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Measurement Accuracy

Abstract

A two-dimensional, compensatory item response model and a

unidimensional model were fitted to the Reading and Mathematics

items in the Woodcock-Johnson Psycho-educational Battery-Revised

for a sample of 1000 adults. Multidimensional information theory

predicts that, if the unidimensional abilities can be represented

as vectors in tlie two-dimensional solution, then the

multidimensional model can be used to obtain ability scores with

smaller standard errors. In Reading, the multidimensional model

yielded scores with smaller standard errors, but multidimensional

scores from subtests within reading were identical to the overall

Reading score. In Math, unidimensional scores were nonlinearly

related to multidimensional ability estimates, and for some

subjects, multidimensional ability scores had larger standard

errors.
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Measurement Accuracy

Measurement Accuracy: An Application of Multidimensional

Item Response Theory to the Woodcock-Johnson Psycho-educational

Battery-Revised Achievement Scales

Most applications of item response theory are based on

unidimensional models. Most item pools are multidimensional.

To deal with multidimensionality, items can be,divided into

unidimersionai (or essentially unidimensional, Stout, 1990)

subs ts, and each subset can be analyzed separately using a

unidimensional analysis. Luecht and Miller (in press) argue for

this approach over a truly multidimensional analysis on three

grounds: unidimensional parameter estimates are more stable than

multidimensional estimates; unidimensional ability estimates are

more interpretable; and unidimensional models will fit

unidimensional subsets of items as well as a multidimensional

model.'

When items measuring different abilities are positively

intercorrelated, and unidimensional.abilities can be represented

as linear composites of multidimensional ones, then

multidimensional information theory (Reckase, 1986).suggests that

all of the items in the pool will contribute information about a

given ability, not just the items designed to measure the given

ability. For instance, if items in a battery measuring reading

and math are all positively intercorrelated, then both the math

and reading items contribute information about math ability; both
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Measurement Accuracy

reading and math items contribute information about reading

ability. Ackerman and Davey (1991) used the term collateral

information to describe the information provided by items

measuring one domain--say reading--to estimates of ability in a

different domain--say math. Hereafter, we will distinguish

between secondary items, those which contribute collateral

information, from primary items which were specifically designed

to measure the ability in question. In achievement batteries,

collateral information is potentially most important in very

specialized areas--say measurement or algebra--for which there

are relatively few primary items, but many correlated secondary

items.

In multidimensional ability estimation, both primary and

secondary items are used, and hence collateral information is

captured. Luecht and Miller (in press) have cautioned that, in

practi6e, the MIRT models may not deliver 61e theoretically

predicted advantages of collateral information. First,

multidimensional parameters can be estimated less accurately than

unidimensional parameters. Second, after items have been divided

into unidimensional subsets, responses to items in any subdet can

be predicted about as precisely from either a unidimensional or a

multidimensional model. Third, in their opinion, their

unidimensional estimates seemed to better represent the

intereorrelation of their two simulated abilities, although in

our opinion this problem might be handled by a more optimal

4
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Measurement Accuracy

rotation of their multidimensional solution. Finally, they

observed a regression to the mean bias in their multidimensional

estimates. This bias may be inherent in multidimensional

estimates, but it probably is specific to their particular

estimation scheme. Their study did not directly address the

question of whether MIRT models can yield more accurate ability

estimates by capturing collateral information.

In an attempt to avoid the pitfalls and capture the benefits

of MIRT models, Ackerman and Davey (1991) investigated a

unidimensional approach to capturing collateral information in

adaptive testing. For each of two simulated dimensions, they

performed a unidimensional calibration which included both

primary and secondary items. They then applied a unidimensional

estimation of ability, once using just primary items and once

using both primary and secondary items. Their results illustrate

the theoretical proposition (Lord, 1983) thEit both bias and the

standard error of ability estimates should decrease with the

addition of secondary items to capture collateral information.

The correlation of estimated abilities increased with the

addition of secondary items. The authors called for more

research to determine whether and under what conditions the

theoretically predicted gains in measurement accuracy could be

achieved in practice.

Davey and Hirsch (1991) performed a simulation study to

assess whether including both primary and secondary items in

5
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unidimensional ability estimation would improve the accuracy of

those estimates. As compared to including just primary items,

including both primary and secondary items led to smaller

standard errors of measurement, but an increased regression

toward the mean bias. It is unclear whether this bias is

inherent in the use of collateral information or whether it is

specific to their particular estimation scheme (their method of

setting the unit and origin of the multidimensional Poores).

Whereas Ackerman and Davey (1991) and Davey and Hirsch

(1991) have attempted to capture collateral information with

unidimensional models, we have used a multidimensional approach.

This paper focuses on the accuracy of ability estimates and only

secondarily on issues such as parameter estimation and fit.

Particularly, this paper focuses on how the number of items, the

intercorrelation of items, and content features of the test seem

to influence theoretically expected gains iéa information through

capture of collateral information. Like the earlier work by

Ackerman (1991), it suggests that estimated unidimensional

abilities are not always simple linear combinations of

multidimensional ones; hence, in practice, there can be a

violation of the assumption underlying the argument that

multidimensional approaches must yield more information.

Unidimensional and Multidimensional Information

Like the earlier work of Ackerman & Davey (1991) and Davey
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Measurement Accuracy

and Hirsch (1991), our work is based on the multidimensional, two

parameter logistic (M2PL) model,

exp(ai 94 + i )

P(93 ) = P(xi :al p di ej ) = (1)

1 + exp(al 94 + di )

where xij is the score (0, 1) on item j by person I, P(8j) is the

probability of a correct response to item i by person 10 al is

the vector of item discrimination parameters, kb is a scalar

parameter related to the difficulty of the item, and ej is the

vector of ability parameters for person I. If the vectors a; and

84 are of dimension one, and hence scalars, this model reduces to

the standard unidimensional 2-parameter logistic model. See

Reckase (1985, 1986) for an interpretation of the

multidmensional parameters.

Reckase (1986) proposed a definition of multidimensional

information (MINF) which is a direct generalization of the

unidimensional item response theory (UIRT) concept. For UIRT,

information at an ability level, 8, is defined as the ratid of

the square of the slope of the item response function (IRF) to

the variance of the error of measurement at 0:

7
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Et (9)/d(9)P

It (9) = (2)

125 (9)% (8)

where It(9) is the information from item i given ability 9, E5(9)

is the probability of a correct response to item i for a person

with ability 8, and Ri(9) = 1 - ft(9).

In MINF, an ability corresponds to a direction in a space

defined by k (k = 1, M) reference vectors. M1NF is defined

by the mathematical function of Equation 2, but a directional

derivative is substituted for the standard derivative in the

numerator. For any ability, the directional derivative for the

M2PL model is given by

st4 = Ekai kPi (8)% (8)cosak (3)

= E. (8)Ri (8)Eka1 kcosak ,

where a is the vector of angles between the reference vectors and

the vector corresponding to the ability of interest, Ok is 'an

element of that vector expressing the angle between reference

vector k and the specified ability vector, and atk is the

discrimination parameter for item i on reference vector k.

Substituting the directional derivative in Equation 3 for the

derivative in Equation 2 yields

8
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(4)

where Let is the information of item j in direction a.

For the specified ability ap.the standard error of measurement is

MO.) =
(5)

/IWIT)

where Ix is the total test battery information in ability

direction a. Iq is the sum of the item information in ability

direction a:

ict Eiiiq (6)

In traditional unidimensional IRT, only items measuririg a

specific domain, the primary items, are used to estimate a given

ability. Hence, the sum in Equation 6 runs only over primary

items in the test battery. In a truly multidimensional

application, all items in a test battery, not just the primary

items, are used to estimate any given ability. Henee, the sum

. eisoako 44404
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Measurement Accuracy

runs over primary and secondary items; the "total test

information" includes information from primary items, but also

collateral information from secondary items. Assuming the

collateral information, the sum of the information from secondary

items, is nonzero then multidimensional information must exceed

unidimensional information. As Luecht and Miller (in press)

correctly caution, this gain in information will be obtained only

if the multidimensional parameters are reasonably well

estimated. Common sense would suggest that the gains in

information from a multidimensional approach would be most

substantial (a) when the number of primary items is small so that

the ability cannot be estimated precisely from those items alone,

(b) when the number of secondary items is large, and (c) when the

intercorrelations of primary and secondary items are large.

Like factor analytic solutions, multidimensional estimates

of itei discrimination and person ability pa'rameters are

determined only up to a rotation and change of scale. This

indeterminacy leads to two important points. Ilrst, the

discrimination and ability estimates provided by MIRT programs

correspond to reference vectors in a multidimensional space, but

they do not necessarily correspond to the most interpretable

directions in the space, and hence to the abilities of inteiest.

Second, in practice, one must find the most interpretable

directions in the space (i.e. the directions corresponding to the

abilities of interest).

10
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Existing MIRT programs would not provide estimates of math

ability. Rather they would provide estimates of discrimination

parameters and person abilities along reference vectors, from

which one can hopefully estimate the angle between the reference

vectors and the math ability vector and then estimate person

projections onto the vector corresponding to math ability.

Implied in the previous sentence is an important assumption: that

unidimensional abilities are linear functions of multidimensional

reference vectors. Hence, a MIRT application includes '`.he

following three steps; estimating item discrimination and person

abilities along reference vectors, determining the direction in

the space coriesponding to the abilities of interest, and finally

estimating person abilities along those direLtions.

Our application of MIRT involves the Math and Reading

Achievement sections of the Woodcock-Johnson Psycho-educational

Batteri-Revised (1989). Our discussion covrs the test, the

norming sample, our uni- and multidimensional calibration

efforts, and ability estimation. Then we turn to the results

comparing the theoretical estimates of information in the

unidimensional and multidimensional applications.

Method

Subjects

The subjects came from the adults aged 20 - 39 in the

11
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Measurement Accuracy

warming sample of the Woodon^k-Johnson Psycho-educational

Battery-Revised (Woodcock & Johnson, 1989). Because BILOG

(Mislevy & Bock, 1989), the unidimensional item calibration

program employed in this study, can handle no more than 1000

subjects, 1000 subjects aged 20 - 39 were randomly sampled from

the full norming group in this age range.

Test Items

The Woodcock-Johnson Psycho-educational Battery-Revised

(WJ-R, Woodcock & Johnson, 1989) contains individually

administered, free response items designed to assess over a wide

range of abilities. The WJ-R is a battery of aptitude and

achievement tests that was normed on a nationally representative

sample of 6,359 subjects from age 2 to 904- years (McGrew, Werder

& Woodcock, 1991). Items from three of the four WJ-R reading

tests and two of the three mathematics tests were used in this

study.' The very oasiest (g > .99) and very'hardest (g ( .01)

items were eliminated from the analysis. This left 36 reading

items, composed of 19 Letter-word Identification and Word Attack

items and 17 Passage Comprehension items, and 52 mathematics

items, composed of 30 Calculation items and 22 Applied Problems.

Both the Calculation and Applied Problems subtests of the

mathematics items start with easy items involving simple

arithmetic calculation and advance to more difficult items

involving algebra, trigonometry, logs, etc. The Letter-word

Identification and Word Attack items start with easy items

12
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involving identification of letters, then pronunciation of

English words, and finally sounding out nonsense syllables

according to conventions of English pronunciation; combined these

items measure Basic Reading Skills that include both sight

vocabulary and the ability to apply phonic and structural

analysis skills. The Passage Comprehension subtest first

involves finding a correct word to complete a simple sentence so

the sentence accurately describe an accompanying picture. Harder

items involve inferring the correct word to complete a short

paragraph with no pictorial clues; subjects must exercise a

variety of comprehension and vocabulary skills in this modified

cloze testing procedure.

Calibration

BILOG (Mislevy & Bock, 1989) was used for the unidimensicnal

item calibrations. Six unidimensional item sets were calibrated

using BILOG: the 36 Reading Items, the 52 Mitthematics items, the

19 Basic Reading Skills items, the 17 Passage Comprehension

items, the 30 Calculation items, and the 22 Applied Problems.

One two-dimensional item calibration was conducted for all

items using TESTMAP (McKinley,.1991a). Problems were encountered

in obtaining a reasonable solution in more than two dimensions.

Abilities were estimated using the companion program THETA

(1991b). The initial estimates produced by TESTMAP were rotated

so as to be orthogonal, and the ability estimates (81, 82) along

these orthogonal reference vectors were standardized to have mean

13
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0 and variance 1.00. Estimates of item discrimination and

difficulty parameters were rotated and rescaled so as to be

consistent with the rotation and standardization of the ability

estimates. The likelihood ratio fit statistic for TESTMAP was

60528.03.

For purposes of evaluating test information, thirty-four

subjects were selected so as to cover the region with greatest

density for a bivariate normal distribution centered at the

origin. Figure 1 shows these 34 points.

Insert Figure 1 about here.

In the multidimwnsional space, directions corresponding to

each content area were determined using the method of Wang

(1986). For each individual and content area, a score was

obtain6d by using the subject's reference vector scores (82, 82)

to estimate the subject's projection onto the vector

corresponding to the particular content area. For each content

area, the unit and origin of MIRT estimates were set according to

the same convention employed by the unidimensional calibration

program BILOG; that is, the origin was set to zero and the

variance was set to 1.00.

For each of the 34 subject points, and each content area,

the unidimensional test information was computed as the sum of

the item information, where item information was computed

14
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according to Equation 2 substituting sample estimates from the

item calibration for population parameters. Multidimensional

information was computed as the sum of item information, where

item information is computed as in Equation 4, again substituting

sample estimates from the MIRT calibration for the population

parameters. For both UIRT and MET, the standard error at a

given ability 9 was computed from test information, Equation 5.

Resillts

Figure 2a shows the MIRT discrimination parameters broken

down so as to distinguish the Reading and Math items. Reading

items generally have higher discriminations along Dimension 1

than along Dimension 2, and hence we shall call this the Verbal

Reference Vector, but it should be understood that it does not

exactly coincide with the vector best representing the Reading

content area. We will call Dimension 2 the/Math Reference

Vector, although most math items have roughly equal

discrimination parameters on the two dimensions.

Figure 2b shows the discrimination parameters br,,ken down so

as to distinguish Basic Reading Skills and Passage Comprehension

items. The two verbal measures, Passage Comprehension and Basic

Reading Skills lie in approximately the same directions in the

space. Figure 2 shows the discrimination parameters for the

Calculation And Applied Problems mathematics items. These two

sets of items are visually distinct, although they lie along

15
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similar vectors in the space. This means.that as compared to the

Calculation items, the Applied Problems have higher

discrimination parameters on the Verbal Reference Vector and

lower discrimination parameters on the Math Reference Vector.

Generally, the pattern of discrimination parameters did not

sharply distinguish the subteSts within Reading and within Math.

Insert Figure's 2a - 2c about here.

TAble 1 shows the intercorrelations of UIRT and MIRT

estimates of achievement in the six content areas. The

intercorrelations of the UIRT and MIRT estimates, the diagonal of

Table 1, are not as high as one might expect, given that they are

scores for the 'Jame content area and given that the same item

responkies which determine the UIRT score alio comprise part of

the items determining the HIRT score. Correlations range from

.83 for the Basic Reading Skills and Passage Comprehension to

.94 for Math.

Within the UIRT and MIRT estimates, the patterns of

correlations are noticeably different. That Is, the

intercorrelations of UIRT estimates (below the diagonal) ar:e

substantially lower than the intercorre-ations of MIRT estimates

(above the diagonal). The M:RT reading, Basic Reading Skills and

1

Passage Comprehenrion scores are virtually 1.000 as are the

16
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intercorrelations of Math, Calculation, and Applied Problems.

Since the pattern of item discriminations (Figures 2h and 20)

were so similar for subareas within Reading and Math, the

multidimensional ability estimates for the content areas within

Reading and Math were virtually identical.

Insert Table 1 about here.

Figures 3m, 3b, and 3e show unidimensional and

multidimensional standard errors as a function of unidimensional

scores for Reading and its two subareas, Basic Reading Skills and

Passage Comprehension. Each point corresponds to one of the 34

subjects in Figure 1. Multidimensional standard errors are

generally smaller than corresponding unidimensional standard

errors. This difference between unidimensional and

multidimensional standard errors is larger eor the Basic Reading

Skills and Passage Comprehension subareas than for the Reading

area as a whole.

In the Mathematics areas; Figures 3o, 3d, and 3f; the MIRT
standard errors are usually, but not always, smaller. At High
levels of ability, the UIRT standard errors are actually smaller

than the MIRT standard errors. This led us to inspect more

closely the MIRT and UIRT scores in corresponding content areas.

17
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Insert Figures 3a - 3f about here.

To prepare Figures 4a and 4b, the 1000 subjects were blocked

into 20 score groups with 50 in each group based on their UIRT

scores in Reading and Math. For each score group, it's means on

reference vectors el and el were plotted in either Figure 4a or

4b. If the UIRT scores corresponded to vectors in the MIRT

space, each of these plots would form a straight line. The UIRT

Reading scores, Figure 4a, do fall roughly (and arguably) along

a straight line. However, the Math scores clearly form a-

curvilinear surface. The scores appear to heavily covary with

the Verbal Reference Vector at low ability levels, but ppear to

be orthogonal to the Verbal Reference Vector at higher ability

levels. The MIRT Math scores, by definition, are projections

along A straight line in this space; the UIRT Math scores are

not. Thus the MIRTrand UIRT Math scores index linear and

nonlinear composites respectively of the MIRT.reference vectors.

This helps explain why the correlation between MIRT and UIRT Math

scores in Table 1 is lower than one might expect-for scores in a

common content area.

Insert Figt-es 4a - 4b about here.

18
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Conclusions

Unidimenslonal IRT theories can always be represented as

hierarchically embedded in a multidimensional compensatory model.

In this multidimensional representation, the unidimensional

ability is linearly related to the multidimensional reference

vectors. As our Math items illustrate, however, empirical

unidimensional ability estimates need not be linearly related to

reference vectors in an empirically derived multidimensional

representation of the full test battery. Thus, one can

reasonably expect multidimensional scores to be con . tstently more

precise estimates of the construct indexed by unidimensional

scores only when the unidimensional scores are linearly related

to the multidimensional reference vectors as the compensatory

model would lead one to expect. In any application of MIRT to

capitalize on collateral information, the researcher needs to

examine the relationship between unidimensiohal scores and

multidimensional reference vectors. Unidimensional

discrimination parameters should be linearly related to

multidimensional discrimination parameters, and unidimensional

abilities should be a linear function of multidimensional

abilities.

The MIRT approach will lead to more accurate estimates'of

subtest scores in a larger test, only when there are distinctly

different patterns of item discriminations for the various

subtests. Within Math and Reading, items did not differ by

19
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subtest in their discrimination patterns. Therefore, the

multidimensional approach did not yield scores within Math and

Reading which were distinct from the Math and Reading scores

themselves. In any application of MIRT to capitalize on

collateral information, the researcher needs to examine the

patterns of discrimination parameters for subareas within a

broader item set to determine if the discrimination patterns are

distinctly different.

In short, for the MIRT approach based on a compensatory

model to effectively capitalize on collateral information,

empirically derived scores must satisfy the following criterion:

scores in each subarea need to be representable as distinct

vectors in Lhe multidimensional representation of items.

Further research is needed to determine which types of items,

content areas, and subareas conform to this criterion.

In our analysis, unidimensional Readini scores were

(arguably) representable as a linear function of the

multidimensional reference vectors. Multidimensional standard

errors were generally less than or equal to the conditional

standard errors for the unidimensional estimates. Hence the

multidimensional Reading scores can reasonably be considered more

precise estimates of the ability indexed by the unidimensional

Reading scores. However, reading subareas, Basic Reading Skills

and Passage Comprehension were not represented by distinctly

different patterns of item discriminations. Hence our

20
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multidimensional representation yielded more precise scores, but

not scores identifiabJe as Basic Reading Skills and Passage

Comprehension distinct from Reading.

Math items may consistently violate the above criterion.

In our analysis, the unidimensional math scores were nonlinearly

related to the multidimensional reference vectors in our two-

dimensional representation. Ackerman (1991) alludes to similar

anomalies in American College Test math data. Atkin, Bray,

Davison, Herzberger, Humphreis, and Selzer (1977) found evidence

for a factor differentiation hypothesis in which math and verbal

factors seem to become less highly correlated with age. It may

be, however, that the more difficult tasks commonly included in

mathematics tests for older ages tap a different ability

composite than do the easier tasks used to tap math ability at

younger ages. This would explain the evidence both for factor

differbntiation reported by Atkin et al. and the changing

composition of UIRT math scores with increasing ability reported

in the present study. If arithmetic items and mathematics items

(formal algebra, trigonometry, etc.) tap different factors, then

unidimensional mathematics scores may not always be

representable as simple linear composites of empirically derived

multidimensional ability vectors, and hence mathematics scores

may not capitalize on collateral information in the fashion

predicted by compensatory MIRT models.

21
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Table 1. Intercorrelations of Unidimensional and

Multidimensional Ability Estimates

BRS PC C AP

BRS .83 1.00 .68 .82 1.00 .73

PC .65 .83 .63 .78 1.00 .69

.44 .48 .90 .98 .64 1.00

AP .51 .59 .74 41 .78 1.00

.92 .88 .50 .60 .92 .69

.51 .56 .95 .90 .59 .94

Note: Correlations of corresponding multi- and

unidimensional ability estimates are given on the diagonal.

Iritercorrelations of multidimensional e'stimates are shown

above the diagonal. Intercorrelations of unidimensional

estimates are shown below the diagonal. BRS = Basic Reading

Skills, PC = Passage Comprehension, C = Calculation, AP =

Applied Problems, R = Reading, and M = Math.
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Figure Captions

Figure 1. Locations of the 34 points used to compare

unidimensional and multidimensional information.

Figure 2a. Multidimensional discrimination parameters for the

Reading and Math Test items; R = Reading Item, M = Math

Item.

Figure 2b. Multidimensional discrimination parameters for the

Reading Test items; B = Basic Reading Skills Item,

P = Passage Comprehension Item,

Figure 2c. Multidimensional discrimination parameters for the

Mathematics Test items; C = Calculation Item, A = Atiplied

Problems Item

Figure 3a. Standard errors for unidimensional and

multidimensional Basic Reading Skills scores plotted

against unidimensional scores for the 34 subjects in Figure

1! U = Unidimensional and M = Multidimensional.

Figure 3b. Standard errors for unidimensional and

multidimensional Passage Comprehension scores plotted

against unidimensional scores for the 34 subjects in Figure

1. U = Unidimensional amd M = Multidimensional.

Figure 3c. Standard errors for unidimensional and

multidimensional Calculation scores plotted against

unidimensional scores for the 34 subjects in Figure 1.

U = Unidimensional and M = Multidimensional.
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Figure 3d. Standard errors for unidimensional and

multidimensional Applied Problems scores plotted against

unidimensional scores for the 34 subjects in Figure 1.

U = Unidimensional and M = Multidimensional.

Figure 3e. Standard errors for unidimensional and

multidimensional Reading scores plotted against

unidimensional scores for the 34 subjects in Figure 1.

U = Unidimensional and M = Multidimensional.

Figure 3f. Standard errors for unidimensional and

multidimensional Mathematics scores plotted against

unidimensional scores for the 34 subjects in Figure 1.

U = Unidimensional and M = Multidimens.xonal.

Figure 4a. Mean scores on referende vectors 02 and ea for

subjects blocked by unidimensional Reading scores.

Figure 4b. Mean scores on reference vectors 01 and 0: for

stibjects blocked by unidimensional Math scores.
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