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Abstract

Standard errors and bias of unidimensional and multidimensional ability estimates
were compared in a factorial, simulation design with two levels of sample size, two levels
of test correlation and a hierarchical test content structure. Bias and standard errors of
subtest scores (subtests within longer tests) were smaller for the multidimensional
approach, but the bias of longer test scores did not improve. Sample size and test
intercorrelation had a negligible effect on the results.




Introduction

Item response theory (IRT) has proven to be a very powerful and useful
measurement tool. The successful application of IRT, however, is paid for by the need for
strong assumptions. An assumption that is basic to most commonly used IRT models is the
unidimensionality assumption, which limits their usefulness in many testing situations. One
such situation is the application of IRT to a test battery. To apply unidimensional IRT to
a test battery, we calibrate the item and ability parameters several times, once for each test.
This approach is called the consecutive approach by Davey and Hirsch (1991).

The cost of this approach is information loss, since collateral information (Ackerman
& Davey, 1991), information supplied by items keyed to other tests in the battery, is ignored.
The informs“ion loss becomes substantial, when scores on subtests in test batteries with a
hierarchical structure are of interest. In a hierarchical structure, there are progressively
fewer items for subtests toward the bottom of the hierarchy, so the number of items keyed
to a particular ability is small, relative to the total number of items in a test battery. Such
a hierarchical structure typifies many aptitude and achievement test batteries. Because
subtest scores are more informative, and thus more useful than a simple total test score, it
is very important for a scoring procedure to be able to provide precise subtest scores.

Conceptually, the use of a multidimensional IRT model can provide more precise
subtest scores, since it allows us to use the information in all items in a test a battery (Chang
& Davison, 1991). However, multidimensional IRT is mathematically more complex and the
estimation procedures are less precise (Broch, 1990; Luecht & Miller, in press). The basic
question that arises then is: under what circumstances and to what extent can the precision
of subtest scores be improved by using multidimensional IRT?

Luecht and Miller (in press) evaluated the trade-offs between using a
multidimensional IRT model or using a unidimensional IRT model in the context of
parameter estimation error and bias, ability estimation issues and goodness-of-fit in response
pattern predictions. They found that the accuracy and stability of the unidimensional
discrimination and difficulty parameters were equal to or better than their multidimensional
counterparts. Further, the unidimensional IRT model tended to fit the data quite well.
Finally, they pointed out that there was a variance reduction in the multidimensional ability
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estimates which did not occur in the unidimensional IRT model. Also, the unidimensional
estimates seemed to better represent the intercorrelation of the two simulated abilities.
Hence, they concluded that a unidimensional IRT approach is superior to a
multidimensional IRT approach under the multidimensionality conditions simulated. Two
problems exist in their study. First, the conclusions about ability estimation were
questionable, for they compared the properties of the unidimensional ability estimates to
multidimensional scores on unrotated dimensions, dimensions which may not have best
corresponded to the abilities of interest. Furthermore, they did not directly compare the
stability of ability estimates derived from the two approaches. Conceivably, the estimation
errors of parameters will be larger for the multidimensional IRT approach, but the
information loss will be larger for the unidimensional IRT approach, So, it is important to
evaluate the parameter estimation errors as well as the accuracy of ability composites.

Two studies (Ackerman & Davey, 1991; Davey & Hirsch, 1951) have investigated the
use of collateral information for improving the precision of ability composites. Ackerman
and Davey (1991) studied the utility of collateral information in computerized adaptive
testing. Their study compared the theoretical standard error and bias values for
unidimensional and multidimensional IRT approaches. Because they did not consider
parameter estimation errors, their results right not hold in practice.

Davey and Hirsch (1991) compared concurrent and consecutive scoring procedures
for two test scores in a test battery. The concurrent procedure estimated abilities by using
all items in the battery. This required that every item have several sets of item parameters,
one for each ability to be estimated. These parameters were of two types: primary and
secondary. The primary parameter for each item was identical to that obtained from the
unidimensional IRT approach. Secondary item parameters were obtained by calibrating an
item with respect to the ability defined by items of the other tests. For the sake of
discussion , items which contribute collateral information will be refered to as secondary
items, whereas itemns which were keyed to a particular ability will be termed primary items.
Specifically, consider a test battery containing tests A and B. The unidimensional IRT item
parameters for each test would be estimated separately. Items in test B would then be
included, one at a time, and calibrated while keeping the primary parameters of test A fixed

©
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at their original estimates. Davey and Hirsch found that concurrent estimation was more

_precise but also more biased than consecutive estimation. This bias finding was inconsistent
with that of Ackerman and Davey (1991). Ackerman and Davey found that concurrent
adaptive measurement was more precise and less biased than consecutive adaptive
measurement. The inconsistency may result from the different ways the two studies
calculated the secondary parameters. The secondary parameters in Ackerman and Davey
(1991) were derived from the work of Wang (1986), while Davey and Hirsch (1991) used the
procedure described above to obtain the secondary parameters. This procedure seemed to
overestimate secondary parameters as shown in their scatter plot of primary parameters
against secondary parameters. This probably made concurrent estimation more biased than
consecutive estimation.

From the above discussion, two points are clear. First, the less precise parameter
estimation for the multidimensional IRT model might cance] out the potential information
gain. Therefore, to see whether collateral information from the multidimensional IRT model
is robust against errors of parameter estimation, an empirical study which compares the
measurement accuracy of multidimensional and unidimensional IRT approaches is needed.
Second, the existing studies either did not consider simultaneously the precision of ability and
parameter estimates or they used an unsatisfactory way to estimate secondary parameters.

This study differs from the earlier work of Ackerman and Davey (1991) and Davey
and Hirsch (1991) in two aspects. While the earlier studies have used a unidimensional
approach to capture collateral information, we have used muiltidimensional approach. In
addition, the test structure in this study is hierarchical.

Multidimensional Approach
The model selected for this study was the multidimensional two-parameter logistic
model proposed by Mckinley and Reckase (1983). The model is given by
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exp(a; O, + d) V)]

P@®)=P(x,~1]a,, d, 6,)=
(al) v l‘l "= l+exp(¢,'9,+d,)

where x; is the score (0,1) on item i by person j,
P,(e,) is the probability of a correct response to item i by person j,
@, is the vector of ability parameters for person j,
a; is the vector of item discrimination parameters, and d, is given by

d= "g ayby @

where a; is the discrimination parameter for item i on dimension k, b, is the difficulty
parameter for item i on dimension k, and m is the number of dimensions. The d, term, then,
is related to item difficulty. The interpretation of the multidimensional parameters was
provided by Reckase (1985) and Reckase and Mckinley (1991).

The multidimensional approach includes the following three steps; estimating item
and person parameters, determining the direction in the space corresponding to each ability,
and finally estimating person scores for each ability.

In step one, all items in the battery are calibrated using a multidimensional estimation
procedure. Following the calibration, the direction in the space corresponding to each
unidimensional ability scale can be determined using the analvtical results for unidimensional
approximation of a multidimensional data matrix (Wang, 1986). Specifically, the directions,
cosa;, will equal the first standardized eigenvector of the matrix A’A, where A is the matrix
of discrimination parameters for all the primary items in the test. In the final step, the
ability will be estimated by using the following equation (in a 2-dimensional solution)

0, =cosa, *8, +cosa, +0,, 3

where 6, is the composite ability correspoding to the unidimensional ability estimate.
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According to multidimensional information theory (Reckase & Mckinley, 1991), total
test information is the sum of all the item informations in the direction corresponding to the
ability. That is, the total test information includes information from primary items as well
as collateral information from secondary items. In unidimensional IRT, only primary item
are used to estimate a given ability. Assuming the collateral information is nonzero, then
multidimensional information must exceed unidimensional information.

Method

This study employed a 2x2x2 design with two IRT approaches (uni- and
multidimensional ), two levels of test correlation (0.42, 0.63), and two sample sizes (500,
1,000). A hierarchical test structure--two tests, A and B each with two subtests~was used.
Test A measured predominately 8,, and test B measured predominately 8,. The subtest
correlation within each test was 0.91, which corresponds to an angle of 25 degrees. Each
subtest had 25 items.
Data Geperation

The © vectors were generated to fit a bivariate normal distribution, both scaled to
have mean 0.0 and standard deviation 1.0. The test correlation was manipulated by rotating
the a vectors. The original a, values for test A were drawn from a uniform distribution over
the interval 0.6 to 1.35, while a, values were all zeros. The b, values were drawn from a
uniform distribution over the interval -2.25 to 2.25. Next, the d, values were calculated. For
a test correlation equal to .42, the a vectors for subtest A, (i.e., item 26 to 50) were rotated
counterclockwise 25° while the a vectors for subtest A; remained the same, For subtest B,
the original a, values were all zero, while a, values were drawn from a uniform distributic. 1
over the interval 0.6 to 1.35. The b, values were drawn from a uniform distribution over the
interval -2.25 to 2.25. The a vectors of subtest B, (i.e., item 76 to 100) were rotated
clockwise 25°, while a vectors of subtest B, were not changed. For a test correlation equal
to 0.63, the a vectors for subtest A, and A, were rotated counterclockwise 7°and 32°
respectively, while the a vectors for subtest B, and B, were rotated clockwise 7°and 32°
respectively.
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For each combination of @ and item parameters, the probability of a correct response
was computed and the result compared to a uniform random number on the interval 0 to
1. If the random number was less than the computed probatility, a response of "1" was
generated, if not, a response of "0" was generated. There were 25 replications for each
combination of test correlation and sample size.

& Bock, 1986). Each test and subtest was calibrated scparately. That is, each person had
six unidimensional ability estimates. The ability estimates were rescaled to have mean 0 and
variance 1.00 during Phase III.

Multidimensional item and ability parameters were derived from TESTMAP
(Mckinley, 1991a), and THETA-PC (Mckinley, 1991b) respectively. The intitial estimates
procuced by THETA-PC were rotated so as to be orthogonal, and the ability estimates
(6,,0,) along the orthogonal reference vectors were standardized to have mean 0 and
variance 1.00. Estimates of item discrimination and difficuity parameters were rotated and
rescaled so that the P(e,) remained the same. Then, the composite abilities were calculated
by projecting 8, and 8, onto the directions of tests and subtests (Wang, 1986). Therefore,
each person had six multidimensional ability estimates corresponding to the six
unidimensional estimates.

Analyses

Because the amount of information gain depends on the @ points, thirty-four points
in the two-dimensional ability space were selected so that the points represented 34 of the
preselected 37 points (Figure 1). The 37 points were selected to cover the region with
greatest density for the bivariate normal distribution. Three of the 37 preselected subjects
did not correspond to any simulated subjects and were dropped.

Insert Figure 1 about here.

For each data set the empirical values of bias and standard deviation of estimated
abilities were computed. Bias was computed by subtracting the true abilities from the mean

Lo
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of the estimated abilities. The empirical standard error was obtained by computing the
standard deviation of the estimated abilities,

Results
The standard error resulits for four combinations of test correlation and sample size
are presented in Table 1. In all conditions, subtest scores were more precise when
multidimensional IRT was employed. It is interesting to note that the improvement in
stability did not increase, when the test correlation increased. Also, the improvement of
precision was not affected by sample size.

Insert Table 1 about here.

Since test correlation and sample size did not affect the collateral information in the
study, only the results from N=1000 and r=.42 are further reported. To get a better feel
for the results, let us graph the standard errors of composite abilities for the two models.
Shown in Figure 2a-2f are the plots of standard errors for the two models. The amount of
standard error reduction depends on . On the average, the standard errors for subtests A,
and B, are reduced about 20% (from .44 to .35 and from .43 to .34), while the standard
errors for subtests A, and B, are reduced about 30% (from .42 to .30 and from .44 to .30).
The standard errors for subtest A, are smaller than those for subtest A,, because of the
higher correlations among sibtest A, and subtest B, and B,

Somewhat surprisingly, the use of a multidimensional IRT model did not improve the
precision of test scores A and B. The reason probably is that the amount of collateral
information for test scores A and B is small relative to that for subtest scores. The
multidimensional parameter estimation errors cancel out the potential collateral information
gain. Also, the number of items for tests is twice that for subtests. Therefore, ability can
be estimated more precisely, with the unidimensional approach. The mean standard error
of test scores for the unidimensional approach is smaller than the mean standard error for
subtest scores.
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Insert Figure 2a-2f about here.

Based on their true composite ability scores, the thirty-four subjects were divided into
two groups. One group (upper) included subjects with true abilities equal to or greater than
zero, while the other (lower) consisted of subjects with true abilities less than zero. For 2ach
group, mean bias was computed. Table 2 presents the bias results. Again, the results are
very similar in the four conditions. Figures 3a-3f show the plots of unidimensional vs.
multidimensional bias for subtest and test scores. Multidimensional estimates of subtest
scores were usually, but not always, less biased than their unidimensional counterparts. For
test scores the performance of the two approaches was similar.

Insert Table 2 and Figures 3a-3f about here.

Discussion

The purpose of this paper was to investigate whether the use of multidimensional
IRT can improve the accuracy of ability estimates in a test battery. The results indicate that
both bias and the standard error for subtest scores were smaller when a multidimensional
approach was used. The results are consistent with Ackermran and Davey (1991). This
suggests that even when the parameter estimation errors are taken into account, the
multidimensional approach is still superior to the unidimensional approach in estimating
subtest scores in a battery. Whereas the standard errors results are also consistent with
Davey and Hirsch (1991), the bias results do not agree with their findings. Thus, the
increased bias in their findings seem specific to their particular estimation scheme.

The multidimensional standard error of subtest scores did not decrease as test
correlation increased. Both Ackerman and Davey (1991) and Davey and Hirsch (1991)
found that the multidimensional standard error decreased as the test correlation increased,
although the decrease was quite small. The difference in findings is probably due to the
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11
differences in research design. In both earlier studies, at each unidimenusional 8 point, 900
examinees were simulated, while in our study each examinee represented a different 8.
Since the effect of correlation Jevels is quite small, it did not show in our study. This also
explains why sample size did not influence the results. Although bias and standard errors
decreased for subtests, they did not improve for tests. As the number of items in a test
becomes large, in an absolute sense and relative io the total number in the battery, the
advantage of the multidimensional approach seems to disappear.
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Table 1.
Descriptive Statistics for Standards Errors of Unidimensional (U)
and Multidimensional (M) Ability Estimates.
(Standarad Errors Based on 25 Replications, 34 Subjects)

Sudbtesi A; Subtest A, Subtest B, Subiest By Test A Test B

M U M U M U M U M U M U

I NS00, ro.42 '

Mean 35 41 31 40 36 45 31 46 33 32 33 35

sD 05 05 04 05 08 06 04 07 04 05 05 .05

-~

l N=800, r=.63
Mean 34 40 28 41 38 46 230 43 31 32 33 3
SD 085 07 04 07 06 05 04 06 05 05 05 04
N=1,000, r=.42
Mean 3§ 4 30 492 34 43 330 4 33 3 2 133

sD 05 07 05 06 07 07 M 07 05 .08 05 .06

N=1,000, r=.63
Mean 35 41 29 42 383 43 31 46 2

e
3
3

SD o 06 04 08 07 07 05 07 04 05 .06 .05

14
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Table 2
Descriptive Comparision of Biases of Unidimensional (U)
and Multidimensional (M) Ability Estimates.
(Biases Based upon 25 Replications, 34 Subjects)

Subtest A, Subtest A, Subtest B, Subtest B, Test A Tent B

M U M U M U M u M U M U

N=S0D, r=.42

Upper -069 -109 -

2

-107 -129 -172 -101 -135 -060 -050 -117 -104
068

Lower 068 103 056 105 094 153 091 121 073

N=S00, r=.63

Upper -071 101 -042 -083 -083 -128 -038 -100 -063 -056 -053 -065

Lower 111 110 083 183 433 151 103 114 .101 105 107 081

Nm1,000, r=.42

Upper -073 -106 -058 -126 -118 -174 -092 -130 .070 -078 -0 -09

Lower 083 144 037 061 o056 072 045 093 060 053 043 042

N-l;ﬂﬂo, r=.63

Upper -068 -122 -043 -064 122 -154 -074 -167 -072 -058 -098 -110
089

.140 034 067 042 084 031 091 073 063 028 027

Note: Upper and Lower refer 1o above and below average abilities respectively.
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Figure Captions

Figure 1. The preselected 37 points throughout the 8,, 8, plane.

Figure 2a. Standad errors for unidimensional and multidimensional estimates of subtest A,
plotted against true composite ability with N=1,000 and r=.42.

Figure 2b. Standard errors for unidimensional and multidimensional estimates of subtest A,
plotted against true composite ability with N=1,000 and r=.42. _

Figure 2c. Standard errors for unidimensional and multidimensional estimates of
subtest B, plotted against true composite ability with N=1,000 and r=.42.

Figure 2d. Standard errors for unidimensional and multidimensional estimates of subtest B,
plotted against true composite ability with N=1,000 and r=.42,

Figure 2e. Standard errors for unidimensional and multidimensions; estimates of subtest A,
plotted against true composite ability with N=1,000 and r=.42.

Figure 2f, Standard errors for unidimensional and multidimensional estimates of subtest A,
plotted against true composite ability with N=1,000 and r=.42.

Figure 3a, Standard errors for unidimensional and multidimensional estimates of subtest A,
plotted against true composite ability with N=1,000 and r=.42.

Figure 3b. Biases for unidimensional and multidimensional estimates of subtest A, plotted
against true composite ability with N=1,000 and r=.42,

Figure 3c. Biases for unidimensional and multidimensional estimates of subtest B, plotted
against true composite ability with N=1,000 and r=.42.

Figure 3d. Biases for unidimensioral and multidimensional estimates of subtest B, plotted
against true composite ability with N=1,000 and r=.42.

Figure 3e. Biases for unidimensional and multidimensional estimates of subtest A, plotted
against true composite ability with N=1,000 and r=.42.

Figure 3f. Biases for unidimensional and multidimensional estimates of subtest A, plotted
against true composite ability with N=1,000 and r=.42.
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" Figure 3. 20
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(e) Test B
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