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Abstract

Standard errors and bias of unidimensional and multidimensional abffity estimates

were compared in a factorial, simulation design with two levels of sample size, two levels

of test correlation and a hierarchical test content structure. Bias and standard errors of

subtest scores (subtests within longer tests) were smaller for the multidimensional

approach, but the bias of longer test scores did not improve. Sample size and test

intercorrelation had a negligible effect on the results.
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Introduction

Item response theory (IRT) has proven to be a very powerful and useful

measurement tooL The successful application of IRT, however, is paid for by the need for

strong assumptions. An assumption that is basic to mast commonly used IRT models is the

unidimensionality assumption, which limits their usefulness in many testing situations. One

such situation is the application of IRT to a test battery. To apply unidimensional IRT to

a test tottery, we calibrate the item and ability parameters several times, once for each test.

This approach is called the consecutive approach by Davey and Hirsch (1991).

The cost of this approach is information loss, since collateral information (Ackerman

& Davey, 1991), information supplied by items keyed to other tests in the battery, is ignored.

The informplon loss becomes substantial, when scores on subtests in test batteries with a

hierarchical stnicture are of interest. In a hierarchical structure, there are progressively

fewer items for subtests toward the bottom of the hierarchy, so the number of items keyed

to a particular ability is small, relative to the total number of items in a test battery. Such

a hierarchical structure typifies many aptitude and achievement test batteries. Because

subtest scores are more informative, and thus more useful than a simple total test score, it

is very important for a scoring procedure to be able to provide precise subtest scores.

Conceptually, the use of a multidimensional IRT model can provide more precise

subtest scores, since it allows us to use the information in all items in a test a battery (Chang

& Davison, 1991). However, multidimensional IRT 'a mathematically more complex and the

estimation procedures are less precise (Broch, 1990; Luecht & Miller, in press). The basic

question that arises then is: under what circumstances and to what extent can the precision

of subtest scores be improved by using multidimensional IRV

Luecht and Miller (in press) evaluated the trade-offs between using a
multidimensional IRT model or using a unidimensional IRT model in the context of

parameter estimation error and bias, ability estimation issues and goodness-of-fit in response

pattern predictions. They found that the accuracy and stability of the unidimensional

discrimination and difficulty parameters were equal to or better than their multidimensional

counterparts. Further, the unidimensional IRT model tended to fit the data quite well.

Finally, they pointed out that there was a variance reduction in the multidimensional ability
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estimates which did not occur in the unidimensional IRT modeL Also, the unidimensional

estimates seemed to better represent the intercorrelation of the two simulated abilities.

Hence, they concluded that a unidimerdional IRT approich is superior to a

multidimensional IRT approach under the multidimensionality conditions simulated. Two

problems exist in their study. First, the conclusions about ability estimation were

questionable, for they compared the properties of the unidimensional ability estimates to

multidimensional scores on unrotated dimensions, dimensions which may not have best

corresponded to the abffities of interest Furthermore, they did not directly compare the

stability of ability estimates derived from the two approaches. Conceivably, the estimation

errors of ;ammeters will be larger for the multidimensional IRT approach, but the

information loss will be larger for the unidimensional IRT approach, So, it is important to

evaluate the parameter estimation errors as well as the accuracy of ability composites.

Two studies (Ackerman & Davey, 1991; Davey & Hirsch, 1991) have investigated the

use of collateral information for improving the precision of ability composites. Ackerman

and Davey (1991) studied the utility of collateral information in computerized adaptive

testing. Their study compared the theoretical standard error and bias values for

unidimensional and multidimensional IRT approaches. Because they did not consider

parameter estimation errors, their results right not hold in practice.

Davey and Hirsch (1991) compared concurrent and consecutive scoring procedures

for two test scores in a test battery. The concurrent procedure estimated abilities by using

all items in the battery. 'This required that every item have several sets of item parameters,

one for each ability to be estimated. These parameters were of two types: primary and

secondary. The primary parameter for each item was identical to that obtained from the

unidimensional IRT approach. Secondary item parameters were obtained by calibrating an

item with respect to the ability defined by items of the other tests. For the sake of

discussion , items which contribute collateral information will be refered to as secondary

items, whereas items which were keyed to a particular ability will be termed primary items.

Specifically, consider a test battery containing tests A and B. The unidimensional IRT item

parameters for each test would be estimated separately. Items in test B would then be

included, one at a time, and calibrated while keeping the primary parameters of test A fixed
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at their original estimates. Davey and Hirsch found that concurrent estimation was more

Fecise but also mom biased than consecutive estimation. This bias finding was inconsistent

with that of Ackerman and Davey (1991). Ackerman and Davey found that concurrent

adaptive measurement was more precise and less biased than consecutive adaptive

measurement. The inconsistency may result from the different ways the two studies

calculated the secondary parameters. The secondary parameters in Ackerman and Davey

(1991) were derived from the work of Wang (1986), while Davey and Hirsch (1991) used the

procedure described above to obtain the secondary parameters. This procedure seemed to

overestimate secondary parameters as shown in their scatter plot of primary parameters

against secondary parameters. This probably made concurrent estimation more biased than

consecutive estimation.

From the above discussion, two points are clear. First, the less precise parameter

intimation for the multidimensional IRT model might cancel out the potential information

gain. Therefore, to see whether collateral information from the multidimensional IRT model

is robust against errors of parameter estimation, an empirical study which compares the

measurement accuracy of multidimensional and unidimensional IRT approaches is needed.

Second, the existing studies either did not consider simultaneously the precision of ability and

parameter estimates or they used an unsatisfactory way to estimate secondary parameters.

This study differs from the earlier work of Ackerman and Davey (1991) and Davey

and Hirsch (1991) in two aspects. While the earlier studies have used a unidimensional

approach to capture collateral information, we have used multidimensional approach. In

addition, the test structure in this study is hierarchical.

Multidimensional Approach

The model selected for this study was the multidimensional two-parameter logistic

model proposed by Mckinley and Reckase (1983). The model is given by
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where x is the score (0,1) on item i by person j,

net) is the probability of a correct response to item i by person j,

ei is the vector of ability parameters for person j,

al is the vector of item discrimination parameters, and di is given by

(1)

(2)
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where aik is the discrimination parameter for item i on dimension lc, ba is the difficulty

parameter for item i on dimension k, and m is the number of dimensions. The di term, then,

is related to item difficulty. The interpretation of the multidimensional parameters was

provided by Reckase (1985) and Reckase and Mckinley (1991).

The multidimensional approach includes the following three steps; estimating item

and person parameters, determining the direction in the space corresponding to each ability,

and finally estimating person scores for each ability.

In step one, all items in the battery are calibrated using a multidimensional estimation

procedure. Following the calibration, the direction in the space corresponding to each

unidimensional ability scale can be determined using the analytical results for unidimensional

approximation of a multidimensional data matrix (Wang, 1986). Specifically, the directions,

cosch, will equal the first standardized eigenvector of the matrix A'A, where A is the matrix

of discrimination parameters for all the primary items in the test. In the fmal step, the

ability will be estimated by using the following equation (in a 2-dimensional solution)

0, =cow, *0, +cosa2*021 (3)

where ik is the composite ability correspoding to the unidimensional ability estimate.
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According to multidimensional information theory (Reckase & Mckinley, 1991), total

test information is the sum of all the item informations in the direction corresponding to the

ability. That is, the total test information includes information from primary items as well

as collateral information from secondary items. In unklimensional IRT, only primary item

are used to estimate a given ability. Assuming the collateral information is nonzero, then

multidimensional information must exceed unidimensional information.

Method

This study employed a 2x2x2 design with two IRT approaches (uni- and
multidimensional ), two levels of test correlation (0.42, 0.63), and two sample sizes (500,

1,000). A hierarchical test structuretwo tests, A and B each with two subtestswas used,

Test A measured predominately 01, and test B measured predominately Or The subtest

correlation within each test was 0.91, which corresponds to an angle of 25 degrees. Each

subtest had 25 items.

Digitfrentatim
The e vectors were generated to fit a bivariate normal distribution, both scaled to

have mean 0.0 and standard deviation 1.0. The test correlation was manipulated by rotating

the a vectors. The original a, values for test A were drawn from a uniform distribution over

the interval 0.6 to 1.35, while a2 values were all zeros. The b1 values were drawn from a

uniform distribution over the interval -2.25 to 2.25. Next, the di values were calculated. For

a test correlation equal to .42, the a vectors for subtest A2 (i.e., item 26 to 50) were rotated

counterclockwise 25°, while the a vectors for subtest A1 remained the same. For subtest B,

the original al values were all zero, while a2 values were drawn from a uniform distributk

over the interval 0.6 to 1.35. The b2 values were drawn from a uniform distribution over the

interval -2.25 to 2.25. The a vectors of subtest B2 (i.e., item 76 to 100) were rotated

clockwise 25°, while a vectors of subtest B1 were not changed. For a test correlation equal

to 0.63, the a vectors for subtest Al and A2 were rotated counterclockwise rand 32°

respectively, while the a vectors for subtest B1 and B2 were rotated clockwise rand 32°

respectively.
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For each combination of e and item parameters, the probability of a correct response

was computed and the result compared to a uniform random number on the interval 0 to

1. If the random number was less than the computed probability, a response of "1" was

generated, if not, a response of "On was generated. There were 25 replimtions for each

combination of test correlation and sample size.

rarameter estimation

Unidimensional item and ability parameters were obtained by using BILOG (Mislevy

& Bock, 1986). Each test and subtest was calibrated separately. That is, each person had

six unidimensional ability estimates. The ability estimates were rescaled to have mean 0 and

variance 1.00 during Phase III.

Multidimensional item and ability parameters were derived from TESTMAP

(Mckinley, 1991a), and THETA-PC (Mckinley, 1991b) respectively. The intitial estimates

produced by THETA-PC were rotated so as to be orthogonal, and the ability estimates

(8D82) along the orthogonal reference vectors were standardized to have mean 0 and
variance 1.00. Estimates of item discrimination and difficulty parameters were rotated and

resealed so that the P(e1) remai.ned the same. Then, the composite abilities were calculated

by projecting 01 and 02 onto the directions of tests and subtests (Wang, 1986). Therefore,

each person had six multidimensional ability estimates corresponding to the six
unidimensional estimates.

Analosa

Because the amount of information gain depends on the e points, thirty-four points

in the two-dimensional ability space were selected so that the points represented 34 of the

preselected 37 points (Figure 1). The 37 points were selected to cover the region with

greatest density for the bivariate normal distribution. Three of the 37 preselected subjects

did not correspond to any simulated subjects and were dropped.

Insert Figure 1 about here.

For each data set the empirical values of bias and standard deviation of estimated

abilities were computed. Bias was computed by subtracting the true abilities from the mean
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of the estimated abilities. The empirical standard error was obtained by computing the

standard deviation of the estimated abilities.

Results

The standard error results for four combinations of test correlation and sample size

are presented in Table I. In all conditions, subtest scores were more precise when

multidimensional IRT was employed. It is interesting to note that the improvement in

stability did not increase, when the test correlation increased. Also, the improvement of

precision was not affected by sample size.

Insert Table I about here.

Since test correlation and sample size did not affect the collateral information in the

study, only the results from N= 1000 and r=.42 are further reported. To get a better feel

for the results, let us graph the standard errors of composite abilities for the two models.

Shown in Figure 2a-2f are the plots of standard errors for the two models. The amount of

standard error reduction depends on e. On the average, the standard errors for subtests

and B1 are reduced about 20% (from .44 to .35 and from .43 to .34), while the standard

errors for subtests A2 and B2 are reduced about 30% (from .42 to .30 and from .44 to 30).

The standard errors for subtest A2 are smaller than those for subtest Ao because of the

higher correlations among snbtest A2 and subtest Bi and B2.

Somewhat surprisingly, the use of a multidimensional IRT model did not improve the

precision of test scores A and S. The reason probably is that the amount of collateral

information for test scores A and B is small relative to that for subtest scores. The

multidimensional parameter estimation errors cancel out the potential collateral information

gain. Also, the number of items for tests is twice that for subtests. Therefore, ability can

be estimated more precisely, with the unidimensional approach. The mean standard error

of test scores for the unidimensional approach is smaller than the mean standard error for

subtest scores.
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Insert Figure 2a-2f about here.

Based on their true composite ability scores, the thirty-four subjects were divided into

two group. One group (upper) included subjects with true abilities equal to or greater than

zero, while the other (lower) consisted of subjects with true abilities less than zero. For each

group, mean bias MU computed. Table 2 presents the bias results. Alp* the multi; are

very similar in the four conditions. Figures 3a-3f show the plots of unidiznensional vs.

multidimensional bias for subtest and test scores. Multidimensional estimata of subtest

scores were usually, but not always, less biased than their unidimensional counterparts. For

tat scores the performance of the two approaches was similar.

Insert Table 2 and Figures 38-3f about here.

Discussion

The purpose of this paper was to investigate whether the use of multidimensional

1RT can improve the accuracy of ability estimates in a test battery. The results indicate that

both bias and the standard error for subtest scores were smaller when a multidimensional

approach was used. The results are consistent with Ackerwitn and Davey (1991). This

suggests that even when the parameter estimation errors are taken into account, the

multidimensional approach is still superior to the unidimensional approach in estimating

subtest scores in a battery. Whereas the standard errors results are also consistent with

Davey and Hirsch (1991), the bias results do not agree with their findings. Thus, the

increased bias in their findings seem specific to their particular estimation scheme.

The multidimensional standard error of subtest scores did not decrease as test

correlation increased. Both Ackerman and Davey (1991) and Davey and Hirsch (1991)

found that the multidimensional standard error decreased as the test correlation increased,

although the decrease was quite small. The difference in findings is probably due to the

1 1
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differences in research design. In both earlier stutlies, at each unidimensional 8 point, 900

examinees were simulated, while in our study each examinee represented a different 0.

Since the effect of correlation levels is quite small, it did not show in our study. This also

explains why sample size did not influence the results. Although bias and standard errors

decreased for subtests, they did not improve for tests. As the number of items in a test

becomes large, in an absolute sense and relative to the total number in the battery, the

advantage of the multidimensional approach seems to disappear.
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Table 1.

Descriptive Statistics for Standards Erma of Unidimensional (U)

and Multidimensional (M) Ability Estimates.

(Standarad Errors Based on 25 Replications, 34 Subjects)

Subtest A1 Subtest A2 Subtest B1 Subtest B2 Test A Test 13

MUMUMUMUM UM
Mean .35 .41 .31 .40 36 45 .31 .46 .33 .32 .33 35

SD .05 ,f6 .04 .05 .05 AS .04 .07 .04 .05 .05 .05

N= I 1 r=.63

Mean .34 .40 .28 .41 .38 .46 .30 .43 .31 .32 .33 .35

SD .W .07 .04 .07 .06 .05 .04 .06 .05 .05 .05 .04

Non1,0609 ropA2

Mean .35 .44 .30 .42 .34 .43 .30 .44 .33 33 .32 .33

SD .05 .07 .05 .06 .07 1)7 .04 .07 .05 .04 .05 .06

N=195 r=43
Mean .35 .41 .29 .42 38 .43 .31 .46 .32 .33 .34 .34

SD .04 .06 .04 .08 .07 .07 .05 .07 .04 .05 .06 .05
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Table 2

Descriptive Comparbion of Biases of Unidimensional (U)

and Multidimensional (M) Ability Estimates.

(Biases Based upon 25 Replications, 34 Subjects)

Subtest A1 ublet A2 Subtest B1 OWS B2 Test A Test B

M UMUM UM
N-500, rm.42

Upper

Lcracr .068

-.109

.103

-.054

.056

-.107

.105

-.129 -.172

.094 .153

-.101

.091

-.135

.121

-.060

.073

-.050

.068

-.117

.088

N104

.079

No1500, riP43

Upper -.071 .401 -.042 -.083 .083 -.128 -.038 -.100 -.063 -.056 -.053 -.065

Lower .111 .110 .083 .153 .133 .151 .103 .114 .101 .105 .107 .081

N-1,000. rm42

Upper

Loscr

-.073

.083

-.106

.144

-.058

.037

-.126

.061

-.118 -.174

.056 .072

-.092

.045

-.130

.093

-.070

.060

-.075

.053

-.094

.043

-.096

.042

NE11,000, ris43

Upper

Lower

.068

.089

-.122

.140

-.043

.034

-.064

.067

-.122 -.154

.042 .084

-.074

.031

-.167

.091

-.072

.073

-.058

.063

-.098

.028

-.110

.027

1

Note: Upper and Unser refer to abcwe and below average abilities respealvely.
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Figure Captions

Figure 1. The preselected 37 points throughout the 81, 82 plane.

Figure 2a. Standaid errors for unidirnensional and multidimensional estimates of subtest

plotted against true composite ability with N=1,000 and r=.42.

Figure 2b. Standard errors for unidimensional and multidimensional estimates of subtest A2

plotted against true composite ability with N=1,000 and r=.42.

Figure 2c. Standard errors for unidimensional and multidimensional estimates of

subtest B1 plotted against true composite ability with N=1,000 and r=.42.

Figure 2d, Standard errors for unidimensional and multidimensional estimates of subtest B2

plotted against true composite abffity with N=1,000 and r=.42,

Figure 2e. Standard errors for unidimensional and multidimensiom e. estimates of subtest

plotted against true composite ability with N=1,000 and r=.42.

Figure 2f. Standard errors for unidimensional and multidimensional estimates of subtest

plotted against true composite ability with N=1,000 and r=.42.

Figure 3a. Standard errors for unidimensional and multidimensional estimates of subtest

plotted against true composite ability with N=1,000 and r=.42.

Figure 3b. Biases for unidimensional and multidimensional estimates of subtest A2 plotted

against true composite ability with N=1,000 and r=.42.

Figure 3c. Biases for unidimensional and multidimensional estimates of subtest B1 plotted

against true composite ability with N=1,000 and r=.42.

Figure 3d, Biases for unidimensional and multidimensional estimates of subtest B2 plotted

against true composite ability with N=1,000 and r=.42.

Figure 3e. Biases for unidimensional and multidimensional estimates of subtest Ai plotted

against true composite ability with N=1,000 and r=A2.

Figure 3f. Biases for unidimensional and multidimensional estimates of subtest A1 plotted

against true composite ability with N=1,000 and r=.42.

1 6
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