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/ Measurement Accuracy

Abstract
A two-dimensional, compensatory item response modei and a
unidimensional model were fitted to the Reading and Mathematics
items in the Woodcock-Johnson Psycho-educational Battery-Revised
for a sample of 1000 adults. Multidimensional information theory
predicts that, if the unidimensional abilities can be represented
as vectors in the two-dimensional solution, then the
multidimensional model can be used to obtain ability scores with
smaller standard errors. In Reading, the multidimensional model
vielded scores with smaller standard errors, but multidimensional
scores from subtests within reading were identical to the overall
Reading score. 1In Math, unidimensional scores were nonlinearly
related to multidimensional ability estimates, and for sore
subjects, multidimensional ability.scores,had larger standard

errors.
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/ Measurement Accuracy
Measurement Accuracy: An Application of Multidimensional
Item Response Theory to the Woodcock-Johnson Psycho-educational

Battery-Revised Achievement Scales

Most applications of item response theory are based on
unidimensional models, Most item pools are multidimensional.

To deal with multidiqensionality, items can be divided into
unidimersional (or essentially unidimensional, Stout, i990)

subs ts, and each subset can be analyzed separately using a
unjdimensional analysis. Luecht and Miller (in press) argue for
this approach over a truly multidimensional analysis on three
grounds: unidimensional parameter estimnates are more stable than
multidimensional estimates; unidimensional ability estimates are
more interpretable; and unidimensional models will fit
unidimensional subsets of items as well as a multidimensional
modél.' '

When items measuring different abilities are positiéely
intercorrelated, and unidimensional abilities can be represented
as linear composites of multidimensional ones, then
multidimensional information theofy {Reckase, 1986)‘sugges£s that
all of the items in tﬁe pool wiil contribute informatioﬂ about a
given ability, not just the items designed to measure the given
ability. For instance, if items in é battery measuring reading
and math are all positively intercorrelated, then both the math

and reading items contribute information about math ability; both
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/ Measurement Accuracy
reading and math items contribute information about reading
ability. Ackerman and Davey {1991) used the term collateral
information to describe the information provided by items
measuring one domain--say reading--to estimates of ability in a
different domain--say math. Hereafter, we will distinguish
between secondary items, those which contribute collateral
information, from primary items which were specifically designed
to measure the ability in question. In achievement batteries,
collateral information is potentially most important in very
specialized areas--say measurement or algebra--for which there
are relatively few priméry items, but many correlated secondary
items.

In multidimensional ability estimation, both primary and
secondary items are used, and hencé collateral information is
captured. Luecht and Mille¢r {in press) have cautioned that, in
pracfiée, the MIRT models may not deliver the theoretically
predicted advantages of collateral information. First,
multidimensional parameters can be estimated less accurately than
unidimensional parameters. Second, after items have been divided
into unidimensional subsets, responses to items in any subset can
be predicted about as precisely from either a unidimensional or a
multidimensional model. Third, in their opinion, their
unidimensional estimates seemed to better represent the
intercorrelation of their two simulated abilities, although in

our opinion this problem might be handled by a more optimal

KA + e ? é:d”-ﬁﬁ o ~'f’i&$"m-; e




Measurement Accuracy
rotation of their multidimensional solution. Finally, they
observed a regression to the mean bias in their multidimensional
estimates. This bias may be inherent in multidimensional
estimates, but it probably is specific to their particular
estimation scheme. Their study did not directly address the
question of whether MIRT models can yield more accurate ability
estimates by capturing collaterai information.

In an attempt to avoid the pitfalls and capture the benefits
of MIRT models, Ackerman and Davey (1991) investigated a
unidimensional approach to capturing collateral information in
adaptive testing. For each of two simulated dimensions, they
performed a unidimensional calibration which included both
primary and secondary items. They then applied a unidimensional
estimation of ability, once using just primary items and once
using both primary and secondary items. Their results illustrate
the théoretical proposition (Lord, 1983) that both bias and the
standard error of ability estimates should decrease with the
addition of secondary items to capture collateral informatior.
The correlation of estimated abilities increased with the
addition of secondary items. The‘authors called for more
research to deterﬁine.uhether and under what conditions the
theoretically predicted gains in measurement accuracy could be
achieved in practice.

Davey and Hirsch (1991) performed a simulation study to

assess whether including both primary and secondary items in
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unidimensional ability estimation would improve the accuracy of
those estimates. As compared to including just primary items,
including both primary and secondary items led to smaller
standard errors of measurement, but an increased regression
toward the mean bias. It is unclear whether this bias is
inherent in the use of collateral information or whether it is
specific to their particular estimation scheme (their method of
setting the unit and origin of the multidimensional scores).

Whereas Ackerman and Davey (1991) and Davey and Hirsch
(1991) have attempted to capture collateral information with
unidimensional models, we have used a multidimensional approach.
This paper focuses on the accuracy of ability estimates and only
secondarily on issues such as parameter estimation and fit.
Particularly, this paper focuses oh how the number of items, the
intercorrelation of items, and content features of the test seem
to influence theoretically expected gains in information through
capture of collateral information. Like the earlier work by
Ackerman (1991), it suggests that zstimated unidimensional
abilities are not always simple linear combinations of
multidimensional ones; hence, in ﬁractice, there can be a
violation of the assuﬁption underlying the argument that

multidimensional approaches must yield more information.

Unidimensional and Multidimensional Information

Like the earlier work of Ackerman & Davey (1981) and Davey
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Measurement Accuracy
and Hirsch (1991), our work is based on the multidimensional, two

parameter logistic (M2PL) model,

exp(ai®; + d;i)
P(B;) = P(xisiai, dy, 8;) = —ccmmmema —————————— (1)

1 + exp(ai8; + dy)

where xi3 is the score (0, 1) on item i by person Jd» P{(8y) is the
probability of a correct response to item i by person j, a; is
the vector of item discrimination parameters, dy is a scalar
parameter related to the difficulty of the item, and 8; is the
vector of ability parameters for person j. If the vectors a; and
8; are of dimension one, and hence scalars, this model reduces to
the standard unidimensional 2-parameter logistic model. See
Reckase (1985, 1986) for an interpretation of the
multidimensional parameters. '

Reckase (1986) proposed a definition of multidimensional
information (MINF) which is a direct generalization of the
unidimensional item response theory.(UIRT) concept. For UIRT,
information at an ability level, Q; is defined as thg ratid’of
the square of the slopé of the item response function {IRF) to

the variance of the error of measurement at :
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Measurement Accuracy

[éP (B8)/48(08)]2
Ii(®) = oo (2)
P (8)Q: (8)

where I, (8) is the information from item i given ability &, P; (9)
is the probability of a correct response to item i for a person
with ability ®, and @ (8) = 1 - P, (8).

In MINF, an ability corresponds to a direction in a space
defined by k (k = 1, ..., M) reference vectors. MINF is defined
by the mathematical function of Equation 2, but a directional
derivative is substituted for the standard derivative in the
nunmerator. For any ability, the directional derivative for the .

M2PL model is given by

Zxa; xP; (8)Qi (8)cosax ’ (3)

X
n

P; (8)Q (8)Exa; xcosax ,

where « is the vector of angles between the reference vectors and
the vector corresponding to the aBility of interest,‘au is ‘an
element of that vecto£ expressing the angle between reference
vector k and the specified ability vector, and aix is the
discrimination parameter for item j on reference vector k.
Substituting the directional derivative in Equation 3 for the

derivative in Equation 2 yields
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[P (8)& (8)Ixay xcosa; x 12
e (4)
Pi(e)q (9)

= P (8)Q (8)[Zxa xcosa; ]2

where Iix is the information of item i in direction «.

For the specified ability «, the standard error of measurement is

SEx (@) = «=-- (5)

where Ix is the total test battery information in ability

direction a. Iy is the sum of the item information in ability

’

direction «a:

I3 = LiLig . ' (6)

In traditional unidimensional‘IRT, only itenms measuring a
specific domain, the ﬁrimary items, are used to estimate a given
ability. Hence, the sum in Equation 6 runs only over primafy
items in the test battery. In a truly multidimensional
application, all items in a test battery, not just the primary

items, are used to estimate any given ability. Hence, the sum
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runs over primary and secondary items; the "total test
information” inéludes information from primary items, but also
collateral information from secondary items. Assuming the
collateral information, the sum of the information from secondary
items, is nonzero then multidimensional information must exceed
unidimensional information. As Luecht and Miller (in press)
cofrectly caution, this‘gain in information will be obtained only
if the multidimensional parameters are reasonably'well
estimated. Common sense would suggest that the gains in
information from a multidimensional approach would be most
substantial (a) when the number of pfimary items is small so that
the ability cannot be estimated precisely from those items alone,
{b) when the number of secondary items is large, and (c) when the
intercorrelations of primary and secondary items are large.

Like factor analytic solutions, multidimensional estimates
of item discrimination and person ability parameters are
determined only up to a rotation and change of scale. This
indeterminacy leads to two important points. °First, the
discrimination and ability estimates provided by MIRT Programs
correspond to reference vectors in a mult1d1mensxonal space, but
they do not necessarily correspond to the most interpretable
directions in the space, and hence to the abilities of interest.
Second, in practice, one must find the most interpretable
directions in the space (i.e. the directions corresponding to the

abilities of interest).

10
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Measurement Accuracy

Existing MIRT prosrams would not provide estimates of math
ability. Rather they would provide estimates of discrimination
paraméters and person abilities along reference vectors, from
which one can hopefully estimate the angle between the reference
vectors and the math ability vector and then estimate person
projections onto the vector corresponding to math ability.
Implied in the previous sentence is an important assumption: that
unidimensional abilities are linear functions of multidimensional
referénce vectors. Hence, a MIRT application includes “he
following three steps; estimating item discrimination and person
abilities along reference vectors, determining the direction in
the space corféspohding to the abilities of inte}est, and finally
estimating person abilities along those direc‘ions.

Our application of MIRT involves the Math and Reading
Achievement sections of the Woodcock-Johnson Psycho-educational
Battery-Revised (1989). Our discussion covers the test, the
norming sample, our uni- and multidimensional calibration
efforts, and ability estimation. Then we turn to the results
compafing the theoretical estimates of information in‘thé

unidimensional and multidimensionél applications,
Method

Subjects

The subjects came from the adults aged 20 - 39 in the

11
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Measurement Accuracy

norming sample of the Woodor~k-Johnson Psycho-educational
Battery-Revised (Woodcock & Johnson, 1989). Because BILOG
(Mislevy & Bock, 1989), the unidimensional item caiibration
program employed in this study, can handle no more than 1000
subjects, 1000 subjects aged 20 - 39 were randomly sampled from
the full norming group in this age range.
Test Items

The Woodcock-Johnson Psycho-educational Battery-Revised
(WJ-R, Woodcock & Johnson, 1989) contains individually
administered, free response items designed to assess over a wide
range of abilities. The WJ-R is a battery of aptitude and
achievement tests that was normed on a nationally representative
sample of 6,359 subjects from age 2 to 90+ years (McCGrew, Werder
& Woodcock, 1991). 1Items from three of the four WJ-R reading
tests and two of the three mathematics tests were used in this
study.' The very easiest (p > .99) and very ‘hardest (p < .01)
items were eliminated from the analysis. This left 36 reading
items, composed of 19 Letter-word Identification and Word Attack
items and 17'Pa55383 Comprehension items, and 52 mathematics
items, composed of 30 Calculation items and 22 Appligd Problems.

Both the Calculaiion and Applied Problems subtests of the
mathematics items start with easy items involving simple
arithmetic calculation and advance to more difficult items
involving mlgebra, trigonometry, logs, etc. The Letter-word

Identification and Word Attack items start with easy itenms
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Measurement Accuracy
involving identification of letters, then pronunciation of
English words, and finally sounding out nonsense syllables
according to conventions of English pronunciation; combined these
items measure Basic Reading Skills that include both sight
vocabulary and the ability to apply phonic and structural
analysis skills. The Passage Comprehension subtest first
involves finding a correct word to complete a simple sentence so
the sentence accurately describe an accompanying picture. Harder
items involve inferring the correct word to complete a short
paragraph with no pictorial clues; subjects must exercise a
variety of comprehension and vécabulary Qkills in this modified
cloze testing procedure.

Calibration

BILOG (Mislevy & Bock, 1989) was used fér the unidimensicnal
item calibrations. Six unidimensional item sets were calibrated
using BILOG: the 36 Reading Items, the 52 Mathematics items, the
19 Basic Reading Skills items, the 17 Passage Comprehension
items, the 30 Calculation items, and the 22 Applied Problems.

One two-dimensional item calibration was conducted for all
items using TESTMAP (McKinley,.lséla). Problems were encountered
in oﬁtaining a reasonable solution in more than two dimensions.
Abilities were estimated using the companion program THETA
(1991b). The initial estimates produced by TESTMAP were rotated
so as to be orthcgonal, and the ability estimates (©;, ©2) along

these orthogonal reference vectors were standardized to have mean

13
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Measurement Accuracy
0 and variance 1.00. Estimates of item discrimination and
difficulty parameters were rotated and rescaled so as to be
consistent with the rotation and standardization of the ability

estimates. The likelihood ratio fit statistic for TESTMAP was
60528.03.

For purposes of evaluating test information, thirty-four
subjects were selected so0 as to cover the region with greatest
density for a bivariate normal distribution centered at the

origin. Figure 1 shows these 34 points.
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In the multidimensional space, directions corresponding to
each content area were determined ﬁsing the ﬁéthod of Wang
(1986). For each individual and content area, a score was
obtainéd by using the subject’s reference vector scores (8, ©;)
to estimate the subject’s projection onto the vector
corresponding to the particular‘content area. For each content
area, the unit and origin of MIRT estimates were set according to
the same convention employed by the unidimensional calibration
progfam BILOG; that ié, the origin was set to zero and the
variance was set to 1,00,

For each of the 34 subject points, and each content area,
the unidimensional test information was computed as the sum of

the item information, where item information was computed

14
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Measurement Accuracy
according to Equation 2 substituting sample estimates from the |
item calibration for population parameters. Multidimensional
information was computed as the sum of item information, where
item information is computed as in Equation 4, again substituting
sample estimates from the MIRT calibration for the population
parameters. For both UIRT and MIRT, the standard error at a
given ability ® was computed from test information, Equation 5.

Resalts

Figure 2a shows the MIRT discrimination parameters broken
dovwn so as to distinguish the Reading and Math items. Reading
items generally have higher discriminations along Dimension 1
than along Dimension 2, and hence we shall call this the‘Verbal
Reference Vector, but it should be understood that it does not
exactly coincide with the vector best representing the Reading
content area. We will call Dimension 2 the ‘Math Reference
Vector, although most math items have roughly equal
discrimination parameters on the two dimensions.

Figure 2b shows the discrimination parameters brechen doﬁn‘so
as to distinguish Basic Reading Skills and Passage QOmprehénsion
items. The two verbai measures, Passage Comprehension and Basic
Reading Skills lie in approximately the same directions in the
space. Figure 2¢ shows the discrimination parameters for the
Calculation and Applied Problems mathematics items. These two

sets of items are visually distinct, although they lie along
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Measuremer.t Accuracy
similar vectors in the space. This meané'that as compared t§ the
Calculation items, the Applied Problems have higher
discrimination parameters on the Verbal Reference Vector and
lower discrimination parameters on the Math Reference Vector.
Generally, the pattern of discrimination parameters did nﬁt

sharply distinguish the subtests within Reading and within Math.
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Tible 1 shows the intercorrelations of UIRT and MIRT
estimates of achievement in the six content areas. The
intercorrelations of the UIRT and MIRT estimates, the diagonal of
Table 1, are not as high as one miéht expect; given that they are
scores for the same content area and given that the same item
responses which determine the UIRT score alsgo comprise part of
the items determining the MIRT score. Correlations range from
.83 for the Basic Reading Skills and Passage Comprehension to
+94 for Math.

Within the UIRT and MIRT estiﬁates, the patterqs of
corrélations are notiéeably different. That is, the
intercorrelations of UIRT estimates (below the diagonal) are
substantially lower than the intercorre.ations of MIRT estimates
{above the diagonal). The MIRT reading, Basic Reading Skills and

Passage Comprehencion scores are virtually 1.00, as are the

16
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Measurement Accuracy
intercorrelations of Math, Calculation, and Applied Problens.
Since the pattern of item discriminations (Figures 2b and 2¢)
were so similar for subareas within Regding and Math, the
multidimensional ability estimates for the content areas within

Reading and Math were virtually identical.

ﬁ-———---——---—--nn--—----—--w-

Figures 3a, 3b, and 3e show unidimensional and
multidimensional standard errors as a funotion of unidimensional
scores for Reading and its two subareas, Basic Reading Skills and
P#ssage Comprehension. Each point corresponds to one of the 34
subjects in Figure 1. Multidimensional standard errors are
Benerally smaller than corresponding unid;meﬁsional standard
errors. This difference between unidimensional and
multidimensional standard errors is larger for the Basic Reading
Skills and Passage Comprehension subareas than for the Reading
area as a whole.

In the Mathematics areas; Figures 3c, 3d, and 3f; the MIRT
standard errors are usually, but not always, smaller: At ‘high
levels of ability, the.UIRT standard errors are sctually smaller
than the MIRT standard errors. This led us to inspect more

closely the MIRT and UIRT scores in corresponding content areas.
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To prepare Figures 4a and 4b, the 1000 subjects were blocked
into 20 score groups with 50 in each group based on their UIRT
scores in Reading and Math. For each score group, it’s means on
reference vectors 6; and 8: were plotted in either Figure 4a or
4b. If the UIRT scores corresponded to vectors in the ﬁIRT
space, each of these plots would form a straight line. The UIRT
Reading scores, Figure 4a, do fall roughly (and arguably) along
a straight line. However, the Math scores clearly form a:
curvilinear surface. The scores appear to heavily covary with .
the Verbal Reference Vector at low ability levels, but .ppear to
be or@hogonal to the Verbal Referehce Vector at higher ability
levelé. The'MIRT‘MatQ scores, by definition, are proJjections
along 4 straight line in this space; the UIRTEMath scores are
not. Thus the MIRT,and UIRT Math scores index linear and
nonlinear composites respectively of the MIRT reference vectors.
This helps explain why the corfelatiop between MIRT and UIRT Math

scores in Table 1 is lower than one might expect for scores in a

-

common content area.
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Conclusions

Unidimensional IRT theories can always be represented as
hierarchically embedded in a multidimensional compensatory model.
In this multidimensional representation, the unidimensiongl
ability is linearly related to the multidimensional reference
vectors. As our Math items illustrate, however, empirical
unidimensional ability estimates need not be linearly related to
reference vectors in an empirically derived multidimensional
representation of the full test battery. Thus, one can
reasonably expect multidimensional scores to be con: istently more
precise estimates of the construct indexed by unidimensional
scores only when the unidimensional scores are linearly related
to the multidimensional reference vectors as the compensatory
model would lead one to expect. 1In any appliéation of MIRT to
capitalize on collateral information, the researcher n.eds to
examine the relationship between unidimensiohnal scores and
multidimensional reference vectors. Unidimensional
discrimination parameters should be linearly related to
multidimensional discrimination parameters, and unidimensional
abilities should be a linear function of multidimens}onal
abilities.

The MIRT approach will lead to more accurate estimates of
subtest scores in a larger test, only when there are distinctly
different patterns of item discriminations for the various

subtests. Within Math and Reading, items did not differ by
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'subtest in their discrimination patterns., Therefore, the

multidimensional approach did not yield scores within Math and
Reading which were distinct from the Math and Reading scores
themselves. In any application of MIRT to capitalize on
collateral information, the researcher needs to examine the
patterns of discrimination parameters for subareas within a
broader item set to determine if the discrimination patterns are
distinctly different.

In short, for the MIRT approach based on a compensatory
model to effectively capitalize on collateral information,
empirically derived scores must satisfy the following criterion:
scores in each subarea need to be representable as distinct
vectors in cthe multidimensional representation of items.

Further research is needed to detefmine whicﬁ types of items,
content areas, and subareas conform to this criterion.

In our analysis, unidimensional Reading scores were
(arguably) representable as a linear function of the
multidimensional reference vectors. Multidimensional standard
errors were generally less than or equal to the conditional
standard errors for the unidimensional estimates. Hgnee the
multidimensional Reading scores can reasonably be considered more
precise estimates of the ability indexed by the unidimensional
Reading scores. However, reading subareas, Basic Reading Skills
and Passage Comprehension were not represented by distinctly

different patterns of item discriminations. Hence our

20
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multidimensional representation yielded more precise scores, but
not scores identifiable as Basic Reading Skills and Passage
Comprehension distinct from Reading.

Math items may consistently violate the above criterion.
In our analysis, the unidimensional math scores were nonlinearly
related to the multidimensional reference vectors in our two-
dimensional representation. Ackerman (1891) alludes to similar
anomalies in American College Test math data. Atkin, Bray,
Davison, Herzberger, Humphfeés, and Selzer (1977) found evidence
for a factor differentiation hypothesis in which math and verbal
factors seem to become less highly correlated with age. It may
be, however, that the more difficult tasks commonly included in
mathematics tests for older ages tap a different ability
composite than do the easier tasks used to taﬁ math ability at
younger ages. This would explain the evidence both for factor
differéntiation reported by Atkin et al. and the changing
composition of UIRT math scores with increasing ability reported
in the present study. If arithmetic items and mathematics items
(formai algebra, trigonometry, etc.) tap different factors, then
unidimensional mathematics scores'may not always be'
représentable as simpie linear composites of empirically derived
multidimensional abiliiy vectors,'and hence mathematics scores
may not capitalize on collateral information in the fashion

predicted by compensatory MIRT models.
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Table 1. Intercorrelations of Unidimensional and

Multidimensional Ability Estimates

BRS PC C AP R M
BRS .83 1.00 .68 .82 1.00 .73
PC .65 .83 »63 .78 1.00 .69
Cc .44 = .48 »90 .98 .84 1.00
AP .51 .09 .74 .87 .78 1.00
R .92 .88 .50 .60 .92 .69
M : +51 .56 .95 .50 .09 .94

Note: Correlations of corresponding'mulﬁi- and
unidimensional ability estimates are given on the diagonal.
Intercorrelations of multidimensional estimates are shown
above the diagonal. Intercorrelations of unidimensional
estimates are shown below the diagonal. BRS = Basic Reading
Skills, PC = Passage Comprehension, C = Calculation, AP =

Applied Problems, R = Readiné. and M = Math,
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Figure Captions

Figure 1. Locations of the 34 points used to compare
unidimensional and multidimensional information.

Figure 2a. Multidimensional discrimination parameters for the
Reading and Math Test items; R = Reading Item, M = Math
Item.

Figure 2b. Multidimensional discrimination parameters for the
Reading Test items; B = Basic Reading Skills Item,

P = Passage Comprehension Item.

Figure 2c. Multidimensional discrimination parameters for the
Mathematics Test items; C = Calculation Item, A = Applied
Problems Item

Figure 3a. Standard errors for unidimensionsal and
multidimensional Basic Readiné Skills scores plotted
against unidimensional scores for the 34 subjects in Figure
1. U = Unidimensional and M = Multidimensional.

Figure 3b. Standard errors for unidimensional and
nultidimensional Passage Comprehension scores plotted
against unidimensional scores for the 34 subjects in Figure
1. U = Unidimensional and M = Multidimensionalr

Figufe 3c. Standard errors for unidimensional and
multidimensional Calculation scores plotted against
unidimensional scores for the 34 subjects in Figure 1.

U = Unidimensional and M = Multidimensional.
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Figure 3d. Standard errors for unidimensional and
multidimensional Applied Problems scores plotted against
unidimensional scores for the 34 subjects in Figure 1.

U = Unidimensional and M = Multidimensional.

Figure 3e. Standard errors for unidimensional and
multidimensional Reading scores plotted against
unidimensional scores for the 34 subjects in Figure 1.

U = Unidimensional and M ='Mu1tidimensional.

Figure 3f. Standard errors for unidimensional and
multidimensional Mathematics scores plotted against
unidimensional scores for the 34 subjects in Figure 1.

U = Unidimensional and M = Multidimens.onal.

Figure 4a. Mean scores on reference vectors 8; and €; for
subjects blocked by unidimensional Readiﬁg scores.

Figure 4b. Mean scores on reference vectors ©; and ©; for

subjects blocked by unidimensional Math scores. /
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