently expressed by both politicians and educationalists in En-
gland, seems futile. Indeed, as we have made clear, we regard it as an
abdication of responsibility by test designers and those they serve, who
should ensure that any assessment fairly reflects the objectives of the
curriculum. Then teaching for the test leads to a balanced curriculum.

In Britain, the Laditional posture of the examining authorities has
contained two key elements: "We are the servants of the teaching profes-
sion," and "We don't test that but, of course, all good teachers do it." Most
teachers do not see it that way; they see external examinations as something
over which they have no influence and for which they must prepare their
students as a matter of priority.

We should not exaggerate the sense of conflict that arises, since
the examinations and the standard curriculum have been locked together
symbiotically. When the education system is not in a state of change, there
is no sense of cause and effect. In a climate of educational change, however,
the situation did and does act as a strong brake on such change. Individual
teachers are discouraged from trying to improve the curriculum in their
classroom. Projects that propose change have their impact reduced. Indeed,
it is a feature of all the British projects that have had substantial impact on
secondary education (where assessment looms large) that new alternative
examinc.tion syllabuses were introduced to match the new curriculum as
part of the project.

Many creative innovations in mathematics teaching have been
developed by teachers who recognized that the traditional offering to
students was in some way seriously deficient. Their efforts at improvements,
however, had to overcome the handicaps not only of a conservative environ-
ment in general, but of the particular and strong influence of the system of
external assessment.

In Britain, the strongest component of this influence has been the
public external examination at the school leaving ages of 16 and 18. There
have been successful attempts on the part of development groups to gain
official approval for elective modifications to these examinations so as to give
credit for attainments in a broader and richer range of mathematical
activities than the traditional short tasks and applications of techniques.
These modifications have generally consisted of some change in the written
questions (which, in Britain, are nearly always of an open response rather than
a multichoice type), or of introducing a component of assessed "coursework"
into the examination scheme to accommodate the innovatory material.
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There have also been some experiments with more specific assess-
ment of a wide range of general strategies (Bell, 1979). However, such
schemes attracted only a small minority of schools until the advent of the
General Certificate of Secondary Education (GCSE), first examined in
1988. The criteria for the GCSE (SEC 1985) require the assessment both of
submitted assignments for all students and of practical and oral aspects of
mathematics, as well as many innovations in the examination of other
subjects. More recently still, the National Curriculum (DES 1989, NCC
1989) includes using, applying, and investigating mathematics among its
attainment targets. This National Curriculum is to be tested at ages 7, 11, 14,
and 16, partly by teacher assessment and partly by the nationally adminis-
tered Standard Assessment Tasks. These tests will be used not only to assess
individuals but also to monitor school performance. The current debate
centers on the need for these tasks to be broadly based, particularly when so
much depends on the results.

The pattern of influences in the United States is similar, though it
is only in recentyears that public assessment seems to have been recognized
for its curriculum influence. Even now, in many states where assessm en ts are
used only as overall monitoring devices, with no specific reporting on
individual pupils or teachers, the influence on the curriculum is not so great.
However, the trend is in the same direction as in Britain, with more tests
associated with increased pressure for accountability. The kind of improve-
ments in the quality of the assessment that we discussed earlier are thus
becoming increasingly urgent.

It is ironic that some U.S. states with excellent curriculum guide-
lines are still content that their students' progress be measured by tests that
do not reflect those guidelines in any balanced way. One factor is surely that
alternative tests are not yet generally available as choices for schools, school
districts, or states. Our earlier discussion indicates why and how that
situation should soon be remedied. Now we address the practical "engineer-
ing" issues of implementation, many of which also raise issues of principle.

KANDUNG BROAD-SPECTRUM ASSESSMENT

First, we discuss the remarkably different processes that are used
for the design and delivery of assessment in various countries. On the one
hand, we have machine-graded multiple-choice tists, with tasks taking a
minute or two at most for students to answer. On the other, there are now
assessment packages containing a considerable variety of types of tasks
(taking from a few seconds to many hours spread over several weeks) and of
modes of response by the students (oral, written, and constructed as well as
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simply chosen). These latter types of complex tasks are largely graded by
teachers (who may also, with their students, have devised some of the tasks),
but sometimes they are also subject to a fairly complex monitoring proce-
dures to ensure comparability of standards.

It is not surprising that those who are used to the former model
should have doubts about the latter on all sorts of grounds, including cost
and fairness. Here we want to look at these issues, and the gains and losses
ofvarious approaches. As a preliminary glol ' assurance on losses, we simply
report that it is customary in Britain to deliver assessment of the second
broad-spectrumkind in a way that commands public confidence and at a
cost that is similar to that charged in the United States for multichoice tests.
We shall look at the elements one by one.

The Design 8f Tasks

The range of practice here is astonishing. Public examination
questions in Britain are generally devised by chief examiners and reviewed
by a monitoring committee of teachers. The examiner is paid a modest fee,
corresponding to the few evening's effort required to write a draft examina-
tion paper. In the time available, and in the absence of any official oppor-
tunity to pilot test (although we know that some people do so unofficially!),
it is not surprising that papers are closely similar to those of previous years.
Any attempts by the thief examiner to introduce novel questions are further
restricted by the monitoring committee, whose members tend to be anxious
to ensure for their clients (teachers and students) that the questions are
fair--which includes being familiar

How does this compare with the process of producing "objective"
multidmice tests? Uniformity of the tasks is a common factor; indeed, the
psychometric machinery of piloting and analysis is designed to ensure that
new tasks added to a bank are as close to those that they replace as is possible
without being identical. The introduction of new types of tasks should be
easier with these resources; however, task types that do not fit into the
narrow mould of the machinery are uncomfortable as they often require
different modes of response and are too complex to fit the simplistic
definitions of "reliability" that are used. So they are rejected.

We have already stated our view that (i) this conception of
"reliability" is an artifact, statistically sophisticated but educationally naive,
and (ii) the valid assessment of mathematical performance in a balanced
way is a fairly rough-and-ready matter whose genuine reliability is fairly low,
as far as details of performance by individuals is concerned.
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The credibility of the whole assessment enterprise is rescued by
the Central Limit Theorem of statisticsthat is, the reduction of fluctua-
tions by the averaging process across tasks, across subjects, and across
individuals. Even in the narrower technical sense of reliability, test/retest
variation is substantial for individuals between one occasion and another,
even on very simple, few-step technical tasks (see, for example, Woolf, 1986;
Foxman, 1989). This situation is potentially satisfactory, however, since we
obtain broad indications of a student's overall performance of reasonable
reliability, together with more detailed information that, while it is only
indicative, can be useful to students and to teachers in formative or
diagnostic ways.

We take validity more seriously. What is the point of assessing
individuals except on those things we actually want them to be able to do?
Correlation cannot carry the load of extrapolating measurements from one
kind of performance to another. We believe it is essential from both a measunrment
and a curriculum influence point of view that the assessment be balanced across the
curriculum objectives, not simply in mathematical content but in the types of task
assessed.

Balance is not easy to achieve. From our own experience, a
substantial design effort seems essential to produce a balanced set of tasks
of high educational quality that span the curriculum objectives. While this
coverage is a matter for detailed analysis, we give great weight to the <I>face
validity4> of the set of tasks as reflecting what we want students to be able
to do in a balanced way, and for allowing them the opportunity to show their
abilities. The pilot testing of such tasks, with detailed study of a significant
sample of student responses (up to perhaps about 100 students), is a key
factor in establishing the feasibility of the activities; another key factor
involves the detailed structuring of the tasks to ensure that students will be
presented challenges with an appropriate range of difficulties. The devising
of appre tniate grading schemes for assessing the range of responses to be
expected also rests on the piloting. Even in open tasks, the great majority of
tracks through the problem tend to be found in this way. The responses of
the rare individual students who take entirely novel approaches can be
referred to the chief examiner, even when hundreds of thousands of
students are involved in all.

Both normative and criterion-referenced judgments enter into
this process. The norms need to reflect, to a greater or lesser extent, the
levels of difficulty and the degree to which students have been prepared for
novel types of tasks. As we have noted, this approach seems to work well in
large-scale assessment; we believe that the losses arising from trying to force
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tasks into a tight psychometric mould far outweigh the gains.

We note in passing that the new assessment packages for the
English National Curriculum at ages 7,11, and 14 are being designed not by
individual chief examiners but by groups of specialists under substantially
funded contracts from the authorities. However, the set of constraints under
which these groups are operating has been steadily tightened so that it can
no longer be regarded as an example of the mode of operation we have just
advocated. Indeed, there are serious doubts about whether the total set of
constraints allows any solution at all, let alone one of high educational
quality. It will be interesting to see which constraintsare ignored and what
emerges.

Gratin by People Sr Kiddies

Machine-graded multiple-choice tests have a number of advan-
tages. No skill is needed in the grading process, and their "reliability"can be
carefully established by piloting. Machine grading is therefore often pre-
ferred, particularly in the United States. Since no judgments on individual
students are involved, such tests are often regarded as fair. We shall return
to the question of fairness below, but it is worth pointing out that judgments
are made in advance of doing the tasks and that the multiple-choice format
requires that the judgment made on the students' performance is of the
crudest possible typeexcept on the narrowest tasks, a student with a
different approach may well be undervalued.

Grading by people, on the basis of more or less tight grading
schemes, permits a choice of the level of subtlety with which the students'
response is an alyzed. A balance must be struck between adequate in tergrader
consistency and a sufficiently sensitive analysis of each student's response.
Where many markers are involved, training and standardization procedures
are also an issue.

Teams of as many as 100 assistant examiners are used by British
examination boards (where grading is called "marking"). Typically, these
assistant examiners are provided with a written marking scheme prepared
by the chief examiner, and are asked to mark a preliminary batch of 25
carefully chosen student scripts. Then there is a standardizing meeting,
where scripts are discussed in detail, differences between examiners are
discussed, and any points of confusion are sorted out by the chief examiner
and noted for future checking. Finally, the main batch of scripts is marked.
This typically involves marking of about 600 scripts by each examiner,
occupying two weeks of vacation time, for which examiners are paid. Mark-
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remark consistency varies from subject to subject, but in traditional math-
ematics examinations, deviations are usually about 1 percent, or one tenth
of a grade width. In other subjects with less tightly structured questions,
including essay writing for example, substantially larger variations are
common and are accepted. Thus, mathematics could broaden its range of
task types.

Increasingly, teachers are being asked to grade the assessments of
their own students as part of the public examining process. The same issues
of training and standardization apply, but rather different methods have to
be used (see below). The direct cost of examining is then substantially
smaller, since the assessment function is assumed by teachers as part of their
normal work. One should ask how much time teachers should spend
assessing their students, as opposed to teaching them. We believe that
diagnosis is a critical component of teaching, and appropriate feedback is
an essential and helpful element of this; therefore, some increase in the time
spent on standardized assessment is ci esirable. If substantial amounts of time
are to be used for assessment, however, we again stress that assessments
should have high curriculum vz. ,lity. That is, the assessment activities shoula
be high-quality learning activities in their own right. This implies that assessmen t
should lead curriculum change, not hold it back.

Sta3danlization

net cenAral problem of test design is, as always, the conflict
between 7alidity and reliability. The attainments we are most concerned
with are those that govern Lrger-scale activities. Here, reliability is measured
by the allocation of a large number of independent marks, although a
holistic view of the students' response is important. The way in which a
compromise is effected between these demands is a focal point ofinterest
in these test innovations.

A variety of approaches is used to try to ensure that uniform
standards are maintained from student to student, class to class, and school
to school. All are imperfect and some are quite costly. There are two rather
different approaches, either or both of which can be used. They are
sometimes summarized as personal moderation and statistical moderation.

Personal moderation methods involve review by designated indi-
viduals of samples of work from different groups of students. It may be
thought of as a partial regrading exercise. This method has high intrinsic
validity, but is also expensive unless the sample is kept very small (when its
effectiveness n ay be called into question). A variation on this is consensus
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moderation, in which a group of schools meet to compare each other's
gradings of their students, mediated by a moderator from the examining
board. This too is expensive, but the approach has been found to be a
valuable mode of professional development for teachers, with the assess-
ment tasks providing a common focus fordiscussion of questions of curricu-
lum, of teaching, and of student performance, in ways we have illustrated
earlier.

Statistical moderation uses students' performance on a subset of
the assessment tasks to standardize the overall distribution of grades.
Clearly, consistency of grading of this subset must be achieved by external
marking or personal moderation of some kind. If the standardizing instru-
ment can be graded inexpensively, statisticalmoderation is correspondingly
cheap. However, such an approach suffers from a major disadvantage: the
performance of students on the standardizing part of the assessment
normally determines the average level of a group, so this is a strong
indication to teachers to focus the curriculum efforts of the class or the
school on the part of the curriculum that is tested by the standardizing
instrument (and to neglect other aspects that are equally or more important
educationally). For example, ifa short multiple-choice test of basic skills in
arithmetic is used to standardize an assessment that also includes other
kinds of mathematical activity, includingextended problem-solving work, it
will not be surprising if teachers focusmost of their effort on preparing their
students for the short, narrow test. Differences in performance on the other
parts can only move children around within a group whose average level will
be fixed by the tests.

Statistical moderation is acceptable, we believe, if and only if the
moderating instrument is itself balanced across curriculum objectives. This
is roughly what was proposed for the National Curriculum in England by the
Government's Task Group on Assessment and Testing (TGAT, 1988). A few
extended standard assessment tasks (SAT) are to be used to moderate
teacher assessment carried out on a continuing basis. These SATs are
currently being designed under a set of constraints that seem to preclude
their balance in the sense we have described. In particular, the r
requirement that performance on each task be reported under detailed
behavioral objectives, largely focused on content, neglects the higher levels
of demand imposed by the integration of such elements that is needed for
more extended or less routine tasks.

We havc so far talked about the standardization of grading. The
standardization of tasks is also an issue. How far can one allow (or indeed
en, ourage) teachers ant' their students to choose the specific tasks they
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tackle, within more general descriptions of the types of task to be used? On
the one hand, the difficulty of similar-sounding tasks can vary greatly
depending on factors such as the familiarity of the context, the complexity
of the situation, the strategic, tactical, and technical demands of different
approaches to it, and the climate of support in which the stuc 'ntworks. This
all suggests that, for fairness, the tasks themselves shoul it be defined
externally. On the other hand, the process of defining interesting questions
is an important part of mathematical activity, and there is much to be said
for allowing students to tackle some tasks that they themselves find in areas
of their own specific interest.

This situation has arisen in Britain most recently and specifically
in the context of coursework for the GCSE examination at age 16, already
mentioned. Typically, the examining boards require several pieces of
coursework, each of which takes about two weeks of mathematics time. In
their attitude toward this issue, boards presently cover the whole spectrum.
Some define precisely the tasks that students must study, perhaps allowing
some choice, while others leave the choice of specific tasks within some
general guidelines entirely to the schools. Those boards that include both
possibilities find that nearly all their schools use the standard tasks they
provide, rather than devising their own. However, this may be a function of
sophistication; there is some evidence that after a year or two, some teachers
want the freedom to devise their own tasks.

Standardization of tasks is an area where continuing empirical
investigation is needed. Our inclination is to believe that some tasks should
continue to be set by the boards; these might be used as part of a standard-
izing instrument. However, we see great advantages in a number of ways in
asking teachers and their students to devise some of the tasks themselves.

REPORTING RESULTS

The extent, the form, and the methods of reporting results are
almost as sensitive an issue as the assessment process itself. How far should
results on the performance of individual students, of particular classes, and
of particular schools and school districts be a matter of public knowledge?
These are questions of political and public policy with strong potential effects
on individuals and communities. On the one hand, an atmosphere of
freedom of information and a search for incr-:aced accountability suggests
the widest possible dissemination. On the other hand, much of the informa-
tion may be regarded as personal, almost akin to medical records, and to be
primarily the concern of the students involved, their parents, and the teachers
who are responsible for forwarding their educational and social development.
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In the United Kingdom, a government with a strong belief in
market forces is insisting on the public dissemination of results, reluctantly
excepting only the performance of individual students at age 7. The
government sees this as information that should be available to parents to
guide their choice of schools. The Task Group on Assessment and Testing
(TGAT, 1988) recommended that such results should be distributed only in
a form that makes allowance for other factors that have a strong influence
on performance, such as the level of the children on entry into the school
and factors of economic, social, or educational background. This issue
needs careful thought and experiment in each society.

Processlag

We shall not attempt to describe the detailed administrative
arrangements by which public examinations are set, marked, and reported
in various countries. Suffice it to say that these are important, and that all the
systems we have discussed succeed in assessing the great majority of children
at various ages in their various school subjects in a way that commands
general, but not uncritical, public support.

Falraess

Fairness encompasses a set of issues that arouse strong feelings in
discussions of assessment. Fairness has many aspects, however, and most
systems tend to take very seriously the need to ensure fairness in some
respects, while ignoring others. For example, fairness suggests that assess-
ment should be even-handed in the following instances:

Between different students on the same occasion. This is always
a concern; however, in traditional mathematics, mark/remark
variation is genLrally small.

Between different students on different occasions. Research on
test/retest consistency for given individuals on similar tests
shows there is no room for complacency here; it receives some
attention, but variations are broad. Where different boards set
parallel examinations, comparability is equally elusive.

Between different aspects ofperformance. Typical traditional
tests cover only a part of a satisfactory contemporary curricu-
lum. In mathematics, it is a part whose importance is shrinking
year by year through the impact of technology. This is now
becoming a matter of wider concern. Hence, this book.
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Between students taught by different teachers. Unfairness
arising from the effects of good or bad teaching is universally
ignored, using the argument that the tests are assessing perfor-
mance not ability; however, the results of public assessment are
used as predictors of future performance in job selection, entry
to further education, and other areas where promise is as
important as current performance.

Between students from different kinds of home background.
This too is ignored using excuses similar to th Jse described
above; however, results are used not only for the selection of
students but for the selection of schools.

Fairness is an issue that above all needs both sensitivity and good sense.

Costs

Cost-effectiveness is an important criterion in the design of assess-
ment, as in most other fields. How far assessment costs are seen as a serious
problem again depends upon perspective. In the United Kingdom, fees for
public examinations, covering nearly all children, are a tiny proportion
(about 0.3 percent) of total educational expenditure. Still, this is a substan-
tial sum that is, for example, about ten times as much as the total expendi-
ture on systematic research and development. Without attempting to
resolve this issue, it seems to us that the quality of feedback to all involved
is such an important feature for the performance of any system that a
significant proportion of time, effort, and money can appropriately be
devoted to it in education too. As far as assessment itse is concerned, it is
not assessing but policing the assessment that costs money.

It is true that a certain am( int of investment must be made in the
design of sets of tasks and of ways of administering them, evaluating them,
and reporting the results, but these costs can be spread over many students.
The major expense, because it must be provided individually for each
student, is in the time used in the work on the tasksparticularly in the
grading of the students' responses. This can be undertaken by students and
teachers themselves as long as they are trusted; it is then a proper use of
learning and teaching time, with no additional costs. Some training is
needed but, aga. ., this is not a per student cost. it is the use of external markers
or moderators, or other monitoring devices, that requires additional expenditure.

do not question the need in some societies and social situations
for some such monitoring, but it is good to be aware that others do not share
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that need. For example, teachers in higher education in the United States
and Britain (and elsewhere as well asschool teachers in Germany, for
example) are commonly relied upon to provide assessment of their students
and former students without significant external monitoring. There is room
for experiment, and for progress, here.

lissessoest Packages

We have left any discussion of the way assessmentmay be packaged
until near the end, because many of the main issues we have discussed apply
to many forms of packaging that satisfy the principles we set out at the
beginning. Of course, the practicalities of use in schools and beyond are
intimately tied up with the form and mode of administration of the
assessment package. Equally, they raise social and educational issues of the
kind we have touched on. We shall content ourselves here with describing
some possibilities for consideration, adding the assertion that a variety of
solutions that all meet reasonable constraints is usually available.

Many forms of assessment packages have been tried, and more are
worth investigating. It may be useful to indicate something of the range of
possibilities, beyond the short test of multiple-choice items. These include
the timed written examination and various extended practice tasks.

The timed smitten examination has a great variety of forms and
possibilities. In the United States, such examinations are familiar at the
higher levels in high school and at college level. We have said something of
the extensions to this format in English public examinations, involving other
modes of presentation or response as well as types of task and, particularly,
the addition of coursework to bring extended tasks into the package.

The assessment month is a nonstandard possibility worth consider-
ation. That is, an extended practical task is used that runs over several weeks
of mathematics time ( ten to fifteen hours), punctuated by one-hour sessions
each week containing shorter tasks, a one-hour pure mathematical investi-
gation, a half-hour analysis of some data leading to recommendations for
action, several fifteen-minute practical problems or interpretations of math-
ematical prese stations of real events, and some ten-second to five-minute
exercises on technical skills in mathematics that need to be fluently available
to the student for such purposes. Such a package (Burkhardt, 1991),
dominated by vivid and interesting tasks, can represent a high-spot in the
curriculum. Curriculum support, including materials for the extended task,
would be valuable, particularly in the transitional phase for those many
teachers with little experience of such classroom activities. (It is worth
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noting that such activities normally have a strong cross-curricular flavor,
though it is important to focus on the mathematical aspects of performance,
firmly but not exclusively.)

The assessment week might be an appropriate way of mounting a
similar 'range of activities in an elementary school, filling the mornings for
a special week in each semester. In a secondary school, it would perhaps
represent a less wide ranging package, with the longest tasks taking no more
than an hour. Even a mathematics assessment day could embrace a far
broader range of tasks than is assessed at present, though it would not have
the same curricular impact as a longer package. Exemplars are under
development.

IMPLEMENTING LARGE-SCALE CHANGE

How can all these aspects be assembled into well-engineered
packages, including assessment, that effectively promote and support the
intended curriculum changes? We do not have space here for a detailed
discussion of the dynamics of large-scale curriculum change. We would
point out, however, the importance of systematic study and experiments in
this area (see, for example, Burkhardt, Fraser, and Ridgway, 1989).

We believe that there are no established methods of planned curriculum
change that are known reliably to yield outcomes in reasonable accord with their
intentions, at least not for the kind of changes that we are currently trying to
advance in mathematical education. Both politicians and educators in many
countries behave as though there are straightforward methods of effecting
planned curriculum changethat once the difficult questions as to what
should be done are resolved, achieving it is relatively straightforward. We
would suggest that this is the reverse of the truth, and that the how of planned
curriculum change is an unsolved problem that needs separate attention.

This need is beginning to be recognized in a few places. In
mathematical education for example, methods of implementing curricu-
lum change is a major theme for the 1992 International Congress on
Mathematical Education, in Quebec in 1992. One of us (Burkhardt) is
organizing the working group on this theme. This is the first time the topic
has had this status, although it was a sub-theme at the 1988 Congress in
Budapest. It is to be hoped that it will bring together whatever systematic
work is being done to find better methods and that it will act as a stimulus
for further systematic work in the future. (This sudden appearance of an
obviously important but neglected field is not new. Alan Schoenfeld has
remarked [Burkhardt et al., 1988] that problem solving was slated to appear
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in the 1980 Congress only under the general heading "unusual aspects of the
curriculum." By the 1984 Congress, it was a major theme and remains one
of the main focuses ofinterestin the field.) Here we can only take a brief look
at the factors involved, the methods used, and ways that they might be
improved, concentrating particularly on the role of assessment in influenc-
ing curriculum change.

The educational system is complex. Although it basically involves
teachers teaching children in classrooms in schools in school districts in
society, there is a great variety of types of players, with different roles, needs,
wishes, and expectations. Teachers and their students are at the heart of it
all, but politicians and parents, education leaders at national, state, district,
and school level, textbook publishers and authors, and designers and
examiners (the purveyors of assessment), all play their parts. If the system is
to move in the direction that is intended, all must work together.

Common sense and retrospective analyses of past innovations
(see, for example, Fullan, 1980) suggest that change is only likely to happen
if all those involved are subject to adequately designed patterns ofpressure
and support. A few may move in the desired direction without pressure, but
amid all the other stresses of professional and personal life, they are not
likely to be many. Equally, support that reliably enables those involved to
implement the required changes is essential if one is to avoid the key
problems of low take-up, dilution, and corruption of the change. On the whole,
governments are better at providing pressure than support, which tends to
be more costly.

Assessment is commonly used as a key element in the pattern of
pressure. We have seen how that pressure often inhibits changes that are
supposed to be implemented because the assessment does not reflect the
target curriculum. The essence of our contributions to this volume lie in
suggesting how assessments may be designee. so that their introduction will
promote desirable change, rather than undermining it. There is some
evidence that this can be done. For example, the special examination
syllabuses associated with the successful British projects of the 1960s in many
fields were at least a factor in enabling those projects to achieve widespread
impact.

We ourselves explored a different model, working within the main
mathematics syllabus of a major English examining board. The board
agreed to introduce a sequence of small but profound changes, each
amounting to about 5 percent of the syllabus or about three weeks' work.
Such changes were necessary to ensure that examination papers reflected
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already declared assessment objectives in a more balanced way. Wc. designed
exemplars of the new types of questions, classroom materials that would
enable teachers to prepare their students for them, and materials for do-it-
yourself, in-service tra_ning within the school. These were packaged in boxes
and made available for sale to schools, along with the announcement of the
syllabus change.

A number of factors have prevented as full an evaluation of the
impact of these materials as one would wishin particular, the abolition of
the examination involved after two such changes, on the introduction of the
GCSE! However, the new questions were taken by a significant proportion
of the students, even though they were optional for the first two (and only)
years. The sales of the boxes of materials, "Problems with Patterns and
Numbers" and "The Language of Functions and Graphs" (Shell Centre,
1984,1986) , now correspond to about half the number of secon dary schools
in England and Wales. In addition, significant numbers have been sold
around the world, including in the United States. All those involved agreed
that the adoption of such novel questions, and the level of student perfor-
mance on them, would not have been comparable without a carefully
designed pattern of pressure and support.

Note that this it a gradual change model, contrasting with ap-
proaches that seek to introduce a whole new ideal curriculum at once (and
that are so often corrupted). We have found that the pace of change is a critical
variable. What proportion of their lessons can teachers be reasonably asked
to change substantially each year? Five percent seems about right. This pace
may gem slow, but it compares well with what has actually been achieved in
the past.

The Numeracy through Problem Solving enterprise was rather
differentthe support was similar, but the pressure was less direct. A new
assessment scheme was offered, but schools did not have to take it seriously.
The pattern of response has been interesting here. The scheme has achieved
significant penetration so far (about 20 percent of secondary schools in
Britain take some part in it), but it is mostly used with low achieving students.
In this area, teachers of mathematics are always searching for materials that
work well, and the activities supported by these five boxes (Shell Centre/
JMB 1987-89) regularly transform the students' attitude toward and persis-
tence in mathematics. For above-average students, for whom the scheme is
equally important and successful, the adoption is much lower, probably
because teachers perceive the priority there as achieving good grades in the
GCSE. (The modules are used for assessed coursework in some schools.) It
will be interesting to follow the recent introduction of a GCSE option based
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upon Numeracy through Problem Solving.

Other models of change in England involve assessment in a
central role. For example, the Graded Assessment in Mathematics project
(GAIM, 1989) has developed an approach based on teacher's assessing the
students "on the hoof" in thecourse of teaching. This assessment is based on
specific criteria at fifteen levels related to every aspect of the curriculum. Not
surprisingly, it places considerable demands on teachers, who must absorb
the classification scheme of mathematical performance involved and accept
the present limitations of such schemes. In practice, the designers have
developed sets of tasks for teachers to use, to help them come to grips with
the criteria, so the approach has many of the features we have advocated.

Meanwhile, the main examination boards in England are seeking
to develop their examinations to meet the broader objectives. Coursework
has provided the most substantial change for most teachers. The effects of
matching the GCSE to the National Curriculum, and the knock-on effects
on the later examinations at age 18, have yet to be worked through.

Parallel developments in some other countries are descriLed in
other chapters of this book, and we would like to note a few of particular
promise. The situation in the Netherlands, where the national assessment
system is closely and sensibly linked to a long-range program of curriculum
development (at least equal to any in the world), has produced substantial
change over twenty years, rooted in basic research and systematic curricu-
lum development (see the chapter by de Lange in this volume). The
Australian states, each with its own education system, are pioneering high-
quality assessment as part ofa program of change; their approaches seem to
have much in common with the constructive chaos of the British scene. Inthe United States, a number of promising initiatives involve major states, so
there is hope of change in the fairly near future.

The third important general featureofan implementation method,
complementing balanced pressure and support, is that the balance should
be dynamic. That is, it should be designed to rapidly discover what are its
successes and failures and to take action to modify itself accordingly. This is
rarely attempted. Educational innovations are normally presented in an
atmosphere that implies that they are bound to work well, and it is generally
regarded as seditious to question that assumption. Models that have all three
aspects we call "Dynamic Pressure SupportModels"; they deserve particular
attention in all current and future reform programs. Clearly, there is much
systematic work to be done, and much to learn, for a decade or two at least.
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INTRODUCTION

Assessing
Mathematical Skills,
Understanding, and
Thinking

Jan de Lange

Many mathematicians, among them Ahlfors, Bers,
Birkhoff, Courant, Coxeter, Kline, Morse, Pollak, and Polya, signed a 1962
statement from which the following quotes were taken (Ahlfors, 1962):

To know mathematics means to be able to do mathematics: i.e., to use
mathematical language with some fluency, to do problems, to criticize
arguments, to find proofs, and, what may be the most important
activity, to recognize a mathematical concept in, or to extract it from,
a given concrete situation. Therefore, to introduce new concepts
without sufficient background of concrete facts, to introduce unifying
concepts where there is no experience to unify, or to harp on the
introduced concepts without concrete applications which would
challenge the students, is worse than useless. Premature formalization
may lead to sterility; premature introduction of abstractions meets
resistance especially from critical minds who, before accepting an
abstraction, wish to know why it is relevant and how it could be
used...Extracting the appropriate concept from a concrete situation,
generalizing from observed cases, inductive arguments, arguments by
analogy, and intuitive grounds for an emerging conjecture, are
mathematical modes of thinking...The best way to guide the mental
development of individuals is to let them retrace the mental develop-
ment of the race (the genetic principle). (p. 8.)
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This statement was a strong reaction to the excessive abstraction and
emphasis on "content at the expense of pedagogy" (p.195) that were invading
the school mathematics curriculum. In 1959 at the Royaumont conference,
Dieudonne gave his now infamous address, "New Thinking in School Math-
ematics," which resulted in the rise of modern school mathematics based on set
theory. Thom (1973) later concluded, 'The emphasis placed by modernists
(structuralists) on axiomatic is not only a pedagogical abbreviationwhich is
obvious enoughbut also a truly mathematical one" (p. 225).

One of the three Dutch participants at the Royaumont conference
in 1959 was Vredenduin. After experimenting with the cc.tcept of structure
in his geometry books for secondary education, he concluded many years
later in an interview with Goffree (1985). "It was beautiful edifice, but I do
not think there was one student who shared that opinion" (p. 235).

CONCEPTUAL MATHEMATIZATION: FROM CONCRETE TO ABSTRACT

Freudenthal (1973), being a mathematician influenced by
Brouwer's constructive or in tu itionistic view of mathematics, introduced the
slogan, "Mathematics as a human activity." He argued that (i) mathematics
should never be presented to students as a ready-made product, (ii) the
opposite of ready-made, dehumanized mathematics is human mathematics
in stain nascendi, and (iii) the student should reinvent mathematics. What
Freudenthal calls reinvention is often described as discovery or rediscovery.

Freudenthal's view is that the learner is entitled to recapitulate in
a fashion the learning process of mankind. This means that instruction
should not start with the formal systemwhich is, in fact, a final product
nor with embodiments, nor with structural games. Instead the phenomena
by which the concepts appear in reality should be the source of concept
formation. The 1962 statement called this process "extracting the appropri-
ate concept from a concrete situation," or as de Lange (1987) states it,
"conceptual mathematization."

To put the preceding views a little more precisely, the real-world
situation (or problem) is first explored intuitively, for the purpose of
mathematizing it. This means organizing and structuring the problem, trying
to identify the mathematical aspects of the problem, and discovering regu-
larities and relations. This initial exploration (with a strong intuitive compo-
nent) should lead to the development, discovery, or (re) invention of math-
ematical concepts.

From our years of observations in classrooms, it is clear that by
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depending on factors such as interactions between students, interactions
between students and teachers, the social environment of the student, and
the student's ability to formalize and abstract, students will sooner or later
extract the mathematical concepts from the real situation. This is what we
call conceptual mathematization.

After formalizing and abstracting theseconcepts, students can use
them by applying them to new problems. This leads to a reinforcement of
the concepts that have been constructed, and to a readjustment of the
perceived real world. In this way, the learning process has an iterative
character, and the learning cycle may be modeled as shown in Figure 1.

MathematIzino
In applications

Real worlds

Abstraction and
formalization

Mathematizing
and reflections

Figure 1.
A mathematical
teaming cycle.

This model shows a remarkable similarity to the Experiential
Learning Model of Lewin (1951). Twoaspects of Lewin's model (Figure 2)
are noteworthy. First it relies on concrete experience to validate and test
abstract concepts. We may call this part of the problem-solving process
applied mathematization. Secondly, the feedback principle plays an impor-
tant role in the process. Lewin used the concept of feedback to describe a
social learning and problem-solving process that generates valid informa-
tion to assess deviations from desired goals.

Concrete
experience

Testing Implications
of concepts In
new situations

Formation of
abstract concepts
and generalization

Figure 2.
Lewin's
Experiential

and reflections Learning Model.

In a more recent study Kolb (1984) adapted this Lewinian model
and compared it with Dewey's Model of Experimental Learning and with
Piaget's Model of Learning and Cognitive Development. In Kolb's opinion,
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all the models suggest the idea that learning is, by its very nature, a tension
and conflict-filled process. Learners need four different kinds of experi-
ences to be successful: concrete experience, reflectiveobservation, abstract
conceptualization, and active experimentation.

Free Predation

Components similar to those in Lewin's model should be found in
the learning of mathematics, and the weakest link in the cycle of mathemat-
ics education seems to be the active experimentation stage. This is why, in
the Netherlands, we currently give students real-world, open-ended prob-
lems to solve. Nonetheless, current practices can be improved. For example,
one way to achieve this would be to have students make more productions
not only mental contributions. That is, students should be asked to produce
more concrete things.

Treffers (1986) stresses the fact that by making free productions,
students are forced to reflect on the paths that they themselves have taken
in their learning processeswhile, at the same time, anticipating their
continuation. In this way, free productions can form an essential part of
assessment (as we will see later). For example, to design exercises that can
be used in a test, or to design a test for other students in the classroom, we
may ask students to write an essay, to do an experiment, to collect data, and
to draw conclusions.

Interactive Learning

As mentioned before, interaction between students (and between
students and teachers) is essential. We agree with Balacheff (1985) when he
states:

Pairwork is not only a source of explanation but also a source of
confrontation with others. This adds greatly to the dynamics of the
activity. Contradictions coming from the partner, due to the fact
that they are explained, are more likely to be perceived than
contradictions confronting the solitary learner, derived only from
the facts. They are also harder to refute than in a conflict resulting
from the individual, or from temporary hesitations between two
opposing points of view that the solitary learner experiences when
confronted with a problem. (p. 181)

Doise and Mugny (1984) speak of a socio-cognitive conflict. Their
research shows clearly that inter-individual encounters lead to cognitive
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progress when socio-cognitive conflicts occur during the interaction. The
social and cognitive poles are inseparable here, because it must be a matter
of conflict between social partners about the ways to resolve the task. In
mathematics education, students are usually operating on different cogni-
tive levels and there are large differences in cultural background. This
means interactions among students are excellent starting points for discus-
sions resulting in socio-cognitive conflicts. It is for the teacher to make the
best use of this situation, but the conditions can also be shaped by research-
ers and curriculum developers.

integrated Learning Strands

Mathematics is integrated with the real world (s). This principle is
one of the key factors of mathematics education as it has been developed by
IOWO (Institute for the Development of Mathematics Education) and later
OW&OC (the Dutch research group on mathematics education). Also, the
integration of mathematical strands is essential because applying mathemat-
ics is very difficult if various subjects are taught separately, neglecting the
cross-connections (Klamkin, 1968). In applications, one usually needs more
than algebra alone or geometry alone. In real applications, students often
must compare different models and integrate them. This implies integra-
tion on yet a third level. For example, the "rat problem" (below) taken from
a college-level biology book, shows that algebra, probability, linear algebra,
and calculus all function within one simple problem that can be solved by
drawing a schema or by visualizing it. (Notice that we consider solutions that
consist of a beautiful visualization just as good as any other solution that may
have a mathematical formula in it.) Because it makes our point clear, we give
parts of the solution of this problem:

Students read the following statement:

...It might be interesting to estimate the number of offspring
produced by one pair of rats under ideal conditions. The
average number of young produced at a birth is six; three out
of those six are females. The period of gestation is twenty-one
days; lactation also lasts twenty-one days. However, a female may
already conceive again during lactation, she may even conceive
again on the very day she has dropped her young. To simplify
matters, let the number of days between one litter and the next
be forty. If then the female drops six young on the first day of
January, she will be able to produce another six forty days later.
The females from the first litter will be able to produce off-
spring themselves after a hundred and twenty days. Assuming
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there will always be three females in every litter of six, the total
number of rats will be 1808 by the next first of January, the
original included....

Students were then asked, "Is the conclusion that there will be 1808 rats at
the end of the year correct?" Solutions by a student and a teacher are shown
in Figures 3 and 4.

Figure 3. One student's schematic solution to
the "rat problem."
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During an in-service
teacher training course, only 20
percent of the teachers were able
to solve the preceding problem
within half an hour. On the other
hand, nonmathematics majors (16
years old) from some of our ex-
perimental schools did very well
on the problem. Results depend,
of course, on the conditions. In
the classroom, with a limited
amount of time, both students
and teachers tend to find it very
difficult to solve or even to
schematize the problem. But with
no time limit (for instance by giv-
ing the problem as homework)
students produce fine results.

Figure 4. One
teacher's
schematic
solution to the
"rat problem."

6 .1 0 1 2 3 4 % 6 7 1 9

N 2 6 6 6 24 44 60 132 251 4.48 834

T 2 8 14 Al 44 86 146 218 S.36 974 1108

This suggests
that such pro-
cess-orien ted
activities may
not be well
suited for test-
ing by means of
time-restricted
written tests.
Also, in con-
trast to the pre-
ceding sche-

matic solution, teachers were more likely than students to feel the need to
produce formulas such as,

A..1 ..A.42+3;k=2;A=8;A1 =14.
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An approach that is different from the preceding ones uses graphs
and matrices (which are part of the curriculum). For example. Figure 5 shows
a graph that represents the growth of the rat population and a matrix that can
represent the graph. Another possibility is to look at the nature of the growth
process. For example, comparing the number of rats period by period, the
growth factor on the long run is equal to 1.86. This leads to the formula:

An = 44*1.86(")

(We leave it to the reader to integrate and generalize the different solutions,
an activity that can be seen as the top level of mathematization.)

Figure 5. A matrix-based solution to the "rat proistem."
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De Lange (1989) has articulated goals for upper secondary math-
ematics education. As a guide for test developers, the following partitioning
scheme is used to list key mathematical ideas to be operationalized: (i) general
goals, (ii) global description, (iii) concrete goals, and (iv) specific abilities.

The specific abilities are easiest both to describe and to assess.
Students must have the command of certain basic techniques and tools
which are not aims in themselves but which are essential for the attainment
of concrete goals. A description of these specific abilities is required in order
to give the boundary conditions for the attainment of the general and global
goals. The description of these specific abilities and tools has a purely
mathematical character and does not allude to the goals to be pursued and
the students' activities. The following are examples of specific goals:

The student is able to add matrices (if possible).

The student is able to multiply matrices (if possible).

The student is able to draw a histogram, a box plot, stem and leaf plot.
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The concrete goals relate to specific areas of instruction. They
interrelate and attach meaning to the subjectareas from the lower level, the
specific abilities. Instructional activities are most often directed towards
concrete goals. Some concrete goals might be

to describe the meaning of sum, product, and powers of
matrices in their problem context;

to read, interpret, process, and analyze information and to
describe it in a graph or matrix, if suited;

to analyze which visual representation is most suited for a given
situation, taking into account the class width, the same class
width or different ones, the necessity of frequency density
graphs, and so on.

The global characterization of the subject areas provides a sketch of the
domain, prepares the formulation of concrete goals, connects them with the
general goals, and gives some indication of the interrelatedness of the various
areas. For example, a goal description in statistics might be the following:

Data visualization plays an important role in preparing students for
future studies in several fields. This knowledge is also necessary for the
students to bec'me intelligent citizens. Many decisions, both by
individuals and by groups, are based on graphical representations of
statistical data. Interpretation of data and their visual display are
especially needed for information found in books, magazines, and on
television. Critical judgment should be a key factor. For this reason
students should be able to construct visual representations of data by
themselves, and read and interpret graphics that are taken from other
publications.

General mathematical goals pertain to permanent qualities, skills,
abilities, modes of thinking, and so on, that are not restricted to one specific
area of mathematics. For that reason one can formulate those goals in a more
general way. Globally, one can state that the student should demonstrate the
ability to solve problems with mathematical tools, or to describe problems in
a mathematical way and communicate them to others. This means that a
student should be able to

identify the relevant information, relations, and structures;

formulate and visualize a problem in different ways;
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use the basic skills for the different areas in mathematics;

use standard methods for solving problems from different fields;

value and judge the use of mathematics in applications;

make connections between problems and mathematical con-
cepts, relations, and structures;

interpret the results within the context after solving a problem
and analyze the result in a critical way;

use research and reasoning strategies;

recognize isomorphic ideas in different situations; and

adjust and refine a model after careful analysis.

The highest level of goal description, and at the same time the
most neglected one in relation to assessment, is the general goal description.
Also, to help students acquire knowledge, skills, and insight in the above-
mentioned goals and to help them to develop a good attitude toward
mathematical work, they should have the opportunity

to be creative in suggesting solutions;

to use knowledge and skills in a flexible way;

to work in a systematic and organized manner;

to generalize results;

to judge critically both the input, the solution process, and the
output of a problem;

to estimate outcomes;

to develop appreciation for mathematics;

to develop self-confidence by building confidence in math-
ematical abilities; and

to work in an interactive way, using different media.
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This model of a goal description can be represented as shown in Figure 6.
Also, in order to complete the schema, we need some additional compo-
nentsinstructional activities, tests, and didacticsto serve as vertical
connectors between the different levels of our schema (Figure 7).

Figure 6. A goal description.
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Often the clearest way to describe the orientation of this scheme
is to describe instructional activities with each category. These activities are
carried out at all levels and are closely related to the chosen didactics. For
example, currently popular instruction and didactics in the Netherlands are
characterized by a tendency toward realistic mathematics education cur-
ricula, as described by Freudenthal (1983), Treffers and Goffree (1985),
and Streefland (1987). In the United States, similar methods have been
called reconstructive mathematics education by Cobb (1991) and others.
One distinction between instructional activities and didactics is that the
latter is an ideal formula, whereas the former are carried out in classroom
practice. This goal description was developed and written after years of
experimentation and after implementation of the new mathematics cur-
ricula in the Netherlands. It is unwise to develop goals before the desired
curriculum has proved its qualities in wide-ranging field experiments. Only
then can one write a realistic goal description.
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ASSESSMENT TO ACHIEVE HIGHER-LEVEL GOALS

Testing forms the third vertical connection between the goal
planes. Commonly, testing is restricted to the lower level only (basic
techniques and concepts), with a few excursions to the plane of the concrete
goals. This is an undesirable situation, since testing is most important with
regard to the general and concrete goals and their mutual relationships.

During experiments that eventually led to new curricula in the
Netherlands for upper secondary students, we were confronted with two
serious problems. Time-restricted written tests (not multiple choice) were
considered to be improper for testing, especially for testing the higher-level
goals. (One only has to think back to the rat problem.) Secondly, under any
conditions, designing proper tests is very difficult. When designing tests was
left to the teachers, only 15 percent of the exercises really tested at other
than the lowest level. Consequently, we started our developmental research
to test new formats, adopting the following guiding principles:

Tests should be an integrated part of the learning process, so
tests should improve learning.

Tests should enable students to show what they know, rather
than what they do not know. We call this positive testing.

Tests should operationalize all goals.

The quality of the test should not be dictated by its possibilities
for objective scoring.

Tests should be practical enough to fit into current school practice.

Later these criteriawere also used in the test developmentfor elementary school
level (see Streefland, this volume). The results of our efforts are best shown in
examples of actual exercises and exams from experiments in the Netherlands
and the United States, and from national examinations in the Netherlands.

Ibtlenal Examinations la the Netherlands

In the Netherlands, there are final nationwide examinations at the
end of four, five, or six years of secondary education. Roughly, the six-year
curriculum prepares the student for the university, the five-year curriculum
for higher vocational training, and the four-year course for the lower
vocational level. Otherwise, students tend to start working right after their
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secondary education. Since 1985, we have had two new curricula for the
four-year course, and the experiments (carried out by OW&OC) that led to
the new curricula showed with great clarity the problems of achievement
testing. The first nationwide examination on the new curricula took place
in May 1987. Before 1987, examinations were of the time-restricted, written-
test kind (TRWT) with "open" questions and no multiple choice. The open
questions were, in fact, very closed because both the answer (a number, a
graph) and the solution left no degrees of freedom whatever. Since 1987,
modest progress has resulted in a somewhat more open final examination,
still of the TRWT kind but more problem-number and text-oriented.

In the summer of 1990, two new curricula for the five-year stream
were also introduced: one (B) for the more mathematically gifted students,
and one (A) for those who are going to use their mathematical skills in their
nonmathematical profession or schooling. The first experimental examina-
tion on these curricula (in May 1991) showed that some progress is being
made. That is, the exercises are

more open to multiple solution strategies and results;

assessing higher-order thinking skills; and

giving the students the freedom to solve problems at their own
ability levels.

A typical final examination in mathematics (A or B) takes three hours. The
exam consists of about some five big problems with approximately twenty
questions and perhaps six pages of text. (Because of space limitations, we
show here only some of the shorter problems.)

An example problemfrom the A-level examination

One should know, when looking at the exercise shown in Figure 8,
that the curriculum does not cover differentiation of functions, even though
students study the changes of real phenomena in a discrete way (which
prepares in an excellent way for calculus). Instead of the graph of the
derivative of a function, the students are accustomed to the discrete appara-
tus called an "increase diagram? So, the first question is very straightforward
and operationalizes only the lowest level. The other question was a new,
desired, and long-awaited addition because it involved communicating
mathematics, drawing conclusions, and finding convincing argumentsall
activities that are too often notvexy visible in mathematics tests and examina-
tions. Nonetheless, when such new questions were introduced, many teach-
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ers were surprised and didn't know what to think of this new development
even though the experiments had given a fair indication of the new approach.
Some student responses to the questions in this exercise include the following:

I would wait for four years and then catch 20,000 kg per year. You
can't lose that way, man.

If you wait till the end of the fifth year, then you have a big harvest
every year: 20,000 kg of fish; that's certainly no peanuts. If you can't
wait that long, and start to catch one year earlier you can catch only
17,000 kg, and if you wait too long (one year) you can only catch
18,000 kg of fish. So, you have the best results after waiting for five
years. Be patient, wait those years. You won't regret it.

Figure 8. A problem from the A-level examination.

If no fish are caught, the number of fish will increase In the coming years. The
graph shows a model of the growth of the number of fish.
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Draw an Increase diagram with Intervals of a year, to start with the interval 1-2.

The fish farmer will wait some years before he's going to catch or harvest the
fish. After the first catch, he wants to harvest every year the same amount of
fish as In the first year, and as much as possible. After every catch the number
of fish increases again according to the graph.

What would you advise the fish farmer about the number of years he has to wait
after planting the fish? The amount of fish that he will catch every year?

Give convincing arguments.

An example from the B-level examination

The students who sit for the B-level exam are preparing for a
higher technical vocational school. In general, they need quite a bit more
formal and abstract math for their job or schooling. Some three-dimen-
sional insight would also be useful. The exercise shown in Figure 9 gives some
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insight into what we expect from these students. This exercise is less open
than the previous one, but it invokes an understanding of three-dimensional
geometry that is somewhat different from traditional approaches. The main
difference is that the students need to apply their knowledge to a real-world
problemand there are few bridges to cross the gap between mathematics
and its applications. In this exer-
cise, the photo is real, the tower is
real, the dimensions are real,
the problems are realistic, and
the mathematics has some sub-
stance. Figure 10 shows the

Figure 9. A problem
from the B-level
examination.

worksheet (left) and two different solutions from students, and Figure 11
shows a solution to the last question, complete with a sketch.

Look closely at the large tower of the church in the picture. The
floor plan of this tower is a square of 6 by 6 meters. The roof is formed by four
equally sized rhombs. The lowest vertices of these roof parts are at a height
of 18 meters above the ground. The top is at a height of 26 meters. The other
four vertices of the roof are at a height of 22 meters, each on the axis of
symmetry of the sidewalls.

On the worksheet you see the beginnings of a drawing of the tower,
in the so-called engineers' projection. Finish the drawing of the tower.

The upper gaps in the walls of the tower are the reverberation
holes. Behind those gaps hangs the bell that is rung every half hour. The
quality of the sound depends on the shape and volume of the bell room. The
floor of this room is at a height of 12 meters above the ground. The ceiling
can be constructed at a height of 20, 22, or 24 meters.

Draw to scale 1:100 in one figure the shape of the three possible
ceilings. The ceiling is placed at a height of 22 meters.

Compute the volume of the bell room.
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Figure 10. Solutions given by two students.

Figure 11. A solution to the question,

de Lange

Overall results from
"Compute the volume of the bell room." students suggest that, if the trend

4 24m continues toward more open ex-
,

aminations, there will definitely
be an effect on the teaching and
learning of mathematics. As in
many other countries, the
teacher (or school) is judged by
how well the students perform
on their final exam. This leads to
test-oriented learning and teach-
ing, but if the test is made ac-
cording to our principles, this

disadvantage (test-oriented teaching) will become an advantage. It will be
very difficult and time-consuming to produce proper tests, but in the
Netherlands, tests are produced by a government-funded independent
institute for achievement testing (CITO), which, in turn, tries to cooperate
as much as possible with others involved in mathematics education, espe-
cially with OW&OC.

The teacher remains a key factor in the reform of testing. He or she
has to accept wholeheartedly the changing emphasis on more open-ended,
complex problems. Teaching will become more difficult and complex as
well. The teacher will lose some authority because of smart solutions by
students. He or she will do less telling and will interact more with the
students in the discussion of solutions. So, even if the test producers succeed
in making better achievement tests, the teacher remains the most critical
factor. The teacher deserves a lot of attention and help in designing school
tests. Fewer restrictions will give the teacher a wide variety of possibilities in
test design and administration. Thus test problems can become more
exciting and rewarding for the student, but they will also become more
difficult for teachers to invent and grade.
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School tests

For testing the lowest-level goals, the TRWT (excluding multiple
choice) remains a very good tool. Even under time restrictions students can
perform well on higher levelsif other proper questions are satisfied. The
next example (Figure 12) is taken from a 50-minute school test that
consisted of three problems (de Lange and Kindt, 1986). The students were
taking the A-curriculum and were 16 years of age. Of course, this exercise
bears all the marks of a TRW?. It is relatively closed and has a series of short
questions to guide the students. It would be interesting to fin,' outwhat had
happened if we had posed only the last question. A more ope.s question is
shown in Figure 13.

Here you we a crossroads In Geldrop, The Netherlands, nearby the Great Church.

N M

In order to let the traffic flow as smooth as possible, the traffic lights have been
regulated so as to avoid rush hour tral lic jams. A count showed the following number
of vehicles had to pass the erossmads during rush hour f per hour):

A:

PA 0 40200 30
N 30 0 80 50

born E 210 60 0 6c
30 40 00 0MN SC

The matrices G1,62, G3, and C4 show which directions have a green light and for
how long. 2/3 means that traffic can ride through a green light for period of 2/3
minute.

MNEC
0 °

N
0 0 0 0

C1 E 0 0

C 0 0 0 0

AINEC

G2

C 0 0

E

N
0 0 0 0

1 0 0

0

3

0

N

G3 E

C (

MNEC
0 0 0 0

0

0
a 1 1

0 0

o

FINEC
PA 0 0 0 0

N 1 0 0 0

GIE 0 0 0 0

C 0 0 1 0

How many cars come from the direction of Eindhoven during that one hour? And how
many travel towards the city center?

How much time is needed to have all lights turn green exactly once?

Determine C Gl4C24C34C4, and °weak.. T 30G. What do the elements of
T signify?

Ten can per minute can pass through the green light. Show In a matrix the
maximum number of can that can pass in each direction in one hour.

Compare this matrix to matrix A. Are the traffic lights regulated accurately?
If not, can you make another matrixC In which traffic can pass more smoothly?
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The example shown in Figure 13 is typical in the sense that it shows
that a very simple problem may not have a very simple solution. The teacher
has to carefully consider the students' different arguments and has to accept
a variety of solutions. At first glance, many studentsand teachers as well
tended to find class A better than class B because of the many scores in the
80s. However, some students argued that class B is definitely betterbecause
only two students did poorly. On the other hand, some argued that you
cannot say anything because the average of both classes seems to be the
same. But the median is definitely better for class, and how about the mode?
So it boils down to the question what do you mean by better?

Figure 13. A simple problem with a variety of solutions.

The test results of two math classes are presented in a stem-leaf-display:
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6

7

8
9

CLASS B

34

5

12344668

114

1

Does this table suffice to judge which class performed best?

School Tests in the Netherlands and the United States

School tests offer other exciting possibilities. Some of them were
explored in the Netherlands and the United States in recent experiments.

Two-stage tasks

In two-stage tasks, the first stage is carried out like a traditional
timed written test. The students are expected to answer as many questions
as possible, and within a fixed time limit. After having being graded by the
teacher, the tests are handed back to the students, while the scores are
disclosed. The second stage follows. Provided with informationabout their
mistakes, students repeat their work at home, without any restrictions. This
task gives the students the opportunity to reflecton their activities in the first
stage of the task.
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The essay

In the American and Dutch experiments, a certain kind of essay
question was very successful. The students were given an article from a
magazine with lots of information in tables and in numbers. The students
were asked to rewrite the article making use of graphical representations.
The article discussed the problem of overpopulation in the Republic of
Indonesia. One of the graphics designed by students (Figure 14) shows
dearly the large differences in the spread of the population over the islands.
The left bar on each island shows the area of the island as a percentage of
the total area. The right bar shows the population of the island as a
percentage of the total population. It is clear that Java is overpopulated and
that there is more space on some of the other islands.

Figure 14. A student graphic
representation to clarity a
magazine article.

Su ,,.Ira

The test test

061?
lova Timor

One of the more promising new ideas gives students the task of
creating a test. They are given the directions shown in Figure 15. The results
of such a test are surprising. Students are forced to reflect on their own
learning process, and the teacher obtains an enormous amount of feedback
on his or her teaching activities. It is too early to draw conclusions about this
kind of testing, but in 1992 we will publish results from experiments at an
American school. A ninth-grade girl studying data visualization produced the
test question shown in Figure 16. Developing a critical attitude was one of the
general goals.

Figure 15. "Design a test" test.

This task Is a very simple one. By now you have worked through the first
two chapters of your book and have taken a relatively ordinary test. This
test is different. It has one question: Design a test for your fellow
students that covers the whole booklet. You can start your preparations
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now. Look In magazines, pPiers, books, and so on, for data, charts, and
graphs that you want to use. Keep in mind that students should be able
to complete your test in one hour. You should know all the answers.

Figure 16. A student-produced test euedion on data visualization.

1.11MAUKE INDEX DOW JONE S INDUST HIALS

OOOOOOOOOOOO 111111111111111 OOOOO

aft amaisPowl.

11111malme lofts le aressed etas
Milk la bosivilWINNUmlbe
test~e/ In Illerbmassavr.
11.1111mtopmetalke slim lostrams ads
Om. lloollubm Insamimal W ado
liammilrifloalreesulnOmpwrift
liellowielawnlowlemilopinwil

I 1111111111P
11111

MI/111111111111111

0

4
OCT NOV DEC JAM FEB MAR APR MAY JUN

MILWAUKEE MDEX
JANUARY. 1100 x 100

JUL 11EP

DOW JONES
INDUSTRUU.S AVERAGE

. 2120
ITN
2740
2700
2100

2620
. 2660
_2140

2100
2400

2420
23110

_ 2300
2260
2220
2100
2140

2100
2000
2020

1000

1040

0

4

1. What have the makers of this graph done to save space?

2. What impression does this give the reader?

3. What could be done to make the graph less deceiving?

Initial results of this form of testing indicate that the students are
hampered by their traditional teaching and learning background. They test
lower skills, and they often conform to the chapter partition and do not
integrate the different parts. But on the positive sid^ we noted that almost
all exercises were different in contexts and subjects and hada fair degree in
common as far as mathematics without context is concerned.

FOR THE FUTURE

We are convinced that there are some interesting developments
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becoming visible. We see evidence that open-ended questions requiring higher-
level thinking promote conceptual mathematization. However, the barriers to
wide application are massive We believe that multiple-choice questions should
be abolished, butwe must design clever open-question tests, and come up with
alternative ideas in testing (keeping in mind the principles discussed in this
chapter). We must investigate the actual effects on learning and teaching when
using "proper" tests and evaluate their practicality. We must encourage test
developers to develop such tests, and we must design an innovation strategy to
convince teachers and parents and politicians of the merits of such testing.
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INTRODUCTION

Thinking Strategies
in Mathematics
Instruction: How Is
Testing Possible?

Leen Streefland

The query in the title suggests other questions.
While testing refers to instruction, thinking strategies seem to be the
learner's privilege. How are instruction, testing, and thinking interrelated?
Our questions raise the problematic issue of evaluating instruction (Mislevy,
1992) and, specifically, mathematics instruction. It is not enough to identify
thinking strategies; if they are worth being taught, they have to be justified
by general instructional goals, and tools must be developed to somehow
diagnose and measure them. Which general goals and what thinking
strategies? Globally formulated general goals may allow a bird's eye view of
the intended mathematics instruction, but these are still unsatisfactory;
more concreteness is needed. In this chapter, goals and thinking strategies
will be discussed, while respecting the close connection between teaching
and learning.

To give some idea of what we mean by thinking strategies, we first
consider and analyze two examples. We then examine general goals sug-
gested by developments in the Netherlands (Proeve van een National
Programma) and compare them with those in the United States and the
United Kingdom. In all three countries, one notices an unmistakable turn
from reproductive to (re)constructive learning and an increased emphasis
on such tools as thinking strategies. Thinking strategies are reconsidered,
followed by a definition of heuristic mathematics education of the type
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expected to create a climate in which pupils will develop general strategies.

We will then examine a number of examples to show that strategies
for problem solving lend themselves to the design of heuristic mathematics
education, and describe five tenets of teaching and learning that are associ-
ated with a more realistic approach to heuristics mathematics education.

Next, we focus on testing in realistic mathematics instruction,
which entails some serious restrictions. In particular, because thinking
strategies are general goals that should pervade all mathematics instruction
and are expected to become part of a student's permanent repertoire, they
cannot be adequately tested by isolated test items. We then look at an
instructional process that supports the general goals of mathematics instruc-
tion and discuss implications for future research.

WHICH THINKING STRATEGIES? WHAT MATHEMATICS INSTRUCTION?

As Expedient Realistic lastrecUes la Fractious

For two and a halfyears, we experimented with realistic instruction
in fractions. At the end of that time, we gave a test whose aim was twofold:
(1) to compare the instructional effects of the new prototype with those of
other courses, and (ii) to critically review, and if need be, to revise the new
course. One test item asked the following question about sharing pepper-
mint candy:

Three peppermint sticks are fairly shared by a group of 4 children.
Seven peppermint sticks are fairly shared by a group of 10 children.
Compare the groups to find out in which group a child gets more, in
the group of 4 or in that of 10? How much more? (Streefland,
1988a, p. 382.)
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Figure 1.
Three solutions
illustrating the
blind application
of algorithms.
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The results showed that 15 percent
of the pupils in the control group
(about 200) divided 4 by 3 and 10
by 7. This led to results in terms of
thirds, sevenths, twenty-firsts and
to lengthy computations such as
those shown in Figure 1.

What was wrong here?
The mathematical context of the
problem was not correctly under-
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stood, if it had been identified at all. Our diagnosis was algorithmic blindness,
which results from children's individual and isolated experiences with long
sequences of sums, rote exercises, and algorithmic standard rules empha-
sized by mechanistic didactics (Lohman, 1987; Treffers, 1987a). Schoenfeld
(1989) describes this phenomenon as "an endless stream of disconnected
learning" (p. 100). The relations at the heart of the problem, though rather
obvious, are wrongly mathematized, betraying a deficient view of what
division means in mathematics (Bell, 1981; Hart, 1981). A particularly
ominous symptom is the application of long division to this problem.

Does this mean that the item is not appropriate for testing
thinking strategies? It is true that the children whose solutions we reported
were satisfied by mock solutions, but this does not answer our question,
because the quoted solutions simply reflect the nature of previous instruc-
tion. These solutions are witness to a rigid attitude that some action, steered
by recipes and rules, must be performed on the numbers in the problem.
Such solutions underline our insistence that identifying the mathematical
context is an important characteristic of mathematical activity.

As shown in Figure 2, the solutions of children in the experimental
group provided a striking contrast. These two children identified "ratio" in
the mathematical context of the problem and applied the ratio table as an

appropriate tool. One of them
found the relative difference in
the form 2/40. Such divergent re-

3 3 619 actions to the same problem cast

lc 2 -E o doubt on whether tests are a means
to uncover and judge thinking
strategies. But what does this ex-

3 Candy bars 41c.4j 211}-cro° tt""" Here you get 2/40 morel
7 Candy bars o_4 prove? Certainly, math-i4,1410

ematics instruction reaps what it
has sown (Lohman, 1987)a simplistic statement if compared with the
assumed complexity of the relation between teaching and learning. Or is the
relationship itself rather obvious, while attempts to identify and uniquely
define it are responsible for the complexity? In case, on the strength
of such examples, we may posit that if tests for thinking strategies must be
developed, this must be accomplished within the framework of mathematics
instruction. But let us first turn to another example.

Figure 2. Two ratio solutions from the
experimental group.

A Second Example: A Doubling Problem

Sixth graders were asked to respond to the "grains on the chess-
board" problem (Treffers, 1987a):
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The inventor of a chess game was awarded a royal recompensation.
He asked for a quantity of grain, to be determined in the following
way: one grain on the first field, two on the second, four on the
third, eight on the fourth, and so on, going on by doubling up to
the 64th. "A trifle," his king thought, "He asks for only a sackful of
grain." Was the king right?

The sixth graders working on this problem quickly developed the following
table as a result of collective efforts:

field number 1 2 3 4 5 6 7 8 9 10

number of grains 1 2 4 8 16 32 64 128

One of the pupils fired a warning shot. "One can stop at the 32nd field, and
then double the whole." The teacher confronted the group with this
proposal. A majority of "pros" rose against a minority of "cons." Yet, one
objection rose above the flood. "I don't think it is correct; look, for instance,
for the fourth field, there are 8 grains on it, half of them is 4, but there are
less than 4 grains on the second field." Everybody was convinced by this
reasoning (Streefland, 1980).

On closer inspection, this student's reasoning was remarkable. In
fact, this pupil simplified the proposition, accepted the erroneous state-
ment as though it was correct, and reasoned backward from the data in the
table to a contradiction, in order to invalidate the proposal. His solution
processes exemplify the types of thinking we would like students to develop.
In addition to correct identification of the mathematical context, we shall
consider these processesor rather their expressionsin the context of
general goals of mathematics instruction. To be sure, our examples also
serve to characterize the kind of mathematics instruction we have in mind.
We advocate realistic instruction, instruction that strongly relies on the
pupils' contributions, their own constructions and productions. This type of
instruction requires the availability of mathematical tools, interaction, and
dear connections to existing knowledge for the purpose of structuring the
mathematics that is to be produced (Treffers, 1987a; Streefland, 1989;
Cobb, Wood, and Yackel, 1988, 1989).

THINKING STRATEGIES AND REALISTIC MATHEMATICS INSTRUCTION

General Goals

Mathematics instruction is changing in the western industrialized
countries, and there is little need to repeat time and again that "mathematics
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counts," to admonish youth to "choose exact sciences," and to call for
"agendas for action." Development is on-going; agendas are being trans-
lated into standards in the United States (Commission on Standards for
School Mathematics, 1988), national curricula (National Curriculum Coun-
cil, 1989) and our Dutch Proeve (Treffers, 1989). All of these call for
instruction that goes beyond the traditional reproduction-directed teach-
ing of arithmetic. General goals are reformulated in terms of desired
abilities and attitudes. In the Proeve, for example, goals include developing
students abilities to relate real problems to mathematical content; to search
for connections, rules and patterns; and to use and to verbalize searching
and thinking strategies, such as trying, experimenting, simplifying, observ-
ing, exaggerating, estimating, and generalizing (Treffers, 1989). Additional
goals include developing a mathematical approach, applying a variety of
strategies and methods, interpreting mathematical results within their
original context, developing mathematical language, and reflecting on
one's own mathematical activity and that of others. Similar goals have been
formulated for the United Kingdom and the United States.

While the cited publications agree on basic skills and on the
importance of estimates, they disagree concerning the learning of algo-
rithms. While the United Kingdom would abolish algorithms, and the
United States would do some pruning, the Netherlands favors maintaining
those acquired by progressive schematization. There is general agreement
on reproducible knowledge such as that pursued by traditional instruction
as a long-term goal, although the emphasis has shifted to applicability. As far
as skills are concerned, the reproduction-directed tests will remain impor-
tant, although on behalf of goals such as those just mentioned, there is a
demand for tests above the level of stimulus and response. However, higher
levels of thinking are difficult to test when the goals change from reproduc-
tive to (re) constructive learning. Relating, searching, using and verbalizing,
trying, experimenting, and so on, require more open problems, which are
more difficult to score.

The shift from product to process goals in mathematics instruc-
tion entails moving between two poles:

acquiring developing

skills thinking strategies
routines general abilities
ready knowledge
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This broad spectrum must be covered by mathematical instruction if it is our
aim to develop tests for thinking strategies and for a mathematical attitude
that expresses itself as an intensive and long-lasting characteristic of pupils'
mathematical activity. This requires that a great many organizing and
structuring activities, such as those mentioned among the general goals, be
left to the learners.

Though the envisaged general goals are to be pursued throughout
the curriculum, the manner in which this may be done can be shown
examples, provided they are offered in their didactical context. Some
examples have already been given; other activities to promote thinking
strategies will now be discussed.

Teaching Making Strategies

Exploration

Some thinking strategies can be and have been taught by the way
of tricks: to solve the set problem algebraically, look for what is unknown,
which is called x (and y), and for its interrelations! Once the trick has been
understood it becomes an algorithm. But rather than telling the trick, one
can heuristically guide the learner to (re) construct it. Such instruction is apt
to promote an attitude of searching, developing, and constructing.

In the American literature the term "higher-order thinking skills"
is taxonomical, as are Bloom's (1956) "analysis," "synthesis," and "evalua-
tion." Sometimes one speaks about acquiring "mathematical power," or
"acquiring a mathematical point ofview" (Kaplan, Yamamoto, and Ginsberg,
1989; Schoenfeld, 1989). For our purposes, classifications of strategies are
premature. First we want to identify process characteristics of mathematical
activities, which may then be classified.

Thinking strategies evolve from mathematical activities. Acting is
being continued in thinking; it becomes mentalized. Although the word
"strategy" may suggest otherwise, it is not meant to imply consciousness; as
described by Hadamard (1945), someone's mathematical abilities can
manifest themselves without the person being aware of them, and before
being consciously applied they may have changed into mere tactics
(Freudenthal, 1983).

Thinking strategies are acquired by learning, which is not re-
stricted to the acquisition and the improvement of insight but includes
change of basic attitudes toward new problems. How can this learning be
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promoted by teaching? Instructing students the way computers are pro-
grammed is not promising, as it ignores the part pupils should have in the
production of their own strategies. Reinvention under the teacher's guid-
ance proves more useful, for example,

learning column multiplication and division according to
strategies of estimating and clever reckoning, which in the long
run, consolidate into the algorithms (Treffers, 1987b); and

learning to handily compare, order, and compose distribution
problems and their solutions, which gradually develops into the
relative comparison of ratios, and the addition and subtraction
of fractions with common denominators (Streefland, 1988a).

In these cases, local discoveries evolve into standard rules and
tricks; unconscious thinking strategies develop into conscious tactics. With
regard to the progress within mathematics, the student is working on a
higher level. As soon as acting on a new level has become familiar, ever
higher levels can be achieved. For the learner this means a reappraisal of the
level reached before. Let us illustrate this using an example from a course
on fractions:

If 4 children share 3 bars of chocolate, how much does each of
them get?

There are many ways to proceed: first, two bars of which each gets one half,
and then the third with one quarter for each; or for each of them in turn one
quarter of every bar; and so on. The matter operated on is the (imagined)
bars and their pieces, and the operations are those of dividing and attribut-
ing. In spite of the terminology used the parts involvedare pieces rather than
fractions (first level). This changes as soon as he mutual relations between
the parts are being considered (second level' . At an even higher level, the
pupils are operating on relations originatim from the distribution. These
relations can be elicited by free production tasks such as the monographs
shown in Figure 3 (third level).

The methods used to produce such monographs (equivalence,
applying commutativity, and so on) lead to the conversion to algebra of the
system of fractions (Streefland, 1987), which is carried by the pupils
themselves: "... the operational matter of the lower level becomes a subject
matter on the next level* (Freudenthal, 1973). Not until the child is able to
reflect on its own activity is the higher level accessible and can a reappraisal
of level take place, as happens in the case of the fraction monograph; it
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Figure 3. A fraction monograph Is a symbolic
repmsentation of relations discovered on a lower
level in the mathematizatlon process.

becomes a concrete source
for algebra (which is at the
first level again).
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Polya's systematic heuristics

Problem solving is one of the broad fields dominated by thinking
strategies, also known as heuristics. George Polya was the first to systemati-
cally study thinking strategies on a large scale, and to support their useful-
ness by innumerable examples. In a number of books, Polya attempted to
teach problem solving, leading his readers by the hand in order to help them
understand the ways of thinking that serve as roads to discovery and
invention. He gives specific suggestions such as (i) consider a special case of
the problem, (ii) look for an appropriate similar problem, (iii) invert the
order, (iv) assume that the problem has been solved, (v) make a drawing,
and so on (Polya, 1945). Both form and content of the approach (for
instance, inverting versus drawing) provide a rich variety of ways to solve the
problems: strategies, rules of thumb, know-how, and whatever may be
understood as heuristics. For sources Polya looked to himself as a problem
solver as well as to the history of mathematics.

Euclid's deductively systematized geometry is a one-way road of
argumentation: given to be constructed construction, hypothesis to be
proved proof. It is an outstanding example of system constraint, against
which Polya raises objections. This order, he argues, is just opposite to the
natural order of invention. His story of the origins of deduction differs from
Euclid's. Polya mentions Pappus, who centuries after Euclid pointed to a
kind of heuris6cs, called analysis, where things to be constructed or theo-
rems to be provcd are supposed as though they were already found or
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proven. Besides this backward solving or regressive arguing, Pappus consid-
ers the synthesis of forward solving or progressive arguing. For geometric
constructions Pappus recommends the Greek surveying tradition, which is
analysis: "Suppose what has to be done as achieved" and "draw a hypothetical
figure which assumes all conditions of the problem as fulfilled"! (Polya,
1945, p. 131). As a matter of fact, long before Polya, traditional textbooks
dealt with construction problems in a regimented heuristic way, starting
with an analytic drawing like Pappus' hypothetical figure. However, this
heuristic approach did not extend to theorems and proofs.

Perspective shifting

Kruteskii (1976) talks about rapidly switching from a direct to a
reverse train of thought and the flexible performance of mental processes.
Freudenthal (1978, 1979, 1990) speaks of change of sight or change of
perspective, while distinguishing several kinds of "shifting":

Change of sight, a complex field of strategies with the common
feature that the positions of what is given and what is sought for
(data and unknowns) in a problem or field of knowledge are
partiallyinterchanged; including the recognition of wrong
changes of sight. (1978, p. 7).

In the context of geometry this "field of strategies" includes choosing a
locally different view point, interchanging what is given and what is asked
for, and inverting the order of steps in a construction. Moreover, Freudenthal
points to four other big strategies:

Identifying the mathematical context.

Developing mathematical language (rather than getting it
imposed) above the ostensive and the linguistically relative
level, in particular at the level of conventional variables-and
functional description.

Grasping the degree of precision that is adequate to a given
problem.

Dealing with one's own activity as a subject matter of reflection
in order to reach a higher level.

The process versus the product

However marvelous Polya's trail-blazing work may be, it does not
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adequately answer our problem. Freudenthal (1983) suggests that
the most important drawback concerns the interaction of author and
readers. Rather than having readers thinking along with the author,
an author thinking along with his readers would be most desirable
didactically, though it is difficult to realize. Nevertheless, thinking
along with the pupils is what matters, both in mathematics instruc-
tion and in testing for higher abilities.

It would be helpful to know more about the origil and the
development of strategies. Yet what now looks like a written record is rather
an abridged and smoothed revision of the original historical process, thanks
to an activity of reorganizing, restructuring, redefining, abstracting, gener-
alizing, unifying, and so on. To be sure, all these verbs refer to strategies that
have driven the historical learning process. Polya (1945) was fully aware of
the drawbacks of smoothed out mathematics, which disavowed that its
historical development occurred

. heuristically, by searching, at random and intentionally, by
finding by serendipity or systematically. This then is heuristics: the
scribblings, as opposed to the clean copy as it is printed. (p. 40).

This, indeed, is what we are looking for. It is in the scribblings that the
mathematical activity of the problem solver is adequately reflected, and
where its characteristics surface as symptomsformal symptoms of math-
ematical activity as I called them (Streefland, 1980), which have to be
interpreted in their relation to the mathematical tools used, and within the
individual learning process or personal learning history.

Lists of heuristics are problematic. One argument is that such a list
asks to be memorized, like information being fed into the memory of a
computer. Is this the way to educate problem solvers? Catalogues of strate-
gies, as drawn up after Polya, have never been meant to be memorized (Davis
and Hersh, 1980). Schoenfeld (1987), for instance, preferred

. to create a microcosm of mathematical culture. Mathematics was
the medium of exchange. We talked about mathematics, explained
it to each other, shared the false starts, enjoyed the interaction of
personalities. In short, we became mathematical people. (p. 213).

He and his students were acquiring "mathematical power" and a "math-
ematical point of view." What really matters are the pieces of scrap paper as
opposed to the fair copy, including the mental ones of the pupils. Teachers
need to think along with the pupils, as well as to help them to become
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conscious about the strategies applied in their mathematical activities
(Freudenthal, 1990).

Gradually the attention has shifted from learning to teaching,
from thinking strategies to their symptoms as observed in learning pro-
cesses, and consequently to heuristicsnot in the form of a checklist for
learning mathematics, but as guides for heuristic mathematics instruction.

Instructing and testing heuristically

A lesson involving the story "Grains on the Chess-board" (Treffers,
1987a) reflected this kind of instruction. A mathematical idea familiar to the
teacher was to be grasped by the pupils, through a series of decisions and
choices. The teacher would cautiously step in wherever the pupils' proposals
and contributions asked for it, and would facilitate discussion about com-
pounding units with comments such as the following:

The counting lime: 1 grain per second, which is 64 seconds for
the seventh, that is, about a minute, 64 minutes for the 13th,
that is about one hour, and so on. The one who is charged with
the 64th would need about 250 billions of yearsl

The needed volume: the eleventh field gets 1024 grains, that is,
about a thousand, weighing 30 grams, or filling a measuring
glass of 50 cm3. The total grain would fill a cube with an edge of
8 km.

The shift involves thought-experiments in the classroom and
constantly grasping the degree of precision that is adequate to solving the
problem:

In his mind the teacher has prepared a clean copy, which he ex-
pects the learner to produce, and even a somewhat vague series
of scribblings leading to the clean copya plan, which in the
actual experiment must be modified according to the student's
cooperation. This is what from olden times they called heuristic
instruction, quite unlike the "modern problem solving," which
can mean anything from letting the student muddle up to
having him tied to leading strings. (Freudenthal, 1983, p. 4).

For the teacher it means thinking along with the pupils. So mathematics
instruction becomes more than a mere objective body of knowledge and
techniques.

231 225



Thinking Strategies In Mathematics Instruction: How Is Testing Possible?

PROBLEMS THAT TEST FOR GENERAL GOALS

In this section, we will discuss how to test for general goals, by what
kind of problems, and where to find such problems, beginning with a series
of examples.

Some Examples WIN Variations

First example: Buses. Pas-
sengers stepping on and off buses
at stops has proved an appropri-
ate informal context for adding Figure 4. Buses as a context for adding and
and subtracting in elementary subtracting.
Dutch textbooks. Figure 4 shows
two different versions of the bus
stop problem. Note that the
change at the stop can be de-
scribed by pairs of numbers (a
suitable access to negative numbers?). A more open variant is obtained if the
number of passengers before the stop is also omitted in the data.

are
Second example: Changing money. Among other instruments, tests

being used in the MORE (Methoden Onderzoek Rekenonderwijs)
project, a comparative study of
instructional methods. One of
the items shown in Figure 5 gives
15 florins in a purse, three ob-
jects costing 7, 6, and 2 florins,
respectively, and various choices
for the amount of change a buyer
might receive. The instructions
are to buy one item and cross out
the correct change. Interesting
variants of the problem include

12 (i) omitting the correct amount

0 3 7
of change or (ii) omitting the
prices on the merchandise.

Figure 5. Another context fur addition and
subtraction: making change (Van den
Heuvel-Panhuixen).

12 4

1 2

14 Third example: Sharing
15 fairly. Distributing has proved5 11 6 highly productive as an access to

fractions, in history as well in
9 13 teaching (Streefland,1988b) . For

10
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instance: If four children share a bar of chocolate, each gets one quarter of
a bar. After a while such distributing activities can be inverted: How many
children shared how many bars ifJohn got a quarter ofa bar? After three bars
for four childre: one may ask for the origin of bar.

Fourth example: Division with remainder. What is the result of the
division 6394 + 12 = ? Various results are proposed,

a. 532

b. 533

c. 532 rem. 30

d. 532.84 rem. 4

e. 532.833333

f. about 530

and students are asked to invent appropriate stories for each.

Fifth example: Scale. Once scale has been introduced, it applies to a
variety of situations. Figures 6 and Task students to think about scales in direct
and reverse situations.

Sixth example:
An experiment on contents.
Cans, barrels, and bottles
of different shapes and
capacities are filled, unit
by unit, steadily with con-
stant velocity (see IOWO,
1976); as a thought-ex-
periment this situation
involves serious math-
ematics, starting from pre-
dictions, which are sup-
ported by estimates and
qualitative graphs such as
those in Figure 8. Relat-
ing the changing cross-
section to speed with
which the fluid rises pro-
vides a remarkable change

Figure 6. A scaling exercise in which students are
asked to determine the distances between places on
the sign posts.

OW.

...
I....,7v ) fillintherealdistances%i

(kilometers) on the
signposts

o ma. km
Scale 3t--t

111111:1114.1
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Figure 7.Given a map, students
must determine when to place a
puticula signpost.

3 km
Scale H

.;1111111;i11

of perspective, which gives rise to functional ideas. (We may mention here the
Italian mathematician Cavalieri (1598-1647), who compared volumes by the
principle of the "mounting" cross-sections.) Pupils are asked to consider the
sphere-like bottle. Qualitive reasoning on speeds may run as follows:

At first the level will rise, and as the sphere gets wider the level
will rise more slowly. At the middle, the opposite happens as
the sphere gets narrower. In the neck, the level rises at the
same rate since it is equally wide.

The same story can be read in an unsophisticated graph. After a few
(thought or actual) experiments like this, the problem can be inverted:

1

OW V . V

Figure 8.
Volume
estimates and
qualitative
graphs.



Streefland

given a graph, the question is asked, What does it tell about the kind of
container? There may also be a choice of bottles and graphs to select from.

The Examples More Closely Considered

The examples we have considered all have a common element: a
direct problem in the first instance is afterwards inverted. Of course, this is
no new idea. Traditional arithmetic applied it in splitting quantities as a
counterpart to adding, indirect sums like 7 +? =12 were derived from direct
ones, and similar ones were derived for the other operations. It was,
however, a restricted and hardly paradigmatic repertoire, (see
Freudenthal, 1978). But let us review the examples more closely.

Buses. Of course the variants of the direct sum can be solved by trial
and error, but they can as well challenge pupils to change their perspective
and solve the problems more systematically, that is, by expressing the
difference by means of number pairs. Unlike the purely arithmetical
indirect sums, these problems ask for comparing states or situations, which
stimulates fresh thinking. Indeed, the required mental actions are meaning-
ful on account of the context, which strongly suggests comparisons and even
allows for a variety of solutions.

Changing money. Ac-
cording to some authors, heu-
ristic means not yielding to ob-
stacles (Polya, 1945; Streefland,
1988a; Lesh, 1990) . As shown in
Figure 9, a student must some-
times improvise. If prices are
omitted, new comparing situa-
tions arise, which ask for more
imaginative reflection than tra-
ditional indirect sums require.

Sharing fairly. Given
the share per person, the quest
of the original distribution prob-
lem refers the solver to the con-
text source. At the same time
the results, 1 for 4, 2 for 8, and
soon, anticipate the future sub-
ject of equivalent ratios and frac-
tions. The compound share

Figure 9. A student adds Ina correct amount of
change when it is missing from the given
options.

2

1

3

12

23

6

7

15 )(

13

11

6

4

9

14

220



Thinking Strategies in Mathematics Instruction: How Is Testing Possible?

anticipates the addition of fractionswith different denominators (Streefland,
1988b) . All of these examples illustrate the iterative function of reflection in
long-term learning processes: prospect and retrospect included in one
activity (Kilpatrick, 1985).

Division with remainder. This operation does not acquire its full
meaning until diverging results can be fitted to appropriate contexts. This
task deserves attention. Research has revealed that pupils often don't know
what to do with remainders. (Carpenter, Lindquist, Matthews, and Silver,
1988.)

Scale. Starting one's solution with an attempt to place the signposts
may be considered as a symptom of testing hypotheses, provided the
distance to indicated cross-roads is methodically being investigated. Starts at
the cross-roads show strategical changes of perspective. In both cases, the
actual strategy can only be diagnosed on the strength of paper-and-pencil
work or by close observation.

Contents. The direct (thought or actual) experiments involve all
three dimensions of the cans and so on, on which content depends. Because
of the special attention put to the variable height, the changing cross-section
also draws attention and comes to the fore. As a consequence, attention will
shift from the changing height to the cross-section, and their interdepen-
dence (or connection) is reflected by the graphic image. Conversely, if a
graph within this context is given, it can be translated into a story of change
that is related to the shape of a bottle.

Design of Heuristic Problem

Change of perspective

The common features in the preceding series of problems can
hardly be accidental, but why were all these problems given the same form?
A posteriori this fact seems to betray a common strategy of design, although
this does not imply that the designers were a priori conscious about it
(Treffers, 1987a). So what does this strategy mean?

Against the background of the big strategy of change of perspec-
tive, which is applied to create mathematics and solve mathematical prob-
lems, another change of perspective took place: a strategywithin mathemat-
ics was lifted to the didact level, where it has resulted in the design of
problems, assignments, and queries that may incite strategical behavior.
One may even posit that as a didactical strategy, change of viewpoint was
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used as a building block of a theory of design for heuristic mathematics
instruction.

This means that activities like designing mathematics instruction
(lessons, courses, programs), developing tests for general goals, and (devel-
opmental) research can be interpreted as heuristic processes, where changes
of perspective are applied as strategies. Their successful application reflects
a didactical attitude that does not emerge spontaneously but develops in the
course of the activities. Observing long-term individual learning processes
occupies a central place in developmental research (Streefland, 1988b). It
is useful for gaining a full view of the phenomenon of change of perspective,
both by the teacher and the learner:

Learning processes are marked by a succession of changes of
^erspective, which should be provoked and reinforced by those
who are expected to guide them. (Freudenthal, 1990.)

Change of linguistic level

Are there more thinking strategies that can be raised to design
strategies? I think linguistic level has this characteristic. Freudenthal, talked
about developing mathematical language above the ostensive and the
linguistically relative level, in particular at the level of conventional variables
and functional description (1973, p. 2). This strategy involves making
students conscious of mathematical relationships and facilitating their
verbal communication, as can be seen in the following two examples.

Sharing fairly. "In a restaurant 24 children order 18 pancakes.
Distribute the pancakes among those children." As shown in Figure 10, one
student, Ann, drew the children sitting at one table. She soon changed her
drawing and put the children at two tables. She could have gone farther, but
she got fed up with drawing and asked for help, which was provided. The
linguistic level could be changed by telling the children, "Make a sketch (a
symbolic picture) showing that 24 children sit around a table where 18
things are to be distributed. Make a suitable sketch for two or more tables!"
Making symbolic pictures is a way to get pupils heavily involved in the
production of symbols and other tools to do mathematics, which includes
making them conscious about mathematical relationships.

Content. Among the barrels and bottles of the (thought or actual)
experiments there may be cylinders. Linguistic style can develop from
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Figure 10. A sbulool's symbolic picture for the fair sharing problem.

descriptions such as, "If this measure is added, the water rises that high," up
to introducing decimal fractions in order to draw up and read tables such
as this one:

number of deciliters 1 2 3

water level (in cm) 1.7 3.4 5.1

By experimenting, the pupils establish a basis for operating insightfully with
decimal numbers. They literally experience that 1.7 + 1.7= 2 x1.7 is not 2.14,
which is a common mistake among pupils who underwent a rule-directed
training. In the above approach, notions on
decimal numbers and operating behavior Figure 11. Graphical solutions.

develop simultaneously. In the wake of such I1
multifarious experiences, pupils themselves
can develop algorithms for the operations by It I
progressive schematizing (see Treffers,
1987b) .

As shown in Figure 11, a graph may
facilitate another change of perspective, that
is, from the repetitive addition of the mea-
suring unit (or multiplication) to the divi- --+ v
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sion of the height of the cylinder by it. If measured in such units-1.7cm in
the present casethe height of the cylinder represents its content in
deciliters. This insight can subsequently be verbalized and finally be put into
an algebraic formula.

REALISTIC INSTRUCTION RECONSIDERED

In the examples above, the design of problems (and of larger parts
of courses) is the source of thinking strategies. Change of perspective is only
one such thinking and design strategy characteristic of realistic (heuristic)
instruction. Before discussing strategies for realistic instruction, let us
consider some of its goals.

The Goals if Realistic lastractlea

The indicators of a mathematical attitude are many. A few of its
characteristics are:

creativity;

organizing and structuring the data and phenomena in the
problem;

discovery and use of connections, analogies and isomorphisms,
that is, similarities in context or in structure;

modeling, abstraction, generalization, and transfer;

change of approach, of viewpoint, of thinking level (Skemp,
1979);

forming and changing hypotheses;

circumventing obstacles (for instance by adding lacking infor-
mation);

breaking away from data in order to transgress fixed limits;

being prepared for new problems and situations; and

being able to reflect on one's own and other's thinking and
acting.
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These are also the goals of realistic mathematics instruction. To develop tests
for these traits requires knowledge of children's thinking, as we discuss next.

Sew Strategies ter Realistic instruction

The grand strategy by wilich mathematics teaching and learning
are related to each other and understood in their mutual relation is couched
in the principle of permanent change of viewpoint in both instruction and
in instructional research. To take the pupils' viewpoint means, as we have
shown, trying to have them disclose their thoughts. This allows us to think
along with them and to stimulate them to express their strategies of acting
and thinking and to become conscious of them.

How do we do this, and what does it mean for instruction? First of
all we repeatwhat has been stated earlier, namely, that evaluations, tests, and
any other tools for determining the effects of instruction, must belong to the
instructional process itself (Cobb et al., 1989, Carpenter and Fennema,
1989). In this context, let us look at the tenets of realistic mathematics
instruction embodied in the Wiskobas program, as formulated by Treffers
(1987a; Gravemeijer, van den Heuvel, and Streefland, 1990), that is, con-
structing by concretizing.

Let us consider division, for example. If division is to be more than
a formal operation, the meaning of the remainder must be included in the
learning matter. An example, borrowed from a lesson from a refresher course
for primary school teachers (Dolk and Uittenbogaard, 1989) will illustrate
how to do this. It is a model lesson in which 8- to 9-year- olds, who were never
taught division, are asked to construct solutions for two division problems:

Tonight, 81 parents will visit the school. The tables seat six
persons each. How many tables are needed?
A coffeepot holds 7 cups. If each parent is to get a cup, how
many pots have to be prepared?

By schematizing at various distances from reality, the children construct
their solutions, keeping the building bricks for the long-term learning of
division. They are learning to provide the remain der with a meaning that fits
the cor -xt, such as, an extra table has to be reserved for the "remaining"
parents. Figure 12 shows two student solutions to the first problem. The
second question is answered by similar considerations.

Realistic instruction offers the pupils the opportunity to produce
their mathematics by means of their own constructions. This is accomplished by
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explaining events at bus stops, deter- Figure 12. Two student solutions to the
mining changes and prices, acting table problem.

in distribution situations, describ-
ing the results, comparing different
situations, devising situations for
given distribution results, develop-
ing methods for the arithmetical op-
erations (such as the division with
remainder), thinking up situations
for prescribed operational results, and
finding distances at cross-roads and
cross-roads if the distances are given.

All activities of the pupils
are embedded in the context of con-
crete situations (Treffers, 1987a;
Streefland, I988a). These are cho-
sen not arbitrarily but with a con-
stant eye on what is to be learned:
adding and subtracting natural num-
bers, equivalence and comparison
of fractions and ratios and related
operations, and so on. Connections r`l+'.7-(7-)14"-t6+6÷6+61t*'6+41-4)0k +3'4
are made from real situations to the
resulting mathematics and, wherever
possible, the other way round, as in
the division with remainder and the content problems. Indeed, deriving the
mathematics of real situations asks for its counterpart, the realization of
mathematical matter, which means interpreting and explaining it within a
fitting context. Placing the signpost in the partially mathematized reality of
the map mentally in order to determine the crossings at distances equal to
those indicated on the signpost and so on, is another example where
consciousness about the change of perspective plays an important role.

Name: 2.2.bcv at '2o

2 ig) (§j

/61

Nam.: 0011nArnAt,

2 Fables

Let us emphasize it once more: what matters is not merely con-
structing, but constructing by concretizing. That is, realities are chosen as a
source of mathematical ideas, operations, and structures which are to be
learned, and once this level has been reached, they are not discarded but
rather are cultivated as fields of application.

Developing tools for the transition from concrete to abstract

To bridge the distance between real problems and their math-
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ematical counterpart the pupils need adequate tools. These are forged by
the pupils themselves in a process of developing mathematical ideas that
turn the concrete into the abstract. For example, the pupils themselves
develop methods for the operations on natural numbers, and later on
decimal fractions, by progressive schematizing. They develop schemes for
seating arrangements in order to reduce large distribution situations to
more manageable proportions, which are again progressively reduced.
They develop tools to compare and order ratio situations, and to determine
their relative differences, as in the proportion table. By further schematizing,
their efforts will eventually lead to more standard methods.

Attention should notbe restricted to the means of schematization
There is a wide variety of tools and instruments, as well as symbols, patterns,
(visual) models, notations, and so on. In the case of the seating arrange-
ments, the construction of a symbol that visually refers to the sharers around
and the pancakes on the table is critical to the development of ratio and
fraction ideas. Schematizing (Figure 13) takes place against the background
of the story on seating arrangements. This context situation so forcefully
influences the schematization that it serves as a model situation. To say it
even more emphatically: the context itself functions as a situation model (see
Streefland, 1988b).

Even from this brief exposition it must be clear that raising one's
level of thinking from concrete to abstract, as understood here, strongly
differs from what is known as Bruner's modes of representation. Rather than
the concrete material (whether palpable or mentally represented), it is the
distance from (or nearness to) the real situation that counts. Guided by the
teacher, the pupils move from the concrete level to that of the formal
procedures and knowledge of the subject matter when it is systematized,
through informal approaches and strat-
egies of their own. The aids and tools Figure 13. A
they develop are to detach them from schematization of
the concreteness and to garnish the the pancake
intermediate level, where material, sharing
borrowed from the context, undergoes Problem.
all kind of transformations (shorten-
ing, streamlining, and symbolizing),
until rules and formulas are produced.
It is the way to prepare for and eventu-
ally to realize the intended abstrac-
tions. As the learning process goes on,
levels are being reappraised: for in-
stance, what once has been abstract
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knowledge of number will become a concrete source of algebra (Vanden
Brink, 1985).

Free productions to promote reflecting

Reflection on one's learning process can be incited by suitable
assignments for free production, such as making a booklet for next year's
class that contains easy, average, and difficult sums (see Streefland, 1988b),
or thinking up a test on a certain subject or theme. Besides revealing states
of affairs in individual learning processes, such assignments may reflect the
received instruction. Developmental research has proved their influence on
helping students to realize higher-order goals.

Interactive instruction and learning ass social activity

The open, realistic approach is apt to loosen the pupils' behavior.
Reality as a source and a domain of application helps problems become
concrete and imaginable. As everybody becomes involved, reactions of
different qualities and levels are elicited. By developing mathematical tools
together pupils can progress together, even though there is much personal
freedom in the construction and production process and in the different
levels of schematizing. There is enough room during the lesson for every
pupil's personal contributions: solutions can be paralleled; ideas exchanged;
approaches on different levels of schematizing considered and compared;
arguments criticized, refuted, amended, supported; and ways to continue
the learning process negotiated.

By promoting reflection, group activity contributes to the indi-
vidual learning processes; in fact, it is the only way to arrive at genuinely
individualized instruction. Interaction creates a social environment of
learning, where beyond being accepted, the children's ideas and informal
strategies and procedures are encouraged and exploited on behalf of the
individual and collective activities of progressive mathematizing.

Intertwining learning strands to structure the mathematics

Fair sharing is at least as old as fractions. Traditional instruction,
however, derives fractions from an impoverished form of fair sharing, that is,
within the unit. With this material a straight course is sailed to the arithmeti-
cal rules for fractions. Distribution situations with more objects and more
sharers are richer by far. By structuring the company of sharers, the distribu-
tion itself is structured and simplified. By seating the sharers at different
tables, the children construct relations between portions, partitions, and
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sharers, which eventually produce the mental objects of fraction and ratio.

By this switch from objects to sharers, ratio and fractions are
intertwined. Ratios put order on distribution situations using comparison: six
bars for eight children is the same as three bars for foureverybody gets the
same. The pattern of table arrangements works as an instrument to create
equivalent tables, which concretizes the equivalence class for fractions.

Figure 14 shows another example in which learning strands are
mixed (Streefland, 1985). Students are shown two cakes and asked: Which
cake has more pieces of ginger? From which cake will a bite contain more
pieces of ginger? By intertwining area with the counting of large quantities,
learners become early familiar with density. The pupil faces two competing
ideas: absolute numbers and density. To settle the dispute the teacher tries
to make the learners conscious of these competing ideas. Natural connec-
tions foreshadow mathematical ones, which is the proper aim. The structure
of the envisaged mathematical knowledge is from the start predesigned in
the context and the mathematical activities. Intertwined realities and math-
ematics are of great help in applications.

Figure 14. The
ginger take
problem
exposes
students to the
notion of
density.

Let us repeat that realistic mathematics instruction has been
interpreted here in the spirit of the Wiskobas project of the former Institute
for the Development of Mathematics Education (IOWO). However,
mathematizing in a process of guided rediscovery can be strongly empha-
sized, both with regard to horizontal-vertical mathematization and to the
freedom of the learner. This holds for teachers and learners equally.
Disregard for reality connections and being too focused on reality are
opposite attitudes, which may distinguish algorithmically gifted from
algorithmically less gifted pupils, respectively. Teachers should steer a clear
course between the two.
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Testisa la Ras Nit Mathematics lastlictis

Indications for improved testing are found in the general goals
and basic principles of realistic mathematics instruction, and in the heuris-
tics. The MORE project (Gravemeijer et al., 1990) focuses on tests that reveal
more than mere reproducible knowledge: Tests are intended contribute to
learning; to give pupils the opportunity to show their knowledge and
abilities, including solving procedures and strategies; to cover the syllabus,
which does not include a demand for scoring objectivity; and to be easily
administered in the classroom. Written tests that satisfy these conditions
have been developed, even for young children who have notyet received any
arithmetical/mathematical instruction. As expected they also shed light on
higher-order abilities. Figure 15 shows three items borrowed from the
MORE project.

Figure 15. Nonstandard test questions: problems that ask children to keep score, share
candy bars, and create sums of 24.

24

26.1-24
262.24
214.24
28-4.24
295.24
304-24
31.7.24
324.24
33.9.24
34-10.24
35-11.24
36-12.24
37-13.24
38-14.24
30-16.24
20+4.24
21 +3.24

Testing in realistic mathematics instruction includes

Problems with a piece of scrap paper like the following: "Tim
and Mieke play together a game. They note down their points.
What are the final scores? Figure it out! Write the answers in
the empty boxes! You may use the piece of scrap paper to do
the work."

Problems that ask for anticipating activities such as, doing
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sharing problems before instruction in fractions; counting large
unstructured quantities; structuring quantities; and repeated
addition, multiplication, and multiplication tables.

Assignments for free productions such as 'Think up as many
sums with the result 24 as you canl"

Inventing a problem if a story is given, such as, "A tourist drove
from Amsterdam to Paris. After two thirds of the distance he
had one quarter of gas left in the tank...."

LoJking for missing information, such as, "The broadcast says
there is a queue of 5 km at Bottleneck Bridge. How many cars
may be involved?"

Cognitive conflicts such as that shown in the time-distance
graph on a running competition pictured in Figure 16. The
students are asked, (i) "Did the runners collide?" (a question
suggested by the well-known inclination to interpret the graph
as a path) and (ii) "After how many seconds/meters did they
catch up?" (a question that may help in answering the first
one). These questions may be repeated with the time-speed
graphs shown in Figure 17.

Inviting changes of geometrical perspective; for example,
students are asked if the pictures in Figure 18 could all repre-
sent the same situation. They are also asked change-of-perspec-
tive questions such as, 'Jan thinks that1/2+1/2equals 2/5. Is he
right? Why or why not? What might he have thought?" and
multiple-choice questions with no acceptable answer, or to
think up their own multiple-choice questions with plausible
looking answers.

Estimating combined with clever calculating.

Assignments that ask for combining former activities, such as
the problem posed in connection with Figure 19: "In this
ground plan of paths around a cross-like lake, a route from A to
B along the paths must be as short as possible. How many such
routes are there?" This problem appeals to knowledge about
lattices, the Pascal triangle, and the paths model for multiplica-
tion, and thus can be relatively new to the pupil (Van de Kooij,
1989).
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Figure 16. Students must resolve cognitive conflicts arising from this graph. Do
these runners collide?
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Figure 17. This time-sped graph prompts the question, Do the runners collide again?
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Figure 18. A question of perspective.
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In general, assignments
in which two or more situations
must be compared are very suit-
able for realistic mathematics in-
struction. This also holds for the
comparison of one's own knowl-
edge or point of view with a given
situation or story, for instance in
the form of

Figure 19. How many paths from A to B?

A

A little thinking or
interesting story, such as,
"A rope ladder hangs on a
ship overboard and just
touches the water. During high
tide the level of water raises 20 cm
per hour. The distance between the rungs of the ladder is 30
cm. How many rungs will be under water after 5 hours?"

Problems designed for testing on various levels, such as, "The
train at the amusement park, shown in Figure 20, takes 10
minutes for the short ride. How long does it take for the long
one?"

Figure 20. A problem inviting
responses of various levels of
sophistication.

Short ride

Long ride

10

6; 3

Two-stage tests are alter-
native kind of evaluation (de
Lange, 1987). The first stage is a
traditional timed test, which is re-
turned to the student with correc-
tions and annotations added; the
second stage (home-work to be
delivered three weeks later) is an
essay-like elaboration of the first-
stage subject matter. Students
used, critically analyzed, and re-
fined their first-stage mathemati-
cal models, which raised their level
of thinking through reflection.
Other possibilities are log books
kept by the pupils, as proposed by
the NCTM Standards, and essay
assignments on a given theme.
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IMPLICATIONS FOR FUTURE RESEARCH AND DEVELOPMENT

Rather than artificially separating development and research
from each other, attention should be paid to developmental research, which
includes the development of prototypes of courses, and the shaping of
theory on learning and teaching corresponding to the prototypes. A provi-
sional course is composed of thought experiments that are to be checked
and revised by means of the long-term class instruction experiment and the
researchers' observations, including various forms of clinical interviews.
Clinical interviews reveal the learning processes of pupils, teachers, and
researchers, and are sources for adaptations of the course and the shaping
of theory. New instruction, derived from the pktotype, by other teachers
and their classes, constitutes a reconstruction of the original experiment
(see Streefland, 1988b).

Research in the United States, such as that of Cobb, Wood, and
Yackel (1988,1989) and Carpenter and Fennema (1989), is a first step on
a road to a development that has taken place in the Netherlands in the past
two decades (Treffers, 198'7a). Although there is still a long way to go, this
research adds new evidence on the fruitfulness of our approach. The
Milwaukee project conducted by the National Center for Research in
Mathematical Sciences Education (of Madison, Wisconsin), undertaken in
cooperation with OW&OC of Utrecht State University, provides further
support for the same realistic theory on which it is based.

These research programs are switching the emphasis in math-
ematics education: (i) from teaching to learning, (ii) from reproducing to
reconstructing, (iii) from imposing mathematical structure to creating it
through the analysis of realities (Freudenthal, 1983), (iv) from evaluational
to developmental research, (v) from "objective" to intrinsic scoring, and (vi)
from Bruner to Van Hide levels.

We believe that, for higher-order abilities to result from math-
ematics instruction, one must first sow and nourish them. To accomplish
this, mathematics instruction must satisfy specific conditions. It should be
realistic, corresponding to the historical learning process of mankind. To
enable pupils to perform such reconstructions, teachers should plan in-
struction that facilitates and exploits pupils' contributionstheir own
constructions and productions. So teaching itself becomes heuristic. Be-
cause it must take into account the pupils' efforts, it cannot be based solely
on the fixed ideas of the teacher, and therefore it contributes to the idea of
mathematics education as a complementary learning and teaching process
(Freudenthal, 1983).

24.5
243



244

Thinking Strategies in Mathematics Instruction: How Is Testing Possible?

REFERENCES

Bell, A., et aL (1981). Choice of operation in verbal problems with decimal
numbers. Educational Studies in Mathematics, 12, 399-421.

Bloom, B.S. (1956). Taxonomy of educational objectives: The classification of educational
goals; Handbook I: Cognitive domain. New York: David McKay.

Carpenter T.P., Lindquist, M.M., Matthews, W., and Silver, EA. (1983). Results of
the Third NAEP Mathematics Assessment; Secondary School. Mathematics Teacher,
76, 652-659.

Carpenter, T.P., and Fennema, E. (1989). Building on the knowledge of students and
leathers. University of Madison, WI: National Center for Research in Mathematical
Sciences Education.

Cobb, P., Wood, T., and Yackel, E. (1989). Assessment of a problem-centered
second grade mathematics project. In D. B. McLeod and V. M. Adams (Eds.),
Affect and mathematical problem solving: A new perspective. West Lafayette, IN: Purdue
University, pp. 6.7.

Cobb, P., Wood, T., and Yackel, E. (1988). Coping with the complexity of class-
room life. Paper. West Lafayette, IN: Purdue University.

Commission on Standards for School Mathematics of the NCTM. (1988). Curricu-
lum and evaluation standards for school mathematics. Reston, VA: National Council of
Teachers of Mathematics.

Davis, PJ., and Hersh, R. (1983). The mathematical experience. New York: Penguin.

de Lange, Jan J. (1987). Mathematics insight and meaning. Utrecht: Research Group
on Mathematics Education and Educational Computer Centre (OW &OC).

Dolk, M., and Uittenbogaard, W. (1989). De ouderavond. Willem Bartjens, 9(1),
14-20.

Freudenthal, H. (1973). Mathematics as an educational task. Reidel: Dordrecht.

Freudenthal, H. (1978). Weeding and sowing. Reidel: Dordrecht.

Freudenthal, H. (1979). How does reflective thinking develop? Proceedings of the 3rd
International Conference for the Psychology of Mathematics Education. Warwick, UK The
University of Warwick.

Freudenthal, H. (1983). Is heuristics a singular or a plural? In R. Hershkowitz
(Ed.), Proceedings of the 7th International Conference for the Psychology of Mathematics
Education. Rehovot Israel; pp. 38-50.

Freudenthal, H. (1983). Didactical phenomorsology of mathematical structures. Reidel:
Dordrecht.

Freudenthal, H. (1990). Revisiting mathematics education. Dordrecht Kluwer.

Gravemeijer, K., van den Heuvel, M., and Streefland, L (1990). Contexts free
productions tests and geometry in realistic mathematics education. Utrecht Research
Group on Mathematics Education and Educational Computer Centre (OW&OC).

Hadamard, J. (1945). The psychology of invention in the mathematical field. London:
Dover.

1"
,r4



Streefland

Hart, K.M. (Ed.). (1981). Children's understanding of mathematics. London: John
Murray; pp. 11.16.

IOWO-Team. (1976). Five years IOWO. Educational Studies in Mathematics, 7(3),
285-289.

Kaplan, R.G., Yamamoto, T., and Ginsberg, H.G. (1989). Teaching mathematics
concepts. In L. Resnick (Ed.), Toward the thinking curriculum: Current in cognitive
research. ASCW Yearbook, pp. 59-81.

Kilpatrick, J. (1985). Reflection and recursion. Educational Studies in Mathematics,
16, 1-27.

Kooij, H., van der, Het eersts HAWEX-amen. (1989). Messwe Krulount, 9(1), 5-14.

Krutetskiiv V. A. (1976). Psychology of mathematical abilities in schoolchildren. Chicago:
University of Chicago Press.

Leah, R. (1990). Computer-based assessment of higher-order understandings and
processes in elementary mathematics. In J. Kuhn (Ed.), Assessing higher-order
thinking in mathematics. Washington, DC: American Association for the Advance-
mtnt of Science.

Lohman, D.L. (1987). Two implications of cognitive psychology for educational
measurement. Address to the Division of Learning and Instruction Institute for
Educational Research in The Netherlands. Utrecht.

Mislevy, R.J. (1992). Foundations of a new test theory. In N. Frederiksen,
Mislevy and I.I. Bejar (Eds.), Test theory fora new generation of tests. Hillsdale, NJ:
Lawrence Erlbaum Associates.

National Curriculum Council. (1989). Mathematics in the national curriculum.
London: Author.

Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.

Schoenfeld, A.H. (1989). Teaching mathematical thinking and problem solving.
In L. Resnick (Ed.), Toward the thinking curriculum: Current cognitive research. ASCD
Yearbook; pp. 83-103.

Schoenfeld, A.H. (1987). Cognitive science and mathematics education. London:
Erlbaum.

Skemp, It. R. (1979). Goals of learning and qualities of understanding. Mathematics
Teaching, pp. 44-49.

Streefland, L. (1980). Makro-struldurele verkenningen voor het wiskundamderwijs.
Utrecht Institute for the Development of Mathematics Education (IOWO).

Streefland, L (1987). Free production of fraction monographs. In J. C. Bergeron
et al. (Eds.), Psychology of Mathematics Education-Xl, vol. I. Montreal: University of
Montreal; pp. 405-410.

Streefland, L (1988a). Realistisch breultenonderwijs. Utrecht: Dutch Research Group
on Mathematics Education and Educational Computer Centre (OW&OC).

Streefland, L. (1988b). Reconstructive learning. In A. Borbas (Ed.), Proceedings of
the 12th Annual Meeting of the International Croup for the Psychology of Mathematics
Education. Veszprem, Hongarije; pp. 75-92.

245



241

Thinking Strategies In Mathematics Instruction: How is Testing Possible?

Streefland, L (1989). Realistic mathematics education: What does it mean? Paper
presented at the XIth Psychology of Mathematics Education-North American
Chapter of the International Group, New Brunswick, NJ: Center for Mathematics,
Science, and Computer Education, Rutgers.

Streefland, L (1985). Search for the roots of ratio: Some thoughts on the long-
term learning process (Towards ....a theory), Part II: The outline of the long-term
learning process. Educational Studies in Mathematics, 16, 75-94.

Treffers, A. (1987a). Three dimensions: A model of goal and theory description in
mathematics insbuction--The Wiskobas Project. <Dordrecht: Reidel.

Treffers, A. (1987b). Integrated column arithmetic according to progressive
schematisation. Educational Studies in Mathematics, I8, 125-145.

Treffers, A. (1989). P,veve van een nationaal programma voor het reicen-
wiskundoondereoijs op de basis school. Deel I Overzicht einddoelen, Zwijsen, Tilburg.

Vanden Brink, F.J. (1985). Class arithmetic books. Proceedings of the 7th Psychology of
Mathematics Education, North American Chapter of the International Group. Columbus,
OH: Ohio State University; pp. 282-286.

r'



PART III: New Perspectives on
Classroom-based
Assessment

253
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MI to Assess StudentMIN
am Cognitive Growth

Carolyn A. Maher, Robert B. Davis,

and Alice Alston

INTRODUCTION

In the course of teaching a typical mathematics
lesson, a teacher must make a myriad of decisions as he or she is attempting
to meet the needs of the various individual students in the class. Little real-
time information is available to the teacher to guide these decisions, and
there is little time for deciding. What is involved kiere is a micro level of
assessment, done in seconds or fractions of a second. Despite the necessarily
hasty context in which this assessment occurs, it is precisely this level of
evaluation of a student's work and needs that ultimately has the greatest
impact on the student's progress.

In this chapter we report a study made by the authors, in coopera-
tion with Linda, a sixth grade teacher, as she worked to help her students
learn about fractions. During mathematics classes, Linda had the students
work in small groups. Avideo camera recorded the discussion in one of these
groups. In subsequent analysis of these videotapes, we focused on three
main questions: (i) What representations did the students make for each
mathematical situation, and how did these representations help them (or
hinder them) in dealing with the situation? (ii) How did these representa-
tions change over time, as a result of conversations among students,
experience with concrete materials (or other forms of experience), and
teacher interventions of various sorts? (iii) How successful was the teacher
in making correct identifications of student representations and in helping
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students to improve these representations whenever that was appropriate?

The three of us (and several colleagues, including Judith Landis,
Amy Martino, Arlene Marasco, and Tom Purdy) study student ideas, be-
cause itwould be difficult to assess how well the teachers are able to correctly
recognize a student's ideas if we did not determine (using data that are not
available to the teacher during the usual classroom lesson) what the
student's ideas actually are. Portions of the student data in this chapter are
taken from Landis's thesis (1990), from Davis and Maher (1991), and from
Maher and Davis (1991). The main results of the study, which has been
underway for three years (and still continues) are, first, the understanding
of how student representations are used and how they grow, and, second, a
large amount of evidence of how extremely difficult is the task of the teacher
when he or she tries to identify a student's representations in order to help
improve them. Here we deal mainly with the complexity onthe assessment
task that a teacher faces, moment to moment, in trying to make contact with
the way that a student is thinking about a problem or situation.

AMR FRACTIONS: CLASSROOM INTERACTIONS

The Twe-Plzza Problem

During a previous lesson, Linda had moved around the classroom,
interacting with students as they worked in small groups on problems
involving fractions. She had judged that many students, including a boy
named Brian, were having difficulty with improper fractions (fractions in
which the numerator is not smaller than the denominator). So, she had
made up a new work sheet, one that included the following problem:

At Pizza Hut each large pizza is cut into 12 slices. Mrs. Wilson
ordered two large pizzas. Seven students from Mrs. Wilson's class ate
one piece from each of the pizzas. What fraction of the two pizzas
was eaten?

In the episode that follows, Brian is working withone other boy, Scott, on the
problem. The teacher comes by to see how the two boys are progressing and
to help them if that turns out to be necessary. The episode begins with Brian
explaining his solution to the teacher:

Brian: Here ...

Teacher: Do you, uh
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Scott: I think we got it right.

Brian: I think I know I'm right.

Scott: Yeah, we think we know we're right.

Brian: So there's 24 slices in both pizzas, so Mrs. E. wants 7
students ... she took 7 students to Pizza Hut, so ... she's gonna
give `em one slice from each pizza so we would have, uh, 14 out
of the 24, right, slices.

Teacher: All right, now let me ask you this. How do you get 24
slices in the one pizza, and 12 slices in the other? [Note that
this is not what Brian had actually said. As we shall see presently
calling upon information that was not then available to the
teacherit is also not at all what Brian had actually done.]

Linda's tone here might be described as slightly disapproving and surprised.
We return to the matter of her disapproving tone later, let us first consider
the matter of her surprise.

Linda, who at this point has had no access to the videotapes, has
misunderstood what Brian was actually thinkinga situation that our study
is showing to be a very frequent occurrence in many classrooms. Linda's
interpretation was influenced by two factors. In the first place, she herself
had solved the problem incorrectly, using a single pizza as the unit, despite
the fact that the problem statement explicitly called for using both pi77as
together as the unit ("What fraction of the two pims was eaten?"). As a
result, Linda's answer to the question is 14/12. When she hears Brian's
answer of 14/24, she believes that he is mistaken. But there is another reason
for Linda's interpretation of Brian's answer. To see what it is, we need to look
at what had happened in a previous lesson on the addition of fractions.

A prior fraction-addition problem

Teacher: You had 3/8 of this pizza and 3/8 of that pizza. How
much is that?

Brian: 6/16.

Teacher: But the pizza has only 8 pieces.

Scott Is this right? 6/8?
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Teacher: Why isn't it 16ths?

Scott: Because the pizza has 8 pieces and you can't change it.

In fact, as we will see when we investigate further, Brian had been solving
fraction problems correctly and had been thinking seriously about each
problem. Scott, on the other hand, mainly relied upon repeating the words
of his teacher, and had been less likely than Brian to get correct answers.
However, this information was not available to the teacher at the moment
when she had to make some key decisions.

Brian consistently used concrete materials to make his initial
representations of problems that involve fractions. This technique (which
was part of the teacher's goal for the class) usually served Brian well. As he
modeled this problem with wooden blocks, he could see before him three
selected pieces out of a total of eight, and another three selected pieces out
of a total of another eight. If one counted all selected pieces, one had 3 plus
3, for a total of 6 selected pieces. If one counted all available pieces, one had
8 plus 8, for a total of 16. The teacher had said nothing about the notion of
a unit, so that Brian had to work out for himself which of the possible
numbers should be taken into account, and in what ways. His first ap-
proachwhich was probably basically correctwas to count the selected
pieces as a fraction of the total available pieces, getting the answer six
sixteenths. Of course, the question of "how much pizza do you have?" calls
for a basic unit, and one obvious choice would be to use one whole pizza as
this "unit."

Our teachers keep a log book on all lessons. Concerning this
lesson in which Brian had given his solution (which appeared to the teacher
to be adding). Linda had written:

As I circulated the room, I saw students continued to have problems
with mixed nos. & reducing. Some students continue to add
denominators. Brian continues to add the denominators.

In view of this earlier experience, it was not at all unlikely that when, in the
two-pizza lesson, expecting the answer 14/12, Linda heard Brian say 14/24,
she quickly interpreted this as another instance of Brian "adding denomina-
tors." As we shall see, Linda was mistaken on two counts. First, Brian hadnot
obtained the denominator 24 by some erroneous process; second, Brian had
not worked with written symbols at all, but had dealt directly with an
isomorphic representation of the problem in terms of pattern blocks.

257



Maher, Davis, and Alston

A Student's Understanding of the Two-pizza Problem

What had Brian actually been doing? By studying the videotape, we
can watch Brian and Scott at work, while the teacher is busy helping other
groups of students and before she comes over to work with them. Brian and
Scott had, available on their table, a variety of manipulatable materials that
they could use if they wished. As they worked on the two-pizza problem, they
used pattern blocks, wooden blocks of the colors and shapes as shown in
Figure 1.

The dimensions and
shapes of the blocks are so ar-
ranged that six of the green tri-
angles fit on top of one of the a) °(Lyellow hexagons. Alternatively,
two of the red trapezoids fit on Yellow Tan Red
the yellow hexagon. One blue Hexagon Parallelogram Trapezoid

parallelogram can combine with
one green triangle

the red trapezoid. (The Q .riangle to cover ex-
actly

can work out other ar- Orange Blue Green
rangements that will fit exactly.) Square Parallelogram Triangle
The tan parallelogram and the
orange square are exceptions to this "commensurability" and do not fit onto
anything else. There arc many blocks of erch kind available in the pile on
the table.

Figure 1. Pattern blocks.

Brian: (reads the problem aloud, then picks up one of the
blocks, a yellow hexagon) This is one pizza.

Brian: (picks up several smaller pieces, apparently intending to
indicate slices) No, this is one pizza (as he puts down two yellow
hexagons). [Notice what he has done: His checking of his
representation showed him that he would not be able to find
twelfths of the hexagonthe smallest piece, the green triangle,
is one sixth of the hexagon. So he has taken a step of surprising
subtlety: He uses two pieces of wood (carefully chosen) to
represent one pizza.]

Brian: This is a pizza, here. (He is merely restating his new
definition, presumably for the benefit of Scott, his partner.)

Scott: Yeah. (He, too, picks up two hexagons.) These are the
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two pizzas. [Notice that Scott has missed the subtlety of Brian's
representation of one pizza by two hexagons. Scott is using one
hexagon to represent one pizza. Matching your mental repre-
sentation to someone else's is not merely difficult when the
teacher is trying to do it, it is also extremely difficult when one
student is trying to get a correct match to the representations of
another student.]

Brian: OK [His posture and tone make it clear that he is not
really responding to Scott; in fact he is really ignoring Scott.]

Scott: Yeah, this is one pizza. [It is possible that Scott has now
adopted Brian's representation, and is using two hexagons to
represent one pizza, but this is not entirely certain. The video-
tape does not provide conclusive evidence either way.]

Brian: (who has been fitting small green triangles, representing
slices, on top of a hexagon.) This (picking up a red trapezoid)
counts as three greens, OK? [Brian is still ignoring Scott and
carrying through his own solution of the problem. Brian
apparently wants to use the red trapezoid so as to have fewer
pieces of wood to handle.]

Scott: Wait! I just figured it out! If you have twelve pieces and
you have seven students getting a piece ... wait! ... chopped into
twelve slices (virtually talking to himself at this point) ... each of
the students getting one piece of these twelve ... There's seven
students, right? So, for two pizzas that would be fourteen slices
of this ... Brian, if you added it all together, and then you have
eight slices left over ...

Brian: Just think about it. [Brian's tone seems to say either 'Don't
bother me, can't you see I'm busy?" or else, perhaps, Brian has
realized that Scott's representation is wrong, and is asking him to
reconsider it. In either case, Brian doesn't want to be interrupted
in his own thought processes, as his manner makes very clear.]

Scott: You have eight left over ...

Brian: Keep thinking about it. [That is, "Don't bother me right
now! "] So ... nineteen and nineteen is ...

Scott: Thirty six.
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Brian: Thirty eight.

Brian: But there's only twenty four slices!

Scott: How do you figure "twenty four" slices? This is a pizza,
Brian! This is twelve slices. [He shows two hexagons, so at this
point he seems to have adopted Brian's representation.] This is
one pizza.

Brian: Twelve (displaying two hexagons). Twenty four (puts down
two more hexagons, for a combined array of four hexagons).

Brian: (changing the subject) OK ... how many boys are in the
class? [Actually, Brian is now beginning to work on building
another part of the data representation, the representation of
the children who are to eat the pizza. He has not recalled
correctly the statement of the problem.]

Scott: One, two, three, four, five, six, ... I think eight.

Brian: (repeating himself). How many boys are in the class?

Scott: What class?

Brian: Our class. [In fact, he problem had made no mention of
the total number of boys in &a: class, but had said "seven
students." Under the stress of constructing a representation for
the entire situation, Brian has made an incorrect mapping of
the problem data into the abstract representation that he is
building. Indeed, the videotapes of various students and various
classes show repeated instances of incorrect construction of
representations, or incorrect mapping of data into a representa-
tion. Apparently the cognitive demands of building representa-
tions are considerable, and often test student ability to the
limit. We return to this matter below.]

Scott: Why do you want to know about the number of boys?

Brian: just count them!

Scott: Nineteen, all together. There's 6, ... thirteen boys.

Brian: Thirteen and thirteen, that's twenty six.

26'Q
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Scott: Briiiaaaan

Brian: Here's the pizzas. (He has in place four yellow hexagons,
two for each "pizza," and he is beginning to cover them with
small green triangles, representing slices.)

Scow Brian .... Brian! Figure this, Brian!

Brian: I think I know it.

Scott I already figured it out. You wouldn't want to do it, Brian.
[While Brian has been trying to build a representation using
the pattern blocks, Scott has been trying to work the problem
out on paper. Scott's words, here, seem to mean: "You wouldn't
want to solve this problem by working it out on paper, Brian!" It
subsequently turns out that Scott's paper-and-pencil "solution"
is in fact incorrect.]

Brian: (still working with the pattern blocks) Yes, I would! Get
me two greens (from that pile) over there.

Scow Sure, if you feel like doing the work, OK.

Brian: OK, what's the answer? [Having now almost completed
his construction with the blocks, Brian is really mainly talking to
himself, here. In effect he is saying: "OK. Now I see what the
problem is. If I look at this right, can I see the answer?"]

Scow You have to listennnn

Brian: So ... There's one pizza ... (Two hexagons, now covered
with small green triangles to show twelve "slices.")

Scott: I'm gonna listen to your solution rightnow and then
you're gonna listen to mine.

Brian: (who is still working on his concrete representation of
the pizzas, using pattern blocks) Get me twelve more of those
(he is referring to the small green triangles).

Scott: Here you go.

Brian: 1 ... 3, 4, 6, 8, 10, 12 ... Thank you. ... and ... here is
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another pizza!

Scott: Now keep in mind that you were wrong last time.

Brian: Keep in mind that I was right more times than you!

Scott That's why you got the whole ditto wrong, and I got the
whole ditto right! I had it right!

Brian: I wouldn't do it your way. [Presumably Brian is rejecting
the paper-and-pencil calculation that Scott has completed.]

Scott: OK ... I want to watch your solution and see if it's the
same as mine. [Brian has carefully assembled two shapes, each
of which consists of two hexagons built from small green
triangles. He has thus modeled the two pizzas, with twelve slices
on each of them. It is important to notice that he has not yet
started to model the children eating the two pi77ns,]

Brian: I might be wrong.

Scott: No, I'm not saying that you're wrong. I want to see if it's
the same as mine.

Brian: Here's the two pizzas (gestures toward the four hexa-
gons). Now, everybody gets a slice out of this pizza (pointing to
the first pair of hexagons). OK?

Scott: Not everybody! Only ... (Scott picks up the paper and
starts to reread the statement of the problem.) "Seven students
from Mrs. Wilson's class are to eat one slice from each of the
two pizzas."

Brian: So ... seven ... [And here Brian does something truly
stunning; as he works to model the next part of the problem
namely, the students eating the sliceshe is just as concrete as
he was in using the pattern blocks to model the pizzas them-
selves. He looks around the class, and points to individual
students, naming the specific student who is to eat each slicel]
So this (pushing one "slice" toward Scott, and one toward
himself) is for you and for me; Ron (pointing to a student), Rav
(pointing to another student), Jennifer (again pointing), Mary
(pointing to Mary), and Melissa (pointing to Melissa). (As he
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names each child, he moves one "slice"one green triangle
away from the first "pizza".) Here's the seven slices (gesturing
to the triangles that he has moved away from the hexagons that
represent the first pizza). Now take these from here (he goes
through the same procedure, taking seven "slices" from the
second "pizza"). (Rereading the problem.) "What fraction of
the two pizzas was eaten?" Two, four, six, eight, ten, twelve,
fourteen. So ... 24 out of 14. I mean, 14 out of 24. (He writes
the fraction 14/24.)

Scott: No! You can't change that bottom number! You can't
change the 12. It's 14/12. [By "bottom number" Scott ofcourse
means the denominator, which Brian has just written as "24".
Note that Brian is making a concrete representation of the
problem, and actually counting small green triangles (or their
proxies); he is not working with written symbols. By contrast,
Scott does work with written symbols, and appears to pay little
attention to the pattern blocks.]

leterpretating the Teacher's Reaction

In the earlier lesson on adding fractions, the teacher was misread-
ing Brian's actions when she wrote in her journal, "Brian continues to add
the denominators." In fact, Brian was not thinking primarily in terms of
written symbols, but was counting pieces ofwood. In misinterpreting Brian's
work, Linda was making an error that we encounter very frequently. Most
teachers (and most people in general) have learned to think of mathematics
primarily as the manipulation of symbols. Linda was (wisely) trying to get
away from this tradition, and to think of mathematics as the description of
reality. That is to say, o_ goal was to get the children to regard symbols as
windows through which you could look and see some of the reality. Despite
her intentions, Linda's own previous education betrayed her, and she did
not describe Brian as "counting the wrong pieces of wood," but rather as
"adding denominators," when, in fact, having written no fractions, he had
no "denominators" at all. We would prefer to think of Brian as working to
build up a mental representation for the problem, and to carry out a
mapping of the present data into this representation (Davis, 1984). The
physical pieces of wood provided him with a basis in perception that could
become a foundation for his mental representation (Davis, 1986).

As we learned in Brian's discussion of the two-pizza problem with
Scott, Brian corrected his process for making representations, and thereaf-
ter made correct representations. When the teacher came by (in the two-
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pizza lesson) and told him that his answer of 14/24 was incorrect, he reacted
to her disapproval. Up to that moment the boys had been animated,
interested, thinking hard about the problem, and working industriously to
construct a solution. When Brian 's work was rejected, the mood of both boys
changed immediately. From that point on, for the rest of the lesson, they
seemed disinterested. It looked as if they had given up serious thought, and
were merely paying the minimum attention needed to be considered "good
students." They no longer seemed deeply committed to finding a solution
to the problem.

SO LITTLE INFORMATION, SO LITTLE TIME

Up to now our main point has been that a teacher, working in any
typical classroom, needs to know what the various students are doing. This
is _ important kind of knowledge, and without it successful guiding of the
students is nearly impossible. But this is a difficult kind of information for
the teacher to collect. Students are not necessarily doing what we, their
teachers, may assume that they are doing. To make matters worse, students
are often imprecise in their efforts to tell us what they are doing. (For an
extreme example, consider Schoenfeld et al., in press, where it took many
hours of analysis of videotapes of one teacher tutoring one student, before
the analysts were able to discover the major misunderstanding that was
blocking the student's progress.)

We are well aware that some readers may feel that obtaining the
kind of information that we seek on the subject of the basic ways that
students are thinking is not merely difficult, but impossible. In a sense that
is trueone is never going to have as much of this information, nor in as
complete a form, as one would like. But in working with teachers who choose
to videotape their classrooms, and to study the resulting tapes (and even to
allow us to do sol), it seems clear that changes in teaching procedures do in
fact result. Teachers also become more analytical in thinking over lessons
that they have recently taught. The realization that the student may be
thinking about a situation differently than the teacher expects is a powerful
one. We lack space here to pursue in detail the changes that can be seen in
teachers, but offer one example to illustrate a teacher's accommodation of
new information.

A Lessor with Csiseashe Rods

The teacher, Pat, was using Cuisenaire rods to introduce some
second grade children to the idea of fractions. He held up a red rod (which
is 2 cm. long) and said, "Suppose I call this rod one. Which rod should I call
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two?" About two thirds of the class responded by holding up a purple rod (4
centimeters long), which is the answer that the teacher expected. But a
sizable group of studentsabout one-third of the classinstead held up the
light green rod (which is 3 cm. long). The teacher had, of course, assumed
that they were modeling the size property of numbers by using the lengths
of the rods. Hence, since four is twice two, the teacher thought that the
answer "purple" was the obvious and correct choice. Because we had been
encouraging the teachers to analyze student thinking, Pat went home and
thought about it. Could one-third of the class be wrong? Or was there
another legitimate way of interpreting the question?

He quickly realized that there was. The positive integers do have
the size property which usually forms the basis for their usefulness, but this
is not the only property that they have. They also have order. "Four" comes
immediately after "three" in our usual counting sequence. "Seven" comes
after "six." And this order property is importantit, and not size, is the basis
for using numbers as the street addresses of our homes, or for numbering
the pages of books. Nor does either property imply the other. The letters of
the alphabet have order but not size; so do the months of the year. On the
other hand, vectors have size, but no order arrangement. So the students
who hold up a light green rod are making use of a perfectly legitimate
property of both the rods and the integers. In this case, however, it wasn't
the aspect on which the teacher needed to build the lesson.

By asking every student to hold up the appropriate rod, the
teacher got an in stan t reading on the answer of every child in the class. Since
nearly everyone answered either light green or else purple, and since the
line of reasoning leading to each answer is fairly straightforward, the teacher
was able to get most of the information that one would wish to have. In other
cases it is not always so simple.

THE DIFFICULTY OF BUILDING MENTAL REPRESENTATIONS

We saw that, when Brian was busily building up a mental represen-
tation (based on being able to look at an arrangement of wooden blocks),
he made occasional errors on what were, really, quite simple matters. For
example, he forgot that the two-pizza problem spoke of "Mrs. Wilson's class."
Errors of this type are so frequent that they are really the rule, not the
exception. To put the matter more generally, studying student (or adult)
performance convinces us that building up a mental representation is an
ex tremelly arduous task. Because we are convinced of this, we are more eager
than ever to recognize whatever representation a student may have built up.
If it is correct, we want to build on it. If it is somewhat defective, we want the
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student to come to see the precise nature of the defects. If it is hopelessly
wrong, we want the student to see for himself or for herself why it is wrong,
and to be able to use that knowledge to build a better representation.

There are other teaching implications, too. Because we believe
Ora a student who has been working to build a mental representation has
created something valuable and fragile, we are very reluctant to interrupt a
student's thinking. In this we differ sharply from the pedagogical practice
of those who say that students should always be paying close attention to
whatever the teacher may be saying. In order to build an elaborate represen-
tation, one must shut out most incoming signals, and engage in rather deep
thought. We try to allow for this in our classes.

THE TEACHER AS COGNITIVE COACH

There is a definite theory of teaching that underlies the demand
for teachers to kndw as much as possible about the thought processes of their
students. Put briefly, this theory sees the teacher as a kind of "cognitive
coach" who, like an athletic coach, studies the performance of the student
and tries to work with the student in order to improve it. This usually means
trying to know as much as possible about a student's mental representation
of a mathematical situation and how the student is trying to make use of that
representation. Where necessary, one then tries to help the student recog-
nize weaknesses and make improvements. We would argue that this needs
to be done, wherever possible, by letting the student see where his represen-
tation succeeds, and where it fails when it is brought into direct contact with
reality. Unfortunately, teachers often fail to do this. Our videotapes also
document many such failures, as we see in the following section.

Persuasion and Compliance versos Logic aid Cognitive Growth

What happened when Linda, misunderstanding how Brian was
thinking about the "two-pizza" problem, sought to get him to change his
answer? We return to the transcript of the tape. Recall that the teacher has
told Brian that his answer, 14/24, is incorrect, and that the answer should
be 14/12. She does not confront him with a clear-cut reality, whose structure
cannot be misunderstood. Instead, she tries to persuade him to think about
the problem her way. The analyst's notes read as follows:

Brian now seemed ready to abandon his solution. The teacher
directed the students by correcting their work; she discarded Brian's
solution [which had, in fact, been correct] by mentioning that there
was no box big enough for such a sgi-hugeic* pizza. [Note that the
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availability, or unavailability, of boxes has nothing to do with the
mathematical question that the children are supposed to be soh,-
ingIV Brian again tried to justify his work, but is interrupted by the
teacher before he is heard:

Brian: Yeah ...

Teacher: OK, you, you're putting your 2 pizzas together and
making one ... gi-huge-ic pizza.

Scott: (laughing) gi-huge-ic pizza

Teacher: OK, we can't have one gi-huge-ic pizza because there
isn't a box that could carry it in to take it home. (See Note 1.)

Brian: No, just stick it in (mumbles) ... slices. [Brian is still
trying to salvage something from his way of thinking about the
problem.]

Teacher: We have to keep it separate. They have to go in two
separate boxes. [Still irrelevant]

No wonder so many people believe mathematics to be incompre-
hensible nonsense. They are not given appropriate opportunities to test
their ideas against reasonable demands of realitythe reality of the prob-
lem, that is to say, and not the reality of the power relationships within a
classroom. Linda, by using made-up words such as "gi-huge-ic" seeks to get
the boys favorably disposed toward her (and does succeed in getting Scott
to laugh, though Brian does not). In invoking box size, she is clearly trying
in some way to persuade. Such suggestions have no logical relation to the
task at hand, and do not help us to understand it.

There are other alternatives for getting a student to reconsider a
proposed solution. One of the best is a direct test of a student's theory
against reality. Another good alternative, suggested by David Page,2 is for the
teacher to ask the question that the student actually did answer: thus, if a
student says that "eight times seven is 15," Page recommends that the
teacher ask "How much is eight plus seven?" Students nearly always respond:
"Ohl It should be fifty sixl" (Davis, 1984).

DO TEACHERS NEED TO KNOW STUDENT'S REPRESENTATIONS?

Whether, in this brief space, we have convinced the reader, only
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the reader can say. But we have become convinced, from studying these
videotapes, and from working with teachers in going over analyses of these
tapes, that both teachers and students have much to gain from making
efforts toward this very fine-grained analysis of how students are actually
thinking about mathematical problems and mathematical situations. This is
a valuable and important form of assessment, and in the right context it can
be carried out successfully.

A Nob ea Reties

Clearly, we argue for the importance of looking on a very minute
level at how students think about mathematical situations, and at how
teachers think that students think about mathematical situations. We see
this as one of the most critical questions in mathematics education. It
requires careful and insightful analysisbut even more, it requires teachers
who will seek out the best possible data, even in instances where they may,
given hindsight, wish that they had done something differently.

This is the spirit of the very best in science, seeking truth without
placing blame. In our view, the real heroes of these studies are the teachers,
people like Linda and Pat, who have worked so hard and so selflessly to get
and to share the most complete possible data, even when they wish they had
known earlier some of the things they only found out about later on.

NOTES AND REFERENCES
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INTRODUCTION

There is widespread agreement that mathematics
should be taught as a thinking activity (see, for example, National Council
of Teachers of Mathematics, 1989). Doing this requires that evaluators and
teachers obtain information concerning student:' thinking activities, their
efforts at understanding, and their procedural and conceptual difficulties.
Yet, too often, teachers appear to understand little of what mathematical
thinking is all about; evaluators provide teachers with assessments that fail
to illuminate thinking and understanding; and teachers themselvesseem to
possess few sound methods for obtaining information concerning thinking,
particularly in the classroom, the setting where it is most important to do so.

Given this situation, it is essential to develop methods for assessing
children's understandings of a variety of key mathematical topics, including
whole number arithmetic. Note that we have referred to methods and
understandings in the plural. This reflects our belief that, even for a subject
as apparently simple as arithmetic, understanding is extraordinarily com-
plex and many methods are necessary to assess it (or thtm). Some assessment
methods may be useful for evaluators (school psychologists, math special-
ists, assessment specialists, and so on) while other methods entirely may be
appropriate for teachers to use in the everyday classroom. Similarly, under-
standing is not a single thing but ,a multitude of processes and functions, the
essence of which we are only now beginning to glimpse.
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This chapter begins with a brief account of children's understand-
ings of arithmetic. Then we describe several different types of assessment
methods designed to achieve different purposes and to be used by persons
with different roles in the educational system, including (i) screening, for
teachers to obtain a preliminary portrait of children's levels of understand-
ing; (ii) standard testing with probes, for evaluators to establish children's
levels of difficulty in learning arithmetic and to gain preliminary insight into
their understandings; (iii) clinical interview technique, for evaluators to
assess the understandings of multiplication and fractions; and (iv) class-
room assessments, for teachers to assess mathematical thinking and to
promote it.

THE NATURE OF UNDERSTANDINGS

Although stressing diverse aspects of understandings, most ac-
counts agree that the understanding of arithmetic involves far more than
accurate computation and the "basics" of rote memory (see, for example,
Pixie, 1988; Mack, 1990; Van den Brink, 1989). Our own view, drawing
heavily on Vygotsky (1962), attempts to situate understanding in a larger
psychological context. Our view pictures understandings as sense-making
procedures involving at least the following:

Informal knowledge, formal knowledge, and the development
of connections within and between these domains.

The role of the intermediary schema in promoting such links.

Rules for transfer, generalization, and application of math-
ematical knowledge.

Learning potential.

Self-consciousness, verbal fluency, and metacognition.

Higher-order beliefs, attitudes, and feelings.

IntefIliii Knowledge, Formal Knowledge, and Connections

In the natural environment, the infant and then child is engaged
in coping with the world and making sense of it. This process results in the
child's construction ofdifferent forms of "spontaneous knowledge" (Vygotsky,
1962), including an "informal mathematics" having several features. Usually
grounded in concrete reality and everyday motives, informal mathematics
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is personal, emotional, unsystematic, powerful, pragmatic, and often
unreflective. The informal system does not usually involve written numbers
or symbols, and it is typically not taught by adults. Thus, the three-year-old
child determines that there are more candies here than there and enjoys the
result

Research has shown that the informal system is complex, contain-
ing such features as notions of more and less, principles of cardinal number,
rules for generating counting numbers and for enumerating objects, and
procedures and concepts for addition and subtraction. Moreover, the
system is more powerful and widespread across cultures than was initially
assumed; for example, primitive discriminations concerning numerosity
begin soon after birth (Antell and Keating, 1983); virtually all four-year-old
children are capable of simple and effective operations of addition and
subtraction (Ginsburg, 1989) ; street children in Brazil engage in rather
complex computations in order to sell candy (Carraher, Carraher, and
Schliemann, 1985); and children in a variety of cultures, many of them
unschooled, develop at least adequate systems of informal arithmetic (Saxe
and Posner, 1983) .

Typically, children already possess a rather complex and reason-
ably competent informal mathematical system when school introduces
formal mathematics (or even when parents attempt to teach it at home
during the preschool years). The formal mathematics of school is system-
atic, written, explicit, codified, and represents the accumulation of cultural
wisdom. The child, already relatively skilled in informal mathematics, now
attempts to make sense of this new body of material, which includes written
symbols, standard procedures, explicit principles, and formal models.

Sometimes educators attempt to facilitate the process of sense
making by introducing various "intermediary schemata" or " bridges." These
are artificially constructed devices intended to promote connections or links
between the child's informal mathematics and the formal mathematics
taught in school. In the early grades, intermediary schemata usually involve
"manipulatives" like Cuisenaire rods, Dienes blocks, or the Japanese method
of tiles (Kaplan, Yamamoto, and Ginsburg, 1989). These manipulative
devices are metaphors or models that provide a bridge between informal
procedures like counting or ordering and formal concepts like written
number or conunutativity. Thus, the child sees that a 4 stick joined toa 3 stick
produces a 7 stick, justas do a 3 stick joined to a 4 stick. The informal activities
of perception and visual comparison of the sticks are then connected to the
written statements 4 + = 7 and 3 + 4= 7. Eventually, children internalize the
physical manipulatives in the form of visual and other kinds of imagery and
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no longer require the physical objects to serve as the intermediary schemata.
What is important is not the manipulative per se, but the bridging function
of the intermediary schema, be it physical or mental.

With or without the benefit of intermediary schemata, the child
tries to make sense of the formal mathematics presented in school. "Under-
standing" of the formal mathematics seems to involve several features.
Perhaps the chief of there is the formation of connections within and among
informal mathematics, formal mathematics, and intermediary schemas.
The child comes to interpret a given aspect of formal arithmetic in terms of
various informal notions and procedures, intermediary schemata, and
various other formal notions and procedures. Consider a very simple
example. Suppose that the child encounters a school activity or lesson
dealing with the idea that2+3=5. The child can deal with this situation in
several different ways. On the one hand, the child can simply attempt to
memorize the number combination as such and without any connection to
anything else. Whether the child succeeds or fails in this attempt is of little
interest; in either event, the performance involves simple rote memoriza-
tion without understanding. On the other hand, the child may attempt to
link the simple number combination with other aspects of mathematical
knowledge. The child may link the combination with already available
counting procedures, realizing that if a set of two elements is combined with
a set of three, and the total is counted, five will be the result. Associated with
this informal procedure may be informal knowledge to the effect that when
two sets are combined, the result is larger than either.

The child may also connect the number combination2+3with
various formal ideas or procedures. Thus, the child may link the combination
with operations on the number line: if you move forward three spaces from
the number 2, you end up on the number 5. This, in turn, may be linked with
formal principles such as commutativity, so that the child realizes that moving
three spaces from 2 gives the same result as moving two spaces from 3.

The child may also link ti,e number combination to an intermedi-
ary schema like unifix cubes. Thus, the child may realize that the numeral
2 corresponds to two cubes, that the numeral 3 corresponds to three cubes,
that the + refers to combining the cubes, and that the numerals corresponds
to the result obtained. The child may also realize that the two cubes are just
like two fingers, and that combining two and three cubes gives the same
result as combining two and three fingers. In this respect, the cubes serve as
a bridge between informal knowledge (counting, addition concepts) and
the written symbols, concepts, and procedures of formal mathematics (the
numerals 2, 3, the symbol +, the concept of commutativity).
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Woad Collection

Understanding involves more than links or connections among the
various systems. Some other key features of understanding are the following:

Rules for transfer, generalization, and application of nsathetnatica/
knowledge. From the earliest days of psychology, "transfer" has
been accepted as a test of understanding. If the child really
understands something, he or she should be able to apply it to
a somewhat new situation. If the child understands that 2 + 3 =
5, she or he should be able to use that knowledge to determine
the sum of two and three objects, to solve a "story problem"
involving two and three objects, to realize that similar proce-
dures can be used to solve a problem involving two hundred
and three hundred objects, and to use similar procedures to
solve problems involving 2 + 4 objects. Conversely, according to
Hatano (1988), the introduction of novel problems is a key
factor in producing perplexity and conflict and thereby pro-
moting the motivation for understanding.

Learning potential. A related test of understanding is the ability
to learn somewhat new material. Thus, if the child really
understands that 2 + 3 = 5, he or she should be able to learn,
without a great deal of difficulty, that 2 + 4 = 6, because similar
principles and procedures are involved. In a sense, the learning
of moderately new material is similar to generalizing existing
procedures and concepts to moderately novel situations.

Mdacognilion. This overused term refers, among other things, to
various kinds of self-consciousness. The child who understands is
aware of how he or she solves problems, can describe these
procedures to others through the medium of language, can
monitor thought processes and check them, and is generally
aware of his or her mathematical thinking. Thus, the child who
understands 2 + 3 knows about the "counting on" procedure
used to get the answer; can tell others how the process was
executed; can monitor and check the process of counting on;
and can describe how the process is related to the number-line
model.

a Higher-order beliefs, attitudes, and emotions. It is important to
situate understanding within the persor- From a psychological
point of view, understandingand cognitive activitygenerally-
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does not exist in a vacuum. Instead, understanding can be
understood only within the larger psychological context of the
person's functioning (Ginsburg, 1989)the individual's beliefs,
attitudes, shifting goals (Saxe, in press), and emotions. Thus,
the belief that mathematics can make sense may be considered
a prerequisite for understanding or perhaps an aspect of it.

The complexity of it ail. The various features described above
links among areas of knowledge, transfer and generalization,
learning potential, and beliefs and attitudesall contribute to
understanding or may be considered aspects of understanding.
And no doubt it may prove useful to consider other aspects of
understanding not described here. There is no single or simple
criterion of understanding, no discrete point when we can say
that understanding is present or absent. Rather, the more the
child moves away from rote memorization and mechanical
applications of isolated procedures, and the more the child
moves toward rich linkages, flexible gene -alizations, active
learning, and productive beliefs, the more we can say that some
degree of understanding is present.

ASSESSMENT FOR EVALUATORS

Given the preceding approach to the dynamic system of under-
standing, and focusing net only on higher-order processes (for example,
metacognition) but also on "lower-order" processes (informal knowledge)
and on the connections between tht.m, it is appropriate that assessment
techniques take different forms to assess different aspects of understand-
ings. Our research group has developed several approaches to assessment
that can be organized into broad categories.

Firstwe will consider several approaches designed for evaluators
school psychologists, mathematics specialists, clinical psychologistswho
are able to conduct assessments with individual children over afairly lengthy
period of time. The techniques we have designed for evaluators include
standard tests, a system of probes, and clinical interview procedures. Then
we will discuss several techniques that can be used by teachers in classrooms,
including a screening procedure and various in-depth examinations of
children's thinking.

Standard Test

There are relatively few standard tests of children's mathematical
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thinking, particularly tests that attempt to measure the complexities of
understanding. In general, existing standard tests can provide reliable
information concerning the ranking of students in various areas of math-
ematical performance. Thus, a standard test can reveal that a student is
relatively weak in "computation" and relatively strong in "concepts." Stan-
dard tests of this type do not provide much useful information concerning
the various strategies students employ to solve problems; they do not reveal
whether or not an incorrect answer is simply the result of a minor misunder-
standing of the question; and they provide little useful information concern-
ing connections among various aspects of knowledge.

Recognizing these limitations of standard tests, Ginsburg and
Baroody (1990) developed a standard test of mathematical thinking (Test
of Early Mathematical Ability or TEMA) designed to accomplish several
purposes. The main goal was to provide information concerning students'
functioning in several key areas of mathematical work, both formal and
informal. Most tests of mathematical thinking are not based on sound
theories of mathematical knowledge. Indeed, most of the theories underly-
ing these tests (for example, the KeyMath Test; Connelly, Nachtman, and
Pritchett, 1976) involve little more than the notion that mathematical
thinking involves procedures and concepts. Consequently, Ginsburg and
Baroody developed a test that focuses on various aspects of informal and
formal mathematical knowledge in children from preschool through ap-
proximately third grade. The test items were, in fact, selected from data-
gathering procedures used in cognitive developmental research on math-
ematical thinking over the past twenty or thir,yyears. The test items deal with
such matters as informal addition, the mental number line, the concept of
cardinality, simple number combinations, alignment procedures for addi-
tion and subtraction, base ten concepts, and the like.

The TEMA is individually administered. The child is presented
with problems involving concrete objects as well as written problems. The
evaluator can use the results to obtain an overall ranking of the child relative
to peers (based on national norms); can obtain separate scores describing
the child's proficiency in informal mathematics compared to formal math-
ematics; and can examine the child's performance in such areas as informal
concepts and procedures, and formal concepts and procedures.

In brief, the TEMA draws on current research to examine the
child's relative performance, under standardized testing conditions, in key
areas of mathematical thinking. We believe that this test provides more
information than previously available tests. Its most important function is to
encourage evaluators, and the teachers and others who are recipients of the
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evaluations, to think differently about children's mathematical thinking.
The nature and content of the test force the evaluators and others to
consider that mathematical thinking has informal and formal components,
that strategies and concepts of particular types are involved, and that, in
general, mathematical thinking involves much more than memorization of
the "number facts." So long as standardized tests are employed, test devel-
opers should draw upon psychological research as the basis for their design
and construction.

Pubes

Clearly, ranking children in various aspects of mathematics perfor-
mancehowever interesting these areas may bedoes not shed a great deal
of light upon thinking processes generally and understanding in particular.
Consequently, Ginsburg (1990) developed an organized system of probes to
be used in parallel with the TEMA. The general idea was that after the TEMA
had been given in the standard fashion, many examiners would find it useful
to probe further into the thou' processes that produced the observed
performance, particularly in the case of errors. Most evaluators, however,
have not had training or experience in assessing children's thinking. Conse-
quently, Ginsburg attempted to provide examiners with a structured and
comfortable procedure for probing the strategies and concepts underlying
children's responses to the TEMA. We recognize that clinical interviewing is
a more effective and difficult means for achieving the same purpose; yet
because most evaluators are not prepared to engage in extensive clinical
interviewing, organized probes are a useful first step.

The probes for each of the sixty-five items of the TEMA involve
three main features. The probes first attempt to establish whether the child
has understood the basic question. Often children produce an incorrect
response because they have misinterpreted a minor feature of the question
asked. The probes attempt to distinguish this situation from that in which
children do not understand the question because they fail to comprehend
the relevant concept. Next, the probes attempt to determine the strategies
and processes used by the child to solve the problem. For example, in the
case of mental addition, the probes attempt to determine whether the child
used such procedures as counting on the fingers, mental counting on, or
memorized number facts. Third, the probes attempt to establish learning
potential. The issue is whether the child can learn the relevant material with
a minimum of hints or whether more substantial teaching is required. In the
first case, it is clear that the child is close to "understanding"; in the second
case, the child is not. (After describing how to establish the child's level of
understanding, the manual then goes on to recommend appropriate edu-
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cational activities relevant for the material tested by each item of the TEMA.)

We believe that probes of the type described can be a useful
supplement to any standardized test in mathematics and in other areas as
well. The information elicited by the probes can be the first step in obtaining
a more detailed picture of children's understanding. Systematic probes,
however, are limited in flexibility and power; the clinical interview is a more
effective but difficult procedure.

Structerod Clinical Interviews

Clinical interviewing involves flexible questioning designed to
uncover basic features of the individual's thinking. The questioning de-
pends upon the individual's responses and may vary from person to person.
The clinical interview technique is thus deliberately non standardized. Many
researchers now believe that for the purposes of measuring cognitive
process, the clinical interview is the method of choice. It is far more sensitive
(and more difficult to administer successfully) than the standard test. (For
a review of the logic behind the standard test and clinical interview, see
Ginsburg, 1986.) Clinical interviews vary on a continuum of structure, with
some being more planned than others. Here we describe relatively struc-
tured clinical interview procedures, first in the area of multiplication, and
then, in the next section, fractions.

Interviews about inultipElation

At an introductory level, multiplication can be defined as a
problem offending the total quantity of objects contained in a given number
of groups each with same number of elements. Thus, a prototypical multi-
plication problem would be: "Find the total number of apples when you have
four apples on each of three dishes." For a systematic understanding of this
situation a learner has to know and operate with two different grouping
systems. In multiplicationunlike addition and subtractionthe twonum-
bers in the problem refer to different types of quantities. In this example, 3
is the number of groups and 4 is the number of objects in each group. (A
confusing complication is that another type of grouping appears in the
answer. In the place value system, the answer 12 should be understood as
"one group of 10 apples and 2 individual apples.") By contrast, in addition
(4 + 3) or subtraction (4-3), the two numbers refer to like quantities in each
of the two sets (for example, 4 apples and 3 apples).

To assess learners' understanding of these aspects of multiplica-
tion, Yamamoto developed a structured interview using picture cards. At the
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beginning of this procedure, subjects who had already been taught multi-
plication at school were asked to teach the meaning of this operation to an
imaginary child who had no idea of what multiplication is. The subjects
each seen individuallywere then shown two sets of pictures, one set
multiplicative (regularly grouped) and one nonmultiplicative (irregularly
grouped). Within each setwere three types of pictures, as illustrated in Figure
1. One type of picture showed distinct sets of objects as in the four blocks in
each of three distinct groups (a quantity per set model as described above);
another type of picture showed three lines of four blocks each (something
like an area concept of multiplication); and a third picture showed a rabbit
jumping past three groups of four blocks arranged in a line (a number line
model). Altogether six pictures (three showing regular groupings and three
irregular) were randomly placed in front of each subject. In addition to the
pictures, blocks with and without numerals, toy dishes, and other materials
were available to be used in dealing with the problem.

FiQUIS 1

274

The subjects were asked to choose all pictures that could be used
to teach the meaning of multiplication. A number of subjects chose some or
all of the "regular" pictures and explained how they illustrated multiplica-
tion. In this case, after listening to their explanation, the examiner asked the
following questions in reference to each picture chosen: (i) "Can you write
down the multiplication equation which fits this picture?" (picture/nota-
tion relationship); (ii) "You wrote down three numbers here. What does this
first number [usually 3 or 4] mean in the picture? How about the second
number? What does this third number [usually 12] mean in the picture?"
(referents of numbers); (iii) "You wrote number 12 for the answer Do you
think this 2 means something in the picture? How about this 1? If you think
so, please color the part for this 2 in the picture with blue marker and color
the part for this 1 with red marker" (base 10 grouping); (iv) "Can you show
me 6 x 4, using these blocks and other materials here?" (application of
model); (v) "You said all of these different pictures are S x 4 = 12. Can you
tell me why?" (relationship among models). Although the interviews were
done in a flexible manner, the procedure was structured in that these core
questions were always asked of each subject.
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When the Irregular* pictures were chosen, a different set of
questions was used to determine the subject's reasons for selecting the
pictures and to ascertain whether that subject had the flexibility to modify
the irregularities so as to use the pictures in an appropriate way. In some
cases, the subjects struggled to apply their forms of understanding to the
irregularly grouped situations. Typically, they ended up with inconsistent or
obviously absurd explanations and revealed their lack of conceptual under-
standing. In some cases, the subjects were able to modify the pictures and
explain how they could then be used to deal with multiplication. This was
typically done by regrouping the blocks into regular groups or by adding
blocks to the groups that did not have enough of them.

Preliminary interviews included two groups ofJapanese children
living in the greater Tokyo area. One group had been taught the concept of
multiplication (as described above) thoroughly and explicitly through the
use of structured manipulatives, while the other group had received stan-
dard instruction, mainly based on typical Japanese textbooks, and focusing
more on computation than concepts. Over half of the subjects in the
manipulative group responded to all of the questions correctly with rich
explanations referring to the pictured models. In a typical case the dialogue
developed as follows:

I: You wrote down three numbers here [4 X 3 = 12]. What does
this first number 4 mean in the picture [referring to the
quantity per set model]?

S: Well, in this picture you always see four and only four blocks in
each dish. That's what I mean by number 4.

I: O.K., What does this 3 mean then?

S: That's the number of these dishes.

I: Fine. What does this number 12 mean in the picture?

S: That's the answer.

I: Can you cover the part you mean by 12 with your hands?

S: Yes, like this [covering all of the blocks on the three dishes].

I: O.K. Well, you used two numerals in 12, 1 and 2 [circling each
numeral with a pencil]. Do you think you can find a part for
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this number 2 in the picture? If you think so please mark the
part in the picture with this blue marker.

S: Yes. [S marks two blocks in the first dish].

I: O.K. Now, do you think you can find a part for this number 1 in
the picture? If so please mark the part with this red marker.

S: Yes. [S marks the remaining blocks in the three dishes].

I: Fine. Here we have some plastic blocks and toy dishes. Do you
think you can make 6 x 4 using these materials? [The inter-
viewer knows that the subject has never been taught 6 x N facts
at school].

S: Yes, no problem. [S takes four dishes, counts blocks carefully,
and constructs an appropriate configuration for the 6 x 4].

I: Do you know the answer for this problem?

S: Ah. .. Wait a second. [Pause/8 seconds]. 24.

I: That's right. How did you get the answer?

S: 6 + 6 is 12, right? Then I added 6 more and got 18. Then I
added 6 again.

I: Very good.

The other students in the manipulative group had difficulty with only one
question, the base 10 grouping.

The other voup (mainly textbook instruction with no explicit
concept teaching) responded roughly in two ways. Over half of the subjects
showed a poor level of understanding, although they knew the number facts
quite well. Here is a typical example:

I: You chose this picture to explain what multiplication is [refer-
ring to the quantity per set model]. Can you write down the
multiplication which fits this picture?

S: [Pause/l 0 seconds]. That's 8 x 4 [writing it down].

Z71 281



Ginsburg el at

I: O.K. Do you know the answer for this problem?

S: [Pause/3 seconds]. Yes, thirty ... two.

I: That's right. What does this first number 8 mean in the picture?

S: [Pause/7 seconds].

I: Can you circle the part you mean by 8 with this pencil?

S: [S circles the contents of the two dishes].

I: O.K. Now, which is the part for this number 4 in the picture?

S: Here. [S circles the contents of the third dish].

I: O.K. Do you know how many blocks in this picture in total?

S: Yes, 12, of course. [S responded immediately with a relieved
facial expression].

Other subjects (who seemed to be extremely intelligent) dis-
played high understanding levels, despite the fairly conventional instruc-
tion they received. This implies that average students may benefit from a
manipulative approach stressing concepts while highly intelligent students
can develop sound understanding even without such instruction.

This preliminary study showed that several aspects of understand-
ing can be measured in a fairly structured way. Since the subjects were
requested to respond to the specific questions on the pictured situations in
their own words, mechanical applications of fixed types of "instructed"
knowledge were almost impossible. Verbal questions were supplemented by
visual and concrete materials. This helped less verbally proficient subjects
both in comprehending the question and in expressing their interpreta-
tions. In general, subjects with sound basic understanding were able to solve
most of the interview questions, whereas those with little basic understand-
ing tended to get stuck at the outset and did not get beyond the initial
questions. Hence it was relatively easy to discriminate between levels of
understanding. Further, understanding seemed to be independent of
number-fact accuracy: some "high-understanding" subjects had learned less
than half of the 100 number facts taught at school.

Interviews about fractions

Traditionally, assessment of fraction knowledge has focused on
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solving word problems and statements such as 1/2 + 2/3. The child can
succeed on these tasks merely by applying appropriate calculational proce-
dures and does not have to understand the underlying concepts. In recent
work, Willis has used a structured clinical interview approach in an attempt
to assess conceptual knowledge of fractions as well as calculational proce-
dures. Her work drew on the previous investigations of Behr et al. (1983)
focusing on children's underlying concepts and representations of fractions.

Willis' approach explores various aspects of the child's abil-
ity to make conne_ .ons between informal and formal understanding.
(Although the content is the addition of fractions, the same interview
format may be applied to the assessment of fraction concepts ranging
from partitioning, identification, comparison, and equivalence, to
operations such as subtraction, multiplication and division.) Like the
work of Behr et al. (1983), the fraction interview explores the child's
use of various methods and models of representation, such as pencil
and paper, Cuisenaire rods (continuous length' model), pattern
blocks (area model), chips (discrete model), and a geoboard (area
model).

As the first step in the assessment process, the interviewer asks the
individual child to write and solve a problem such as 1/3 + 1/6. To identify
the method underlying the child's solution, the child is then asked, "How
did you do it?" The response to this question may lead to additional
hypotheses about the child's formal and procedural knowledge as well as the
child's ability to demonstrate understanding through explanation. Ques-
tions are reworded or new questions asked, depending on previous answers.
For example, if no response is given, the previous question may be reworded
to say, 'What were you saying to yourself as you did the problem?" Or a new
question may be asked: "How would you explain to another child how to do
this problem?" Responses to questions like these may include: "I added 1 +
1 and 3 + 6 and got 2/9"; "I added the 3 and the 6 and kept the one the same,
and got 1/9"; or "I found that the common denominator was 6 because 2
goes into 6 three times. So, I multiplied the top and the bottom by 2, and
then added 2/6 + 1/6 to get 3/6." (In this case, to further examine the
child's understanding of equivalence, the examiner may then ask, "Can you
show me 3/6 another way?")

The course of the interview often depends on the answer to the
first question. When the answer is correct, a counter-suggestion technique-
may be used to determine the stability of understanding. This includes
asking questions such as; "Why didn' tyou add the bottom numbers since you
added the top numbers?" If the answer to the initial question is not correct,
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additional problems and probing questions are used to test hypotheses
about the child's understanding.

The second step of the clinical interview examines the child's
ability to demonstrate understanding of a problem using various represen-
tations of fractions. Because the child may be confused by the physical
characteristics of one type of manipulative, he or she is allowed to represent
a problem like 1/3 + 1/6 by choosing among the following: pencil and
paper, Cuisenaire rods, pattern blocks, chips, or a geoboard. The child is
asked to use each model to explain each step of the solution.

Third, the interviewer focuses on the child's ability to make
connections between different modelsfor example, area, discrete sets,
continuous lengths, and volume. The interviewer asks the child to describe
similarities and differences between models.

The fourth part of the interview examines the comparison of
fractions, and the understanding of differences between the whole number
and rational number systems. The child may be presented with problems
involving the value of in creasing denominators. For example, after the child
answers the written equation 1/3+ 1/6 correctly, the interviewer asks, "OK,
now suppose I said the answer was 1 /9, how could you prove to me that I was
wrong?" The child is permitted to choose the type of representation used.
The child's responses may include: "1 /9 is smaller than 1 /6, and when you
add two fractions together you need to come up with a larger answer, so this
is wrong.* To test the child's confidence in the answer, the interviewer may
then reply, 'The 9 is bigger than the 6, so how can that be so?"

Next, the interviewer explores the child's understanding that
commutativity applies to the addition of fractions as well as the addition of
whole numbers. By noting whether 1 + 1 /3 is solved immediately after the
child has already solved 1/3 + 1/6, the interviewer determines whether the
child used commutative principles or had to solve the problem step by step
all over again.

In the sixth step, focus is placed on the child's ability to create an
equation to represent a manipulative model. Deep understanding involves
the ability to connect concrete manipulative models to abstract equations
and vise versa. The interviewer demonstrates the problem 1 /3 + 1 /3 using
a model such as pattern blocks and asks the child to write the equation. To
determine if the child has difficulty with some manipulatives and not others,
this procedure is repeated using different addition of fraction problems and
different manipulative:.
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The seventh part of the interview examines the child's ability to
connect formal concepts and procedures to a story concerning an everyday
situation. The child is asked, for example, to deal with a problem such as: "If
Mary divided her garden into eight equal sections and planted peas in two
sections and tomatoes in four sections, how much of her garden would be
filled with vegetables?' Conversely, the child is also asked to create a real life-
problem corresponding to a particular equation.

ASSESSMENT IN THE CLASSROOM

Classroom assessment procedures must involve methods that
teachers can use under ordinary classroom conditions to obtain informa-
tion concerning students' mathematical thinking. These techniques should
allow teachers to determine the methods students use to solve problems, to
identify the concepts and misunderstandings underlying students' work,
and, in general, to gain insight into the different thinking processes students
use in learning classroom mathematics.

Classroom assessment technique s are essential because good teach-
ing requires sensitive assessment. Effective teaching requires knowledge of
what students know and do not know, how students approach problems, and
how they react to educational activities. Although assessment information
can make a real difference in the classroom, teachers have not had available
the tools to conduct assessment most relevant for their own needs. Our goal
is to provide teachers with practical methods for assessing their students'
understanding in the classroom.

We note from the outset that these methods cannot be employed
in a mechanical fashion. Sensitive assessment requires rigorous theorizing
and analysis on the part of teachers. This stringent requirement does not
deter our efforts: good teachers perform sensitive and intellectually de-
manding analyses of their students literally every day of the school year, and
their analyses are sometimes more complex than those of which some
psychologists are capable.

Two serious problems face classroom teachers interested in assess-
ing children's understandings of arithmetic. First, there are few, if any,
available testing instruments that can be used with groups of students to
assess understanding. Second, few, if any, available instruments provide
information of direct relevance to classroom instruction. With the support
of the Fisher-Landau Foundation, Lopez and Kelly are attempting to
address these needs by developing group-administered screening measures
designed to help teachers of grades one through three identify key aspects
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of undenanding and the cognitive processes and strategies students use to
solve arithmetic problems.

Although they cannot provide in-depth assessments, screening
instruments can provide information that can help teachers identify and
then correct problems in mathematical learning before they become seri-
ous. Information from screening measures can lead to specific educational
recommendations; it can also help the teacher to adapt instruction to the
student's needs instead of referring the student for further evaluation or
special education placement. In more technical terms, teachers can utilize
a "pre-referral preventive approach" to educational intervention rather
than a remedial approach.

The screening procedure involves two steps. First., a whole class is
given a series of mathematics tasks in a paper-and-pencil format. The tasks are
designed to assess faulty understanding of procedures and to provide as
much insight as possible into the processes and strategies youngsters use.
Second, smaller groups of students are given follow-up tasks to probe further
their underst: .:dings of these skills and concepts. The follow-up is guided
completely by the results of the screening; only the areas in which the student

Figure 2. Sample report form for math screening tests.

FISHER-LANDAU FOUNDATION

Teachers College Columbia University
MATH SCREENING

GRADE 3

Name

Circle the student's raw score for each screening subtest and note the category in
which the student's score falls to determine if follow-up is needed.

Administer Follow-Up Passing Criterion

A. Time 01234 5
B. Number facts 0123456 78
C. Money 012345678 910
D. Calculation

Addition 012345678 910
Subtraction 012345678 910

E. Problem Solving 0123 4
F. Arithmetic Problems 012 3
C. Concepts 012345 67
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appears to have difficulty are examined further. The decision to follow up
in a particular area is based on whether an individual student readies a set
criterion of number of items correct (see Figure 2).

Throughout the process teachers are encouraged to observe
students' problem-solving strategies and to ask questions that probe their
understandings. In general, the items progress from evaluating factual
knowledge to evaluating procedures, comprehension, and the ability to
think about and apply skills and concepts. The emphasis is on evaluating
understanding, thinking, and applying skills rather than on facts.

The first grade screening focuses on the evaluation of informal
mathematics skills and concepts such as the underm.anding of the number
line, informal addition, reading numerals, the concept of snore, and the
ability to count out objects from an array. The second and third grade
screenings indude the assessment of both formal mathematical knowledge
and informal mathematics. They include items that assess number and
numeration, time, number facts, money, calculation, problem solving, and
concepts such as place value and base ten. The procedures for administering
the preliminary classroom screening and the follow-up tasks are the same at
all three grade levels.

The preliminary classroom screenings are designed to identify
common errors that suggest a lack of understanding of the skill and concept
being examined. For example, some calculation items from the third grade
screening assess the use of "buggy" procedures: If a student's answer to the
problem 92 minus 38 is 66, the teacher is guided to hypothesize that the
student subtracted the smaller from the larger and did not borrow. The
following example from the third grade screening illustrates how a class-
room teacher proceeds from the preliminary classroom screening through
the follow-up.

Sam took the preliminary screening along with all his classmates.
His teacher, Ms. Smith, scored the test and found that Sam did not meet the
passing criteria for the number facts section. Arneng these items, Sam failed
those from the N minus 0 family (for example, in the item 7 minus 0, Sam
answered 6.) Like Sam, three other students seemed to have difficulty in the
area of number facts. Ms. Smith decided to explore further their number
fact understandings. She brought the students together and explained that
they would all do some math work. Ms. Smith then distributed the follow-up
test item (Figure 3). She read out loud to the students, as they read along:
"Mike and Carlos have 4 candies. Sally asked them to give her some. Mike
a id Carlos did not give her any candy. How many candies do Mike and
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Carlos have now? Select the box with the number sentence that illustrates
this story and write the answer to it Once the students had marked the
boxes the teacher asked them to share their answers with the group. Sam
said he selected 4 - 0 and that his answer to this operation was 3. The
following dialogue took place between 1: un and Ms. Smith:

Ms. Smith: Sam, how did Figure A follow-up test Item for tho
you get that answer? third guide screening test.

Sam: Well, I just knew it.

Ms. Smith: OK, but how
would you prove to your
friends that you are
correct?

Sam: Well, I could say that
4 minus 0 is 3 because
when you take away, it is
like you have to take away
something and that is 3.

Ms. Smith: Please, teach
Robbie how to do the
problem.

Mike and Carlos have 4 candies.

Sally asked them to give her some.

Mike and Carlos did not give her any candy.

How many pieces of candy do Mike and
Carlos have now? Mark the box with the
number sentence that goes with this story.
Then write your answer to the number
sentence.

Sam: Well, you see, Robbie, you have the 4 and take away 0. Zero
is like having nothing, so you have to think of another number
to do the take away. I always think of the number 1 because it is
the easiest. Then, you go 4 take away 1 and that is 3.

Ms. Smith: Sam, what does this symbol [pointing to 0] mean?

Sam: It is zero.

Ms. Smith: Yes, but zero is like having how many? Show me with
these blocks what zero means.

Sam: Oh, that is easy, I give you all the blocks back. Zero is like
having nothing.

It is apparent at this point that Sam could choose the correct
number sentence and that he had an informal understanding ofzero. It is
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the written subtraction procedure when it involved zero that he did not
understand. It is possible now for Ms. Smith to develop a brief intervention
to help Sam overcome the difficulty he is experiencing.

To date, teachers at all grade levels have attested to the value of
these screening measures in the identification of students who are having
difficulties with mathematics. In addition, they have found the information
obtained on students' thinking and understanding to be of diagnostic and
instructional value.

Observant:

Ginsburg and Mukhopadhyay have been explo king observational
techniques for use in the classroom. Our starting assumption is that assess-
ment of thinking can occur only in classrooms in which thinking is encour-
aged. The traditional teacher who instructs students in standard algorithms
and attends mainly to their correct and incorrect answers is not in a position
to learn a great deal about understanding. By contrast, teachers who
encourage students to engage in mathematical activities, to develop their
own methods of solution, to discuss mathematical ideas and procedures,
and to believe that their own approaches to learning are valued, can
relatively easily learn a great deal about students' understanding. Putting it
more bluntly, the teacher who does not encourage understanding cannot
measure it in the classroom; the teacher who encourages it can learn a great
deal about it.

We have been observing and working with one second grade
teacher who encourages active learning in her classroom. Consider the
following sequence of activities involving both good teaching and assess-
ment.

The teacher wrote a simple computational problem, 9 + 7 = ,

on a large piece of paper in front of the class. She asked the children to solve
the problem in their own way and to write down the answer. After this has
been done, the teacher spent a good part of the math lesson exploring the
thildren's strategies, for example: "I took 2 away from the 9 and that was 7.
7 + 7 = 14. I add 2 more and I got 16." Or, "First I took the 7 and then I put
up 9 fmgers and I counted up 7 8 9 10 11 12 13 14 15 16. " Or, "I knew 10 +
7 = 17, but 9 is 1 less than 10, so 1 less than that = 16."

She asked all of the children in the room to explain their method
of solution. Sometimes, she asked them to describe it in writing. Throughout
this process, the teacher established an atmosphere in which children are
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encouraged to share their strategies, to value the range of strategies arising
in the classroom, and to verbalize strategies as explicitlyas possible. In effect,
the lesson involved sharing, valuing, and training in introspection. The teacher
showed the class that there can be a variety ofways to obtain the correct answer.
After exposing the children to a number of strategies, she asked them if they
would like to choose a different strategy and if so why they would choose it.
Some children preferred to continue in the strategy already chosen, while other
children chose a new approach, often "because it is faster."

In the course of this exercise, the children provide ver, dear
information concerning different strategies employed. With our assistance,
the teacher had developed a simple scheme for coding the observed
strategies. This scheme includes simple descriptions of procedures com-
monly observed in the research literaturerecall of number facts; concrete
counting involving fingers or other easily available objects; mental counting
procedures, such as counting on; and various regrouping strategies, such as:
"6 and 4 is 10 because I know that 4 and 4 is 8 and the answer is only 2 more
than that." I t is relatively easy for the teacher to record children'suse of these
strategies on a simple checklist, which provides a convenient record of the
strategies the children were piing. This is a clear improvement over the
usual procedure in which the teacher simply attempts to remember the
methods used by various children.

After the observation and discussion of strategies, the teacher then
asked the children to create a story corresponding to the written problem
15 + 3, and a variety of responses were obtained:

I had 15 crayons. My mother gave me 3 more and I got 18.

One day there was a kid and she was 15. She wanted to know how old
she was going to be when she was 3 years older. She added 15 + 3 and
counted up 3 numbers and got 18. Today was her birthday. Shewas
going to be 18. She had a party and she was very happy. The end.

The math problem: once upon a time there was a girl. She was in
the second grade. She was not very good at math. Even plusses. One
day she went to school. Her teacher said it is time for math. Then
the teacher said the problem is 15 + 3 = blank. The whole class
shouted "easy?' So the gh said "easy? But it really wasn't. Then she
said to the teacher "I cannot do this math problem." "Yes you can,"
said the teacher. The girl thought that she was mean, but she wasn't.
Then she figured it out. From that day on she always felt good when
she did math. She knew 15 + 3 = 18.
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Stories like these provide many different kinds of information. Some stories
show how children relate numerical statements to real life events. Thus, the
birthday story relates numbers to ages and even describes the method of
solution. Other stories, like the math problem" reveal more aboutstudents'
feelings toward mathematics and self-concept as learner than they do about
the methods of solution. In both cases, however, useful information is
obtained from a pedagogically valuable situation which has the virtue of
linking languagt: arts with arithmetic.

The Classroom Uses of Dumb Tests

Recently Ginsburg made the following observation concerning six
sixth graders. All sixth graders in a school were given a standardized timed
test involving a series of multiple choice items, mainly involving calculation.
The students scoring exceptionally well on this rather dumb test were then
feted at a party attended by teachers, the school principal, and administra-
tors in the district. As part of the celebration, the students were asked to
explain how they solved items on the test. It was interesting to observe that
on almost every item of the test at least two or three different methods of
solutioirivere exhibited by the six students in attendance. The solution
methods included tedious calculations, brilliant insights into the structure
of the problems, and clever exploitation of the multiple-choice format. In
other words, the students' explanations revealed a wide range of individual
differences and a variety of strategies, some of them insightful, in dealing
with a rather dumb test. Of course, these thought processes were evident
only because the students were asked to talk about them; they are not usually
revealed by the test which is usually scored so as to yield only the number
correct.

The point of the story is that even a dumb test can be exploited as
a useful assessment technique, provided children are encouraged to reflect
on and reveal the solution processes employed. A corollary of this proposi-
tion is that teachers who are forced to teach to the test" can turn the exercise
into an interesting activity by encouraging students to make explicit and to
discuss the methods of solution employed.

The Thlekbe Curriculum

Effective methods of assessment in the classroomdiscussion of
strategies, the creation of mathematical stories, the analysis of approaches
to dumb tests, and other procedures we have not discussed hereall share
a common feature. They are the by-products of classroom activities in which
thinking is the focus and content of the curriculum. When the teacher
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focuses on mathematics as thinking, the inevitable result is discussion of
procedures, self-examination and reflection, and the making public of
mathematical thought processes. When mathematical thinking is the es-
sence of the curriculum, the teacher naturally has available a good deal of
material providing insight into students' thinking. In the thinking curricu-
lum, thinking pervades the classroom and is thus relatively easy to assess.

ISSUES FOR THE FUTURE

Much remains to be done to develop effective techniques for the
assessment of understanding. First, sound research and theory on math-
ematical thinking must underlie effective assessment techniques. Methods
do not arise from nothing and do not stand alone; they depend on theory.
To the extent that we have sophisticated research and theory concerning
mathematical understanding, we have the basis for developing effective
assessment techniques. As Mislevy (in press) has pointed out, much testing
involves the use of twentieth century statistics combined with a ninteenth
century psychology. Sensitive assessment requires a twenty-first century
psychology of mathematical thinking.

Second, we need to develop a wide variety of new assessment
techniques. Only two will be mentioned here. One is the development of
effective clinical interview techniques suitable for the classroom. The
clinical interview has proved to be an effective technique for research.
Teachers are impressed by its power and wish to use it themselves in the
classroom. Can this be done? Peck, Jencks, and Connell (1989) have made
a start in this direction; much more needs to be done.

We also require methods for assessing higher-order attitudes and
feelings concerning mathematics. In our view, beliefs, attitudes, and feel-
ings about mathematics are fundamental in determining students' ap-
proach to the subject (Kaplan, Burgess, Ginsburg, 1988; Ginsburg, 1989a).
In some sense, factors like these are more important than strategies,
understandings, and misunderstandings in determining students' approach
to classroom work in mathematics. Thus, it may be more important to know
whether a student sees mathematics as a subject which makes no sense than
to determine the particular strategy he uses to solve a problem. At the same
time, we have available few methods for assessing these affective factors. We
nee ,1 to develop them.

Third, it does no good to assess children unless teacher-, under-
stand and utilize the results. Teachers should be the primary consumers of
assessment information. Indeed, teachers should be the primary conduc-
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tors of assessments. Most assessments conducted by school psychologists,
evaluators, and administrators provide little information of any value to
classroom teachers. Yet the classroom teacher can have the most immediate
effect upon children's learning. Assessments therefore should be made
relevant to teachers, and teachers should learn to conduct assessments. But
to appreciate these assessments and to use them well, teachers need to
understand a good deal about children's mathematical thinking. It does
little good to provide a teacher with information concerning strategy if the
teacher does not understand what strategy is. Consequently, a major effort
needs to be made in the area of teacher education. Teachers need to learn
not only "math methods" but "children's methods"that is, the ways in
which children go about making sense of the world of school mathematics.
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INTRODUCTION

The view of learning that underlies standard test
theory is inconsistent with the view rapidly emerging from cognitive and
educational psychology. Learners become more competent not simply by
learning more facts and skills, but by reconfiguring their knowledge; by
"chunking" information to reduce memory loads; and by developing strategies
and models that help them discern when and how facts and skills are important.
Neither clinical test theory (CU) nor item response theory (IRT) is designed
to inform educatiorril decisions conceived from this perspective. This chapter
sketches the outlines of a test theory built around models of student understand-
ing, as inspired by the substance and the psychology of the domain of interest.
The ideas are illustrated with a simple numerical example based on Siegler's
balance beam tasks (Siegler, 1981). Directions in which the approach must be
developed to be broadly useful in educational practice are discussed.

Background

When schooling became mandatoryat the turn of the century, educators
suddenly faced selection and placement decisions for unprecedented numbers
of students, of diverse abilities and backgrounds (Glaser, 1981) . Numbers of
correct answers to multiple-choice test items were used to rank students
according to their overall proficiencies in domains of tasks. These ran kings were
used in turn to predict students' success in fixed educational experiences.

29 293



4

224

Toward a Test Theory for Asseulng Student Understanding

Classical test theory (CTT) emerged when Spearman (1907)
applied statistical methods to study how reliable estimates of this overall
proficiency would be from different test forms that might be constructed for
the purpose. Extensions of this work led over the years to a vast collection
of techniques for building tests and making decisions with test scores
(Gulliksen, 1950); to an axiomatic foundation for statistical inference about
test scores (Lord, 1959; Lord and Novick, 1968; Novick, 1966); and to
sophisticated techniques for partitioning test score variance according to
facets of items, persons, and observational settings (Cronbach, Gleser,
Nanda, and Rajaratnam, 1972). It is important to note that, in all this work,
the object of inference is overall proficiencythe test score, observed or
expectedin terms of numbers of correct responses in a domain of items.

Item response theory (see Hambleton, 1989, for an overview) repre-
sented a major practical advance over CTT by modeling probabilities of correct
item response in terms of Rh unobservable proficiencyvariable. IRT solves many
equating, test construction, and adaptive testing problems that were difficult
und.:r CTT. Advanced statistical methods have been brought to bear on
inferential problems in IRT, including sophisticated estimation algorithms (for
example, Bock and Aitkin, 1981) , techniques from missing-data theory (Mislevy,
1991), and Bayesian treatments of uncertainty in models an d parameters (Lewis,
1985; Mislevy and Slulehan, 1990; Tsutakawa and Johnson, 1988). The under-
lying psychological model remains quite simple however, and as in cTr, the
focus remains on overall proficiency in a domain of items. From the perspective
of IRT, two students with the same overall proficiency are indistinguishable.

As useful as standard tests and standard test theory have proven in
large-scale evaluation, selection, and placement problems, their focus on
who is competent and how many items they answer can fall short when the
goal is to improve individuals' competencies. Glaser, Lesgold, and Lajoie
1987) point out that tests can predict failure without an understanding of

what causes success, but intervening to prevent failure and enhance compe-
tence requires deeper understanding.

The past decade has witnessed considerable progress toward the
requisite understanding. Psychological research has moved away from the
traditional laboratory studies of simple (even random!) tasks, to tasks that better
approximate the meaningful learning and problem-solving activities that en-
gage people in real life. Studies comparing the ways experts differ from novices
in applied problem-solving in domains such as physics and troubleshooting (see,
for example, Chi, Feltovich, and Glaser, 1981) reveal the central importance of
knowledge structurenetworlcs ofcon cepts and in terconnections among them
that impart meaning to patterns in what one observes and how one chooses to
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act. The process of learning is to a large degree expanding these structures and,
reconfiguring them to incorporate new and qualitatively different connections
as the level of understanding deepens. Educational psychologists have begun to
put these findings to work in designing both instruction and tests (for example,
Glaser et al., 1987; Greeno, 1976; Marshall, 1985, 1992). Again, in the words of
Glaser, Lesgold, and Lajoie (1987),

Achievement testing as we have defined it is a method of indexing stages
of competence through indicators of the level of development of
knowledge, skill, and cognitive process:These indicators display stages
of performance that have been attained and on which further learning
can proceed. They also show forms of error and misconceptions in
knowledge that result in inefficient and incomplete knowledge and skill,
and that need instructional attention. (p.81).

Paraphrasing Ohlsson and Langley (1985), Clancey (1986) summarizes the
shift in perspective

[to] describing mental processes, rather than quantifying performance with
respect to stimulus variables; describing individuals in detail, not just stating

generalities; and giving psychological interpretation to qualitative data,
rather than statistical treatment to numerical measurements. (p. 391).

AN APPROACH TO MODELING STUDENT UNDERSTANDING

The modeling approach we are beginning to pursue tan be
encapsulated as follows:

Standard test theory evolved as the application of statistical theory
with a simple model of ability that suited the decision-making environ-
ment of mass educational systems. Broader educational options, based
on insights into the nature of learning and supported by more powerful
technologies, demand a broader range of models of capabilities still
simple compared to the realities of cognition, but capturing patterns
that inform a broader range of instructional alternatives. A new test
theory can be brought about by appkring to well-chosen cognitive
models the same general principles of statistical inference that led to
standard test theory when applied to the simple model. (Mislevy, 1992)

The approach begins in a specific application by defining a universe of student
models. This "supermodel" is indexed by parameters that signify distinctions
between states of understanding. Symbolically, we shall refer to the (typically
vector-valued) parameter of the student model as rt. A particular set of values of
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specifies a particular student model, or one particular state among the
universe of possible states the supermodel can accommodate. These param-
eters can be qualitative or quantitative, and qualitative parameters can be
unordered, partially ordered, or completely ordered. A supermodel can
contain any mixture of these types. Their nature is derived from the structure
and the psychology of the learning area, the idea being to capture the
essential distinctions among students.

MoisHig Iteapconsblellos and Mosso Problems

The modelingproblem is delineating the states or levels of understanding
in a learning domain. In meaningful applications this might address several
distinct strands of learning, as understanding develops in a number of key
concepts, and it might address the connectivity among those concepts.1 Sym-
bolically, this substep defines the structure of , where x represents observa-
tions. Obviously any model will be a gross simplification of the reality of
cognition. A first consideration in what to include in the supermodel is the
substance and the psychology of the domain: Just what are the key concepts?
What are important ways of understanding and misunderstanding them? What
are typical paths to competence? A second consideration is the so-called grain-
size problem, or the level of detailatwhich student-models should differ. A major
factor in answering this question is the decision-making framework under which
the modeling will take place. As Creeno (1976) points out, "Itmay not be critical
to distinguish between models differing in processing details if the details lack
important implications for quality of student performance in instructional
situations, or the ability of students to progress to further stages of knowledge
and understanding."

The item construction problem is devising situations for which stu-
dents who differ in the parameter space are likely to behave in observably
different ways. The conditional probabilities of behavior of different types
given the unobservable state of the student are the values of p(x:11), which
may in turn be modeled in terms of another set of parameters, say, B. The
p(x 31) values provide the basis for inferring back about the student state. An
element in x could contain a right or wrong answer to a multiple-choice test
item, but it could instead be the problem-solving approach regardless of
whether the answer is right or wrong, the quickness of responding, a
characteristic of a think-aloud protocol, or an expert's evaluation of a
particular aspect of the performance. The effectiveness of an item is
reflected in differences in conditional probabilities associated with differ-
ent parameter configurations, so an item may be very useful in distinguish-
ing among some aspects of potential student models but useless for distin-
guishing among others. Tatsuoka (1989) demonstrates the relationship
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between item construction and inference about students' strategies for
subtracting mixed numbers.

The inference problem is reasoning from observations to student
models. The model-building and item construction steps provide ti and p(xn ).
Let p(1) representexpectationsaboutil in a population of interestpossibly
noninfonnative, possibly based on expert opinion or previous analyses.
Bayes' theorem can be employed to draw inferences about ri given x via p
(x1) p(x:fl) .Dc p(x:i ). Thus p (1 :x) characterizes belief about a particular
student's model after having observed a sample of the student's,behavior.
Practical problems include characterizing what is known about B so as to
determine p(x11), carrying out the computations involved in determining
p(sc71), and in some applications, developing strategies for efficient sequen-
tial gathering of observations. As we have noted, analogous problems have
been studied in standard test theory, and the solutions there, because they are
applications of general principles of statistical inference, generalize to
models built around alternative psychological models. The models are more
realistic and more ambitious, but the formalism is identical.2

Previous research

Research relevant to this approach has been carried out in a wide
variety of fields, including cognitive psychology, the psychology of mathemat-
ics and science education, artificial intelligence (AI) work on student mod-
eling, test theory, and statistical inference. Cognitive scientists have sug-
gested general structures such as "frames" or "schema? that can serve as a
basis for modeling understanding (see, for example, Minsky, 1975; Rumelhart,
1980), and have begun to devise tasks that probe their features (for example,
Marshall, 1989,1992). Researchers interested in the psychology of learning
in subject areas such as proportional reasoning have focused on identifying
key concepts, studying how they are typically acquired (for example, in
mechanics, Clement, 1982; in ratio and proportional reasoning, Karplus,
Pulos, and Stage, 1983), and constructing observational settings that allow
one to infer students' understanding (for example, van den Heuvel, 1990;
McDermott, 1984). We make no effort here to review these literatures, but
point out that our work can succeed only by building upon their foundations.
Our potential contribution would be to the structures and mechanics of
model-building and inference. The following sections briefly mention some
important work along these lines from test theory and statistics.

Modeling patterns in student behavior

The standard models of educational measurement are concerned
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solelywith examinees' tendencies to answer items correctly thatis, their overall
proficiency. Recently, however, models that focus on patterns other than overall
proficiency have begun to appear in the test thcory literature. Some examples
that are relevant to educational applications are listed below.

Mislevy and Verhelst's (1990) "mixture models" fur item responses
when different examinees follow different solution strategies or use
alternative mental models. When a single IRT model cannot
capture key distinctions among examinees, it may suffice to posit
qualitatively distinct classes of examinees and use IRT models to
summarize distinctions among examinees within these dasses.

Wilson's (1989b) "saltus model" for characterizing stages of
conceptual development. This model parameterizes the differ-
ential patterns of strength and weakness expected as learners
progress through successive conceptualizations of a domain.

Falmagne's (1989) and Haertel's (1984) "latent class models for
binary skills." These models are intended for domains in which
competence can be described by the presence or absence of
several (possibly complex) elements of skill or knowledge, and
observational situations can be devised that demand various
combinations of these skills. Also see Paulson (1986) for an
alternative use of latent class modeling in cognitive assessment.

Embretson's (1985) "multicomponent models" for integrating
item construction and inference within a unified cognitive model.
The conditional probabilities of solution steps given a multifaceted
student model are given by IRT-like statistical structures.

Tatsuoka's (1989) "rule space analysis." Tatsuoka uses a gener-
alization of IRT methodology to define a metric for classifying
examinees based on likely patterns of item response given
patterns of knowledge and strategies.

Yamamoto's (1987) "hybrid model" for dichotomous responses. The
hybrid model characterizes an examinee as either belonging to
one of a number of classes associated with states of understanding, or
in a catch-all IRT class. This approach might be useful when certain
response patterns signal states of understanding for which particular
educational experiences are known to be effective. Instructional
decisions are triggered by these patterns if they are detected, but by
overall proficiency when no more targeted action can be provided.
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Masters and Mislevy's (1992) and Wilson's (1989a) use of the
"partial credit rating-scale model" to characterize levels of
understanding, as evidenced by the nature or approach of a
performance rather than its correctness. These applications
incorporate into a probabilistic framework the cognitive per-
spective underlying Biggs and Collis's (1982) SOLO taxonomy
for describing salient qualities of performances.

These are the rudiments of models upon which concept-referenced achieve-
ment measures can be based. Applications to date have been fairly limited,
and most have addressed one-to-many relationships between an underlying
knowledge state and observable behavior. That is, a single (possibly unor-
dered or multifaceted) variable has been used to characterize examinees,
and performance on all items is modeled in terms of this variable. What is
lacking from the point of view of the educator is a connection with meaning-
ful real-world tasks, which are rarely segregated into these neat little sets.
Rather, they often involve multiple concepts, connections among larger con-
cepts, and transformations among alternative representations of a domain.
While the simple tasks that characterize one-to-many domains are essential at
early stages of learning, more complex tasks that involve multiple concepts in
many-to-many relationships are needed to promote the integration among
concepts that form the core of what is often called "higher-level learning."

Inference Networks

Recent developments in the context of probability-based infer-
ence networks (Lauritzen and Spiegelhalter, 1988; Pearl, 1988) offer a
capability for integrating conceptual models of the type described above.
These probability-based structures are attractive for educational measure-
ment because they permit a coherent extension of the modeling approach
and inferential lc-ic of the new cognitive-assessment models mentioned
above. To show how the approach might be applied in the educational
setting, we first discuss an application in the setting of medical diagnosis.

MUNIN is an inference network that organizes knowledge in the
domain of electromyographythe relationships among nerves and muscles.
Its function is to diagnose nerve/muscle disease states. The interested
reader is referred to Andreassen, Woldbye, Falck, and Andersen (1987) for
a fuller description. The prototype discussed in that presentation and used
for our illustration concerns a single arm muscle, with concepts represented
by twenty-five nodes and their interactions represented by causal links.3 A
graphic representation of the network appears in Figure 1.
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Figure 1. Thu MUNIN network: Initial status (from Andreassen d al., 1987).

The rightmost column of nodes in Figure 1 concerns outcomes of
potentially observable variables, such as symptoms or test results. These out-
comes are the xvector in our earlier notation. The middle layers are "pathophysi-
ological states," or syndromes. These drive the probabilities of observations. The
leftmost layer is the underlying disease state, including three possible diseases in
various stages, no disease, or "other" (a condition not built into in the system).
These states drive the probabilities of syndromes. It is assumed that a patient's
true state can be adequately characterized by values of these disease and
syndrome statesour 7] parameter. Paths indicate conditional probability
relationships, which are to be determined either logically, subjectively, purely
empirically, or through model-based statistical estimation. In particular, the
paths ending at observables represent p( x11) >. Note that the probabilities of
observables depend on some syndromes, but not others. The lack of a path
signifies conditional independence. Note also that a given test result can be
caused by different disease combinations.

As a patient enters the clinic, the diagnostician's state of knowledge
about the patient's expressed by population base rates, orp (11). This is depicted
in Figure 1 by bars that represent the base probabilities of disease and syndrome
states. Base rates of observable test results are similarly shown. Tests are carried
out, one at a time or in clusters, and with each result the probabilities of disease
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states are updated. The expectations of tests not yet given are calculated, and it
can be determined which test will be most informative in identifying the disease
state. Knowledge is thus accumulated in stages, from pm ) to p or 1) after
observing the first subset of tests, to p (n:5,x2) after the second, and so on, with
each successive test selected optimally in light of knowledge at that point in time.
Figure 2 illustrates the state of knowledge after a number of electromyographic
test results have been observed. Observable nodes with results now known are
depicted with shaded bars representing observed values For them, knowledge
is perfect. The implications of these results have been propagated leftward to
syndromes and disease states, as shown by distributions that differ from the base
rates in Figure 1. These values guide the decision to test further or initiate a
treatment. Finally, updated beliefs about disease states have been propagated
back toward the right to update expectations about the likely outcomes of test
notyet administered. These expectations, and the potential they hold for further
updating knowledge about the disease states, guide the selection offurther tests.

Figure 2. The IAUNIN network: after selected observations (from Andreas at al., 1087).

INFERENCE NETWORKS IN THE EDUCATIONAL SETTING

811-1111"1.18 011

***** 41110 Ill

To see how the ideas underlying MUNIN apply to the educational
setting, consider the following analogy:
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Medical Application Educational Application

Observable symptions, medical
tests

Disease states, syndromes

Architecture of interconnections
based on medical theory

Conditional probabilities given
by physiological models,
empirical data, expert opinion

Test items, verbal protocols,
teachers' ratings of levels of tests
understanding, solution traces

States or levels of understanding
of key concepts, available strategies

Architecture of interconnections
based on cognitive and educational
theory

Conditional probabilities given by
psychological models, empirical
data, expert opinion

The definitions of key concepts will be guided by theorized and
observed stages of learning in the area, and the connection s with observables
will be expressed through measurement models such as those discussed
above. The initialization of the probabilities in the network will be accom-
plished by one or more methods such as clinical analysis, with skilled
interviewers assessing in detail the nature of students' understandings and
relating these understandings to task performances; statistical analysis of
data concerning selected models for portions -'f the larger network (Mislevy
and Verhelst, 1990) ; or theoretical analysis, in which logic or theory provides
expectations for outcomes under hypothesized cognitive states. After the
initialization phase, connections can be updated periodically with the larger
amounts of less precise data that will be accumulated as students provide
information about the adequacy of the relationships embodied in the
network and the accuracy of the baseline and conditional probabilities.

A Numerical Example

Siegler's balance-beam tasks

Kuhn (1970) emphasizes the central role that exemplarsor small,
archetypical examplesplay in science. Textbook examples are the vehicle
through which students are acculturated to the concepts and relationships of a
particular way of viewing a class of phenomena a paradigm, in Kuhn's words.
They function almost like parables or morality tales. New paradigms are
introduced with new exemplars that introduce new concepts, highlight differ-
ences between the new paradigm and the old, and demonstrate how the new way
of thinking solves problems the old way could not. Modeling the states of the
electron in the hydrogen atom possesses this status in quantum mechanics.
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Explaining children's understanding of balance-beam problems, an exemplar
from developmental psychology originated by Piaget, is approaching the same
status in test theory (for example, Kempf, 1983; Wilson, 1989b). Robert Siegler's
balance-beam tasks yield data that are, on the surface, indistinguishable from
standard test data, but there are two key distinctions:

What is important about examinees is not their overall prob-
ability of answering items correctly, but their (unobservable)
state of understanding of the domain.

Children at less sophisticated levels of understanding initially get certain
problems right for the wrong reasons. These items are more likely to be
answered wrong at intermediate stages, as understanding deepens!
They are bad items by the standards of classical test theory and IRT,
because probabilities of correct response do not increase monotonically
with increasing total test score. From the perspective of the develop-
mental theory, however, not only is this reversal expected, but it plays an
important role in distinguishing among children with different ways of
thinking about the problems.

Attempting to study children's reasoning in a manner less subjec-
tive than Piaget's unstructured interviews, Siegler (1981) devised a series of
balance beam tasks like the one Must: ated in Figure 3. Varying numbers of
weights are placed at varying locations on a balance beam. The child
predicts whether the beam will tip to left, to the right, or remain in balance.
Piaget's analysis of children's behavior on balancing tasks (Inhelder and
Piaget, 1958), posits that a child will respond in accordance with his or her
stage of understanding. The usual stages through which children progress
can be described in terms of successive acquisition of the rules listed below.

Figure 3. A sample balance-beam task.

When the blocks are removed, will
the beam tip left, tip right, or stay flat?
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Rule I: If the weights on both sides are equal, it will balance. If they
are not equal, the side with the heavier weight will go down. (Weight is the
"dominant dimension," because children are generally aware that weight is
important in the problem earlier than they realize that distance from the
fulcrum, the "subordinate dimension," also matters.)

Rule II: If the weights and distances on both sides are equal, then
the beam will balance. If the weights are equal but the distances are r.ot, the
side with the longer distance will go down. Otherwise, the side with the
heavier weight will go down. (A child using this rule uses the subordinate
dimension only when information from the dominant dimension is equivocal.)

Rule III: SameasRukII,exceptthatifthevaluesofbothweightandlength
are unequal on both sides, the child will "muddle through" (Siegler, 1981, p. 6). (A
child using this rule now knows that both dimensions matter, but doesn't know just
how they combine. Responses will be based on a strategy such as guessing.)

Rule DI: Combine weights and lengths correctly (that is, compare
torques, or products of weights and distances).

It was thus hypothesized that each child could be classified into one
of five stagesthe four characterized by the rules, or an earlier "preopera-
tional" stage in which neither weightnor length are thought to bear any
systematic relationship to the action of the beam.

Figure 4. Sample balance-beam Items.

Item 'Type Sample Item
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Equal problems (E), with matching weights and
lengths on both sides.

Dominant problems (D), with unequal weights
but equal lengths.

Subordinate problems (S), with unequal lengths
but equal weights.

Conflict-dominant problems (CD), in which one
side has greater weight, the other has greater
length, and the side with the heavier weight will
go down.

Conflict - subordinate problems (CS), in which one
side has greater weight, the other has greater
length, and the side with the greater length will go
down.

Conflict-equal problems (CE), in which one aide
has greater weight, the other has greater length,
and the beam will balance.
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Sieglerdeveloped the six typesofproblems shovm in Figure 4 to distinguish
among children at different stages of reasoning. Table 1 shows the probabilities of
correctresponse thatwould be expected from groups ofchildren in differentstages,
if their responses were in complete accordance the hypothesized rules. Scanning
aaoss the rows reveals how the probability ofa correct response to agiven type nfitem
does not always incre2c.0 at level of understanding increases. For example, Stage II
children tend to answer a) items right for the wrong reason, while Stage III children,
now aware of a conflict, flounder.

Table 1. Theoretical conditional probabilities: expected proportions of correct response.

Problem type Stage 0 Stage I Stage II Stage III Stage IV

E .333 1.000 1.000 1.000 1.000

D .333 1.000 1.000 1.000 1.000

S .333 .000 1.000 1.000 1.000

CD .333 1.000 1.000 .333 1.000

CS .333 .000 .000 .333 .333

CE .333 .000 .000 .333 1.000

A latent class model for balance beam tasks

If tire theory were perfect, the columns in Table 1 would give
probabilities of correct response to the various types of items from children
at different stages of understanding. Observing a correct response to an S
item, for example, would eliminate the possibility that the child was in Stage
I. But because the model is not perfecto, and because children make slips
and lucky guesses, any response could be observed from a child in any stage.
A latent class model (I -azarsfeld, 1950) can be used to express the structure
posited in Table 1 while allowing for .1rne "noise" in real data (see appendix
for details). Instead of expecting incorrect responses with probability one to
S items from Stage I children, we might posit some small fraction of correct
answers p(S coffee t:Stage4). Similar probabilities of "false positives" can be
estimated for other cells in Table 1 containing 0's. In the same spirit,
probabilities less than one, due to "false negatives," can be estimated for the
cells with l's. Note that inferences cannot be as strong when these uncertain-
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ties are present; a correct response to an S item 9;ti suggests that a child is
probably not in Stage I, but is no longer proof positive.

Expressing this model in the notation introduced above, n repre-
sents stage membership, x represents item responses, and p(z11) are condi-
tional probabilities of correct responses to items of the variou- types from
children in different stages noisy version of Table 1. The prk ortions of
children in a population of interest at the different stages are p(11), and the
probabilities that convey our knowledge about a child's stage after we have
observed his or her responses are p(tvx).

Siegler created a 24-task test comprised of four tasks of each type.
He collected data from 60 children, from age three up through college age,
at two points in time, for a total of 120 response vectors. We fit a latent class
model to these data using the HYBRIL computer program (Yamamoto,
1987), obtaining the conditional probabilities --p(xn)shown in Table 2,
and the following vector summarizing the (estimated) population distribu-
tion of stage membership:

poi) = (Prob(Stage=0), Prob(Stage=1), Prob(Stage=IV))

= (.257,.227,.163,.275,.078).

Table 2. Estimated conditional probabilities: expected proportions of correct response.

Problem type Stage 0 Stage I Stage II Stage III Stage IV

E .333* .973 .883 .981 .943

D .333* .973 .883 .981 .943

S .333* .026 .883 .981 .943

CD .333* .973 .883 .333* .P43

CS .333* .026 .116 .333* .943

CE .333* .026 .116 .333* .943

* Denotes fixed value
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Note that different types of items are differentially useful to
distinguish among children at different levels. E items, for example, are best
for distinguishing Stage 0 children from everyone else. CD items, which
would be dropped from standard tests because their probabilities of correct
response do not have a strictly increasing relationship with total scores, help
differentiate among children at Stages II, III, and IV.

Figure 5 depicts the state of knowledge about a child before observing
any responses using the conventions of the MUNIN figures. For simplicity, just
one item of each type is shown. The corresponding status of an observable node
(that is, an item type) is the expectation of a correct response from a child
selected at random from the population. The path from the stagemembership
node to a particular observable node represents a row of Table 2.

Problem Type Figure 5. Initial state in an

E inference network for the
balance-beam example.

13

Adaptive testing

Figure 5 repre-
CD sents the state of our knowl-

edge about a child's rea-
soning stage and expected

cs
responses before any actual
responses are observed.

cs How does knowledge
change when a response is
observed? One of the chil-

dren in the sample, Douglas, gave an incorrect response to his first S item. This
could happen regardless of Douglas' true stage; the probabilities are obtained
by subtracting the entries in the S row of Table 2 from 1.000, yielding, for Stages
0 through IV, .667, .973, .116, .019, and .057 respectively. This is the likelihood
function for induced by the observation of the response. The bulk of the
evidence is for Stages 0 and I. Combining these values with the initial stage
probabilities p(71) via Bayes theorem yields updated stage probabilities, p (1:
incorrect response to an Sitem), for Stages 0 through IV, respectively, of .41, .52,
.04, .01, and .01. Expectations for items not yet administered also change. They
are averages of the probabilities of correct response expected from the various
stages, now weighted by the new stage membership probabilities. The state of
knowledge after observing Douglas' first response is depicted in Figure 6 (see
appendix for details; also see Macready and Dayton, 1989.)
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Figure 6. State of knowledge about cognitive level after an incorrect response to an
S item.

Miler Tvis In a simulation of
E adaptive testing,weupdated our

knowledge about Douglas one
response at a time, at each step
looking at his actual response
to an item expected to most
substantially reduce our uncer-
tainty about his stage member-

s ship. Figure 7 charts probabili-
ties of stage membership for

fa Douglas after each of the first 10
items, showing that we quickly
converge to Stage 0.

Figure 7. Posterior probabilities of cognitive levels.

hem Nunter

Extending the
Paradigm

The balance-
beam exemplar illus-
trates the challenge of
inferring states of un-
derstanding, but it ad-
dresses development of
only a single key con-
cept. A major thrust of
our proposal is to char-

acterize interconnections among distinct lines of development. This section
takes a small step in this direction by discussing a hypothetical extension to
the exemplar, namely, the ability to carry out the arithmetic operations
needed to calculate torques. For illustrative purposes, we simply posit a skill
to carry these calculations out reliably, either possessed by a child or not.
Obviously states of understanding could be developed in greater detail here.

Calculating and comparing torques to solve the "conflict" prob-
lems characterizes Stage IV. But if a child at Stage IV cannot carry out the
calculations reliably, his pattern of correct and incorrect responses would be
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hard to distinguish from that of a child in Stage III. Although the two children
might answer about the same number of items correctly, the instruction
appropriate for them would differ dramatically. And children at any stage of
undemanding of the balance beam might be able to carry out the computa-
tional operations in isolation. The goal of the extended system is to infer both
balancebeam understanding and computational skill. To make the distinc-
tions among states of understanding in this extended domain, we introduce
two new types of observations:

Items isolating computzaon, such as, "Which is greater, 3 x 4 or 5 x 2?"

Probes for introspection about solutions to conflict items: "How
did you get your answer?"

Figure 8 offers one possible structure for this network. Others could
be entertained, and in practice one would compare the degree to which they
accord with observed data. To keep the diagram simple, only one balance beam
task each for an Sand a CS task are illustrated. Eand D items would have the same
paths as the Stask, and CDand CE taskswould have the same paths as the CS tasks.
Also, the paths from Stage 0, I, and II indicators to balance beam tasks are not
drawn in. The structure of paths, but not necessarily the values, would be the
same as those connecting the Stage III indicator to those tasks.

Figure 8. Representation of an extended balance-beam network.

FM

3.14

There are
three kinds of un
observable variables in
the system. The first
group expresses level
of understanding in
the balance beam do-
main. It proves conve-
nient to express stage
membership in terms
of dichotomous indi-
cator variables for
each stage, because of
the special relation-
ship of Stage IV to
computational skill.
Second is the ability
to carry out the calcu-
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lations involved in computing torques. The third concerns the integration of
balancebeam understanding and calculating proficiency. Specifically, we
posit an indicator for whether a child both is in Stage N and possesses the
requisite computational skills. Other features of the network worth mention-
ing are as follows:

1. The probabilities of the pure computation items depend
on the unobservable computation variable only; they are conditionally
independent of level of balance beam understanding.

2. The correctness aspect of an answer has only two possibilities,
right or wrong, but an explanation can fall into five categories corresponding to
levels of understanding. A Stage III child might give an explanation consistent
with Stages 0, I, II, or III, but would not give a Stage IV explanation. Theory thus
posits that the conditional probability of a Stage Kresponse from a Stage jchild
is zero if I4j. Conditional probabilities for KV might be estimated from data or
based on experts' experience. It may turn out, for example, that the most likely
explanation for an E task from people at Stage IV would probably be a Stage II
explanation: "It balances because both the weights and distances are equal."

3. For children in Stages 0 through III, both the right/wrong
answers and the "How" answers to balance beam tasks depend only on level
of understanding. Because they do not realize the connection between the
problems and the torque calculations, their responses to the balance beam
tasks are conditionally independent of their computational skill, even on
items for which that skill is an integral component of an expert solution.

4. For children in Stage N, right/wrong answers to conflict
items depend on the understanding/computation integration variable, but
"How" answers depend only on understanding. A child in Stage IV with low
computztional skill can thus be differentiated from a child in Stage III by his
higher probabilities of giving Stage IV explanations and incorrect answers to
pure computation problems.

EXTENDING AND CLARIFYING EDUCATIONAL MEASUREMENT PRACTICES

Connections with instruction can be forged more easily than with
standard tests, because the focus is no longer on how many questions a student
can answer, but how they are answered. In medical diagnosis, different diseases
gave rise to similar results in certain tests; in education, so too can different
approaches lead to similar test scores for students. But accounting for the
patterns of performance, especially if probing adaptively, can pinpoint the areas
that need attention to best improve performance.
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Student Typo* can be provided at varying levels and highlighting
different features of a student's status. Of particular importance to the student
and the teacher are reports in terms of levels or stages of understanding of key
concepts, since this is the level at which instruction is aimed. For the quality
control purposes of administrators, however, one could predict a student's
rierformance on a standard set of tasks in the domain, a "market basket" of tasks
that, ideally, every student should eventually be able to handle.

Use of different strategies or mental models can be accommodated in an
inference network. This can take the form of either a single strategy/mental
model choice for all tasks in a class, as studied by Mislevy and Verhelst
(1990), or strategy/model switching from one task to another (as in Snow
and Lohman, 1984). The nature and the strength of inferences one can
draw will depend on the potential observational settings. With rich informa-
tion, such as verbal protocols or partial solutions, it may be possible to
characterize the range of solution methods the student has available and the
conditions under which he or she employs them.

Testing 'higher-order thinking" can be accomplished by including
unobservable nodes for connections among more basic facts or concepts,
and observable nodes that correspond to tasks for which the relationships
of interest are ciitical. Because such tasks might well be open-ended and
approachable in a variety of ways, the possibility of alternative solution
strategies would need to be built into the network.

Adaptive testing can be carried out among concepts, not just for a
single concept. IRT applications of adaptive testing are based on the one-to-
many relationships that are appropriate for determining overall levels of
proficiency, but inadequate for understanding connections among con-
cepts. The inference network facilitates stepping variously throughout a
domain, gathering information about critical domains by presenting tasks
that call for varying combinations of key skills.

Handling atypical knowledge configurations or observational patterns
can be accomplished by incorporating nodes analogous to the "other"
disease state in MUNIN or the catch-all IRT class in Yamamoto's (1987)
Hybrid model. An "other" state of understanding is a mechanism for
capturing observational patterns that do not accord with those specifically
built into the network. A situation-sensitive student report might be gener-
ated in an instructional system when such a node becomes prominent,
signalling that more intelligence than is embodied in the system is needed
to figure out what this student is doing, and to decide what to do about it.
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A UMW Coacepteal Framework

Learning can be enhanced by a unified conceptual framework for
instruction, testing, and reporting, because in such a framework coherent
feedback loops can be constructed. This chapter has focused on the
educational measurement asp- 7t of a system built on this premise. The
recent introduction of measurement models built around states of under-
standing, and of inferential techniques to connect such pieces into networks
that describe domains of school learning, provide a foundation for im-
proved educational practice.
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APPENDIX

EQUATIONS FOR THE LATENT CLASS MODEL

The Model

Let TI = (10,...%) denote the stage of understanding of a child,
with ik= 1 if the child is in Stage k and 0 if not. Let it = (Irv-ay denote the
population proportions of children in these classes; that is, %asp (T1 k= 1) . Let
xi represent a response to Task j,1 if correct and 0 if not; j runs from 1 to 24.
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The conditional probabilities of correct response are Prob (xj= 1 I 'ilk = 1), or PA
for short. Pdenotes the matrix ((PA) ). A vector of item responses, x = (x1,...,x24)
is assumed to have the following probability conditional on stage mambos*:

p(x N. n Pik xj (1 Pik) I 14.

J

(1)

Similar expressions are assumed to hold for subsets of responses as well,
regardless of the order in which they are observed.

The marginal probability of a response vector is an average of terms
like (1), weighted by the population probabilities of stage membership:

4

p(x ) = p(x I rik= 1)74.
k = 0

(2)

Let X denote the matrix of response vectors of a sample of Nrespondents.
For a generic pattern 9, let nl be the number of respondents producing this
pattern. The probability of X as a function of Pand It ha:, the form

pun p,i, ). cn p(,d).1

(3)
where C does not depend on P or it. Once X has been observed, (3) can be
interpreted as a likelihood function, and maxima may be found with respect
to Pand It.

Because Nis only 120 in the balance beam example, a number of
constraints were introduced so that stable estimates would be obtained.
Many could be relaxed or removed with larger samples.The results reported
in Table 2 represent the best-fitting result among several models with
similar numbers of constraints. The Is that appear as .333 in Table 1 were
fixed at that value. All four items ofa given type were constrained to have the
same Pjks. For a given column, all Pjks in cells that correspond to l's in Table
1 were constrained to be equal to a single estimatedvalue. Any cells in that
column that correspond to 0's were constrained to its complement.

Adaptive Testing

The maximum likelihood estimates of P and it were treated as
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known true parameter values during simulated adaptive testing. The uncer-
tainty in these values could be taken into account, but we have avoided the
complication for this demonstration.

Before observing any responses from a given child, the expected
value of the child's t is the population value n. The expected value of a
response to a particular item j is obtained analogously to (2), simplified to
a single, as yet unobserved, response:

p(x.= 1) = E p(x.= 1 171k= 1)p(rlk= 1)

E Pik pcnk= 1).

(4)

Suppose that item gis administered to a particular examinee, and
the value of xh, either 0 or 1, becomes known. How is this information
propagated through the network? First, using Bayes theorem, we update
probabilities for the index parameter II. For k= 0,...,4.

P(T1k= thes.)
I rik= 1) pock= 1)

P(x81nh= 1) p(rih= 1)
h (5)

This gives new probabilities that the examinee is in each of the possible
stages. These are in turn reflected in new expectations for items not yet
administered by replacing /(nit= I) in (4) with P(nk = 1 I xg) to obtain

p(xi = llxg) =Ep(xj = ik= 1) p(r1k= 1 I xg) .

(6)

This process can be repeated with additional items represented
one at a time. Let xs represent a partial response sequence; item s+1 is next
administered to form xs+1. Then

p(Tik= 1 I

p(xs+1 = 1 I = i)p(1k. I I xi)

Eh p(Xs+ = 1 .nh = 1) p(nk= 1 I 'es)

320

(7)
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and, for items not yet presented,

xx1=i1;+1) = £p(x1 =1174=1)p(Tlk=11x,+1).
(8)

Selecting which item to present next and deciding when to stop
depends on probabilities for it. In this paper we have addressed only thecase
in which no decision-making cost structure is available, and we address only
the goal of minimizing uncertainty about 7E. This can be accomplished by
minimum entropy adaptive testing. Entropy is a measure of randomness. For
the five-zlass balance beam problem, the maximal value of entropy occurs
when probabilities of all five classes are equal, and the minimal value occurs
when the probability of one particular stage is one. The general formula for
entropy after having observed x5 is

E(xs)=- p(tll,. I x5) log [p(Tlk= xs)]

(9)

After having observed x5, one can evaluate the expected entropy associated
with the administration of any remaining item jas

E[xf)( xi = p( xi =01 xs) + E [xp( xi 1 )] p( xi= 1 1 xs).

(10)

The item that minimizes (10) is presented next.

It bears that these formulae assume both that the model iscorrect and
the conditional probabilities are known with certainty. Violations of these
assumptions generally degrade knowledge about an examinee's state, making
(5) and (8) in particular overly optimistic. Work remainsto be done, in studying
the robustness of the approach to violations of the assumptions, learning how
to minimize violations in practice, and modifying the model or the conditional
probabilities to mitigate inferential errors in the presence of violations.
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Interpreting
Responses to
Problems with
Several Levels and
Types of Correct
Answers

Susan J. Lamon and
Richard Lesh

The production and interpretation of model-elk-
king activities (see Chapter 2) is a complex endeavor. Problem formulation
and response interpretation within complex mathematical domains require
a strong supporting framework. That framework should provide a blueprint
for creating problems, a basis by which to interpret students' reasoning as
they interact with the problems, and a guide to instructional decision
making. In this chapter, we will use examples from the domain of ratio and
proportion to explore some of the issues surrounding problem formulation
and the interpretation of student thinking. A framework for problem
formulation and scoring will be proposed, and levels of responses to a variety
of problems will be discussed in light of that framework. We begin by
discussing some issues that are arising as the mathematics education com-
munity considers alternatives to current assessment practices.

SOME CRITICAL UNDERSTANDINGS AND DISTINCTIONS

The campaign for a problem-solving curriculum during the 1980s
taught us that early responses to pressures for reform sometimes create the
illusion of novelty but stop short of producing substantial changes. Imma-
ture ideas and meager guidelines allow nearly any current practice to be
rationalized to a good fit or to sanction cosmetic changes' hat fail to reform.
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Similar dangers are imminent in assessment reform.

The mathematics education world is alive with discussions of
"authentic performance" and "alternate forms of assessment." Popular
interpretations of assessment reform are captured in a few simple maxims,
such as (i) use real, open-ended questions; (ii) don't use textbook problems;
and (iii) don't use multiple-choice questions. Unfortunately, slogans or rally
cries are frequently based upon a narrow interpretation of the needs
motivating the reform. As we worked with teachers, testing and refining the
guidelines for developing problem-solving situations that focus on deeper
and higher-order understandings (presented in Chapter 2), we found
several caveats necessary. Some of these critical understandings and distinc-
tions follow.

Productive Open-ended Questions

Changing notions of learning and understanding have produced
wide agreement that one of the characteristics of a good problem is that it
captures as much as possible of the process that produced its solution. The
desire to capture aspects of individual students' construction of knowledge
has brought the open-ended question into vogue as an outlet for personal
expression. However, merely providing the invitation for a student to
expose a solution process is not a sufficient condition for creating good
assessment items. The question in Figure 1, for example, was created by a
fourth-grade teacher to elicit his students' thinking while reading graphs.

Figure 1. A graph-reading exercise and two typical fourth-grade student responses.

Sales at Marty's Summer Hot Spot

0
0
0

0 During which month
o did Marty sell the

most ice cream?
Explain how you got

o your answer.

Fourth-grade student
responses:

® Hot Dogs II Pop fig Ice Cream

Studatt #1: July. I
looked.

Student #2: I put my
finger at the top of
each ice cream stack
and went over to the
numbers to see
which one was
higher. I picked July
because it was higher
than the rest.
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The typical response elicited by the question is a description of
procedural events. Merely adopting an open-ended format was unproduc-
tive; attaching the command "Explain how you got your answer" failed to
elicit students' thinking because the original question was procedural. The
teacher gained no insight into the student? thinking because there was no
need to reason, predict, describe, experiment, connect, or interpret.

Our guideline that problems should have more than a single level
or type of correct answer refers to the substance of the elicited response and
not merely to the form of the question. Essentially, it invites a broader
conception of an open-ended question than most people currently hold. We
have found several types of problems useful in eliciting deeper and higher-
order thinking. These include (i) questions for which students must con-
struct their own responses; (ii) projects that are of sufficient complexity that
students must both ask and answer a series of questions in the process of
carrying them out (see de Lange, this volume); and (iii) questions that may
be solved at various levels of mathematical sophistication. The common
property of all three types of problems is that they elicit and capture student
thinking in a manner that allows it to be analyzed to reveal the underlying
models. The third type, perhaps the least used of the three, is the focus of
the latter part of this chapter.

Improvlag Textbook Problems

There are competing theories about the most productive ap-
proach to creating useful assessment items. Some people start with interest-
ing situations and pose questions; others take existing problems and try to
improve them. The let's-make-it-better" approach frequently starts with
textbook problems. In the absence of some intentional content objective,
the meaning of "improvement" tends to be obscure. For example, some
fourth and fifth grade teachers in an in-service course on questioning
discussed the following typical textbook question on ratio and proportion:

The ratio of boys to girls in a class is 3 to 8. How many girls are in
the class if there are 9 boys?

After great deliberation, the teachers changed the problem to read:

For every 3 boys in a class, there are 8 girls. How many students are
in the class?

The consensus was that the second problem was better because it allowed for
more than one correct answer and adjusted for the fact that fourth and fifth

321



322

Interpreting Responses to Problems

graders would not be familiar with the term "ratio." The teachers took the
problem back to their classrooms with the goal of obtaining as much
knowledge as possible about their students' thinking and deciding what
might be appropriate for the next phase of instruction.

The results were disappointing. In a follow-up discussion, the
teachers concluded that they had learned very little about their students'
thinking because they had not given adequate attention to their purpose in
asking the questions. They decided that they needed more specific informa-
tion. For example, when students came up with the answer 11, did they
realize that other class sizes were possible? Were they mindlessly performing
operations on the given numbers, or did they realize why 11 was a real
possibility? When students developed patterns by doubling and tripling
each of the given numbers in turn, did they realize that the three-to-eight
relationship was being preserved in the appropriate pairings?

The teachers later produced alternative wordings for the ques-
tions, depending on the conceptual underpinnings of ratio and proportion
they wanted to highlight. In their efforts to understand their students'
understanding, teachers first focused on the covariance of the numbers of
boys and girls and the invariance of the boy-to-girl comparison. One teacher
asked, "Could there be 25 people in the class? Why or why not ?" She found
out that half the students in her class considered 25 a possible class size
because 3 (3) +2 (8) = 25. Another teacher observed thatmany of his students
had set up a table and had added 6 boys and 16 girls across the second row
of the table to arrive at 22 students as one of the possibilities. He probed their
understanding with the remarks "I can think of other numbers that add to
22. How about 6 + 16 = 22? Would 6 boys and 16 girls work justas well?" Too
many students found nothing wrong with his suggestion!

Current trends in assessment tend to be clearer about desirable
forms of classroom assessment than about the substance ofassessment. As we
begin to test open-ended questions with real students in real classrooms, we
fmd that they are no panacea. Merely adopting new forms of assessment is
no substitute for analyzing the goals we are assessing. Creating open-ended
questions can be a futile effort in the absence of some intentional cognitive
objective.

Improving Multiple-choice Questions

Multiple-choice questions were attacked as unsuitable assessment
questions because of the likelihood of studen ts obtaining the correct answer
without thinking. An obvious solution was to create an open-ended version
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of the multiple choice question and the obvious replacement format was the
fill -in- the -blank question. Unfortunately, this was another quick fix too
hastily adopted. For example, consider the following multiple-choice ques-
tion constructed by a middle school teacher:

5/15 = 3/9. Suppose I want these fractions to remain equal. If I
change the number 15 to 24, does anything else have to change?

(a) The 3 or the 9.

(b) The 3 and the 5.

(c) The 9 or the 5.

(d) The 5 and the 9.

(c) None of the other numbers.

The "improved" version of the question read:

5/15 = 3/9 and ?/24= 3/9

The entire sense of the question was changed! The teacher retracted the
invitation to think and presented his students with a textbook exercise
demanding a single correct answer. A question that asked students to
investigate important numerical relationships was trivialized to one that
merely required the application of a procedure. In the fill-in-the-blank
version, students either (1) reduced 3/9 to 1/3 and then recognized that the
missing number must be 8; or (ii) ic they knew the cross multiple algorithm,
solved the equation 9x = 72.

If good questions are those that cause students to engage in
higher-order thinking, all multiple-choice questions are not bad. Each
needs to be carefully examined on its own merits. Some (.7 the questions
developed for the California Assessment Program (Stenmark, 1989), for
example, provide outstanding examples of multiple choice questions that
elicit good thinking. In judging the "goodness" of any problem, however, it
is necessary to match question format with one's purpose in assessing. A
critical distinction needs to be drawn between formats that elicit good
thinking, and those that both elicit and capture higher-order thinking.
Multiple-choice questions may elicit higher-order thinking, but because
they do not require the thinker to record, videotape, or keep a written
journal of the solution process, they have little value if one's goal is to gain
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insight into the kinds of models students are developing.

Process Goals or Heuristics

As problem solving became a major emphasis in mathematics
education during the 1980s, it became fashionable to emphasize that the
process one uses in solving a problem is at least as important as achieving the
correct answer. For many mathematics educators, the four-step Polya pro-
cess (Polya, 1945) became an important vehicle for encouraging students
toward the investigative, creative, affective, and metacognitive goals of
mathematics education. For others, the four steps became a routinethe
phrases "understanding the problem," "devising a plan," "carrying out the
plan," and "checking the solution" were typed into every solution space on
every problem sheet their students received.

In working groups where we have asked teachers to write model-
eliciting problems, teachers who have relied heavily on the four-step process
experience a great sense of conflict with our rules of thumb for creating
model-eliciting problems. As discussion turns to the nature of open-ended
questions and the necessity of inviting a variety of response types, it becomes
clear that prescribing the Polya routine is tantamount to consistently present-
ing students with problems that have a single type of correct response.

Process goals take students beyond facts and skills as products of
instruction, but when they become the focus of instruction, they are really
just rulesmore nebulous than algorithmsbut still rules. Problem solving
is getting from givens to goals when the path is not obvious, and the method
for doing that is by rule stringing. The means to an end becomes the end in
itself, and the freedom to investigate, construct, manipulate, predict, test,
clarify, and adapt is stifled.

Observations, Conclusions, and Clarifications

As we participate in the process of creating mcdel-eliciting activi-
ties with other teachers and colleagues, we are deriving important lessons
from the experience. Every failed attempt to make an algorithm of the
problem formulation process, every dashed expectation, and every success
in engaging students in high-level mathematical activity enhances our
perspectives on assessment-related issues:

On problem formulation:

The worth of questions, the manner in which responses are
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interpreted, and the instructional value of the assessment
depend on what one perceives as the intent of the assessment.
Unless some content framework is operating, the focus shifts to
form above substance, and assessment becomes a goal in itself.

Good assessment items evolve; they are not written in a single
session. An analysis of mathematical structure may provide an
initial basis for devising problems, but the appropriateness of
questions can only be judged when mathematical content
interacts with students' interpretation of the problem situation
and with their mathematical and experiential backgrounds. As
students' unstable but developing models are revealed, prob-
lem revision is often necessary. A useful assessment item
emerges after several rounds in a test-revise loop.

There is no known method for making the problem-writing
process shorter or easier; problem formulation is hard work.
The payoff is that one good problem can assess and document
learning better than many low-level questions can.

There exists a dialectical relationship between the student's
models and the model-eliciting activity. That is, the model a
student uses in the course of interacting with the activity is a
basis for inference concerning the appropriateness, depth, and
level of refinement of that student's cognitive structures. At the
same time, the quality of a student's model will constrain that
student's command of the situation and limit his or her ex-
planatory and predictive power. On the other hand, a student's
exposure to various model-eliciting activities will enhance that
student's models, while the activities to which the student's
thinking has been confined constrain the development of
models.

On cognitive goals:

Cognitive goals cannot be identified with specific behaviors.

Cognitive goals cannot be associated with the format of the
assessment question.

Cognitive goals cannot be associated with the correctness of the
solution process. It is always possible to devise and teach
noninsightful procedures for solving problems. Under these
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conditions, successful performance does not indicate that a
model has been constructed (see Goldin, this volume).

Because models can be adapted, refined, or integrated into
larger models, cot, _Alive objectives are like moving targets.

MODEL-EUCITING ACTIVITIES FOR RATIO AND PROPORTION

As careful analyses of content are completed in complex math-
ematical domains and children's models ave investigated in relation to that
content, frameworks will become available to guide problem formulation.
Research that ties children's thinking to content and documents growth in
competence from informal, intuitive concept_; 7.4d strategies to more formal
methods is still in its early stages, however :--Hebert and Behr, 1988). It is
generally agreed that instruction is needed to support the learning of
mathematically complex topics such as proportional reasoning because
students do not develop the essential conceptual and procedural knowledge
spontaneously (Hiebert and Behr, 1988), but the difficulty has been in
finding insightful methods that encourage more than purely algorithmic
solutions.

In the remainder of this chapter, we will use examples from some
current instructionally based research whose goal is to find ways to build
upon children's informal, additive, preproportional reasoning and facili-
tate its development into higher forms of reasoning (Lamon, 1992). In
terms of our learning progress maps (see Chapter 14), the content of this
research would be located around the outer rim of the base (or in the
foothills) of the mountain called "ratio and proportion." Researchers have
long known the kinds of model-eliciting activities appropriate for the
central ring of the mountainthose involving orange juice mixtures,
balance beams, scale drawings, and so on but the smaller, more primitive
sites, where children develop understandings about ideas central to propor-
tional reasoning, have received little attention. We might think about these
sites as points of entry to the world of ratio and proportion, places where
children begin the model-building process.

Sone General Structures

We contend that the work of designing instruction and assessment
consists in creating a match among three critical elements: (i) cognitive
objectives, (ii) model-eliciting activities, and (iii) children's existing models.

Cognitive objectives or models

Models are the ultimate goals in mathematics instruction, but they
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cannot be taught directly. For example, a proportion is a model for
situations in which pairs of related quantities change without altering the
relationships among those quantities. One might be able to teach students
to mindlessly manipulate the algebraic symbols representing a proportion,
but understanding of the relationships between the elements of a propor-
tion cannot be taught directly. The coordination and understanding of such
relationships occurs through the process of model building. In the domain
of ratio and proportion, as in most complex mathematical domains, the
outstanding research question is, What are the primitive mathemati-
cal ideas that will eventually mature into the models we would like
children to have?

There is widespread agreement (Hiebert and Behr, 1988) that if
research is to inform instruction, it is important to analyze mathematical
structures and children's solution processes in light of the developmental
precursors (or, sometimes, prerequisites) to the knowledge needed to
function competently in a domain. These precursors or cognitive building
blocks have been called by many names: key cognitive processes (Hiebert
and Wearne, 1991), key informal strategies (Hiebert and Behr, 1988),
theorems-in-action (Vergnaud, 1983), and central conceptual structures
(Case and Sandieson, 1988). They are conceptions and procedures consid-
ered necessary, but not necessarily sufficient, for acquiring formal
methods and meaningful knowledge, or at least they represent some
immature form of the ultimately desired knowledge. It is very difficult to
identify these cognitive building blocks in domains where mathematical
ideas are complex and built upon a vast amount of prior knowledge and
experience, but the operative theory is that if the ideas critical to under-
standing can be identified and made explicit in real-world phenomena,
children's thinking can then be investigated and used to better inform
instructional decisions.

Model-eliciting activities

When we are developing model-eliciting activities at the outer
edges of a mountain, one concern should be that the activities allow students
to experience the need for a new way of organizing knowledge, that is, to
develop a .ationale for climbing the mountain. Most often, this means that
students need to be convinced that their current models are inadequate for
the situation at hand. The middle-school mathematics program is especially
demanding of new mathematical perspectives, and many students who are
comfortable with whole number addition and subtraction models are
reluctant to adopt new models to accommodate rational numbers and
multiplicative situations.
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At the same time, elementary model-eliciting activities should
help students to develop the metacognitive capacity for detecting the
conditions under which new models apply. Although students may begin to
construct models in a very limited context (that is, their learning is situated),
we would like students to "develop the kinds of sensitivities necessary to use
relevant information in new situations" (Bransford, Franks, Vye, and
Sherwood, 1986). Thus, these elementary model-eliciting activities are
more than problems; they are prototypes. In particular, proportional rea-
soning is such a pivotal cognitive activity that model-eliciting activities in
ratio and proportion facilitate access to most of the basic concepts of
mathematics, science, and everyday problem solving.

Children's existing models

Technically speaking, model-eliciting activities are misnomers
until students bring their existing knowledge to bear on those activities.
(Even then, children have been known to construct correctly reasoned
responses that have no connection whatsoever to the ideas someone else was
,trying to elicit. In such a case, the activity did not elicit the model at alll) For
several reasons, the development of good model-eliciting activities is highly
dependent upon the population for whom the activities are intended.

First, children do not always think in a manner consistent with
adult thinking or rational task analyses, so the full range of processes they
may use to respond to any given item cannot be predicted. It is always
important to 'darn about the kinds of models with which children approach
instruction because their existing models will influence the kinds of pro-
cesses elicited by new activities and determine the appropriateness of
instructional decisions. Even with a well-researched base of knowledge
concerning prior models, teachers find unexpected results arising because
learning often occurs while the student is interacting with a model-eliciting
activity. It has also been observed that children use processes that are
sufficient for solving a problem; these are not necessarily their most sophis-
ticated strategies (Lamon, 1992). Thus, researchers and teachers need to go
beyond reporting children's thinking to analyzing the kinds of models to
which their thought processes are attached.

A FRAMEWORK FOR ASSESSING CHILDREN'S DEVELOPMENT

OF RATIO AND PROPORTION.

The following assessment framework for ratio and proportion is
still in its formative stages. The cognitive objectives arose from an analysis of
ratio and proportion tasks as well as extensive interviews with children. The
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goal of the analysis and in terviews vras to determine what sorts of experiences
and understandings are critical for understanding ratios and proportions.
The cognitive objectives that have resulted are probably necessary, but not
necessarily sufficient, precursors to proportional reasoning.

Problems using a variety of contexts were formulated to assess
children's preinstructional knowledge related to each cognitive objective.
The resulting model-eliciting activities do not require that the student
engage in proportional reasoning, yet they provide opportunities for the
student to construct a primitive cognitive mode: that is likely to someday be
integrated into a ratio and proportion model.

The following model-eliciting activities have been used in two
ways. First, the activities have been used in clinical interviews with late fifth
graders and early sixth graders to assess their preinstructional knowledge.
In the course of an interview, it is frequently possible to document simulta-
neous learning. When a student is presented with activities concerning a
single cognitive objective but in several different contexts, it sometimes
happens that, if the student is able to respond, it is in only one context; then,
the student may ask to return to a previous context because he or she has
some new insights about it. Thus, learning is situated, it occurs in different
contexts or different pecple (although some contexts elicit more reasoning
than others), and its transfer to isomorphic situations in different contexts
can be documented.

The second use of the model-eliciting problems generated under
this framework is in instruction. The activities are currently being used in
instructionally based research in a variety of formats (interviews, coopera-
tive group work, individual concrete modeling situations, and whole-class
activities) with middle school students and preservice and inservice elemen-
tary and middle school teachers in Milwaukee.

On the average, the following model-eliciting activities take stu-
dents about fifteen minutes to complete. Questions have more than one
correct answer, or else may be answered using any one of several levels of
sophistication. When the activities are discussed in a small group for
instructional purposes, learning occurs quite rapidly for both adults and
children when group members present different perspectives on the activity
and explain their thinking to the other group members.

Two of five cognitive objectives and their pertinence to ratio and
proportion (outlined below) will be explained in detail, and then followed
by examples of the model-eliciting activities built to elicit those cognitive
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objectives. Student protocols that best exemplify the preinstructional rea-
soning of beginning sixth grade students while engaged in the model-
eliciting activities will then be interpreted.

Mathematical System: Ratio and Proportionti

Elements: comparative indices of the form a:b conveying
relative magnitude; pairs of related quantities

Relatioris: equivalence, equality, inequality

Operations: a:b ± c:d = (a ± b) : (c ± d)
c (a:b) = (ca : cb)
(a:b) / (c:d) = M (c:d) + ((a - Mc): (b - Md)),
where M = the minimum of the integral
parts of the quotients (a /c, b/d).

Cognitive Goals (6th grade): (1) accommodate covariance
and invariance within a single activity;
(ii) distinguish ratio-preserving and
nonratio-preserving situations;
(iii) distinguish relative and absolute change;
(iv) construct ratio-preserving relations;
(v) create a unit that consists of a pair of
related quantities.

Distinguishing Relative and Absolute Change

Since Inhelder and Piaget began to study proportional reasoning
in 1950s, research has continued to document children's difficulty in
recognizing the need for multiplicative thinking. For example, children
(and some adults) fail to see that additive strategies are insufficient for
solving the problem shown in Figure 2. One typical explanation (this one
from a 28-year-old) is, "Compare the length of the bases. Twelve inches is 4
inches longer than 8 inches. The height of the larger rectangle should be 4
inches longer than the height of the first. So 6 inches + 4 inches= 10 inches."

Figure 2. A problem requiring
multiplicative thinking.

6" These two rectangles are the
same shape, but one is larger
than the other. How would you

8' find the height of the larger
12' rectangle?
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The ability to reason proportionally depends on one's perception
and accommodation of another interpretation of the word "compare." That
is, another way to compare quantities is to relate them in such a way that
interpreting the significance of one depends on the other. The problem in
Figure 3 may be used to illustrate the distinctions between the additive or
absolute notion of change and the multiplicative or relative interpretation.
We can think about this situation in two ways. One answer is that both snakes
will grow the same amount because the length of each will increase by 2 feet.
This analysis represents an additive perspective. It compares the absolute
change in length of the two snakes. A second perspective considers the
relative growth of the snakes, or the amount of growth in relation to their
present lengths. Over the next six months, Spot will grow two feet or half his
present length, and Slim, two-fifths his present length. Using this analysis,
Slim is closer to being fully grown.

Figure 3. A problem for which both additive and multiplicative reasoning are suitable.

Now

Billy Walters owns two snakes. Spot is
presently 4 feet long and Slim is 5 feet long.
Soon, both will be fully grown. At his full
length, Spot will be 6 feet long and Slim will
be 7 feet long. How much does each snake
have to grow to be its full length?

Students need both these perspectives if their mathematical think-
ing is to advance beyond elementary arithmetic. In fact, a ratio is a compara-
tive index that conveys the notion of relative magnitude. Ratios and propor-
tional reasoning are critical to functioning in our scientific culture, and
failure to develop multiplicative reasoning has serious ramifications in the
secondary school curriculum as well as in everyday practical situations.
Algebra, geometry, calculus, statistics, chemistry, physics, and biology all
require proportional reasoning ability (Post, 1986), as does understanding
unit pricing and inflation. Thus, an important cognitive objective is that
students adopt a change model that accommodates both the additive and
the multiplicative perspectives. The model-eliciting activities in Figures 4, 5,
and 6 promote that cognitive objective.
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Figure 4. Trees. A problem designed to
elicit relative thinking.

16f.

This picture was drawn five years ago
when the heitts of my two trees were
8 feet and 10 , respectively. Their
present height; are 14 feet and 16 feet,
respectively. Over the last five years,
which tree grew most?

14 ft Follow-up question: Which tree grew
most when you consider where it
started five years ago?

A B

The three activities
merely use different contexts to
assess the same ideas. The Families
problem (Figure 5) is the most suc-
cessful of the three for eliciting the
desired model from beginning
sixth graders; the Trees problem
(Figure 4) is the most difficult con-
text. The following student proto-
cols from clinical interviews repre-
sen t a typical range or responses to
the Trees problem:

John: This one grew 6 feet and so did this one. They grew at the
same speed.

Interviewer: Are you sure?

John: Yeah. Anyone can see it. They both grew 6.

King
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Figure 5. Families: A
problem designed to elicit
relative thinking.

Here is a picture of the
children in two families.
The Jones family has three
girls and three boys and
the King family has three
girls and one boy. Which
family has more girls?
Follow-up question: Which
family has more girls
compared to boys?



Figure 5. Eggs: A problem
designed to elicit relative
thinking.

0
0

010
00

0 0 0
0 0 0 0

0 0 0
Here is a_picture of two egg
cartons. The first contains one
dozen eggs (eight white and
four brown), and the second
contains one and one-half
dozen eggs (ten white and
eight brown). Which carton
has more brown eggs?
Follow-up question: Which
carton has more brown eggs
compared to white eggs?

Lamon and Leah

Interviewer: Do you think it matters that
one tree started off taller than the other
one?

John: No. Trees do that all the time. Some
are always taller than others. But whether
they're taller or shorter, they can both still
grow 6 feet.

Dan: We need to find which one is a higher
percentage of its height now. 8 feet ... 14
feet ... that's ... urn ... six eighths ... that's ...
that's 75 percent of its height there ... and
this ... 10 to 6 ... that's less than that, right?
... that's a little less. The percentage here ...
the percentage of the height it is ... 0.K ...
60 percent.

Evan: Well, they both increased 6 feet, but
this one climbed ... well ... It's this one
(pointed to the 8-foot tree).

Interviewer: Well, tell me why you think
that one.

Evan: 'Cause it was lower than this one, then it climbed higher
... well they both ... still ... this one's 2 feet higher. But ... well ...
this one climbed 6 feet and this one climbed 6 feet ... It got
higher. ... This one climbed higher but not higher ... I mean it
climbed ... it's higher but it didn't climb more feet ... 'cause it
was already higher. ... It didn't grow more, it's just higher. The
other one grew more but it didn't grow higher than that one.

John is an absolute thinker. Even when it was suggested that he
might consider the starting heights of the trees five years ago, John failed to
think relatively. He has not met the cognitive goal of the problem and needs
to spend some time discussing similar problems with his classmates so that
alternative perspe,dves become available to him. Dan immediately inter-
prets the trees' growth as a situation requiring relative thinking. He not only
compares present height to starting height for each tree, but also computes
the percentage each height is of its starting height. Though it is painfully
difficult for Evan to express himself, the patient reader finds that Evan
differentiates additive (absolute) change and relative change. He will grow
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more comfortable in talking about mathematical ideas as communication,
both oral and written, is encouraged in his math class.

Several levels of sophistication are evident in the reasoning used
by these children. If these children were asked to deal with relative thinking
in several different contexts, the interviewer could be reasonably sure that
either the student nearly always reasons multiplicatively, or is ready to
reason multiplicatively in some situations, or is not ready to adopt the
multiplicative perspective at all. The levels are most conveniently described
by the following rubric which can be used for scoring all of the questions
related to the same cognitive objective.

0: The student reasons additively.

1: The student reasons multiplicatively in some situations when
prompted to consider a relative comparison.

2: The student reasons multiplicatively in some situations
without prompting.

3: The student's initial response uses relative thinking.

4: The student thinks relatively and explains his or her thinking
by making connections to other pertinent material or by
translating to an alternate form of representation.

Accenarodatiora Covariance and Invariance

Another notion central to advanced mathematical thinking is that,
when all else is in flux, some dimension of a situation may remain constant.
This notion lies at the heart of the scientific process. The notion of a
controlled experiment, "keeping all other thinks constant" to isolate the
effects of one variable (Karplus, Karplus, Formisano, and Paulsen, 1979, p.
47), is critical in this age of rapid scientific advancement. Thus, another
important elementary model that students need to develop is a change model
which recognizes thatwhile quantities may be changing, relationshipsamong
them may remain invariant. To many children, this is not a foregone
conclusion. Some children exhibit a strong tendency to dichotomize the
notions of change and invariance; things either change or they don't.

A covariance/invariance model is necessary to understand both
fractions and ratios and proportions. Some very basic fraction ideas can be
troublesome to a student who has not constructed this elementary covari-
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ante /invariance model, for example, the notion that the fraction name
"one fourth" can represent different amounts of pizza, depending on the
given unit whole:

Mrs. Thompson ordered two pizzas, a medium cheese pizza and a
large pepperoni. Both pizzas were cut into four equal-sized pieces.
Mary had a slice with cheese, and Mark had a slice of pepperoni. Did
both children have the same amount of pizza?

The essential nature of a proportion also encompasses both covariance and
invariance: both component measures of a ratio are varied but in such a way
that their original relationship remains invariant. The following activities
are designed to elicit a model that accommodates changing elements as well
as invariant relationships within a single situation.

Poker Chips: Here are 36 poker chips, 12 blue and 24 red.

4B 4B 4B

8R 8R 8R

Here is another arrangement of the chips:

3B SB SB SB

6R 6R 6R 6R

(i) Explain what changed between the first arrangement and the
second. (ii) What didn't change? (iii) Show another arrangement of
the chips that preserves the same relationship.

Candy Bars: In Mr. Trent's science lab, there are 3 people to each
table. For mid-morning break, Mr. Trent put 2 candy bars on each
table and told the students to split them fairly. "Before you start your
snacks, though, I would like you to push all four tables together," he
said. Presuming that you like candy, if you had your choice, would
you rather get your share of the candy before the tables are pushed
together, or after?

The following sixth-grade student protocols sample the kinds of
reasoning elicited by the Candy Bars problem:

Nancy: There is no way I would ever cheat my friends. I just
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wouldn't do it. You couldn't get me to split up those candy bars.
Most of them are to hard to split up. They never split just right.
There's no way I would take a chance on cheating a friend of
mine.

Missy: If there are two candy bars per table, splitting with S
people you would get more than splitting with 12 people. You
get a lot less if you have more people.

Ted: Well, they're really the same, 'cause if you reduce 12 and 8
down to its lowest thing, you get three two. It doesn't matter
where the tables are.

Interviewer: Can you tell how much each person would get?

Ted: Yeah. Let's see. That would be three for two people. No,
that would be too much. It is less than a candy bar for each
person. It would be two thirds.

Kari: Either way, 4 people won't get a candy bar.

Interviewer: What about splitting the candy bars so that every-
one gets some?

Kari: (Long pause. Kari draws the picture in Figure 7.) Each
person would get a half and a sixth, however much that is.
Before, each would get 2/3. I would say you would get more
before because I don't think 1/2 and 1/6 will be that much.

Figure 7. Karl shows how to split two candy bars
among three people.

33$

Interviewer: Can you
figure out how much a
half and a sixth is
exactly?

Kari: (Draws the
picture in Figure 8.)
Oh, I get it.. You would
get the same amount
either way.

Interviewer: You're
right. You would. Now
suppose you had 20



Figura 11. Kari adds ona-hall and ono-sixth.
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people and 30 candy bars. Would those 20 people get the same
amount of candy?

Kari: You better be patient. It will take me a long time to draw
that manyl

Paul: It's better when the tables aren't pushed together because
each person gets two pieces, two quarters. But wait, there's only
three. Let's see. Do you have to have 4 quarters in a whole?
O.K. Let's put it this way. You get two sections. But with 12
people, you get one section that's smaller because one candy
bar is divided into 12 sections.

Although Nancy's response seems humorous, it is typical of the
responses of a small number of children who fail to apply mathematics to
these situations at all. For example, in answering the Poker Chips problem,
some children will note that no chips were removed from the table, that in
both arrangements there were red and blue chips, and thatyou kept the blue
chips on the top and the red chips on the bottom, that the red chips were
translucent and the blue ones were opaque, and so on.

Missy and Paul did not attend to all of the relevant information in
the given situation, and although their thinking was confused, both at least
recognized the inverse relationship between the size of the pieces and the
number of cuts. Paul's solution was seriously hampered by his trouble with
basic fractions. Because prior knowledge was limited, neither student
reached the point where the desired objective was discussed.

Kari was reluctant to completely solve the problem on her own.
However, with some coaxing, she was able to discover that the students
would get the same amount of candy either way. As revealed by herresponse
to the follow-up question, she had not recognized the invariant relationship
of two candy bars to three people. It is likely that additional experience with
this type of situation would produce the needed insight. Ted's thinking was
the most sophisticated. He realized the need to compare number of people
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to number of candy bars and recognized the invariant relationship.

One possible scoring rubric for this question might be the following:

0 = Student fails to focus on the mathematical nature of the
situation.

1 = Student fails to incorporate all of the relevant information.

2 = Student is hampered in attempts to reach the desired goal
because of insufficient prior knowledge.

S = Student reaches a correct answer in this situation, but has
not actually built a model of the relationships.

4 = Student understands the invariant nature of the relation-
ships between pairs of changing quantities.

A Simple Reporting Scheme

Figure 11. A profile of a student's The preceding prob-
4 elementary models related to lems were written to elicit infor-

ratio and proportion. mation about whether students
have constructed specific el-

3 --- ementary models that are
2 thought to be important to pro-

2 portional reasoning. When a stu-
0 dent has been assessed in regard

to all five of those goals, the
1 -- teacher has a profile of that

student's mathematical prepa-
0 ration, information concerning

1 2 3 4 5 sites where the student is most
Cognitive objectives likely to show development, and

information, concerning the con-
texts that are more likely to elicit the desired models from that particular
student. As shown in Figure 9, the vector score assigned to that student's
performance on the five cogritive objectives may be used to produce a
profile of the student's knowledge in the domain.

As instruction proceeds, the entry profile can be updated to
record the student's progress as shown in Figure 10. The teacher may
also wish to keep a note card on each student, to record information
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Figure 10. An updated student concerning problems or contexts
4..,.. profile, that are more conducive to elic-

iting models, unanticipated
problems, assumed background
knowledge the student may not

10/17 11/21 have, connections the student
2 has made to other mathematical

topics, unusually creative solu-
tions, and so on. Some teachers
may prefer to include another
score in the student profile, one

0 which indicates an overall level
of understanding of propor-
tional reasoning. The two prob-
lems that follow are particularly

good for capturing various levels of maturity in the domain.

3--

1

10/29

1 2 3 4 5

Cognitive objectives

Other Problems With Multiple Levels of Responds

In Figures 11 and 12 are two problems
with multiple levels of responses, but unlike the
previous examples that were aimed at specific
cognitive goals, these are designed to give a more
general picture of a student's development in
the domain of ratio and proportion. Both prob-
lems elicit a wide range of inappropriate solu-
tions including guessing and employing irrel-
evan t information, various insightful
preproportional solutions, and true proportional
reasoning.

The first problem (Figure 11) is a "clas-
sic" ratio and proportion task developed by
Karplus (Karplus and Peterson, 1970; Karplus,
Karplus, and Wollman, 1972), called "Mr. Short
and Mr. Tall." In the most common incorrect
solution, the student adds 2 to the number of
paper clips to match the difference in heights
measured in button!. Higher-level solutions in-
volve drawing buttons next to the paper clips to
discover the relationship that a button is one and
one-half paper clips, or finding the scale factor
directly from the data.

3 4 2

Figure 11. Mr. Short and
Mr. Tall: A proportional
reasoning task.

Here is the height of Mr.
Short measured with paper
clips. Mr. Shit has a friend
named Mr. Tall. When we
measure their heights with
buttons, Mr. Short's height
is 4 buttons and Mr. Tall's
height is 6 buttons. How
many paper clips are
needed for Mr. Tall's height?
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Figure 12. The Tower.
A problem designed to
elicit multiple
solution strategies.

The second problem
(Figure 12) is an adaptation of a
problem posed by Hans Freud-
enthal (1983). At the very lowest
level, students tend to make true/
false or right/wrong judgments
based purely on a perceptual basis.
For example, "The tower doesn't
look like it could be ten feet high."
Some students use a measurement
strategy. This usually involves stack-
ing man on top of man to see how
many sets of six feet it takes to get
to the top of the tower. Higher-
level solutions equate the man's
height with eight rungs on the
ladder and multiply the man's
height by three because there are
three sets of eight rungs.

The people in this picture each give a different
answer for the height of the tower. How tall do you
think it really is?

WHY PROBLEMS WITH

MULTIPLE LEVELS AND

TYPES OF SOLUTIONS?

Especially in
complex mathematical
domains, it appears that
the key to improving learn-

ing and instruction will result from dual research perspectives. The first is
a top-to-bottom approach in which mathematical phenomena are analyzed
to identify the cognitive processes that contribute to competence in the
domain. These key processes or cognitive goals provide the content for
instruction /assessment activities. Secondly, a bottom-to-top approach in-
volving the analysis of children's thinking is needed to discover initial
competencies, to elucidate the manner in which natural strategies develop,
to determine when key cognitive processes are acquired, and to identify
those contexts most useful in eliciting the processes we would like children
to adopt. Problems with multiple types and levels of solutions are the
interface between these distinct but complementary endeavors.

Acrording to the National Council of Teachers of Mathematics'
Curriculum and Evaluation Standards for School Mathematics (1989) , one of the
tests of the value of assessment should be how well it integrates with and
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informs instructional decision making and ultimately, how it propels learn-
ing. When a teacher uses problems that elicit multiple levels or types of
correct answers, instruction and assessment become a seamless process.
Problems with multiple levels of responses provide the opportunity to
document a student's initial level of performance while allowing or encour-
aging the student to adopt more mature perspectives. At the same time, the
teacher receives a wide range of responses from the class, which, when
ordered by sophistication, provide a picture of the manner in which the
students' knowledge develops, and gives the teacher a basis for making
instructional decisions.

Finally, the kinds of problems we develop for classroom use and
the manner in which we interim et student thinking communicate what we
believe about learning mathematics with understanding, about individual
differences, about what constitutes good teaching, about the nature of
mathematics, and about the individual construction of knowledge. Provid-
ing students the flexibility to move around in a mathematical terri-
tory and teachers the flexibility to interpret student thinking from a
variety of perspectives will provide a more realistic conception of
mathematical ability.
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IlffROOUCTION

Using Learning
Progress Maps to
Improve Instructional
Decision Making

Richard Lesh, Susan J. Lamon,
Brian Gong, and Thomas R. Post

This chapter considers the following questions: Which
decisions are top priorities for educators to address? Which kinds ofin formation
do they need to make informed decisions? Which way should that information
be reported? Which types of information and data sources should be summa-
rized by reports? And how can such reports be computer-based, interactive,
multidimensional, decision-specific, and easy to understand?

The preceding questions reflect a shift in emphasis away from
testing, toward informed educational decision-making. The goals are: (i) to
intrude as little as possible on instruction, either by using information from
instructional activities or by increases in the instructional value of assess-
ment-focused activities; (ii) to provide high-fidelity portraits or multidimen-
sional descriptions of students, teachers, or programs that are as rich as
possible; (iii) to reflect information from as many sources as possible in
which students naturally exhibit their achievements and abilities; (iv) to
facilitate well-informed decision making while avoiding value judgments
that artificially and needlessly limit decision-making responsibilities of
relevant professionals.

To achieve the preceding range of goals, recent policy statements
from a number of relevant professional and governmental organizations
have made significant progress to clarify: (i) the nature of the most important
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broader, *ler, and IdgitePcoder objectives thatwill be needed to provide adequate
mathematical foundations for knowledge in the 21st century, and (ii) the nature
of the most important new types of tests and items that will be needed to assess
priority-level understandings and processes. However, precisely because signifi-
cant progress has been made at the level of individual problems and isolated
objectives, we believe it is timely to discuss necessary next stepsand that these
next steps may need to expand to include the following range of issues.

New instructional objectives should go beyond behavioral
objectives (and basic facts and skills of the past), toward cogni-
tive objectives (and deeper and higher-order understandings
and processes for the future).

New types of problems (or authentic performance activities)
should not be mere surrogates for activities we care about; they
should directly involve authentic work samples taken from
activities that are important in themselves.

New examination formats should contribute as much to instruc-
tion as to assessment, and they should provide as many oppor-
tunities as possible for students to demonstrate their knowledge
and abilities in the context of familiar and realistic problem-
solving and decision making situations, rather than forcing
students to prove their capabilities in the context of a few
artificial, high-pressure tests.

New scoring procedures should involve constructed responses,
open-ended responses, or graphics-based responses, students'
project portfolios, and other responses with multiple levels and
types of correctness.

New data analyses should capitalize on recent advances in
computer technology (such as graphical displays and rapid
turnaround times), and they should avoid out-dated assump-
tions about the nature of mathematics, of mathematical talent,
and of realistic situations in which mathematics is used, or
about the nature of priority educational decision-making issues.

New reports should go beyond one-dimensional numeric scores
that compare strong and weak students, to focus on n-dimen-
sional reports that identify the strengths and weaknesses of
individual students.
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For continued progress to be made it is important for mathematics
educators to deal with issues beyond the level of individual items and
objectives. New statements of objectives must go beyond simple, unweighted
lists of definitions, facts, and skills that students are imagined to master one
at a time. It is not enough to simply replace multiple choice items with
problems and scoring procedures that still allow only a single type and level
of correct answer. And when conceptually rich and instructionally relevant
assessment information is gathered using portfolios, cooperative group
projects, or teacher classroom observations, the results should not be
collapsed into a single numerical score or left in an uninterpreted form that
fails to meet the needs of educational decision-makers.

One way to optimize the responsible use of assessment results is
to generate reports that highlight trends and other patterns. Ideally, such
reports should filter, simplify, organize, and interpret information i, i a form
relevant to local conditions and to particular decision-making issues. When
reports display information from a variety of sources, they should also help
their users to make more valid interpretive inferences and adopt more
socially responsible courses of action.

Addressing these goals will shift attention beyond traditional
bottom-up approaches to assessment (objectives to items to tests to reports).
This chapter will take a top-down approach which begins by trying to
identify the types of reports and information that educators need to
optimize the mathematical experience of every student.

THREE UNDERLYING ASSUMPTIONS

The recommendations that will be made in this chapter are based
on the following three assumptions. First, for most of the decisions that are
priorities for educators to address, it is inappropriate and simplistic to
characterize students (or teachers, or programs) using only a single num-
ber. Second, regardless of whether one is interested in evaluating automo-
biles, or students, or teachers, or programs, it is inappropriate to attach
labels or scores without specifying purposes, assumptions, and conditions.
For example, to say that a given automobile is "good" clearly begs the
question: Good for what purpose? Good under what conditions?

Questions about validity have as much to do with the way assess-
ment information is reported as they do with the nature of the problems and
objectives that were used to generate the data. Moreover, the validity of
reports is especially relevant to curriculum reform, because the validity of an
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assessment program depends on the decisions it is intended to inform. Tests
and reports that may once have been valid, reliable, or economical may
become invalid, counterproductive, and costly when goals and conditions
shift. For example:

Tests and reports based on a narrow conception of talent and
designed "weed out" students often create significant barriers to
discovering and nurturing diverse kinds of talent (Stemnark, 1989).

Tests and reports designed to diagnose the learning difficulties
of individual students may be costly and inappropriate account-
ability measures of the cost-effectiveness of complex programs
(American Council on Education, 1988; Kellaghan, Madaus,
and Airasian, 1980).

Tests designed to assess behavioral objectives based on basic
facts and skills are often counterproductive when used to assess
the effectiveness of innovative programs aimed at cognitive
objectives and deeper and higher-order understandings and
processes (Steen, 1981; Kuhn, 1990).

Pencil-and-paper tests, once considered inexpensive, are increas-
ingly viewed as costly encroachments on valuable instructional
time, especially when (i) computer equipment is already available
in the school and assessment capabilities can be thought of as
"value added" ways to use existing resources, and (ii) the test is
known to have negative impacts on both what is taught and how it
is taught (Romberg, Zarinnia, and Williams, 1989).

a Increasing pressures for accountability result in more resources
devoted to documentation of specified outcomes of instruction;
often, this means taking resources away from instruction. U.S.
Department of Education data show that a typical school
district today devotes more than 50 percent of its staff to
nonteaching duties, a percentage that has doubled during the
past two decades, in part because of sharp increases in the
number of educational middlemen who are not directly in-
volved in the instruction of students.

In the past, when high-stakes tests used exceedingly narrow con-
ceptions of talent the goal was to screen a small-but-adequate number of
students for admissions into a few elite programs. But today, even at selective
colleges, alarming numbers of students are admitted who must be assigned
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to remedial courses; and, far too few students are pursuing careers related
to mathematics or the sciences that preserve our country's economic
prosperity. Therefore attention has shifted toward supporting more diverse
conceptions of talent and toward maximizing opportunities for all students.

The third assumption underlying this chapter is that the practice
of labeling students with only a single number (which is presumed to be
condition free, invariant across all contexts, unmodifiable through experi-
ence, and equally applicable for all purposes) is simply out of date! It is a
throwback to the days when primitive computers led to conditions were very
different than they are today. For example:

a Graphics capabilities were primitive. Therefore, the main way to
simplify a welter of data was to reduce it to a single number or to
a small table of data Then, numeric reports were restricted even
further by the need to reduce computational complexity (e.g., De
Soete, 1986). (note: Gleick's popular book, Chaos, shows how
similar computational restrictions biased the development of
mathematical models in a variety of fields outside of education.)

Turnaround times were a tremely slow. On-site computers were seldom
available to facilitate data interpretation and analysis; and mail-
based and telephone-based communication with centralized
*mainframes" was also slow and primitive. Therefore, because
reports could not be produced in a frequent or timely tanner,
they were seldom able to be used effectively to inform ongoing
instruction aimed at improving programs or at helping students
,as opposed to screening them (Clarke, 1988; Popham, 1987).

It was not viewed as practical to gather 'work samples " from a represen-
tative sample of authentic pefformance in realistic situations that we
really care about. Therefore, brief artificial contexts were created
as surrogates for reality; and, the (incorrect) assumption was
made that measuring the decomposed parts of a complex
system was equivalent to measuring the complex tasks itself.
That is, complex tasks were treated as nothing more than
strings of isolated simple tasks; and, decontextualized problem
situations were used so that no student would have an "unfair"
advantage of having the problems fit their specialized experi-
ences and interests (with the exception, of course, of those
students whose culture emphasizes and rewards success at
dealing with decontextualized problems (Council of Chief State
School Officers, 1988).
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Paper-based tests could seldom be customized or modularized to meet
local needs. For their reports to be valid, they generally had to
be used on an all-or-nothing basis. Therefore, students, teach-
ers, and programs were often evaluat-ed using tests that were
based on objectives that they had never attempted to address.
Today, because of technological advances, even publications that
are expensive to produce (such ao Sears catalogues) are often
"localized" to address the needs and interests of particular sites
(Hunt, 1986; Messick, 1990)

Data analysis was based on single-formula models. Therefore, all
data from all sources was processed in the same way; and, when
new information was added to a data set, recalculations were
performed on the entire data set.But today, because of
technological advances, graphics-based reports (such as na-
tional weather maps) often are based on complex mixes of
qualitative and quantitative information taken from multiple
sources; and, clusters of "local" object-oriented computational
models are used so that complex composite models can be
created in which "global maps" can be updated locally without
regenerating the entire map (Flury & Riedwyl, 1981).

Manipulatable and interactive reports were not avaiksble. Even though
many of the most obvious misuses of testing information often
occur when assessment information is used for purposes it was
never intended to address, paper-based reports tended to become
too complex for decision-makers to use when attempts were made
to go beyond simply presentinginformation to also provide guid-
ance about what the information means in the context of specific
decision-making issues.Today, because of technological ad-
vances, expert systems are often available to produce inquiry-
oriented information systems that facilitate decision-making in
many contexts (e.g., medicine, weather) that are at least as com-
plex and risk laden as those that occur in education.

This chapter will explore assessment possibilities associated with
the fact that modern computer capabilities are able to produce reports that
are: (i) graphics-based to clarify trends and other patterns beneath the surface
of things, (I) inter-adive to respondto on-site user inquiries, (iii) intelligent
to filter, simplify, organize, and interpret information in a form that is
especially relevant to local conditions and to particular decision-making
issues, and (iv) multi-dimensional to integrate information from a variety of
data sources, and to produce vector-valued interpretations (or n-dimen-

341 351



Lesh, Lamon, Gong, and Post

sional graphics-based interpretations for situations that do not lend them-
selves to simple numeric quantification).

VISUALIZATION TECHNOLOGY

Scientific visualization refers to the use of computer capabilities to
create and manipulate sophisticated graphic renderings of large, complex
data sets. Techniques such as contour and vector mapping, three-dimen-
sional plotting, and color raster imaging (a process that assigns a color to each
data point) are used to minimize the mental/visual processing required to
draw conclusions about complex multivariable data in mathematics, science
and engineering. Computer graphics can clarify relationships that are
obscure or impossible to grasp in more conventional representations.

Many colleges and universities have visualization laboratories in
which students and researchers can create, manipulate, and animate three-
dimensional images. Fields as diverse as bioengineering, foreign languages,
medicine, and psychology are finding increased uses for these techniques.
And because of its growing use for educational purposes, the emphasis in
development of visualization techniques is shifting from general purpose
tools to discipline-specific software (Publix Information, 1991). We argue in
this chapter that visualization technology can drastically change the nature
of instruction, assessment, and reporting, using visualization tools now
available in the public domain for use on personal computers. We expect the
proliferation of visualization tools from special visualization laboratories at
universities into elementary schools, and we anticipate profound changes in
the mathematics curriculum as visualization technology brings hands-on,
experiential learning into the classroom. Likewise, as manipulatable graphic
representations become available to most classroom teachers, changes will
occur in the reporting of student and class assessment data. (In the
appendix, we describe some simple maze image processing techniques and
show the progressive transformation of one image into another.)

As new visualization technology enters the classroom, it could be
used to aggregate, display, and manipulate complex assessment data to
increase the power of reports. The next section of this chapter describes one
type of report that exploits this tool and achieves some ambitious objectives
for handling complex assessment data. Later sections will then give addi-
tional details about how these reports were designed and about how several
new types of data sources can be taken into account, such as those based on
students' project portfolios, on teachers' classroom observations, or on
other authentic performances of students in realistic situations. (Burstall,
1986; de Lange, 1987).
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LEARNING PROGRESS MAPS

Figure 1 shows two views of a type of interactive graphics-based report
that is being developed in a current NSF-funded project investigating the nature
of students' understandings in middle school mathematics (Post, Behr, Mesh,
and Harel, 1990). Although the pictures shown here cannot be enlarged or
colored to show details, their general character is apparent. We refer to such
reports as learning progress maps" because they resemble three-dimensional
topographical maps in historical atlases, where straightforward graphic tech-
niques are used to illustrate periods during the
rise and fall of various empires. Some re-
gions are conquered and stable; others
are occupied but unstable; and
still others are terra incognita.
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Learning progress maps can provide easy-to-interpret models of
potential student knowledge (Kieren, 1988; Lesh and Kelly, 1990). They can
show the conceptual terrain that all students are encouraged to explore in
a targeted curriculum; and, they can show n-dimensional profiles of devel-
opment for individual students in various conceptual regions. A map, in its
initial state, is much like a plain (or plane) in which we expect students to
"grow" mountains. The growth of a mountain is a physical analogy for the
student's internal construction of the major models in the mathematics
curriculum. (See discussion of models in Chapter 2.) An individual student's
progress in each conceptual region is recorded by altering the map, thus
creating a graphic representation of his or her development.

Neighborhoods

As shown in Figure 2, the locations of the anticipated mountains
are indicated as neighborhoods on the plane. Each neighborhood contains
a conceptual field or a collection of activities whose underlying ideas,
concepts, models, procedures, and/or representations are narrowly inter-
connected (Vergnaud, 1983). Within each neighborhood, the locations of
activities depend on the structural complexity of the conceptual systems
underlying the activities. The activities at the boundary of the neighborhood
are based on elementary ideas needed for understanding the field. The
activities near the center are model-eliciting activities (See Chapter 2) ; these
are conceptually demanding ac-
tivities related to holistic, well- Figure 2. A neighborhood on a learning

integrated systems of knowledge
(elements, relations, and opera-
tions).

The outer region of a
neighborhood corresponds to a
collection ofinstructional/assess-
mentsituations in which students
deal with elementary ideas that
are critical to the development
of a model. For example, for pro-
portional reasoning concepts,
the outer region of the neighbor-
hood would contain activities that help students do some of the conceptual
reorganizing necessary to understand proportions. Critical understandings
include (i) distinguishing absolute comparisons and relative comparisons and
(ii) recognizing the differences between ratios and fractions. (See Chapter 13
for a discussion of ratio and proportion.) Although activities to facilitate

progress map.

Models
Ideas

Concepts

Activities
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these understandings do not evoke complete models, they provide students
with entry points to the model-building process. These activities are analo-
gous to foothills that must be crossed before one can climb the mountain.

The middle section of the neighborhood corresponds to activities
that help students integrate ideas and form concepts. For example, in the
case of ratio and proportion, the concept of an equic dente class involves the
integration of two primitive ideas: (i) the covariatioii of two terms within the
same measure space, and (ii) the relation that yields an invariant function
between terms of two measure spaces. Thus, the concept of an equivalence
class does not constitute a model but is more than an elementary idea; it is
an example of an intermediate conceptual entity.

The center of the neighborhood contains activities involving
mathematical models that underlie the most important cognitive objectives
students are expected to construct in the targeted mathematics curriculum.
During the past decade, some of the most productive areas of mathematics
education research have focused on cognitive analyses. This research has
identified many important conceptual models that children use to make
mathematical judgments in content areas such as whole number arithmetic
(Carpenter, Moser, and Romberg, 1982; Fuson, 1988; Steffe, 1988); rational
numbers and proportional reasoning (see, for e- -ample, Hiebert and Behr,
1988); and geometry and algebra (Confrey, 1990; Thompson, 1990; Tall,
1992; Kaput, 1989; Wagner and Kieren, 1989). Using this research as a point
of departure, our own research suggests that, ata given grade level (or within
a given course), few curricula deal with more than 10 to 15 distinct
foundation-level models (Post, 1987). Yet these models are seldom clearly
highlighted in mathematics instruction and assessment. Furthermore, even
though a great deal of research has investigated development within these
conceptual fields, little is known about developmental relationships among
these areas. Therefore, we are designing maps to help educators sort out the
most important foundation-level models from lower-order objectives and to
emphasize interrelationships among conceptual models.

To determine the relative locations of a collection of activities
within a neighborhood, it is necessary to conduct thorough cognitive
analyses of the underlying cognitive systems that students use to interpret
learning and problem-solving situations (Greeno, 1988b) . For example,
within the strand ofwhole number arithmetic, Steffe (1988) and others have
shown that conceptual models based on simple counting units provide
cognitive foundations for higher-level models base -I on composite units, or
other units of units. Lamon (1992) has shown how conceptual models based
on composite units provide cognitive foundations for higher-level systems in
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which the units consist of (i) relations among lower-level units (such as
ratios), (ii) operations with lower-level units (such as functions), or (iii)
transformations among lower-level units (such as operators).

Across a variety of mathematical strands, one important way that
lower-level systems develop into higher-level systems resembles the way
written language proceeds from letters to words to phrases to sentences to
paragraphs. Lower-level models based on simple units develop into higher-
level models based on units-of-units, or relations among units, or operations
on units. The power and complexity of student activities increase as units
gradually evolve beyond objects that can be perceived by direct experience,
and toward objects based on patterns and regularities beneath the surface
of things (Howson and Wilson, 1986).

Progress from the boundary of a neighborhood toward the center
is similar to Piaget's notion of progress from concrete operational structures
to formal operational structure (Piaget and Beth, 1966). But, Piaget focused
on concepts that develop naturally, and on periods in which global concep-
tual reorganizations occur (such as at the transition periods between the
periods of concrete and formal operational reasoning); whereas mathemat-
ics educators have focused on (i) concepts that selddm develop beyond
primitive levels unless artificial (mathematically rich) learning environ-
ments are provided and (ii) detailed transitional stages between periods of
global reorganization. Therefore, our maps focus on those dimensions of
conceptual de. elopment which are needed to achieve a deep understand-
ing of an element..ry topic area (Lesh, 1990).

Combining conceptual systems

Different neighborhoods contain activities related to different
conceptual systems; and a key criterion for conceptual systems to be
different is that they are based on different primitive objects. For example,
at the level of high school mathematics, the Mathematical Sciences Educa-
tion Board identifies strands based on the follow.ng primitive types of
objects: (i) patterns, (ii) quantities, (iii) shapes, (iv) uncertainties, (v)
dimensions, and (vi) changes (Steen, 1990). Or at the middle school level,
models which tend to be emphasized are based on primitive objects such as
(i) fractions, (ii) ratios, (iii) rates, (iv) percents, (v) proportions, (vi)
probabilities, (vii) rules (or fractions), or (viii) coordinates (see, for ex-
ample, Hiebert and Behr, 1988; Post, 1987; Steen 1986). At the primary
school level, models cillat are emphasized involve primitive objects such as (i)
counts, (ii) composite units, (iii) measures, (iv) fractions, (v) locations, and
(vi) shapes (see, for example, Steffe, Cobb, and von Glaserafeld, 1988).

35G 263



354

Using Maps to Improve Instructional Decision Making

In some ways, the preceeding strands and themes are similar to the
columns in scope and sequence charts for textbooks or to the content
categories in content-by-process matrices for standardized tests. But, whereas
traditional types of charts and matrices have tended to fragment and
compartmentalize the curriculum, recent curriculum guides have focused
on unifying themes and on basic patterns and regularities that cross avariety
of conceptual models (Lesh, 1990).

Because our "mountains" emphasize to the most important con-
ceptual models and reasoning patterns that students are encouraged to
construct at a given grade level, the location and names of the neighbor-
hoods vary from one curriculum to another, as well as from one grade level
to another within a given curriculum; and, progress through a given K-12
curriculum can be thought of as a cluster of tectonic plates that move, rise,
sink, expand, and contract from one grade level to another. For example,
in a given sixth-grade curriculum, some of the most important conceptual
neighborhoods are based on systems of fractions, ratios, rates, or quotients,
yet at the seventh-grade level, all of these systems may be integrated into a
single powerful and inclusive model based on rational numbers or propor-
tional reasoning (Lesh, Post, and Behr, 1988).

Intersecting neighborhoods on the maps indicate that the under-
lying conceptual systems are structurally overlapping. That is, spatial close-
ness indicates conceptual relatedness. Of course, it is not possible to portray
all of the logical relationships that exist among systems, but becauseour
maps use more than one or two dimensions, they can capture more of the
relatedness of mathematical ideas than the organizational schemes in most
scope and sequence charts in textbooks or most con tent-by-process matrices
for tests.

Comparisons with expert knowledge

Learning progress maps are not intended to portray a single "true"
picture of expert knowledge. In fact, we reject the notion that there exists
a single, static, and correct organization. For example, in mathematics, it is
known that experts tend to define, organize, and weight their knowledge in
different ways depending on their own personal goals and experiences, and
for a given individualexpert or novicethe best way continually evolves
as contexts, conditions, and purposes change. Real human cognition tends
to be far more situated, dynamic, and purpose-oriented than we can capture
in any single map (Greeno, 1988a; Mestre, 1987). Therefore, out- maps are
considerably different than the usual semantic networks that cognitive
psychologists have tended to use to portray states of knowledge.
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Another way that our maps are different than descriptions about
the state of knowledge of an expert is that the expert's quest for economy,
parsimony, and power eventually lead to a well-compiled form of knowledge
in which a number of conceptual nuances that are important at lower levels
of development become invisibleunless a large amount of psychological
unpacking is provoked. For instance, in the case of rational numbers and
proportional reasoning, a number of basic constructs take on distinct
personalities, depending on whether students encounter them in the form
offractions, ratios, rates, indicated quotients, decimals, or percents (Kieren,
1988). Therefore, for purposes of instruction, it is often important for
students to explore similarities and differences among these subconstructs
even though mathematicians might treat them all as special cases of a single
system.

Local school systems or individual teachers should be able to
modify the default values that we assign to the weights, locations, and
attributes of various neighborhoods or mountains. Even if these modifica-
tions override some of the wisdom that we believe we built into the
organization of our maps, local educators should be able to modify param-
eters to reflect the goals, objectives, and instructional sequences in their own
local curriculum.

Capabilities that are granted to local teachers should also be given
to those who must make decisions based on the information teachers enter
into the database or model. For example, if a school or a teacher insists on
modifying defaultvalues in away that emphasizes lower-order facts and skills
(perhaps for the purpose of addressing state-level pressures for accountabil-
ity), then funding agencies or college admissions officers may choose to
reset the original default values to emphasize deeper and higher-order
understandings, or other preferences.

Creating II-Dimensional Student Profiles

Student profiles are created by modifying the learning progress
map through avariety of image processing techniques (similar to those used
in the example involving the Mendelbrot Set in the appendix). In addition
to obtaining an overall impression of a student's development within a
particular neighborhood and across the curriculum, the map should pro-
vide information on other relevant questions. For example, while working
on a particular activity, did the student make important connections to
other topics not located in the same neighborhood? Is the student able to
represent a situation using only one mode of representation, or more?
Where (and when) has the student's most recent activity occurred? Does the
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student understand a concept embedded in only one context or in many
different contexts?.

Visual dimensions of student variables

Using learning progress maps, a number of visual dimensions are
available to help provide information about studentvariables. Height above the
plane, colors and various intensities of colors, shading, and a host of local
symbols may be used to highlight relevant aspects of a student's development.

Height above the plane. For each activity in which a student has
participated, we might represent a student's overall level of development as
a surface in 3-space by converting a teacher-assigned score to height above
the activity's location in the plane. A student's level of development will
usually be judged using a rubric in which development is implicitly defined
along one or more of the following dimensions: concrete to abstract
(Dienes, 1960), global to analytic to deductive (van Hiele, 1959), pre-
operational to operational (Piaget and Beth, 1966), concepts to rules to
problem solving (Gagne, 1985), enactive to symbolic (Bruner, 1973),
external to internal (Vygotsky, 1978), situated to decontextualized (Cole
and Griffen, 1987; Greeno, 1988b), facts and skills to applications to
analysis/synthesis/evaluation (Bloom, 1956), naive interpretations (based
on superficial characteristics of events) to scientific models (focused on
underlying patterns and regularities) (Steen, 1988). A rubric highlighting
relevant dimensions from this list is developed by analyzing a range of
students' responses as they interact with an activity. (See Chapter 13 for a
discussion of the scoring of problems with several types of correct answers.)
The teacher uses the rubric to assign a score that corresponds to the depth
of the student's understanding, and that depth of understanding is repre-
sented visually as height above th_

Over time, a student's profile should develop from spikes to ridges
to mountains. If a student's map continues to show isolated spikes located
primarily in the outer regions of various neighborhoods, the student has
skipped from neighborhood to neighborhood, working only on basic ideas
and avoiding the activities designed to elicit deeper thinking and higher-
level reasoning. Alternatively, a ridge in a particular neighborhood would
indicate that a student has attacked several related activities and achieved
some degree of understanding of the underlying ideas.

A cliff or very sharp transition on the map would suggest potential
conceptual trouble spots. For example, if a student developed very high
spikes in the outer region of a neighborhood with no scores from the middle
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region of the neighborhood to help round them into ridges, the student
may be having some difficulty in accomplishing reorganizations to connect
significant conceptual discontinuities. For example, in progressing from
whole numbers to fractions, students must reject a naive model of multipli-
cation in order to develop more powerful models; it is no longer adequate
to think of multiplication as repeated addition.

Color, intensity, and shading. On computer screens, color, inten-
sity, and shading are useful to suggest additional dimensions of conceptual
development, such as: concrete to abstract (Dienes, 1960), global to analytic
to deductive (van Hiele, 1959), pre-operational to operational (Piaget &
Beth, 1966), concepts to rules to problem-solving (Gagne, 1985), enactive
to symbolic (Bruner, 73), external to internal (Vygotsky, 1978), situated to
decontextualized (Cole & Griffen, 1987; Greeno, 1988b), or facts & skills to
applications to analysis /synthesis /evaluation (Bloom, 1956). For example,
one color could indicate connections students have made between topics in
different neighborhoods. Color intensities might indicate breadth of a
student's understanding; that is, a light color might show that a student
understands the same idea in two different contexts, with darker shades
showing the ability to generalize to other contexts. For example, in ratio and
proportion, students may think relatively in problems involving speed and
distance but not in problems involving scale drawings. Hatching or crossed
hatching might indicate activities attempted by the student for which no
score was assigned.

Local symbols. Local symbols commonly used on maps can suggest
a variety of instructionally significant aspects of a student's activities and
achievements in various conceptual regions. For example, rivers, highways,
or bridges can depict links established between logically distant conceptual
neighborhoods, based on problem-solving experiences that involve more
than a single topic. Clouds and weather systems can indicate the general
location of a student's most recent learning or problem-solving activities. In
addition, various intensities of one color might indicate how recently that
activity has occurred.

Interactive Capabilities of Maps

Learning progress maps are designed to capitalize on the dy-
namic, interactive, and intelligent nature of computer-based graphics; and
they are designed to rapidly update reports on a wide range of issues such
as (1) the strengths and weaknesses of a given student, (ii) typical problem-
solving activities that might cause difficulties in a given conceptual neigh-
borhood, (iii) instructional activities that address a given student's profile
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of strengths and weaknesses, (iv) which students need special help in a given
conceptual region, (v) which students need individual attention, (vi) which
topics address the needs of a large group of students, and (vii) which
students share a particular common need. By making graphics-based re-
ports both intelligent and interactive they should be able to generate
information that is detailed and relatively complete and, at the same time,
simple and easy to interpret. A goal is to display details only when they are
needed or directly requested, and not to use a single display to serve all
purposes (Flurry, 1980; McDonald and Ayers, 1978). For example:

Teachers should be able to view static snap shots showing the
status of a given student (or group of students); or, they should
also be able to see animated graphics showing learning progress
over a designated (long or short) period of time and for
specially targeted (small or large) sets of objectives. And they
should be able to factor in or out information from multiple
data sources, including traditional assessment activities, home-
work, classroom observations, and students' project portfolios.
For example, a teacher might want to factor out scores on
homework, or a funding agency (or a local administrator)
might want to factor out data sources that might be viewed as
lacking objectivity.

Teachers also should be able to use straightforward graphics
tools to modify the color, shading, and local graphics in a given
region based on their own classroom observations, and if they
wish, such information should be treated just like information
from any other source. And teachers should be able to zoom
and scan to view details about a given student, or about a
particular conceptual neighborhood. For example, using a
standard mouse, teachers should be able to select particular
points on a map to see displays of typical problems or instruc-
tional activities of the chosen conceptual neighborhoods.

Teachers should be able to view maps through various windows,
each of which calls upon resident computer software to orga-
nize, aggregate, and display information in a form that is
appropriate to address a specific set of decision-making issues.
Rather than simply generating statistics, the maps (and other
software) should help decision makers (i) interpret the mean-
ing of available information, (ii) recognize possible decision
alternatives, and (iii) identify available resources (textboold,
software, and so on). The goal is not simply to furnish informa-
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tion; it is to help students, teachers, and others make well-
informed decisions.

Maps with the kinds of capabilities just described must be linked
to (i) a richly cross-indexed library of problems for homework, classroom
activities, and tests for specially targeted purposes; (ii) research and instruc-
tional information on types and levels of sophistication in students' re-
sponses to problems (and the capability for teachers to amend or annotate
such information); (iii) objectives-based instructional resources ranging
from textbooks to educational software; and (iv) printed reports based on
state or local curriculum guides, specific textbook scope-and-sequence
charts, or national objectives frameworks such as those published by the
National Council of Teachers of Mathematics (1989).

To provide the guidance just described, it is not necessary for the
communications links to be as fine-grained as many artificial intelligence
researchers have supposed (Brown and Burton, 1978; Brown and VanLehn,
1980). For example, our research suggests that it is seldom necessary or
desirable to prescribe instruction at a level of detail below whole lessons; and
there rarely exists oneand only oneappropriate assignment that can
meet the needs of a particular student (Lesh and Kelly, 1990). Furthermore,
because a number of equally beneficial activities usually are possible for a
given student, there tends to be considerable merit in allowing students to
participate in the selection of their own assignments.

in designing learning progress maps capable of addressing the
preceding kinds of goals, the main difficulties are not technical or techno-
logical, even though they involve some sophisticated programming and
software capabilities. The key difficulties are conceptual. Above all, design-
ing instructionally relevant learning progress maps depends on defining a
theory-based objectives framework capable of dealing in an integrated way
with both basic facts and skills and higher-order understandings and
processes, and also capable of being linked to the best available instructional
materials and curriculum guides.

Programming Principles

To clarify the kind of information that is needed for pro-
gramming learning progress maps, it is useful to think of the maps as
fancy smoothed and colored versions of a three-dimensional bar graph
similar to the one shown in Figure 3A. In fact, for the purposes of this
chapter, the main differences between Figure 3A and Figure 3B are that (i)
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3A has only a single value ( to specify the height of the bar at each point), whereas
3B hasavector ofvalues assigned to each point (to specify height, color, shading,
and the presence/absence of a variety of local symbols), and (ii) 3B has many
twoway rules between cells, whereas 3A does not.

Figure 3A
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Figure 3 is based on a standard spreadsheet (WINGZ) in which the
value in each cell is based on either data taken from some external source
or rules based on variables involving values from other cells. This means that
neighborhoods of the map inform one another as well as being informed by
external data sources such as tests or instructional activities. To serve as a
simple learning progress map, the spreadsheet underlying Figure 3B needs
one additional feature. That feature is a set of meta-rules to govern how and
how often information is changed by the operation of the spreadsheet-level
rules. Both the spreadsheet-level rules and the meta-rules must be based on
(i) theory-based models describing relationships among understandings
represented in various neighborhoods of the map, and (ii) empirical
information based on the experiences of individual students (for example,
when a given student's problem-solving experiences forge links between
logically distant conceptual neighborhoods). Such off-the-shelf meta-rule
systems already exist for graphics-based spreadsheets (for example, Axcelis's
EVOLVER, 1990), so the programming underlying our learning progress
maps can be thought of as involving simply a vector-valued spreadsheet with
meta-rules, and with vector-valued links to a library of problems and
instructional activities. The key difficulties do not have to do with program-
ming; they have to do with finding appropriate ways to define the vector-
valued rules.

Defining vector-valued rules

Four important considerations have influenced the design of our
learning progress maps:

The maps must shift attention away from comparing students
on one - dimensional scales and toward instructionally useful,
multidimensional profiles o: conceptual strengths and weak-
nesses of individual students.

The maps must avoid the kind of fragmented objectives frame-
works that have characterized past curriculum reform efforts
and must focus on systems in which objectives are organized
and weighted so as to increase the power and usefulness of the
system as a whole.

The maps must emphasize depth and breadth of understanding
rather than simple mastery/nonmastery in which one perceived
goal is simply to finish as rapidly as possible. Objectives frame-
works must focus on the most powerful and the most useful
conceptual models and reasoning patterns that we want stu-
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dents to construct. The terrains of knowledge they depict
should encourage students to explore depth and breadth of
meaning and abandon the notion of simply checking off
mastered isolated activities.

The maps must not simply crank out statistics and leave stu-
dents and teachers to interpret on their own what the informa-
tion means (and doesn't mean) in the context of specific
decision-making issues.

In the next section, we describe several reasons why it is especially important
to use computer-based reports that are interactive, inquiry-oriented, and
decision-focused.

USING INTERACTIVE DECISION-FOCUSED REPORTS

Frederiksen and Collins describe a systemically valid test (or item,
or report) as one that "induces in the education system curricular and
instructional changes that foster the development of the cognitive traits that
the test is designed to measure. Evidence for systemic validity would be an
improvement in those traits after the test had been in place within the
educational system for a period of time" (1989).

Negative influences of standardized testing have been thoroughly
documented in mathematics. Therefore, we are sympathetic to the pro-active
policy of Frederiksen and Collins stated at the start of this section. Furthermore,
we strongly support the performance assessment movement in which school
systems are refusing to use tests that do not involve a representative sample of
material that they really want students to learn. Nevertheless, we are concerned
about the following kinds of misuses of such policies.

The policy stated by Frederiksen and Collins focuses on tests as
leverage points to induce changes in our education systems; and it further
suggests that those who implement the policy already know which kinds of
changes are positive. We favor a perspective which recognizes that past
curriculum reformers (such as those in the new math movements of the
1960s and 1970s) often tried to induce changes in directions that, in
retrospect, proved to be at least partly wrong-minded.

Whereas reform-minded educators often support policies that
remove decision making from the hands of local educators, we prefer to
focus on policies that empower local educators, while doing our best to
ensure that their decisions are well-informed concerning relevant conditions,
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available options, and probable results. Our position is that tests and reports
should be used to informnot precludeeducational decision making.

Using test results as leverage points to clarify objectives and induce
curriculum changes focuses on one set of priority decision-making isn't...),
but other issues should not be neglected. For example, a fundamental
shortcoming of many curriculum reform movements is their focus on
radical change while ignoring the difficult tasks that deal with orderly and
evolutionary steps to get from "where we are" to "where we want to be."

Suppose it were possible to instantly change all college admissions
tests to conform to the kinds of future-oriented goals cited in recent
publications from the National Council ofTeachers °Mathematics (NCTM),

Mathematical Sciences Education Board (MSEB) , American Association for
the Advancement of Science (AAAS), and National Science Teachers
Association (NSTA). Care must still be taken to ensure fair treatment for
students who were indoctrinated through twelve years in an old system that
emphasized obsolete views of basic facts and skills (Ford Foundation, 1986;
Malcom, 1984).

Our position is that it is not acceptable for testing programs to use
students as pawns to induce curriculum changes, especially if the students
most likely to suffer are those that have been treated unjustly by the system
we are trying to change.

Because their rhetoric is often aimed at rallying political action,
curriculum reformers who argue in favor of one point often implicitly suggest
that other points should be ignored. For example, because teacher decision
making should be a priority, it does not follow that the information needs of
other decision makers should be ignored. Because performance assessment
items and students' project portfolios should be given greater attention, it does
not follow that other sources of information should be ignored.

We take the position that n o single decision maker or decision-making
issue should blind us to all others, and no single source of information is likely
to be appropriate for all purposes and audiences. One of the worst things that
could happen to promising new forms of assessment is that they too become
used for issues and audiences that they were not intended to address.

Decision-specMc Appropriateness of Reports

To describe the main kinds of issues that must be taken into
account so that appropriate capabilities can be incorporated in to our
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learning progress maps, it is useful to focus on teacher decision making. For
example, consider the following ways in which maps might help inform
teacher decision making.

Teachers assign instructional activities. For each student, a goal
may be to identify conceptual strengths and weaknesses so the
student won't waste time and effort on activities that are too
hard, too easy, or irrelevant to priority goals and needs.

Teachers group students. For example, when a given concep-
tual neighborhood is specified, the goal may be to identify
students who might profit most from activities in that targeted
area.

Teachers select or screen students for priority access to scarce
resources. When a limited resource such as a software program, a
tutor, or a field trip experience is available, the goal may be to
identify a limited number of students who should be given access.

Teachers certify learning accomplishments. For example, when
achievement expectations have been specified, the goal may be to
generate individualized learning reports showing both the status
and recent achievements of individual students and their peers.

Teachers identify students who need special attention, whether
a student seems to be experiencing unusual difficulties or to be
ready for some significant insight

Teachers evaluate programs. They may need to produce
accountability measures for kill-or-keep decisions about particu-
lar programs, or to identify changes, deletions, or extensions
that should be made in the future.

Two important observations about the preceding kinds of deci-
sions are that none can be neglected, and that the data sources and report
characteristics relevant for one issue are not necessarily appropriate for
others. For example, a test that diagnoses learning difficulties for individual
students may be inappropriate if the goal is to prove tha t a large and complex
program works. Or if appropriate instructional activities are needed for a
given student, then fast turn-around may be far more important than high
precision or high reliability because negative consequences are not associ-
ated with errors. Yet for tests that focus on gate-keeping functions, decisions
to screen students out of short-term opportunities can result in permanently
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limiting future educational choices. In this later case, errors may lead to an
enormous human losses.

The main point of these observations is that useful and instruc-
tion-relevant learning progress maps must be designed to reflect informa-
tion from a variety of sources, including teachers' classroom observations,
students' project portfolios, and performance assessment tests focusing on
realistic types of problem solving. Our maps are also being designed to
emphasize the strengths and needs of individual students, based on capabili-
ties that we know can be changed through instruction, and to emphasize
positive planning and optimizing functions aimed at ensuring maximum
success (Shavelson, 1991).

Reports that do not help students are not the kind we are inter-
ested in making available. Therefore, our learning progress maps are
designed to emphasize a form of assessment that gives students lots of
opportunities to demonstrate their knowledge and capabilities through
sampling over long periods of time and a variety of areas that explicitly fit
students' individual interests and experience. In this way, records are not as
easily influenced by factors such as cheating, sickness, or disinterest, and
issues related to validity, reliability, and generalizability are addressed in the
most straightforward ways possible (Gardner, 1991; Shavelson, 1989).

SUMMARY

Assessment reports. The computer-based learning progress maps
described in this chapter are graphic, dynamic, interactive, intelligent,
decision-focused reports designed to produce n-dimensional student pro-
files that are linked in meaningful ways to future-oriented objectives frame-
works, such as the NCTM's 1989 Curriculum and Evaluation Standards for
School Mathematics. They are capable of reporting assessment-relevant infor-
mation from many types of data sources; and, their primary aims are to
identify strengths and weaknesses of individual students for the purpose of
optimizing educational opportunities.

REFERENCES

Alexander, L, and James, H.T. (1987). The nation's report cant: Improving the
assessment of student achievement. Washington, DC: National Academy of Education.

American Association for the Advancement of Science. (1989). Project 2061: Science
for All Americans. Washington, DC: AAAS.

American Council on Education. (1988). One third of a nation. Report of the Commission
on Minority Participation in Education and American Life. Washington, DC: ACE.

3U



10

Using Maps to Improve Instructional Decision Making

Archibald, DA, and Newman, F.M. (1988). Beyond standardized testing: Assessing
authentic academic achievement in the secondary school Reston, VA: National Associa-
tion of Secondary School Principals.

Axcelis. (1990). EVOLVER. (Computer Program). Axcelis Corp., Seattle, WA, 98101.

Bloom, B.S. (1956). Taxonomy of educational objectives: The classification of education
goals. Handbook 1: Cognitive domain. New York: Longmans, Green and Co.

Bloom, B.S. (1985). The development of talent in young people. New York: Balentine.

Blumberg, F., Epstein, M., MacDonald, W., and Mullis, I. (1986). A pilot study of
higher-order thinking skills assessment techniques in science and mathematics.< Princeton,
NJ: National Assessment of Educational Progress.

Bridger, M. (1988). Looking at the Mendelbrot Set. The College Mathematics fournal,
19(4) , 353-363.

Brown, J.S., and Burton, R.R. (19'78). Diagnostic models for procedural bugs in
basic mathematical skills. Cognitive Science, 2, 155492.

Brown, J.S., and VanLehn, K. (1980). Repair theory: A generative theory of bugs in
procedural skills. Cognitive Science, 4, 3'79-426.

Bruner, J. (1973). Beyond the information given. J. Anglin (Ed.). New York: Norton
and Co.

Burman, C. (1986). Alternative forms of assessment: A United Kingdom perspec-
tive. Educational Measurement: Issues and Practice, 5(1), 17-22.

Business Week, Human capital: The decline of America's work force. Special
Report, September 19, 1988, 100-141.

Carpenter, T.P., Corbitt, MK., Kepner, H.S., Jr., Lindquist, M. M., and Reys, R.B.
(1981). .Results from the second mathematics assessment of the nationalassessment of
educational fnvgress. Reston, VA: National Council of Teachers of Mathematics.

Carpenter, T. P., Moser, J., and Romberg, T.A. (Eds). (1982). Addition and
subfraaion: A cognitive perspective. Hillsdale, NJ: Lawrence Erlbaum Associates.

Center for the Assessment of Educational Progress, Educational TestingService.
(1987). The subtle danger: Reflections on the literacy abilities of America's young adults.
Princeton, NJ: Educational Testing Service.

Clarke, D. (1988). Assessment alternatives in mathematics: Mathematics curriculum and
teaching programs. Canberra: Curriculum Development Centre.

Clement, J. (1982). Students' preconceptions in ',ntroductory mechanics.American
Journal of Physics, 50, 66-71.

Cole, J., and Griffen, P. (Eds.). (1987). Contextual factors in education: Improving
science and math education for minorities and women. Madison, WI:Wisconsin Center
for Educational Research.

Collis, K.F., and Romberg, T.A. (1989). Assessment of mathematicalperformance: An
analysis of open-ended test items. National Center for Research in Mathematical
Sciences Education, Wisconsin Center for Education Research, School ofEduca-
tion, Madison, WI: University of Wisconsin.

Conference Board of the Mathematical Sciences. (1983). The mathematical



Lesh, Lamon, Gong, and Post

sciences curriculum &12: What is still fundamental and what is not. In Educating
Americans for the 21st century: Source materials. National Science Board Commission
on Precollege Education in Mathematics, Science, and Technology. Washington,
DC: National Science Foundation, 1-23.

Confrey, J. (1990, April). Origins, units, and rates: The construction of a splitting
structure. A paper presented at the annual meeting of the American Educational
Research Association. Boston.

Council of Chief State School Officers. (1988). Assessing mathematics in 1990 by the
NationalAssessment of EducationalPr ogress. Washington DC: State Education
Assessment Center.

Council of Chief State School Officers. (1987). Equity and excellence: A dual thrust in
mathematics and science education: Model state education agency efforts. Washington, DC:
Council of Chief State School Officers.

de Kleer, J., and Brown, J.S. (1988). Assumptions and ambiguities in mechanistic
mental models. In D. C,entner A.L Stevens (Eds.), Mental models. Hillsdale, NJ:
Lawrence Erlbaum Associates.

de Lange, J. (1987). Mathematics, insight and meaning: Teaching learning and testing
of mathematics for the life and social sciences, (dissertation). Utrecht, Netherland:
Rijksuniverateit Utrecht.

Denham, W.F., and O'Malley, E.T. (Eds.). (1985). Mathematics framework for
California public schools, kindergarten through grade twelve. Sacramento, CA: California
State Department of Education.

De Soete, G. (1986). A perceptual study of the Flury-Riedwyl faces for graphically
displaying multivariate data. Int. J. Man-Machine Studies, 25 (1986), 549-555.
London: Academic Press.

di Sessa, A. (1982, January-March). Unlearning Aristotelian physics: A study of
knowledge-based learning. Cognitive Science, 6(1), 37- 75.

di Sessa, A. (1989). Knowledge in pieces. In G. Gorman and P. Pufall (Eds.)
Constsuctivism in the computer age. Hillsdale, NJ: Lawrence Erlbaum Associates.

Dienes, Z. (1960). Building up mathematics. London: Hutchinson Ltd.

Donlon, T.F. (Ed). (1984a). The College Board technical handbook for the Scholastic
Aptitude Test and Achievement Tests. New York: College Entrance Examination Board.

Dossey, JA., Mullis, I.V.S., Lindquist, M.M., and Chambers, D.L. (1988). The
mathematics report card: Are we measuring up7Princeton, NJ: Educational Testing
Service.

Edgerton, H.A. (1985). Identifying high school seniors talented in science. Westinghouse
Science Talent Search. Washington, DC: Science Service.

Flury, B. (1980). Construction of an asymmetrical face to represent multivariate data
graphically. Technical Report No. 3, University of ''erne, Department of Statistics.

Flury, B., and Riedwyl, H. (1981, December). Graphical representation of multiva-
r;ate data by means of asymmetrical faces. Journal of the American Statistical Associa-
tion, 76(376), Applications Section.

Ford Foundation. (1986). Minorities and mathematics. New York: Ford Foundation.

370
2S7



Using Maps to Improve Instructional Decision Making

Frederiksen, J.R., and Collins, A. (1989). A systems approach to educational
testing. Educational Researcher, 14 27-32.

Frederiksen, N. (1984). The real test bias: Influence of testing on teaching and
learning. American Psychologist, 39, 193-202.

Frederiksen, N., Mislevy, Rj., and liejar, I.L, (Eds.). (1992). Test theory fora new
genenstion of tats. Hillsdale, NJ: Lawrence Erlbaum Associates.

Fuson, K. C. (1988). Children's counting and concepts of number. New York:
Springer-Verlag.

Gagne, R. (1985). The conditions of learning and theory of instruction (4th ed.). New
York: Holt, Rinehart and Winston.

Gardner, H. (1985). Frames of mind: The theory of multiple intelligences. New York:
Basic Books.

Gardner, H. (1991). Assessment in context: Thy alternative to standardized
testing. In B.R. Gifford and M.C. O'Connor (Eds.), Future assessments: Changing
views of aptitude, achievement, and instruction. Boston, MA: Kluwer Academia
Publishers.

Greeno, J. (1988a). The situated activities of learning and knowing mathematics.
In M. Behr, C. Lacampagne and M. Wheeler (Eds.), Proceedings of the tenth annual
meeting of the Psychology of Mathematics Education. DeKalb, Illinois.

Greeno, J. G. (1988b). For the study of mathematical epistemology. In R.
Charles and E. Silver (Eds.), Research agenda for mathematics education: Teaching
and assessing mathematical problem solving. Reston, VA: National Council of
Teachers of Mathematics.

Hiebert, J., and Behr, M. (Eds.). (1988). Number concepts and operations in the middle
gmdes 2. Reston, VA: National Council of Teachers of Mathematics.

Holland, J. L, and Richards, J. M., Jr. (1965). Academic and nonacademic accom-
plishment Correlated or uncorrelated? Journal a/Education Psychology, 56,165 -174.

Howson, G., and Wilson, B. (Eds.). (1986). School mathematics in the 1990s. Interna-
tional Commission of Mathematical Instruction Study Series. Cambridge: Cam-
bridge University Press.

Howson, G., Kahane, J.P., Lauginie, P., and de Turckheim, E. (1988). Mathematics
as a service subject. International Commission of Mathematical Instruction Study
Series. Cambridge: Cambridge University Press.

Hoyt, D.P. (1966, Winter). College grades and adult accomplishment: A review of
research. The Educational Record, 47(1).

Hunt, E. (1986). Cognitive research and future test design. In The redesign of testing
for the 21st century. Princeton, NJ: Educational Testing Service.

Kaput, J. (1989). Linking representations in the symbol system of algebra. In C.
Kieren and S. Wagner (Eds.) , A research agenda for the learning and teaching of algebra.
Reston, VA: National Council of Teachers of Mathematics.

Kellaghan, T., Madaus, G.F., and Airasian, P.W. (1980). The effects of standardized
testing. Dublin, Ireland/Boston, MA: St. Patrick's College/Boston College.

Kieren, T.E. (1988). Personal knowledge of rational numbers: Its intuitive and

371



Lab, Lamon, Gong, and Post

formal development. In J. Hiebert and M. Behr (Eds.), Number concepts and
operations in the middle grades, 2. Reston, VA: The National Council of Teachers of
Mathematics; pp. 162-181.

Kirsch, IS. (1987, September 28). Measuring adult literacy. Paper prepared for
the symposium Towards Defining literacy, sponsored by the National Advisory
Council on Adult Education and held at the literacy Research Center, University
of Pennsylvania.

Kirsch, LS., and Jtmgeblut, A. (1986). Literacy profiles of America's young adults.
Princeton, NJ: Educational Testing Service.

Krutetskii, V. (1976). The psychology of mathematical abilities in school children.
Chicago: University of Chicago Press.

Kuhn, G. (1990). Assessing higher-order thinking in mathematics. Washington, DC:
American Association for the Advancement of Science.

Lamon, S.J. (1992). Ratio and proportion: A framework for connecting content
and children's thinking. Journal for Research in Mathematics Education, 23(5).

Lapointe, A.E., Mead, NA., and Phillips, G.W. (1989). A world of differences: An
international assessment of science and mathematics. Princeton, NJ: Educational
Testing Service.

Leinhardt, G., and Seewald, A.M. (1981). Overlap: What's tested, what's taught?
Journal of Educational Measure, 18(2), 85-96.

Lesh, R. (1990). Computer-based assessment of higher-order understandings and
processes in elementary mathematics. In G. Kuhn (Ed.), Assessing higher - order
thinking in mathematics. Washington, DC: American Association for the advance-
ment of Sciences.

Lesh, R, and Kelly, A. (1990). A modeling theory of computer-based tutoring. In
J.M. Laborde (Ed.) Modeling student knowledge in geometry. IMAG: Grenoble, France.

Lesh, R., and Lemon, S.J. (in press). Assessments of authentic performance.
Princeton, NJ: Educational Testing Service.

Leah, R., Post, T., and Behr, M. (1988). Proportional reasoning. In J. Hiebert and
M. Behr (Eds.), Number concepts and operations in the middle grades, 2. Reston, VA:
The National Council of Teachers of Mathematics; pp. 93-118.

Malcom, S.M. (1984). Equity and excellence: Compatibk goals. Washington, DC:
American Association for the Advancement of Science.

Mathematical Sciences Education Board. (1990). Reshaping school mathematics: A
philosophy and framework for curriculum. National Research Council. Washington,
DC: National Academy Press.

McDonald, C.C., and Ayers, JA. (1978). Some applications of Chernoff faces. In P.C.C.
Wang (Ed.), Graphical representation of multivariak data. New York: Academic Press.

McKnight, C.C., Crosswhite, Fj., Dossey, JA., Kifer, E., Swafford, J.0., Travers,
K.J., and Cooney, T.J. (1987). The underachieving curriculum: Assessing U.S. school
mathematics from an international perspedive. Champaign, It.: Stipes Publishing Co.

Mestre, J. (1987). Why should mathematics and science teachers be interested in
cognitive research findings? Academic Connections, The College Board, 3-5, 8-11.

372 369



Using Maps to Improve Instructional Decision Making

Minsrrell, J. (1982). Conceptual development research in the natural setting of a
secondary school science classroom. In M.B. Rowe (Ed.), Education for the 80's:
Science. Washington, DC: National Education Association.

Mislevy, RJ. (1992). Foundations of a new test theory. In N. Frederiksen, R.J. Mislevy,
and I.I. Bejar (Eds.), Test theory fora new generation of tests. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Mosenthal, P., and Kirsch, I. (1989). Understanding documents.fourrud of Reading.
October 1989; pp. 58-60.

Mosenthal, P., and Kirxh, I. (1990). Megatrends 2000: Ten new directions for the
1990s. New York: William Morrow and Co.

National Assessment of Educational Progress. (1981). Mathematics objectives:
1981.82 assessment, No. 13-MA-10). Princeton, NJ: Educational Testing Service.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation
standards for school mathematics. Reston, VA: NCTM.

National Research Council. (1990). Renewing U.S. mathematics: A plan for the
1990s. Executive Summary: Committee on the Mathematical Sciences: Status
and Future Directions, Board on Mathematical Sciences, Commission on
Physical Sciences, Mathematics, and Applications. Washington, DC: National
Academy Press.

National Science Foundation. (1988). Worn,' and minorities in science and engineer-
ing. Washington, DC: National Science Foundation.

National Science Teachers Association. (1990). Essential Changes in Secondary School
Science: Scope, sequence, and coordination. Washington, DC: NSTA.

Pandey, T. (1990). Power items and the alignment of curriculum and assessment.
In G. Kulm (Ed.), Assessing higher-order thinking in mathematics. Washington, DC:
American Association for the Advancement of Science.

Piaget, J., and Beth, E. (1966). Mathematical epistorwlogy and psychology. Dordrecht,
Netherlands: D. ReideL

Pollak, H. (1987). Notes from a talk given at the Mathematical Sciences Education
Board. Frameworks Conference, May 1987, at Minneapolis, MN.

Popham, W.J. (1987). The merits of measurement driven instruction. Phi Delta
Kappa's, 68(9) , 679.682.

Post, T. (1987). Teaching mathematics in grades K-8: Research-baud methods. Boston:
Allyn and Bacon.

Post, T., Behr, M., Lesh, R., and Harel, G. (1990). Research and development in middle
school mathematics. (NSF Grant No. MDR-8955346). Washington, DC: National
Science Foundation.

Publix Information. (1991, Summer). Syllabus (17). Sunnyvale, CA.

Resnick, D.P., and Resnick, L.B. (1991). Varieties of literacy. In A.E. Barnes and
P.N. Stearnes (Eds.), Social history and issues in human consciousness: Intenlisciplinary
connections. New York: New York University Press.

Resnick, L.B. (1987a). Education and learning to think. Washington, DC: National
Academy Press.



Lesh, Lamon, Gong, and Post

Resnick, L.B. (1987b). Learning in school and out. Educational Researcher, 16(9),
13-20.

Resnick, L.B. (1989). Tests as standards of achievement in schools. Learning Research
and Development Center. Pittsburgh, PA: University of Pittsburgh.

Resnick, LB., and Resnick, D.P. (1989). Assessing the thinking curriculum: New
tools for educational reform. In B.R. Gifford and M.C. O'Connor (Eds.), Future
assessments: Changing views of aptitude, achievement and instruction. Boston: Kluwer
Academic Publishers.

Romberg, TA., Zarinnia, E.A., and Williams, S. (1989). The influence of mandated
testing on mathematics instruction: Grade 8 teachers' perceptions. Madison, WI: University
of Wisconsin-Madison, National Center for Research in Mathematical Science
Education.

Romberg, TA., Zarinnia, ES., and Collis, K.F. (1990). A new worldview of
assessment of mathematics. In G. Kulm (Ed.), Assessing higher order thinking in
mathematics. Washington, DC: American Association for the Advancement of
Science.

Schank, R. (1991). Tell me a story: A new look at vat and artificial memory. New York:
Schribner.

Schoenfeld, A. (1985). Mathematical problem solving. New York: Academic Press.

Shavelson, R.J. (1989, June). Performance assessment: Technical considerations.
Presentation at the seminar on Authentic Assessment, Berkeley, CA.

Shavelson, RJ. (1991). Can indicator systems improve the effectiveness of math-
ematics and science education? The case of the U.S. Evaluation and Research in
Education. In C.T. Fitz-Gibbon (Ed.), Evaluation and Research in Education.
Vol.4(2); pp. 51-50.

Shavelson, R.J., Carey, N.B., and Webb, N.M. (1990, May). Indicators of science
achievement; Options for a powerful policy instrument Phi Delta Kappan 8, 692-697.

Shavelson, Rj., Baxter, G.P., Pine, J., Yure, J., Goldman, S.R., and Smith, B.
(1991). Alternative Technologies for Large Scale Instruments of Education
Reform. School Effectiveness Ca' School Improvement and International Journal of Educa-
tion Policy and Policies. Vol. 4(2); pp. 51.60.

Steen, LA. (1981). Mathematics tomorrow. New York: Springer-Verlag; pp. 73-82.

Steen, LA. (1986). A time of transition: Mathematics for the middle grades. In R.
Lodholz (Ed.), A change in emphasis. Parkway, MO: Parkway School District, 1986, 1-9.

Steen, LA. (1987, July). Mathematics education: A predictor of scientific competi-
tiveness. Science, 237, 251-252, 302.

Steen, LA. (1988, April). The science of patterns. Science, 240, 611-616.

Steen, LA. (Ed.). (1988a). Calculus fora new century: A pump, not a filter. Washing-
ton, DC: Mathematical Association of America.

Steen, LA. (1990). On the shoulders of giants: New approaches to numeracy. National
Research Council. Washington, DC: National Academy Press.

Steffe, LP. (1988). Children's construction of number sequences and multiplying
schemes. In.'. Hiebert and M. Behr (Eds.), Number concepts and operations in the

3 7 4
371



a

Using Maps to Improve Instructional Decision Making

nsiddle grudes, 2, 119440. Reston, VA: The National Council of Teachers of
Mathematics.

Steffe, Cobb, P., and von Glasersfeld, E. (1988). Construction cl arithmetical
meanings and strategies. New York: Springer-Verlag.

Stenmark, J.K. (1989). Assessment alternatives in mathematics: An overview of assessment
of techniques that promote learning. EQUALS staff of the Assessment committee of the
California Mathematics Council Campaign for Mathematics. Berkeley, CA:
Lawrence Hall of Science, University of California.

Tall, D. (1992). The transition to advanced mathematical thinking: Functions,
limits, infinity, and proof. In D. Grouw (Ed.), Handbook of research on 11, ematics
teaching and learning. New York: Macmillan.

Tatsuoka, K. (1990). Bookan algebra applied to determination of universal set of
knowledge states. ETS Technical Report ONR-3. Princeton, NJ: Educational Testing
Service.

Thompson, P. (1990). A theoretical model of quantity-based reasoning in arithmetic
and algebra. Paper presented at the annual meeting of AERA, San Francisco, CA.
Available from author, San Diego State University, Department of Mathematics.

Turner, N., and Rains, D. (1986). Careers of mathematically talented students: A 27-year
study of top- rankers in the 1958-1960 AHSME. U.S. School Mathematics from an
International Perspective. Champaign, IL: Stipes Publishing Co.

van Hide, P.M. (1959, June). La pens'ee de l'enfant it la geometric. Bulletin de
l'Associarion des Professeurs Mathematiques de l'Ensignement Public 6.

Vergnaud, G. (1983). Multiplicative structures. In R. Lesh and M. Landau (Eds.),
Acquisition of mathematics concepts and PPLUSSIS. Orlando, FL: Academic Press; pp.
127-174.

Vygotsky, L (1978). Mind in society: The development of the higher psychological processes.
Cambridge, MA: Harvard University Press.

Wagner, S., and Kieran, C. (Eds.). (1989). Research issues in the learning and teaching
of algebra. Reston, VA: National Council of Teachers of Mathematics.

Wallace. MA, and Wing, C.W. (1969). The talented student. New York: Holt,
Rinehart and Winston.

Willingham, W.W., Lewis, C., Morgan, R., and Ramist, L (1990). Predicting college
gnats: An analysis of instructional trends over two decades. Princeton, NJ: Educational
Testing Service.

APPENDIX: SOME SIMPLE IMAGE PROCESSING TECHNIQUES

The following example uses fractal geometry to show some of the
intermediate steps in the progressive transformation of one image to
another (Bridger, 1988). For those who are uninitiated to the world of
visualization, it provides a brief introduction to simple image processing
techniques and a demonstration of the power of image processing to change
our perspective on things.
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The Mendelbrot Set is defined in terms of a sequence whose values
for each complex number Q stay inside a circle of radius

R = 2. Color may be assigned to each point Qin the complex plane
in such a way that Color (Q) = 0 if Q is in the Mendelbrot Set, or else a color
is assigned to the first index N for which a term of the sequence ZN goes
outside the cirde. If the computer plots a grid of points in the complex
plane, each of which is assigned a color, a high resolution monitor capable
of displaying hundreds of colors, produces a picture of rare beauty. Since
colors are not available here, Figure A-I shows the Mendelbrot Set on a grid
in the complex plane with the color black assigned to points in the set and
white to all other points.

Figure A-1. The classical Mendelbrot sat M (Bridger, 1988).

Am.
When colors are not available, another option is to graph the set

in 3-space by letting the index N represent a height above the complex
plane, instead of a color. The result is shown in Figure A-2.

Figure A-2. The Mendelbrot :et in 3 dimensions (Bridger, 1988).
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Since averaging tends to blur the basic shape of the mountain,
showing only its well-weathered main ridge, to recover more of its basic
shape, an algorithm is applied to detect and accentuate ridges oriented in
various directions. Figure A-6 shows the image after applying a ridge-finding
algorithm in four directions.

Figure A-6. The image shown in Figure
5 after applying a ridge-finding
algorithm (Bridger, 1988).

In this example, a few simple image processing techniques dra-
matically changed the image of the original black-and-white set of points,
and made available information thatwas not included in the original image.
For example, we gained a sense about how long it takes to eliminate a point
from the Mendelbrot Set. And today's visualization tools are far more
powerful than this example shows!

They can be used to produce reports that are (i) graphics-based to
clarify trends and other patterns beneath the surface of things, (ii) interac-
tive to respond to on-site user inquiries, (iii) intelligent to filter, simplify,
organize, and interpret information in a form L at is especially relevant to
local conditions and to particular decision-making issues, and (iv) multidi-
mensional to integrate information from a variety of data sources, and to
produce vector-valued interpretations (or n-dimensional graphics-based
interpretations for situations that do not lend themselves to simple numeric
quantification).
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ma Assessment

Richard Lesh, Susan J. Lamont
Merlyn Behr, and Frank Lester

INTRODUCTION

This chapter consists of three parts. The first part
examines the assumptions underlying traditional types of standardized
testing compared with assumptions underlying innovative types of perfor-
mance assessment. The second part focuses on directions for the future; and,
in particular, it focuses on three pervasive themes that shaped the perspec-
tives of most of the chapters in this book, even though they are themes that
were addressed only indirectly. These themes are equity, technology, and
teacher education. The third part gives examples from three closely related
projects which were designed to find practices. l ways to implement recommen-
dations that were made in other chapters of this book. All three projects
emphasize performance assessment activities that focus on: (i) deeper and
higher-order understandings of elementary mathematics, (ii) realistic prob-
lem-solving situations, and (iii) diverse types of mathematical abilities.

A COMPARISON OF STANDARDIZED TESTING AND PERFORMANCE ASSESSMENTS

The table that follows summarizes some of the most important
differences between traditional standardized tests and the kind ofperformance
assessment activities thatwere emphasized throughout this book. For example,
in general, traditional types of stan dardized tests have served the information
needs of only a narrow range of decision makers and decision-making issues;
and, they have tended to be based on exceedingly outdated conceptions of
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mathematics and mathematical problem solving. On the other hand, the
alternative assessment movement has often focused on using tests as a
leverage point for curriculum reform, and has tended to give relatively little
attention to issues such as fairness and reliability in scoring, the usefulness
and credibility of results (for decision makers who are not close to the
students or instructional settings that are being assessed), and the scope and
representativeness of the constructs thatare measured (when attention shifts
beyond the quality of isolated tasks to the quality of collections of tasks).

The main purpose of the table is not to point out shortcomings of
the two views of assessment. Rather, the table is intended to clarify why the
types of alternative assessment materials that have been emphasized in this
book are not simply new ways to address old assessment goals. They reflect
a complete paradigm shift that involves new decision makers, new decision-
making issues, new sources of assessment information andnew understand-
ings about the nature of mathematics, mathematics instruction, and math-
ematics learning and problem solving. Consequently, it also involves new
ways to think about traditional assessment issues such as reliability, validity,
and generalizability.

The table is laid out in a two column form, where the left-hand
column describes assumptions on which traditional forms ofassessmen t tend
to be based, and where the right-hand column describes corresponding
assumptions for alternative forms of assessment. Such a two-column format
is useful for clarifying key issues that distinguish contrasting 'world views"
about assessment. However, such black and white comparisons are also
bound to be too simplistic. For example, the table is not intended to suggest
that it is necessary for performance assessment programs to adopt all of the
perspectives described in the right-hand column, nor that it is impossible for
such programs to subscribe to any of the perspectives described in the left-
hand column. The goal is simply to indicate why tt.e transition from tradi-
tional to alternative forms of assessment tends to involve a complete para-
digm shift and to describe some of the most important issues that distinguish
the old and new world views.

To organize the table, five categories of fundamental issues are
identified that serve to highlight the nature and extent of the paradigm shift that
separates traditional forms of assessment from newer alternatives. These
categories are (i) underlying assumptions about the nature and purpose of
assessment, learning, and teaching; (ii) issues associated with the process of
assessment; (iii) the importance of alignment of assessment withcurriculum
emphases and instructional practices; (iv) perceived constraints on assessment
practices; and (v) criteria for judging the quality ofassessment instruments.
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Performer=
Assessments

MIMI:SLY/NG
ASSUMPTIONS

Assumptions
about the
Nature al
Mathematics

See chapters
2.3.4.6.8

Mathematical knowledge is
characterized as (nothing
more than) a hat of
mechanistic condition-action
rules.

According to the Mathematical
Sciences Education Board
(1990):

71no outdated assumptions are
that: mathematics is aftced
and unchanging body of facts
and procedures, and (ta to do
mathematics is to calculate
answers to set problems using a
specific catalogue of rehearsed
techniques. (p. 4). ... As biology
is a science of living organisms
and physics is a science of
matter and energy, so mathe-
matics is a science of patterns.
... Facts, formulas, and informa-
tion have value only to the
extent that they support effect-
ive mathematical activity tp. 12)

The moat important cognitive objectives of mathematics inkruct-
ion are models (or patterns, or structures) which can be explored
for their own sakes, or which can be used to construct, describe,
explain, predict, manipulate, or control structurally interesting
systems in real or possible worlds-with refinements, extensions,
and adaptations being made to these models when necessary.

Assumptions
about the
Nature el
Mathematical
Problem
Solving

See chapters

Problem solving is characteri-
zed as getting from givens to
goals when the path is not
obvious. It is assumed to
involve (nothing more than)
answering questions which are
posed by others, within situa-
tions that are described by
others, to get from givens to
goals whith are specified by
others. using strings of facts
and rules which generally need
to be restricted in ways that
are often artificial and unreal -
etic so that solutions and
solution paths will be rejected if
they fail to match the one ex-
pected by the authority figure.

382

Realistic problem solving
situations often involve
constructing useful ways to
"think about (e.g. describe.
explain, manipulate. predict)
patterns and regularities
governing the behavior of
structuraLy interesting
systems. Therefore, solution
processes often involve several
modeling cycles in which givens
and goals are interpreted in a
variety of alternative ways, ...
The mathematical results which
are produced are not restricted
to simple counts and measures;
they often Involve mathematical
'objeria" such as graphs,
equations, 9.sordinate systems,
and other types of mathematical
models.
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A mystery is a phenomenon that people don't know how to
think about yet. In real life situations in which mathematics is
useful, many "problems" are more like mysteries than they are
like traditional types of school mathematics problems. For
example, consider the case of a mountain climber who wants to
scale a did The essence of the problem is to find a productive
way to think about the terrain: that Is once the terrain is
understood the task of getting from the bottom of the diff to
the top is simply a strenuous ocerdse, not a problem. Similar
situations occur when business people use spreadsheets to
create productive ways to describe cost/benefit trends, or when
youngsters use pocket calculators to combine information from
situations in which quantitative values are assigned qualitative
judgements. Consequently, the kind of problem solving
experiences that are emphasized tend to involve the construct-
ion of new ideas, rather than simply the ability to use old ideas

Assumptions
about the
Nature at
Mathematics
Ability

See chapters
2,3.4.6.8

Experts are considered to be
people who are good at re-
membering fads and following
rules specified by others, and
who are generally clever about
finding ways to assemble these
facts and rules to get from
givens to goals within
situations described by others.

Students (and teachers) are
considered to be decision-
makers. situation conceptual-
tiers, system builders,
problem formulators, and
rule generators. Experts are
people who have constructed
a rich and varied collection of
powerful models for making
sense of complex systems.

Assumptions
about the
Nature of
Mathematics
Learning

See chapters
2,3

Humana are characterized as
information processors: and.
learning is viewed as a cumula-
tive process of gradually adding.
deleting, and de-bugging
mechanistic condition-action
rules (definitions. fads, rules. or
skills).

Humans are viewed as model
builders, theory builders. and
system builders. The models
they construct are used to
describe, explain, create,
modify, adapt, predict, and
control complex systems (in
real or possible worlds) In
other words, the emphasis Is
on structuring experience at
least as much as on processing
information, and the models
that are constructed develop
along dimensions such as
concrete-to-abstract, intuitive-
to-anal -to-axiomatic.
particular -to- general, global or
undifferentiated-to-refined,
fragmented-to-integrated,
enactive-to-symbolic. and
situated-to-d-Dantectualized.

In general, model construction processes involve the extension,
refinement integration, and differentiation of existing models:
deeper and higher-order understandings of these models develop
as students go beyond thinking with the model to also think
about it, or as the model is gradually embedded in more powerful
and economical notation systems, or as students go beyond
automatic responses to also think about thinking. Consequently,
cognitive development often involves discontinuities and major
conceptual reorganizations; and, some of the most useful activit-
ies to facilitate and document development are the kind of project-
sized activities that have been emphasized throughout this book.

312

.4



Lash, Lartion. Behr, and Lester

heetunptionn
about the
Natun of
Mathematics
Teaching

See thapters

Instruction consists mainly of:
(i) demonstrating relevant facts,
rules, aldlls, and processes. (1)
monitoring activities in which
students repeat and practice the
preceding items. and (iii)
correcting errors that occur.

For both instruction and
assessment, some of the most
useful experiences are problem
0-dying activities that are
sc.nilar to the Case Studies
which have been used for years
in professional schools in fields
such as business and
engineering (where there is a
long history recognizing that
many of the most Important
goals of instruction should
focus on models for
constructing and exploring
complex systems). In such
activities, students not only
solve complex and realistic
problems, their solutions also
Involve the creation of
conceptual models which can
be used to interpret similar
problems in other situations.

Assumptions
about the
Nature at
Individual
Difference*

See chapters
3,4

Students are branded with
labels such as impulsive (versus
reflective), or field dependent
(versusfield independent) -that
are supposed to be (1) invariant
across all (or moat) topics and
contexts. and (11) difficult or
impossible to change through
hard work, instruction. exper-
ience, or development.
Sometimes, these labels involve
a continuum (e.g.. in the case
of IQ tests); but, more often, the
characteristics involve only a few
values, one with negative
connotations, and one with pos-
itive connotations. The
assumption is that teachers
should use some sort of
APTI11.113ExTREATMENT
approach to Instruction -where
type ON students are matched
with type NN instruction.

Research in mathematics
education has furnished
overwhelming evidence that
there are many alternative
types of mathematical talents
and styles. Further, students
who are most successful tend
to be fledble at modifying their
styles and approaches to differ-
ent types of problems and alter-
native stages in the problem
solving proms. Also, many
different ldnds of personalities,
knowledge, and capabilities can
lead to success (e.g.. Krutetski.
1976); and, many different
types of success are possible
(Begle, 1979).

Both students and
irofeasionals exhibit irregular
mottles of expertise, with
strengths in some areas and
weaknesses In others. In
general. in classroom settings,
instruction which has proven
to be best for individual
students Is the same type that
is beet for all students; it is
instruction that encourages
conceptual and procedural
flexibility. and that gives
students access to a variety of
approaches.
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ALIGNMIONTIran
CURRICULUM
STANDARDS

Assumptions
about the
Impact of
Asesesenent as
Instruction

See chapters
1.7,8,14.15

Measurement instruments
are treated as if they were
neutral indicators (similar to
unobtruslatthermometers) so
that the atfof measurement
does nothing to induce changes
in the system that is measured.
Yet. in mathematics, It is a well
documented fact that "high
stakes standardized tests tend
to have strong (and often
negative) influences on both
what is taught and how it is
taught. In fact, too often,
curriculum and instructional
practices have been driven by
standardized testing. rather
than the other way around.

Assessment activities are
selected mainly because they
are important from the point of
view of Instruction: and, care is
taken to ensure that the testing
program helps to influence the
education system in positive
ways by ensuring that the
goals being measured are
aligned with priority goals of
instruction. The constructs

assessed must go beyond
limply being correlated with
desirable outcomes. The
performances that are assessed
should reflect appropriate
scope breadth, and depth of
understanding and abilities,
without emphasizing
constructs that are irrelevant
to (or conflicting with) the
important understandings and
capabilities.

Assumptions
about the
Instructional
Value of
Assessment
Activities

See chapters
2.6.9

In general, tasks used in
traditional forms of assessment
are not Intended to have

instructional value. In
rti,irteis often considered to be
desirable for scores to remain
invariant even if equivalent
forms of the test are repeated
again and again. Also, because
severe and unrealistic
constraints tend to
be plat,- d on time, tools, and
other res:eurces, the tasks are
only surrogates for those that
are really considered to be
important. Consequently,
because such tasks generally
have characteristics that their
real counterparts do not. they
often reinforce misleading
beliefs about: (I) the nature of
mathematics, (1) the ways
mathematics is used in an age
of Information, and (111) the
kinds of abilities that are
productive.

To document learning
progress, it is not necessary
to interrupt students from
their most important
instructional activities. The
goal is to focus on activities
that contribute to both
learning and assessment.
That is. students should be
able to simultaneously lain
and amment what they are
learning, while solving prob-
lems which might reasonably
occur in "real life" situations.
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Assumpticas
about
Allipureat
with National
Standards

See chapters
1.2

Until 1989, there was no national consensus about what should
be taught in the school mathematics curriculum. Curriculum
guidance varied from state to state, and from textbook to
textbook. Thera:ore. tests which were focused on national
student popul&tions generally had to adopt the following
strategies: (1) focus on the "basics" which are common to all
mathematics curriculum materials, and/or (II) focus on general
understandings or capabilities which are independent of any
specific curriculum materials. The result was a practice in
which not much attention was paid to what was actually being
tested (as long as the tasks seemed to be generally mathematical,
and as long as they passed sensitivity reviews, statistical reviews,
and other reviews related to nonsubstantive issues).

This situation persists today in most subject matter areas except
mathematics. In mathematics education the situation has
changed dramatically. In 1989, the relevant professional and
governmental organizations all reached a formal consensus
about national Curriculum and Evaluation Standards for School
Mathematics (NCTM. 1989).

In a series of studies comparing
the alignment of existing
standardized teats with
endorsed Curriculum and
Evaluation Standards for
School Mathematics. Romberg.
Wilson, and Rhaketla (1991)
formed the following conclusion.

These tests are based on
different views of what
knowing and learning
mathematics means. ... These
tests are not appropriate
instruments for assessing the
content, process, and levels of
thinking called for in the
STANDARDS. (p. 3)

A primary goal is to develop
assessment activities that are
closely aligned with the NCIM's
Curriculum and Evaluation
Standards, emphasizing

mathematical structure.
mathematics as
communication.
mathematics as connections,
mathematics as reasoning,
and
mathematics as problem
solving

(with special attention to
number sense and estimation)

Assumptions
about
Instructional
Objectives
that should be
Emphasized

See chapters
2.3.4.6,9

In the case of aptitude tests, a
single construct WI is weasured
which is supposed to be deep,
significant. and difficult to
modify through instruction.
Yd, in alignment studies such
as those conducted by Romberg
and his colleagues (Romberg,
Wilson. and Ithalcetla. 1991).
when the content of nationally
significant standardized tests
have been compared with
nationally endorsed Curriculum
& Evaluation Standards for
School Mathematics, results
have shown that:

3R6

Both conceptual and
procedural knowledge are
addressed, and special
attention is given to (i)
1:91.1i1LINC12214tibM2 (which
emphasize the models that
students must use to describe,
explain, construct, refine,
manipulate, predict, and
control compilerliohsysteremors) and,
DO

of such
cognitive models, as specified
in the new national consensus
about Curriculum and
Evaluation Standards for
School Mathematics.
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(i) most items focus on pro-
cedural knowledge rather than
on conceptual knowledge. (2)
the procedural knowledge tends
to focus mainly on low-level
behavioral objectives or global
process objectives which are
not connected to any particular
mathematical knowledge. (iii)
the topic areas that are emph-
adza.. then to be ancient topic
areas such as Aristotelian
Logic, Egyptian Number
Theory. and Euclidean Geome-
try, (tv) little attention is given
to new types of understandings
and processes that have
become important because of
the prevalence in our seefrty of
technological tools, anti iv) the
"applied" problems tend to be
only "pure math" problems
with the names of everyday
objects substituted for abstract
symbols.

Special attention is also given
to the 1E1;4 of problem-solving
and decision-making
situations that occur in "real

situations. A goal is to
encourage students to
interpret the situations
mathematically without
having to "turn or their
everyday knowledge and
experience. Another goal is to
recognize that techrsological
tools are not just new ways to
perform old midi's; their
ubiquitous presence in our
society has resulted in radical
changes concerning the
mathematical knowledge and
abilities needed by most
FeoPle-

TES
AlleE81011altT
PROCESS

Assumptions
*boat Priority
Decisions and
Decision
Makers

See chapters
12.14

Administrators are treated as
the most important decision
makers; and, the decisions
which are considered to have
the highest priority usually
involve (i) program
accountability. or (ii) accept or
reject decisions about pro-
grams, teachers, or students.

The most important decision
makers are students, teachers,
parents, and others who are
interested in optimizng
students' achievements.

The NCTM's Curriculum and Evaluation Standards are clear
about the following points.

Because teacher decision- making should be a priority. it does
not follow that the information need. of other decision-makers
should be ignored.

Because performance assessment items and students' project
portfolios should be given greater attention, tt does not follow
that other sources of information should be ignored.

No single decision-maker or decision-making issue should
preclude all others, and no single source of information is
appropriate for all purposes and audien-As. One of the worst
things that could happen to promising new forms of assessment
is that they (too) become used for issues and audiences that they
were not intended to address.

c:s
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Assumptions
about Sources
of Aseesemeat
lufermaties

See chapters
1,25.10,11

Students must prove their
knowledge and abilities within
the context of a small number
of brief "high pressure, low
interest" testing situations in
which severe and unrealistic
constraints must be placed on
time, tools, and other
resources. Also. when
responses are restricted to
those that have simple "right-
wrong" answers, all tasks must
be eliminated in which the
goals involve descriptions,
explanations. predictions. or
other results in which several
alternative levels and types of
"correct" responses are nearly
always possible.

Many "low pressure, high
interest" opportunities are
provided in which students
can simultaneously develop
and document their increasing
knowledge and abilities.
Assessment-relevant
information is taken from a
variety of contorts which
include not only tests but also
teadiers. clinical interviews
and classroom observations,
and students' extended
projects and project portfolios.

Assumptions
about the
Purpose of
Assessment

See chapters
1,7,8,14,15

Descriptions of standardized
tests often suggest that they
were intended to be used
primarily to generate positive
predictions about the
probability of future success for
students (or teachers, or
programs). In fact, however.
"high stakes" tests tend to be
used to generate: (9 absolute
cut-off scores which are used to
screen students (so that some
are never allowed to try the
predicted activities). (ii) labels
which claim to reflect static
traits which are difficult or
impossible to change through
hard work. instruction, exper-
ience, or development, and (iii)
operational definitions for what
should be taught and hoz it
should be taught.

The goals are: (i) to describe
past accomplishments rather
than to predict future
accomplishments, and (ii) to
facilitate learning progress.
Therefore, it is important to
identify strengths and needs of
individual students. Also.
because the goal is to
ilt2CUIlleilt 1E2fitelli. the
characteristics that are
emphasized are assumed to
develop and change over time.
Therefore, it is important to
monitor performance over a
long period so that trends
become apparent. In
mathematics. just as in most
fields, the best predictor of
future success depends on
being interested and
productive over a long period
of time (Bloom. 1985;
Krutetsld, 1976).

Whether or not a .5 correlation is "good" depends on: (I) the type
of decisions the measure Is actually used to inform, (ii) theextent
to which the fraction of the variance that Is not taken into
account corresponds to random error, or to important
characteristics that are simply ignored. If we were predicting
winners at horse races. a .5 correlation might be viewed as very
good. However, if we were deriding which horses to send to the
glue factory. it might not be good at all (especially from the
perspective of the horses). Is it good to be accounting for 5096 of
the desirable characteristics? Or is it bad to be ignoring 5096 of
the desirable characteristics? Are the characteristics that are
being measured having unproductive iniluerres on breeding and
training practices?
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Arannsptions
about Locus of
Reepensibility

See chapters
1,2,9

lbsting instruments assume
responsibility for documenting
whether err not students (or
teachers, or programs) are
competent or to what extent
they have achieved specified
goals.

Students (and teachers, or
programs) must assume
greater responsibility to
produce credible
documentation about their
own abilities and
achievements. Furthermore.
schools (programs and
districts) must also help to
address credibility. fairness,
and other issues which cannot
be handled adequately by
Individuals who are being
assessed.

When individuals assume greater responsibility for documenting
their own abilities and achievements, the situation resembles the
way things work in universities. businesses, or industries. For
example. in isuca situations. individuals usually develop resumes
which provide brief overviews of achievements, and the credibility
of entries depends on a variety factors. Entries similar to
publications are evaluated by referees from relevant professional
organizations. For entries that are similar to courses completed
(or programs completed. or projects completed), the quality of
results is certified by relevant institutions, or "blue ribbon"
references are cited who can describe the quality of entries. In
other cases, a portfolio of actual products is available for
inspection. In all of these cases. the individual assumes a large
part of the responsibility for documenting achievements and
abilities, even though various institutions. organizations, or
individuals help to verify the quality of items that are listed.

Assumptions
about
Assessment
Information
that should be
Generated

See chapters
12,14

Single-number quality ratings
arc assigned to students (or
teachers, or programs). The
emphasis is on comparing
students to students along a
one-dimensional "good-bad"
scale.

Multidimensional profiles are
generated (for students, or
teachers, or programs). These
profiles are aimed at high-
lighting: (I) strengths and
weaknesses of individual
students (or groups), (10
progress that has been made
over spedfled periods of time.
and (iii) conditions under
which achievements occur.

Rather than comparing students to students based on (for
example) one-cb.mensional conceptions of general intelligence,
mathematics educators tend to be more concerned about
comparing students' capabilities with priority instructional
objectives. Whereas standardized testa have emphasized the
power of general intelligence, mathematicians and scientists tend
to be more impressed with the power of having a podcet full of
'capability amplifiers" which: (1) are based on elementary-but-
deep mathematical models (e.g.. involving rational numbers,
signed numbers, vectors, coordinates. functions, graphs. etc), (ii)
it took our society centuries to invent, but which can be learned
by average ability middle achoolers. (in) are designed help

3U
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students generate insightful interpretations, explanations. and
predictions about sophisticated problem solving situations, (iv)
enable students' profiles of caps ties to vary dramatically,
depen a. on which models they hue and ban= constructed,
anut (iv) id1 would enable average ability middle schoolers to
pdform like "geniuses' if they could somehow be transported
back to a time before these conceptual tools had been invented.

Assumptioes
about
Responsibility

Quality

See chapters
3,7,9,10.11.
13.14

Value judgements are assigned
to students by testing
programs based on very small
samples of performance. These
value judgements often convey
the impression that "good"
individuals have no
weaknesses, and that "wok"
individuals have no strengths.
Or, if profiles of strengths and
weaknesses are recognized, the
"weights" assigned to various
components are assumed to
always be the same regardless
of the purpose of the
evaluation. Thus, the
atgircryted quality rating

turns out to be the
same regardless of factors
that influence most de dsion-
making endeavors.

The goal of the assessment
program is to generate simple
and yet high-fidelity and
multi-dimensional "portraits"
to skaccthe students, teachers.
or programs. The purpose of
these descriptions is to
facilitate dedsion-making by
informed professionals.
Therefore, reports should
avoid unnecessary value
judgements which artificially
and needlessly limit decision-
making responsibilities by
relevant professionals. If
sound and reliable
information is provided, the
acts of judging. valuing.
comparing, and ranking
should be reserved for qualified
people who are closest to the
students, or closest to the
dedrdon -making issues that
need to be confronted.

Aseumptions
about
laterpretions
at Students'
Responses.

See chapters
2,3.4,10,12.13

Responses to individual items
are typically machine 'parable,
and are assigned simple right-
wrong evaluations. In general,
scores for pools of problems are
assigned by simply calculating
sums of scores on individual
items.

Students' co ve models
cannot sump be sorted into
categories labeled mastered or
not mastered. jai of
development are significant;
and, these levels tend to be
reflected in patterns of
responses. not limply In
aggregated counts of correct
and incorrect answers.

The difficulty of a problem depends on how it is interpreted by the
student. not just on objective task variables. Therefore, a
problem does not have a single difficulty level that is independent
of the way students interpret it. And. this fact is especially
applicable to performance activities in which appropriate
responses involve descriptions, constructions, explanations, or
predictions, where there is always more than a single level or
type of "correct" response. Yet. in spite of the fad that several
levels and types of responses are acceptable, objective criteria are
usually available so that students themselves can judge the
quality of their own work. There should be no need for students
to depend exclusively on the judgement of external authorities.
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Assumptions
about
Accountability:
Documenting
Achievement
aver Time

See chapters
7,14

lb document achievement over
time, pretest/posttest designs
tend to be used where the test
measures states of knowledge
at the beginning and end of
instruction, and deficiencies are
compared with some ideal
model. Then, pretest scores are
subtracted from posttest scores
to infer that improvement has
occurred.

One of the dangers associated
with this approach is that, even
when the primary goal is to
prove that progress has been
made, the pretests and post-
tests that are used often help to
create conditions under which
the possibility of success is
minimized.

Acttvitles can be used that
encourage development in
directions that are
increasingly "better" without
using pretests and posttests as
operational definitions of
"best." Furthermore. these
same activities can also be
used to produce document-
ation that development has
occurred by producing a trace
of progress that has been
made. In this way. it is
possible to focus directly on
the =gap of change without
simply making comparisons
involving static states; and, it
is possible to document
progress without taking
students and teachers away
from valuable instructional
activities.

Assumptions
about the Role
at Teachers

See chapters
3,10,11.14

Often, in the past, the goal was
to produce "teacher proof
tests, textbooks, and programs
of instruction.

Input from teachers is
essential because it is
important to interpret the
meaning of students'
responses and assessment
results, and because it is
important for teachers to
contribute relevant inform-
ation about conditions in
which students' achievements
occurred.

PERCEIVED
CONSTRAINTS
ON
MISIBIUMNT

Assumptions
about
Constraints
involving
Cost-
Effective:sem

See chapters
1,5,8,12,14

little attention tends to be
given to the benefit side of
coot/benefit ratios, even
though single-number scores
and letter grades provide very
little information to inform
most decisions and decision-
makers. The main goals are to
minimize costs and time
commitments because (1) the
tasks arc expensive to develop
and calibrate, and (11) the tests
are non-beneficial intrusions
on instructional time (for
students, teachercand
instructional programs).
Negative effects on Instruction
are often simply ignored.
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Attention is focused on
increasing effectiveness and on
increasing the richness and
quality of the information that
is generated. Because the
assessment activities that are
emphasized are those that are
important from the point of
view of both assessment and
instruction, they are not
intrusions on instruction, and
they can occur often. Also, the
resources that are available for
instruction can be put in the
service of assessment, and vice
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tions
about Time
Constraints

See chapters
2,5.8.9

Questions must typically be
answered at a rate of
approximately one per minute.
Therefore. categories of prob-
lems that are "out of bounds"
include all of those in which
60 second solutions would be
inappropriate.

Response times vary, as in real
situations, but many solutions
require at least an hour to
construct, with constraints on
time, tools, and other resources
being only those that might
occur in 'real life" situations.

Assumptions
about
Constraints on
Tools &
Resources

See chapters
2.5.8,9

In general. students are
prohibited from using tools.
including the kind of pocket
calculators or notebook
computers that are common in
'real life" situations. In fact, even
if tools such as calculators are
allowed, efforts tend to be made
to avoid tasks that are not tool
neutral.

In general, realistic tools and
resources are available,
including "how to" manuals,
colleagues, and consultants.

Assumptions
about
Constraints
involving the
Simplicity at
Reports

See chapters
1.7,14

It is assumed that the only way
for (paper-based) reports to be
sufficiently simple is to reduce
all available information to
single-number "scores." And.in
spite of the fact that deciedon-
makers consistently misuse
these scores for pur--poses that
they were never intended to
address, efforts to avoid such
misuses tend to be even less
conscientious that the kind of
labels on cigarette cartons,
which say "cigarettes (tests)
can be hazardous to your
health (education system)."

To highlight patterns of
understandings, abilities, and
achievements, information is
simplified using computer-
based reports which are
dynamic, graphic, interactive,
and easily modified to focus on
a variety of alternative
decision - making issues.
Therefore, complexities are
only highlighted when they
are requested for a specific
purpose.

CIUTERIA FOR
JUDGING THE
QUALITY OF
ASSESSMENT
INSTRUMENTS

Assumptions
about Fairness

See chapters
2.4.6,8.9

Decontextualized "vanilla"
problems are treated as though
they didn't favor privileged
students who are schooled in
the art of answering such
questions (where both the
questions and the answers
would often be nonsense in the
"real life" experiences of less
privileged students). In general.
no attention is given to the
conditions under which
students develop the knowledge
and abilities presumably being
evaluated.

392-

Special attention is given to
precisely those tasks in which
targeted groups of students
have special interests and
experience. Yet, students are
not forced to demonstrate their
knowledge and capabilities
within situations in which they
have no interests or experience
because a variety of options are
available for every major
construct that is assessed.
Also, care is taken to describe
relevant conditions that
influence achievement
opportunities.
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note: in principle, using
carefully deoontextualized
problems means that all
activities should be eliminated if
some subgroup of students
might consider them to be
especially meaningful or
interesting (because special
technical or conceptual tools
mtgnt have been developed to
deal with them).

Assumptions
about
Rationale tor
Selecting and
Equating of
Tasks

See chapters
2.3,6,8.12.13

In aptitude tests, all tasks are
interpreted as measuring the
same construct rgi. Therefore,
tasks are selected, relented, and
equated mainly on the basis of
statistical properties.

In traditional types of criterion
referenced achievement tests.
each Item focuses on an Isolated
behavioral objective: the
assumption is generally made
that complex behaviors consist
of chains of basic facts and
sIdlles.

note: Because de contextualt eel
questions must be answered
without knowing the purpose of
the question, there are often no
cues to help a student make
reasonable judgements about
appropriate levels of precision,
specificity, or other issues that
govern the quality of responses

[to 'real life' probs.

'Desks are selected to reflect a
representative sample of
problem types. knowledge, and
abilities which "cover" the field
being assessed. Problems no
longer have a single level of
difficulty or a single level and
type of "correct" response. For
example, the difficulty of a task
depends on the way individuals
interpret the problem, and on
the student's prior experiences.
Therefore, two tasks are only
equivalent if they are interpreted
in the same way and if they
elicit the same level and type of
response.

Asenmptions
about
Reliability
and Response
Interpretation

See chapters
3,12,13,14

A score on an test (or item) is
reliable if (ft students would get
the same score if they did the
item regain. and (11) experts
consistently give the same score.
The interpretation of a response
only depends on task variables
and on whether the student got
the correct answer.

Because the tasks (and tests)
that are emphasized are those
that contribute to learning as
well as to assessment, students
who do them repeatedly would
be expected to improve. Also.
because complex performances
are involved, it is expected that a
given expert might assign
different quality ratings to a
given performance. e.g.,
depending on the purpose of the
evaluation, or depending on the
weights that are assigned to
various attributes or sub-
components of performance.

Suppose the goal were to assess carpenters. and the tasks
involved building houses (of a variety of types in a variety of
specific settings). It would be sensible to assume that quality
ratings would improve if the activity were repeated multiple
times: it would be sensible to assume that quality ratings would
vary due to a variety of factors. For example: Was the house
energy- effident but ugly? Was it innovative but too costly?
Was it sturdy but out of place in the given location? Various
"experts" might not agree. Value judgements might be
conditional, depending on the weights that are assigned to
various attributes, perspectives, and purposes.
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Assurnp time
about
Justifications
for °installs-
atlas'

See chapters
2,3,6,8,12,13

The only information that is
taken into account is based on
a sriall number of brief tests;
these generally involve a restric-
ted and unrepresentative dass
of problems, knowledge, and
abilities. Sophirticated statistical
techniques tend to be used to
make inferences based on
underlying subtle patterns
of behavior in the restricted
situations included in the tests.
Attention tends to shift toward
hypotheses about students
themadves (with the
assumption that these
hypotheses apply to a more
representative dass of
situations).

First, the tasks are not just
correlated with important real
life tasks, the goal is for them to
actually include a represent-
ative sample of such tasks.
Second, lilm spreadsheets which
provide frameworks fur dealing
with data for a variety of
situations, the responses that
students generate are not just
specific answers to Whited
questions, they are
explanations. descriptions, and
predictions that generate useful
information in a whole class of
specific situations. Third, the
documentation of students
abilities is gathered over a long
period of time and in a variety
of situations. Therefore,
generalizations that are stated
about a given student are
summaries about actual past
performance. Conjectures
about future performance are
left to decisionmakers who are
close to the students that are
involved and who are close to
the situations in which the
hypothesized capabilities
should be relevant.

Assumptions
about Criteria
for Judging
Validity

See chapters
1.2,7,12.13.15

In the past, nationally
influential standardized tests
had to reflect the lack of
consensus about what should
be taught and tested in the
mathematics curriculum.
Therefore, rather than focus on
instructional goals that would
vary from one curriculum to
another, standardized testing
programs tended to emphasize
general abilities and aptitudes
which were assumed to be
curriculum-independent
and/or common to all relevant
programs and materials.
Validity was interpreted as
predictive validity. That is, the
goal was for the test to be
correlated with: (ll
(which tend to be ofett5::1),or
(11) global ilittliarial1=2 In Intro-
ductory courses (which tend to
be the most in need of
curriculum reform, and the
least aligned with current
national standards).

A national consensus has been
readied about Curriculum and
Evaluation Standards for
School Mathematics. Therefore,
"validity" is interpreted in terms
of content validity and systemic
validity: and, content validityis
measured in terms of alignment
with national Standards.
(I) Does the test emphasize
constructs that are priorities for
instruction? (ii) Does the test
avoid emphasizing constructs
that are narrow, shallow,
untypical, obsolete, and/or
counterproductive in terms of
instruction?

Systemic validity refers to the
fact that assessment
instruments should help to
promote (and at least not
subvert) positive changes in the
students, teachers, and
programs whose performances
they describe.
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Using tests as leverage to clarify ollecttves and induce
curriculum changes focuses on put set of decision-making
issues that are priorities to address, but there are also other
issues that cannot be neglected. For example, suppose it were
passible to instantly change all 'high stakes" screening and
accountability-oriented tests to conform to the kinds of future-
oriented goals cited in recent publications from the NCTM,
MBEB. AAAS. and NSTA. How could we ensure fair treatment
for students who were indoctrinated with more than twelve
years of an old system that emphasized obsolete views of
mathmmatics, problem solving, teaching, and learning?

Whether attention is focused on standardized tests or on
alternative sources of assessment information, responsible people
in both areas recognize that it is not acceptable for assessment
programs to use students as pawns to induce curriculum
changes, especially tithe students most likely to suffer are those
who have been treated unjustly by the system we are trying to
change. Still, questions remain. What should be the relative
emphasis on revolution versus evolution? How much should
assessment be permitted to lead or lag curriculum and
instruction?

Assumptions
about Secrecy
for Problem
Hanks

See chapter 15

Because high stakes
consequences are associated
with performances on small
items and pools of items, and
because item calibration is
expensive, security tends to be
carefully guarded.
Consequently, the only
descriptions of tasks that are
available tend to be global
content-by-process matrices
and examples of released items
from past tests.

Ihe activities that are
emphasized tend to involve
complex constructed responses
and these constructions tend
to focus on the cognitive object-
ives (or models) that are the
most important goals of
instruction. Therefore,
performing the task is equiv-
alent to demonstrating the
desired competence. So it is
possible to be extremely
straightforward and open
about the nature of assessment
tasks.

In discussions between proponents of traditional testing and their
counterparts in performance assessment, it tends to become dear that these two
perspectives are based on completely different sets of assumptions. Therefore,
it is often difficult to initiate a dialogue because, within each of the two columns
of the table, the cells are all closely interconnected and need to be considered
together as a whole. For example, in the table at the end of this chapter, if a
particular cell is conaidered in either the left or right column, it is usually difficult
to isolate the issues addressed in this cell from issues addressed in other cells
within the same column. That is, if a person insists on clinging to the points of
view expressed in most of the other cells in the same column, then it often
doesn't make sense to abandon the principles expressed in the remaining cell.
Piecemeal transitions often do not make sense.
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When mathematicians and mathematics educators call for assess-
ment instruments to focus on authentic mathematics, realistic problems, and
genuine mathematical abilities, they arc not simply demanding that tests should
focus on new types of items and testing formats. New conceptions need to
be adopted about the nature of mathematics, problem solving, teaching,
and learning. For example, concerning the psychological foundations of
traditional test theory, Mislevy has stated:

The test theory that dominates educational nseasurenor today might be
described as the application of twentieth century statistics to nineteenth
century psychology. (Mislevy, 1991, p. 234).

The essential problem is that the view of human learning that underlies

standard test theory is not compatible with the view rapidly emerging from

agnifue and educational prychalogy. (Mislevy, in Introduction, Chapter 12, above).

Similar views have been expressed in virtually every recent report
from organizations such as the National Council of Teachers of Mathemat-
ics, the Mathematics Association of America, the American Association for
the Advancement of Science, the National Academy of Sciences, and the
Mathematical Sciences Education Board. There is overwhelming agree-
ment that the kind of standardized testing programs that exist today
generally emphasize Industrial age" views that are inconsistent with the
needs and realities of an age of information, and that they emphasize views that
are counterproductive to badly needed curriculum reforms in mathematics
education (Romberg, Zarinnia, & Williams, 1989). For example:

The National Research Council writes: The most important
components of mathematical talent cannot be addressed: (i) using timed
tests with large numbers of small decontextualized questions, or (ii)
when artificial restrictions are placed on the resources that are avail-
able. ... Most of the tests used for mathematics assessment have too
narrow a focus. They do not measure the wide range of mathematical
skills and abilities that educators and business leaders believe is needed
for a population to live and work in a world increasingly shaped by
mathematics, science, and technology. (NRC, 1990. p. 21).

Leading mathematicians and mathematics educators write:
Current tests ... force students to answer artificial questions under
artificial circumstances; they impose severe and artificial time con-
straints; they encourage the false view that mathematics can be sepa-
rated out into tiny water-tight compartments; they teach the perverted
doctrine that mathematical problems have a single right answer and
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that all other answers are equally wrong; and, they fail completely to
take account of mathematical process, concentrating exclusively on the
'answer." (Romberg, Zarinnia, & Collis, 1990, p. 23).

Leaders in cognitive science write: Ti educational system we have
inherited was not, by and large, designed to prepare people ior adaptive
functioning in a technically complex environment. ... Its goals for
students did not include the ability to interpret unfamiliar texts,
construct convincing arguments, understand complex systems, develop
approaches to problems, or negotiate problems resolutions in a group.
(Resnick and Resnick, 1989, p. 37).

According to the preceding perspectives, the standardized testing
industry is badly out of step with the past quarter of a century of research in
cognitive science; the constructs it measures are inconsistent with modern
advances in mathematics and technology; and, the problems and abilities
that are emphasized are completely inadequate to reflect the needs of
citizens and workers in an age of information.

Romberg, Zarinnia, and Collis (1989) have singled out the
following two assumptions that are particularly important
sources of outdated beliefs. (i) Reductionism assumes that, if you
have something you want to explain, you take it apart until you
identify its simplest parts. In this way, mathematics is parti-
tioned into fragmented lists of behavioral objectives that are
each treated as an end in itself. (ii) Mechanism assumes that
once you break something apart, you build it up again based on
simple chains of condition-action rules. That is, mathematics is
considered to be nothing more than a list of factual and
procedural rules, and systems of mathematical knowledge are
considered to be nothing more than the sum of their parts,
with the meaning of isolated rules being the same regardless of
conceptual structures in which they are embedded.

Resnick and Tucker (1991) have used similar language to
describe some of the most important sources of outdated
beliefs. (it) Decomposability likens thought to a simple machine;
first, learn isolated facts and skills in isolation, then simply link
them together to learn higher-order concepts and principles or
to solve more complex problems. (ii) Decontextualization as-
sumes that teaching (or testing) a skill out of context is the
same as teaching (or testing) it within a realistic and meaning-
ful situation; it assumes that each component of a complex skill
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is fixed and that it will take the same form regardless of the
context in which it is used.

According to the preceding points of view, the shortcomings of
current standardized testing are not superficial; they are deep; and, theywill
not be ameliorated using simplistic techniques such as converting multiple-
choice questions to their fill-in-the-blank counterparts. In fact, when such
strategies are used, the tests that result often become worse rather than
better in terms of their alignment with nationally endorsed Curriculum and
Evaluation Standards for School Mathematics (NCTM, 1989). Why? The central
reason is that, to improve the alignment of a multiple-choice test, two main
shortcomings must be addressed. (i) Multiple-choice questions are only
able to focus on a small and nonrepresentative sample of problems that
occur in "real life" situations. (ii) Multiple-choice questions tend to rein-
force misleading notions about the nature of mathematics, problem solving,
and problem-solving abilities. Therefore, if no attempt is made to deal with
larger and more representative classes of problems, there is no way for the
alignment of a test to improve.

In a recent review of Roger Schank's book, Tell Me A Story, the New
York Times Book Review gave the following succinct summary of the
shortcomings of psychometric theory.

Psydsometrics has fallen into disrepute ... because tests: (a) at best measure only a

very narrow part of intelligence, (b) may predict academic performance to some

degree, but predia outside the school only poorly, (c) are biased in favor of middle-

to upper-social-class individuals who received the kind of education that prepares

them for these rather trivial kinds of test items, or (d) all of the above. (New York

Times Book Review, September, 15, 1991, p. 3).

In spite of the preceding kinds of concerns, however, large
numbers of students continue to be evaluated, screened, and labeled using
tasks which ignore modern conceptions about mathematics, problem solv-
ing, teaching, and learning. This is why agencies such as the National
Academy of Sciences, the National Research Council, and the Mathematical
Sciences Education Board have bein issuing the following kinds of policy
guidelines to schools and univers. es:

Align institutional admitsions and placement testing practices with

contemporary standards for school mathematics. ... Discontinue use of

standardized tests that are misaligned with national standards for curricu-
lum ( Counting on You, p. 21) .
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As a result of the preceding kinds of pressure, changes in testing
practices are being explored in states school districts throughout the nation.
But, change is difficultwithin complex systems, where solutions to one problem
often introduce difficulties in others. Consequently, at the same time that
innovative materials are being developed, it is also important to broaden and
strengthen the knowledge base on which these initiatives are based.

CONTENT QUALITY, TECHNOLOGY, EQUITY AND TEACHER EDUCATION:

FUTURE DIRECTIONS

Three of the main reasons to focus on alternative forms of
assessment are (i) to emphasis broader and more realistic conceptions
about mathematics, mathematical problem solving, and mathematical abili-
ties, because the goal is to prepare students for productive participation in
a technology-based society, (ii) to identify talented students and to give
special attention to targeted groups of minority students and women whose
abilities have not been recognized, cultivated, or rewarded by traditional
textbooks, teaching, or tests, and (iii) to help optimize all students' oppor-
tunities for success by facilitating informed decision making, by encourag-
ing the development of solid conceptual foundations for future success, and
by providing as many "low pressure, high interest" opportunities as possible
for students to simultaneously develop and document their increasing
knowledge and capabilities. In other words, some of the main reasons to
focus on alternative assessment have to do with content quality, equity,
technology, and teacher decision making (or teacher education).

To begin, it is useful to notice that most of the chapters in this book
were concerned with content quality even though the authors might
ultimately have been interested in other issues such as equity, technology, or
teacher education. In the matter of equity, for example, students will not be
treated fairly on a given test if the constructs being measured do not correctly
reflect the nature of mathematics and mathematical problem solving. When
screening applicants for admission into instructional programs, for example,
construct validity without predictive validity is (by definition) impossible;
whereas if selection procedures are based on only modest (.5) levels of
predictive validity, and if the authenticity (or alignment with instructional
goals) is low, then test results are likely to encourage discrimination since
decision making may be based on inappropriate criteria. As a result, students
may be discouraged from studying mathematics, not because they are
incapable, but because of misguided beliefs about the nature of mathematics
and real-life situations in which mathematics is useful.
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Research Issues Related to Cutest Quality

In recent years, as instruction has become more individualized,
and as more diverse types of understandings and abilities have been
recognized and encouraged, the predictive validity of most nationally
influential standardized tests has steadily decreased (Donlon, 1984;
Willingham et al, 1990; Edgerton, 1985; Holland and Richards, 1965; Hoyt,
1966; Wallach and Wing, 1969; Shave 'son, 1989, 1991). In fact, even with all
of the subjectivity, inconsistency, and unfairness that sometimes goes into
teachers' grades, the predictive validity of studen ts' grade point averages still
tends to be at least as high as standardized tests. Yet, even when test scores
and coursework are combined to predict performance in other areas, only
about half of the variance is taken into account, and correlations tend to be
even lower when attempts are made to predict performance on more
realistic kinds of problem-solving activities.

Studies by Edgerton and Shavelson are instructive. Edgerton
(1985) studied students being considered for scholarships and awards in the
Westinghouse National Science Talent Search. Applicant evaluations by
leading scientists were based on academic transcripts, standardized tests,
and actual performance on research projects analogous to the work of adult
scientists. The results showed that only about one-third of the students who
were chosen on the basis of realistic scientific performance would have been
chosen if decisions had been based on only academic transcripts and/or
scores on standardized multiple-choice tests.

Shavelson conducted a series of studies of the predictive validity of
standardized multiple-choice tests relative to performance measures involving
tasks or projects with high construct validity (Shavelson, Carey and Webb, 1990;
Shavelson, Baxter, Pine, Yure, Goldman and Smith, 1990). He and his col-
leagues found that, in general, the higher the construct validity of performance
measures, the lower the predictive validity of the standardized tests.

Both Edgerton and Shavelson concluded that the notion of talent
that is reflected in most standardized tests and/or academic transcripts is far
too narrow, and that serious questions must be raised about the appropri-
ateness of using such predictors for purposes such college admissions and
scholarships. Other researchers have formed similar conclusions (see, for
example, Collis and Romberg, 1989; Conference Board of the Mathematical
Sciences, 1983; Business Week, 1988; Hawson et al, 1988). In fact, even in the
assessment of general intelligence (g), researchers such as Gardner (1985)
have found that a more pluralistic conception of talent must be developed.
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Resnick (1987a, b) cites the following reasons why traditional
textbooks, teaching, and tests have been inconsistent with real-lifeproblem
solving and decision making:

School learning emphasizes individual cognition, while learn-
ing in everyday contexts tends to be a cooperative enterprise.

School learning stresses "pure thought," while the outside
world makes heavy use of tool-aided learning.

School learning emphasizes manipulation of abstract symbols,
while nonschool reasoning is heavily involved with objects and
events.

School learning tends to be generalized, while the learning
required for on-the-job competency tends to be situation specific.

Resnick and Resnick conclude that ". . . school work draws on only a limited
aspect of intelligence, ignoring many of the intelligences needed for vocational
success, especially in the more prestigious vocations" (1989, p. 21).

This claim has been verified by ethnographic studies focusing on
ordinary people solving problems in real-life situations (see, for example, Lave,
in press; Saxe, 1991; Carraher et al, 1985). For example, a prototype of such
studies involves following expert grocery shoppers while they are shopping.
What researchers typically see is that experts do a lot of decision making that
depends on elementary arithmetic. As longas experts are engaged in these real
activities, their arithmetic abilities seem nearly flawless. Yet if the same experts
are given a paper-and-pencil arithmetic test with standard word problems that
are seemingly isomorphic to the real problems, success rates are typically low.
How can this be? In fact, given real needs, people invent a variety of clever and
reliably accurate procedures. Consider howmost people, even those who lack
confidence in their ability to answer school-related percent problems, perform
routine real world tasks such as calculating 15 percent tips. One way involves
calculating 10 percent of a given amount, then finding half of this result, and
adding to get 15 percent Another way involves remembering that $1.50 is 15
percent of $10, and that $15 is 15 percent of $100; other amounts can be
estimated using proportional reasoning.

Although ethnographic studies have been conducted in realistic
situations, they have generally been based on rather impoverished notions
about the kinds of situations in which mathematics is useful. In on -the job
problem solving, most studies have looked at entry-level positions, and even
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for these, studies have seldom looked at situations in which teams of peon
work together and use technology-based tools. It seems likely that Resnick's
claims will be supported even more strongly when less restricted types of
tasks, knowledge, and abilities are studied.

Although recent standards and policy-directing statements have made
great progress in clarifying the kinds of mathematical knowledge and abilities
that citizens and workers in the twenty-first century will need, research is needed
to answer such questions as these: If a cognitive objective is a mathematical
system (or model) for describing real or possible worlds, then what are the ten
to twenty most important cognitive models that students should construct
during a given course (or year of schooling)? What does it mean to understand
such objectives? And in particular, what does it mean to have a deeper or higher-
order understanding of these objectives?

Advances in technology and cognitive psychology and dramatic
changes in demands for a competitive work force will almost certainly
accelerate. Thus, as first-round goals of the NCTM's Standards begin to be
achieved, new second-round goals will become necessary. There will be a
continuing need to modify and refine existing standards, to go beyond
stating desirable goals for instruction, and to develop operational defini-
tions (procedures and criteria) for measuring the extent to which these
goals for programs, teaching, textbooks, and tests are being met.

Research Issues Related to Advances In Technology

Technology-based tools have created some of the most important
driving forces behind (1) changes in the types of problem-solving situations
in which mathematics is useful, (ii) changes in the types of mathematical
knowledge and abilities that are useful in newly generated situations, and
(iii) changes in the types of jobs and professions in which mathematics is
used on a day-to-day basis. As a result, when new conceptual and procedural
tools are used to address new types of problems, past conceptions of
mathematical ability tend to be far too narrow, low- level, and restricted for
productive participation in an age of information. For example, the Math-
ematical Sciences Education Board stated:

Communication has created a world economy in which working
smarter is more important than working harder. Jobs that contribute
to thk economy require workers who are mentally fitworkers who
are prepared to absorb new ideas, to adapt to change, to cope with
ambiguity, to perceive patterns, and to solve unconventional
problems. It is these needs, not just the need for calculation .. . that
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make mathematics a prerequisite to so many jobs. More than ever
before, Americans need to think for a living; and, more than ever
before, they need to think mathematically. (1989, p. 3).

In a subsequent report, the board continued:

Today's worldwide computer-driven competitive economy demands
workers with thinking skills, workers who can deal with computer
terminals, automated equipment, and visual data displays; who can
make estimates and solve problems; who have a mental "toolkit" of
number-managing techniques. . . . Workers now frequently form
groups or teams, collaborating rather than working alone. More and
more occupations require the ability to understand, communicate,
use, and explain concepts and procedures based on mathematical
thinking. . . . The rudimentary skills that satisfied the needs of the
workplace in the past no longer suffice. . . . Workers are less and less
expected to carry out mindless repetitive chores. Instead, they are
engaged actively in team problem-solving, talking with their coworkers,
and seeking mutually acceptable solutions . . They define problems,
collect data, establish facts, and draw valid conclusions. (1990, p. 3).

Unlike earlier periods when people demonstrated their knowl-
edge and abilities mainly by showing how well they could remember facts
and follow rules, employers today increasingly emphasize abilities such as (i)
making sense of complex systems and experiences, (ii) formulating prob-
lems in ways that lend themselves to useful solutions, and (iii) learning and
adapting to rapidly changing challenges and circumstances. In a technol-
ogy-based society, new tools do much more than provide new ways to process
information from an external world that is "out there" (independent of
human influence). The essence of an age of information is that many of the
most important influences on peoples' daily lives are businesses, communi-
cation networks, and other systems created by humans, often as a direct
result of using powerful new technologies.

To create such systems, or to make sense of existing systems, the
tools that are needed are not conceptually neutral. Such tools make it easy
to think about the world in some ways but not in others, to create certain
kinds of systems but not others, and to develop certain kinds of understand-
ings and abilities while also increasing the likelihood that new types of
higher-order misconceptions and disabilities will occur. On the one hand,
students can use certain tools to develop ways of thinking that are not
accessible to students without such tools. With these tools, for example,
students can see patterns and regularities that are otherwise difficult (or
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impossible) to find. On the other hand, "When students are given a
hammer, lots of things begin to look like nails!" That is, there is a tendency
to use a tool because it's there, not because it's appropriate.

Actually, in mathematics, such tools as pocket calculators or notebook
computers with modeling capabilities function in much the same way as
conceptual tools such as Cartesian coordinate systems, or proportional reason-
ing, or the Calculus. Both kinds of tools enable students to produce results that
would have been difficult (or impossible) to produce otherwise; and both enable
students to think differently (and often better), not justfaster. That is, both types
of tools have distinctive conceptual frameworks as well as efficient techniques
and procedures associated with them. In fact, since both embody powerful
conceptual/procedural systems, both might be called conceptual technologies.

In spite of these facts, modern technology-based tools tend to be
treated as though they are radically different from conceptual technologies
of the past. For the latter, it seemed obvious that both instruction and
assessment should focus on the conceptual/procedural systems that had the
greatest power and usefulness. (whether they were real-world applications or
pure math explorations). Yet this is not the case for modern conceptual
technologies. Many of the most powerful systems are treated as though they
involve cheatingpartly, perhaps, because too few people are familiar with
the new knowledge and abilities that these tools presuppose. Too many
people assume that (i) students who are familiar with such tools are still
conceptually equivalent to students who are not, (ii) the tools are just new
ways of doing old things, (iii) both groups of studen is are relying on the same
mathematical ideas, and (iv) the technology-enhanced group is simply able
to work faster (but not differently, and not better) than their peers.

If school mathematics becomes more sensitive to the needs of our
rapidly changing society, these assumptions will not be valid. In the area of
technology and assessment, then some important research issues include
the following:

How can assessment instruments go beyond simply being
correlated with success in real-life situations to directly involve
authentic kinds of problems, knowledge, and abilities?

What new types of understandings and abilities should be
emphasized for problem solving that involves groups of special-
ists working with powerful technology-based tools?

What new types of understandings and abilities will prepare
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students to continually learn and adapt to conceptual/proce-
dural systems associated with new technologies?

Research !sues Related to Equity

Research in mathematics education has pr iuced overwhelming
evidence that different types of mathematical talent and personalities,
knowledge, and capabilities can all lead to success and that many different
types of success are possible. Furthermore, most people have quite irregular
profiles of strengths and weaknesses (Begel, 1979). Consider the following
everyday examples:

In business and industry, people who are good at working alone
to answer other people's clearly formulated questions are not
necessarily good at thinking about fuzzy situations, or dividing
complex problems into subcomponents, or adapting to new
tools and resources, or working in teams coordinating the
efforts of people with diverse talents and expertise.

In universities, mathematics professors are not necessarily good
accountants or at following the rules for filling out income tax
forms. And people who are good at answering other people's
questions about tax forms (in typical situations) are not neces-
sarily good at knowing which questions to ask (in nonstandard
situations).

In computer programming, people who are good at working
within the constraints of a given language (or programming
environment) are not necessarily good at developing modifica-
tions to existing languages or at developing new programming
environments to fit changing needs.

In mathematics, specialists in algebraic/analytic/written-
symbolic forms of thought are not necessarily good at geometric
or graphic forms. People nt departments of pure mathematics
tend to have quite different personalities that tl.ose in applied
departments such as statistics, computer science, econometrics,
or psychometrics.

Similarly, students who are good at working alone, using pencil and
paper to quickly and flawlessly solve traditional word problems, are not necessar-
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ily good at realistic problems, where there is no single correct answer, where
sense-making is as important as answer-giving, and where rapidly generated,
single-rule solutions tend to be inadequate. In school, being caught thinking too
often means thatyou were caught not knowing; taking more than three seconds
to respond means you'll probably be passed over by the teacher, getting an
answer that isn't a whole number is a clue that you're doing somethingwrong;
and using more than a single rule means that you aren't doing something the
rightway. In fact, many of the skills and beliefs thatcon tribute to success in school
tend to be extremely counterproductive in real-life situationswhereinappropri-
ate responses are often associated with quickly generatedanswers and single-rule
"canned" solution procedures.

In spite of these facts, most high-stakes testing programs continue to
rely on psychometric models that assume (i) that mathematics questions nearly
always have one correct answer, (ii) that mathematical abilities and talents can
be collapsed into a single trait (g, general intelligence), and (iii) that correlation
with performance in other areas is enough, even if the sample of problems is only
a small and atypical subset of those that are occur in realistic situations.

In the past, if a narrow conception of talent was correlated with a
more representative conception, testing specialists tended to treat modest
(.5) correlations as though they were sufficientthat is, sufficient to select
small-but-adequate numbers of students for access to scarce-but-adequate
resources. But today, national assessment priorities have changed. At a
national level, our foremost problem is not to screen talent but rather to
identify and nurture capable students. The pool of students receiving
adequate preparation in mathematics isno longer adequate; far too many
capable students are being shut out or turned off by textbooks, teaching,
and tests that give excessive attention to constructs that are narrow, shallow,
obsolete, and often fundamentally inconsistent with national standards that
have been endorsed by all relevant professional and governmental organi-
zations. This is our greatest challenge related to equity.

Traditionally, mathematics courses and mathematics tests have
been popular devices for screening students for entry into programs,
colleges, courses, and professions, regardless of whether the mathematics
that was taught (and tested) matched the actual requirements for success in
the programs or on the job. But today, when more than nineteenth century
shopkeeper arithmetic really is used on a day-to-day basis, mathematical
deficiencies have far more debilitating consequences than in the past, and
mathematics is a key to success in matters related to equity. Fortunately,
there is evidence that there is a large supply ofpotentially capable students
available. For example, the last section of this chapter describes a set of
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projects demonstrating that, when problem-solving and decision-making
activities encourage students to make sense of situations based on their own
personal knowledge and experiences, even students labeled average or
below average can emerge as exceptionally capable. Many are able to
routinely invent (or significantly extend, modify, or refine) mathematical
models that go far beyond those that their teachers believed they could be
taught. However, simply introducing new types of problems (or new levels
and types of mathematical ideas) will not necessarily allow a wider variety of
students to demonstrate their capabilities. In fact, if issues of fairness are not
also taken into account, the privileged simply tend to get more privileges.

To address these concerns, important research priorities are (i)
clarifying the kind of knowledge and abilities that are actually needed in a
representative sample of realistic jobs and settings, (ii) developing new types of
problems for use in high-stakes examinations, and (iii) exploring new sources
of information (beyond tests) to inform high-stakes decision-making issues.

Research Issues Related to Teacher Educatloo

To improve assessment, two distinct approaches can be taken: One
involves improving the content quality of standardized tests by focusing on
authentic mathematical knowledge, realistic problem-solving situations, and
the diverse mathematical abilities that are productive in realistic situations.
The other involves improving the credibility, reliability, and fairness of alternative
forms of assessment including teacher's classroom observations, and students'
extended projects. Improvements in teacher education are obviously critical
to the second approach, but for the first, it is also necessary for teachers to
assume greater responsibility in the assessment process. To see why, it is
useful to consider assessment that evaluates programs or teachers.

When evaluating programs, simply labeling them successes or
failures tends to be misleading. All programs have profiles of strengths and
weaknesses; most are effective for some students (or teachers or situations)
but not for others. But other factors may also be important. For example,
regardless of quality, a program seldom succeeds when the principal of a
school doesn't understand or support the program objectives. Therefore,
when programs are evaluated, the roles of key administrators should also be
assessed. And, regardless of quality, if program implementation is half-
hearted, total success can hardly be expected. Moreover, powerful innova-
tions usually need to be introduced gradually. Therefore, when programs
are evaluated, the implementation processes should also be assessed.

Similarly, when evaluating teachers, both their own profiles of
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strengths and weaknesses and the conditions under which they have been
achieved should be identified. No teacher can be expected to be good in bad
situations (such as when students do not want to learn, or when there is no
support from parents and administrators). Not everything experts do is
effective, and not everything novices do is ineffective. Furthermore, no
teacher is equally effective across all grade levels (from kindergarten
through calculus), with all types of students (from the gifted to those who
are challenged with physical or mental handicaps), and in all types of
settings (from those dominated by inner-city minorities to those dominated
by the rural poor). In fact, characteristics that lead to success in one situation
often turn out to be c-Junterproclucthe in others.

Such observations suggest the need for close connections among
assessments of teachers and of programs, program administrators, and
program implementations. Similar connections should exist for assess-
ments aimed at students, programs, and teachers. But when we are assessing
students, who should describe these profiles and conditions? The responsi-
bility must fall mainly to teachers, because they are usually closest to
students, having observed them over long periods of time and in diverse
kinds of learning and problem-solving situations. Two distinct types of
assessment, one emphasizing state-focused documentation and the other
emphasizing progress-focused documentation, are involved in creating an assess-
ment program where such teaching roles are emphasized.

State-focused documentation aims mainly at (i) evaluating (or
assigning values to) states of development, (ii) identifying deficiencies with
respect to some standard, and (iii) inferring that progress has been made by
comparing one evaluation with another using a subtraction-based model to
describe differences. For example, traditional pretest/posttest models are
frequently used for program accountability, and here one of the dangers
associated with state-focused documentation often becomes clear. While
the primary goal may be to prove that a certain program works, the pretests
and posttests that are used may promote conditions in which the program
will not work. For example, if it is known that school principals are important
to the success of most programs, then there is no reason not to try to
optimize the chances that school administrators will have positive influ-
ences, while, at the same time, documenting the extend to which optimiza-
tion occurs. (Note that this last tactic is a key characteristic of progress-
focused documentation.)

Progress-focused documentation monitors progress directly by
focusing on activities that simultaneously encourage and document develop-
ment in directions that are "better," without necessarily using pretests and
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posttests that embody a fixed and final definition of "best." (Examples of
progress-focused documentation will be described in the next section.) Since
such activities tend to contribute to both learning and the documentation of
learning, distinctions between instruction and assessment blur and teachers'
contributions become particularly important. The quality of teachers' contri-
butions tends to be strongly influenced by their own knowledge; thus they
need to develop deep understandings about the content they are teaching.

In matters related to assessment, important challenges for mathemat-
ics education research focus on clarifying what it means for teachers to construct
deep understandings of elementary matir:matical ideas. For a given collection
of ideas, it may mean knowing how these ideas developed in the history of our
culture, how they typically develop in the minds of children, and how they are
developed in curriculum materials. It may also mean being familiar with how
these ideas have been influenced by modern technology and how their uses have
changed in response to problems in our technology-based sc clay. In any case,
these kinds of understandings and abilities are clearly quite difierent from those
traditionally emphasized college-level mathematics courses for teachers, which
too often are characterized by superficial treatments of advanced topics, rather
than by deep treatments of elementary topics. The effects of this instruction can
be particularly negative because teachers tend to teach as they themselves were
taught, and because instructors ofcollege-level mathematics courses for nonmath
majors have typically not been the best role models for elementary teachers.

EXAMPLE PROJECTS ON TECHNOLOGY, EQUITY, AND TEACHER EDUCATION

To be more explicit about the directions for research that were
suggested in the preceding section, this section focuses on three closely
related projects, one emphasizing technology issues, one emphasizing
equity issues, and one emphasizing teacher education issues. These projects
are briefly summarized below; then each is discussed at. greater length later
in this chapter. These projects emphasize performance assessment activities
that focus on (i) deeper and higher-order understandings of elementary
mathematics, (ii) realistic problem-solving situations, and (iii) diverse types
of mathematical abilities.

The "Math-rich Newspapers Project" (Newspapers) emphasizes
the use of technology in /real-life situations. Intended to identify key charac-
teristics of high-quality performance assessment activities, it focuses espe-
cially on the understandings and abilities thataverage- ability middle schoolers
need to work in teams, on realistic problems, and using a variety of technol-
ogy-based tools. The project goal is to develop a library of exemplary
problems and an interactive computer-based guide to help teachers develop
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activities that will (i) contribote to both instruction and assessment, (ii)
integrate both basic facts and skills and higher-order understandings and
processes, and (iii) gather and report assessment information from settings
ranging from tests to interviews to open-ended projects.

The Pre-college Mathematics Ability: Discovery, Development,
and Documentation project (3-D project) emphasizes issues related to
equity. It is aimed at identifying students in targeted populations (minorities
or young women) whose abilities have not been recognized, cultivated, or
rewarded by traditional textbooks, teaching, or tests. These students are
being identified using problems from the Newspaper project that fit the
interests and experiences of the targeted groups and which emphasize
broader and more realistic conceptions of mathematical abilities.

The Continuously Developing Teachers Project (Teachers) stud-
ies the development of teachers' knowledge (about the nature of mathemat-
ics, problem solving, learning, and instruction) within the context of a ten-
week sequence of activities. The activities encourage the continuous devel-
opment of either experts or novices and enable teachers to automatically
document their development without taking time away from their instruc-
tional responsibilities. The approach is to create performanc activities for
teachers based on teaching activities associated with performance activities
for students. Some teachers' activities include writing or evaluating perfor-
mance assessment activities for students (discussed in chapters 2 and 5
through 9 in this volume) , evaluating the scope and depth of clusters of such
activities (see chapters 2, 14), interpreting students' responses to the
activities (see chapters 4, 13), developing response interpretation rubrics
for assessing students' performances (see chapter 13), observing students'
behaviors using videotapes of the student performances (see chapter 10),
generating insightful hypotheses about their underlying knowledge and
capabilities (see chapters 4, 10), and interviewing and tutoring students as
follow-ups to the observations (see chapters 4, 11).

These three projects are closely connected: Teachers in the
Teachers project are helping to develop exemplary activities for the News-
paper project; problems from the latter are being used to identify students
in the 3-D project, and teachers in 3-D classrooms are participating in the
Teachers project. The following general operating principles apply to all
three projects:

Do not use one-number characterizations of students, teachers,
or programs.
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Do not brand sty ents with labels that are supposed to be
unaffected by conditions, instruction, or experience.

Problems must have more than a single level or type ofcorrect
response.

Do not use decontextualized ("vanilla") problems that discour-
age students from making sense of situations based on their
own everyday knowledge and experience.

Focus on model construction/exploration/application sequences
in which students are (i) encouraged to develop mathematical
models that have the greatest power and usefulness in students'
current (or anticipated) lives, and (ii) required to explicitly
document how they are thinking about problem situations.

Tice Math-rich Newspapers Project

Each math-rich newspaper consists ofone sheet of paper folded to
make four pages; each newspaper is modularized (and desktop publishable)
so that it can be tailored to match the interests and experiences cif targeted
groups of s. adents (for example, middle school students considered to be
at risk in particular cities, or on-the-job adults working at the level of middle
school mathematics). Each newspaper has four types of problem sets
associated with it (Table 2). They are (i) test-sized problems, (ii) homework-
sized problems, (iii) project-sized problems, and (iv) Math Olympics prob-
lems. All are intended to feed assessment information into the kind of
learning progress maps that were described in chapter 14.
Table 2. Four types of problems associated with each math-rich newspaper.

Learning Focused
Activities

Evaluation Focused
Activities

Smaller Problems Homework-sized
Problems (5-10 min.)

Test-sized
Problems (1-3 min.)

Larger Problems Project-sized
Problems (60 min.)

Math Olympics
Problems (30 min.)
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Several examples of project-sized problems were given in chapter

2. All four levels of problems involve realistic givens, goals, tools, and

settings. The project-sized problems and the Math Olympics problems tend

to be similar to the kinds of performance activities that are emphasized in

portfolio-based forms of assessment, while the test-sized problems and the

homework-sized problems are smaller and somewhat more restricted. In

many ways, the test-sized problems and the homework-sized problems

involve the kind of questions that an expert interviewer might like to ask

students before or after they work on the project-sized problems.

The newspaper articles are similar to those that occur in a real

newspaper and are organized within traditional sections: editorials; world,

national, and local news; sports; entertainment (radio, television, records,

movies), travel, home and family (home repairs, cooking), business; politics;

weather; comics; and display and classified ads. The articles are selected and/

or written to focus on the interests and experiences of specially targeted

groups of students; they supply mathematically rich information to encour-

age students to construct/explore/apply especially important mathematical

models, rules or principles; and they are simplified to reduce reading

difficulties and to deemphasize mathematically irrelevant factors that con-

tribute to task difficulty. The topics follow guidelines specified in the NCTM's

Curriculum and Evaluation Standards for School Mathematics and focus on the

kinds of models described in chapter 2 of this book.

Test-sized problems are similar in size and format to textbook word

problems, but are more authentic and realistic. In particular, (i) they focus on

problem-solving situations that mightreasonably occur in the students' everyday

lives, (ii) they always involve more than a single level and type of correct answer,

(iii) pocket computers with graphing capabilities are available, and (iv) sense-

making phases of problem solving are emphasized (such as those that focus on

generating graphs or other mathematical descriptions of problem situations).

They are also intended to be easy and inexpensive to a"' .Minister and score.

Adequate attention is given to accountability issues, such as how to

minimize cheating, unfairness, and subjectivity in scoring. Students generally

work alone in monitored environments, entire problem sets can be completed

during single class sessions, and individual tasks can usually be completed in less

than two or three minutes. Also, to address concerns about the scope of topic

coverage, test-sized problem sets focus on large numbers of small problems.

Because of these constraints, the test-sized problems tend to focus on students'

abilities to use already constructed models and reasoning patterns rather than

requiring construction of new models or making significant modifications to

familiar models. That is, these problems tend to focus on modeling skills more
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than on higher-order understandings and processes; they tend to emphasize
understandings and abilities at the exploration and application phases of model
construction / exploration /application sequence.

Homework-sized problems have no time constraints, and a variety of
resources are available, including peers, adult consultants, library materials,
and tools such as computers and appropriate software. The goal is not so
much to test students as it is to provide activities in which students can
simultaneously learn and document what they are learning.

Like the test-sized problems, the homework-sized problems focus
on the exploration and application phases of the modeling sequences. But
because they contribute to instruction as well as to assessment, these
problems can occur more often than tests. Each problem set can focus on
a few larger problems, can involve more complex responses, and can focus
on deeper and higher-order objectives which are difficult to address within
artificially constrained test-like situations.

Compared to test-sized problems, homework-sized problems elicit
responses that are more complex and difficult to score. But because the
emphasis is on instruction and instructional decision making, teachers and
students are the primary consumers of the information generated. Thus rapid
turn-around times and meaningful feedbacks tend to be more important than
reliability and other criteria that are typically emphasized in high-stakes testing.
Also, because there is instructional value in both doing the problemsan d scoring
the responses, time and effort associated with these activities is notan intrusion
on instruction. In fact, students may be involved in the evaluation process so that
they understand why their answers are evaluated in particular ways, and it is
important for students to examine and compare alternative solutions to prob-
lems. Such activities can occur frequently; the results from individual sessions
become relatively low risk; and attention focuses on performance "traces" across
many situations and over long periods of time.

Project -sized problems usually require one or more hours for students
(or groups of students) to complete. Realistic resources and tools are
available, including reference books, relevan t datasources, computer-based
tools, and simulations. In many ways, the project-sized problems are similar
to the kind of activities emphasized in most portfolio-based assessment
projects; however, in the Newspaper project, these problems give special
attention to eliciting the fifteen to twenty models that are priorities for
students to address at a given grade level. Each project is also part ofa model
construction/exploration/application sequence, as described in chapter 2.
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For such projects, student results quite often consist of written
articles suitable for publication in our newspapers (in an inserted middle
page). The goal is to give students as many opportunities as possible to build
a portfolio of newspaper articles summarizing the results of the projects that
they have completed. Each project summary (or written article) is evaluated
by an editorial panel (a teacher working with a peer group of students).
Editorial panels assess the quality of each article, suggest needed revisions,
and decide which articles should be published. In this way, the articles in
students' portfolios become distilled and evaluated descriptions of the
projects that they have completed, and each student builds a resume that
can be viewed as an assessment "cover sheet" to their portfolio of projects.

One of the common criticisms of portfolio-based assessment
projects has been that they often produce more information than decision-
makers are able to use, with the result that the i trth information available is
ignored or reduced to simplistic generalizations that have the same negative
characteristics as single-number test scores. Therefore an important goal of
the Newspaper project is to reduce portfolio-based information to a man-
ageable form while still preserving richness and depth. For example,
students' newspaper-like summaries of their own projects (and students'
resumes and editorial panels) are straightforward attempts to get students
themselves involved in summarizing and evaluating the significance of their
own work. In as many ways as possible, responsibility is reflected back onto
students for documenting their own achievements, and for analyzing,
summarizing, and evaluating the quality for their own work (as long as these
practices do not compromise necessary assessment needs).

Each student is expected to complete at least twenty such projects
over the course of a school year, and they are expected to focus on the ten
to twenty models that the teachers consider the most important for a given
student to address in a particular course (or at a particular grade level). Most
projects are evaluated by local teachers working with students. Then a small
sample of these projects is reviewed by a district-wide panel of experts. These
blue ribbon panels (for example, state or school district representatives)
spot check the quality of the assessment process and consider exemplary
projects for special awards. One goal of this process is to gather assessment-
relevant information from a large number of sources, and a separate goal is
to increase the credibility of the conclusions that are reached.

As in real life, students receive credit for serving on editorial
panels. When students work in groups, a proposal has to be written stating
the responsibilities that each student will fulfill. One student in each group
has to serve as the "manager" who produces a report on the extent to which

414 413



414

Future Directions for Mathematics Assessment

each student fulfilled his or her role. This enables appropriate credit to be
given to each student for results thatare produced by a team. In other words,
the evaluation of students is done in the same way that businesses evaluate
employees based on their work. Students know what theyare signing up for
when they begin a project with a group, and teachers tutor designated
students, for example, when those responsible for data analysis need to
know how to use a particular software program.

Mathematics Olympics problems are similar to project-sized problems
that students have already solved, but they involve a new context, or new
data, or new questions based on the same data. Each Math Olympics lasts two
to three hours; during this time, each student completes three to five
problems. As in sports or performing arts competitions, participants know
in advance that they must perform a specified set of complex tasks, but the
tasks are sufficiently rich so that focusing on them (and knowing in advance
which ones would be emphasized) still represents a sufficiently broad, deep,
and complex sample of behavior to measure expertise in the field.

Both the Math Olympics and the project-sized problems help
students document complex capabilities in settings that are familiar, mean-
ingful, and interesting. But because the general nature of each Math
Olympics problem is known in advance, it is reasonable to expect students
to complete three to five of these complex problems during a two-hour
period (even though the problems on which they are based originally
required at least one hour per problem to complete). Essentially, the Math
Olympics problems are test-focused counterparts of our project-sized prob-
lems. Students work independently within a monitored environment, as in
traditional types of testing situations; however, the goal in a Math Olympics
is to be as straightforward as possible with students byallowing them to chose
the prototype problems that they want to use to demonstrate their knowl-
edge and capabilities. The restriction is that the problems must be chosen
from a specified collection of project-sized problems.

'Why emphasize problems that are based on math -rich newspapers?
One of the main reasons is that current mathematics textbooksand tests pay far
too little attention to problem solving in realistic situations. Thereforewe have
found that these math-rich newspapers provide a good way to help teachers
develop activities that fit their own students' interests and experiences. For
example, to help teachers develop activities that go beyond traditional types of
word problems, we begin by writing (or finding) a math-rich newspaper article
that involves a situation familiar and interesting to their students. Then, after the
newspaper article iswritten, all four levels of problems should bewritten for each
article. Several different projects and problems arc all based on the same
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newspaper article. When the articles themselves involve graphs and tables of
data, it is natural for students to have to sort out information which is relevant
or irrelevant. Problems naturally tend to involve both too much and/or not
enough information; some ofthe relevantinformation maybe based on patterns
or trends in the data; and a graph or table may over-simplify or distort the
underlying information it was intended to describe. Therefore, it is natural for
students to have to critically analyze the story, graph, or table and to focus on
deeper and higher-order understandings of the type emphasized in this book.

Why are four different levels of problems based on the same
newspaper articles? Since each serves some legitimate purpose, the goal is
to ensure that none of the purposes will be ignored or eliminated (Resnick
and Resnick, 1989). In many districts where teachers do not have the option
of ignoring traditional high-stakes standardized tests, successful assessment
programs must find ways to deal with the fact that teachers tend to teach to
the high-stakes test (Romberg, Zarinnia, and Williams, 1989). The four
levels of problems based on the same newspapers are as closely associated as
possible so that teachers will see that the sensible thing to do is to teach and
test skill-level knowledge and abilities in the context of larger, more realistic,
and more meaningful types of problein-solving situations.

Why is it useful for students' projects to result in written articles
similar to those in real newspapers? One reason is that, when students'
responses are though of as being whole articles, it is natural to emphasize
goals that consist of more than producing narrow types of explicitly re-
quested mathematical results. For example, it is natural to focus on justifying
or explaining answers, or finding useful ways to describe problem situations.
Also, because the written articles are condensed versions of entire projects
that students conducted, it is natural for students to think back about their
work and to summarize the most significant aspects of their results.

The 3 Project

When problems from the Newspaper project have been used with
students whose mathematical abilities have not been recognized or encour-
aged by traditional textbooks, teaching, or tests, their regular teachers
nearly always make a comment something like the following: "Several of my
best students haven't done very on these projects;, but several of my 'worst'
students have done very well." Follow-up interviews often verified such
observations. Among the students with histories of A's and good scores on
standardized tests, several nearly always turn out to have extremely shallow
understandings. As a result, they often have unusual difficulties with more
realistic problems in which quick-answer/one-rule solutions tend to be
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superficial or wrong. On the other hand, some students with histories of low
grades and poor test scores turn out to be exceptionally able on relatively
complex real-life problems. In a class of 80 such students, it is common to
find at least two or three who are exceptionally capable .. . as long as it is clear
to them that theywill be rewarded for trying to make sense of problems using
extensions of their own real- life knowledge and abilities.

In classrooms participating in the 3-1) project, we have found that,
when a students work on model-eliciting problems selected to fit their interests
and experiences, and when the tasks emphasize a broad range of abilities, a
majority of the students routinely invent (or extend, or refine) mathematical
ideas that are far more sophisticated than their teacherswould have guessed they
could be taught. Consider the following example, which involves the CD
throwing problem discussed in chapter 2 (problem 2).

When college-level mathematicians are given five or ten minutes to
work on this problem, they are likely to do the following: First, instead of thinking
about where the disk as a whole must be located in order to win the game, they
may notice that it is useful to think only about the center of the disk. As Figure
1 shows, for any given square on the gameboard, if the center of the disk lies
within the small shaded square, the player.is awinner. Therefore, for a given disk,
the probability of winning is equal to the ratio of two areasthe area of the
shaded square and the area of the squares on the gameboard.

Figure 1. A way to solve the CD throwing problem.

417

When middle schoolers have
at least an hour to work on the prob-
lem, a large percentage of them come
up with similar (though less formal)
solutions. For example, in Newark, New
Jersey, a group of three minority sev-
enth graders (who were generally re-
garded as "goof offs" by their teachers
and peers) solved the problem in the
following way.

Carl: I played a game like that
. . . at a carnival with my uncle.

Others: Yahl Me too.

[The boys began by drawing a
gameboard on a large sheet of pa-
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per. Then they cut out several cardboard disks and (for about fifteen
minutes) acted out the game. Because they cut out several disks thatwere not
all the same size, they noticed that the size of the disk made a difference.]

Jamal: Mine [small] is better. Yours never works [too large].

[Five minutes passed as the boys tried several more disks, gradually making
them smaller and smaller (so they could win more often).]

Bart: This would be easy if this thing [disk] was a dart.

Carl: Yah, but it's not a dart.

Bart: But what if it was. Look! Look at this. [Bart draws lots of
little squares inside the original gameboard squares as
shown in Figure 2.] I win if my dart lands in here [referring
to his disk as a dart, and pointing to the shaded squares in
the diagram in Figure 2]. And, I lose if the dart lands out
here [pointing to the unshaded squares]. I've got this many
chances to win, and this many to lose.

Jamal: Let's count 'em. [He counts, but not very carefully.]
There are 300 here [pointing to the unshaded squares].
And 100 here [pointing to the shaded squares].

Bart: So, I've got a 100 to 300 chance to win.

Carl: Yah, but what if you was Michael Jordan? He'd throw it
like this [down the center of one row of squares]. He
wouldn't throw it like this [from corner to corner].

1111 1111111111111 11
MINMOO

MINN
111

11111 11111111 11
0111 1111111111111111111

111111111111111111111
1111 1111

Jamal: That's right! And, Tina,
my sister, she's so dumb, she'd

miss the whole thing.

Figure 2.
A key insight in the
boys' solution.
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The solution to the CD throwing problem involves writing a letter
to the student council explaining how the game should be set up, and what
the chances would be of winning. Excerpts from the boys' letter are shown
in Figure 3 (with diagrams omitted).

Figure 3. Excerpts from the boys' iettec.
The boys' so-

Excerpts from the Boys' Letter
lution used pictures, in-

Dear Student Council, tuitive language, and
This is a good game. Don't make the squares on the board too big. "odds of winning" that
Make it about this size (a drawing is given). If your like Tina Jackson, were based on count-
your chances to lose are about 100 to 1. If your like Michael Jordan,

your chances are about 50 SO. Most people will be about 1 to 8. ing "small squares" (as
500 people will come. About half will be like Tina. They won't play suggested in the tran-
much. Only a few guys will be like Michael Jordan. They like to play a script diagram). The
lot. So, make them quit after they win once. There are about 20 of these

oyguys. They will all win sometime. Most people who play aren't like b s did an outstand-
Tina or Jordan. ingjobofidentifying the
About 200 will play. You should charge 1 dollar to play the game. relevant factorsthe

Sincerely,

But, Carl, and Jamal relative size of the disks
and the gameboard

squares, the expected skill levels of the players, the expected number of
customers at each skill level, and the cost of the game compared to the cost of
the disks. Also, ideas such as conditional probabilities were dearly recognized in
the pictures and counts thatwere made. On the other hand, the answer that the
university professors generated seemed to be more like the kind that teachers
would expect, but it was based on the assumption (which is generally false) that the
throws were random and, at the same time, still good enough to hit the gameboard.

After similar performances on a whole series of realistic problems, it
became obvious that Bart, Carl, and Jamal had much more potential in
mathematics than their school grades and test scores had suggested. We believe
that similarly talented youngsters will emerge in nearly every classroom that
allows a broad range of mathematical abilities an I working styles to be recog-
nized as productive, and that encourages students ZO make sense of the situation
using extensions of their own real-life knowledge and abilities.

Developing such activities depends heavily on the ability of local
teachers to create (or modify) activities that are exactly opposite to the
decontextualized problems in most standardized tests (where problems tend to
be screened out precisely because some group of students might have special
interests or experiences related to them). One of the main purposes of using
problems based on math-rich newspapers is to provide every student with as
many low-pressure, high-interest opportunities as pessible to demonstrate their
knowledge and capabilities within familiar and comfortable contexts. It is
important to offer every student many options.
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In the 3-D project, local teachers began with a library of problem
prototypes that needed to be localized to fit the interests of their students.
They found the following:

Problems that appeal to a general audience tend to be far less
successful than problems that focus on the current local inter-
ests of targeted groups of students. That is, even when exem-
plary generic problems are provided, local teachers had to
localize and particularize problems to match the interests and
experiences of their students.

A collection of exemplary problems is not enough. If innovative
types of problems are scored in traditional ways, few improve-
ments are likely to occur in instruction or assessment. There-
fore, new types of response interpretation procedures are also
needed; these procedures and criteria need to be understood
(and used) by local teachers, because the ultimate goal is for
these procedures and criteria to be communicated to students
(so that they can judge the quality of their own work).

Assessment-relevant information should be taken from multiple
sources-tests, students' extended projects, teachers' classroom
tests, interviews, and observations. All of these contexts must
reinforce a consistent view about the nature of authentic math-
ematics, the nature of problem solving in realistic situations, and
the nature of the abilities that contribute to success in realistic
situations.

Over all, in all of the areas critical to the success ofan innovative instruction/
assessment program, factors that have to do with teachers' own understand-
ings about the nature of mathematics, mathematics learning, and math-
ematics problem solving are found to be critically important.

The Continuously Developing Teachers Project

The Teachers project has three main objectives. The first is to
study the development of expert teachers' knowledge about the nature of
mathematics, problem solving, learning, and instruction. The second is to
create learning environments that do not take teachers away from important
instructional activities that is, learning environments that e .courage the
development of teachers' knowledge and competencies and that also
enable teachers to automatically document their achievements in a form
that is impressive to administrators. The third goal is for teachers to
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contribute exemplary activities to the library of problems being used in the
3-1) and Newspaper projects.

Recently, the National Con ncil ofTeachers of Mathematics produced
Professional Standards for TeachingMathematics (NCTM, 1991). These standards
for teaching (and teachers) have received the same kind of national endorse-
ment as the NCTM's earlier Curriculum and Evaluation Standards for School
Mathematics (NCTM, 1989), which focused on students in the K-12 curriculum.
However, ifthese teaching standards are thought of as describing the mathemat-
ics education community's current collective conception of an expert teacher,
it is clear that a great distance exists between (1) clear statements of instructional
objectives and (ii) operational definitions specifying criteria for measuring
acceptable levels of goal achievement

Although current understandings about the nature of excellent
teachers enable us to point to vignettes that exemplify excellence in
teaching (and to compare performances and point to directions that
represent improvement within a given vignette), we cannot give a measur-
able definition of an "excellent teacher." What is known, and what the
NCTM teaching standards make clear, is that expert teachers cannot be
characterized by simple lists of condition-action rules.

Being an outstanding teacher involves much more than being able to
flawlessly execute a list of teaching rules (behavioral objectives). In fact, rather
than teaching teachers facts and procedures, successful teacher development
programs generally focus on helping teachers to refine the ways they think about
(i) the nature of children's mathematical knowledge and its development, (ii)
the nature of situations in which mathematics is useful, and (iii) the diverse
nature of abilities that are productive in such situations.

In the area of assessment for teachers, alternatives to traditional tests
can be based on a number of models. For example, in athletics and in the arts,
one model is the Olympic gymnastics competitions in which a small number of
relatively complex events are prescribed. Expert judges are able to analyze and
assess these performances in a reliable manner; then a small number of
additional events are defined and executed by each participant. The vignettes
in the NCTM TeachingStandards provide guidelines that are relevant to both of
the preceding factors. But for future progress to be made, more specific
prototypes need to be developed and refined, and specific procedures and
criteria need to be developed to analyze and assess performances.

Another point that the NCTM teaching standards makes dear is that,
when assessing teachers, teaching, or programs, it is important to recognize that
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continuous growth is needed, even when high levels of excellence have been
achieved. There is no fixed and final state of expertise, nor of excellence. In
teaching, as in other fields, experts must always continue to develop. In sports,
when Michael Jordan develops new capabilities, his environment soon adapts to
him, so he must engage in another round of development. The situation is
similar in mathematics teaching. The ways that teachers think about mathemat-
ics, teaching, learning, and real-life problem solving strongly influence what
goes on in their classrooms; but what goes on in their classrooms also requires
teachers to develop more powerful and sophisticated understandings about
mathematics, teaching, and learning. The cycle is never-ending, and teachers
who fail to get better risk being not very good at all.

These principles should be taken into account in assessment pro-
grams for teachers. Just as in the assessment for K-I2 students, the assessment of
teaching should focus on activities that are meaningful and important in
their own right. These activities should enable teachers to both develop and
document their development without interrupting their instructional activi-
ties. And, as in assessments of students or of programs, assessment activities
for teachers are more than indicators of progress. They are interventions that
can induce either positive or negative changes in the systems and individuals
they describe. Therefore, care must be taken to ensure that these influences
are positive. This "progress- focused assessment" is aimed at documenting
progress in directions that are increasingly "better" without necessarily
beginning with a fixed and final definition of "best" and without labeling
individuals as good or poor relative to one another.

In the Teachers project, teachers collaboratively write performance
assessment problems for their students and analyze students' responses to such
items. Then, in weekly meetings over a ten-week period, these teachers produce
a library of useful problems and response analysis procedures while refining
their collective conceptions about the nature of good problems and good
response& During the process, many participants have developed new insights
about the nature of their discipline, of its applications, and of students'
understandings and capabilities. And the problerr c that were written and
responses thatwere analyzed produced a trace of the teachers' own progress that
was very impressive to school administrators.

SUMMARY

Enormous progress has been made in clarifying future-oriented
instructional objectives in mathematics. Now efforts are being made to
create new types of tests and test items consistent with these instructional
objectives. Yet, precisely because significant progress has been made at the
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level of individual problems and isolated objectives, mathematics education
researchers should take these next steps:

New instructional objectives should be translated into operational
definitions specifying acceptable levels of goal achievement,
going beyond behavioral objectives (and basic facts and skills)
to assess cognitive objectives (deeper and higher-order under-
standings and processes).

New types of problems (or authentic performance activities)
should be developed that directly involve authentic work
samples taken from activities that are important in themselves.

New examination formats should contribute to instruction by
providing many opportunities for students to demonstrate their
knowledge and abilities in contexts that are meaningful,
realistic, and interesting.

New response interpretation procedures must deal with activities in
which several levels and types of correct answers are possible.

New data analysis models should deal with patterns of informa-
tion from multiple sources and be capable of displaying these
patterns in a variety of forms to match the needs of various
decision makers and decision-making issues.

New reports must be n-dimensional, interactive, and graphics-based,
and display the strengths and needs of individual students.

New objectives framewonits must keep pace with continuing ad-
vances in technology, cognitive science, and mathematics, and
with increasing educational needs for citizens and workers in a
technology-based society.

In addition to the traditional bottom-up approaches to assessment
(from objectives to items to tests to reports), this book has also emphasized the
importance of a top-down approach that begins by determining the priority
decision-making issues and the kinds of reports, information, and data sources
(testing formats, item types, scoring procedures, aggregation technique. )
needed to inform these decisions. And most importantly, we have stressed the
special attention that should be given to teacher education and to issues rela red
to equity and the continuing influence of technology in our society.
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If mathematics educators neglect issues beyond the level of indi-
vidual items and isolated objectives, they may find themselves in a situation
sireiar to that of the peasant in the fairy tale who was granted three wishes
by the genie in the magic bottle. They will get what they asked for, but not
what they wanted.
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The Intellectual
Prices of Secrecy in
Mathematics
Assessment

Judah I.. Schwartz

Editors' Note: So far in this book, the authors have
focused on examples and descriptions intended to dart substantive issues influenc-
ing the nature of appropriate alternatives to traditional forms of assessment. These
issues have dealt with assumptions about the nature of mathematics, of real- life
problem solving, or of exemplary mathematics learning and instruction. However, the
instructional impact of assessment is also strongly influenced by policy decisions that
seem to have nothing to do with assumptions about mathematics,problem solving, or
teaching and learning. For example, this chapter summarizes conclusions that were
reached by a number of leading scholars and educators about the impact of secrecy, as
reported in The Social, Intellectual, and Psychological Costs of Current
Assessment Practices (Schwartz and Viator, 1990).

This project, funded by the Ford Foundation, identified a number of policy
issues that tend to have particularly negative effects on assessment reform, and among
these issues, secrecy in assessment emerged as particularly important. Other issues that
were given special attention included equity (Hilliard, Willie), legal and economic
issues (Heubert, Barryman), issues in science education and language arts education
(Raizen, Chomsky), and issues involving the development ofitu7ividual students and
teachers (Wiggins, Stage, Perrone).

Even though this book has examined assessment mainly from the perspec-
tive of people whose main areas of expertise have to do with learning and instruction
in mathematics, it is fitting that we close by considering ways that substantive issues
in mathematics instruction influence (and are influenced by) a larger context which
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included policy issues, social issues, and instruction in other curriculum areassuds
as than that focus on reading, writing, or the sciences.

INTRODUCTION

My purpose in writing this chapter is to describe what I feel are the
several prices we as a society pay for using nonpublicly available instruments
for the assessment of the effectiveness of mathematics learning and teaching
in our schools. Our society is profoundly undereducated and incapacitated
in dealing with public policy matters that have quantitative dimensions, that
is, all public policy. Our school systems either do not have the freedom or
do not believe they have the freedom to challenge students to think
inventively and creatively about mathematics. Finally, teachers and parents
feel torn between the desire to educate youngsters richly and imaginatively
and the need to prepare them to demonstrate their competence on exami-
nations that are deeply flawed.

All the ills of the present methods of accountability assessment in
mathematics are not due to the nonpublic nature of the instruments, but I
believe that many of them are. Moreover, I believe that many of the ills that
do not result directly from the secrecy of the instruments are nonetheless
indirect consequences of the secrecy and are substantially exacerbated by it.
Finally, because the field of assessment has seen more than its share of
complaints about the ills and evils of educational testing, I shall sketch what
I believe to be a viable and pragmatic alternative approach to assessment
that does not seem to be flawed in the ways that our present methods of
assessment of mathematics teaching and learning are.

HOLDING THE SYSTEM ACCOUNTABLE: HOW WE NOW DO IT?

Most state departments of education and local school boards
depend heavily on the results of standardized multiple choice tests to decide
how well their systems are educating students mathematically. Even the
federal Department of Education must use of the results of such instru-
ments. In fact, much of the current public concern about U.S. students'
mathematical incapacity is due to reports in the press and electronic media
about poor performance on such instruments.

A remarkable feature of the reports that reach the public's atten-
tion is that the public cannot usually see the questions that are asked. The
media do not publish the questions; rather, they publish reports about
students' performance on the questions. In fact, the media are not able to
examine the test instruments either. To some extent, the media are to blame
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for publishing reports based on instruments they are not allowed to exam-
ine, but one must not be too hasty in criticizing the media. The fact is that
the general public cannot purchase or even see copies of the tests that are
used to report to the public about their schools. Instead, the public is simply
told some sort of aggregated score about performance on questions they are
not permitted to evaluate themselves. The public also hasno access to the
scoring criteria and procedures, nor to the methods of aggregating perfor-
mances on subtests into a single or small group of numbers.'

Can we be well served by such procedures? Perhaps, if testing
companies produce tests that are free oferroneous questions and if they
grade them in error-free ways. We raise the issue of error in the spirit of the
ancient adage, "this above alldo no damage." Can the test makers be
trusted to introduce no mistaken questions or answers, that is, to do no
damage?

Most commercial manufacturers of standardized tests are well
respected organizations with long traditions of involvement in education.
Many are also publishers of text materials. It would seem only reasonable to
assume that they can be trusted to design error-free tests. Certainly they have
many subject matter experts on staff; they consult with others in putting
together the tests, and with still others who review the tests before they are
used.

I do not question the integrity or good intentions of the test
manufacturers, but I must point out that in every field of intellectual
endeavor there is a publicly available literature in which findings are
reported, discussed, and debated. Results that are flawed are, by virtue of
open discussion, ultimately exposed and discarded. No journal in the
natural sciences, for instance, would accept for publication an article that
contained results of measurements made with instruments whose internal
structure could not be examined, debated, and evaluated.

The situation with respect to assessment in education does not
seem to be parallel. Tests are made and administered without the scrutiny
of the community that ultimately depends on the results that the tests report.
Occasionally detected errors appearon the front pages of the New York Times
in stories about the ingenious high school student who slew the Princeton
dragon. Do we know how many errors go undetected? Example 1 shows a
question from a recent test for high school students that was designed by
probably the most prominent American testing organization. The answer
the testing organization's experts thoughtwas correct was, in fact, incorrect
The question and the five preset choices for the answer, including the
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purportedly "correct" answer, had all been extensively reviewed by the
organization's internal experts and external consultants.

Example 1.
Two identical coins are placed flat on a table and in contact with

one another. One of the coins is held still while the other is rolled without
slipping all the way around the circumference of the stationary coin until it
returns to its original position. The student is asked how many turns the
rolling coin has made and is offered a choice of several answers.

Readers who think they have an answer to the problem should
actually try the experiment. This advice would have served the test
designers well had they heeded it.

Beyond the price of error in questions and answers, there are
other costs to the public in using assessment instruments whose contents
they cannot examine and debate. The prices, in my view, are sufficiently
high that even if the error problem were otherwise resolved, I would argue
there is still adequate basis for insisting on an end to reliance on nonpublic
instruments. Stated briefly, precluding error is absolutely necessary and
absolutely insufficient.

A continuing, and proper, concern of every teacher as well as every
curriculum designer is the level and tone of the instructional materials that
they write and present to the students. These materials are influenced by
many sources, including the assessment instruments that are used tojudge
how well the educational system is functioning. This is as it should be. But
if the instructional materials are influenced by the assessment instruments,
then it behooves us to see to it that this influence is as salutary as possible.
And not only level and tone, but taste and judgment are also important. The
level can be demanding and the tone good, but the questions may be of little
use in helping students develop a sense of, or taste for (orjudgment in),
mathematics.

Although level and tone are logically distinct from taste and
judgment, it is hard to examine questions without attending to both sets of
issues. We shall keep both sets of notions in mind as we turn our attention
to an examination of the kinds of questions we now use to build our
mathematical assessment instruments.

THE TEMPTATION OF PRE-ANSWERED TESTS

If a society has a tradition of using examinations that are secret, it
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is difficult to resist the temptation to use multiple-choice tests that can be
graded automatically. In principle, at least, widespread testing can be done
often and economically. Such tests are feasible only if their secrecy can be
maintained, since this testing technology requires very large numbers of
questions that are expensive and difficult to generate. The source of this
difficulty and expense is the need for establishing the validity and reliability
of the questions. If, however, the questions can be maintained in item banks
that are not made public, then they can be reused, and the cost of generating
them can be amortized over many administrations.

Whether the development of the technology of multiple-choice,
machine - storable tests was the cause of, rather than the result of, the
imposition of secrecy on the assessment process is probably not important,
although it is probably true that the need to keep a test secret even after its
administration is a consequence of the economics of standardized testing.
For the present analysis, it matters little which is cause and which is effect.
Standardized testing and secrecy of items before and after administration
currently entail each other. Even though we all know well the form, flavor,
and feel of multiple-choice tests, the economics of large scale standardized
testing dictates that, except for selected sample items, the actual content of
such tests not be made available for public discussion and debate. I shall try
to show that not being able to see all the items that are used to test our
children has led us to accept mathematics texts and teaching that do a
profound disservice to us individually and as a society.

Recently I spoke with an official of the Dutch Ministry of Educa-
tion who was concerned with assessment of mathematics at the secondary
level. He told me that the test instruments they used consisted of about a
dozen extended problems, each of which required the student to under-
stand a problem in context, formulate an approach to the problem, use that
approach to design a procedure for solving the problem, carry out that
solution procedure, and finally, explore the reasonability of the result
obtained. Following their administration, the examinations are published
and enter the available body of curricular and instructional materials.

Example 2 shows the sort of question I mean, taken from the 1989
end of secondary school examination for students who will not pursue
further studies in science or mathematics. The question in Example 2 is
reasonably structured and does not present a studentwith an impossibly wide
universe of circumstances to analyze. On the other hand, it does demand that
students formulate and quantify such constructs as risk, advantage, and
disadvantage; it also requires them to devise a procedure for calculating
probabilities and expected outcomes and to carry out those calculations.
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Example 2.
The grapes in a certain vineyard ate ready to be harvested. The

taste of the grapes, and the wine to be made from them, is likely to be better
if they are allowed to stay on the vine somewhat longer. On the other hand,
the grapes could be badly damaged by heavy rains. The vineyard owner
makes two analyses of the situatk,n.

I. Harvest the grapes immediately:
The quality of the grapes is reasonable.

Hall the harvest can be sold for direct consumption at a price
of $2.00/kilo. The other half can only be used for processing
into grape juice. These grapes would bring in $1.30 a kilo.

In this harvesting scheme there is limited risk.

II. Harvest the grapes in two weeks time:

The quality of the grapes is now "good."

The entire harvest can be sold for $2.30/kilo. This harvesting
scheme involves a greater risk: If it rains on more than two
days in the next two weeks, the entire crop of grapes will only
be usable for processing into grape juice at $1.30/kilo.

The vineyard owner can count on a crop of 12,000 kilo.

The student is asked to consider how the risk involved in pursuing
strategy II compared to the certainty of strategy I, and to quantify the
potential advantage and disadvantage of strategy II.

Further, the student is asked to calculate the likelihood of rain on
two or more days in the intervening two week period given the datum that
the likelihood of rain on any single day In that period is -15. Initially, the
student is asked to calculate expected outcomes for each of the strategies,
to choose a strategy, and to present a justification for the choice.

How does the publication of these examinations affect the intel-
lectual quality of what is taught and learned? Do math teachers in Holland
teach to the test? In some sense they do, as do teachers the world over. By
virtue of .e fact that the examinations in Holland contain problems that are
rich in structure and that demand that students perform a wide range of
mathematical actions, instruction in mathematics tends to emphasize such
problems and make such demands on students.

In contrast, in the United States we tend to rely on examinations
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th t make extensive, if not exclusive, use of the multiple choice format. What
are the effects of using such tests on the intellectual quality of what is taught
and learned? In answering this question, it is important at the outset to note
that a multiple-choice item does not ask students to construct a solution to
a problem or an answer to a question. Rather, it asks them to recognize a
solution or an answer. Recognition and production are fundamentally
different abilitiesa fact that is well recognized by people with a reading
knowledge of a foreign language who find themselves in a restaurant or a
shop in a country in which that language is spoken. Do we really want to say
to students that being able to recognize an answer to a question is a sufficient
level of expertise to attain?

There is a second, and in my view more destructive, intellectual
consequence of using multiple-choice tests for serious assessment purposes.
The implicit message conveyed to students is that all issues worth discussing
and examining can be reduced to a selection among four or five alternatives.
This can be presumed to be true no matter how much subtlety or nuance
may be involved. Asa result, I believe, we have come to be a public that thinks
mathematics (and science and history and much else) is an intellectual
domain in which in which questions necessarily have answers, and that these
answers can be briefly stated. There is also a corollary to this last point. It is
that all questions worth asking have correct answers; and one implication of
this corollary is that correct answers are unique.

Let us return to the issue of the influence of the assessment
instruments used on the level and tone of our instructional materials. If our
instruments demand that students recognize answers rather than construct
solutions, we will teach students tricks to recognize answers rather than
strategies for constructing solutions. If we use instruments that suppress
subtlety and nuance, it should not surprise us that our students' analyses
tend to be superficial and simplistic.2

These consequences are particularly painful for our society. We
must have people who can recognize the validity of a quantitative argument
offered in support of an important public policy matter, but we need more
than that. We need a society of people who are as nimble using quantitative
tools of analysis appropriately as they are using the vastly subtler qualitative
tools of language. We properly demand, with respect to language, that the
people we educate be willing and able to use their production skills of
speaking and writing as well as their recognition skills of listening and
reading. We can afford no less in mathematics. Assessment, and, by implica-
tion, instruction, that asks our students to display only recognition skills and
not production skills does not serve us well.
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There is yet another painful consequence of current mathematics
assessment techniques. Mathematics, and its use in analyzing the quantita-
tive dimensions of the world about us, is not a "right or wrong" kind of
enterprise. To be sure, it is possible to ask questions for which there are
single correct answers. But one can do this in any domain. And in many
domains, we have come to understand that such questions are fundamen-
tally trivial. History is more than dates. Literature is more than names of
famous authors. Yet for the most part we haven't gotten beyond this
abysmally low level of sophistication in mathematics.

It is relatively easy to see how such a view of mathematics would be
appropriate to the application of mathematics to j udgmen tal situations. For
example, one could pose a problem of the following sort: "Design the largest
doghouse you can using a single 4" x 8" sheet of plywood." Butmany people
will argue that students must first learn the "basics" in mathematics, and that
such matters as number facts, multiplication tables, and the like are not
really given to interpretation. While it is true that the product of 6 and 9 has
only one value, it does not follow that the onlyway to ascertain whether or
not someone knows the basics is to ask questions of the form, "What is the
product of 6 and 9?"

For those readerswhose education cheated them of the possibility
of thinking about mathematics in this way, Examples 3 and 4 are test
questions that deal with the same topic, subtraction of whole numbers. It is
evident that these two problems assess the same skill. The first one has
exactly one correct answer, while the second has many correct answers (and
even more incorrect ones). Moreover, the second question offers the
possibility of solving the problem by invoking a conceptual understanding
of the meaning of subtraction that is independent of the mechanical
mastery of the computational procedure. This is important because many
computational procedures are learned by rote withouta glimmer of concep-
tual understanding on the part of the student (and often of the teacher)

Example 3.

What is the result of the following subtraction?

7102

a) 3493 b) 3507 c) 3697 d) 3617 e) don't know
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Example 4.

Here are two subtraction problems. Make up a subtraction
problem whose answer lies between the answers to the two problems that

are given.

7102 6241
4595 3976

The general proposition here is that it is possible to pose questions
in mathematics that allow for creativity and invention. Moreover, it is
possible to do this even for those topics that are generally believed to be the
least open to variation. Clearly teachers and students who know that
performance will be assessed with such items will engage the subject more
richly and deeply than they do now. Further, it is clear thatproblems of this
sort can be made public with no loss of usefulness.

SECRECY: BEFORE AND/OR AFTER THE FACT

To use assessment to influence the teaching and learning of
mathematics in a constructive way, I believe that at least two conditions must
prevail. First, the assessment instruments must not contradict, eitherexplic-
itly or implicitly, our pedagogic goals. That is, they must not be mathemati-
cally wrong in those areas of mathematics where we really care about
students being mathematically right. They must not be simplistic where we
want students to discern and deal with complexity.They must not convey, as
they do now, an image of mathematics that is at odds with the nature of the
discipline.

The second condition for using assessment in a constructive way
is that the questions must be (at a minimum) mathematically interesting. I
am willing to take as an educational axiom the proposition that questions
that have more than one correct answer are inherently more interesting
than those that have only single correct answers. Moreover, I believe that any
question that has a single right answer can be replaced by a question with a
set of correct answers that probes the same mathematical skills, and that at
the same time is more interesting and affords greater insight into the
diversity of strategies that students employ in solving problems.

Suppose we succeed in altering the nature of the assessment
instruments we use so that these two conditions are met. How might we then
best make use of the opportunity to influence intellectuality and teaching
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and learning in the schools? It seems clear that the possible salutary
intellectual effects of high-quality assessment items on teaching and learn-
ing are maximized by making them widely and easily available. In this way a
wide variety of interested audiences, such as teachers, students, parents,
school boards, state authorities, colleges and universities, and industrial and
commercial organizations interested in hiring young people can all readily
see what is expected. Moreover, widespread public availability of assessment
instruments makes possible a continuing public discussion of standards by
these various interested audiences, a process that can only benefit the
educational system.

So far I have been talking about publication of tests after they have
been administered. If the tests are good ones, then publishing them can
have desirable effects on what is taught and learned in schools. However,
dissemination of the tests after administration leaves unanswered the prob-
lem of how to avoid errors in the formulation of problems and their
solutions. There is little doubt that errors will, in time, be detected after the
tests are published. However, that is often too late. Damage may have already
been done.

In what follows I suggest a procedure that addresses the problem
of error while preserving the potentially useful effects of assessment on
instruction. Suppose that past examinations are published for enough time
so that a large collection of very good problems become available. Clearly,
at some point the collection becomes large enough so that problems that
have been used before can be used once again. Note that if we do begin to
do this, we move from after-the-fact open examinations to before-the-fact
open examinations. Is this workable?

I believe that the widespread availability of small microcomputers
and easily manipulated database software for these machines make possible
new approaches to the filing, indexing, and retrieving of previously used
problems. Publicly available, richly indexed databases of problems and
projects can have the kinds of salutary effects on intellectuality discussed
above. They also provide the opportunity for scrutiny, discussion, and
debate about the quality and correctness of questions and answers. In
addition, from a methodological perspective, they alter completely the
traditional psychometric questions of reliability and validity.

These new approaches offer the promise of an openness that we
have not seen before in education. While such openness is almost certainly
not, in and of itself, sufficient to repair the ills of mathematics education in
our country, at least it establishes some necessary conditions for reform.
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NOTES AND REFERENCES

1. The procedure of making examinations publicly available after
administration is not unknown in the United States. The New York State
Regents examinations are regularly published in theirentirety after they are
administered. Generations of high school students and teachers in New
York have used these published tests as curricular materials. On the other
hand, there are truth-in-testing laws in several states that require that testing
companies make available to test-takers, fora fee, the questions and answers
on the test they have taken. These laws have not produced an avalanche of
interested test-takers eager to see what the testers were and were not asking
and what they thought the answers were.l believe that it would be wrong to
infer from this experience that the publication, after administration, of a
test is of little value. Contrast this case with the Regents' examinations cited
above.

2. The most notorious of the rote procedures that are ill understood
by students (and teachers) are long division and division of fractions. The
computation of logarithms and the procedure for extracting square roots,
now almost never taught, were rarely understood.

3. A way to solve this problem without actually carrying out the
subtractions is to construct a string of equivalent subtractions. For example:
7102 - 4595; 6102 - 3595; 6202 - 3695; 6242 - 3735; 6241 - 3734; and so on.
Thus, the first of the original problems, 7102 - 4595, is equivalent to the
problem 6241 - 3734. This is to be compared to the second of the original
problems, 6241 - 3976. Even ifwe limit ourselves to integers, there are more
than two hundred problems of the form 6241 - (some number) that can be
made up to correctly answer the question. Moreover, a modest amount of
reflection will probably persuade the reader that there are an infinite
number of incorrect answers to the problem as well.

Schwartz, J.L., and Viator, R.A. (Eds.) (1990). The social, intellectual, and psychologi-
cal costs of current assessment practices. Cambridge, MA: Educational Technology
Center, Harvard Graduate School of Education.
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via multiple choice tests, 286, 322-323

Cognitive models. Sat also Representational
systems

assessment and, 11-12, 21-22, 31, 63-64, 67-
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326
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role of, 21-24, 37-38
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internal models in, 21-22, 60
research models in, 297
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Geometry Supposer programs, 89-91,

100-104
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357, 372-375
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409-410, 419-421
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basic vs. problem-solving skills in, 20-21
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230, 234

E

Electromyography, 299
Elementary education
arithmetic, 27-30
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Essay questions, 212
Ethnographic research, 400-401
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assessing understanding of, via interview,

278-280
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250-252
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student interaction developing representa-

tions, case example, 253-258

H

Heuristics, 72, 85, 215-216, 222-223, 224-225,
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in, 353
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solving processes; Sample problems
cognitive objectives in, 344, 422
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100.104
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220-230
Interaction
author-reader, 224
between students, 198-199
learning as sodal activity, 237
student-student, developing representa-

dons, 253-258
Interaction

teacher-student, studying fractions, 250-252
International Congress on Mathematical
Education, 189-190
Interviewing, structured, 273-280, 287
:rem response theory, 293, 294
models based on, 298, 449

J

Job skills
authentic performance activities and, 39
higher-order understanding as, 30
in information age, 23-24
research needed, 406
technological advancement and, 401-402

L

Language
changing level of, in mathematics, 231-233
competency, 84
of mathematics, 22
technical, role of, 30

Learning progress maps
cognitive objectives in, 352
combining conceptual systems In, 353-354
constructing, 351-355, 359-361
creating n-dimensional student profiles,

355-357
dynamic nature of, 354-355
graphic profiling in, 356-357
interactive capabilities of, 357-359
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basic skills vs., 20-21
cognitive representation systems in, 83-86,
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grading conjecture In, 108-110
heuristic concepts in, 222-225, 230-231, 324
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Proportional reasoning
assessing, 328-334
assessing multiple levels of response,

339-341
assessment framework for, 328-334
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misinterpreting student's, case example,
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ethnographic research and, 400-401
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research issues related to, 401-404
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395-398
Tests. Sat also Assessment, Scoring

assessment reforms and, 7, 66-67
behavioral objectives in, 346
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