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ABSTRACT

Some years ago, Efron and his colleagues developed bootstrap

resampling methods as a way of estimating the degree to which

statistical results will replicate across variations in sample.

A basic problem in the multivariate use of bootstrap procedures

involves the requirement that the results across resamplings must

be rotated to best fit in a common factor space before any

estimators are averaged. The author demonstrates how factor

analysis is useful for illustrating this problem and its

resolution. The statistical program FACSTRAP is used to

calculate boostrap confidence intervals in factor analysis.
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BOOTSTRAP METHODS IN THE PRINCIPAL COMPONENTS CASE

Social science research is ultimately a search for truth

about the nature of and the relationships among various

phenomena. Hence, when using correlational statistical

techniques for obtaining scientific results, researchers should

be appropriately concerned with the external validity (i.e., the

generalizability) of obtained results with respect to a broader

population of interest. Since there is always the possibility

that results of such analyses will capitalize upon chance, it is

desirable that researchers attempt to replicate research findings

across various samples selected from a given population. Thus,

replication has been regarded as "the cornerstone of science"

(Carver, 1978, p. 392). As Holmes (1990, p. 14) has noted:

Replication, the repeating of studies, is the

cornerstone of scientific investigation. Before a

study can be considered useful, it must be

replicated. . In any study, there is the

possibility that the results could have been obtained

by chance alone. . With replication studies,

either the original findings will be supported, or

disagreements between the original study and the

replication will point to problem areas. As these

problem areas are investigated, researchers come

closer and closer to the truth.
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Although replication is crucial, it can involve time-

intensive procedures. This is problematic considering that the

timeliness of reporting of noteworthy findings is crucial if such

findings are to make an impact on fut-Ire practice. Thus, as

Thompson (1992, p. 15) has noted, "it is not always convenient to

conduct a replication prior to interpreting results (of a given

study]." To combat this problem, researchers have developed

several methods which allow the researcher to creatively use a

single sample to both generate correlational results and to

estimate the degree to which results will generalize. These

methods include (a) the "cross-validation" ("holdout," or

"invariance") method, (b) the "jackknife" method (Tukey, 1958),

and (c) the "bootstrap" method (Diaconis & Efron, 1983; Efron,

1979). A number of comparative summaries of these and other

related methods have been provided in the extant literature

(e.g., Atifi & Clark, 1984; Cooil, Winer, & Rados, 1987; Daniel,

1989a; Efron & Gong, 1983; Thompson, 1988b, 1992). A brief

explanation of these three procedures follows.

The Cross-Validation Method

When employing the cross-validation method, the researcher

utilizes a given Aample to both derive and validate a given

statistical estimator. For example, in the discriminant

analysis case, this is done "by randomly splitting the original

sample . . into two [approximately equivalent] subgroups: one

for deriving the discriminant function and one for cross-
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validating it" (Afifi & Clark, 1984, p. 266). Understandable

descriptions of the cross-validation method replete with

statistical examples are provided by Thompson (1989) and Ferrell

(1992). This method is appealing as it can easily be done within

the domain of a single study; yet, it is problematic as it is

subject to sample bias, especially when the size of the sample is

small.

The Jackknife Method

The jackknife method for substantiating external validity of

research results involves repeated computation of a given

statistic, with one case or a given subset of cases omitted from

the data set each time the statistic is computed. The Jal of

the jackknife procedure is to "average out- the effects of

outlying or atypical cases. In each step of the jackknife

analysis, "pseudovalues" (Quenouille, 1956) of the statistic are

computed. Once a series of analyses has been run with all

possible data subsets, in turn, omitted from the sample, the

resulting pseudovalues of the selected statistic are averaged to

provide a "jackknifed" estimate of the statistic. Stability of

the original statistic (run with the entire data set) is assessed

by determining whether it falls within confidence intervals for

the jackknifed values. Since jackknife methods minimize sample

splitting (i.e., the size of any jackknife sample is nearly as

large as the original sample), they are particularly useful when

sample size is small. For illustrative examples of how to
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compute the jackknifed value of a statistic, see Crask and

Perreault (1977), Daniel (1989a), and Tucker and Daniel (1992).

gootstraP Method

The bootstrap method involves "creating" a mock population

from a representative sample, from which multiple samples can

then be drawn. The method extends the usefulness of the

jackknife procedure as it allows for computation of a given

statistic across a maximal number of fluctuations in the sample

(Lunneborg, 1983). Borrello and Thompson (1989, p. 320) offer

the following description of the bootstrap method:

The bootstrap approach requires the researcher to

create a large artificial population of data by

copying the data set over and over again into a data

file. Dozens or hundreds of random samples are drawn

from the population, and statistics are calculated

over and over again. The average results are then

interpreted for each statistic. The standard

deviations of these estimates are especially valuable

because they provide an indication of how stable the

estimates are across variations in samples. . .

[B]ootstrap analysis involves sampling with

replacement and a given subject may be used to

generate more than one case of data in a given

analysis.

In short, bootstrap methods allow the researcher to simulate

7
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an actual population from which realistic samples are drawn.

These methods lend the researcher more evidence than either the

cross-validation or

for fluctuations in

(1979, p. 1) notes,

than the jackknife,

jackknife procedures regarding the potential

results across samples. Hence, as Efron

"bootstrap methods are more widely applicable

and also more dependable." Nevertheless,

bootstrap techniques, like other sample-splitting procedures, are

neither flawless nor panacean. Thompson (1992, p. 15) succinctly

sums up the usefulness of bootstrap methods and the other two

aforementioned procedures while also acknowledging their

limitations:

Since all three strategies are typically based on a

single sample of subjects in which the subjects

usually have much in common (e.g., point in time of

measurement, geographic origin) relative to what they

would have in common with a separate sample, the

three methods all yield somewhat inflated estimates

of replicability. Because inflated estimates of

replicability provide

replicability than no

statistical significance

can still be useful. .

a better

estimate

testing),

estimate of

at all (i.e.,

these procedures

Purpose of the Present Study

Considering the usefulness of bootstrap techniques, the

purpose of the present paper was to apply bootstrap methodology
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in the interpretation of principal components factor analytic

results. Bootstrap logic is especially applicable to factor

analytic results as it may provide to factor analysts a wealth of

evidence related to significant interpret,stion issues, including

questions about number of factors to xtract and interpret,

magnitude of structure coefficients, and stability of results

across sample fluctuations.

As a rationale for applying these procedures to the

interpretation of factor analytic results, the following

assumptions were made:

(a) A single representative sample can serve as the source

of both initial statistical estimates and replication

data.

(b) A given sample representative of the population can be

interpreted to actually be many samples.

(c) Bootstrapped estimates of statistics can provide

meaningful estimates of the values and relative

stability of these statistics in the actual population.

In accomplishing the purposes of the present study, a

computer program designed to calculate bootstrap factor analytic

statistics was utilized. This program, called FACSTRAP

(Thompson, 1988b), computes three sequences of bootstrap analyses

each involving different specified sample sizes, using bootstrap

samples from a data file based on an original representative

sample of data provided by the user. For each sample in a given

sequence, FACSTRAP computes the eigenvalues of the first 15
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factors, followed by descriptive statistics for the average

eigenvalues across the sequence. It also produces means and

standard deviations for the average factor structure coefficients

across a number of factors to be specified by the user. Other

useful statistics are available as well.

The following discussion will provide (a) a brief overview

of factor analysis, (b) a review of problems with replicability

of factor analytic results, and (c) a logic for understanding how

bootstrap methodology can be used to address replicability

issues. An example of how the program FACSTRAP can be used to

address the replicability issue in the factor analytic case is

then presented.

tools

A Brief Overview of Factor Analysis

Factor analysis has enjoyed a place of prominence among the

of the social scientist. Factor analytic methods have

useful in social science research in theory development

test validation (Humphreys, Ilgen, McGrath, & Montanelli,

proven

and in

1969). Considering its usefulness, factor analysis has been

described as "one of the most powerful tools yet devised for the

study of complex areas of behavioral scientific concern"

(Kerlinger, 1986! p. 689), and as "the furthest logical

development and reigning queen of the correlational methods"

(Cattell, 1978, p. 4).

In explaining the logic of factor analysis, social

scientists (e.g., Cattell, 1988) often conceive of a "data box,-

0
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i.e., a three-dimensional model for measuring and describing any

given psychological or ideological phenomenon. The three

dimensions (or modes) which constitute the model are usually

considered to be persons, items, and occasions of measurement.

Factor analysis generally involves any two of these modes

simultaneously, one of which is factored across the other.

In its most common form (known as "R-technique" factor

analysis), factor analysis is used to factor items across people:

In conducting an "R-technique" factor analysis,

the researcher first selects a finite set of R

variables from a universe of possible variables

designed to measure a specific construct. The choice

of variables may be based on theoretical

considerations or on the researcher's own

hypothetical notions regarding the nature of the

construct. Data are collected on these variables

from a sample of persons thought to be representative

of the researcher's population of interest. A square

(2 x 2) matrix of association (correlation matrix) is

constructed to determine the intercorrelations among

the R variables. On the basis of these correlations,

a new rectangular correlation matrix is constructed

with R variables serving as the rows and s common

factors serving as the columns. (Daniel, 1990, p. 3)

Although R-technique is the most commonly used form of

factor analysis, other variations are used with some frequency.

11
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For example, Q-technique factor analysis (Stephenson, 1953) uses

the same two modes as R-technique, although the modes are

reversed, i.e., the persons are factored across the variables,

yielding discrete factors of persons who behave or think

differently from persons in other factors in regard to the

construct of interest. Daniel (1989c) provides an example of Q-

technique factor analysis using data from an actual educational

research study.

Factor analytic procedures may be considered as either

"exploratory" or "confirmatory" depending on the factor

extraction methods employed, and on the degree to which the

researcher dictates an a priori desired factor structum *Daniel.

1989b). Furthermore, it is also possible for the researcher to

utilize exploratory factor extraction methods followed by

confirmatory factor rotation. As Thompson (1988b, p. 682) notes,

"Factors can also be extracted using exploratory methods and then

rotated in a confirmatory manner to 'best fit' position with a

theoretically derived structure matrix." For example, factor

matrices derived from two separate studies could be projectod

into the same factor space to determine the degree to which the

factor structures are similar.

Problems with the Replicability of Factor Analytic Results

As previously noted, replication is the hallmark of

scientific inquiry. It is important in factor analysis as in all

methods to obtain results which are generalizable to the larger

12
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population of interest. In discussing threats to the

replicability of factor analytic results, Kerlinger (1979, p.

198) notes that "a substantial factor loading can occur by

chance. Thus the analyst may try to interpret what is an

uninterpretable result." As Humphreys et al. (1969) note, the

investigator can capitalize on chance not on'y during the

extraction phase of the given analysis, but' also during the

rotation phase.

By substantiating a given factor structure across samples,

researchers tend to diminL.sh the possibility that results are

due merely to artifacts of a given sample. Interestingly,

however, it is normal to expect a certain level of flactuation in

factor analytic statistics (e.g., factor structure coefficients,

eigenvalues, variable communalities, factor scores) when there

are differences in the number of items, the number of

observations (e.g., persons), or the number of factors extracted,

even when the factors are relatively stable (Humphreys et al.,

1969).

As Harman (1967) and Lambert, Wildt, and Durand (1990) have

observed, the "number of factors" decision tends to impact the

estimation of various factor parameters. In fact, it has been

noted that -rotated loadings and factor score coefficients may be

substantially distorted i.4! too few or too many factors are

retained" (Lambert et al., 1990, p. 34). This observation is

particularly problematic in exploratory factor analytic

procedurez as the number of factors retained and interpreted is

13
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often based on one of several mechanical (and to some extent

arbitrary) "cutoff" criteria, e.g. Guttman's (1954) "eigenvalue

greater than unity criterion" or Cattell's (1966) "scree- test.

Although these criteria may prove useful when eigenvalues

are relatively sample invariant, in the absence of information

about the variance of the sample eigenvalues, conclusions about

factor meanings based on the parameters obtained with the given

sample are tenuous at nest (Lambert et al., 1990). Eigenvalues

just below or just above these cutoff criteria are most subject

to variability across samples. For example, using the eigenvalue

greater than unity criterion, a factor with an eigenvalue of 1.12

would be retained while one with an eigenvalue of 0.97 would be

ignored, even though the relative amount of variance accounted

for by each of the two factors would be about the same (Lambert

et al., 1990). However, even with relatively small fluctuations

in the eigenvalues of either of these factors across a different

sample, the decision on whether to interpret the factors could be

different.

Employing Bootstrap Methodology in Factor Analysis

Although bootstrap procedures have been employed with a

variety of statistical 0,stimators, their application in the study

of factor eigenvalues has been largely unexplored (Lambert et

al., 1990). As previously noted, one advantage of using

bootstrap ,kocedures with any statistical procedure is that the

techniques allow the researcher an opportunity to build a

14
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distribution for the given statistic using the "mega file"

created from the data in hand. By building such a distribution

for factor eigenvalues, the researcher could then compute

confidence intervals around each eigenvalue based on its standard

deviation, and thereby estimate "normal" fluctuations in its

value across samples (Thompson, 1988b). Similar distributions

for factor structure coefficients could be computed as well, and

the researcher could use these distributions to support or reject

original :,,eliefs about which items most clearly define a given

factor.

This information could prove extremely useful in factor

retention and interpretation decisions, especially when employing

various frequently-used interpretation criteria. As Thompson

(1988b, pp. 662-683) notes:

If variations in samples do n t have much effect on

the estimates, then these standard deviations will be

small and the researcher can reasonably vest more

confidence in a belief that results will generalize.

Thus, the bootstrap approach may better support

inferences about invariance or replicability of

results in new samples.

Currently, there are several statistical computer programs

available for performing factor analysis bootstrapping procedures

(e.g., Lambert et al., 1990; Thompson, 1988b). As noted by

Thompson (Scott, Thompson, & Sexton, 1989; Thompson, 1988b), one

of the difficulties of applying bootstrap procedures in factor

15
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analysis is the requirement that factors are presented in a

common result space. Similar factors may be extracted across

various sample, yet the factors may not occur in the same order

as ranked by magnitude of their eigenvalues (e.g., Factor II from

one analysis may occur as Factor III in another analysis). Hence,

it has been recommended that each alternative factor analytic run

should be rotated to best fit to a given "target- matrix derived

from the original factor run, or else based on an ideal matrix of

ones, negative, ones, and zeroes (Thompson, 1988b).

Procednres

Am intact data set (Thompson, 1988a) was utilized for the

purpose of the present investigation. The data included the

responses of 298 persons to 40 i.ems from the the Bem Sex-Role

Inventory (Bem, 1981), including 20 "masculine" items and 20

"feminine" items. An initial principal components factor

analysis was performed using these data. The analysis yielded 13

factors with prerotational eigenvalues greater than unity. Based

on the scree plot of the eigenvalues, two factors were extracted.

The varimax rotated factor matrix for this solution is presented

in Table 1.

INSERT TABLE 1 ABOUT HERE

A population target matrix of ones, negative ones, and

zeroes was specified based on the results of this original

analysis run with the entire sample of 298 persons. This target

1 f;
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matrix, which is presented in Table 2, was input into the program

FACSTRAP (Thompson, 1988b). The Table 1 matrix was projected

into the same factor space as this target matrix, resulting in

the "Procrustean-rotated" matrix shown in Table 3.

INSERT TABLES 2 AND 3 ABOUT PERE

Bootstrap samples were then selected from the original set

of 298 subjects using n's of 100, 200, and 600. Ten samples were

selected for each of these three n sizes, and the FACSTRAP

program was utilized to compute estimates for the first 15

eigenvalues as well as Procrustes rotated factor matrices for

each of the 30 resultant analyses. The program then was used to

compute average factor analytic statistics across the three sets

of analyses.

Results

Table 4 presents the descriptive statistics for the

eigenvalues of the first five factors across the 10 bootstrap

samples of 100 subjects each. Even though the FACSTRAP analysis

yielded estimates of the first 15 eigenvalues, only five are

reported for this analysis as well as the subzequent analyses as

the results focus largely on only the first two factors. The

average factor structure coefficients for items across these two

factors along with their standard deviations are presented in

Table 5.

DISISLiABLII.A.AEWEALT_LIESE
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In general, these results confirm the original factor

structure as shown in the Table 1 matrix. A scree plot of the

eigenvalues would confirm the appropriateness of the two-factor

solution. In addition, the make-up of the factors would remain

relatively constant as suggested by the saliency of the items

across the two factors. Interestingly, however, same of the

items' structure coefficients are more negligible in magnitude

across the averaged bootstrap matrix as compared to the matrix

derived from the original result even for the factor with which

they are most highly correlated. For the most part the standard

deviations of the structure coefficients tend to be small,

suggesting that there is a relatively high degree of stability in

the results. Nevertheless, there is also a general trend for the

standard deviations associated with smaller structure

coefficients to be somewhat larger.

Table 6 presents the descriptive eigenvalue statistics for

the 10 principal components analyses run with 200 subjects each.

The first five eigenvalues are summarized in the table. The

average factor structure coefficients for the first two factors

along with their standard deviations are presented in Table 7.

INSERT TABLES 6_IjD7 ABOUT HERE

Once again, these results do not yield too many surprises,

with the magnitude of the eigenvalues suggesting a scree solution

of two factors, and with items relatively salient with the

factors they were intended to be identified with. What is
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interesting, however is the increased stability of both the

eigenvalues and the structure coefficients as judged by those

statistics' standard deviations when compared to the standard

deviations of these statistics across the aver,ge of the 100

Person sequence of 10 factor runs. Hence, increasing sample size

in the bootstrap sequence seems to enhance the stability of the

various statistics of interest.

Descriptive statistics for the eigenvalues across the first

five factors for 10 bootstrap sample of 6U0 subjects each are

presented in Table 8. Average factor structure coefficients for

the 40 items across these 10 analyses are presented in Table 9.

marstmaraiunwagLiza
These results further confirm the original factor

interpretations, with larger structure coefficients tending to be

more highly stable than smaller ones, and with standard

deviations of the structure coeffients and the eigenvalues as a

whole tending to be smaller than those computed using either the

100- or 200-subject bootstrap sample sequences.

Discussion

The foregoing results illustrate several important points

about the usefulness of bootstrap procedures in interpreting the

results of principal components factor analysis. First,

bootstrap methods lend credibility to the factor analyst's choice

of the number of factors to extract and interpret. In the

example presented here, thv choice of two factors was confirmed
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across realistic bootstrap samples ranging in size from 100 to

600.

Second, bootstrap methods can provide evidence for increased

confideace in researchers' interpretation of the meaning of

factors. That the stability of the estimators increased with the

of subjects is particularly noteworthy, indicating that

bootstrapping is particularly valuable in situations involving

small samples. The foreo_ing results certainly suggest that the

original sample utilized for the study is indeed representative

of a larger population of interest, and further lend credence to

the assumption that the defined factors do indeed represent

constructs of interest rather than meaningless conglomerations of

items due to chance relationships.

Finally, bootstrap methods demonstrate well the importance

of replication in the social sciences. Obviously, nothing can

ever take the place of true replication of research findings.

However, bootstrap methods may be beneficial in helping

researchers to think beyond the immediate findings of their

research to project with some confidence notions regarding the

impact of the findings to a larger population of interest.

20
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Table 1
Varimax Rotated Two-Factor Solution Using Original Sample

(a : 298)

Factor 1 Factor II

Iteml .19493 -.37889

Item2 .17518 -.38570
Item3 .16021 -.35839
Item4 .22808 -.55195
Item5 -.11821 -.52797

Item6 .12677 -.65976
Item? -.10674 -.32439

Item8 -.06872 -.59485

Item9 .13436 -.61207

Item10 -.09345 -.52323

Itemll .14351 -.46348
Item12 -.08901 -.34501

Item13 .11658 -.35009

Item14 .11986 -.45518

Item15 .12970 -.45320

Item16 .16182 -.35069
Item17 -.28116 -.42322

Item18 .06935 -.16374
Item19 .25822 -.40750
Item20 .11935 -.64954
Item21 .60658 .01195

Item22 .59244 -.01662

Item23 .60768 -.06985
Item24 .57032 -.03721

Item25 .54270 -.14260
Item26 .62027 -.15151
Item27 .60304 -.14913
Item28 .61596 .04132

Item29 .58906 .12570

Item30 .74256 -.00947
Item31 .34769 -.05202

Item32 .51041 -.18136
Item33 .08966 .20884

Item34 .28268 -.06850
Item35 .52269 -.14569
Item36 .28519 .26064

Item37 .02580 .15445

Item38 .06030 .28680

Item39 .22250 .12391

Item40 .34720 .31287
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Table 2
Population Target Matrix

Factor 1 Factor II

Item1 0 -1

Item2 0 -1

Item3 0 -1

Item4 0 -1

Item5 0 -1

Item8 0 -1

Item7 0 -1

Item8 0 -1

Item9 0 -1

Item10 0 -1

Itemll 0 -1

Item12 0 -1

Item13 0 -1

Item14 0 -1

Item15 0 -1

Item16 0 -1

Item17 0 -1

Item18 0 -1

Item19 0 -1

Item20 0 -1

Item21 1 0

Item22 1 0

Item23 1 0

Item24 1 0

Item25 1 0

Item26 1 0

Item27 1 0

Item26 1 0

Item29 1 0

Item30 1 0

Item31 1 0

Item32 1 0

Item33 0 1

Item34 1 0

Item35 1 0

Item36 1 0

Item37 0 1

Item36 0 1

Item39 1 0

Item40 1 0
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Table 3
Procrustean Rotated Factor Matrix for Original Sample

= 298)

Factor I Factor II

Iteml .17321 -.38940

Item2 .15311 -.39499

Item3 .13970 -.36687
Item4 .19653 -.56395
Itein5 -.14785 -.52044
Item6 .08963 -.65988
Item7 -.12490 -.31784
Item8 -.10222 -.59002

Item9 .09957 -.61868
Item10 -.12286 -.51711
Itemll .11709 -.47085
Item12 -.10836 -.33943
Item13 .09661 -.35612
Item14 .09395 -.46122
Item15 .10389 .45980

Item16 .14174 -.35927
Item17 -.30463 -.40666
Item18 .03456 -.61667
Item19 .23479 -.42144
Item20 .08246 -.65525
Item21 .60629 -.02234
Item22 .59055 -.05006

Item23 .60276 -.10407
Item24 .56730 -.06938
Item25 .53377 -.17304
Item26 .61072 -.18632
Item27 .59365 -.18297
Item28 .61731 .00645

Item29 .59522 .09222
Item30 .74084 -.05142
Item31 .34420 -.07158
Item32 .49935 -.20991
Item33 .10134 .20344

Item34 .27836 -.08437
Item35 .51363 -.17499

Item36 .29946 .24411

Item37 .03449 .15274

Item38 .07641 .28294

Item39 .22914 .11114
Item40 .36433 .29275
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Table 4
Descriptive Statistics for Eigenvalues Across 10 Bootstrap

Samples of ,00 Subjects Each

IV V

Mean 6.61 4.49 2.81 2.44 2.14

SD 0.63 0.68 0.26 0.22 0.16

Minimum 5.63 3.52 2.48 2.08 1.93

Maximum 7.60 5.44 3.22 2.84 2.38

Range 1.97 1.92 0.74 0.75 0.45

2
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Table 5
Average Factor Structure Coefficients Based on 10 Bootstrap

Samples of 100 Subjects Each

Factor I Factor II

Iteml .154(.166)* -.342(.133)

Item2 .154(.115) -.428(.079)

Item3 .144(.138) -.374(.075)
Item4 .221(.106) -.519(.060)
item5 -.144(.120) -.557(,092)

Item6 .116(.083) -.618(.076)

Item7 -.114(.133) -.286(.139)

Item8 -.106(.094) -.570(.070)

Item9 .107(.111) -.626(.044)

Item10 -.116(.093) -.528(.098)

Itemll .102(.103) -.456(.075)

Item12 -.101(.165) -.290(.085)

Item13 .146(.150) -.383(.112)

Item14 .106(.154) -.454(.099)

Item15 .097(.076) -.451(.117)

Item16 .140(.116) -.355(.167)
Item17 -.301(.085) -.360(.095)

ItemlB .039(.155) -.557(.067)

Item19 .237(.107) -.447(.086)
Item20 .056(.102) -.626(.111)

Item21 .636(.078) -.036(.107)

Item22 .550(.178) -.119(.212)

Item23 .600(.065) -.124(.122)
Item24 .560(.140) -.091(.117)

Item25 .556(.076) -.153(.181)

Item26 .607(.099) -.237(.104)

Item27 .586(.078) -.213(.160)

Item28 .621(.101) .019(.146)

Item29 .616(.092) .047(.104)

Item30 .732(.057) .077(.099)

Item31 .326(.105) -.039(.173)

Item32 .505(.052) -.203(.079)

Item33 .040(.143) .165(.090)

Item34 .322(.064) -.091(.079)

Item35 .542(.060) -.138(.118)

Item36 .280(.121) .240(.151)

Item37 .006(.156) .176(.164)

Item38 .005(.187) .205(.115)

Item39 .202(.140) .075(.094)

Item40 .343(.123) .266(.117)

*Structure coefficients are presented first followed by their

standard deviations in parentheses.
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Table 6
Descriptive Statistics for Eigenvalues Across 10 Bootstrap

Samples of 200 Subjects Each

IV V

Mean 6.46 4.56 2.33 2.10 1.82

SD 0.50 0.29 0.18 0.12 0.15

Minimum 5.62 4.10 2.13 1.96 1.64

Maximum 7.07 5.03 2.56 2.29 2.12

Range 1.45 0.93 0.44 0.33 0.47
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Table 7
Average Factor Structure Coefficients Based on 10 Bootstrap

Samples of 200 Subjects Each

Factor I Factor Il

Item1 .176(.095)* -.319(.067)
Item2 .162(.084) -.442(.060)
Item3 .217(.114) -.352(.048)
Item4 .163(.083) -.568(.077)
Item5 -.117(.069) .464(.061)
Item6 .090(.058) -.668(.059)
Item7 -.139(.085) -.352(.061)
Item8 .094(.111) -.602(.071)
Item9 .094(.089) -.618(.029)
Item10 -.129(.069) -.498(.066)
Itemll .136(.086) -.498(.047)
Item12 -.123(.093) -.316(.089)
Item13 .116(.068) -.339(.108)
Item14 .154(.082) -.477(.064)
Item15 .092(.056) -.479(.103)
Item16 .149(.056) -.382(.088)
Item17 -.325(.081) -.367(.090)
Item18 .016(.035) -.595(.034)
Item19 .276(.086) -.432(.077)
Item20 .073(.088) -.658(.045)
Item21 .646(.042) -.018(.073)
Item22 .605(.063) -.059(.062)
Item23 .580(.058) -.123(.070)
Item24 .555(.082) -.107(.065)
Item25 .532(.070) -.160(.094)
Item26 .612(.069) -.138(.074)
Item27 .614(.041) -.217(.069)
Item28 .646(.051) .020(.082)
Item29 .598(.082) .104(.056)
Item30 .757(.038) -.040(.070)
Item31. .341(.108) -.100(.095)
Item32 .506(.048) -.220(.078)
Item33 .163(.094) .213(.095)
Item34 .308(.120) -.086(.108)
Item35 .503(.069) -.168(.077)
Item36 .311(.051) .273(.070)
Item37 .051(.062) .222(.088)
Item38 .062(.048) .252(.094)
Item39 .233(.098) .084(.142)
Item40 .399(.064) .242(.091)

*Structure coefficients are presented first followed by their

standard deviations in parentheses.
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Table 8
Descriptive Statistics for Eigenvalues Across 10 Bootstrap

Samples of 600 Subjects Each

IV V

Mean 6.21 4.37 2.08 1.91 1.74

SD 0.18 0.21 0.06 0.07 0.05

Minimum 5.82 3.93 2.00 1.80 1.65

Maximum 6.38 4.59 2.17 2.01 1.83

Range 0.56 0.86 0.17 0.21 0.18
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Table 9
Average Factor Structure Coefficients Based on 10 Bootstrap

Samples of 600 Subjects Each

Factor I Factor II

Item1 .183(.033)* -.341(.038)
Item2 .170(.052) -.385(.054)
Item3 .172(.047) -.349(.039)
Item4 .187(.039) -.571(.033)
Item5 -.1291.046) -.516(.043)
Item6 .100(.038) -.6551.032)
Item7 -.1201.043) -.329(.054)
Item8 -.1021.057) -.606(.034)
Item9 .101(.039) -.616(.023)
Item10 -.121(.037) -.520(.040)
Itemll .126(.053) -.465(.042)
Item12 -.1211.082) -.328(.042)
Item13 .0891.036) -.333(.051)
Item14 .125(.062) -.472(.048)
Item15 .106(.062) -.4671.047)
Item16 .161(.051) -.366(.047)
Item17 -.345(.035) -.3911.048)
Item18 .010(.041) -.612(.020)
Item19 .259(.042) -.4201.061)
Item20 .072(.045) -.6421.042)
Item21 .6171,045) -.0251.054)
Item22 .607(.032) -.061(.039)
Item23 .591(.019) -.107(.022)
Item24 .575(.042) -.0951.031)
Item25 .533(.039) -.173(.040)
Item26 .6091.026) -.188(.040)
Item27 .5971.028) -.181(.052)
Item28 .6111.044) .014(.053)
Item29 .588(.038) .060(.034)
Item30 .748(.023) -.061(.034)
Item31 .337(.058) -.091(.025)
Item32 .4951.032) .2251.040)
Item33 .122(.065) .1991.053)
Item34 .2921.071) -.113(.051)
Item35 .5211.047) -.169(.053)
Item36 .293(.070) .263(.048)
Item37 .025(.056) .174(.054)
Item38 .052(.042) .271(.052)
Item39 .229(.053) .108(.059)
Item40 .383(.032) .2991.076)

*Structure coefficients are presented first followed by their

standard deviations in parentheses.


