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ABSTRACT

Conveinticnal statistical significance tests do not infcrm the

researcher regarding the likelihood that results will replicate.

One strategy for evaluating result replicability i.1 to employ a

"bootstrap" resampling of a study's data so that the stability of

results across numerous ccmfigurations of the subjects can be

explored. The present paper illustrates the use of the bootstrap

in a canonical correlation analysis. Canonical correlation

analysis is the most general case of classical general linear model

analyses, subsuming other univariate and multivariate parametric

methods (e.g., t-tests, ANOVA, ANCOVA, r, regression, MANOVA, and

discriminant analysis) as special cases.
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The use of statistical significance testing as part of the
interpretation of empirical research results has historically
generated considerable debate (Carver, 1978; Huberty, 1987;
Morrison & Henkel, 1970; Thompson, 1989a, 1989c, 1989e). A series
of articles on the limits of statistical significance testing has
even appeared on a seemingly periodic basis in recent editions of
the American Psychologist (Cohen, 1990; Kupfersmid, 1988; Rosnow &
Rosenthal, 1989). Thompson (1992c) points out several of the many
possible objections to overreliance on conventional statistical
significance testing. Two of these objections are most noteworthy.
1. Statistical Significance Testing can be Tkutological

Even some widely respected authors of prominent methodology
textbooks at times take internally inconsistent positions with
respect to the role that conventional statistical significance
testing should play in analysis (see book reviews by Thompson,
1987a, 1988d). And some dissertation authors may be
disproportionately susceptible to excessive awe for significance
tests (LaGaccia, 1991; Thompson, 1988b). But researchers who have
had the experience of working with large samples (cf. Kaiser, 1976)
soon realize that virtually all null hypotheses will be rejected at
some sample size, since "the null hypothesis of no difference is
almost never exactly true in the population" (Thompson, 1987b, p.
14). As Meehl (1978, P. 822) notes, "As I believe is generally
recognized by statisticians today and by thoughtful social
scientists, the null hypothesis, taken literally, is always false."
Thus Hays (1981, p. 293) argues that "virtually any study can be
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made to show significant results if one uses enough subjects." Many

researchers possess this insight, but somehow do not integrate this

knowledge Lnto their paradigms for conceptualizing or conductin;

research. Thus, the insight too rarely impacts actual practice.

Although statistical significance is a function of at least

seven interrelated features of a study (Schneider & Darcy, 1984),

sample size is a basic influence on significance. To some extent

significance tests evaluate the size of the researcher's sample--

most researchers already know prior to conducting significance

tests whether the sample in hand is large or small, so these

outcomes do not always yield understanding that would be lost
absent a significance test. As Thompson (1992b. p. 436) notes:

Statistical significance testing can inv)lve a

tautological logic in which til:ed researchers,

having collected data from hundreds of subjects,

then conduct a statistical test to evaluate whether

there were a lot of subjects, which the researchers

already know, because they collected the data and

know they're tired. This tautology has created

considerable damage as regards the cumulation of

knowledge...

2. Sole Reliance on Statistical, Significance Testing Creates
IDSALOWIt:UU211Ammas for Researchers

Researchers who place an inordinate emphasis on statistical

significance tests also often confront an inescapable dilemma,

though most researchers do not recognize (or prefer to ignore) this

dilemma. All statistical significance tests invoke certain
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assumptions. For example, ANOVA requires pooling the variances of

the dependent variable across the cells of the design during the

calculation of the mean square used in the denominator of the

fixed-effects f-test (Haase & Thompson, 1992). This pooling is

legitimate if and only if the variances of the dependent variable
scores in all the cells are essentially equal. This is the well

known "homogeneity (i.e., equality) of variance" assumption.

Similarly, as Thompson (1992a) notes, ANCOVA is a three-stage

analysis in which (a) regression weights for the covariate are

derived completely ignoring group or cell membership of the
Asubjects, (b) predicted dependent variable scores (Y) are computed

using the weights, and are then subtracted from the actual
dependent variable scores (Y) of the subjects to yield an "e" score

= Yi i) for each ith subject, and then (c) an ANOVA is
conducted using the "e" scores as the dependent variable in place
of the Y scores. As Loftin and Madison (1991) explain in some
detail, this process is legiti-ate if and only if the regression
equations for predicting Y with the covariate(s) are essentially
the same, i.e., the "homogeneity of regression" assumption is met.
Because a single regression equation, a single equation that is

calculated completely ignoring group membership, is employed to
statistically adjust the Y scores, this single equation can only
reasonably be used if the equations for the different groups or
cells are reasonably comparable, otherwise use of a "pooled"
regression equatior wo.ld be inappropriate.

Many researchc-s use statistical significance testing to
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evaluate both their preliminary methodological assumption

hypotheses (e.g., the ANOVA homogeneity of variance assumption, the

ANCOVA homogeneity of regression assumption) and their substantive

hypotheses (e.g., the mean dependent variable score of the
treatment group equals that of the control group). These

researchers hope to pot reject the null hypotheses involving

methodologies', assumptions (e.g., they want the dependent variable

variances in the cells to all be equal), while they typically hope
to reject their substantive hypotheses. But as Thompson (1991c, p.

504) notes, this creates a dilemma, since

the same large sample size that yields power against

Type II error in testing the substantive hypotheses

of interest in ANCOVA (or ANOVA or the t-test) is

also going to tend to yield statistically

significant effects for the preliminary homogeneity

of regression (or of variance) test.

Some researchers attempt to escape this dilemma by presuming
that tir methods are robust to the violation of their

assumptl.ons. This does not generally appear to be the case with
ro.spect to ANCOVA (Keppel & Zedeck, 1989). And the longstanding
view that ANOVA was robust to the violation of the homogeneity of
variance assumption has recently been called into some question,
thanks to more sophisticated Monte Carlo studies conducted with
more complicated designs, and with more simulation samples (e.g.,
Rogan & Keselman, 1977; Tomarkin & Serlin, 1986; Wilcox, Charlin &
Thompson, 1986).

4
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Alternatives

Over the years various alternatives that might serve as
substitutes for or augmentations of statistical significance

testing have been proposed. For example, Serlin and Lapsley (1985)

advocated placing an emphasis on confidence intervals, Bayesian

approaches have been encouraged by some (e.g., Good, 1981), and

somewhat less serious proposals have been presented by still others

(Salzman, 1989).

But some strategies emphasize interpretation based on the
estimated likelihood that results will replicate. This emphasis is

compatible wIth the basic purpose of science: isolating conclusions
that replicate under stated conditions. Notwithstanding some

misconceptions to the contrary, conventional statistical
significance tests do not evaluate the probability that results
will generalize (Carver, 1978).

A particularly powerful strategy for evaluating result

replicability invokes the bootstrap methods developed by Efron and
his colleagues (cf. Diaconis & Efron, 1983; Efron, 1979; Lunneborg,

1990). Conceptually, these methods involve copying the data set

over again and again many many times into an infinitely large
"mega" data set. Then hundreds or thousands of different samples
are drawn from the "mega" file, and results are computed separately
for each sample and then averaged.

The method is powerful because the analysis considers so many

configurations of subjects (including configurations in which a

subject may be represented several times or not at all) and informs
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the researcher regaraing the extent to which results generalize
across different types of subjects. Lunneborg (1987) has offered

some excellent computer programs that automate this logic for

univariate applications; Thompson (1988) provides similar software

for multivariate applications. Recently, user-friendly PC bootstrap

softwere has become available from publishers around the world,

e.g., the menu-driven program, BOJA, distributed by iecProGAMMA,

PJ). Box 841, 9700 AV Groningen, The Netherlands.'

Bootstrap versus Classical Statistical Significance Tests

All statistical tests invoke four estimates. The first is a
single statistic estimating a single population parameter
calculated from the sample data in hand. The remaining three
estimates are calculated pot from the data in hand, but rather from

entirely different data ki.e., the sampling distribution of the
estimated parameter) conceptually involving multiple repeated
samplings of the parameter estimate from a population. These four
estimates are: (a) the single parameter estimate (e.g., R, r)

derived from a sample believed to be representative of a

population; (b) the second moment about the mean of multiple
estimates of the parameter of interest (i.e., the standard
deviation (SD) of the repeatedly sampled estimates--the standard
error (SEE) of the estimated statistic); (c) the third moment about

the mean of multiple estimates of the pa ameter (i.e., the
coefficient of skewnesse); and (d) the fourth moment about the mean

of multiple estimates of the parameter (i.e., the coefficient of

kurtosisE).
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Many researchers recogniz1 the use of the first two statistics

in their analyses. Thus, researchers using LISREL and EQS analyses

routinely pay more attention to parameter estimates that are

greater than the individual standard errors of given estimates. As

Kerlinger (1986, chapter 12) explains in some detail, test

statistics also invoke tne ratio of a parameter estimate to the

SEE. For example, researchers often use a t-test t...) evaluate the

null hypothesis that a mean equals zero. For a sample of size IL

the SD of infinitely many samples of size n from a population in

which the mean is zero (i.e., SE0 would be approximately

SDx/(n**.5). The test statistic, t, for this research situation is

calculated as the ratio, R / (SDx/(n**.5)).

The use of the third and fourth statistics is not so explicit.

But when we evaluate the probability of our sample result, pc,azwATED

given an assumption that the null is true, we usually compare our

result against the a (or the a/2) percentile cf the test statistic,

and the skewness and the kurtosis of this sampling distribution are

part of what dictates what will be the value the a%ile of the test

distribution. Of course, conventional confidence intervals employ

exactly the same elements as statistical significance testinl, and

do make the use of all four estimates explicitly obvious (Glass &

Hopkins, 1984, section 11.7).

However, it is contradictory to be willing to use the sample

to derive our (a) parameter estimate, and to be unwilling to let

the sample offer similar insight regarding the (b) SE of our

estimate, and regarding the (c) skewness and (d) kurtosis of
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sampled estimates. One way to let our data speak regarding the

latter three estimates is to conduct a bootstrap analysis, i.e., we

momentarily treat our sample data as if it constituted the

population and we draw numerous (usually at least a thousand)

random samples from the sample to infer what the sampling

distribution looks like. To mimic randomly sampling our data with

n subjects from the population, we do all our "resampling" from our

mock population by drawing random samples with_uplacement from our

data in hand, and to honor our research situation each resample is

drawn to also have exactly size n.

The bootstrap approach can also be employed to yield a variety

of confidence intervals, which vary as a function of the

assumptions they make about the sampling distribution. Of course,

bootstrap and other methods that focus on the invariance or the

generalizability of results are no more magical than is classical

statistical significance testing itself. No anaiaac_atthoc.
takeusl....nits of our data. We use methods to let data

speak in various ways, not to make data more than they can be.

A Bootstrap Example for the Univariate Case

The Table 1 data can be used to illustrate a bootstrap

application and its potential benefits. These estimates were

developed using the software available from Lunneborg (1987), and

were based on 3,000 samples with replacement. As reported in Table

2, the standard deviation of the 1,000 estimates of r was .173--

this is the empirical estimate of SE and is considerably smaller

than the estimate of the SE (SE7., = .354, SE, = .339) derived based

8
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on assnmptions.2 Figure 1 graphically presents the bootstrap

results. The bootstrap results were also useful in alerting the

researcher to the fact that the sampling distribution may mt be

normal, e.g., the distribution may be negatively skewed.

INSERT TABLES 1 AND 2 AND FIGURE 1 ABOUT HERE.

The bootstrap approach can be employed to yield a variety of

confidence intervals, which vary as a function of the assumptions

they make about the sampling distribution. The three estimates

calculated by the Lunneborg (1987) program for the Table 1 data are

reported in Table 2. The "bias corrected" estimate makes the fewest

assumptions regarding the sampling distribution (Lunneborg, 1987,

p. 54), that is, relies most upon the empirical findings from

resampling. Since no:le of the confidence intervals subsume 7ero,

the bootstrap results employing an empirically estimated sampling

distribution, unlike the conventional approach, yields a

statistically significent result.

Bootstra Multivkriate _Methods

Most of the previous bootstrap software applications have been

ir,?lemented in univariate statistical applications. However, it

might be argued that such methods would be even more useful in the

multivariate case, since in theory multivariate methods offer even

more opportunities to capitalize on sampling error (e.g., Gorsuch,

1983, p. 330).

The major barrier to conducting a multivariate bootstrap

Involves the multidimensional character of the "space" in which the

9
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analysis is conducted. The bootstrap gust be applied much that each

of the hundreds or thousands of resampling results are all located

in a common factor space before the mean, SD, skewness and kurtosis

are computed.

For example, in a factor analysis of population data, the

first two principal components of IQ data might be "Verbal" and

"Performance", and the eigenvalues of the two factors prior to

rotation (Thompson, 1989d) might be 5.5 and 5.4, respectively. In

various samples from this population the two components might

emerge very much as the same constructs, but sampling error might

introduce small variations in the ordering of the two factors

within the analysis, with "Verbal" being the first factor in some

solutions but the second factor in other samples.

If the analyst computed mean structure (or pattern)

coefficients for the first variable on the first component across

all the repeated samplings, the mean would be a nonsensical mess

representing an average of some apples, some oranges, and perhaps

some kiwi. The sampled solutions must be rotated to best fit

positions with a common target solution, prior to computing means

and other statistics across the samples, so that the results are

reasonable.

The same considerations apply when one is considering

resampling from sample data in a bootstrap analysis, as against a

meta-analysis of independent samples from a population (e.g.,

Thompson, 1989b). Several viable candidates for the target used to

define to common factor space that links results across resamplings

10
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can be identified. These include:

(a) a matrix of zeroes, ones, and negative ones, defining a simple

strccture, delineated based on theory;

(b) a structure or a weight matrix isolated in previous research;

or

(c) a structure or a weight matrix for the sample data in hand.

Bootstrap in the Canonical Case

The theoretical and the programming difficulties inherent in

conducting bootstrap analyses with multivariate procedures have

been overcome as regards factor analysis (Daniel, 1992; Lambert,

Wildt & Durand, 1990; Thompson, 19884) and discriminant

analysis/one-way MANOVA (Lawson & Snyder, 1992). This work is

noteworthy, since multivariate methods are often vitally important

in social science research (Fish, 1988).

Thompson (1986, p. 9) notes that the reality about which most

researchers wish to generalize is usually one "in which the

researcher cares about multiple outcomes, in which most outcomes

have multiple causes, and in which most causes have multiple

effects." Tatsuoka's (1973, p. 273) previous remarks remain

telling:

The often-heard argument, "I'm more interested in

seeing how each variable, in its own right, affects

the outcome" overlooks the fact that any variable

taken in isolation may affect the criterion

differently from the way it will act in the company

of other variables. It also overlooks the fact that

11
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multivariate anal,gis--precisely by considering all

the variables simultaneously--can throw light on how

each one contributes to the relation.

Fish (1988) and Maxwell (in press) both present data illustrating

how univariate and multivariate analysis of the same data can lead

to radically different conclusions.

Although the availability of bootstrap software for factor

analysis and for discriminant analysis/one-way MANOVA is helpful,

it would also be useful to be able to bootstrap a canonical

correlation analysis. Canonical correlation anaWsis is the most

general case of classical general linear model analyses, subsuming

other univariate and multivariate parametric methods (e.g., t-

tests, ANOVA, ANCOVA, r, regression, MANOVA, and discriminant

analysis) as special cases (Knapp, 1978; Xitao, 1992). Thompson

(1988a, 1991b) illustrates these connections using small heuristic

data sets to make the discussion concrete and accessible.

The present paper uses data from Holzinger and Swineford

(1939, pp. 81-91) for heuristic purposes to illustrate a bootstrap

of a canonical analysis. These cognitive ability data are widely

available, and have been employed by many authors for similar

illustrative purposes (e.g., Gorsuch, 1983, passim; Jöreskog &

Sörbom, 1989, passim).

The heuristic example assumes two criterion variables, General

Verbal Ability and Paragraph Comprehension scores, and four

predictor variables: Speeded Dot Counting, Speeded Discrimination

of Straight and Curved Capitz:ls, Math Number Series, and Woody-

12
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McCall Mixed Math Fundamentals scores. Table 3 presents the

correlation matrix associated with th,a full data set (K=301).

INSERT TABLE 3 ABOUT HERE.

Canonical analysis partitions the correlation matrix into two

"intradomain" and two "interdomain" quadrants. These four

submatrices are then manipulated (see Thompson, 1984, pp. 11-16 for

details) to yield a "quadruple-product matrix". The quadruple

product matrix for these data is presented in Table 4.

INSERT TABLE 4 ABOUT HERE.

The quadruple-product matrix is then subjected to a principal

components analysis. The eigenvalues of the quadruple-product are

the squared canonical correlation coefficients (Bc2). The number of

squared canonical correlation coefficients always equals the number

of variables in the smaller of the two vat_ tble sets, because that

is the rank of the "quadruple-product" matrix.

Since conventional parametric methods are all correlational

least squares analyses, all such analyses involve weights similar

to the beta weights generated in regression. These weights are all

analogws, but are given different names in different analyses

(e.g., beta weights in regression, pattern coefficients in factor

analysis, discriminant function coefficients in discriminant

analysis, and canonical function coefficients in canonical

correlation analysis), mainly to obfuscate the commonalities of

parametric methods, and to confuse graduate students.

13
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All parametric methods also involve the creation of latent or

synthetic variables analogous to the predicted dependent variable
A

in regression (Y). And all analyses can invoke the correlation

coefficients between an observed and a latent variable (called a

"structure correlation" or a "structure coefficient") an important

aids to interpretation (Thompson & Borrello, 1985). Table 5

presents the canonical function, structure, correlation, and other

coefficients associated ..ith the canonical analysis of the Table 3

matrix.

INSERT TABLE 5 ABOUT HERE.

Table 6 presents the correlation coefficients for the same

variables for a random sample (see Appendix A) of 50 of the 301

subjects in the population. Table 7 presents the canonical

analysis of these sample data.

INSERT TABLES 6 AND 7 ABOUT HERE.

Program CANSTRAP (Thompson, in press) was then employed to

resample 1,000 samples, each of size 50, from the Appendix A data.

The resampling procedure in bootstrap typically invokes resamples

of the same size as the sample itself, to mimic the influences on

the actual sample size.

For this heuristic example the random resampling involved a

mean use of the 50 subjects of 1,000 times each (SD=26.27). The

smallest number of times a subject was drawn across 1,000 samples

was 942. The most times a subject was drawn over 1,000 samples was

14
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1,056.

Of course, since resampling is done with replacement, a given

subject may be drawn more than once in a given resampling, or not

at all. For example, in these analyses subject 8 from Appendix A

was drawn twice in the first resampling, but subject - was not

drawn at all in this resampling. However, in the second of the

1,000 resamplings, subject 8 was not drawn at all, but subject 9

was drawn three times.

Table 8 presents descriptive statistics for the squared

canonical correlation coefficients for both functions I and II

across the 1,000 resamplings. Table 9 presents descriptive

statistics for the function and structure coefficients for the

smaller variable set, computed only after first invoking a

Procrustean rotation of each resampled function coefficient matrix

to a best fit position with the Table 7 function coefficient

matrix) Table 10 presents the corresponding descriptive statistics

for the function and structure coefficients for the larger variable

set, across 1,000 resamplings.

INSERT TABLES 8, 9 AND 10 ABOUT HERE.

Discussion

With respect to bootstrap canonical effect sizes, the mean ge2

for function I across 1 000 resamplings was 23.703% (SD=.11744), as

against the true population value of 29.982%, and the initial

sample value of 35.574%. The standard deviation (.11744) about

this mean estimate is an empirical estimate of the standard error

15
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of the statistic. And the remaining moments about the mean advise

the researcher that the resampled estimates are not normally

distributed, as might be otherwise expected. Indeed, both sets of

estimates are positively skewed, as reported in Table 8.

The finding that the canonical correlation coefficients are

somewhat positively biased is fully expected, just as "shrinkage"

dynamics are expected in regression effects. Indeed, it may be
useful to invoke the same "shrinkage" corrections employed in

regression (Fisk, 1991) with the resampled canonical estimates

(Thompson, 1990).

In any case, the standard deviations of the resampled
canonical correlations, akin to standard errors, should be

carefully considered. For example, in the present study the mean Bc2

for function I across 1,000 resamplings (43.958%) was within one SE
(43.958% - 11.744% = 32.214%) of the actual sample result, i.e.,

35.374%. And the resampled result (43.958%) was within two SEs of

the actual population (29.982%) result in the example analog to a

true population.

The standard errors for the function and structure
coefficients, presented in Tables 9 and 10, indicate that both
function and structure coefficients are highly susceptible to
sampling error. Again, this result is consistent with previous
Monte Carlo research (Thompson, 1991a). Such results alert the

researcher to exercise considerable caution when interpreting
canonical weights and structure coefficients.

In summar), the business of science is formulating

16
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generalizable insight. No one study, taken singly, establishes the

basis for such insight. As Neale and Liebert (1986, P. 290)

observe:

No one study, however shrewdly designed and

carefully executed, can provide convincing support

for a causal hypothesis or theoretical statement...

Too many possible (if not plausible) confounds,

limitations on generality, and alternative

interpretations can be offered for any one

observation. Moreover, each of the basic methods of

research (experimental, correlational, and case

study) and techniques of comparison (within- or

between-subjects) has intrinsic limitations. How,

then, does social science theory advance through

research? The answer is, by collecting a diverse

body of evidence about any major theoretical

proposition.

Evaluating the generalizability of canonical results is a
daunting task, but a task which the serious scholar can ill-afford

to shirk. Such evaluations are important. As Nunnally (1978, p.

298) notes, "one tends to take advantage of chance in any situation

[all parametric methods] where something is optimized from the data
at hand", as in least squares methods, i.e., all c ventional

parametric methods.

Bootstrap analyses are one vehicle, but an important vehicle,

for evaluating the replicability of results. The researcher may

17



vest more confidence in results that replicate over the numerous

configurations of subjects created during a bootstrap analysis.

Since such analyses capitalize during resampling on the

commonalities inherent in a given sample in hand (e.g., measurement

at a given point in time, perhaps measurement in a given geographic

location), such analyses always yield somewhat inflated evaluations

of replicability. But inflated empirical evaluations of

replicability are often superior to a mere presumption of

replicability, especially when the researcher can take this

capitalization into account during interpretation.

18
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Footnotes

'Examples of such software and the distributors of the software
include: (a) "Resampling Stats", distributed by Resampling Stats,
612 N. Jackson, Arlington, VA 22201; (b) "Statistical Calculator",
distributed by Erlbaum, 27 Palmeira Mansions, Church Road, Hove
East Sussex BN3 2FA, United Kingdom; (c) SPIDA, distributed on
behalf of its Australian author by SERC, 1107 NE 45th--Suite 520,
Seattle, WA 98105; and (d) the menu-driven program, BOJA,
distributed bv iecProGAMMA, P.O. Box 841, 9700 AV Groningen, The
Netherlands.

2Strictly speaking, the standard error (SE) of Zr is only 1/((n-
3)**.5) when the population r is zero. Thus, it is actually
contradictory to calculate SET: based on an assumption that r = 0,
and to then use SET, to calculate confidence intervals for r # 0,
unless one only wishes to test Ho: r = O. In this case conceptually
the CI is really being constructed around 0 (and not r), and the
test is whether the point estimate, r, falls within the interval.
However, in practice we usually consider this estimation procedure
to be "close enough".

3Another viable candidate for the target matrix used to define
a common factor space would be the eigenvector matrix of the
quadruple product matrix.
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Table 1
Hypothetical Data Used to Illustrate Bootstrap

Evaluation of an Estimate of K

ID Y X
1 .18 .20
2 .54 1.88
3 -.49 -.76
4 .92 .42
5 .22 .32
6 .75 -.56
7 .66 1.55
8 -2.65 -1.21
9 -.51 -.66

10 .47 -.96
11 -.09 -.21
rrx .560
Z, .632

Note. Z, = 1.1513 (ln ((I + :r1) / (1 -
1.1513 (ln ((I + .560) / (1 -
1.1513 (ln ( 1.560 / .440))
1.1513 (ln ( 3.541))
1.1513 (.549) = .632
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Table 2
Conventional and Bootstrap Significance Tests

for K=.560 for the Table 1 Data

Sampling Statistics/
Significance Tests

Second Moment of the Sampling
Distribution

SEzz

SE,

Classical Estimates Based Empirically Based
on Statistical Assumptions Bootstrap Estimates

.354a
339b

Third Moment of the Sampling
Distribution

Coefficient of Skewness of r .000 (assumed)

Third Moment of the Sampling
Distribution

Coefficient of Kurtosis of r .000 (assumed)

Density of the
90.0%ile of
95.0%ile of
97.5%ile of

Sampling Distribution
Z,

Z,

Z,

95% Confidence Intervals
About Z,
About r

1.282 (assumed)
1.645 (assumed)
1.960 (assumed)

-.061 to 1.325c
-.060 to 0.868d

.173

-.780

1.895

1.037
1.164
1.324

+.220 to +.899e
+.188 to +.868(
+.082 to +822g

'Calculated as SE& = 1 / ((n - 3) ** .5) = 1 / ((11 - 3) ** .5) =
1 / (8 ** .5) = 1 / 2.828 = .354.

bCalculated as SE.i. = .354 converted back into SE, = .339.
'calculated as CI"s about Z, = Z, - (1.960 * SE44 to Z, + (1.960 * SEzi)

= .632 - (1.960 * .354) to .632 + (1.960 * .354)
= .632 - .693 to .632 + .693

dThe conversion of r expressed as Fisher's Z transform back '..tto
eCI95s calculated using symmetric or normal theory approach.
1CI0s calculated using perce, cZle method.
gCI95.1 calculated using bias L'orrected method.
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Table 3
Correlation Coefficients for "Population" of N=301

Subjects from the Holzinger and Swineford (1939) Study

T5 T6 T12 T13 T23 T24
General Verbal T5 1.0000 .65721 .1649 .2052 .3950 .3933
ParagraPh Comprehension T6 .6572 1.0000! .1069 .2078 .4516 .4353
Speeded Dot Counting T12 .1649 .1069 1.0000 .4490 .2615 .3111
Speeded Discrimination Caps T13 .2052 .2078 .4490 1.0000 .3322 .2824
Math Number Series T23 .3950 .4516 .2615 .3322 1.0000 .4600
Woody-McCall Math T24 .3933 .4353 .3111 .2824 .4600 1.0000

Table 4
"Quadruple-Product" Matrix Analyzed in Canonical Analysis

(N=301)

1 2

1 .170 .093
2 .160 .273

Table 5
Canonical Function and Structure Coefficients for Population Data

(N=301)

Function I Function II
2

h

Variable/ Squared Squared
Coef. Function Structure Structure Function Structure Structure
T5 0.36902 0.84089 70.710% -1.27437 -0.54120 29.290% 100.00%T6 0.71803 0.96054 92.264% 1.11563 0.27814 7.736% 100.00%Adequacy 81.487% 18.513%
Redundancy 24.431% 0.165%Rc2 29.982% 0.893%
Redundancy 12.498% 0.234%Adequacy 41.686% 26.252%T12 -0.13193 0.25128 6.314% -1.06970 -0.96136 92.421% 98.74%T13 0.11157 0.41088 16.882% 0.07567 -0.31409 9.865% 26.75%T23 0.59236 0.85842 73.688% 0.24321 0.00453 0.002% 73.69%T24 0.57288 0.83581 69.858% 0.03461 -0.16491 2.720% 72.58%



Table 6
Correlation Coefficients for "Population" of n=50

Subjects from the Holzinger and Swineford (1939) Study

T5 T6 T12 T13 T23 T24
General Verbal T5 1.0000 .64401 -.(999 .0762 .3892 .4297
Paragraph Comprehension T6 .6440 1.00001 .0703 .2587 .5461 .4064
Speedell Dot Countina T12 -.0399 L07031 1.0000 .3847 .2512 .3705
Speeded Discrimination Caps T13 .0762 .25871 .3847 1.0000 .3963 .2896Math Number Series T23 .3892 .54611 .2512 .3963 1.0000 .5426Woody-McCall math T24 .4297 .40641 .3705 .2896 .5426 1.0000

Table 7
Canonical Function and Structure Coefficients for Sample Data

(n=50)

Function I Function II
2

Variable/ Squared Squared
Coef. Function Structure Structure Function Structure Structure
T5 0.36603 0.83247 69.301% -1.25488 -0.55407 30.699% 100.00%T6 0.72426 0.95999 92.158% 1.08819 0.28002 7.841% 100.00%Adequacy 80.729% 19.270%
Redundancy 28.557% 1.714%
Rc2 35.374% 8.893%
Redundancy 13.526% 1.780%
Adequacy 38.238% 20.010%
T12 -0.31827 0.06100 0.372% 0,43648 0.42443 18.014% 18.39%T13 0.06941 0.36195 13.101% )0.50749 0.62334 38.855% 51.96%T23 0.69730 0.90461 61.832% 0.55004 0.35494 12.598% 94.43%T24 0.47876 0.75926 57.648% -0.93233 -0.32518 10.574% 68.22%
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Table 8
Descriptive Statistics for Ec2 Across 1,000 Resamplings

Statistic
Mean
SD
Skewness
Kurtosis

Function
I II
0.43958
0.11744
0.23703
-0.09252

0.13158
0.07873
0.85067
0.60673

Note. Program CANSTRAP algorithm 1, computation of Ec2 independent of
Procrustean rotation of the resampled canonical function matrices, was
selected for this anal), '.s.

Table 9
Descriptive Statistics for Function and Structure Coefficients

for the Smaller Variable Set Across 1,000 Resamplings

Function Coefficients
*** MEANs
1 0.4698 -1.1654
2 0.3082 1.0624
*** SDs
1 0.3643 0.3221
2 0.7101 0.2740
*** SKEWNESSs
1 1.0118 3.0347
2 -1.2058 -0.4001
*** KURTOSISs
1 0.5090 12.8658
2 0.0569 0.3770

Structure Coefficients
*** MEANs
1 0.6552 -0.4587
2 0.6218 0.3074
*** SDs
1 0.4766 0.3654
2 0.6555 0.2994
*** SKEWNESSs
1 -1.9942 1.5918
2 -1.8525 0.1646
*** KURTOSISs
1 2.4850 2.8181
2 1.7368 0.1547
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Table 10
Descriptive Statistics for Function and Structure Coefficients

for the Larger Variable Set Across 1,000 Resamplings

Function Coefficients
*** MEANs
1 -0.2394 0.3141
2 -0.0147 0.3504
3 0.3953 0.4304
4 0.4196 -0.6641
*** SDs
1 0.3332 0.4803
2 0.2755 0.3996
3 0.5256 0.3948
4 0.3677 0.4173
*** SKEWNESSs
1 0.1812 -0.3334
2 0.1025 -0.6003
3 -1.2935 -0.7817
4 -0.6616 1.1365
*** KURTOSISs
1 -0.4745 -0.3368
2 -0.0576 0.2432
3 0.7095 0.9570
4 0.5870 1.4635

Structure Coefficients
*** MEANs
1 0.0146 0.2913
2 0.1574 0.4520
3 0.5515 0.3099
4 0.5407 -0.2115
*** SDs
1 0.2872 0.4174
2 0.3872 0.2901
3 0.6003 0.2962
4 0.4675 0.3532
*** SKEWNESSs
1 -0.1697 -0.5314
2 -0.6357 -0.7588
3 -1.7525 -0.0483
4 -1.9404 0.4557
*** KURTOSISs
1 -0.1597 -0.2460
2 -0.3010 0.6731
3 1.5082 -0.1744
4 2.4797 -0.2703
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Figure 1
Bootstrap Estimates of r Based on 1,000 Random Resamplings

Mdpt Counts Mdpt
I -.450 0 0 -.65 I 0

I -.375 1 0 -.50 I 0

I -.300 2 -.35 I 0

I -.225 0 1 -.20 I 0

I -.150 1 5 -.05 I* 0
I -.075 0 13 .10 I** 0
I .000 5 52 .25 I******0
I .075 5 128 .40 I******0*********

*I .150 11 220 .55 I*******0********************
***I .225 21 234 .70 I********0********************

*****I .300 39 170 .85 I*******0*************
**********I .375 77 91 1.00 I******0****

***************I .450 117 57 1.15 I******0
********************1 .525 163 9 1.30 I* 0

.600 173 4 1.45 I* 0
***m*k******************I .675 189 4 1.60 I* 0

**************I .750 112 4 1.75 I* 0
*******I .825 59 3 1.90 I 0

**I .900 18 3 2.05 I 0
*I .975 8 0 2.20 I 0

1.050 0 0 2.35 I 0

240 200 160 120 80 40 0 0 40 80 120 160 200 240
Histogram Frequency Histogram Frequency

W.te. Each asterisk represents approximately eight cases. The distribution of 1,000 bootstrap
estimates of r is presented to the left, while the distribution of the Fisher's Z transformation
of these 1,000 estimates is presented to the right. The normal distribution of samples of Zo
expected given the classical statistical assumptions that sampling error is distributed normally
about the estimate, is also presented in the histogram on the right.
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APPENDIX A:
Random Sample of nals50 Cases from H=301
(Holzinger & Swineford, 1939, pp. 81-91)

ID T5 T6 T12 T13 T23 T24
1 1 40 7 115 229 5 24
2 5 37 8 126 213 4 20
3 9 29 8 93 265 17 18
4 11 33 8 91 157 8 16
5 12 38 b 114 155 5 24
6 13 33 8 103 149 9 25
7 21 41 11 107 177 26 22
8 22 22 5 92 194 23 19
9 30 31 6 117 310 18 27

10 33 29 6 139 215 12 25
11 34 29 5 73 121 9 17
12 36 44 10 87 203 20 22
13 46 28 5 95 100 1 15
14 54 40 11 96 199 18 17
15 66 41 4 123 142 2 15
16 72 54 11 108 227 27 30
17 76 55 13 119 195 6 19
18 78 22 4 115 186 14 21
19 86 26 12 147 207 21 30
20 96 45 12 91 185 23 26
21 98 39 11 119 240 24 23
22 105 48 10 117 152 17 20
23 126 37 8 137 180 10 19
24 136 38 13 139 204 14 18
25 142 45 13 156 252 36 26
26 149 51 10 103 164 16 26
27 156 31 8 112 215 9 18
28 157 44 11 98 139 18 27
29 168 38 9 123 169 10 26
30 203 36 11 86 228 21 18
31 216 56 14 84 171 31 25
32 218 48 11 113 186 24 30
33 219 65 10 104 222 20 20
34 220 49 8 110 161 16 33
35 223 56 13 121 225 23 31
36 224 50 14 115 185 25 32
37 225 25 7 200 236 30 29
38 226 29 8 116 219 6 21
39 233 51 9 113 180 37 27
40 244 29 9 84 137 13 21
41 254 32 5 72 121 4 14
42 277 31 7 97 149 1 20
43 289 48 11 102 224 22 31
44 292 61 10 135 199 28 30
45 297 51 12 110 199 6 26
46 303 36 8 101 179 8 24
47 311 57 13 103 198 19 26
48 323 44 7 140 178 20 29
49 336 48 13 119 195 34 24
50 345 49 9 85 204 17 25
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