
DOCUMENT RESUME

ED 351 389 TM 019 227

AMOR Fraas, John W.; Newman, Isadore
TITLE A Binomial Test of Model Fit.
PUB DATE Apr 92
NOTE 23p.; Paper presented at the Annual Meeting of the

American Educational Research Association (San
Francisco, CA, April 20-24, 1992).

PUB TYPE Reports Evaluative/Feasibility (142)
Speeches /Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Career Development; Estimation (Mathematics);

*Evaluation Methods; *Goodness of Fit; *Heuristics;
*Hypothesis Testing; *Models; Statistical
Significance

IDENTIFIERS *Binomial Test; T Values

ABSTRACT
A new method for evaluating model fit that is easy to

use and interpret is presented. The new method, which uses a binomial
test of the number of hypotheses (paths) in a model that are
supported by the data, has heuristic value when considering problems
associated with other goodness-of-fit measures. An application of the
binomial test as a goodness-of-fit measure is presented. The
procedure is applied to a career deveiopment model studied by K. K.
Sidhu (1988). A hypothesis (path) is judged to be supported by the
data when the parameter estimate possesses the hypothesized sign and
is statistically significant. For the model, the parameter estimates
were expected to be positive and T values were expected to exceed two
before the coefficient would be considered statistically significant.
Since all seven of the parameter estimates had positive signs and T
values in excess of two, all seven hypotheses are judged to be
supported by the data. In the final step, the binomial probability
value is calculated. Two tables and one figure illustrate the
application. (SLD)

**************1.**1. A***************)
Reproductions supplied by EDRS are the best that can be made

from the original document.
***********************************************************************



A Binomial Test

1

U.S. DEPARTMENT Of EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as
received from the person or orgsnashon
originating

0 Minor changes have been made to improve
reproduction quality

Points of view or opmons stated in this docu-
ment do not necessarily represent ortrcial
OERI position or policy

-PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

--10WA) /36,5

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)...

A Binomial Test of Model Fit

John W. Fraas

Ashland University

Isadore Newman

The University of Akron

A Paper Presented at the 1992 Annual Meeting of the

American Educational Research Association,

San Francisco, California

April 20-24, 1992

Running head: A BINOMIAL TEST

2

BEST COPY MAIM



A Binomial Test

2

Abstract

A new method for evaluating model fit that is easy

to use and interpret is presented. The new method,

which utilizes a binomial test of the number of

hypotheses (paths) in a model that are supported by the

data, has heuristic value when considering problems

associated with other goodness-of-fit measures. An

application of the binomial test as a goodness-of-fit

measure is presented.
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A Binomial Test of Model Fit

There has been a substantial increase in the

number of studies by social scientists during the past

twenty years that use path analytic models. A major

advantage of the modeling technique is that it involves

an investigation of a theoretical framework. That is,

the theory is represented in the path diagram. A

researcher using the modeling approach generally

determines the degree to which the data fit the

theoretical model being investigated. A variety of

goodness-of-fit (GOF) measures have been proposed to

test model fit (Bentler & Bonett, 1980; Bentler &

Weeks, 1980; Tanka & Huba, 1985; Joreskog & Sorbom,

1986; Mendoza & Mueller, 1990: Schumacker, 1992).

The most commonly used procedures is the chi-

square goodness-of-fit test (Bentler & Weeks, 1980).

This chi-square test is designed to test whether a

given model provides an acceptable fit of the observed

data. The degree of fit of the model and observed data

is evaluated by testing the null hypothesis with a chi-

square test. In this application of the chi-square

test, the chi-square value will increase as the
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differences between the unconstrained covariance matrix

and the constrained covariance matrix increases. Thus,

if the null hypothesis is rejected, the researchers

will conclude that the model does not adequately

reproduce the observed covariance matrix.

A number of writers have questioned the use of the

chi-square goodness-of-fit test for various reason3

(Bentler & Bonett, 1980; Long, 1983; Joreskog & Sorbom,

1986). Joreskog and Sorbom (1986) expressed the

concern that:

... in most empirical work the model is only

tentative and is only regarded as an approximation

to reality. From this point of view the

statistical problem is not one of testing a given

hypothesis (which a priori may be considered

false) but rather one of fitting the model to the

data and to decide whether the fit is adequate or

not (p. 1.38).

A second concern with the use of the chi-square

statistic as a goodness of fit test centers on the fact

that its level of significance is related to the sample

size. That is, as the sample size increases, even
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small differences between the constrained covariance

matrix and unconstrained covariance matrix may be

statistically significant. Bentler and Bonett (1980)

referred to such a model as being minimally false.

A third concern addresses the inability of the

chi-square goodness-of-fit test to indicate where the

model does not match the theory. That is, the paths

that are not supported by the data will not be

identified by this test.

Based on these and other concerns, Joreskog and

Sorbom (1986) suggest that the chi-square test not be

used as a test statistic, but rather the researcher

should interpret a large chi-square value as indicating

a bad fit between the data and the model. In a similar

manner, a small chi-square value would indicate a good

fit. Degrees ,f freedom could be used to determine

whether the chisquare value was large or small (See

Carmins & McIver, 1981, and Hoelter, 1983, for

discussions of the use of degrees of freedom as the

standard by which to judge the size of the chi-square

value.)

Two other goodness-of-fit tests used with

6
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structural equation models are the goodness-of-fit

index (GFI) and the adjusted goodness-of-fit index

(AGFI). The GFI indicates the relative amount of

variance and covariance jointly accounted for by the

model. The AGFI is the GFI adjusted for the model's

degrees of freedom. The values for both the GFI and

the AGFI normally range between 0 and 1, although

Joreskog and Sorbom (1986) state that it is

theoretically possible for these values to become.

negative.

The major problem with these two indexes is that

their statistical distributions are unknown; thus,

there is no standard to which one can compare them

(Joreskog & Sorbom, 1986). Volkan (1991) suggests,

however, that GFI values of .9 or higher are generally

considered to indicate an adequate fit of the model.

Another problem noted by other researchers (March,

Balla & McDonald, 1988; Mendoza & Mueller, 1990) is

that the GFI and AGFI are related to the sample size.

Joreskog and Sorbom (1986) discussed two other problems

with the GFI and the AGFI. First, these measures may

indicate that the overall fit of the model is adequate,

7
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but one or more of the relationships in the model may

be poorly determined. Second, if these measures

indicate that the model does not fit the data well,

they do not provide information regarding what is wrong

with the model. That is, the paths of the model not

supported by the data are not revelled by these

measures.

This paper presents a goodness-of-fit measure that

conceptually differs from tha chi-square, GFI and AGFI

goodness-of-fit measures. The proposed goodness-of-fit

measure uses a binomial test to determine whether the

number of hypotheses supported by the model is due to

chance (see Newman, 1991, for an initial discussion of

this concept).

The Binomial Test Approach

A binomial test requires that each event be

classified into one of two categories (Seigel and

Castellan, 1988). Thus, the first step in

implementing the binomial test as a goodness-of-fit

measurement of a theoretical model is to determine the

criteria that will be used to judge whether a given

hypothesis (path) is supported by the data. The

O
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researcher could use various criteria to judge whether

a hypothesis (path) is supported by the data: (a) The

parameter estimate exceeds an a priori effect size, (b)

the parameter estimate is statistically significant,

(c) the parameter estimate reflects the hypothesized

sign, or (d) a combination of these criteria could be

used. To illustrate how different criteria could be

used, consider studies in which directional or

nondirectional hypotheses are used.

If directional hypotheses are the only type of

hypotheses used in the model, the researcher could

determine the number of hypotheses supported by the

data in two ways. In one procedure, the researcher

would count a hypothesis as being supported by the data

simply by determining if the sign of the parameter

estimate matched the hypothesized sign. This technique

would produce a binomial test of the model's goodness

of fit in which the power of the test would be

independent of the sample size. Instead, the power of

the test would be dependent on the number of hypotheses

derived from the model. That is, as the number of

hypotheses derived from the model increased, the power

9
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of the test would increase.

With the other criterion that could be used with

directional hypotheses, the researcher would classify a

given hypothesis as being supported by the data when

the corresponding parameter estimate is statistically

significant and it possesses the hypothesized sign.

This technique of determining the number of hypotheses

supported by the data for use in the binomial test

would produce a goodness-of-fit estimate that is

related to the sample size as well as the number of

hypotheses derived from the model. That is, as the

sample size increased, the power of the test of any

given hypothesis derived from the model would increase.

The power of the binomial test would still he dependent

on the number of hypotheses derived from the model. As

that number increases, the power of the binomial test

increases.

If a researcher uses only nondirectional

hypotheses to represent a model, the sign of the

estimated parameter for any given hypothesis 'ould not

be used to determining if the data supported the

hypothesis. The number of hypotheses supported by the

i0



A Binomial Test

10

data could only be determined by the examining the

statistical significance of each hypothesis. If the

parameter estimate was statistically significant, the

hypothesis would be counted as being supported by the

data. When the number of hypotheses supported by the

data is determined in this manner, the power of the

statistical test of each hypothesis is related to both

the sample size and the number of hypotheses derived

from the model.

If a researcher has a model that incorporates both

directional and nondirectional hypotheses, the number

of hypotheses supported by the data could be counted

in various ways. In the one method, the directional

hypotheses would be counted as being supported by the

data when the signs of the parameter estimates matched

the hypothesized signs; and the nondirectional

hypotheses would be counted as being supported by the

data when the parameter estimates were statistically

significant. In another method, only hypotheses that

were statistically significant, regardless of whether

they were directional or nondirectional, would be

considered supported by the data. Using either of
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these two methods of counting the number of hypotheses

would produce a goodness-of-fit estimate that was

related to the total number of hypotheses derived from

the model and the sample size.

Once the criteria for determining whether a given

hypothesis (path) is supported by the data, the second

step in the binomial test approach requires the

researcher to determine which parameter estimates

support the research hypotheses. An examination of

which hypotheses are not supported by the data may

provide some insight into where the model is weak. In

the final step, the researcher uses a binomial test to

provide a conservative and robust probability estimate

of obtaining no more than the number of hypotheses

identified by the researcher as not being supported by

the data. If the probability produced by the binomial

test is less than the alpha level, the researcher can

conclude that the data are supportive of the model.

Art Application of the Binomial Test

To illustrate the use of the binomial test of

model fit, the procedure is applied to a career

development model studied by Sidhu (1988). The model

12
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is presented in Figure 1, and the variables in the

model are listed in Table 1.

Insert Figure 1 about here

Insert Table 1 about here

As previously discussed, in the first step, the

researcher must determine what criterion will be used

to judge whether the data support a given hypothesis

(path) of the model. In this example, a hypothesis

(path) was judged to be supported by the data when the

parameter estimate possessed the hypothesized sign and

it was statistically significant. For the model

proposed by Sidhu (1988), the parameters were expected

to possess positive signs. The criterion suggested by

Joreskop and Sorbom (1986, p. 111.12) that the t value

of a parameter estimate should exceed 2 before the

coefficient is deemed to be statistically significant

was used.



A Binomial Test

13

The seven equations that represent the paths in

the model are as follows:

1: SCOPE = B LMX + e,

2: SUPSAT = B LMX + e,

3: CRE

4: WS

5: KAO

6: KAS

= B SCOPE + e,

= 354 CRE + e,

= B CRE + e,

= B7, CRE + e6

7: ABILITY = B CRE + e,,

where the B values represent path coefficients and e

equals the error terms. The parameter estimates and

their t values are listed in Table 2. Since all seven

of the parameter estimates had positive signs and t

values in excess of 2, all seven hypotheses (paths)

were judged to be supported by the data in Step 2 of

the binomial test procedure. In the final step, the

following formula was used to calculate the binomial

probability value:

P(x) = n!
(.5), (.5)(u x)

xl(n-x)!

where:

1. p is equal to the probability of

obtaining x hypotheses (paths) not
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supported by the data out of n number

of hypotheses (paths).

2. x is equal to the number of hypotheses

(paths) not supported by the data.

3. n is equal to the number of hypotheses

(paths) in the model.

The calculation is as follows:

p(x < 0) = 7! (.5)0(.5)7 = .008
0!7!

Since the probability (.008) of having 0 out of 7

hypotheses being supported by the data is less than the

alpha level of .05, the researcher would conclude that

the number of hypotheses supported by the data is

greater than one would expect by chance. In addition,

it should be noted that in the second step of the

binomial test procedure, all seven paths were supported

by the data. If that had not been the case, the paths

not supposted by the data could have been identified

for possible further study.

Conclusion

The binomial test of model fit has heuristic value

since it is applied to the number of hypotheses (paths)

supported by the data. In the binomial test approach,
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determining whether each hypothesis (path) is or is not

supported by the data is important. Thus, the criteria

used to determine whether a given hypothesis (path) is

supported by the data is the crucial first step in this

GOF measurement.

In this procedure a researcher could select one or

more criteria to judge whether a given hypothesis is

supported by the data. The criteria are: (a) The

parameter estimate exceeds an a priori effect size; (b)

the parameter estimate is statistically significant;

(c) the sign of the parameter estimate matches the

hypothesized sign or (d) any combination of these

criteria. Another criteria, which was not examined in

this paper, that might be appropriate is differential

weighting of each hypothesis (path). In our example,

all hypotheses had equal importance in the model. This

criteria might not be appropriate for some models.

Whether one should give equal weight to all hypotheses

is not a statistical decision, but rather a logical and

theoretical one. Although we did not address how one

could differentially weight hypotheses based on their

relative theoretical importance to the model, we do

16
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think that this approach needs to be investigated. We

believe that the differential weighting of hypotheses

would be consistent with a scientific framework that

requires a statistical test to reflect a researcher's

question of interest. This would avoid a Type VI error

which is the inconsistency between the statistical

procedure used by a researcher and the research

question (Newman, Deitchman, Burkholder, Sanders &

Ervin, 1976).

It should be noted that the decision regarding

which criteria to use is not based on statistical

manipulation, rather the logical framework of a theory.

The binomial test of model fit involves the number of

hypotheses (paths) supported by the data; and,

therefore, it does not matter whether the variables are

observed or latent. Thus, the binomial test can be

applied in structural equation/covariance models. It

may also prove useful in the two-step approach to

structural equation modeling where the structural model

is evaluated separate from the measurement model

(Anderson & Gerbing, 1988; Muliak, 1989).
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Table 1

Variables Included In the Model'

Variable Variable Variable
Label Number

Leader-Member Exchange LMX 1

Job Scope SCOPE 2

Supervision Satisfaction SUPSAT 3

Career Related Experiences CRE 4

Occupation Related Abilities ABILITY 5

Knowledge About Occupation KAO 6

Knowledge About
Self-In-Occupation KAS 7

Work Satisfaction WS 8

'Career development model (Sidhu, 1988). P
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Table 2

Path. Coefficients and t-test values for Model

Path B t'

P. 0.63 7.41

P71 0.47 15.42

P.7 0.86 10.00

p.,. 0.63 7.84

P6. 0.76 9.41

P7. 1.14 12.82

P.. 0.81 10.85

The criteria of t > 2.00 was used for testing the

statistical significance of a path coefficient

(Joreskog and Sorbom, 1986, p. 111.12).
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LMX (1) -- SUPSAT (3)

NAL
SCOPE (2) * CRE (4)

ABILITY (5)

KAO (6)

KAS (7)

WS (8)

Figure 1. Career Development Model (Sidhu, 1988).
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