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Missing Data in Correlation Matrices 2

Abstract

This paper outlines analyses for results of a series of studies examining

intercorrelations among a set of as many as a+l variables. Several estimators

of a pooled or average correlation vector and its variance are derived for

cases in which some studies do not Deport complete correlation matrices. A

test of the homogeneity (consistency) of the correlation matrices is also

given. Data from a synthesis of relationships among mathematical, verbal, and

spatial ability measures illustrate the procedures. The empirical Bayes

procedure (based on the EM algorithm) involves no data loss, and is

recommended if it is reasonable to assume that the unobserved correlations are

missing at random.

Ii



Missing Data and the Synthesis of Correlation Matrices

Many research syntheses which examine relationships in education and the

social sciences examine one relationship or at most a few different bivariate

relationships. In some research domains, however, series of studies may

examine similar or identical collections or sets of variables. One example is

the literature on the prediction of college grade-point average from entrance-

examination scores and high-school records. In such cases it may be desirable

to combine the correlation matrices among the variables common to a number of

studies in order to draw general conclusions about the interrelationships

among the variables.

When all the studies under consideration share a common population matrix

it is sensible to estimate a common (pooled) correlation matrix. In other

situations it may be useful to estimate the average of a series of correlation

matrices (and its variance). One problem which arises in attempting to pool

or average correlation matrices from series of studies is that some studies

may not have measured every variable of interest. Consequently some of the

correlations of interest may not be observed in every study.

The first section below presents notation and a model for the results of

a series of studies examining intercorrelations among a set of 12-1-1 variables.

Several estimators of a pooled correlation matrix and its variance are derived

for the case in which correlations may be unobserved in some studies.

Estimators based on available-data and complete-case analyses, and on

imputation of both unconditional and conditional means are described and

critiqued. An empirical Bayes estimator is also provided for the case in which

a random-effects model is assumed to underly the series of studies. Data from

a synthesis of relationships among mathematical, verbal, and spatial ability

measures (Friedman, in press) are used to illustrate the procedures.
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Notation and Model

Let Y1, ..., Xp be random variables with the multivariate normal

distribution. For example, Y1 may be an outcome and Y2, ..., Yp may be 2 -1

predictors. Consider the situation in which each of a series of k studies has

examined correlations among these same 2 variables or a subset of those

variables. The number of measured variables in the ith study will be denoted

R, and the number of nonredundant correlations reported by study i is mi

2,(2,-1)/2.

Consider first a study i which has examined the intercorrelations among

all 2 variables (i.e., in which 2, - 2). Let gist and gist be the sample and

population correlations between Y, and Yt in the ith study and let r,

r_,(p.1)p ) and e., -.1.c.n.3, P 112 P 113 ,
Ii23; P ip I P123

pi(p-1)p)' be the vectors of mi. - 2(2-1)/2 - 2* nonredundant sample and

population correlations, respectively. When it is convenient to refer to the

elements of the vectors ri and 9., by sequential position, a Greek subscript a

or -y will be used (e.g., I,. and 1,7 are elements of ri) . Thus ri (rior) where

a runs over the range a - 1, ..., 2*.

Distribution of r

Olkin and Siotani (1976) showed that if all 2* correlations have been

observed in study i, with a sample of size ni, the asymptotic distribution of

(r, - ei) is normal with mean zero and variance-covariance matrix that

depends on 12i. This implies that in large samples, ri is approximately

normally distributed with mean vector ! and variance-covariance matrix Ei,

where the elements of E1 are defined by aial, and

Var(R,,,) - (1 - p,,,2)2/Ri , (1)
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icri COV(14a, 117)*

A formula for aic, is given by Olkin and Siotani (1976, p. 238). The

covariance can most easily be expressed by noting that if rim - -Kist ,
the

correlation between the sth and tth variables in study i;

and pit, are the corresponding population values, then

Coy

Kitty ,

(-Kist I riuv ) [0.5 P ist Piuv (Pisu Pisv Phu Pity )

P isu Pity P isv P itu (P ist P isu P isv P its P itu Pity

Pius P iut P iuv Pivs Pivt Pivu ) /ni

and pint

Typically aic,, and clic, are estimated by substituting corresponding sample

estimates for the parameters in (1) and (2). These estimates are denoted

below as aicca, and aft.

(2)

Missing Correlations

When a study has measured fewer than the 2 variables of interest in the

series of studies, 2i is less than Q. The vector ri - (ri,) for i - 1 to mi

would then have length mi < 2*. For convenience, however, we will use the

subs,-ript a to represent the particular relationship measured by ria rather

than the position of ric, in the (shortened) vector ri. Thus every vector ri

will have length 2*, but for studies in which fewer than 2* correlations have

been observed ri will contain mi observed correlations and 2* - mi unobserved

values. The unobserved values will be identified via an indicator vector mi -

(mia,) , a - 1, ..., 2*, where

6
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1, if ri, is observed,

0, otherwise.

If mi mi for studies i and i, we say that studies i and i have the same

missing data patterns. Also note that E mia mi and denote Zi mi m.

Missing covariances. When a study i observes mi < 2* correlations, the

covariance matrix Zi defined by (1) and (2) will contain even fewer than

mi(mi-1)/2 observed covariance values. A hidden consequence of missing

correlations is that covariances between other reported correlations become

impossible to compute. This results from the form of the covariance in (2).

Thus, for instance, in study i the correlation rite is needed to compute the

covariance between ri,t and ri.v.

The values of covariances between observed correlations are indicated by

the Hadamard product (*) of the matrix mi mi.' with the full 2* x R* matrix Z

specifically mi mi' * Ei The matrix mi in contains zeros in the positions of

covariances between unobserved correlations, and ones for covariances between

observed correlations. The Hadamard product thus shows covariance values

where they are observed (or imputed), and full rows and columns of zero values

elsewhere. To use the matrix mi mi' * Zi in computations involving matrix

inversion, its dimension must be reduced from 2* x 2* to mi x mi by removing

all columns and rows which are identically zero. This corresponds to ignoring

the unobserved elements in the vector ri and their associated variances and

covariances.

The literature on missing data from experiments and sample surveys offers

little specific assistance in how to deal with missing covariances. One

approach is to simply ignore potential dependencies between correlations for
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which covariances cannot be computed. That is, the covariances could be

estimated as zero, However, since results are typically intercorrelatedl

this may lead to overweighting the results of studies which have not reported

full correlation matrices.

An ad hoc adjustment that might be made is to impute values for the

missing correlations into the covariance formula (2) using one of the methods

discussed below. Becker (1992) discussed two other ad hoc approaches to

computing missing covariances. In one approach pooled correlations were

substituted for subsample values in a study which had not reported complete

correlation matrices for the two subsamples of interest. Another approach

used patterns of correlations between tests at two times (before and after an

intervention) to estimate the between-test correlations across time (e.g., the

correlation of pretest A with posttest B).

Results of Series of Studies

The results of k independent studies, each examining as many as 0

correlations, can be expressed as the concatenation of the vectors r1, , rk

containing the nonredundant elements of the matrices of results of the k

studies. Let the 130 x 1 vectors of (observed and unobserved) sample and

population correlations be denoted as

r

and

P

rl

rk

pl

-k

0
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respectively. If the sample sizes of the k independent studies tend to

infinity at the same rate (formally if N E ni and if the
i ni/N for i

1 to k remain fixed as N co) then JR (r - e) has a nondegenerate asymptotic

distribution as N -4 co. This leads to the large sample approximation that r is

normally distributed about f. The large sample variance-covariance matrix of

r is then E, where E is a blockwise diagonal matrix with submatrices E1

through Ek, and Ei is defined above. Specifically,

Ei
E2

0

0

Etc

(3)

When some studies have not observed all correlations, we also require the

concatenated vector of zeros and ones

m

ml

mk

The total number of observed correlations is E E micx - Ei mi m. Also note

that if Ei k k, then all studies have observed correlations for the

ath relationship. As above, the covariances among observed Is are indicated

by the matrix m m' * E.

Estimating the Pooled Correlation Matrix

When all of the studies share a common population correlation matrix,

that is when fl - el;, it makes sense to pool es_Imates from the studies

to estimate the common correlation matrix. In practice one would first test

the hypothesis that all studies arise from a single population, then estimate



Missing Data in Correlation Matrices 9

either a pooled (common) or average correlation matrix. Procedures for

estimation and testing of the pooled matrix for the case in which all

correlations are observed (from Becker, in press) are repeated here for

con\ nience of notation. Results for the incomplete-data case are given in

the next section.

Notation and Model

To estimate a common correlation vector of length R*, the generalized

least squares (GLS) model is

r X?. e,

where r is the vector of kp* correlation coefficients, f. - (p.1, ..., p.p.) is

the set of common correlations to be estimated, and X is a he x 2* matrix

created by "stacking" k identity matrices, each of dimension R* x 2*. If k -

10 and R* - 3 (as in the examples which follow), X would be the 30 x 3 matrix

X- 1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

1

Under the assumptions of the GLS model, the error vector e - r - X f. has mean

zero and approximate covariance matrix E. The estimate of the pooled

correlation matrix is then simply the usual GLS estimate of the regression

coefficients, here,

10
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r. (X' E-1 X)-1 X' E-1 r, (4)

with approximate variance-covariance matrix given by

V - (X' E-1 X)-1. (5)

Typically both r. and V are computed using an estimated variance matrix in

place of E. When the large-sample normality of the vector r is justified, r.

can also be assumed normal, and standard inferential procedures (e.g.,

confidence intervals, test of significance about the elements of e..) are

possible.

Test of Homogeneity

Becker (in press) also presents a test for homogeneity of correlation

matrices, similar to that derived by Hedges and Olkin (1985). The test of the

hypothesis of homogeneity of correlation matrices, that is to test

Ho : !!1 ek,

uses the statistic

Q r' [E-1 xue r.

When Ho is true Q has approximately a chi-square distribution with

kp* - p* degrees of freedom. Thus a test of Ho at the 100a percent level of

significance is given by rejecting Ho if Q exceeds the 100(1-a) percentile

point of the chi-square distribution with (k-1)2* degrees of freedom.

Estimation when some Correlations are Unobserved

Complete-case Analysis

The complete-case analysis approach to missing data suggests that
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parameters be estimated using those cases (here, studies) which report

complete data. The drawback of this approach is that the data loss can be

great if more than a few studies fail to report all 0 correlations. Because

exact replications are discouraged by journal editors and avoided by

researchers, this problem is likely to be encountered in syntheses of most

research domains in the social sciences. The complete-case analysis is not

the analysis of choice in most situations. However, it may be useful in

providing estimates to use, for example, in computing missing covariances.

The complete-case analysis would involve the application of GLS

estimation methods to the set of results of studies reporting all

correlations, Denote the number of studies which report complete correlation

matrices as k,. To estimate a common correlation vector of length 2*, the

model is

re - X0 ec,

where r, is a concatenation of the ri vectors (like r above) but includes only

the results of the k, samples with complete matrices, P. ". (p.1, ..,, p.1,) is

the set of common correlations to be estimated, and X, is a k,2* x 2* matrix

created by "stacking" I identity matrices, each of dimension 2* x 2*. The

variance matrix for the vector r, is denoted E0, and contains the Ei matrices

for the k, samples with complete results.

The estimates of the pooled correlation matrix and its variance are then

simply the usual GLS estimates, computed using r,, X,, and E. in place of r,

X, and E, respectively, in (4) and (5).

Available-cases Analysis

One relatively simple approach to handling missing data in multivariate
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analysis is to use "available-cases" analysis (Little & Rubin, 1987, p. 41). A

number of different estimators are possible within this framework The

estimate given here is essentially based on pairwise available cases.

The available-cases estimate presented here is a generalization of the

pooled correlation matrix estimated via generalized least squares (GLS) shown

above in (4) and (5). However, since p* - m of the possible correlations in r

are unobserved, we omit all rows of r and X that represent unobserved

correlations. We denote the reduced vector and matrix as ro and Xo. Both ro

and X0 then contain m rows.

Also we reduce the dimension of E (or 2) as described above (omitting

rows and columns of all zeros), and denote the new m x m covariance matrix as

20. As noted above, it is also necessary either to assume that the missing

covariances between reported r values (which require unobserved r values to be

computed) equal zero, or to estimate those covariances using other values fur

the missing Is.

We rewrite the GLS model as

ro - X0 f. + e0.

In the new model the error vector eo ro - X0.0.. has approximate

covariance matrix E0, so the GLS estimate of P. is

r. (Xo' Zo-1 Xoy1 Xof %c)-1 ro (6)

with approximate variance covariance matrix given by

V - (Xo' Zo-1 Xoy1. (7)

it/
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For the available case analysis the test of the hypothesis of homogeneity of

correlation matrices uses the statistic

Q - ro, (E0-1 E0-3. xo(xo, E0-1 yo)-1 xo, E0-1

When Ho (given above) is true Q has approximately a chi-square distribution

with m - g* degrees of freedom. Thus a test of Ho at the 100a percent level

of significance is given by rejecting Ho if Q exceeds the 100(1-a) percentile

point of the chi-square distribution with m - 2* degrees of freedom.

Imputing Unconditional Means

Using this approach we would substitute for each unreported r value the

appropriate mean estimated by the available-case analysis, then proceed (e.g.,

with GLS estimation) as if the data were complete. Specifically, if the value

riO, is not reported in study i, one would substitute the mean r.c, computed

using (6) above. Although one typically obtains reasonable average values

using this approach, variances and covariances are systematically

underestimated because the imputed values by definition lie near the center of

the distribution of the observed correlations (Little & Rubin, 1987). In

meta-analysis this implies that tests of homogeneity can be reduced when mean

values are substituted.

Two complications which arise with this approach involve questions of

homogeneity and the precision of the predicted correlations (the unconditional

means). Unlike the two approaches described above, this approach involves

substituting particular values for the missing correlations, and using them as

if they had been reported by the studies as actual data. Thus it is important

to ask whether the means that are imputed are "reasonable" values.

Because the unobserved correlations are unavailable for comparison it is
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impossible to really gauge whether the substituted mean values are

appropriate. However, one indication of the representativeness of the means

for the studies from which they are obtained is the test of homogeneity. Thus

failure to reject the hypothesis of homogeneity for the complete cases

suggests that the mean values are good measures of the relationships of

interest in all of the studies which reported them.

The second question which arises when imputed values are used in the GLS

estimation framework is how their sampling variances and covariances should be

computed. The formulas (1) and (2) assume that zne correlation values are all

computed for the same sample. Substitution of other values into these

formulas can lead to correlations between rs that are out of range and to

within-study covariance matrices that are not positive definite. Standard

imputation procedures for missing data in experiments suggest a number of

adjustments for the general underestimation of sample variances, however, in

those cases all missing values on a particular variable are homoscedastic,

which is not generally the case in meta-analysis.

Ad hoc estimates of sampling variability were used in the present

analyses. The variance of the imputed correlation r.a in study i was computed

as

aicm Lot, (8)

where ;icm is the estimated sampling variance in (1), computed using the mean

K., and ni, and V is the variance of the mean r., from the available-case

analysis (i.e., the ath diagonal element in (7) above).

The rationale for (8) is based on the theory for the estimation of a

value of a response variable Y* from a predicted value Y* in linear regression

(see Seber, 1977, Sec. 5.3). In that simpler case, Seber noted that varLY* -

1J
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Y*I a2(v* + 1), where a2 is the variance of Y* and v*a2 is the variance of

the predicted score based on a particular set of predictor values (x*). The

confidence interval for Y* is computed using an estimate of the standard error

a(v* + 1)112. The analogue in the present context is to use the estimated

variance of the predicted correlation (i.e., the mean) in place of var(Y**) and

the sampling variance computed from (1) in place of var(Y*).

Covariances involving r. were computed as Cov(r., ril), for a pi -, using

formula (2). However, the question of how best to estimate both variances and

covariances involving imputed values requires further investigation.

Imputing Conditional Means

This method, proposed by Buck (1960), involves estimating the unreported

correlations from a prediccion model based on the complete cases. Typically

(in practice) several regression models would be estimated, one for each

variable (i.e., correlation) with unreported values. The unreported values

are estimated case by case for each variable.

In the multivariate meta-analysis context the predictors of a correlation

with unreported values would be the other observed correlations. For

instance, consider a case in which some values of ri, are unreported but all

other correlations are completely reported. To predict missing values of the

ath correlation in study .1, one would regress the 11, reported values of ri, on

values of Ili, Li(a-1), 1w,, then use the reported correlations

in study j. to predict ilia,. Weighted least squares regression should be used

in the meta-analysis context (see, e.g., Hedges, 1983), weighting each value

of ri, by the inverse of its variance. The drawback of this approach is,

again, that estimation may be difficult if few studies provide complete

correlation matrices.
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The analysis then prcceeds as if the data were complete, with the

predicted values in place of the unobserved correlations. Also, because the

unobserved values are predicted from the other data, their variances and

covariances are again not given by ciao. Below another ad hoc variance

estimate is used (following the same rationale as above). Specifically, the

value

icra 17-*icece

is used, where iiriaa is the sampling variance (1) computed using the imputed

value of ria, x*i Vb X*i , and x*i =. (1, nil, ria -1+ urt.1 , , is

(9)

the vector of "predictor values" for the ith study. The value v*iaa is an

approximate variance of the predicted r value. Note, however, that this

variance does not account for the fact that the predictors are themselves

random variables, measured with uncertainty. Similarly, the regression slope

estimates treat the predictors as though they are known. A more appropriate

but more complex analysis could treat the observed correlations as regressors

measured with error (e.g., Seber, 1977, sec. 6.4). Covariances are computed

as Cov(jia, ri7) using formula (2).

Empirical Bayes Estimation

In some situations it may be more reasonable to expect the patterns of

intercorrelations among a set of variables to differ between studies.

Population correlations might be expected to vary if a variety of subject

groups had been studied. Even if variation in the pattern of correlations is

not expected, the test of homogeneity may suggest that the population

correlation matrices differ.

When the population correlation matrices vary a random-effects model may

be appropriate for the data. If we are willing to treat the distribution of
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the population correlations as a prior distribution for the data, we can use

empirical Bayes estimation techniques to estimate the mean correlation Vector

and its variance.

Random-effects Model

Consider again the large sample distribution of the correlation vector

ri. The result that ri is approximately normal with a mean Pi implies that we

can write the vector ri in terms of a parameter fi plus a vector of errors,

say ei. That is,

ri + ei, (10)

and ei is then distributed approximately normally with a mean of 0 and

variance Ei, for i 1, k, where the elements of Ei are given by (1) and

(2) above.

In the random-effects case we assume further that each vector of

parameters fi is composed of a common component f. (p.c) for a - 1, ..., 2*

plus a residual vector, say, ui. Specifically,

0 f. +

for i 1, k. The variation represented by ui is parameter variation,

rather than sampling variation, which is represented by the error term ei

above. That is, we assume that the vectors of population correlations vary

randomly about a common mean (which we wish to estimate). We denote the

matrix of parameter variances as T - (rco) for a, / - 1 to

Estimation

The estimation of f. and T can be accomplished via the EM algorithm
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(Dempster, Laird, & Rubin, 1977; Dempster, Rubin, & Tsutakawa, 1981), an

iterative procedure. Implementation of the algorithm in the present context

involves, first, imputation of the conditional means of the missing data

values (given the observed correlations) as described above. The observed and

imputed values are then treated as complete data, and initial estimates of the

mean and variance component (r.(Q) and T(o)) are obtained.

The estimated mean and variance are next treated as a Bayesian prior for

the observed (and imputed) correlations. Weighted estimates of the fi vectors

are then computed, as are their standard errors. The cycle begins again as

these "study-parameter" estimates are used to re-estimate the means and their

standard errors. The iteration between these two procedures continues until

the estimates of the mean vector and the parameter variances do not change

materially with added iterations (i.e., until the maximum of the likelihood

function is attained).

In some situations implementation of the EM algorithm can be

computationally intensive. However, the computations in the present case are

relatively straightforward. The appendix gives a program written using SAS

PROC MATRIX which accomplishes the computations outlined below.

Posterior distribution of A. The estimation of the mean vector f. and

the variance-covariance matrix T requires the posterior distribution of the

vector of study parameters pil through pkp (i.e., g). From model (10) above

and the distribution of the sample correlation in (1) and (2) we know that for

large samples the within-study sampling error (eicd is normally distributed.

Since

Zia " pia tia for a - 1 to 0 and j - 1 to k,

19
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then if. N Ei ni and ri ni/N remain fixed as N approaches co, we can write

(r - e) A N(0, E*),

where E* is defined via E* E, and the elements of E are given .iy (1) and

(2). ihus the approximate density of the vector r conditional on the vector

of study-parameters 2 .s given by

f(r I £) 1E1112 (27r)kp */2 exp(-;1 (r - 2)E-1(r - e)i).

The second-stage model (11) shows the population correlation vector for

each study varying around the mean population correlation for the ath

relationship, across studies. In terms of individual correlations, we write

Pict P a + llicc for a - 1 to 2* and i=1 to k.

We define r,27 Cov(pi pi,) for i - 1 to k and a, 7 - 1 to 0. If we are

willing to assume that the study-parameters pic, are normally distributed about

the means p. then we can write the density of the vector of study-parameters

as

f(g) iTi1/2 (27)kP*/2 expt (e 2.)T-1(2 a.)'),

where T is a kg* x krk blockwise diagonal matrix containing k (2* x le) blocks

of ray values and Q. is a ke x 1 vector defined as

BEST COPY AI ME



Missing Data in Correlation Matrices 20

R. (P,, P2, Pp*, Pl, P2, " Pp*)

That is, a. is a concatenation o' k sets of the average population

correlations pi through pp*. This slight variation on the notation used above

gives e. the same dimension as
, the vector of study parameters.

The posterior distribution of e given r is then

f(e I
r) a f(r i 2) f(e) = IE T11/2 (27)4A exPt- (r - 2)E-1(r - a),)

x expt-1/2 (2 £.)T -l(2 2)')

a exp(-&.1 (r - g)E-1(r - p)' + -1/2 (p 2.)T-1(2 - 2.)'). (12)

By expanding the quadratic forms in (12) and eliminating terms that do not

depend on g we obtain

and

f(R
I
r) a exp(-1/2 (a E-le - 2g E-1 r' + R T-1 g' - 2e T-1 a.'D

expi-1/2 [g (Z-1 + T-1) g' 2g (E-1 r' + T-1 2.')]). (13)

We next define the matrices

(E-1 + T-1)-1

(E-1 + T-1)-1(E-1 r' + T-1 g.') T (E-1 r' + T-1 a.').

Note that although gi is a one-dimensional vector, we will denote its elements

as piii in order to identify the study and relationship associated with each

element. The elements of areare thus arrayed as (Piii
, 1,112' Pllp*,

Plkl, Plk2 t Plkp*)
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Next multiply (13) by the term exp( ei *-1 el:), which is independent of

Substituting W-1 for (E-1 + T-1) and gi' for (E-'r' + T-' p,') produces

f(a I r) a exp(-1/2 [e (E-1 + T-1) g' - 2g (E-1 r' + T-1

exp(-1/2 ie T-12' - 2e 41-1 ei' + ei T-1 gi' ] )

exp(-11 (e 81),Y-1(2 21)') ,

a.') + al T-1 ai'l)

(14)

which is the kernel of the multivariate normal distribution. Thus the

posterior distribution of g (given r) is normal with mean el and variance if.

EM algorithm. The EM algorithm makes use of the distribution defined by

(14) in the E or expectation step of the process. The EM approach requires

initial estimates of T and Pi through pp. (the average correlations). Because

these are starting values, simple estimators are typically all that is needed.

The starting values t(°) and i.(0) r. are used to compute the posterior mean

of e and its variance, that is, i1(1) and ,y(1). New estimates of T and B.

(i.e., ta) and i.(1)) are then computed based on the sufficient statistics

from the i!1(1) values. (The specific forms of the estimates are given below.)

The cycle continues until the likelihood in (14) is maximized, or practically

speaking, until the differences between parameter estimates from one iteration

to the next are small.

Starting values. For starting values we use weighted method-of-moments

estimators i),(0) for a 1 to 2* and V" (r:")) for a, 7 1 to 0,

specifically,

A (0)

and

'" i Wia -r-ia

44,
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Sal Zi cria7(1 (Ej. (Ei Wia wiz aia7)

Zi Hiai (1 Wia Wi7 Es lisa 14:s7)

ace7 Zi Wia7 (rice - a) (-1:i7 7)

where wi wo)1/2 is a weight associated with correlations r,, and ro,

T2ric, - [1.firicm]/E5[1fisc,] (that is, w,,, is the usual inverse-variance weight used

in univariate meta-analyses), and where the values of a, are given by (1)

and (2). These estimators are superscripted with the index zero to indicate

that they are starting values.

When the amount of variation in the sample correlations for the ath

relationship is quite small the variance estimate ci(°) can frequently be

negative. By convention, negative values are set to zero, as would be any

other covariance estimates involving the ath relationship (i.e., values of

ia7") for that value of a).

Expectation step. The posterior distribution of the values pil,

Pip") ...) pkp* (given the data) is then used to obtain estimates of

the study parameters. These are essentially weighted combinations of the

original data (the rs) and the starting values of the mean correlations pi

through We We compute

and

lir( 0) (E-1 .4. [t(0)] -1)-1

il(0) 4,(0) (E-1 e [1.(0)]-1

Maximization step. In this step new estimates of T (i.e., t(1)) and the

r,
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mean correlation vector are obtained from the sufficient statistics for the

study-parameter estimates. The estimates of the elements of T and 2. on

iteration (t + 1) are given by

and

c,,(t+1) (ilk) abial(t.) lic,(t.) 7)10(0)
-

_1( ^P.a(t) ,o^ .7(t)

a(t+1)
1a(t) Uk, for a, 7 1 top *,

where i*/).1,7(t) is an element of the matrix (t), Pli.(t) is an element of '21(t), and

i1(t)
,y(t) (E-1 r., [i(t)]-1 e.(t),).

Iteration. The process of estimation and maximization is repeated until

the likelihood function is maximized, that is, until the parameter estimates

(e.g., the estimates of T and pi through pp.) do not change much from one

iteration to the next. Note, however, that the program given in the appendix

stops after iterating for a fixed number of cycles rather than stopping after

a convergence criterion has been met.

dluing data. The EM algorithm can be applied when all correlations have

been observed or when some correlations are missing. When data are missing a...

random (that is, when the reason that correlations are unobserved is unrelated

to the actual values of the unobserved correlations) then it is possible to

get maximum likelihood estimates by ignoring the missing-data mechanism.

Little and Rubin (1987, Chapter 8) discuss this problem in detail for

multivariate normal examples with unknown covariance matrices. The present

case is similar, but involves normal data with a known covariance matrix.

Application of Little and Rubin's methodology for handling missing data

24,
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adds only one step to the estimation process described above. Before

obtaining starting values V" and we we must impute values of the

unobserved correlations.

The value imputed is the expected value of the missing correlation,

conditional on the observed data. In practice this means substituting the

best estimate of ri, available, based on the observed data. If correlation r,

is missing, one would use the regression method for imputing conditional means

to predict a value rim for study i, as described above. When some studies are

missing more than one correlation, missing values would be estimated for each

pattern of missing data, using an approach similar to that described in Little

and Rubin's (1987) Chapter 6. The imputed values are then substituted into

the data set and analysis via the EM algorithm proceeds as if the data were

complete.

Example

Data

Data for the example are from ten samples in four studies which explored

the relationship of spatial ability to SAT scores for high-school or junior-

high students. The ten samples from these studies are drawn from a more

extensive synthesis of sex differences in the relations among math, spatial,

and verbal ability measures by Friedman (in press). This example considers

correlations among measures of at most three variables from each sample (i.e.,

3), as shown in Table 1. We have omitted the correlations between SAT-M

and spatial ability reported for the two samples from Rosenberg (1981) to

create an example with less than complete data. Correlations and sample sizes

are shown in Table 2.

25
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Insert Tables 1 and 2 about here

In the jth study, the correlations among the three variables are

represented in our notation as:

Math Spatial Verbal

Math 1.0 ril rig

Spatial rii 1,0 ro

Verbal ra ri3 1.0

Writing these correlations as a vector ri, the relationships represented are

Math-Spatial

Math-Verbal

Spatial-Verbal

The ri vectors for four of the ten samples in the example are

rl

.47

-.21

-.15

r2

.28

.19

.18

1

1.151 161

r5 .48 re .74

.23 .44
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Vectors r1 and r2, from Becker (1978) represent complete correlation matrices.

However, in r5 and r5 from Rosenberg (i981), the elements r5I and r51 are not

observed in our example data.

Each vector of correlations has an associated limiting variance-

covariance matrix, computed using (1) and (2) above. The limiting variance-

covariance matrices for the Becker (1978) samples are

.0082 -.0010 -.0018 .0056 .0009 .0010

-.0010 .0123 .0058 and E2 = .0009 .0061 .0016

-.0018 .0058 .0129 .0010 .0016 .0061

The two matrices for the samples from Rosenberg (1981) arrn, respectively

E5

8'511 a512 a513

&521 0116 8-523

[7531 a532 .0176

and E5

a611 a612 a613

a621 .0114 a623

3.631 &v., .0361

The covariances of the reported correlations from Rosenberg (the off-diagonal

elements) must also be imputed because values of r51 and r61, respectively, are

needed in their computation.

The vector of all correlations to be synthesized then is

r' - (.47 -.21 -.15 .28 .19 .18 .48 .41 .26 .37 .40 .27 r51 .48 .23

r61 .74 .44 .26 .72 .36 .32 .52 .10 .58 .64 .40 .34 .28 -.03)

and its variance 2 is the 30 x 30 blockwise diagonal matrix comprised of 21

through E13.
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Complete-case Analysis

Complete data from eight of the ten samples (i.e., from all studies

except Rosenberg (1981)) is used to estimate f. and V. The GLS estimate of

the mean correlation vector is

(.367, .202, .421)',

with variance-covariance matrix

V

.0014 .0002 .0005

.0002 .0014 .0005

.0005 .0005 .0017

The test of homogeneity for the complete-case analysis is Q - 62.09,

which under the null hypothesis of homogeneity is a chi-square with (8-1)3 or

21 degrees of freedom. The value of Q is larger than the upper-tail a - .05

critical value for 21 degrees of freedom, suggesting that the eight samples do

not share a single population matrix. Thus although we have used the data

above to estimate a pooled correlation matrix, the interpretation of that

matrix as a shared or common population matrix seems unwarranted.

Available-case Analysis

In Friedman's data m - 28, so two elements of r and two rows of X are

eliminated. Thus the reduced matrices are
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ro s .47 and Xo 1 0 0
.21 0 1 0
.15 0 0 1

.28 1 0 0

.19 0 1 0

.18 0 0 1

.48 1 0 0

.41 0 1 0

.26 0 0 1

.37 1 0 0

.40 0 1 0

.27 0 0 1

.48 0 1 0

.23 0 0 1

.74 0 1 0

.44 0 0 1

.26 1 0 0

.72 0 1 0

.36 0 0 1

.32 1 0 0

.52 0 1 0

.10 0 0 1

.58 1 0 0

.64 0 1 0

.40 0 0 1

.34 1 0 0

.28 0 1 0

-.03 0 0 1

The rows shown in bold represent the Rosenberg results. Note that every row

of X for Rosenberg shows a zero in column one (i.e., the column for the first

element of the pooled correlation matrix). In order to estimate the

covariances between the two reported values for the Rosenberg samples, r.1 =

.367 from the complete-case analysis was used as the value of ri.

The estimate of the pooled correlation matrix from the available-case

analysis, using (6) above, is

r. (.374, .437, .227)',

with variance-covariance matrix computed from formula (7) as
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.0014 .0001 .0004

.0001 .0011 .0004

.0004 .0004 .0015

The overall test for homogeneity is Q - 82.12 (df 25, p < .0005). The

six samples do not seem to share a common correlation matrix. Thus again the

interpretation of r. as a shared or common population matrix seems

unwarranted.

Imputing Unconditional Means

In this analysis mean values were substituted for the two missing

correlations. For our example, the value r.1 = .373 was substituted for r51

and r61. The variance of the mean (V". 0.0014) was added to the computed

values of O,511 and O,611. The GLS estimate based on all 10 samples, including

the imputed data points, was the mean vector

(.363, .463, .228)'

with variance-covariance matrix

.0012 .0001 .0005

.0001 .0011 .0005

.0005 .0005 .0015

The estimated variance of the first element of the correlation vector has only

decreased from .0014 (in the available-cases analysis) to .0012, which

corresponds to a standard error which is roughly six percent smaller (i.e.,

.035 versus .037), which would have only a small impact on inferential

procedures. The homogeneity test value of 73.17 is significant when compared

to the a .05 upper-tail critical value of the chi-square distribution with

3 u
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(k - 1)R* - 27 degrees of freedom.

Imputing Conditional Means

In the imputation of conditional means we again estimate the missing

values using data from the eight cases which report all three correlations.

The weighted regression of ril on rig and r,3 (weighting by the inverse of the

variance of each ril value) for the eight samples with complete data gives the

weighted regression model

r = 0.488 - 0 024 r. + 0 062 r.-11 12 13

This model predicts values of r61 - .391 and r61 - .398. Our example data do

not illustrate the potential advantages of this procedure well because ril is

essentially unrelated to ra and ro .

Because the two unobserved values have been predicted from the other

data, their covariances are computed as

a511 + v*511 - .0141 + .0025 - .0166,

and

a611 v*611 - .0393 + .0058 - .0451.

Covariances involving r i were computed using r.1 in place of ril in formula

(2).

For our data, the estimated mean correlation vector (using GLS

estimation) is (.367, .461, .224)', with variance-covariance matrix

.0012 .0001 .0005

.0001 .0011 .0004

.0005 .0004 .0015

The test of homogeneity for this analysis is Q - 71.99, which is approximately
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distributed as a chi-square variable with 27 degrees of freedom. As above,

the hypothesis of homogeneity is rejected.

Empirical Bayes Estimates

Next the mean vector and its variance-covariance matrix were estimated

via the EM algorithm. We first imputed the values r61 - .391 and r6I - .398

(with estimated variances .0166 and .0451, respectively), using the method of

imputing conditional means described above.

The starting values for the correlation vector and its variance

covariance matrix were

and

P(0)

T(°)

- (.39, .42, .21)'

.0006 -.0005 -.0054

-.0005 .0723 -.0396

-.0054 -.0396 .0146

After 600 iterations the values of the mean correlations and their variance

estimates were changing by less than 10-5. The estimated mean vector was

(.393, .424, .226)'

with variance-covariance matrix

T(600)

.0004 .0006 .0001

.0006 .0619 .0323

.0001 .0323 .0170
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The parameters representing the relationship of SAT -M with SAT-V (the
Piz

values) showed the most variability, with a standard error of nearly 0.25

i.e., the square root of the diagonal element .0619). The correlations

between SAT-V and spatial ability also showed considerable parameter

variation, with a standard error of 0.13.

The empirical Bayes estimates of the individual study parameters after

600 iterations are shown in Table 3. These values can be compared to the

original sample correlations. The minimal amount of variation in the SAT-M --

spatial ability correlations has led to very similar estimates of 'Pii for the

ten samples. Values of rig, which showed considerable variability, produced

more dispersed values of pie.

Insert Table 3 about here

Conclusions

Missing or unreported study results are an impediment to thorough reviews

of any research literature. The problem of unreported correlation values is

pervasive in research reviews which attempt to synthesize results of complete

correlation matrices, especially matrices which involve more than a few

variables. The methods reported here, particularly the empirical Bayes

estimation procedures, should enable researchers to accomplish reasonable

initial analyses in situations wherein the unreported values appear to be

missing at random or simply not studied. Further work is needed to explore

cases in which the missing-data mechanism is more complicated (e.g., involving

truncation) in which the data are unlikely to be missing at random.
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Table 1

Variables Measured in Example Studies

Measures

Study Math Verbal Spatial ability

Becker SAT-M SAT-V Differential Aptitude Tests: Space Relations

Berry SAT-M SAT-V Thurstone and Jeffrey Concealed Figures Test

Rosenberg SAT-M SAT-V Differential Aptitude Tests: Space Relations

Weiner SAT-M SAT-V Group Embedded Figures Test
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Table 2

Sample Sizes and Correlations for Example Data

Sample id Sample

Correlations

Sample size

SAT-M

Spatial

SAT-M

SAT-V

SAT-V

Spatial

1 Becker 1 (1978) nl 74 .47 -.21 -.15

2 Becker 2 (1978) ni - 153 .28 .19 .18

3 Berry 1 (1957) n3 - 48 .48 .41 .26

4 Berry 2 (1957) n4 - 55 .37 .40 .27

5 Rosenberg 1 (1980) ns - 51 L51 .48 .23

6 Rosenberg 2 (1980) n6 - 18 L-61 .74 .44

7 Weiner 1 (1984) n7 - 27 .26 .72 .36

8 Weiner 2 (1984) n6 - 43 .32 .52 .10

9 Weiner 3 (1984) n9 - 35 .58 .64 .40

10 Weiner 4 (1984) nio - 34 .34 .28 -.03
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Table 3

Population Correlations for Example Data Estimated using EM Algorithm

Correlations

Sample id Sample

i'll

SAT-M

Spatial

;9i2

SAT-M

SAT-V

D13

SAT-V

Spatial

1 Becker 1 (1978) .392 -.099 -.049

2 Becker 2 (1978) .381 .244 .136

3 Berry 1 (1957) .396 .402 .214

4 Berry 2 (1957) .391 .418 .224

5 Rosenberg 1 (1980) .394 .469 .249

6 Rosenberg 2 (1980) .394 .706 .374

7 Weiner 1 (1984) .392 .722 .383

8 Weiner 2 (1984) .395 .493 .261

9 Weiner 3 (1984) .402 .583 .306

10 Weiner 4 (1984) .393 .303 .162

dry
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Note

1. For instance, Becker (1992) found correlations among rs ranging from small
negative to large positive values in a synthesis of predictors of science
achievement. Correlations were as large .82 between rs which represented
similar relationships.


