DOCUMENT RESUME

ED 351 872 FL 020 748

AUTHOR Leung, Kei Wai; Maciejewski, Anthony A.

TITLE Technical Specifications of the Nihongo Tutorial
System.

INSTITUTION Purdue Univ., West Lafayette, IN. School of

SPONS AGENCY

Electrical Engineering.
National Science Foundation, Washington, D.C.

REPORT NO TR-EE-90-27

PUB DATE Apr 90

CONTRACT NSF-INT-8818039

NOTE 69p.; For related document, see FL 020 747.

PUB TYPE Reports — Descriptive (141)

EDRS PRICE MFO01/PC03 Plus Postage.

DESCRIPTORS *Computer Assisted Instruction; *Japanese; *Languages
for Special Purposes; *Programing; Reading
Comprehension; Second Language Instruction; Sentence
Structure; Techniczl Writing; Uncommonly Taught
Languages; *Vocabulary Development

IDENTIFIERS *Nihongo Tutorial System

ABSTRACT

The Nihongo tutorial system is an intelligent
tutorial system designed to use a computer to assist scientists and
engineers in developing reading competence in technical Japanese. It
consists of three applications: the Nihongo Tutor, which provides
useful information about an article (translation, syntax,
pronunciation) to help understand the text of a personalized lesson,
and records student performance; the Parse Tree Editor, used to
prepare technical articles for the tutorial system; and the
Administrator, which uses student data to assign an article that is
technically and pedagogically appropriate. The program integrates the
three functions. This report details the technical specifications for
system implementation, including both the data structures and
algorithms used. The section on the Administrator looks at the
attributes of the system files, technical (discipline) fields
included, user records, user article selection, and user database.
Information on the Nihongo Tutor covers text data structures, student
database management, and electronic dictionaries. An explanation of
the Parse Tree Editor offers specifics on the four stages of parsing:
segmentation, syntax, semantics, and mapping. Some screens are used
for illustration. (MSE)

% 73k ol ol de e oo e oo o Sl e e Sle o e Yo e Seve sl e v e v v o e Je sk e ek e e e e st v e e e ke e Sk e e e e e de e ek e ek ok e ek ke sk ok

% Reproductions supplied by EDRS are the best that can be made *

¥ from the original document. *
Jedk dek ok Fededd dekedededdedk dededede de ok dedkdk s s s s e e e ek A e A e e o e et Ao e oo e o e e e ke e e

Technical Specifications of the
Nihongo Tutorial System

Ke1 Wai Leung
Anthony A. Maciejewski

U.S. DEPARTMENT OF EDUCATION
Ottice of Educational Research and Improvement
EDUCATIONAL RESOURCES INFORMATION

CENTER (ERIC)
@us document has been reproduced as
received from the person or organization
ouginating 1t

O Minor changes have been made 10 tmprove
reproduchion quality

o Points of view or opintons Stated inthis docu:

TR-EE 90-27
April 1990

"F’ER.MISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

—&X;LL%%’

TO THE EDUCATIONAL RES
OURCES
INFORMATION CENTER (ERIC)."

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

o BEST COPY AVAILABLE

TECHNICAL SPECIFICATIONS OF THE
NIHONGO TUTORIAL SYSTEM

Kei Wai Leung

Anthony A. Maciejewski

School of Electrical Engineering
Purdue University
West Lafayette, IN 47907

TR-EE 90-27
April 1990

This material is based upon work supported by the National Science Foundation
under Grant No. INT-8818039. The Government has certain rights in this material.

TABLE OF CONTENTS

Page

CHAPTER I INTRODUCTION ottt i 1
CHAPTER II THE ADMINISTRATOR cooorie i 2
2.1 System Files ..oouiiiiiiiiiii i i e 3

2.2 Technical Fields ...ttt e, 5

2.3 User Record oottt e e e e 9

2.4 User Selection ...ttt et e e e, 13

2.5 User Database ...ovviiiiniiiiiet ettt e 15
CHAPTER III THE NIHONGO TUTOR oot 17
3.1 Text Data Structuresoiiiiiiiiii i, 18

3.2 Student Database Managementccioiiiiaiinn.... 37

3.3 Electronic Dictionariesovevrnirmnerire e, 46
CHAPTER IV THE PARSE TREE EDITOR ..o, 51
4.1 Segmentation Stageiitiiiitit i e 52

4.2 Syntactic Stage ...t 55

4.3 Semantic Stage ...ttt 60

4.4 Mapping Stage ..ottt e 61

CHAPTER I - INTRODUCTION

The Nihongo tutorial system presented here is an intelligent
tutorial system designed to use a computer to assist scientists and
engineers in developing reading competence in technical Japanese. It
is comprised of three applications: the Nihongo Tutor, the Parse Tree
Editor and the Administrator. The Nihongo Tutor provides useful
information about an article such as an English translation, syntax,
and pronunciation to help the student to comprehend the text of a
personalized lesson. It also records the student's performance into
his personal database which reflects his current Japan-se language
proficiency. The Administrator uses the personal data of a student to
assign an article that is related to his technical interests and at his
current level of Japanese competence. The Parse Tree Editor is used
to prepare technical articles for the tutorial system by incorporating
semantic, syntactic, phonetic, and morphological information into the
parse tree of a sentence in each article. This report presents the
technical details of the implementation of the Nihongo Tutorial
System including both the data structures and algorithms employed.

CHAPTER II - THE ADMINISTRATOR

The function of the Administrator is to perform database
rmanagement for the tutorial system. It receives information from the
tutor about the performance of the student and selects an
appropriate article for his next lesson based on his current Japanese
reading competence. The student’s personal database keeps a record
of the Japanese words, readings, and grammatical structures that the
student has currently mastered. By comparing this information with
the content of a potential instructional article the Administrator can
assign an article that has a desirable amount of new material. Not
only does this preclude unnecessary repetition of already mastered
materials but it also prohibits the introduction of a large amount of
material that the student, at his current level, cannot handle at one
time. The Administrator also attempts to provide articies which
conform to the student’s technical area of interest.

In addition to handling the student personal database, the
Administrator also assists in system management and development.
It groups all currently available articies into categories so that the
student can be assigned course materials directly related to his
profession and interest. It also saves important information about
the student, such as his area of interest, his last access time of the
Nihongo Tutor, etc, which aids the Administrator in selecting articles
for him.

C.

2.1 System Files

There are several important files that the Administrator
maintains for system management. These files are called:

(a) Technical Fields
(b) User Record
(c) User Selection
(d) User Database

The first file records all the currently available articles
categorized into different technical areas. The second one keeps
personal inforination for each individual student, such as his area of
interest, the article name of his last lesson, etc. The third one saves
the article that should be assigned to a student as the next lesson.
The last one stores information about the student’s level of Japanese

language proficiency. The attributes of the records stored in these
files are presented in table 1.

~3

4
Table 1. The Attributes of the Database System Files
Record Attributes
type
Technical || Technical) . Start/End Child Parent
File title . i
field area* index node list node
User User Technical Article |Last access |Last access
record name* area area time file
User User 3
. File name
selection name*
User User Well-known |Unfamiliar
database name* Area Area

* the key of the record

co

2.2 Technical Fields

The Administrator attempts to assign articles that match the
technical area of interest of the student. Since there is a great variety
of different interests among the students, the list of articles must
include topics like physical sciences, engineering, computer sciences,
etc. These topics can further be divided into sub-topics if there is a
demand for more specific technical areas. This suggests the usage of
a generalized tree structure to maintain all the technical fields

available. Figure 1 shows the tree configuration of the technical
fields.

For each topic (or sub-topic), there will be a number of articles
accestible to the student for instruction. Thus, each one of them is
assigned a generic file name together with a unique file index. The
first and last indices reflect how many articles are available in a
specific area. New topics are added to the article list by inserting
them into the tree. Any article can be appended to or removed from
a technical area by updating the file indices of that area.

The records in the “Technical Fields” file are stored in a string
list format (see figure 2). All the records are kept in sequence so that
they can be identified by their position in the file. The child node list
of a topic includes the sub-topics under it. The list is terminated by a
sentinel value of “-1”. If there is only the sentinel value, the child
node list is empty and the topic is then one of the leaf nodes in the
tree. The parent of a sub-topic represents a more general area that
this sub-topic can be categorized under. If an area is in the top level
of the tree with no parent topic, its parent node identification
number will be set to zero. In figure 2, the first record physics is a
top level area with two sub-topics: kineucs and kinematics which
have two and three articles available respectively. If there is one
more article to be introduced into the area physics, its ending file
index has to be changed from 1 to 2. Initially, only those topics with
no parents are displayed when a student starts searching through

Technical Areas

Engineering Physics o o e Computer
Kinetics Kinematics e o o e o Information °
Management

THIREE

Figure 1. A Tree Representation of the Technical Fields

Physics; Physics; 1 1;23-1;0"1
Kinematics; Kinematics; 1 2;-1;1" 2
Kinetics, Kinetics; 1 3;-1,1" -1

® @ ®@ ®6 ®

Legends:

Technical Area

File Title

Starting and Ending File Indices
Child Node List

Parent Node

String Number

@O

Figure 2. The Format of the Technical Fields File

the tree. If the sub-topics of an area are requested, only those in its
child node list are shown. On the other hand, when a parent topic is
requested, only one area (the parent area) is displayed.

by
O

2.3 User Record

The Administrator must keep personal information of the
student in the “User Record” file to select articles that are related to
his profession and technical area of interest. If some articles are
available in this area, an appropriate one will be assigned to him
based on his level of Japanese proficiency level. Normally, the
Administrator automatically searches through the database to find
articles that match the student’s technical area. If there are no such
articles available, however, the student can manually choose an
article area that is closest to his technical area.

The records of the “User Record” file are stored in a list format
(see figure 3). Each record can be retrieved by using the Munger
Function (available from the Macintosh operating system) to search
for a particular key which is the name of the student. Once the name
is found, the entire record is retrieved and update operations are
performed with it. Any changes are then saved into the “User
Record” file. For example, in figure 3, if the student finishes reading
the article “Kineticsl” in the last lesson and proceeds to study the
next article “Kinetics2”, the last field of the record will be changed to
“Kinetics2” and the last access time is modified.

Since the Administrator keeps the technical area and the article
area as separated fields, the demand of the student for new technical
areas can be reflected to the supervisor. This provides some
feedback from the student as to what he wants to be included into
the system. The last access time reveals to the student when he last
used the tutor to study an article. The last file access shows the
previous lesson that the student may want to review if he does not
have access to the tutor for a long period of time.

Each time the Administrator attempts to assign a new article
for a student the information in his user record is displayed. Then his
personal database is retrieved and comparcd with the contents of the

o
)

10

Nelson Leung"Kinetics"Kinetics"-1579190216"Kinetics1"
® @ ® @ ®

Legends:

® User Name

® Technical Area
® Article Arca

@ Last Access Time
® Last Access File

Figure 3. The Format of the User Record File

11

next lesson. In particular, the lexemes (i.e. all leaf nodes in the parse
trees of the sentences) stored in the file containing the translation
information of the article are compared with the student database in
order to give a rough estimation of how much new material will be
presented to him in this article (see figure 4).

The task of article selection for a student is carried out
automatically by the Administrator based on his current Japanese
competence. However, if the student is not satisfied with the article
assigned to him, he can manually override the selection and invoke
comparisons of his database with other articles in the area until he
finds one that is most appropriate. Once he accepts an assignment,
his user record will be updated with the new access file name and
new access time. In case the student wants to study an article that is
not in his technical area of interest, he will be assigned with one
starting with the first file index.

12

User information: NelsonLeung

Technical Area Kinetics
Article Area Kinetics
Last File of Access Kinetics1
Last Time of Access 1990 1 A 218 HIEH 2:31 PM

Article File Kinetics1
Knownarea 57%
Reviewarea 307%
New area 12%

(tsswriiovei] (UpLeve

i
il

0] 4

Figure 4. A Comparison of a Student’s Database with the Lexemes of
an Article

b ot
c:

13

2.4 User Selection

After the Administrator selects an article for the student, it
saves the assignment in the “User Selection” file under the student’s
name (see figure S5). The records, stored in a list format, are retrieved
by using the Munger Function. The tutor knows about this
assignment by searching through the selection file for the file name.
Changes to the selection file can only be performed by the
Administrator. This insures that if a student does not finish a lesson
in a session, he can return to the same article in the next session.
When the student finishes a lesson, he should use the Administrator
to select the next article for him. What he learns from the last lesson
is updated and saved in his personal database by the tutor as
discussed in the next chapter. Thus the selection file serves as a

communication link between the Administrator and the Nihongo
Tutor.

14

Nelson Leung'kineticst”
® @

.
.

Legends:
® User Name
@ File Name

Figure 5. The Format of the User Selection File

[N

15

2.5 User Database

Each student using the tutorial system has a personal database
file that provides a measure of his Japanese language competence.
The filename is defined as the student’s login followed by a “.db”
extension. This file consists of two areas: a well-known area and an
unfamiliar area. The well-known area keeps all the material that the
student has currently mastered whereas the unfamiliar area saves
information about material that needs to be reviewed. Each time he
studies a lesson, his database records are updated by the tutor to
reflect his current level of competence. The Administrator’s task of
selecting an appropriate article for the student is closely related to
the information on the student’s proficiency of Japanese. The
Administrator is designed to maximize comprehension through
context and minimize rote memorization and dictionary use. Thus, it
does not assign an article to the student that is too difficult for him to
study. In other words, a certain percentage of the lexemes in the
article should fall into the well-known area.

Figure 6 shows the contents of the two areas stored in a “User
Database” file. The records are loaded into the system and stored in
two hash tables, one for each area. When the Administrator is
comparing the contents of an article with a student’s personal
database, the lexemes in the translation file will be hashed into the
tables to check for a match with the student database. A match is
said to have occurred if the two keys are identical. There is a chance
that a lexeme in the article is not matched in neither the well-known
area nor the unfamiliar area. This lexeme is then totally new to the
student. The Administrator does not change any records of the
student’s database during the process of comparison.

— BRh,H 5D

T, 2

ElZEL&"3

&4

EE @PE"S

D" 6

EWD T

BFE5 « <EA"S

FXESIZTLMQ

® @

<D< 32

i, &R o Fe v -1

F 41

F5."2

%5"3

EBE5, DA E D4

.45

D56

—E,50oTL"7

o5, 8

HIED ® &1
® ®

Legends:

® Well-known Area
® Unfamiliar Area
® Keyword

@® Reading

® Frequency Count
® String Number

Figure 6. The Format of a User Database File

16

17

CHAPTER III - THE NIHONGO TUTOR

The underlying task of the Nihongo Tutor is to improve a
student's proficiency in comprehending technical Japanese by
providing him with Japanese articles to study. The article assigned is
carefully selected by the Administrator according to the student’s
current Japanese competence, the level of difficulty of the article and
his technical area of interest. Presumably, if the student does not
know the meaning or pronunciation of some portion of the text he
will request semantic, syntactical, or phonetic information from the
tutor. Consequently, there must be a fast and efficient interaction
between the student and the internal data structures that store all of
this information. In addition, the tutor keeps a record of what the
student has learned from the current lesson and what is still
unfamiliar. This information is stored into his database to be used by
the Administrator in assigning an appropriate article as the next
lesson. The tutor also furnishes several electronic on-line
dictionaries for cross-referencing purposes.

N0

18

3.1 Text Data Structures

Each sentence in an article is represented by a parse tree based
on the syntax of the language. The semantics of the sentence is
included in the parse tree as additional information stored in each
node of the tree. Figure 7 shows how a Japanese sentence 1is
represented as a parse tree. Note that each node in the parse tree
may have an arbitrary number of chiid nodes.

A generalized tree is a suitable data structure to represent the
parse tree. In the tutorial system, this generalized tree is
implemented as a doubly-linked list. The linked list can effectively
connect all nodes together for fast searching and retrieval. Moving
upward or downward along different levels of the parse tree can be
accomplished readily due to the double link between the nodes. On
one hand, moving downward along a parse tree shows how a
sentence or a phrase is broken down into its constituents. On the
other hand, moving upward depicts how several clauses are
combined together to form a sentence. The double link thus allows
the student to easily investigate Japanese sentence structure. (Since
there are no word delimiters in Japanese text, it is sometimes
difficult to understand Japanese sentence structure since the first
step of breaking a sentence down into phrases is not trivial.) This
tree data structure is further augmented to include all of the
translation information for the entire article. In particular, there is a
sentence list consisting of nodes that keep the translation
information for every sentence in the augmented parse tree.

Figure 8 illustrates how translation information is stored in the
sentence list. With the help of this data structure, translation
information can be retrieved by the scheme shown in figure 9.
Whenever the student has difficulty in understanding some of the
text in the article, he highlights this text to notify the tutor.
Examining the internal edit record of the text window, the tutor
identifies the selected text based on its relative position in the
article. To retrieve the actual highlighted characters, however, the

oo

19

Original Japanese sentence:
REEODIDORES LPETRHENIDBOTH D,

o] [(S [ov| [B
| |5 |o| |4
Jr

af
it
i
i

ar| [t [(A
S I3 [T
N

A
8t
LY

Figure 7. A Parse Tree Representation of a Japanese Sentence

D
Ca

Sentence List

v

Parse
Tree 1

Sentence ——>™
1 -~

Sentence
2

Parse
Tree 2

20

Sentence
n

}

Parse
Treen

Figure 8. The Sentence List of a Japanese Article

T —r— =

HHEH I

The student highlights some
text 1in the text window

21

Show translation
in the translation
window

Locate the
sentence and find
the parse tree

Y

<

Locate the node
and retrieve the
information

Figure 9. Interaction between the User and the Nihongo Tutor

)

W)

b
o

Macintosh operating system (see Inside Macintosh, Vol I, p. 384)
provides a routine called TEGetText that converts the entire text
document into a character array. If this had to occur each time the
student highlighted a region of text, it would be very inefficient. As a
result, cach node in the sentence list and each parse tree stores the
location of the text that it encloses. To check whether the selected
text is included in a node, only & comparison of its tex: locaiicn with
the selection range is required. To get the translation information,
the Nihongo Tutor locates the highlighted text in a sentence and
returns the associated parse tree. It then finds a node in the lowest
possible level of the parse tree enclosing all of the selected text. All
the translation information based on this node is retrieved and then

displayed. More about this searching algorithm will be described
later.

Time Complexity Analysis

The retrieval time depends on two levels of searching: through
the sentence list, and through the parse tree. The time complexity of
the first one is O(k) for the worst case, where k is the number of
sentences in the article. More often than not, the student will be
reading the article sequentially from one sentence to the next one
instead of randomly selecting a sentence to study. The tutor takes
advantage of this locality of reference by putting a marker beside
the sentence which has currently been comprehended. Assuming
that most sentence selections do not change drastically from sentence
to sentence, it is highly probable that the next sentence will be the
target sentence to be searched. In this case, the search time will be
O(1). Thus, searching from the marker can significantly reduce the
amount of time required to look for the target sentence.

The retrieval time through the parse tree is more complicated
since nodes in the parse tree have a variable number of child nodes.
Suppose that m is the total number of nodes in a parse tree and each

23

node bears n children on average. The expected number of levels in
this parse tree will be logym, and in eack selected node within a non-
leaf level, half of its children are expected to be examined before the
next searching path can be determined. Thus, the average case is

O([nlogam]/2). The overall expected time complexity is therefore
O(1+[nlog,m]/2}.

Attributes

The contents of a node must include all semantic, phonetic, and
morphologicai information as well as any supplemental data for
instruction but at the same time remove as much redundancy as
possible. The attributes should include the lexical boundary of the
stored text, its best English equivalent contextual meaning, Japanese
readings, possible syntactical breakdown, and so on. Moreover, the
nrode must be structured in such a way that it can be used to
represent the sentence list. The attributes associated with a node are
presented in figure 10 and are defined as follows:

(1) Identification number : identification within the parse tree

(2) Text location : starting and ending positions of the text
in the article

(3) Child node list : a linked list of child nodes

(4) Parent link : a pointer to the parent node

(5) Actual text . strings of Japanese text (with readings)
and English translation

(6) Character index : indices to the actual text strings for
retrieving Japanese text and English
equivalent

The actual text attribute pertains only to a sentence list node
whereas the character index autribute applies only to a parse tree
node. The purpose of this special implementation is to remove
redundant storage of text including Japanese text, readings, and
English translations, within a node. The rtoot of the parse tree

24

End location English text

[Text location]\ /(Actual text J
LParent node]/ \A[Character Indea

. Japanese words
Chlld. English words
node list

I:Start location [Identification #] Japanese text

Readings
—> Only used in a parse tree node
—> Only used in a sentence node

Figure 10. The Attributes Associated with a Node

'\
CJ

25

normally contains most of the text contents that its descendants
need. Consequently, instead of redundantly storing the text
information in each node, it is kept only in the sentence node.
Whenever translation information is requested, the tutor uses the
character index attribute as an index into the actual text strings and
retrieves the appropriate words. Table 2 shows the text contents
stored in a sentence node and what text characters vill be retricved
according to the word indices in the parse tree nodes.

The actual text string can be considered as a single string of
infinite length used to store a large amount of text information. All
attempts of text information retrieval should access this text string.
The actual implementation, however, divides it into substrings of
equal string length and connects them together in a linked list (see
figure 11). This kind of data structure is frequently used in the
tutorial system and will be referred to as a “string list”.

The character index is a record consisting of two fields: the
starting index (text begin) of the text and the length of the words
(text length). The desired text is retrieved according to the following
formulas:

Start index = (text begin) mod (string length) (1)
End index = Start Index + (text length) (2)
String number = (text begin) div (string length) (3)

String number indicates the location of the substring in the
string list where the text can be found. To give an example of how to
practically retrieve some Japanese text, its reading, .nd the
associated translation, figure 12 shows the contents of the text
strings and table 3 summarizes the results of the retrieval for some
specific values of character indices.

To compare the storage savings, the three records of the
character index account for six bytes of space in each node. If the
text or readings to be stored in a node requires more than this

)
()

26

Table 2. Example of Text Information Stored in Nodes

In the sentence node:
Japanese text and readings:

EELrOWDSOE@ES LEETRHINRDIDBOTH D,
HHhUHREPITHE

English translation:

velocity is a thing represented by speed and direction
the thing called velocitycan be representedperiod

Starting text location: O
Ending text location: 48

In the parse tree:

Node | Text_[Char.Japanese)Char | Englis har g g
1 2 i i@'ﬁ* ; velocity 665 %(éf'*
2 g 2 & W “5* 665 called 8
3 ig 141 2N 595 tltll;flg 8

* two bytes are required to represent a Japanese character

Text string list

String 1

String 2

String
length

Figure 11. The String List Representation of the Text String

String
length

27

Japanese text string

1 301

FHIE|e]|e]e Zi{|&lelo]e o o
English text string

1

VIEILIO|ICIIIT}tY I]Sie|e o o

Figure 12. The Japanese and English Actual Text Strings

Table 3. Example of Text Information Retrieval

29

Character Text Text String Text
Index Begin Length Number
Japanese text 1 4 1 x E
Pronunciation 301 6 2* £ ¥
English .
Translation 1 8 I velocity
*String length = 255
35

30

amount, the character index data structure will reduce the storage
space requirement. For instance, the sentence in figure 7 has 20
nodes with 120 bytes used for the character indices. Assuming that
actual text characters are stored instead, it would require 185 bytes
for the Japanese text, 268 bytes for the English text, and 22 bytes for
the readings, thus requiring a total of 475 bytes. The saving in this
case is a ratio of 3.96 to 1. Thus the space requirements for the
character index method are four times smaller than that required by
keeping the actual text. This figure will, of course, vary based on the
amount of redundancy in the node information which is in turn
related to the depth of the parse tree. Counting all the sentences in
an article, the reduction in space complexity is overwhelming. The
only drawback of this scheme is the slight increase in time

complexity i.e. the overhead of locating the correct substring in the
string list.

The child node list is the linkage that connects all the siblings
of a node together. Its linked list ;mplementation can accommodate a
variable number of nodes. Figure 13 shows how the different kinds
of links join the nodes together within a parse tree. Each node in the
child node list is a record consisting of the current child and a pointer
to the next child. The sibling nodes are sorted according to their text
location in the article, and each one bears its own child node list.

Using these links, the algorithm shown in figure 14 can be used
to search the parse tree for the highlighted text. The search is
difficult since there are no delimiters used to denote the boundary of
a word, a phrase, or even a clause in Japanese. When some text is
highlighted, it is important to know which node is being selected.
Since each node encloses a certain amount of text, the relative
starting and ending position of this text can be used to compare with
the selection range. In this way, the tutor can identify the selected
node by the unique text enclosure range stored in the nodes.

° ——> Child link
——> Parent link

KL — > Sibling link

()
Parent node
L

LChild node 1 H Child node 2)—)[Child node 3]

v v y

Figure 13. Connection of Nodes within a Parse Tree

Current node
= Root

Include all
highlighted

yes

Search node
= First child

Current node
= Search node

Is Current

node a leaf

no ode

Figure 14. Algorithm for Searching through the Parse Tree

32

Current node

= Next sibling

Include all

Search node
= Next child

yes yes

Highlight all
Current node text

o
o

Is Search
node empty?

33

The algorithm starts searching from the root node of the parse
tree. The “current node” is used to examine sibling nodes whereas
the “search node” is for inspecting child nodes. For each level within
a parse tree, the selection range is compared with the text location of
the “current node.” If the latter completely includes the first one, it
proceeds to examine its child nodes. Otherwise, the “current node”
will be set to be its next sibling for continual searching. For each
“current node”, however, it is necessary to check whether any one of
its child nodes entirely encompasses the selection range. Hence, the
“search node” begins with the first child node, and so on. If such a
child node is found, it will be assigned to be the new “current node”
and searching is started from it again. If this fails or the “current
node” is already a leaf node, searching terminates with its text
location highlighted. As a consequence, this is the node in the lowest

level of the parse tree that includes the selected text and has correct
lexical boundaries.

The notion of a child node list can be extended to construct the
sentence list. Each node in the sentence list bears the parse tree
associated with the sentence as its only child (see figure 15).

Syntactical Analysis

The tutor provides a utility, called syntactical analysis, used to assist
the student in learning about the grammatical rules of Japanese. This
is accomplished by showing how a clause or a sentence is split into
its basic constituents. With the help of this kind of breakdown, the
student can understand more about the syntactical structure of a
Japanese phrase, in addition to its overall meaning.

Figure 16 presents an example of syntactical analysis. The task
is achieved by moving upward along the parse tree through the
parent link. Going to the parent of a node automatically includes all
the sibling nodes. To show how several words or phrases are

Article

T

Sentence 1 e ¢ Sentence i e e Sentence n

’

Parse tree i

e o Child node i e @

Figure 15. Connection of Nodes within the Sentence Tree

0

Kinematicst

ALY E & &[5 % TR D
EN3IBbDTHD, WEN—TBD
§F1ﬁ<tgu@ A IIEE:

&>

S[I=——————= Translation

=B

B IE (pronouncedas & < &) ==> yelocity
& WD ==> called

@ (& ==> the thing

& WD D@ ==> the thing called

EE & 0D D@ ==> the thing called velocity

1/5]

Figure 16. Example of a Syntactical Analysis

29

<]

36

combined together to form a clause, the tutor uses a double-click
facility together with the Macintosh mouse. If a double-click occurs
when the mouse pointer is on some highlighted text, the selection
range will be changed to that of the parent node. This happens
because a node in the upper level of the parse tree is being selected.
Similar double-clicks will move the selection upwards until the root
node is reached. If syntactical analysis is requested, the translation
information of all the descendant nodes will be displayed. This is
designed to enhance the student’s comprehension of word or clause
boundaries in a Japanese sentence.

M
-

37

3.2 Student Database Management

To monitor the student’s progress in terms of Japanese
proficiency, the tutor records performance information which is used
to aid the administration application in defining the student’s
competence. Such information includes material that the student
knows well, as well as those items not currently mastered. This
information is in terms of Japanese words, phrases, and general
grammatical structures. Each time the student highlights some
Japanese text and requests translation information, the tutor updates
his personal database so that he will be presented with articles
appropriate for his level of competence in the next lesson.

One of the difficulties in building a mode! of a student’s
language proficiency is evaluating why a student has asked for a
particular piece of information. There must be some scheme used to
evaluate the student’s ability to comprehend an article. One direct
way is to query the student to see if he has difficulty with a phrase
whenever he requests translation information. However, this is too
time-consuming and would interrupt the process of instruction in
order to gather accurate data for assessment. The evaluation scheme
used in the tutor is to classify text materials in an article into two
areas: well-known and unfamiliar. In order to classify material into
either the well-known or unfamiliar area, the tutor makes the
foliowing assumptions:

(1) The student requests translation information for some Japanese
text if and only if he does not understand ii. As a result, this
material will fall into the unfamiliar category.

(2) The student knows some Japanese text well if he does not ask
for a translation. This material should thus be grouped into the
well-known area. This is a corellary of the first assumption.

w
o0

Clearly, these assumptions can be violated in practice; however, they
represent reasonable approximations and result in an efficient
implementation.

Table 4 shows the contents of the records stored in the well-
known and unfamiliar areas. A record includes at least a Japanese
word or compound, and all of its associated readiags. Since a K-
may have various readings in different contexts, it is important that
these readings are recorded to reflect what readings the student
currently knows. Whenever he learns new readings of a Kanji, they
are added to update his database. Each entry in the unfamiliar area
includes a frequency counter which is a measure of the difficulty
that the student is having with understanding that entry. A large
value for the counter indicates a high level of difficulty while a small
value suggests a low level. The frequency counter is initially set to an
upper-bound value for each inserted entry.

Evaluation Scheme

In practice, there is not a clear-cut division between the two
areas, and they are not independent of each other. For instance,
when a student is intrc luced to new vocabulary items they will
initially be entered in his unfamiliar area. For the next few lessons
which include the same vocabulary, if the student does not ask for
their translation, the tutor will transfer these items from the
unfamiliar area to the well-known area. By the same token, any
material in the well-known area is moved to the unfamiliar area if
the student requests information about it. Hence the evaluation
scheme must allow this kind of transferring activity to accommodate

changes in the student’s Japanese competence which result from both
learning and forgetting.

In the tutorial system, there are two procedures to implement
the transfer of data to and from the well-known and unfamiliar

s>,

Table 4. Attributes of the Record Stored in the Student Database

Area Attributes
Kanji Multiple |[Frequency
Unfamiliar character | Readings | Counter
Compound| Reading |Frequency
Counter

Kanji Multiple

character | Readings

Well-known
Compound| Reading
/"1\

39

40

areas. Scheme A adds, updates, or transfers entries to the unfamiliar
area whenever the student asks for a translation. Any text for which
the student does not request information is added or transferred to
the well-known area by Scheme B when he finishes reading the
lesson. Thus Scheme A is performed while the student is reading the
article whereas Scheme B is undertaken afier the student f{intshes
the lesson. As mentioned pieviously, there is no gumanice o i
inserted by Scheme B is necessarily well-known by the student.
However, putting text in the well-known area does not give rise to a
problem. If the text really should fall into the other area, Scheme A
can provide a romedy by moving it to the unfamiliar area. The two
schemes work together to resolve conflicts so that the same Japanese
text in different lessons will not be put into different areas.

Based on Scheme A (see figure 17), the following procedure
will be performed when the student highlights some Japanese text in
order to request translation information:

(1) If the text is in the unfamiliar area, its frequency counter is
reset to the upper-bound value. The associated reading will be
inserted if it is not included in the record.

(2) If the text is in the well-known area, it will be transferred from
the well-known area to the unfamiliar area. The frequency
counter is set tc the upper-bound value. The associated reading
will be inserted if it is not included in the record.

(3) If the text is not found in either one of the two areas, it will be
inserted into the unfamiliar area as a new entry. The frequency
counter is set to the upper-bound value.

Based on Scheme B (see figure 18), the following steps will be

performed for any text for which the student has not requested
translation information:

Is entry in
well-known

Remove it from
well-known area

. no
Is entry in
unfamiliar
Update it in ' Add new entry to
unfamiliar area unfamiliar area

! !
y

reset trequency
counter, add
new readings

Figure 17. Evaluation Scheme A for Student Competence

)

41

no

Is entry in yes

well-known

S entry in

unfamiliar
area?

yes

Add new readings and
decrement frequency
counter

Remove it from
unfamiliar area

>y

Add new entry to
well-known area

'

Figure 18. Evaluation Scheme B for Student Competence

RSN
<

Yo

42

43

(1) If the text is in the unfamiliar area, its frequency counter will be
decremented. If the resulting value is equal to zero, it will be
transferred from the unfamiliar area to the well-known area.

(2) If the text is not found in either of the two areas, it will be
inserted into the well-known area as a new entry.

The two areas in the student’s personal database are initially
empty. Each time the student reads an article, his database is
updated and new entries are inserted. The number of total entries
increases with the two areas frequently interacting with each other
in response to the student’s performance.

Data Structures

The well-known and unfamiliar areas are implemented as
“string list” structures in the tutorial system. Each entry in an area
contains Japanese text, with all the associated readings, and the
frequency counter if it belongs to the unfamiliar area. Thus the
student’s database consists of records storing Japanese text entries. A
hash table is used to store the records when they are loaded into the
system. The hash table is a sequential array of buckets where the
records are mapped via a hash function. The hash function f{(X),
shown in equation 4, is obtained by using the modulo (mod)
operator.

f(X) = Xmodb (4)
X = 2 JIS of each Japanese character (5)

This function gives bucket addresses in the range of 0O to (b-1)
and so the hash table is at least of size b. In the tutorial system, b is
selected to be 1021, a prime number that makes the hash function
uniform. This prevents a biased use of the hash table for random
inputs, i.e. if X is the key identifier of a record chosen at random and
the probability that f(X) = i is 1/b for all buckets i, then f is a

2]
4’

44

uniform hash function. Thus a random record X has an equal chance
of being hashed into any of the b buckets.

Suppose X is the key ideatifier of the record. If the key is a
compound of several characters, the JIS code for each character is
summed together as the value for X (see equation 5). There is a
possibility that the hash function may map several different key
identifiers into the same bucket. In this case, a collisicn is said to
have occurred and these identifiers are called synonyms. In order to
be able to detect and handle collisions, the buctets are initialized to
be the head pointer of an empty linked list. This linked list holds ali
the synonyms for that bucket in the form of a chain. The hash
function computes the value of X for a record and returns the bucket
address of a head pointer. Updating is done with this headed chain
and new records are added at the front. Figure 19 illustrates the
contents of a hash table when several Kanji are hashed into it. Using
chaining to resolve collisions makes the hash table capable of holding
a large number of records while reducing the retrieval time.

Time Complexity Analysis

The expected number of key identifier comparisons can be
shown to be 1 + /2, where o is the loading density n/b and n is the
number of records to be hashed. The time to compute the bucket
address is constant O(1) and, assuming uniform distribution, each
chain holds on average n/b records. Half of these records will be
examined while searching; thus, the total expected search time is O(1
+ o/2). With one thousand records, this figure is 18. If there are ten
thousand records, the figure becomes 5.9. Assuming that a student’s
database includes several thousand records, the hash table data

structure wili always reduce the search time to less than ten
comparisons.

3N

c>

45

| nil
2 ———>» @ | nil
3 nil
4 nil
5 nil
6 ———» I ——— > 5 | nil
7 —————» T | nil
8 nil
[2
[
[
1021 nil

Hash table with 1021 buckets; each bucket can hold a chain.
Hash Function: {(X) = X mod 1021 where X = X JIS(keyword)

se;{js:ce Keyword XK:ng:/irodf mfézi()lz)z(I
1 A 35737 2
2 =1 37783 6
3 = 35741 6
4 = 35742 7

Figure 19. A Hash Table Using Chaining to Resolve Collisions

46

3.3 Electronic Dictionaries

The goals of the electronic dictionary can be summarized as
follows:

(1) To provide the student with an understanding of the meanings,
readings and characteristics (¢troke count. radical number,
Nelson’s dictionary reference rnumber) of Kanji and Kaup
compounds.

(2) To enable the student to look up Kanji characters and
compounds with high speed and different search schemes.

(3) To facilitate a cross-reference between the translation in the
article and the definitions in the dictionary.

The Macintosh User Interface Toolbox offers a powerful
function called Munger which can efficiently search through a large
amount of data for a specific target string. This utility is described in
the chapter on Toolbox Utilities of Inside Macintosh, Volume I, from
page 468 to page 470. Munger allows different types of byte
manipulations such as finding a string in some text data, or replacing
a target string with a replacement string in the destination string.
With the help of this Munger function, each dictionary search based
on a particular key value can be accomplished in a short period of

time. All meanings and readings related to the search key are then
displayed.

Character Dictionary

Each entry in the character dictionary is sorted according to its
key, the Kanji character, based on the JIS code value. This allows
indexed-sequential searching for the retrieval of definitions of a
specific Kanji requested by the student. The information stored in
each entry includes a Nelson’s dictionary reference number, a radical
number, a stroke count, some common meanings and the associated

47

readings (see figure 20). The search methods currently available for
the character dictionary require one of the following seven keys:
Kanji, Hiragana (on readings), Katakana (kun readings), Nelson’s
dictionary reference number, radical number, stroke count, or
English translation.

There are three separate index files, called CDNelson, CDRadical
and CDStroke, which are used to facilitate the searching of Kanji with
respect to the Nelson’s dictionary reference number, the radical
number and the stroke count respectively. In the CDNelson file, each
Kanji is only associated with its Nelson’s dictionary reference
number. In the CDRadical file, the Kanji are grouped under their
radical numbers, and similarly under their stroke counts in the
CDStroke file (see figure 21). For example, if the student wants to
search for the Kanji with radical number 140, the tutor, instead of
examining the entire character dictionary, will display all those Kanji
in the CDRadical file under the radical number 140.

Kanji Compound Dictionary

The general dictionary consists of common Kanji compounds,
including their meanings and the associated pronunciations. The
search key is either the entire Kanji compound or one of its
individual Kanji. If the latter is provided for searching, all relevant
compounds are retrieved so that a cross-reference can be obtained.
The search methods currently available for the compound dictionary
require one of the following keys: Kanji, Hiragana (on readings),
Katakana (kun readings), or English translation.

Specialty Dictionary

The specialty dictionary is a group of special lexicons
containing terms devoted to a specific technical discipline. In the
current implementation, there is a communications dictionary with

di

48

Nelson's dictionary
reference number
| English
Stroke counts Meanings
Radical Pronunciations
Number

Japanese word
or compound

--=-----3» Character dictionary only

Figure 20. The Attributes of a Dictionary Entry

n
o

a1]
= 3 ul e~ A 45)
R i s Sax Myl g
Moo o K iMf Ej -
M S r ﬁM$ ﬁh 3
ke A Rk YE m—| =
| xR H kDB yE e
lﬁﬁm X%«Z _Ums,._u_n#.r, n ¥ =
S S|m e hatis Sl mpuPrER =E| °
m A.Muu Ewwﬁ.mk ﬁm@@ m _r_.T.TUMi.TDu H.F_ m Mﬁw
& SlHEEE e S| mHEgRELLHA] =
O Cnn_,hmmwmﬁd/ﬁ. r\/DMME _,.T_m.m_v w
_.@WTELAMM._M,%% <> iﬂ.m.mmmﬂ 2
_Eﬁﬂ_ﬁw:.zem@f __E,.imA.rx_.K_J.mA._U)
B g K o g A KudPrHhRa®]
[5 ™8T T&H1L¢*Mh
R o kR g <SHEEERT g
| O g KU + R SER g
L & G E i K0 o B e g KB N H Fam i N
D& HE o B g i e SR R 4 I R AR 44 K
llsvonosoasa| |HE, T oG 12 =N G| RESHR R I
Egggggalaldlaldl .E__1_|_A2*mn34%ﬂﬂcms ==.123+X4£WWH5R

50

8,889 entries and their associated meanings. The search key is either
the entire term or one of its characters. If the latter is provided for
searching, all relevant entries are retrieved so that a cross-reference
can be obtained. The search methods currently available for the
specialty dictionary require one of the foliowing keys: Kanji, Hiragana
(on readings), Katakana (kun readings), or English translation.

Grammar Dictionary

The grammar dictionary has an English translation., a
description of the grammatical structure and one or more examples
for each entry. Each example contains a Japanese sentence depicting
the usage of the entry, followed by a sentence showing the English
translation for that Japanese sentence. The search key of the
dictionary is the entire grammatical structure. The search methods
currently available for the grammar dictionary require one of the
following keys: Kanji, Hiragana (on readings), Katakana (kun
readings), or English translation.

51

CHAPTER IV - THE PARSE TREE EDITOR

The Parse Tree Editor is used to prepare texts for use by the
Nihongo Tutor. The tutor requires that each article have a translation
file which keeps all of the syntactic, semantic, phonetic, and lexical
information for each sentence. Manually configuring this kind of
translation file is very inefficient and subject to typographicai errors.
It is even more difficult to edit a translation file if the parse tree of a
sentence has to be adjusted. Thus, the Parse Tree Editor is used io
automate the creation and modification of the translation file.

There are four stages in the processing of the parse tree — the
segmentation stage, the syntactic stage, the semantic stage, and the
mapping stage. These stages define the boundary of a sentence,
configure the parse tree structure, incorporate the syntactic,
semantic, phonetic, and possibly morphological information into the
parse tree, and finally output all the data into an internal format
recognizable by the tutor.

-
t; wJ

52

4.1 Segmentation Stage

The first stage of forming a parse tree is to define the
boundary of a sentence in the article. This is accomplished by
highlighting the sentence under consideration in the text window.
The relative starting and ending positions of the sentence are
revealed by accessing the selected text in the internal edit record.
The ending position is usually signified by the presence of a maru
(the Japanese period). However, there are cases when text is
represented as individual sentences without having a sentence
marker (i.e. maru), such as the title of the article, the list of
keywords, etc. As a result, the parse tree editor requires that the
user provide the correct sentence boundary instead of automating
the sentence segmentation process.

The highlighted text of the sentence must be contiguous i.e. all
the words and punctuation marks have to be included. The sentences
must also be processed sequentially — the first sentence being
processed first, followed by the second sentence, and so on. Since the
Nihongo Tutor is not matching actual words but is instead identifying
each character by its relative position in the article, special
characters such as blanks or carriage returns cannot be totally
ignored. Thus, it is essential to include these special characters into
the boundary of a sentence if they exist at either end of the sentence.

In summary, there cannot be any undefined characters between or
within sentences.

During the segmentation stage, there is a new node created in
the sentence list for the current sentence that is being processed.
This node, with its parse tree initially empty, is appended to the end
of the sentence list based on its relative boundary in the article (the
internal data structure used by the Nihongo Tutcr is repeated in
figure 22). The user is requested to furnish the translation of the
entire sentence so as to give the partial content of the English actual
text attribute of the node. The Japanese text of the sentence is

N
o

53

End location English text

(Text locationj\ /L Actual text]
[Parent node j/ \A[Character Indea

Japanese words
(Child J English words

I:'Start location [Identification #J Japanese text

node list

Readings

—> Only used in a parse tree node
———> Only used in a sentence node

Figure 22. The Attributes Associated with a Node

54

extracted from the text currently highlighted. As a result, at the end
of this stage, the sentence node acquires the content of its sentence
identification number (sequentially assigned to each sentence), its
text location and its actual text attributes.

Pl

55

4.2 Syntactic Stage

The second stage of building a parse tree employs a bottom-up
strategy to construct the parse tree. This stage can be divided into
two steps — defining the leaf nodes and configuring the parse tree
from the leaf nodes. The leaf nodes are defined by highlighting the
text of each node, one by one, within the sentence boundary as
defined by the segmentation stage. All characters must be selected.
The leaf nodes form a basis for the construction of the parse tree.

The data structures used in the Parse Tree Editor conform with
those in the Nihongo Tutor. However, there is an additional attribute
called node location in the data structure of a parse tree node. In the
graphic window, each parse tree node is displayed as a rectangular
box with its Japanese text enclosed and lines drawn to show the links
between nodes. This node location field, specifying the node location
in the graphic window, helps the user to visualize the configuration
of the parse tree. This attribute, however, is not saved in the
translation file since it is nst required by the Nihongo tutor. Each
node location is composed of three fields: LocationR, Highlighted, and
Connected. The first field specifies the location of the node’s
rectangular box relative to the origin of the graphic window (which is
initially set to be the upper left hand corner) while the other two
fields are Boolean flags which will be set if the node is selected or
connected to its parent node respectively.

Each leaf node created in the first step is assigned a node
identification number, a text location index, and ¢ Japanese character
index. The English translation text and Japanese readings for the
node are filled in during the semantic stage. All of the leaf nodes are
aligned on the left hand side of the graphic window in order of their
node identification number. The highlighted and connected fields are
initially set to false. Whenever a click occurs within the rectangular
box of a node and if this node is not yet connected, it becomes
selected (the highlighted flag is set) and its Japanese text is displayed

59

56

in inverse-video. Another click on a selected node will undo the
selection.

The second step of configuring the parse tree is to create
parent nodes by joining the leaf nodes together. New nodes are
created until the entire tree is completed. Feor instance, when the
user wants to create a new parent node, the child nodes are selected
and then, performing the "Join Nodes" operation, the system draws
lines between these nodes to show the new relationship. All the
selected nodes are included into the child node list of their parent
node, and they are sorted according to their text location. The parent
link of each child node is connected to this parent node and its
connected field is thus set. The rectangular box of the parent node is
placed to the right of .its rightmost child in the graphic window, and
to the middle of its topmost and lowest children. Any node already
connected cannot be re-selected to be a possible child for a new
parent node. Not only does this ensure a unique parent for each node
but it also prevents the possible occurrence of a cycle.

Two strategies can be used in joining nodes to build the parse
tree — level-by-level and subtree-by-subtree (see figure 23). The
level-by-level method is to build all new nodes in one level at a time,
working up to the root. The subtree-by-subtree method is to create
all nodes in a branch at one time and then constructing the next
branch until the root can combine all its branches. As shown in figure
23, this corresponds to either a breadth-first or depth-first sequence.
Ordering of the parse tree nodes is not important since they rely on
pointers for maintaining connection information. Thus, the - two
methods work equally well to configure a parse tree. When the parse
tree configuration is completed, all nodes must be connected — there
cannot be any disconnected components.

The configuration of the parse tree built in the syntactic stage
can be changed in the "Manual" mode. For example, the links
between nodes can be adjusted so that a node will have a new parent
node or one of its child nodes removed. Figure 24 shows how

bu

57

3 4

P
N

(b) Subtree-by-Subtree

* Dashed line shows the next node to be created.
The number shown on each box is the node id.

Figure 23. The Strategies of the "Join Nodes" Operation

58

Adjustment
6
5
2 3 4

Figure 24. An Example of Adjustments to a Parse Tree Configuration

59

adjustments can be made to change the configuration of a parse tree.
The change in the figure is accomplished in the following steps:

(1) change the parent node of node 1 from node 5 to node 6
(the root)

(2) remove node 1 from the child node list of node 5
(3) add node 1 to the child node list of node 6

As the links between nodes are specified by node numbers, the
"Manual” mode allows easy editing of the parse tree configuration.
Should there be any changes to a parse tree, the user must make
sure that it is properly re-configured. The graphic window reflects
the new parse tree configuration after any adjustment.

When the Parse Tree Editor loads in an article with an existing
translation file, the node location field is automatically appended to
the data structure for further editing of the parse tree. If a double
click occurs within the rectangular box of a node in the graphic
window, a dialog box is displayed to show all the information stored
in this node. Changes can then be made if the user realizes that the
contents of some attributes are not correct.

60

4.3 Semantic Stage

While the syntactic stage defines the sentence structure, the
semantic stage specifies the meanings an+ readings associated with
each of the parse tree nodes. The readings are required only if the
Japanese text of a leaf node has at least one Kanji character. The
semantic stage uses a top-down approach to process the nodes in the
parse tree. It starts with the root, followed by its first child, second
child, and so on until all nodes in one level are processed. Then the
nodes in the next level down the parse tree are prepared and so on
to the leaf nodes. This approach removes redundancy since it is
probable that the translations of a node are included in those of one
of its ancestor nodes. Therefore, extra storage space can
be eliminated if nodes in the top level of the parse tree are
processed first and then referenced by those in the lower levels.

The user is prompted to provide the semantic information of
each node which includes the English translation and pronunciation
of its Japanese text. Under the "Auto Setup” mode, the pronunciation
is not required unless the node is a leaf node and its Japanese text
contains one Kanji character. The text characters are stored into the
actual text attribute only if they are not already included in it. New
characters are appended to the end of the text string as the attribute
is updated. Hence, each parse tree node contains a character index
attribute with the actual text attribute of the sentence node
containing all of the actual text characters. Adjustments to the
semantic contents of a node can be performed under the "Manual”
mode. When this stage is completed, all of the sentence information
is incorporated in the augmented parse tree.

61

4.4 Mapping Stage

The last stage of the process is to transform the sentence
information into an internal representation to be stored in a
translation file. Figure 25 shows the format of a translation file. The
translation file of an article is in a list format. It starts with a list of
sentence information followed by a lexeme list. The lexemes are the
Japanese text of the leaf nodes in each sentence. The sentence
information includes data about the sentence and its parse tree. The
sentence data is composed of a sentence identification number, its
text location, string lists of Japanese characters, English translation
text and readings, and finally a list of parse tree nodes. The data for
a parse tree node contains a node identification number, its text
location, three character indices (one each for the Japanese text,
English translation, and readings), a child node list, and then the
parent node.

Figure 26 summarizes the contents of a translation file. The end
of a list is signified by a sentinel value implemented as "-1" in the
system. This value is used in the sentence list, the string list, and the
child node list. For example, the text information of a sentence is
stored in the form of a string list. Each member of the string list
consists of some text followed by a text delimiter which is a double
quote (") and then the string number ("-1" for the last string). The
child node list is a list of node identification numbers followed by
“-1". If there is only the sentinel value, the child node list is empty
and the node is thus a leaf node in the parse tree.

The lexemes are also contained in a string list similar to that of
the text information. However, each member of the lexeme list is
headed by the number of lexemes in the string, and the lexemes (in
the form of Japanese text) are separated by string delimiters which
are semi-colons (;). The entire list of lexemes is separated from the
sentence information by a list delimiter which is a double occurrence
of double quote (""). The number of strings in the lexeme list is equal

62

— 1 @

048 o ®
RELEODDQ RS LEETROLINDIDBDTHI, HohHhi %
FREE e -1)

velocity is a thing represented by speed and directionthe thing
called velocitycan be representedperiod” -1

20

1031418656 -117 7
2495665600‘113 Legend:
3101311455900 -113 ® Sentence list
41417 154365596 -1 14 @ List delimiter
5181919242300 -1 14 ® Lexeme list
62023214469554 -1 14 o somence i #
7242525233200 -118 ® Jap.fcxt, pro:.l.
326 30274219496 -1 15 ® Eng. trans.

@_9313631660600-1 15 #oftrccno_des

1037 4037415500 -1 16 o o e node list
114146 41610200 -116 ® Node text loc.
12 47 48 47298600 -120 ® Jap char index
134135105516002 3-117 G)Engchari:}d
141423151036 1900456 -1 18 S Sead char Ind
1526 3627 1080 18008 9 -1 19 0 by Rode fist
16374637 1010100010 11-120 @ # of lexemes
17013114552500113-120 O Str. delimiter
18 1425 1512 332200 14 7 -1 19 o Lexemes

19 1436 1522213400 18 15-120 String #
2004814815400 lz 19 16 12:_1 20 -

© © ® e O (5] (6]

Lo 1

@ (111}
MRE,EWD DR EE, & EETRN,ENRI, LD, THB;, "1
0 (8 (9] Q

®4 .

Figure 25. The Contents of a Translation File

Translation file

Sentence list

63

String list

*{Sentence list}
e List Delimiter

")

+{Lexeme list}

*Sentence id no.
*Text location
«{String list -
Japanese text}
«{String list -
English text}
«No. of parse
tree nodes
«{Parse tree
node list)

-1 if no more

*Text characters
*Text delimiter
(")

*String no.

(-1 if no more)

Parse tree
node list

Lexeme list

*Node id no.
*Text location
*Character index
(Japanese text)
*Character index
(English text)
*Character index
(Pronunciation)
+{Child node list}
*Parent node

*No. of
lexemes
+{List of
lexemes}
+String no.
(-1 if no more)

Child node list

+Child node
id no.

e-1 if no more

List of lexemes

*String delimiter
G)

«Lexemes

Figure 26. The Format of a Translation File

64

to the number of sentences in the article. All of this translation data
is saved in a translation file with the same file name as the article
along with the special extension “.tr”.

o
C3

/Q@J@\%
OQ : X4 ™ -y
3 <«
O&Q&

