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The benefits of item response theory (IRT) over classical test
theory have been espoused widely by many test specialists (e.g.,
Hambleton, 1989; Lord, 1980). These test specialists assert that IRT
offers test developers increased measurement precision, and so tests
developed using IRT provide accurate assessment of examinee ability (or
proficiency) using fewer items than tests developed using classical
procedures.

The efficient precision of measurement provided by IRT is
accomplished by placing person and item parameters on the same
measurement scale (i.e., item and person parameters are scaled in the
metric of the underlying latent trait). Because the person and item
parameters are on the same measurement scale, they are sample-
independent. That is, the person parameters (ability estimates) are
independent of the particular sample of items administered, and the item
parameters (difficulty, discrimination, guessability) are independent of the
particular sample of examinees tested. This feature of IRT allows for
direct equating of tests assembled from a common pool of items, and
provides an unambiguous means for combining information provided by
different item types onto a common scale.

Though IRT offers many benefits to test developers, it has one clear
limitation: relatively large numbers of examinees (sample sizes) must be
tested to provide accurate results. This limitation is unfortunate because
many tests are administered to, and developed from, relatively small
numbers of examinees. For this reason, most applications of IRT in test
use and development are found in large-scale testing organizations.

Previous research on IRT with small samples has concluded that
sample sizes under 200 are not appropriate for even the simplest (i.e.,
least general) IRT models (e.g., one-parameter logistic model) and that
much larger samples are required for the more complex (e.g., two- and
three-parameter) models (c.f. Hu lin, Lissak, & Drasgow, 1982; Lord,
1968; Ree & Jensen, 1980; Thissen & Wainer, 1982; Wright & Stone,
1979). However, some recent research investigating modifications of
these traditional IRT models has indicated that modified IRT models may
be appropriate for use in some small-scale testing applications (Barnes &
Wise, 1991; Sireci, 1991).

This study invecigated the utility of modified IRT models in a small-
sample testing application. The modified IRT models used were
modifications of the one- and two-parameter logistic models. The purpose
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of this investigation was to determine whether these modified models
would be appropriate in small-sample testing applications.

Dan

The test data analyzed in this study were part of a national
certification examination for persons desiring certification in personal
financial planning. The data represented four separate administrations of
the examination over a four-year period. Because the requirements to sit
for the examination were fairly stringent, only about 150 persons sat for
the examination each year. The number of examinees (sample sizes)
who sat for the examination each year was 173, 149, 106, and 159, for
years 1 through 4, respectively. The examination was comprised of 100
multiple-choice items, and separate test ..orms were administered each
year. The test forms were constructed to be parallel and were equated
using a common-item (nonequivalent groups) linear equating procedure
(Angoff, 1984; Kolen & Brennan, 1987). There were 13 items in common
among the four test forms. The data for these 13 itemE, were aggregated
over the four-year period so that comparisons could be made between the
small-sample data (i.e., the data from a single test administration) and the
aggregate data (i.e., the data combined for the 13 items over the four-year
period).

Item Parameter Stability

The first part of the investigation evaluated the stability of the item
parameters over the four-year period. Item parameter stability was
evaluated by using restricted and unrestricted IRT models and comparing
their fit to the data. The unrestricted IRT models computed the item
parameters for each group separately, 4ile the restricted models
constrained the item parameters to be equal among the four groups.
Thus, the restricted models represented item parameter stability (item
parameters were equal from sample to sample), and the unrestricted
models represented item parameter instability (i.e., the item parameters
were not equal across samples).2

2Restricted IRT models have been used previously in a variety of research contexts. For example,
Stone and Lane (1991) used restricted IRT models to investigate item parameter stability
over time; Thissen, Steinberg, and Gerrard (1986), and Thissen, Steinberg, and Wainer
(1988, in press) used restricted IRT models to investigate differential item functioning; and
Wainer, Sireci, and Thissen (1991) used restricted IRT models to investigate differential
testlet functioning.
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The purpose of the analysis of item parameter stability was to
determine whether an IRT model could be directly applied to a small-
sample data set. If item parameter stability was exhibited over the four
groups, then the item parameters would be appropriate for estimating
examinee proficiency. Using restricted IRT models, Sireci (1991) found
that item parameter stability did not hold over three separate small-sample
test administrations. However, the IRT models in the Sireci (1991) study
did not include a fixed lower-asymptote, which Barnes and Wise (1991)
suggested for use with small data sets.

Mixed IRT Models

The second part of the present investigation evaluated the utility of
"mixed" IRT models for small data sets. Mixed IRT models use more
than one IRT model in a single analysis. Using a mixed IRT model, some
test items could be modeled using a 1PL, while other items could be
modeled using a 2PL, and etc. Thissen (1991) demonstrated how mixed
IRT models can be used to include different item types (e.g., multiple-
choice items and categorical items) in a single analysis run. The purpose
of using mixed IRT models in the present study was to demonstrate how
incorporation of prior information (i.e., incorporation of item parameters
based on an aggregated data set) can increase the precision of IRT
estimates based on small samples.

The One-, Two-, and Three-Parameter IRT Models

The three IRT models used in this study were the one-, two-, and
three-parameter logistic models (1PL, 2PL, and 3PL). There are several
thorough descriptions of these and other IRT models available in the
literature (e.g., Hambleton, 1989; Lord & Novick, 1968; and Thissen &
Steinberg, 1986), and so they are not described in detail here. The
equations for he 1PL, 2PL, and 3PL, respectively are presented below:

(1)

(2)

(3)

P(8)

P(8)

P(8)

=

=

1

1+ exp[a(8 b)]

1

1 + exp[a(8 b)]

c+(1c)
1 + exp[a(8 b)]



where P (8) is the probability of choogng the correct answer as a
function of 8; b is the difficulty level of the item, a is the slope of the item
characteristic curve (ICC) at the point 8 = b, and c is the lower
asymptote of the ICC. The item parameters a, b, and c are commonly
referred to as the discrimination, difficulty, and Tower- asymptote (or
guessing) parameters, respectively. [Ct is fixed in the 1PL and indicates a
constant value of discrimination.] The restricted IRT models used in this
study involved constraining the a, b, and/or c parameters to be equal for
identical items taken by examinees in one of the four different groups.
The modified IRT models used in this study involved fixing one or more of
these parameters to be equal to some pre-specified value.

Comparing Model Fit; -21ogs and X2

All IRT analyses reported here were conducted using the
MULTILOG (version 6.0) IRT software program (Thissen, 1991).
MULTILOG is a very general program that fits a variety of IRT models
to test data using the marginal maximum likelihood method (Bock &
Aitken, 1981). MULTILOG uses a maximum likelihood procedure and so
"negative twice the log likelihood" values (- 2loglks) are provided for each
analysis. Because the difference between the - 2loglks of two competing
(i.e., hierarchical) IRT models is distributed as chi-square, this difference
can be evaluated for statistical significance by computing the probability of
obtaining the observed difference by chance (with degrees of freedom
equal to the difference between the number of free parameters estimated
in each model). If the additional parameters in the more general
(unrestricted) model adds substantially to the data-model fit, then the
difference between the -21oglks will be significant. However, if the
difference is not significant, then the more parsimonious (i.e., restricted)
model is preferred. This chi-square difference test is appropriate only for
comparing hierarchical models (i.e., the more general model estimates all
of the parameters of the restricted model, plus some additional ones).

Procedure and Results

Assessing dimensionality. To determine whether the test items
were appropriate for IRT analysis, an inter-item tetrachoric correlation
matrix was computed for the 13-item data set based on the aggregated
data of 587 (173+149+106+159) examinees. A one-dimensional (factor)
model was fit to this inter-item correlation matrix using LISREL-7
(Joreskog & Sorbom, 1988). This preliminary analysis was conducted to
determine whether the unidimensional assumption of IRT was satisfied.
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The one-factor model accounted for over 66% of the variance in the data
and exhibited low values of residual error (coefficient of determination
was .66, RMSE=.06, and the standard errors for the items ranged from
.049 to .051). Although the assessment of test dimensionality using item
intercorrelations is controversial (cf. Gorsuch, 1983; Green, 1983) these
results were considered to be indicative of unidimensionality, and so the
IRT models were deemed appropriate.

Determining model fit for the aggregated data. The 1PL, 2PL, and
3PL models were fit to the aggregated data set to determine the most
appropriate model for these data. Priors for the lower asymptotes (c
parameters) were set at .25, which was the reciprocal of the number of
response alternatives. The results of these analyses are presented in
Table 1. The significance tests of the differences between the - 2loglks of
the three models indicated that the 2PL was the appropriate model for
these data. This improvement in fit of the 2PL over the 1PL is consistent
with a preliminary analysis of the data that indicated moderate variation
among the item biserials (thus undermining the constant discrimination
assumption of the 1PL). The lack of improvement in fit for the 3PL may
represent either the absence of a guessing factor among the less-
proficient examinees, or may result from an inability to compute accurate
lower asymptotes because of the relatively small sample size (Thissen &
Wainer, 1982).

Table 1
Results of 1PL, 2PL and 3PL Analyses on Aggregated Data

(N=587)

# Free Difference
Model :210_ g lc Parameters X2 4.f

3PL
2PL
1PL

1578 39
1587 26 9 13 .78
1627 14 49 25 .002

Because of the reported difficulty in estimating lower asymptotes
(cj's) from relatively small data sets, and because Barnes & Wise (1991)
recommended incorporating a fixed value for the asymptotes into a one-
parameter model, modified 1PL (MOD-1PL) and modified 2PL (MOD-
2PL) analyses were conducted. These modified models added a fixed
constant lower asymptote to the 1PL and 2PL. The ci's for both modified
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models were fixed at .20, which was the reciprocal of the number of
response alternatives minus .05. This value was used based on previous
research by Barnes and Wise (1991) and Divgi (1984). The results for
the MOD-1PL and MOD-2PL analyses are presented in Table 2. The
MOD-1PL analysis resulted in a smaller -2Iog lk than the 1PL; however,
this loglikelihood was significantly different from that obtained by the
MOD-2PL. Therefore, it appears that the assumption of equal slopes
(discrimination) among the items is not appropriate for these data. The
- 2loglk for the MOD-2PL, was identical to the value obtained in the 2PL
analysis and so it is unclear whether the addition of the lower asymptote
improves the performance of the 2PL model.

Table 2
Results of MOD-1PL, and MOD-2PL Analyses on Aggregated Data

("MOD" indicates the inclusion of fixed, non-zero cj's)
(N=587)

# Free Difference
Model -210glk Parameters x2 cif

MOD-2PL 1587 26 9 13 .78
MOD-1PL 1627 14 49 25 .002

Determining item parameter stability. To determine whether any of
the IRT models could be applied directly to a small-sample data set (i.e.,
the data from one of the four groups), the stability of the item parameters
across the four groups (samples) was investigated.3 The results of these
analyses are reported in Table 3. [The input command file used to fit the
MOD-2PL model is presented in Appendix A to illustrate how the
constraints were imposed via MULTILOG.] A comparison of the
restricted (item parameter stability) and unrestricted (instability) -21oglks
indicated that item parameter stability was not exhibited for the 1PL, 2PL
or 3PL models. Therefore, direct application of these IRT models to any
one of the samples would not be appropriate.

3Differences in proficiency between the examinee samples was not expected to affect the
results of this analysis. Analysis of the mean theta values for each group were not
statistically significant. Furthermore, Stone and Lane (1991) reported that item parameter
stability held over time for groups that differed in proficiency.
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Aside from the traditional 1PL, 2PL, and 3PL models, the stability of
the item parameters resulting from four other IRT models was
investigated (also reported in Table 3). The first two models represent
restricted 2PL models that were investigated by Sireci (1991). The model
labeled "aj's only" constrained only the slopes of the 2PL to be equal
among the four samples. The model "bj's only" restricted only the
location (difficulty) parameters to be equal among the four groups.
Though these two models exhibited better fit than the fully-restricted 2PL,
neither the aj's nor bj's exhibited satisfactory stability. The other two
models investigated were the modified 1PL (MOD-1PL) and 2PL (MOD-
2PL) models that incorporated a fixed value of .20 for the lower
asymptote parameters. These models as failed to exhibit stability over
the four small-sample data sets and so it was concluded that none of the
IRT models studied were appropriate for these small-sample data.

Table 3
Results of Item Parameter Stability Analyses

Model -2loglk
# Free

Parameters
Difference

X2. df P.

3PL
1302 159Unrestricted

Restricted 1548 42 246 117 <.001

2PL
Unrestricted 1305 107
Restricted 1557 29 252 78 .001
aj's only 1364 68 59 39 .018

bj's only 1372 68 67 39 .003

1PL
Unrestricted 1409 56
Restricted 1610 17 201 39 <.001

MOD-2PL
Unrestricted 1306 107
Restricted 1548 29 242 78 <.001

MOD-1PL
Unrestricted 1397 56
Restricted 1560 17 163 39 <.001



The Utility of Mixed IRT Models and Aggregated Data

he preceding analyses indicated that the IRT models used were
not appropriate for the small sample data. However, it is possible that the
item parameters obtained from the a 'gregated data analyses are
appropriate (i.e., stable). Though there is no way to determine the
stability of the parameters estimated from the aggregated data (,aside from
waiting several years to cross-validate on a new aggregated sample), we
can investigate whether the item parameters obtained from the
aggregated data are beneficial in calibration of parameters in a single
(small) sample run. The purpose of this section is to determine whether
such aggregated data can be beneficial to the small-sample test
practitioner.

if common items exist across several small-sample administrations
of a test (as was the case with the present study), then the data on these
common items could be aggregated over administrations. The item
parameters obtained from analysis of the aggregated data are likely to be
more stable than those based on the small-sample administrations. If
appropriate, these item parameters could then be used for item selection,
scaling, equating, and scoring of subsequent test forms.

IRT item parameters based on aggregated data. To investigate the
utility of using aggregated data, some item parameters from the 2PI,
analysis based on the aggregated data were selected for inclusion in a
mixed-model analysis on the data for a single administration (Group 4,
n=159). The item parameters that resulted from the 2PL analysis on the
aggregated data set are presented along with the content area
specification for each item (for the five content areas measured by this
test) in Table 4 . Although a few parameters have high standard errors,
these standard errors are very small in relation to the standard errors
observed in the unrestricted models reported above (i.e., based on
separate calibrations for each sample). The data in Table 4 represent
typical data that can be computed readily by the small-sample test
practitioner who has several items in common over separate
administrations of an examihation. Because many small-sample test
forms are equated using common-item equating procedures, it is likely
that many of these practitioners could easily create such aggregated data
sets. The five items that were selected for the mixed-model IRT analysis
(MIX) are highlighted in Table 4.

10
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Table 4

item Parameters from 2PL Analyses on Aggregated Data
(N.,,7,87)

Content
Item Area aj (s.e.) bj (s.e.)

1 A
2 A
2 A
4 B

5.. B
6 C
'.7. C
8 C
9 C
L D
11 D
12 D
U E

.33 (.11) 1.72 (.66)

.10 (.10) -2.94 (3.14)

.82 (.15) -1.61 (.30)
.68 (.15) -2.58 (.53)
.24 (.11) .66 (.55)
.98 (.15) - .53 (.12)
1.22 (.17) - .93 (.12)
.51 (.15) -3.67 (.99)
.53 (.13) -1.97 (.49)
.60 (.12) - .15 (.18)
.41 (.11) -1.15 (.39)
.56 (.12) - .90 (.26)
.62 (.14) -2.24 (.47)

Note: Values are scaled to lvlu=0.0 and SD=1.0
Items in boldface indicate items selected for mixed analysis reported below.

In selecting items to be used on future test forms, both statistical
and content criteria must be satisfied. Therefore, a resourceful test
developer would most likely select items within each corent area that
fulfill the content specifications of the test and demonstrate satisfactory
statistical criteria. Such statistical criteria would include satisfactory
difficulty and discrimination values. Furthermore, in testing situations
where cut-off scores are used, such as in licensure or certification testing,
the test developer would also want to select items that maximize
discrimination (test information) at the cut-score.

Given such considerations, the test developer could select items
based on the aggregated IRT parameter estimates and incorporate these
estimates into a mixed model analysis. Items could be selected that
maximize the information around the cut-score (given necessary content
constraints). The parameters for the re-used (common) items could be



fixed at their values obtained from the aggregated data, while the new
items on a test form could be fit using a parsimonious IRT model such as
the 1PL or MOD-1PL. Iising this procedure, relatively few item
parameters would need to be estimated and the need for large amounts of

data would be obviated.

To test whether this procedure would result in increased test
information for these data, one item from each of die five content areas
was selected based upon the 2PL difficulty and discrimination parameters
and their standard errors (the selected item numbers are printed in
holder in Table 4). A mixed-model IRT analysis (MIX) was
performed on the data from one of the samples (Group 4, n=159), and
1PL and MOD-1PL analyses were applied to the same data. An
additional model, MOD-MIX was also applied. This model added a fixed
lower asymptote (at .20) to the MIX model . The input command file for
the MOD-MIX analysis is reproduced in the Appendix B. The commands
in this input file illustrate how to impose the necessary equality constraints
among the new (1PL) items, and how to fix the cj parameters for ail 13

items, and the aj and bj parameters for the 5 common items.

To evaluate the relative contribution of the prior information (i.e.,
the 2PL item parameters estimated from the aggregated data) item and
test characteristic curves were computed for four IRT models. that were
fit to the data. The test information curves were computed for each of the
models to determine whether increased test information was obtained by
using the parameters based on the aggregated data.

Test information. Test information curves (TIC) depict the
reciprocal of the standard error values at any point along the ability scale.
Thus, larger amounts of information indicate smaller amounts of
measurement error. The preferred shape of a TIC varies according to
the purpose of the test (Lord, 1977; Hambleton, 1989; Thissen, 1990). For
tests that are designed to discriminate between examinees along the
entire continuum of proficiency (theta), platykrtic (flat) curves are
preferable. For tests that use cut-off scores, leptokurtic curves are
preferred that peak (maximize information) at the level of theta that
corresponds to the cut-score (and so skewness would be determined by
the location of the cut-score). Regardless of the shape desired, tests that
generate TICs that have larger upper asymptotes are preferable to those

with lower upper asymptotes.

Figure 1 presents the test information curve (TIC) resulting from a
1PL analysis of the Group 4 data. Fig are 2 presents the TIC for,the

12



IRT with Small N 12

MOD -1PL analysis for these same data. A comparison of Figures 1 and
2 reveals that inclusion of the fixed cj's increased test information along
the theta (8) range 4 to +3. However, the 1PL exhibited greater
information at the lower end of the 8-scale.

Figure 1: Test Information Curve for 1PL (Group 4 Data)

Figure 2: Test Information Curve for MOD-1PL (includes fixed cj's)



Figure 3 presents the TIC for the MIX analysis. The incorporation
of the fixed parameter values from the aggregated 2PL analysis did not
increase test information at any point along the 0-scale. However, when
the fixed cj's were incorporated into the model (MOD-MIX), the shape
of the TIC changed dramatically. The TIC for the MOD-MIX model is
illustrated in Figure 4. The incorporation of the fixed cj's increased the
test information substantially over the 8 -scale Lange .2 to +.5, and
appears to peak at 8=-1. This value of theta is equivalent to one standard
deviation unit below the population mean and is a common cut-off score
used by many licensing and certification programs. Thus, the TIC
produced by the MOD-MIX analysis may be useful in these application
areas.

Figure 3: Test Information Curve for MIX Model (Group 4 data)

14



Figure 44: Test Information Curve for MOD -MIX (includes fixed cfs)
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RMSE. Though the test information curves are informative
regarding measurement precision, the standard errors associated with the
score of each examinee provides another means for evaluating the
precision of IRT-based scores. To evaluate the precision of the MOD-
MIX model, root mean square residual errors (RMSE) were calculated
for the group 4 examinees using both the 1PL and MOD-MIX models.
The RMSE index is used widely in simulation studies to estimate the
degree of departure of IRT estimates from their known parameters (e.g.,
Barnes & Wise, 1991; Thissen, 1990). Though the "true" proficiency
estimates of the examinees in the study were not known, their proficiency
estimates provided by the aggregate analysis can serve as a reference for
the proficiency estimates computed from the single-sample runs. Thus,
the RMSE were computed by taking the difference between each
examinee's ability estimate ("theta-hat") from the MOD-2PL analysis
(using the aggregated data) and an alternative model (either MOD-MIX
or 1PL), and then taking the square root of the average of these squared
differences.

Table 5 presents the mean, standard deviation, and range of the
standard errors of the theta-estimates, for the 159 examinees in Group 4,
for each of the three models of interest. The RMSE for the MOD-MIX
and 1PL models (using the MOD-2PL as the "true" model) are also
provided. The MOD-MIX model exhibited the smallest average standard
error, although it also exhibited a higher RMSE than did the 1PL model.

1.5



The differences observed between the standard errors and RMSE are
difficult to interpret; particularly in light of the relatively small variation
among the estimates for the 1PL. Further analyses were planned to
replicate the RMSE analyses with the other three sample, but
unfortunately, these analyses could not be completed in time for this
presentation. However, it is likely that the RMSE analyses may not be
appropriate because the true theta values are not known.

Table 5
RMSE and Standard Errors of 1PL and MOD-MIX Models

Model Avg. S.E. St. Dev. Range RMSE

MOD-2PL .69 .03 .658 - .796

MOD-MIX .66 .05 .597 - .783 .0471

1PL .69 .02 .657 - .755 .0261

Discussion

This investigation has first, demonstrated that restricted modeling
can be used to investigate item parameter stability over small-samples of
real te, t data, and second, investigated a means by which some small-
sample test practitioners may benefit from IRT methodology. Though the
problems with using IRT under small-sample conditions have been noted
since the early days of IRT (Lord, 1968), little research has been done to
redress this problem. Perhaps the bottom line is that IRT cannot be used
with sample sizes smaller than 200 examinees, no matter how much we
incorporate prior information and/or fiddle with the parameter estimation
procedure. The results of this study neither reject nor support such a
statement, and so it is clear that future research is need in this area.
Though the challenge is great, the effort will be justified if IRT can be
brought into the hands of small-sample test practitioners.

One avenue for future research may be to increase the number of
items for which aggregated data are available and include them in a
calibration run for an actual examination. In this study, only five items
incorporated prior information (aside from the fixed lower asymptotes on
all items in the MOD models), and they were analyzed together with only
e' ;ht other items. The contribution of prior information to longer test

16



lengths, and the inclusion of prior information on more of the test items,
are likely to improve test information. Future research should also focus
on selecting items that will maximize a target test information curve.

A rather atypical feature of this study was that fairly complex IRT
models were applied to these data, yet relatively small numbers of
parameters were estimated. For example, in the MOD-MIX model,
essentially a 3P1, model was fit to the data, yet only 8 parameters were
estimated for the 13 items! This reduction in the number of parameters to
be estimated stems from the fixing of the cj's for all items, and the fixing
of the cif s and kiss for the five "common" items. Because the
data/parameter ratio is the keystone for robust parameter estimation, any
promise for the use of IRT with small data sets must concentrate on
increasing that ratio. Though fixing item parameters reduces the number
of parameters to be estimated by the model, it invokes the critical question
"How defensible are the parameter values that are fixed in these runs?"
The research of Divgi (1984), Barnes & Wise (1991) suggests that fixed
cj's are defensible; however their findings must be replicated with real
test data. Though this study offers promise for IRT application in small-
sample settings, the stability of the item parameters gathered from test
data aggregated over several small-sample administrations requires
further investigation.
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Appendix A

MULTILOG INPUT FOR MOD-2PL MODEL
(i.e., restricted (stability) model with fixed lower asymptotes):

>PRO RA IN NI=52 NG=4 NE=587;

>TEST ALL L3;

>EQUAL AJ IT= (14(1)26) WI=(1(1)13);

>EQUAL AJ IT=(27(1)39) W1=(14(1)26);
>EQUAL AJ IT=(40(1)52) WI=(27(1)39);
>EQUAL BJ IT=(14(1)26) W1=(1(1)13);
>EQUAL BJ IT=(14(1)26) WI=(1(1)13);
>EQUAL BJ IT= (14(1)26) W1=(1(1)13);

>FIX ALL CJ VA=.20;

>END;
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APPENDIX B

MULTILOG INPUT FOR MOD -MIX MODEL: (Fixed parameters for
items 3,5,7,10,&13 based on aggregated 2PL; fixed lower asymptotes).

>PRO RA IN NI=13 NG=1 NE=159;
>TEST ALL L:3;

>EQUAL
>EQUAL
>EQUAL
>EQUAL
>EQUAL
>EQUAL
>EQUAL

AJ Cr=(8,9,11,12) WI=(1,2,4,6);
AJ IT=2 WI=1;
AJ IT=4 Wi=1:
AJ IT=6 WI=4;
AJ IT=9 WI=8;
AJ IT=11 WI=9;
AJ IT=12 WI=11;

>FIX ALL CJ VA=.20;

>FIX IT=3 AJ VA=.82;
>FIX IT=3 BJ VA=-1.61;
>FIX IT=5 AJ VA=.24;
>FIX IT=5 BJ VA=.66;
>FIX IT=7 AJ VA=1.22;
>FIX IT=7 BJ VA=-.93;
>FIX IT=10 AJ VA=.60;
>FIX IT=10 BJ VA=-.15;
>FIX IT=13 AJ VA=.62;
>FIX IT=13 BJ VA=-2.24;

>END;


