
DOCUMENT RESUME

ED 345 524 FL 020 219

AUTHOR Helmreich, Stephen C.
TITLE Template Construction as a Basis for Error-Analysis

Packages in Language Learning 7)rograms.

PUB DATE 87
NOTE 12p.; For the journal as a whole, see FL 020 212.
PUB TYPE Reports - Descriptive (141) -- Journal Articles (080)
JOURNAL CIT IDEAL; v2 spec iss p97-106 1987

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Authoring Aids (Programing); Computer Assisted

Instruction; *Computer Software; *Error Analysis
(Language); *Pattern Drills (Language); Programing;
Second Language Instruction; *Second Languages;
Sentence Structure

ABSTRACT
An "intelligent" system for constructing

computer-assisted pattern drills to be used in second language
instruction is proposed. First, some of the difficulties in designing
intelligent error analysis are discussed briefly. Two major
approaches to error analysis in computer-assisted instruction,
pattern matching and parsing, are described, and their advantages and
disadvantages are examined. A third approach that appears to minimize
technical problems is then outlined. This approach is based on the
idea that a limited list of randomly generated sentences in the
target language is useful in constructing transformation or pattern
drills. The system consists of four parts including: (1) a module in
which sentence templates can be constructed; (2) a procedure for
transforming linguistic material into target language sentences; (3)

stimulus sentence creation, including student response; and (4) error
analysis, providing feedback to both the student and the
sentence-generating system and allowing tailoring of further stimulus
sentences. Some problems of implementation are discussed, including
system :esponse speed, feasibility of expansion beyond simple
sentences, generation of inappropriate sentences, and constraints
imposed by left-to-right template construction, transformation, and
response judging. (MSE)

Reproductions supplied by EDRS are the best that can be made
from the original document.

********************************** ** ** ********************************

(

0

Template Construction as a Basis for Error-Analysis Packages

in Language Learning Programs

U DEPARTMENT OF EDUCATION
Mc@ ol Educational Research end improvement

EDuCATIONAL RESOURCES INFORMATION
It CENTER (ERIC)

ThIS CIOCurnen1 ha$ be n reproduced as
receiveq trom ihe person or organization
(vigil-wing it

C Minor changes have been made to .mprove
rePrOcluction quality

Points &view o 0OrniOnS Slated in this docu-
ment do not neceswily represent otticral
OE RI position or policy

Stephen C. Helmreich

-PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

r
c_

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC,

IDEAL 2, 1987

TEMPLATE CONSTRUCTION AS A BASIS FOR ERROR-ANALYSIS PACKAGES

IN LANGUAGE LEARNING PROGRAMS

Stephen C. Helmreich

In this paper, I describe a set of programs which work interactively
with the teacher/instructor to create a template from which an indefinite
ntimber of stimulus sentences can be generated. The instructor also specifies
exactly how the stimulus sentence is to be trandormed into the target
sentence. Using this set of transformation !imps, the student's response is
judged and feedback is supplied to the student. Feedback is also given to the
stimulus-generating system, allowing it to tailor the construction of further
stimulus sentences to the difficulties encountered by the student in previous
attempts.

INTRODUCTION

Computerization of language learning lessons is sell in its early stages. In particular,
the analysis of student responses to drill items is generally simplistic and the feedback often
counter-productive. In this paper I describe a computer program that I believe represents a
substantial advance over systems currently available. It permits pedagogically oriented, drill
specific feedback and alters the presentation of stimulus material in response to errors
encountered in analysis of previous student responses.

Error analysis is the main focus of the approach I am proposing here. It is in this area
that the program offers the most substantial improvement over other approaches. However,
the program itself cncrwriplisses more than just an error analysis package. It offers, in fact, a
complete computerization of a certain type of language drill, namely, transformation
exercises, or pattern drills. Once it has been provided by the instructor with a pattern for the
drill and a procedure for deriving the correct response from the stimulus, the program will
construct appropriate stimulus sentences, correctly determine the target sentences, analyze
the student's response, and provide feedback to both student and teacher. It may also handle
a small group of highly constrained reanslation exercises. However, by itself, it cannot
provide a complete set of computerized l'anguage-learning lessons.

In the following section I provide background information, pointing out some of thedifficulties of ntelligent error analysis, describing alternative approaches, and placing
template construction within the larger framework of language generating systems.
Subsequent sections provide a detailed description of the system and a conclusion, which
summarizes both the advantages and some disadvantages of this approach.

BACKGROUND

Problems of Intelligent Error Analysis

We as teachers are continually involved in error detection, error correction, and ertoranalysis. These tasks are performed routinzly and are well within thc. capabilities of mostteachers. One might think, therefore, that computerization of this process would be fairlyits(simple. However, what we are doing is something extremely complex and subtle. Inb analyzing errors, we are trying to ascertain the invisible, internal cognitive processes whichproduced the error. The identification of these processes is vital to the task of providingappropriate feedback to the student to aid in correction of the error. Moreover, these

RETT4

'Ng .

97

9 8

processes are not even open to conscious introspection, since it is usually the student's
conscious intention to produce the correct answer. However, the main difficulty in
intelligent error analysis is that the interpretation of the objective error is ambiguous.

First of all, it is ambiguous linguistically. The same physical error may represent a
cognitive error at several linguistic levels. It may be an error at a fairly low level (typing,

spelling), at an intermediate level (inflection, agreement, word order), or at a high level
(word choice, idiomaticity, appropriateness). For instance, finding the word "chevaux"

instead of "cheveux" in a French sentence may be a spelling error, a morphology error, or
possibly a word choice error.

Second, there are many possible causes for any particular error. For instance, one
and the same error may represent a simple oversight, a temporary lapse, a gap in the
student's knowledge, interference from the student's native tongue, a misunderstanding of
the instructions, or a major misconception about the target language. Our choice often
depends on many other things we know about the student: general level of knowledge, past
performance, etc.

Another factor which makes the computerization of error analysis difficult is that it is

task dependent. That is, an error in one situation may not be an error in another. For

instance, vocabulary tests art generally geared to a particular set of items. Using another
word with the same meaning might get the student marks for ingenuity, but would still be a

wrong answer. Even if errors "count" in different situations, they may have different
weights. For instance, a spelling error would count heavily on a spelling test, and probably
for little in an extended essay.

Thus, what makes intelligent error analysis difficult to computerize is thefact that
physical errors in the text are ambiguous. Their interpretation and evaluation depends on an
analysis of : te linguistic import of the error and of its probable cause. Even if this can be

done, the weit,',t given to errors varies from exercise toexercise.

Otheir Approaches to Computerized Errol Analysis

There have been two major approaches to error analysis in computer-assisted
learning programs. The first is simple pattern matching. With this approach, the student's
input is treated as a flat (unstructured) string of characters. The input is searched for certain
words or phrases. This method requires a pattern (a correct answer) against which the
student's input can be matched. As such it is a fairly unintelligent appmach to error analysis.
However, in its favor, it can serve as a general purpose approach, workable for almost any
input in any language.

Parsing the input is Et more intelligent approach to error analysis. Because of work
done both in computer science and linguistics on the nature of grammars and parsers for
natural language, some of the princ oles of parsing and some of the basic stnictures of
natural languages are fairly well understood. The parsing approach, therefore, tries to
analyze the student's input in structural terms, not simply as a flat string of characters. The
structures it looks for are those of the foreign language, so it must "know" something about
these structures. In this sense, it is more intelligent. In addition, it is not bound to situations
where a clear-cut pattern is available against which to judge the student's input. With an
adequate grammar of the target language, a parser can handle almost any input in the
language. In this respect, it appears to mimic human analysis of language. Since we do not
always know what it is we will be hearing or reading, we must analyze the input we receive
and assign it a structure and meaning.

It would be tempting to think that this work could be taken over directly into error-
analysis programs. However, almost all such work deals only with analyzing correct input.
Bad or incorrect input is generally discarded or ignored. Incorrect input, unfortunately, is
exactly what must be examined and analyzed in error analysis. In addition, a parser that can
analyze most natural language input and operate at a reasonable speed will be quite complex
and unintuitive. This is because the tasks of computationally optimizing a parser and of
providing a linguistically sophisticated grammar are both highly complex and technical.
This means that it is difficult to make st Th programs interactive and task dependent. It also
is not an easy job to take the complex ai alysis provided by the parser and turn it into helpful

99

and non-technical feedback to the studeot and teacher. "Violation of Binding Principle B" isnot always helpful feedback to a student flying to learn reflexives.I do not want to suggest that the parsing approach should not be pursued in thedevelopment of computer assisted language learning programs. In fact, it is clearlynecessary if these progryns are to deal with free input from the student. However, asoutlined above, there are several large problems that must be solved in the process ofapplying what we know about language structure in general, and computerized parsingroutines in particular, to computerized language-karning programs. Therefoie, I arnsuggesting another approach that does not seem to pose quite so many technical problems.Although it is applicable to a more limited domain than the parsing approach, it may provequite useful as an intermediate stage in the development of "intelligent" computer programs.This approach involves the use of templates or generating systems.
Generating Systems and Templates

From the standpoint of generative linguistics, a generating system, or languagegenerator, is simply the inverse of a parser. That is, a generative grammar is a formal systemthat associates each "phonetic form"- (sentence) of a natural language with a "logical form"(meaning). It is similar to a mathematical function in that it is simply a set of ordered pain,<sentence, meaning>. A parser is also a function in the less technical sense of a procedurewhich can be applied to an input (namely, a sentence of a language) and produces as output astructured meaning for the sentence. A generating system is simply the inverse function orproctdure. That is, it takes as input it meaning and produces as output a sentence of a naturallimp age that encodes that meaning.It is easy to see why parsers have been a more poplar area of research thangenerating systems. First of all, there is disagreement about what a "meanii 1" is or lookslike. By contrast, a "sentence" is a fairly objxtive thing. So it is certainly more feasible lostart witli a sentence and work toward some sort of logical/semantic representation than viceversa. Second, in most cases, the practical goal toward which researchers art aiming is aprogram that can "understand" natural language input. Generally, computers haw very littlethat they need to cotnmunicate, and this can be achieved with canned rest:onses andsimplified statements that do not require sophisticated processing. Therefore, a parser wouldbe much more useful than a generating system.Seen from this point of view, generating systems pose even mote difficult problemsthan parsers, because there is no clear consensus on what the input (a meaning) should looklike. The problems of adapting such a system to the analysis of incorrect student inv.: seemeven more formidable than for a parser. And the complexity of the program eould ce-tairlyrival that of rrsers.
There is another type of program that is generally referred to as a language generator.Given a formal varnmar, with phrase structure rules (and possibly transformations), thisprogram randomly generates grammatical sentences of the language dermed by thatgrammar. This type of generator is completely divorced from any semantic considerations.It is fairly simple to implement technically, but its usefulness in error analysis systems isunclear. How could a list of grammatical sentences, randomly generated, help in analringstudent errors?

The approach described here, which I call a "template approach," falls somewhere inbetween these two technical types of generating systems. It is grounded in the fact that aconstrained list of randomly generated sentences would be useful in the construction of aparticular type of language-kerning exercise, namely the transformation drill.In this type of exercise, the student is presented with a set of sentences and told toperform some specified action to each of theLn. For instance, typical transfonnational drillsinclude pluralizieg noun phrases, changing the tense of sentences, turning statements intoimperatives or questioos, or replacing a noin phrase with an appropriate pronoun. In mostcases, the meaning of the sentence is not of paramount importance. Although the sentencesshould not be semanti,:ally anomalous, the purpose of the drill is to inculcate certainsyntactic transformations. The stimulus sentences are generally similar in syntactic form,
-

100

and the student response is usually obtained by a straightforward syntactic manipulation of

the stimulus sentence.
What I am suggesting then is a program which would allow the teacher to specify a

syntactic template (using tenninology of a non-technical nature, such as that found in mast

pedagogical grammars) for the generation of stimulus sentences, The teacher then specifies

exactly how this stimulus sentence is to be transfonned into the response sentence. Using

this information, the program can generate any number of stimulus sentences and also

automatically produce the correct response. Then, since it has an understanding of the steps

to be followed to create the correct answer, it can easily check the student's response to see if

those steps were followed. A program like this might be viewed as a rough, non-technical

application of early transformational grammar to the construction of language-learning drills.

If this were all the program did, it might be a time-saver for the teacher, that is, if

constructing the template and the transformation took less time than typing in the stimulus

sentences themselves. However, using this approach, informative and relevant feedback can

also be provided to the student by the teacher. This feedback is geared to the detection of

errors at each step in the transformation of the stimulus sentence into the target sentence, In

addition, by gathering information about the errors committed by the student in the course of

a drill, immediate feedback to the generating system results in the generation of more

sentences of the type which posed some problems for the student.

DESCRIPTION OF THE SYSTEM

In this section, I will explain in more detail the constniction and operation of the

proposed program. A prototype model of most of the system has been written, though with

minicual implementation of each secticrt and with no regard for user-friendliness. In order to

facilitate an understanding of how the system works, I will also describe the functioning of

the program in the construction of a particular transformation drill. This is a simple French

pattern drill requiring the smdent to pluralize simple sentences in the present tense. For

example, the stimulus sentences in (1) should prompt the responses in (2).

(1) Je vais au cinema.
Le chat mange le poisson.

(2) Nous allons au cinema.
Les chats mangent le poisson.

As can be seen in Figure I, the system consists of four major pans: the template

construction module, the transformation procedure module, the stimulus creation program,

and the error analysis program. In addition there are some built-in, language-specific

functions that provide short-cuts in the construction of templates and transformations. There

is also a large "reverse lexicon." These will be discussed at the appropriate place as they are

called upon by the four main programs.

Template Construction

Template construction can be visualized as the creation of a tree structure which

reflects the various syntactic shapes that a stimulus sentence can take. Figure 2 shows a

possible template for the construction of our example sentences. The tree is constructed in a

top-down, nearly depth-first manner. Each node (branch-point) of the tree is named,

generally with a mmemonic code representing the syntactic category of the leaves (terminal

nodes) of the tree. For instance, the root node of the template constructed for our example

might be called SENT, since the template will create sentences. Naming each node is

important, since they can then be referred to when describing the transformation necessary to

produce the target output.
The branches under each node must be one of three possible types: they may lead to

options in stimulus construction, they may lead to required parts of the stimulus, or they may

101

LTemplate
Construction

St111111111S

CielitiOn

..11111110. rTransformation
Procedure

Error
Analysis

Figure 1. Model of a template construction system fa error analysis

(noun)

(singular)

(animate)

Figure 2. Template construction

102

lead to the stlection of a lexical item to fill a spot in the stimulus sentence. The instructor
must specify which type of branching occurs beneath each node. For instance, in our
example, benath the node SENT, the instructor specifies two other nodes, SUBJ and
VERBP. These will subsume the subject and the verb phrase of each sentence. Since both a
subject and a verb phrase are required for each sentence, each branch must be taken when
constructing a stimulus sentence.

However, under the node labelled SUBJ. we find nodes labelled PRO and DETN.
These nodes represent the construction of a subject consisting of either a pronoun or a
determiner noun sequence. Since either is a complete subject and both together would be
ungrammatical, the branches to these nodes are options for the stimulus constructing
programit must take one and only one of these paths.

Finally, a branch may lead to a terminal node (leaf) of the tree. In this case, a lexical
item must be selected to fill the terminal node. The instructor is asked to specify the lexical
category and the features that the lexical item must bear. In this case, the features "singular"
and "animate" have been selected. In the PRO branch the lexical category "pronoun" has
been selected and in the DETN branch the lexical category "common_noun." When a lexical
item is to be selected, the instructor must also specify whether the lexical item selected must
agree with any other item in the template. In our example, the determiner must agree with
the subject noun and the subject noun with the verb. Both the feature system and
morphology will be discussed in detail below.

In addition to the completely teacher-specified templates, there are additional built-in
functions which can generate random constituents such as noun phrases, prepositional
phrases, verb phrases, adverbial phrases, etc. If the content of these constituents is not
relevant to the exercise at hand, the teacher need not specify completely their construction.
For instance, in our example, the fon and content of the object noun phrase is not relevant
to the task of pluralizing the sentence.

Features

Features play an important part in this template system, since it is by means of
features that much of the flexibility of the system is obtained. Most lexicons are organized
as shown in (3), with each lexical item attached to a list of its own features. In this system,
however, the feature names are entered with a list of the lexical items bearing that feature
attached, as shown in (4).

(3) chat (noun masc animate common)
plume (noun fern common)
manger (verb active)

(4) noun (chat plume)
common (chat plume)
verb (manger)

This organization means that the selection procedure involves taking the sets
associated with the features selected, intersecting them, and randomly choosing one lexical
item from the intersection. This item will bear all the features selected by the teacher.

It is important to note that neither the lexicon nor the set of features is static. Words
can be easily Mika and features can be easily assigned. This means that the selection
process for lexical items can be closely controlled by the teacher. For instance, a feature
could be created such as "noun from the vocabulary list for lesson nine." Using this feature,
the teacher could limit selection to certain vocabulary items. The features could also be
semantic in nature. A possible feature might be "articles of clothing" or "things to eat."
Thus by the use of this flexible feature system, semantic constraints can be ensured.

It is also important to note that these features, whether syntactic or semantic, are
intended tt be inherent features of the lexical item itself. Motphological variation (primarily
the agreement features) would be taken care of by independent pre-programmed modules.
Therefore, to enter a regular lexical item it would not be necessary to enter more than the

103

citation form. Morphological variation would be handled automatically. (Irregular variation
would need to be entered into the appropriate computation module.) These functions, when
provided with a lexical item and a set of morphological features, return the correct
morphological form as their result. If a feature is left unspecified (say, for example, tense), it
would be supplied at random. In addition, this functional approach to morphology allows
closely related and even incorrect forms (a regular stem in place of an irregular correct stem,
or a future stem with a present ending) to be generated and stored with the correctly
generated form. These are used later to perform a primitive sort of morphological etror
checking.

Transformation Procedure

Once the template is constructed, the teacher must then specify exactly what actions
are to be performed in order to create the correct target sentence. The transformation
program operates from left to right, so changes must be specified in sequence through the
sentence. For instance, in our example, the instructor must specify first changes to be made
tr the subject noun phrase and then to the verb phrase.

Any node of the stimulus template may be specified as subject to transformation.
The instructor has four options to choose from in specifying the appropriate transformation
of the stimulus sentence: copy, insert, delete, or alter. Copy results in a verbatim copy of
whatever lexical items lie under the node selected. Insert involves the insertion of specified
material. New material may be specified, or another node from a different part of the
stimulus. Insertion must occur between constituents of the stimulus sentence. Delete is
simply the removal of the specified material. Thus, insert and delete together provide a
movement transformation. Alter involves changing the feature matrix of a specified lexical
item, such as tense, number, and other syntactic/morphological features. In addition, their
are available several pre-programmed functions which can provide certain commonly-
performed feature alterations. These would be available to apply to larger scale constituents
than lexical items. Such functions as changing tense, number, or case would be available,
allowing the teacher to avoid directly manipulating the feature values themselves.

After specifying the constituent and the action to be performed on it, the teacher may
provide an error message to be used if the student fails to execute properly this part of the
transformation. Default messages for each kind of transformation are also available.

As can be seen from the above specifications of the stimulus template and the
transformation construction, there is more than one way in which the same drill could be
formulated. The instructor can choose how detailed a template to construct. The more
detailed a template, the more detailed can be the specification of the transformation. The
more steps in the transformation, the greater the number of "errors" the student may commit-
-each "error" being related to one step of the transformation. Thus the teacher controls how
detailed the analysis of the student's work is.

Stimulus Creation

Given the template structures for a drill as specified by the teacher in the foregoing
sections, the actual creation, presentation, and judging of a transformation exercise is fairly
routine.

First, using the template, a stimulus sentence is constructed. That is, starting at the
root node, the program traverses the stimulus template tree. If the node it is examining is has
optional branches, only one branch (randomly chosen) will be traversed and the others
ignored. If the branches are specified Ls part of a construction, each branch will be traversed
in turn. If the node is a terminal node, an appropriate lexical item is selected. Agreement
routines are executed. The tree-structure for the stimulus is stored and the lexical tems are
strung together and presented on the screen to the student.

Once the student has typed in a response, the judging sequence begins. Following the
transformation schema specified by the teacher, the program checks each step to see that it
lin been successfully completed by the student. 'Thus, a copy step merely involves checking
to see if the identical material in the stimulus sentence is in the student's response, and at the

ES1* COPY lc:

104

appropriate place. Insertion and alteration steps check f r the appropriate inserted or altered

information. In addition, if an error is found in an alteration step, morphologically similar

forms generated earlier are checked to see if the student's response is among them.
Deletion of material cannot be directly checked since there is no way to see if

something is not there, so evaluation is deferred. If the following step succeeds, it is

presumed that the prior deletion was properly executed. If not, the program checks to see if

the deleted material is still present in the student's response.
In each situation, if evaluation fails, the appropriate error message is printed. Thus,

the student is led through the necessary transformations step by step.

E rror Analysis

In addition to providing appropriate response to student errors, the program allows
for a feedback loop from error analysis to stimulus generation, since stimulus sentences are
spontaneously generated. This means that the stimulus sentences the Itudent is presented

with can be weighted to favor those types of sentences that proved difficult in earlier

attempts.
For instance, data about which branch of the option node of a template was chosen is

stored. Information about the number of errors a student made for each constitutent of each

sentence is also correlated with the branches resent in that sentence. This allows for the
weighting of option nodes, so that options which resulted in sentences causing difficulty

appear mote frequently.
I want to emphasize the importance of this feedback loop, since it represents one of

the significant advantages of this approach over a parser-based approach. Given an adequate

parsing and error-analysis routine, a teacher would need only to type in the stimulus
sentences, and the correct response. The parser could easily parse the correct response and

use that as a target against which the student response would be judged. However, such a
program could not generate new stimulus sentences, and thus could not individualize the drill

appropriately for each student

CONCLUSION

The "Intelligence" of the System

At this point, it is appropriate to summarize and highlight those aspects of the
proposed approach which permit it to be somewhat "intelligent" in the creation of
transformation drills and analysis of student responses.

In the fust place, the teacher interacts with the program to create the drill. The

teacher's intelligence is, therefore, integrated into the consmIctior of the drill. This is made

possible by several features of the program. First, the flexibility of the template constniction
process allows the teacher to specify in greater or lesser detail the structure of the drill

template. Second, the ease with which features may be added to the system permits the
teacher to tightly constrain the random choice of lexical items for the drill. Third, the
allowance in the program for extended, specific error messages written by the teacher
incorporates the teacher's knowledge of probable student errors.

In the second place, there is the built-in knowledge of the language that allows for

"intelligent" drill construction. This knowledge includes the built-in lexicon and feature
system, the construction functions which contain information about the grammar of certain
constituents of the language, and the morphological functions which contain stored
information about the regularities and irregularities of morphological systems in the
language. Thii built-in knowledge interacts with the teacher's input to allow the instructor to
concentrate on specifying the significant constructions for the purpose of the exercise and
allows peripheral areas to be handled automatically, with minimal attention.

Finally, there is the feedback loop from error analysis programs to the construction of
stimulus sentences for the drill. This allows "intelligent" construction of stimulus sentences.

1 u

105

That is, sentences are presented that help the student learn by concentrating on areas where
the greatest difficulty lies.

Problems of Implementation

A few problems that may arise in the complete implementation of this system should
be mentioned. These are mainly problems of scale. That is, there art questions of how well
the system would work with a large lexicon, a large set of features, and a significant set of
built-in functions.

The first concern is whether or not the response speed of the system can be
maintained with such a larger data base. I suspect that a reasonable speed can be maintained,
particularly if compiled code is used.

The second concern is whether or not the set of features and constructions necessary
to handle a wide variety of constructions in the target language would make the system too
unwieldy for the average teacher to work with. As with most systems, unforeseen problems
will arise as it expands, demanding exceptional or ad hoc tolutions. This may make the
system too large to be handled byvazical foreign-language teacher without a great deal of
linguistic or computational back

The third concern is about the nature of the stimulus sentences generated by the
program. There is currently a great deal of interest in communicative competence and the
simulation of appropriate conversational situations. This program, with its limited semantic
knowledge, will probably generate grammatically correct, but semantically odd sentences.
How odd, it would be difficult to tell. To some extent, these odd sentences might be
amusing to the student/learners. However, cam must be taken that the oddness does notblend into "wrongness". It might be acceptable for the program to generate sentences like
"Sally ate the stone". However, it should not generate a s. ;Renee like "Sally ate the
sincerity." Avoiding sentences like the latter might overburden either the system or theteacher.

Finally, there is a concern about the current left-to-right procedure in template-
construction, transformation, and response judging. A brief lcok at typical pattern drills
shows that it would not pose unnatural constraints on the instructor to specify
transformational changes in a strict left-to-right order. However, in some cases, it might be
unintuitively or pedagogically better to work through the transformation in some way otherthan left to right.

The advantage of this strictly sequential method is that it avoids one of the major
problems of a pattern matching approach. That is, in matching up the student input with the
correct response pattern, it is very difficult for pattern matching to deal with misplaced
constituents or scrambled word order. Of course, it also can match sequentially left to right,stopping if it fails to match exactly. But because there is no structure to the pattern, there is
no way it can know more about the error than that it is not an exact match with the correct
response. With the template approach, the program "knows" what each constituent in the
answer should be. If it fails to match at a particular point, An appropriate error message is
generated, helping the student correct the error at that point.

Summary

In this paper I propose an "intelligent" system of computerized drill construction. It
operates interactively with the instructor to create a template for stimulus sentences and a
sequence of transformations which change the stimulus sentence into the target sentence.
Using a built-in system of features, morphological functions and constructions, the program
presents stimulus sentences generated according to the template and judges the student
response based on the steps in the transformation process. A feedback loop permits the
generation process to be sensitive to errors eommitted by the student.

The positive features of such a system include the following: (1) it allows the
instructor flexibility in constructing transformation drills that are spwific to the instructional
goals of the teacher and the learning difficulties of the student; (2) it encourages clarity onthe part of the teacher in specifying deafly what the possible shapes of the stimulus

.1.

106

sentences are and what must be done to produce the correct responses; (3) it enables flexible
(goal-related) error analysis; (4) it permits the construction of an indefinite number of drill
sentences, differentially for each student in relation to prior errors.

ACKNOWLEDGMENTS

I would particularly like to thank Dr. Robert Hart for his assistance with this article,
Many of the ideas underlying this approach to error analysis I owe to him.

THE AUTHOR

Stephen Helmreich is a graduate student in the Department of Linguistics at the
University of Illinois. He works as a research assistant in the Language Learning
Laboratory.

