
DOCUMENT RESUME

ED 344 030 CE 060 779

TITLE A Secondary/Post-Secondary Curriculum for the ADA
Programming Language.

INSTITUTION Marion County Schools, Fairmont, W. Va.
SPONS AGENCY Office of Vocational and Adult Education (ED),

Washington, DC.
PUB DATE 91

CONTRACT V199A00056
NOTE 205p.; For related documents, see CE 060 777-778.
PUB TYPE Guides - Classroom Use - Teaching Guides (For

Teacher) (052)

MRS PRICE MF01/PC09 Plus Postage.
DESCRIPTORS Behavioral Objectives; Computer Assisted Instruction;

Computer Science Education; Computer Software;
Curriculum Guides; Instructional Materials;
*Laboratory Oxperiments; Learning Activities; Lesson
Plans; Postsecondary Education; *Programers;
*Programing; *Programing Languages; Secondary
Education; Technical Education; Vocational
Education

IDENTIFIERS *Ada (Programing Language)

ABSTRACT

This guide provides materials for a three-block
curriculum to teach the Ada computer programminy language to
secondary and postsecondary vocational students. The curriculum
design and strategy has the following components: lectures,
audiovisual aids, computer-aided instructional training and reference
materials, laboratory experiences, and feedback devices. Block I,
"Ada and the Department of Defense," consists of five units and four
labs. Block II, "Fundamentals of Ada Programming," contains 19 units
and 20 labs. In Block III, "Advanced Ada Topics," there are 11 units
and 8 labs. Laboratory experiments consist of student worksheets and
teacher guides. Each provides some or all of these components: block,
unit, lab number, lab title; student objectives; procedure;
questions; and a list of any required materials. In addition, the
teacher guide provides teacher notes as needed. The information
lesson plan for each unit consists of the following components:
block, unit: and lesson title; lesson objectives; learning
activities; special resource list; presentation (which includes an
introduction and instructional topics and key points); and questions
with answer key. (YLB)

Reproductions supplied by EDRS are the best that can be made
from the original document.

trr
rib

A SECONDARY/POST-SECONDARY

CURRICULUM FOR THE ADA®

PROGRAMMING LANGUAGE

US. DEPARTMENT OF EDUCATION
Office of Educational Research and ImprovementITnED CATIONAL RESOURCES INFORMATION

CENTER (ERIC)

is document has Peen reproduced as
received from the person or organization
originating it

CI Minor changes nave been made to improve
reproduction dummy

Pointe Of vI14, Of OrnMOOS slated In MiSCIOCLI.
ment do not necessarily represent official
CE RI poslion or policy

o Developed by the Marion County Technical Center, Farmington, West Virginia for the
MI Robotics/Automation Technology Program under Federal Cooperative Demonstration
0 PR/Award Number V199A00056.

tia)
(is

9

!EST CIO AVAILABLE

The program solutions included in this curriculum have been included
for their instructional value. They have been tested with care, but are
not guaranteed. In many cases, string output statements to the
monitor have been sliced to two lines for better readability, and must
be concatenated In order to compile properly. The Marlon County
Technical Center's Robotics/Automation Technology program does not
offer any warranties or representations, nor does It accept any
liabilities with respect to this curriculum.

3

Table of Contents

Page

Forward
Introduction 1

Curriculum Design and Strategy 1

Method of Teaching 4

BLOCK I -- Ma and the Department of Defense

Lab 01 -- Introduction to Computer Assisted
Instruction Software 6

Lab 02 -- Introduction to the AETECHIs
"IntegrAda" with "On-Line Training
and Reference Module" 10

Unit A -- The Software Crisis 12
Unit B -- Goals for Software 17
Lab 03 -- "MountainNet / AdaNet Demonstration" . 21
Unit C -- Software Engineering 24
Unit D -- A Brief History of the Ada Programming

Language 27
Lab 04 -- Ada Information Clearinghouse 30
Unit E Defense Directives 35

BLOCK II -- Fundamentals of Ada Programming

Unit A --
Lab 05 --
Unit B
Lab 06 --
Unit C
Lab 07 --
Unit D
Lab 08 --
Unit E
Lab 09 --
Unit F

Lab 10 --
Unit G
Unit H
Lab 11 --
Unit I --
Lab 12 --
Unit J
Lab 13 --

A Basic Ada Program 37
A Basic Ada Program 42
Existing Packages 44
Existing Packages 46
Package Text_IO 49
Ohm's Law 52
Package Standard 56
Working with Package Standard 60
Simple Declarations 62
Simple Declarations Worksheet 65
Using Existing Packages;
Parameters, Specifications, and Calls . . 68
Combining Existing Packages 71
Data Types 73
Ada Scalar Types 75
Scalar Types 77
Enumeration Types 79
Enumeration Types 81
Derived Types 83
Derived Types 85

Table of Contents
(Continued)

Unit K --
Lab 14 --
Unit L --
Lab 15 --
Unit M --
Lab 16 --

Subtypes
Subtypes
Subprograms
Subprograms
Packages
Creating Simple Packages . .

page,

87
89
92
94
97
100

Unit N -- Declaring Subprograms and Creating
Packages 103

.Lab 17 -- Declaring Subprograms and Creating
Packages 105

Unit 0 -- Ada Language Syntax 110
Lab 18 -- Ada Language Syntax:

Using Comments 113
Unit P -- The 'If' Control Structure 115
Lab 19 -- The If..Then Control Structure 117
Lab 20 -- The If..Then..Elsif..Else

Control Structure 119
Unit Q -- The Case Control Structure 121
Lab 21 -- The Case Control Structure 123
Unit R -- The Loop Control Structure 125
Lab 22 -- The Loop Control Structure 127
Lab 23 -- Loop and Reverse Loop 129
Lab 24 -- The While..Loop Control Structure 132
Unit S Style 134

BLOCK III -- Advanced Ada Topics

Unit A -- Type Attributes 137
Unit B -- More Attributes 139
Unit C -- Records 141
Lab 25 -- Records 143
Unit D -- Arrays 146Lab 26 -- Arrays 149
Unit E -- Exceptions 152
Lab 27 -- Exceptions 157
Unit F -- Private Types 160Unit G -- Generics 163
Lab 28 -- Generics 166
Unit H -- Sequential Files . . . 169Lab 29 -- Sequential Files 172
Unit I -- Direct Access Files 178Lab 30 -- Direct Access Files 181Unit J -- Introduction to Tasks 185Lab 31 -- Introduction to Tasks 188
Unit K -- Tasks and Task Communication 190Lab 32 -- Task Communication 194

FORWARD

This curriculum was designed implementing the
IntegrAda environment and CAI module available from the
AETECH Corporation. These products were chosen from other
Ada development products because of:
1) The ease of programing .in this environment
2) ,The ability% to itilive IBM/IBM cokpatible

computer 'platforms; .%. ,.
) The built in packages such as SOUND/.. and GRAPHICS

. which suit themselves nicely to the Ada dlassrooM,-creating an enjoyable..learning environment;

'personal

4) The ability to have a Computer Aided Instructional
Package;

5) The ability to utilize existing IBM/PC compatible
equipment without requiring, the purchase of math
co-processors/ extra memory/ or new computersi and

C) The ability to' use the standard Ada compiler/ CAI
program/ environment/ and other tools in common use
today throughout the military and Department of

, Defense. %.

,The 'IntegrAda 'environment Is .the standard .Ada develOpmentenvironment ..utilized:by:
.

a. U.S. Air Force - DESKTOP III contract Ada compiler and
tools (The DESKTOP III contract will distribute over
250/000 PW2 386 PC's to all branches of the Department
of Defense/ and other government agencies).

b . U . . Navy - Naval Postgraduate School I' liontery, CA;
used to teach Ada and Software Engineering classes.

c. U.S. Marine Corps - Quanticol VA; used in daily
software development.

d. U.S. Army -
development
Army.

e.

CECOM/ Ft. Monmouth/ NJ; used for the
of Command and Control Systems for the

and many others.

We wish to thank the AETECH Corporation for their supportin the development of this curriculum.

E INDARY P. ND Y +1.1" UM F

INTRODUCTION

Perhaps no other computer language has created quite as

much excitement as the Ada computer programming language.

Developed under a contract for the Department of Defense,

Ada has become the programming language of the future.

Since its inception in the early 1980's, Ada has grown from

being only a language used and proliferated in the defense

community, to a language which businesses and educational

institutions have come to use. Because of its structure,

Ada is an excellent language to use to write programs.

However, due to the large amount of Ada code to be

generated, we now face an extreme shortage of trained Ada

programmers. With this lack of trained programmers in mind,

this secondary/post secondary curriculum has been developed

to teach Ada to students, in hopes of meeting the demand for

a trained Ada community.

CURRICULUM DESIGLMA_TRATEGy

The curriculum employs a strategy which includes, but is

not limited to, the following components: lectures,

audio/visual aids, computer aided instructional training and

reference materials, laboratory experiences, and feedback

-1.

7

devices. The entire curriculum is available in ha,.dcopy

form through the West Virginia Curriculum Repositctry located

at Cedar Lakes, West Virginia. The address of the West

Virginia Curriculum Repository is:

Curriculum Technology Resource Center

Cedar Lakes Conference Center

Ripley, West Virginia 25271

(304) 372-7021

A. Lectures - Lectures will be provided by the individual

instructor, using the included informational lesson plans

and curriculum as guides. The individual instructor

should provide lecture notes as required.

B. Audio/ Visual Aids - Audio/ visual aids should be

utilized to supplement this curriculum. It is felt that

each individual instructor wishing to utilize the

curriculum will have access to an overhead projector and

a VHS video playback machine. Many audio/visual aids,

utilized for the construction of this curriculum, are

available through the West Virginia Curriculum Repository

at Cedar Lakes, West Virginia for dissemination to

interested instructors.

-2-

Q.aogmtEKJgJtgsLLmgtrum_J=igltLJtal_TnakmkamAm&mnffm

Materials - This curriculum was designed utilizing the "Ada

Training Environment" and "IntegrAda" with optional "On-Line

Training and Reference Module". These are commercial

Computer Aided Instruction (CAI) programs available from the

AETECH Corporation for IBM PC compatible computers. Studies

have shown that students will read and comprehend

information at a faster rate if it is presented

interactively on a computer terminal, rather than in a

textbook. The software chosen for use with this project was

developed over a five year period and field-tested by the

AETECH Corporation. It is not meant as a replacement for

individual instructor lectures or demonstrations; but it can

considerably enhance the learning process when used wlth

this curriculum.

Laboratory Experiences - It is felt that in order for a

student to gain proficiency with the Ada language,

laboratory experiences should be provided to contribute to

the student's overall learning. Many laboratory experiences

are included in this curriculum, which will allow the

student to demonstrate, through the use of computer

programming exercises, their proficiency with the language.

It is felt that a computer to student ratio is 1:1 is

needed.

The laboratory exercises in this curriculum were designed

around a one hour format using IBM PC compatible computers

and "IntegrAda", the validated Ada compiler for the IBM PC

-3-

compatible produced by AETECH, Inc. Each laboratory

exercise should be preceded by lecture, audio/visual

instruction, and CAI instruction where appropriate.

Feedback Devices Feedback devices are provided within

Block I of this curriculum. It is felt that instructors

generally prefer to develop their own quizzes and tests, and

no feedback devices have been included in Blocks II and III.

Pre-enrollment and post-enrollment attitude measurement

devices should be administered by the Instructor, to be

utilized as tools for measuring students' attitudes toward

computers in general, and the Ada programming language in

particular.

HETHDD OP TEACHINQ - It is felt that, in order for the

curriculum to be effective, the following teaching method

should be incorporated as a strategic guide, to insure that

the curriculum is effective:

1. Teacher Lecture - The teacher will present the

required lecture materials to the students, who will

in turn take notes on the presented material.

Lectures shall include audio/visual tools as required.

2. Student Participation - After each presented lesson by

the teacher, all students should be given an

opportunity to ask questions, express concerns, or

make comments concerning the presented material.

I 0

3. Computer Aided Instruction - It is recommended that a

CAI package be incorporated as part of the total Ada

curriculum. This CAI package should be made available

for students to view after the presented lecture

material, and prior to any laboratory experience.

4. Laboratory Experience - As much as possible,

laboratory experiences should follow the presented

lecture material and CAI training. Laboratory

experiences should include actual programming tasks,

and to simplify the learning process at the secondary

level, it is highly recommended that Ada programming

tools used in the laboratory include user-friendly

"Turbo-like" Ada programming systems with simple,

easy-to-use libraries for Screen, Mouse, Sound, and

Pixels.

5. Feedback Devices - Feedback devices should be utilized

after each lecture or completed laboratory experience

as required. The individual teacher will have the

better idea of when feedback from students is

required. It is crucial that feedback devices for

measuring students attitudes prior to beginning the

curriculum, and feedback devices for measuring

students/ attitudes after the completion of the

course, should be administered at the appropriate

times.

LAB intro.l.EN,VV_Lg_TO'MERMEN/.

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Boot up the AETECH Ada Training Environment or the
AETECH On-Line Training and Reference Module used
for this curriculum.

2. Choose from the displayed menus which lesson they
would like to study.

3. Return to the operatirg system from the CAI
package.

VI. REQUIRED MATERIALS: AETECH "Ada Training Environment"
or AETECH "IntegrAda" with the "On-Line Training and
Reference Module".

VII. PROCEDURE

1. Power on.

2. Log on to the drive where the "Ada Training
Environment" or "IntegrAda" with the "On-Line
Training and Reference Module" are installed.

3. At the DOS prompt/ change to the working directory
where the CAI package has been installed. If the
"Ada Training Environment" has been installed, then
type CD\ATE\COURSE. If the On-Line Training and
Reference Module has been installed, then type
CD\LADA.

4. At the DOS prompt, type the appropriate command for
the CAI package which has been installed. If the
"Ada Trazning Environment" has been installed, then
type ATE. If the On-Line Training and Reference
Module has been installed, then type REFER.

-6-

12

5. In the lower right corner of the screen, a square
labeled "Ada Training Environment" will appear.
Each tutorial block is listed. Select the proper
block by using the up/down cursor key until the
correct block is highlighted, then press Enter.

6. Within each block, there is a series of lessons.
Unless otherwise instructed, you will take the
lessons in order. Select the proper lesson by
using the up/down cursor key, then press Enter.

7. Within each lesson, there is a list of topics.
Most topics consist of one screen of information.
Select each topic in order by using the up/down
cursor keys, then pressing Enter.

8. Read each screen of information, and take notes on
the key points presented.

9. Press Enter. This will take you back to the list
of topics.

10. When you have completed the assignment, select QUIT
from the topic menu. This will return you to the
DOS prompt.

11. Practice returning to the operating system and
booting up the CAI system several times so that you
are extremely familiar with this procedure.

12. Power down computer, and clean up area.

13. Record any questions, comments, or concerns you may
have with using the system for your Instructor.

-7-

13

LAB intro.1.
TEACHER GUIDE

148ORATORY EXPERIMENT

"Iñtrodüctión to Cbmpater Assiste
Instruction Software"

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Boot up the AETECH Ada Training Environment or the
AETECH On-Line Training and Reference Module used
for this curriculum.

2. Choose from the displayed menus which lesson they
would like to study.

3. Return to the operating system from the CAI
package.

VI. REQUIRED MATERIALS: AETECH "Ada Training Environment"
or AETECH "IntegrAda" with the "On-Line Training and
Reference Module".

VII. PROCEDURE

I. Power on.

2. Log on to the drive where the "Ada Training
Environment" or "IntegrAda" with the "On-Line
Training and Reference Module" are installed.

3. At the DOS prompt, change to the working directory
where the CAI package has been installed. If the
"Ada Training Environment" has been installed, then
type CD\ATE\COURSE. If the On-Line Training and
Reference Module has been installed, then type
CD\IADA.

4. At the DOS prompt, type the appropriate command for,
the CAIllackage which has been installed. If the
"Ada Training Environment" has been installed, then
type ATE. If the On-Line Training and Reference
Module has been installed, then type REFER.

5. In the lower right corner of the screen, a square
labeled "Ada Training Environment" will appear.
Each tutorial block is listed. Select the proper
block by using the up/down cursor key until the
correct block is highlighted, then press Enter.

6. Within each block, there is a series of lessons.
Unless otherwise instructed, you will take the
lessons in order. Select the proper lesson by
using the up/down cursor key, then press Enter.

7. Within each lesson, there is a list of topics.
Most topics consist of one screen of information.
Select each topic in order by using the up/down
cursor keys, then pressing Enter.

8. Read each screen of information, and take notes on
the key points presented.

9. Press Enter. This will take you beck to the list
of topics.

10. When you have completed the assignment, select
QUIT from the topic menu. This will return you to
the DOS prompt.

11. Practice returning to the operating system and
booting up the CAS system several times so that you
are extremely familiar with this procedure.

12. Power down computer, and clean up area.

13. Record any questions, comments, or concerns you may
have with using the system for your Instructor.

_9-

LAB intro.2
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Follow the oral instructions given by your
Instructor on entering the IntegrAda environment.

2. Follow the written instructions within the
IntegrAda Reference Manual, Chapter 12, "Getting
Started", and gain an understanding of how to
create, edit, compile, bind, execute, and print Ada
programs.

VI. REQUIRED MATERIALS:

1. Note .1king

2. "IntegrAda"
Module".

materials.

wlth "On-Line Training and Reference

3. IntegrAda Reference Manual,
"Introductory Session".

VII. PROCEDURE

Chapter 12:

1. Follow the procedures outlined in Chapter 12 of the
IntegrAda Reference Manual, pages 12-2 through
12-30. Since the system has already been installed
for you, follow the oral instructions given to you
by your Instructor on entering the systam.
Continue at step 50 page 12-2 of the IntegrAda
Reference Manual.

2. Record any questions you have about using the
editor environment.

3. Power down computer, and clean up area.

-10-

t;

LAB intro.2
TEACHER GUIDE

LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Follow the oral instructions given by your
Instructor on entering the IntegrAda environment.

2. Follow the written instructions within the
IntegrAda Reference Manual, Chapter 12, "Getting
Started", and gain an understanding of haw to
create, edit, compile, bind, execute, and print Ada
programs.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. "IntegrAda" with "On-Line Training and Reference
Module".

3. IntearAda Reference Manual, Chapter 12:
"Introductory Session".

VII. PROCEDURE

1. Follow the procedures outlined in Chapter 12 of the
Intganklkjaktmemmakjilmagl, pages 12-2 through
12-30. Since the system has already been installed
for you, follow the oral instructions given to you
by your Instructor on entering the system.
Continue at step 51 page 12-2 of the IntearAda
Reference Manual.

2. Record any questions you have about using the
editor environment.

3. Power down computer/ and clean up area.

BLOCK 1

Ada and the

Depa-'ittent of Defense

1 8

ILP I.A
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to :

1. Attribute advances in computer hardware and soft-
ware, in the late sixties and early seventies, with
the advent of the microprocessor.

2. Identify amount of DOD annual expenditures for
software.

3. Identify two factors responsible for increased cost
of software.

4. Define "Software Maintenance".

5. List the six problem areas associated with software
development.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block If Unit 1
AETECH "Ada Training Envlronment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on following sections:

a. Increasing demand for software.
b. Increasing software costs.
c. Software to hardware costs.
d. Software maintenance costs.
e. Other major software costs.
f. Problems with software development.
g. Other life cycle problems.
h. Problems with quality.
i. Language proliferation.

-12-

9

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environmett" and "IntegrAda" with
"On-Line Training and Reference Module".

Olson/Whitehall, Ada For Programmers., Ch. 1.

Stein, Adas_A Life and Lerma, Preface.

Engle/Dominice, Introductory Ada Workshog.

Softech, Basic Ada Programmina L202- U.S. Army,
Vol I.

Sommerville/Morrison, Software Development with Ada
Ch. 1.

V/ I PRESENTATION:

A. Introduction

1. Tell "Invasion of Grenada" story where Army's
and Navy's computers couldn't communicate with
each other, requiring an Army officer to make a
credit card long distance call to North Carolina
for naval support.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Increase Demand for
Software

2. Increased Cost for
Software

3. Factors responsible
for software costs

4. Software Maintenance

la. Demands due to microproces-
sor which made systems more
efficient, reliable, and
accurate.

2a. 6 billion annually by DOD.

3a. Technological advances.

3b. Higher salaries as demands
for highly skilled
programmers exceeds supply.

4a. Definition - Program which
now works that must be
changed or modified to
work differently.

-13-

20

TOPIC KEY POINT

5. Problems with
Software Development

5a. Unmodifiable No one other
than writer(s) can
interpret software.

5b. Nontransportable- Software
written & tailored to
specific machine, and does
not work on another
machine.

5c. Not Timely - Typically,
software systems are
delivered late.

5d. Unresponsive - Software
doesn't perform as required.

5e. Inefficient - Software is
frequently larger & slower
than anticipated.

5f. Unreliable - Software
typically fails.

- 1 4 -

21

Q I.A

"The Software Crisis"

OUESTIONS

Place your answer in the provided space for each of
the following questions.

1. Name two factors which are responsible for the high
cost of software.

2. Define Software Maintenance.

3. Name the single factor which provided an enormous
demand for software.

4. List five of the six problems associated with
software development.

a.

b.

C.

d.

e.

5. How much does the U.S. Department of Defense spend
annually for software?

22

"The Software Crisis

ANVERS TO QUESTIONS

1. Name two factors which are responsible for the high
cost of software.

Technological advances, demands for skilled
programmers

2. Define Software Maintenance.

Operation/ program which now works but must be
changed or modified to work differently.

3. Name the single factor which provided an enormous
demand for software.

Microprocessor

4. List five of the six problems associated with
software development.

a.

b.

d.

e.

f.

g.

Unmodifiable

Nontransportable

Not Timely

Inefficient

Unreliable

Unresponsive

5. How much
Elanually

U. S . DOD
annually

does the U.S. Department of Defense spend
for software?

spends approximately 6 billion dollars
for software.

-16-

23

INFORMATION LESSON PLAN

Ada and the Department

1LP 1.3

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to :

1. List the four goals for software.

2. Describe what understandable software is.

3. Define Modifiability as relabad to software.

4. Discuss the impact of reliable versus unreliable
software systems.

5. Define Efficiency as related to software.

6. Discuss the importance of software Portability.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block I, Unit 2
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on following sections:

a. Understandability.
b. Modifiability.
C. Reliability.
d. Efficiency.
e. Portability.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

Engle/Dominice, Introductory Ada Workshop.

Softech, Basic Ada ProcinNufkag L202-U.S. Army,
Vol I.

-17-

24

VII. PRESENTATION:

A. Introduction

1. E.G. Booth quote:
"The basic problem is not our mdsmanagement of
technology, but rather our inability to manage
the complexity of our systems".

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Five Goals of Software la. Understandability, - software
must be understood by anyone
who will write the code, look
at the code, or modify the
code. Software may only be
written one time, but it is
read many times. The easier
software is to read, the
easier software is to
understand, the easier it is
modify. (Refer back to costs
for maintaining software).

lb. mgditiAkilkty . Allows
program to be changed to meet
the new needs of the user,
wlth a minimum of time and
expense.

lc. Reliability - Software must
perform as it is supposed to
(Nuclear Attack Warning
System Example). DOD
reliability factors:
a. Systems are lethal.
b. Many systems are

unattended.
c. Systems must be fault-

tolerant.

ld. Efficiency - Achieving
maximum performance within
small hardware constraints.
There are two weys to measure
efficiencies of software
systems:
a. Amount of code.
b. Speed of execution.

le. E2gteliAlity - Ability of
a program to be used on
different computers, where
the software is not hardware
dependent.

-18-

2 5

Q I.13

"Goals for Software"

QUESTIONS

Place your answer in the provided space for each of
the following questions.

1. Define Understandability.

2. Define Modifiability.

3. Define Reliability.

4. Define Efficiency.

5. Define Portability.

-19-

Q I .13

"Goals for Software"

ANSWERA__ITO QUESTIONS

1. Define Understandability.
.

Understandability,- Software must be understood by
anyone who will write, read, or modify the code.

2. Define Modifiability.

Modifiability - Allows program to be changed to
meet new requirements without having to write a new
program.

3. Define Reliability.

Reliability - Software must perform as it is
supposed to

4. Define Efficiency.

Efficiency - Achieving maximum performance, 2 ways
to measure by a. small size and b. high speed.

5. Define Portability.

Portability - Ability of a program to be
transported from one computer to another (software
is not hardware dependent).

-20-

27

LAB I .13
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
eaperiment, the student should be able to:

1. Understand the services provided by MountainNet
and the AdaNet Bulletin Board.

2. Access Ada Net.

3. Sign on and download a file or bulletin from
Adanet.

4. Answer the questions at the end of this
experiment.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. Blank registration forms for AdaNet.

3. A blank formatted disk.

VII. PROCEDURE

Follow the oral instructions for accessing AdaNet.
Get into the system, and explore various topics,
drawers, etc. Choose various naterials that you
would like to keep, and download these files onto
your blank formatted disk.

VIII. Questions

I. What is MountainNet? What is AdaNet?

2. What kinds of information are available from
AdaNet?

-21--

2S

LAB I.B
TEACHER GUIDE

LABORATORY EXPERIMENT

V. STUDENT OBJECTrVES: At the completion of this
experiment, the student should be able to:

1. Understand the services provided by MountainNet
and the AdaNet Bulletin Board.

2. Access AdaNet.

3. Sign on and download
AdaNet.

4. Answer the questions
experiment.

VI. REQUIRED MATERIALS:

1. Note taking materials.
2. Blank registration forms for AdaNet.
3. A blank formatted disk.

a file or bulletin from

at the end of this

VII. PROCEDURE

TEACHER VOTE: Contact the AbuntainNet User
Representative well in advance of the desired date
for the demonstration. If a representative is
unable to come to your school for a demonstration,
it is recammended that the instructor be familiar
enough with the AdaNet system to provide the
demonstration. Otherwise, request registration forms
so that the registration may be completed and the
students already have their packets of information
for accessing AdaNet before the demonstration is
presented. The address of MountainNet is:

MountainNet, Inc.
Eastgate Plaza
P.O. Box 370

Dellslow, WV 26531-0370
(600) 444-1458

Follow the oral instructions for accessing AdaNet.
Get into the system, and explore various topics,
drawerst etc. Choose various materials that you
would like to keep, and download these files onto
your blank formatted disk.

VIII. Questions

1. What is MountainNet? What is AdaNet?

NountainNet is a telecommunications corporation
in Dellslow, WV, whose puzpose is to run the
Adafiet system. AdaNet is an information service
and software reuse research project designed to
provide domain software engineering and
Ada for .usiness, government, and academe.

2. What kinds of information are available from
AdaNet?

Ada source code libraries, bibliographic
references and publication information,
descriptions of public and commlercialrepositories, directories of products,
listings of organizations, listing of
forums, etc.

INFORMATION LESSON PLAN

LESSON Ti oftware Engineerin

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to :

1. Define Software Engineering.

2. Describe Abstraction.

3. Define Modularity.

4. Describe Localization.

5. Understand the principle of information hiding.

6. Understand the principle of completeness.

7. Define Confirmability.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block I, Unit 3
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on following sections:

a. Combat Logistics Support Example.
b. Abstraction.
c. Modularity.
d. Localization.
e. Information Hiding.
f. Completeness.
g. Confirmability.

-24-

31

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Trainznu and Reference Module".

Engle/Dominice, Introductory Ada Workshop.

Softech, AUSILASYLILKMARIPABIJAIR- U.S. ArmY,
Vol I.

VII. PRESENTNTION:

A. Introduction

1. Tell students that there is no uniform concensus
for the definition of Software Engineering; then
tell them that the following are goals of Soft-
ware Engineering for DOD.

H. Instructional Topics and Key Points

TOPIC KEY POINT

1. Abstraction

2. Modularity

3. Localization

4. Information Hiding

la. As used in program
development, is a process in
which a system is
viewed at several levels
from simple to complex
(top-down approach); wtere
the programmer concentrates
on the essentials, leaving
the details for later time.

2a. Programming tasks may be
broken into individual
modules (divide and conquer).

2b. Module - Unit of code or
program which may be written,
tested, and function
independently of other
modules.

3a. Related pieces of program
code should be found in the
system at close proximity to
one another. It would not be
wise to put two pieces of
related code in separate
modules.

4a. Programmer writes parts of
system which are inaccessible
to other parts of system.
Makes code immune to side
effects from changes, to
other parts of the system,
which may occur.

-25-

32

B. Instructional Topics and Key Points

TOPIC

Completeness

6. Confirmability

KEY POINT

5a. All required components and
resources for a module to
function pxoperly must be
made available to that
module.

6a. Software module can readily
be tested with a minimum of
support from other modules.

-26-

33

ILP I.D
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to :

1. Define "Embedded Systems".

2. Identify the company who developed the Ada
programming language.

3. Gain an understanding of the history/development
of the Ada programming language.

4. Define the function of the AJPO.

5. Discuss the naming of the language.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block I, Unit 4
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on following sections:

a. A language for embedded computers.
b. The Higher Order Language Working Group.
c. Establishing the requirement.
d. Starting the design.
e. Completion of the design effort.
f. Naming the new language.
g. Ada Joint Program Office.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

-27-

34

VII. PRESENTATION:

A. Introduction

1. Give a brief oral history of why DOD needed a
Higher Order Language which could meet their
needs.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Embedded Systems

2. Development of Ada

la. Definition - a possible
group of machines that are
controlled by one or
more computers, and
function as one indepen-
dent unit.

2a. 1975 - Higher Order Language
Working Group (HOLWG)
Made up of members from
academe, government,
industry, and the three
branches of the military,
whose purpose was to review
existing computer
programming languages, and
to develop requirements of
the new computer language
for use with DOD projects.

1. Specify requirements of a
language.

2. Evaluate current
languages against DOD
requirements.

3. Make recommendations on a
language to use based on
that evaluation, or
possibly recommend the
creation of a new
language.

2b. 1975 - Strawman document was
developed; document provided
initial specifications for
new language. Strawman was
submitted by HOLWG for
review by all parties
involved in language
development. Comments
incorporated into Strawman
led to development of
Woodenman, and Tinman
documents (which were
changes to Strawman).
Tinman returned with
relatively few changes.
Changes were made, and new
document was called Ironman
(1977).

-28 -

35

B. Instructional Topics and Key Points

TOPIC KEY POINT

3. Honeywell-Bull

4. Naming of Language

5. AJPO

3a. Company from Europe who won
the language design competi-
tion sponsored by DOD,
to develop the Ada
language.

4a. Named for Lady Augusta Ada
Lovelace (born 1815);
daughter of Lord Byron
(poet). Worked with Charles
Babbage on his analytical
engine. Is considered to be
first programmer (due to
notes she made during work
on engine.

5a. Ada Joint Program Office
mission is to disseminate
information to military and
general public concerning
Ada. Runs Ada Information
Clearinghouse (AdaIC) and
CREASE (Catalog of Resources
for Education in Ada
Software). Monitors
compiler compliances with
DOD guidelines on Ada.
Funded by AJPO through ITT,
who manages the AdaIC.

-29-

31;

LAB 1.D

LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment/ the student should be able to:

1. Identify the resources available from the Ada
Information Clearinghouse.

2. W:Ate a letter requesting AdaIC to include the
student on their mailing list, to receive AdaIC
information.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. Letter bond, envelopes, and stamps.

3. Student Data Disk.

VII. PROCEDURE

1. Draft a letter to the Ada Information
Clearinghouse, requesting to be added to their
mailing list. The address is:

AdaIC
c/o ITT Research Institute
4600 Forbes Blvd., Second Floor
Lanham, Maryland 20706-4312

VIII. QUESTIONS

1. What is Ada1C?

2. How is the program funded?

3. What kinds of information are available from the
Ada Information Bulletin Board?

-30-

37

TEACHER GUIDE
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Identify the resources available from the Ada
Information Clearinghouse.

2. Write a letter requesting AdaIC to include the
student on their mailing list, to receive AdaIC
information.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. Letter bond, envelopes, and stamps.

3. Student Data Disk.

VII. PROCEDURE

1. Draft a letter to the Ada Information
Clearinghouse, requesting to be added to their
mailing list. The address is:

AdaIC
c/o ITT Research Institute
4600 Forbes Blvd., Second Floor
Lanham, Maryland 20706-4312

Teacher Note: Flan a follow up session for this lab
when the students receive their packets from AdalC.
They will receive information on how to access the
Ada Information Bulletin Board, as well as other
information that is of interest to the Ada
community.

-31-

aS

VIII. QUESTIONS

1. What is AdaIC?

AdaIC is the Ada Information Clearinghouse whichis part of the AJPO, and is designed to
disseminate information to the Ada comunznity.

2. How is the program funded?

The program is funded by AJPO through ITT whoruns the Adair.

3. What kinds of information are available from the
Ada Information Bulletin Hoard?

News articles, contract awards, validatedcompiler listings, training se.minars, con-ferences, etc.

Q I .D

"History of Ada"

OUESTIONS

Place your answer in the provided space for each of
the following questions.

1. Define Embedded Systems.

2. What does HOLWG stand for? What was it made up of?
What did they do?

3. What company designed Ada?

4. How was Ada named?

5. What does AJPO stand for? What do they do?

-33-

40

"History of Ada"

ANSWERS TO QUESTIONS

1. Define Embedded Systems.

Embedded Systems - A group of machinery which is
controlled by one or more on-board conputers, andfunctions as an independent unit.

2. What does HOLWG stand for? What was it made up of?
What did they do?

HOLWG - Higher Order Language Working Group, it was
made up of academe, government, and military to
develop the requirements for DOD's new language
(Ada).

3. What company designed Ada?

Honeywell - Bull
4. How was Ada named?

Named for Lady Augusta Ada Lovelace, daughter of
Lord Bryon. She is considered the first program-
mer.

5. What does AJP0 stand for? What do they do?
&WO - Ada Joint Program Office, they operate
AdaIC and CREASE and their purpose is to dis-
seminate information about Ada, and to also
oversee compliance with DOD Ada guidelines.

-34-

41

ILP I.E

IMITEMATIMLIAMOILIMAN

"I.

da2 and the Department of Defense"

UNIT:

LESSON TITLE: 'Defense Directives"

IV. LESSON OBJECTIVES: At the completion of this lesson/
the student should be able to:

1. Discuss the differences between standardization
directives and acquisition policies.

2. Understand the implications of DOD Directive
5000.31.

3. Understand the implications of DOD Directive
5000.1.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block If Unit 5
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on following sections:

a. Background.
b. Warner Amendment.
c. Higher Order Languages.
d. Mission Critical Systems.
e. DOD Directive 5000.31
f. DOD Directive 5000.1
g. DOD Directive 5000.29

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "Ow-Line Training and Reference Module".

-35-

42

VII. PRESENTATION:

A. Introduction

1. Ask students question, "Why do you think there
are rules governing the use of the Ada program-
ming language?"

H. Instructional Topics and Key Points

TOPIC KEY POINT

1. Standardization
Directives

2. Acquisition
Policies

3. DOD 5000.31

4. DOD 5000.1

la. Dictate.which Higher Order
Languages are allowed to be
used in DOD systems.

2a. Govern how systems and
software are purchased by
U.S. Government.

3a. 1976 - Required use of an
approved Higher Order
Language for "Mission-
Critical Systems".

3b. 1963 - stated "The Ada
programming language shall
become the single computer
programming language for
Defense Mission Critical
applications."

4a. Major Systems Acquisition
Policy - stated "Effective
Jan. 1/84 for programs
entering advanced development
and July 1/84 for programs
entering full-scale
engineering development, Ada
shall be the programming
language."

-36-

4 3

AN
Fundamentals of

Ada Programming

1LP II *A
INrORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this
lesson, the student should be able to:

1. Understand the purpose of each line of code in a
simple Ada program.

2. Understand the concept of a package.

3. Define and identify a context clause.

4. Identify how comments are incorporated in an Ada
program.

5. Understand the purpose of the following Ada
keywords:
a. with
b. use
c, procedure
d. is
e. begin
f. end

Gain an understanding of the conventional
techniques used to make Ada code more readable
and understandable.

7. Gain an understanding of the structure of an Ada
program.

V. LEARNING ACTIVITIES:

I. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Trainlng and Reference Module".

Read & take notes on the following sections:

Block II, Lesson 1, Topic 1
a. The Basic Ada Program.

-37-

45

VI. SPECIAL RESOURCES:

AETECH "Ada Traininq Environment" and "IntegrAda"
with "On-Line Trainlng and Reference Module".

Skansholm, Ada_From The Beginning,
Addison - Wesley, 1988, pg. 30-31.

VII. PRESENTATION

A. Introduction

1. Put on board a flowchart of "Hello Program".

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. "Hello Program"

with Text_/0; la. Imports to main procedure
"Hello" Text_IO resources.

use Text_IO lb. Uses abbreviated notation in
lieu of extended dot
notation. Notes Instructor
should also show same pro-
gram using extended dot
notation.

procedure Hello is lc. Name of main procedure.
begin ld. Begin execution of program.
put ("HELLO THERE") le. Output to screen.
end Hello; lf. End execution of program.

2. Packages

3. Comments

SYNTAX NOTES

a. note upper and lower case
style and non-sensitivity.

b. note ; delimiter.
c. note () and "" for put

(see Text_IO package).

2a. Definition - A collection of
logically related program
resources grouped together.

2b. Use the predefined package
Text IO to demonstrate one
such-Package as per 2a.
above.

2c. Identify context clause as
the statement to be used to
gain access to a package.

3a. Explain why comments are
important.

3b. examples of comments for
"Hello Program".

3c. Handout for program headers
(HII.A.1).

-38-

4 fi

TOPIC KEY POINT

4. Keywords

5. Program Structure

4a. with - specifies the
package to be made visible
within another unit.

4b. use - Inlorms compiler pro-
gram that programmer will not
be using extended dot
notation.

4c. procedure - Clne form of Ada
subprogram; the other form is
a function. A procedure
specifies a sequence of
actions, and is invoked by a
procedure call statement.

4d. is - tells what items are
given.

4e. begin - procedure execution
starts here.

41. put - procedure provided
within Text IO, puts a string
to the screin.

4g. end - stop execution of main
procedure.

5a. Show the structure for a
typical Ada program.
(Handout HII.A.2)

-.39-

47

HII.A1

PROGRAM MADERA

The following format should be incorporated into each of
your programs to provide necessary documentation, and also
provide Identification information for you and your
Instructor.

OPROM

--* Program Name
......*********************0

Author's Name
Date
Assignment Number:

Program Executive .

-- Provide a brief but accurate description of what the .
.

-- program does, and any other information which may be
;

-- useful in describing your program. I
;

-40-

48

HII.A2

A TYPICAL STRUCTURE FOR AN ADA MAIN PROCEDURE

(Context Clauses)
with UE

procedure NAME is

(Place declarations here);

begin

(Program code);

end NAME;

LAB 1I.A

LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Write a simple Ada program.

2. Compile, bind, debug, and execute a simple Ada
program.

3. Gain an understanding of what occurs in step
(2) above.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On.-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Using the editor environment, type in the
following code and save it to a-file called
LAB5.ADA

Note: Be sure to include information from handout
HII.A here!

with Text IO; use Text IO;
procedure-<procedure_ame> is
begin
put("HELL01");
end <procedure_name;

2. Compile, debug, bind, and execute the program.

3. Make a print out of your program and executable
coda to turn in to your Instructor.

4. Power down computer, and clean up area.

-42-

50

A Basic Ada Program *--.
V

- - Author's Name : TEACHER:GUIDE ;
- - Assignment Number : LAB # hA ;

Program Executive
-- Below is a solution for Lab # II.A. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with Text_IO; use Text_IO;

procedure WELCOME is
begin

put("HELLO!");
end WELCOME;

ILP II.B

INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this
lesson, the student should be able to:

1. Gain an understanding of how to use existing
code from Ada packages in new Ada programs.

2. Gain an understanding of the following keywords:

a. with
b. use

3. Utilize simple subprograms from existing
packages to perform fundamental screen and
keyboard operations needed for users to view and
enter data to Ada programs.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Trainang and Reference Module".

Read & take notes on the following sections:

Block II, Lesson 1, Topic 6

a. Using existing packages.

VI. SPECIAL RESOURCES:
AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Trainang and Reference Module".

Johnson, The Ada Primer, McGraw-Hill, 1985, pg. 61

VII. PRESENTATION

A. Introduction

1. Handout copies of existing package
specificatIons for SCREEN, KEYBOARD, and
COLORS, and explain to students all this
programming has already been done
for the student.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Existing Packages

2. Keywords

3. Utilizing Subprograms

la. mix.mg . Standard Ada
packAge for input and output
of characters and strings of
characters. Does not include
cursor, screen, color,
function keys, or simple
keypresses. Used mainly for
file operations.

lb. SCREEN - Existing package
used to handle simple cursor
and screen operations.

lc. COLOR - Existing package used
to set foreground and
background colors for other
operations found in package
SCREEN above.

ld. KEYBOARD - Existing package
used to get and identify keys
pressed by the user.

2a. with - Makes an existing
package visible to your
program (said to import an
existing package to a main
procedure).

2b. Tells compiler that the
programmer will not be using
extended dot notation.

3a. Give examlle using resources
of severa existing packages
together to clear the screen
in a color, set the cursor,
print a message, and get a
response from the user.

-45-

.5 3

LAB 11.3

LABORAT9EY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Identify the existing packages wtich the
following program utilizes.

2. Use existing packages for simple input and output
of data.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

4. Specifications for packages SCREEN, KEYBOARD,
COLORS, TEXT_IO.

VII. PROCEDURE

1. Given the following simple program using typical
input and output, identify the source package
from which each of the following bold faced
procedures and data structures come, by using
extended dot notation. That is, if "SET CURSOR"
is found in package SCREEN, then rewritethe
procedure to read "SCREEN.SET_CURSOR".

2. Given the specification for Ada package TEXT IO,
list those subprograms which are also available
without other existing packages.

(Program on next page).

Save your program as LAB6.ADA.

wlth SCREENIKEYBOARDICOLORSITEKT_IO;
use SCREENk KEYBOARD, COLORS;
procedure TRy_IT is

KEY:A KEY;
CH:CAKRACTER;

begin
SET BACKGROUND(BLUE);
SET7POREGROUND(YELLOW);
CLEAR SCREEN;
loop

SET CURSOR(25,l);
PUT("ENTER Any Key to Continue or
Escape=>");
PRESS(A KEY,CH);
PUT(A KEY'INAGE(KEY));
exit ;hen KEY=ESC;

end loop;
end TRy_IT;

<ESC> to

3. Compile, debug, bind, and execute the program.

4. Print out a copy of your program, and your
executable output to turn in to your Instructor.

5. Power down computer, and clean up area.

-47-

55

......***************************
Existing Packages *--.

--***************************--.

-- Author's Name : TEACHER GUIDE ;
- - Assignment Number : LAB # II.B ;

Program Executive-- Below is a solution for Lab # II.B. This solution may be
- - used by the instructor as a guide for helping students
-- complete the laboratory assignment

with SCREEN, KEYBOARD, COLORS, TEXT_10;
use SCREEN, KEYBOARD, COLORS;

procedure TRY_IT is
KEY: KEYBOARD.A KEY;
CH : CHARACTER;
begin
COLORS.SET BACKGROUND(BLUE);
COLORS.SETFOREGROUND(YELLOW);
SCREEN.CLEM SCREEN;
Loop

SCREEN.SET CURSOR(25, 1);
SCREEN.PUT(7Any Key to Continue or <ESC> to Escape =>") ;
KEYBOARD.PRESS(RZY, CH);
SCREEN.PUT(A KEY' IMAGE(KEY));
exit when KEY= ESC;

end Loop;
end TRY_IT;

with SCREEN, KEYBOARD, COLORS, TEXT_IO;
use SCREEN, KEYBOARD,COLORS,
procedure TRY IT is
KEY: KEYBOARD.A KEY;
CH : CHARACTER;

begin
SET BACKGROUND(BLUE);
SETFOREGROUND(YELLOW);
CLEM...SCREEN;
Loop

SET CURSOR(25, 1);
TEXT 107PUT("Any Key to Continue or <ESC> to Escape =>");

PRISS(KEY, CH);
TEXT IO . PUT (A_KEY ` IMAGE (KEY)) ;exitwhen KEY = ESC;

end Loop;
end TRY_IT;

ILP II.0

INFORMATION LESSON PLAN

BLOC.IC:

LESSON TITLE: ackage Text

IV. LESSON OBJECTIVES: At the completion of this
lesson, the student should be able to:

1. Use the non-generic resources provided within
Text_IO.

2. Instantiate and use the generic packages
Integer_IO, Float_IO, Fixed_IO, and
Enumeration_70.

3. Describe and use the width and base parameters
provided for Integer_IO.

4. Describe and use the Fore, Aft, and Exp
parameters provided for Fixed_IO and Float_IO.

V. LEARNING, ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block V7
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block VI, Lesson 4, Topics 1-11

a. Package Text IO.
b. Instantiatioii.
c. Console input/output.
d. File handling.
e. Characters and new line.
f. Strings.
g. Working with strings.
h. Integer IO.
i. Float O.
I: Fixed:IO.
k Enumeration IO.

-49-

5 7

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Traininy and Reference Module".

VII. PRESENTATION

A. Introduction

1. Inform students that package Text_IO provides
the basic resources for input/output of text
or data text files. The standard default
input file is the keyboard. The standard
default output file is the screen.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Text_IO

2. Generics

3. Integer_IO

la. Is a predefined package which
contains subprogram resources
(for I/0 of strings and
characters) and generic
package for I/0 of Integers,
Floats, Fixed, and Enumerated
type objects.

2a. Integer IQ, Fixed WI
Float ID, and EnUffieration_IO
are tfie names of generic
packages within Text IQ
which must be instaaiated
in order to gain access to
the I/0 resources for their
respective types.

3a. Width - defaults actual width
of the type when the package
was instantiated.

3b. Base - an optional parameter
which allows for working with
different base number
systems. Default is 10.
(where subtype Number_Base is
Integer Range 2.116)

B. Instructional Topics and Key Points

TOPIC KEY POINT

4. Fixed IO and
Float:I0

4a. Fore - An optional parameter
which specifies the number
of character positions to
the left of the decimal. For
Floating Point types, Fore
defaults to 2; for fixed,
number in type given.

4b. Aft - An optional parameter
which specifies the number of
character positions to the
right of the decimal. For
floating point types,
defaults to number in type
-1; for fixed, number in
type.

4c. Exp - An optional parameter
which specifies the number
of character positions to use
for the exponent part.

-51-

5`4

LAB II.0

LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Compile, bind, debug, and execute an Ada program
which calculates voltage based on user input
values for current and resistance. Ohm's Law
states that voltage (volts) is equal to
current (amps) multiplied by resistance (ohm's).

V = I * R

2. Modify the program so that current is calculated
using floating point types.

3. Modify the program so that resistance is
calculated using floating point types.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" wlth "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Using the editor environment, type in the
following code and save it to a file called
LAB7A.ADA. Be sure that you include all
information as per handout HII.A. "Program
Headers".

-52-

....*************************************_
---* Ohm's Law, Voltage Calculation *--;
.*************************************

-- Author's Name
-- Assignment Number : LAB # II.0

Program Executive

with TEXT_IO; use TEXTIO;

procedure OHMS is

package IntegerIO is new INTEGER_IN INTEGER);

V, I, R: INTEGER;
begin

PUT("Enter Current (in Amps): ");
IntegerIO.GET(I);
NEW LINE;
PUT("Enter Resistance (in Ohms): ");
IntegerIO.GET(R);
NEW LINE;
V := / * R;
NEW LINE; NEW LINE;
PUT("***** Voltage (in Volts) = ");

IntegerIO.PUT(V, Width => 1);
PUT(
NEW LINE;

end OHMS;

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Modify the program to calculate current based on
input values of voltage and resistance. Change
the type of current, voltage, and resistance to
float. Be sure that you instantiate the required
generic package within Text_IO. Follow steps 2-3
above, saving this new program as LAB7B.ADA.

5. Modify the program in step 4 to calculate
resistance based on input values of current and
voltage. Follow steps 2-3 above, saving this new
program as LAB7C.ADA.

6. Power down computer, and clean up area.

-53-

Gi

--* Ohm's Law, Current Calculation

-- Author's Name : TEACHER GUIDE ;
-- Assignment Number : LAB # MC, Procedure 4

Program Executive
-- Below is a solution for Lab # II.C, procedure number 4.
-- This solution may be used by the instructor as a guide
-- for helping students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;

procedure OHMS2 is

package FloatIO is new FLOAT_I0(FLOAT);
use FloatIO;

V, I, R: FLOAT;

begin
PUT("Enter Voltage (in Volts): ");
GET(V);
NEW LINE;
PUT("Enter Resistance (in Ohms): ");
GET(R);
NEWLINE;

NEW LINE; NEW_LINE;
PUT("***** Current (in Amps) =);
PUT(I, Aft => 2, Exp => 0);
PUT(" *****");
NEW LINE;

end OHMS2;

-54-

62

--* Ohm's Law, Resistance Calculation *--;

-- Author's Name : TEACHER GUIDE ;
-- Assignment Number : LAB # /I.C, Procedure 5;

Program Executive
-- Below is a solution for Lab # II.C, procedure 5.
-- This solution may be used by the instructor as a guide
-- for helping students complete the laboratory
assignment.

with TEXT_IO; use TEXT_IO;

procedure OHMS3 is

package FloatIO is new FLOAT 10(FLOAT);
use FloatIO,

V, I, R: FLOAT;

begin
PUT("Enter Current (in Amps): ");
GET(I);
NEW LINE;
PUTT "Enter Voltage (in Volts): ");
GET(V);
NEW_LINE;
R := V / I;
NEW LINE; NEW LINE;
PUTT "***** Resistance (in Ohms) = "
PUT(R, Aft => 2, Exp => 0);
PUT(
NEW LINE;

end 0161B3;

ILP II.D

INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

I. Define the

2. Understand
to diagram

not
or

type Boolean.

the following functions, and be able
the truth tables for them:

and
xor

3. Identify the operations that are available for
mixed types, and describe the returned results.

4. Define the following predefined subtypes:

Natural
Short_Integer
Short_Float

Positive
Long_Integer
Long_Float

5. Identify what predefined operations are provided
by package STANDARD for strings, and identify
what is returned by these operations.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

-56-

6.1

V. LEARNING; ACTIVITIES (continued):

3. CAI Assignment - Block V7
AETECH Wa Training Environment" or "IntegrAda"
with "On-Line Trainlng and Reference Module".

Read & take notes on the following sections:

Block VI, Lesson 11 Topics 1-10

a. Using package STANDARD.
b. Boolean functions.
c. Integer functions.
d. Float functions.
e. Mixed functions.
f. Type Character.
g. ASCII control constants.
h. ASCII character constants.
i. Predefined subtypes.
j. String functions.

V7. SPECIAL RESOURCES:

AETECH %de Training Envlronment" and "IntegrAda"
with "On-Line Training and Reference Module".

VII. PRESENTATION

A. Introduction

1. Define package STANDARD as a package which
provides many primary operators for the
predefined Ada types (i.e. '+ for Integers).
Remind students that they don't have to
instantiate the package because it is not a
generic. Package STANDARD is automaticalW
",withed" and "used" by the compiler for all
units.

B. Instructional Topics and Key Points

TOPIC

Type BOOLEAN

KEY POINT

2. Logical Operators and
their Truth Values

la. A predefined type which can
have a value of either true
or false. Has the operators
= < I etc. defined for it.
(give examples).

2a. not (for X) - the value of X
is reversed.

2b. and (X AND Y) -both X and Y
must be true to return true:

X Y Result

r F r
F T F
T F F
T T T

-57-

65

B. Instructional Topics and Key Points

TOPIC KEY POINT

2. Logical Operators and
their Truth Values
(Continued)

3. Nixing Types

4. Predefined Subtypes

5. Strings

2c. or (X OR Y) - either X or Y
must be true to return true:

X Y Result

r r r
F T T
T r T
T T T

2d. xor (X OR Y but not both) -
either x or y can be true to
return true, but not both of
them:

X Y Result

r F F
T F T
F T T
T T F

3a. The following operations are
available for mixing real
numbers with integers:
Multiplication - defined for
either real or integer as
first number. Returns real.
Division - denominator is
integer. Returns real.

4a. Natural 0..integer'last
Positive 1..integertlast
Short Integer, Long Integer
Short-Ploat, Long_Froat - all
are iiPlementation defined,
where computer defines
boundary based on its own
internal structure.

5a. Definition - unconstrained
array of characters.

5b. Operations:
= 1 <

t <=1 >=, 1=
(give examples)

5c. & - will concatenate any
combination of strings and
characters. Returns string.

B. Instructional Topics and Key Points

TOPIC KEY POINT

6. Arrays 6a. Basic operations include
assignment, membership tests,
indexed components, qualifi-
cation, and explicit
conversion. For one dimen-
sional arrays, slices and
string operations are
supported.

LABORATORY EXPERIMENT

BLOCK: ndamentals of Ada Programa

LAB 11.D

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Compile, bind, debug, and execute an Ada Program
wtich outputs Natural and Positive type objects.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" wlth "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Write a procedure which declares Object_l as a
Positive Integer, and Object_2 as a Natural
Integer. Output the smallest value possible
(IFirst) for each of the objects. Save this
program as LABS.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

...***.
Working with Package Standard *..;

-- Author's Name
-- Assignment Number

: TEACHER GUIDE ;
: LAB # II.D

Program Executive
-- Below is a solution for Lab # II.D. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

wtth TEXT_IO; use TEXT IO;

procedure PRINT FIRSTS is

package PositiveI0 is new INTEGER 10(POSITIVE);
package NaturalIO is new INTEGER.I0(NATURAL);

Object./ : POSITIVE;
Object.2 : NATURAL;

begin
3b51ct.1 := POSITIVE'FIRST;
njelt.2 := NATURALPFIRST;
!VW JINE;
PUT4 "Smallest Possible POSITIVE value is: ");
PositiveI0..WT(Object/I Width => 2);
NEW L/NE; LaNE;
PUT("Smallest Possible NATURAL value is: ");
NaturalIO.PUT(Object_2, Width => 2);
NEW...LINE;

nd PRINT_FIRSTS;

ILP II.E

INFORMATION LESSON man

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define variable objects.

2. Define the following types:

a. Integer (including positive and natural).
b. Real (including fixed and float).
c. Character.
d. String.

3. Perform simple variable object declarations with
initializations.

4. Perform simple variable object assignment.

V. LEARNrNG ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block II, Lesson 1, Topic 2

a. Simple Declarations.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

VII. PRESENTATION

A. Introduction

1. Use an example of a person's age being a
variable; include:

String - July 1, 1960
Integer - 711960
Real . 711960.6

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Variables

2. Variable Types

la. In Ada, variables are one
type of objects.

lb. Variables provide a way to
save and retrieve data.

lc. Variables of different types
cannot be mixed implicitly.

2a. Discrete:
Integer - A signed (+/-)
wAole #.(no fractions or
decimals) may utilize
isolated embedded
underscores. Two predefined
subtypes:
Natural-includes 0
Positive-doesn't include O.

2b. Real - A signed (+/-)
approximation of a number
with a fractional or decimal
part. Two types:
Fixed - Real-numbers where
approximation's error bound
is specified as an absolute
value. Error bound is called
the delta of the fixed point
type.
Float - Real numbers where
approximation's error bound
is specified by a minimum
number of significant decimal
digits.

2c. Character -A digit, letter
or some other single symbol.

2d. String - One or more
characters; a one dimensional
unconstrained array whose
components are characters.

-63-

71

B. Instructional Topics and Key Points

TOPIC KEY POINT

3. Variable Object
Declaration

4. Variable Assignment

3a. Select a meaningful
identifier to reference the
variable.

3b. Specify the type of object
that the variable may
contain. (give examples)

3c. Optionally assign the object
an initial value. Identifiers
must start with alpha
character, may be any
reasonable length, may
contain letters/digits/&
underscores, no blanks, no 2
ad acent underscores (single

ded underscores; no
trailing underscores).

3d. Variables have no value
unless initialized, or given
a value in an assignment
statement.

4a. Use := to make assignment
of right side, to variable
object on left side.

41,. Identifier appears on left
side of assignment statement.

4c. Expression on right side must
be of the same type as
variable on left, because Ada
is a strongly typed language.

4d. May make assignment in
declaration. This is
called initialization.
(give examples).

-64-

7 2

LAB II.E

AABORATORY ExPSRINENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Complete the worksheet "Simple Declarations".

VI. REQUIRED BAMBIALS:

1. Writing Utensil.

VII. PROCEDURE

1. Complete the attached worksheet "Simple
Declarations".

LAB ME

"Simple Declarations"

WORKSHEET

A. Perform the following operations:

1. Declare a

2. Declare a

3. Declare a

4. Declare

5. Declare

6. Declare

7. Declare

variable of type

variable of type

variable of type

integer.

string.

character.

a variable of type natural.

a variable of type positive.

a variable of type fixed.

a variable of type float.

8. Declare a variable of type
characters.

9. Declare a variable of type
it an initial value of 10.

string with 10

integer, and assign

10. Declare a variable of type fixed, and assign it
a value.

B. Identify whether the following operations and
assignments are legal, or whether an error would
occur. Circle L for legal and E for error. If Ef
explain why an error would result.

A: INTEGER;
B:CHARACTER;
C:STRING(1 . . 6) ;
D: FLOAT ;

1. A:=10;
2. As=2041.2;
3. C:=A+8;
4. B:="A";
5. D:=6.14;
6. E=3.45
7. B:=ICf;
8. 0;
9. F:=0;
10. G:=0;

E:FIXED;
F:POSITIVE;
G:NATURAL;

-66-

71

LAB II.E

"Simple Declarations"

ANSWERS TO QUESTIONS

A. Perform the following operations:

For'slart AL, 10-201 each individual student wdll provide
a different answer, therefore teacher should follow
variable declaration guidelines in determining the
correctness of the provided student answer.

B. Identify whether the following operations and assign-
ments are legal, or whether an error would occur.
circle L for legal and E for error. If El explain why
an error would result.

AAINTEGER;
B:CHARACTER:
C:STRING(1..6);
D:FLOAT;

1. A:=10; j
2. A:=2041.2; L

3. C:=A+B; L

4. B:="A"; L

5. D:=6.14; L
6. E=3.45 L

7. B:='C';
S. P:=6.0; L
9. rs=0; L

10. G:=0; L

E:FIXED;
F:POSITIVE;
G:NATURAL;

number cannot have
decimal point if it is
declared as integer.

cannot perform
operations on objects
of different type.

quotes are around
strings, not
characters; apostrophes
are around characters.

E
- missing colon, mdssing

semicolon.
E
E - number not positive
A - positive doesn't include O.

E

-67-

75

ILP II.P

IV. LESSON OBJECTrVES: At the completion of this lesson,
the student should be able to:

1. Identify and understand a specification for an
existing package.

2. Identify formal and actual parameters of
subprogram and function specifications.

3. Identify the three modes of parameter passing
and understand how to use each mode of
parameter passing.

4. Identify "named" and "positional" notation for
use with calling subprograms.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discu3sion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block II, Lesson 1, Topics 3-5

a. Parameters.
b. Specifications.
c. Calling procedures.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Trainsng and Reference Module".

Skansholm, AclaAninf Addison-Wesley,
1988.

-68-

7

VII. PRESENTATION

A. Introduction

1. Hand out specifications for any existing
package, and have students look at those
specifications (those things in ()) and ask
if anyone knows what it is.
(Answer: Formal parameters and their modes and
type).

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Parameter

2. Specification

3. Modes of Parameters
(As used with a main
program as caller,
and a procedure as
the called unit).

la. Definition - The object
(variable) used in passing
values when a procedure or
function is called. Values
are passed from main or
callamg unit to or from the
subprogram. There are two
types of parameter lists.

FORmAL - Those parameters
listed in the specification
of a function or subprogram,
which will be used as holders
for the data passed to/from
the actual parameters.

Mt- Those parameters
in the calling

program, which will be used
to pass data to/from the
called function or
subprogram's formal
procedures, on a 1:1 basis.

2a. Definition - The portion of a
package, procedure, or
function which tells the user
how to use, or interface with
it.

2b. Lists parameters
that are used by that
package, function, or
procedure. For a subprogram
it lists the names, modes,
and types of the parameters.

3a. IN -A main procedure is said
to "drive" system. When the
main procedure calls the sub-
program and the subprogram is
executed, the actual
parameter in the call gives
value to the formal
parameter. In the
subprogram, the formal para-

-69-

77

S. Instructional Topics and Key Points

TOPIC KEY POINT

3. Modes of Parameters
(As used with a main
program as caller,
and a procedure as
the called unit).

4. Types of
Association

meter acts like a constant,
therefore its value cannot be
changed (acts like a literal
in the called unit).

3b. ox - When the main program
calls the subprogram and the
subprogram is executed, the
formal parameter's value is
undefined (the formal para-
meter is a variable object
in the main procedure).
In the called unit, this
formal, since it is
undefined, may not appear
on the right hand side of
the assignment statement.
The value of formal para-
meter, when assigned, will be
passed back to actual the
parameter upon completion of
subprogram or function (sends
value back to the main
procedure).

3c. INJIUT - The formal parameter
has a value at the time of
call. In a procedure, the
formal parameter is used as
an ordinary variable, whose
value can be used & changed.
If formal is changed, then
actual will be changed when
formal exports value upon
completion of the subprogram.

4a. When a call is made the
actual parameters are
associated with formal
parameters by either named
association or positional
association.

NAMED ASSOCIATION - In named
association, the name of the
formal parameter is given in
the actual call list followed
by a "=>" sign followed
by a value or variable.

POSITIONAL ASSOCIATION - In
positional association, the
value of the actual parameter
is passed via its position in
relation to the formal
specification list, on a 111
basis.

-70-

7 S

LAB

LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Write a simple procedure which uses both the
predefined Ada packages STANDARD and CALENDAR for
computations, and other existing Ada SCREEN and
KEYBOARD packages for input and output.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

4. AETECH IntegrAda or Alsys "AdaUser" Libraries.

VII. PROCEDURE

1. Using the provided example, enter the simple
procedure which calculates the time difference
between two user input responses, the existing
packages SCREEN and KEYBOARD for user control and
the instantiated package from TEXTI0 for output
of the type DURATION.

Example:

with TEXT_IO,KEYBOARDICALENDARISCREEN;
use KEYBOARD,CALENDAR,SCREEN;
procedure TIME IT is

START TIME,PINISH TIME:TIME;
package DURATION To is new
TEXT IO.FIXED.I0TDURAT/ON);
use DURATION IO;
KEY:KEYBOARD:A KEY;
CH:CHARACTER;

begin
loop
CLEAR SCREEN;
PUT LINE("Press any key to start timing, or
<ESt, to Quitsw>");
PRESS(KEY,CH);
START TIME:=CLOCK;
exit When KEY=ESC;
PUT IaNE("Press any key to stop
timing mermest,$);
PRESS(KEY,CH);
FINISH TIME:=CLOCK;
PUT("TEe time elapsed between start and
stop was =====>");
DURATION IO.PUT(FINISH.TIME -START TIME);
delay 3.0;

end loop;
end TIME_IT;

Save your program as LAB10.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

-72-

b

ILP II.G

INFORMATION LESSON PLAN

BLOCK I

UNIT:

LESSON TITLE:

"Fundamentals of Ada Programming".

Data'. es"

IV. LESSOR OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify two primary declaration statements of
the Ada programming language (Object
declarations and Type declarations).

2. Declare objects and types and understand the
operations that may be performed on them.

3. Identify the operation limitations for objects
and types.

4. Understand the use of a declare statement and
why and when declarations are performed within a
program.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block III
AETECH "Ada Traininq Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:
Block III, Lesson 1, Topics 1-5

a. Data structures.
b. Type declarations.
c. Operations on types.
d. Limitations on operations.
e. Location of declarations.

VI. SPECIAL RESOURCES:

AETECH "Acta Traininq Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

-73-

61

VII. PRESENTATION

A. Introduction

1. Compare objects and types to packing boxes in
that an object is the name of the empty box,
and the type is what the box may hold. The
packing of-boxes is done using initialization
or assignment.

E. Instructional Topics and Key Points

TOPIC KEY POINT

1. Primary Declarations

2. Declaring objects
and types

3. Limitations

4. Location of
Declarations

5. Declare Statement

la. Two primary declarations:
a. types b. objects

lb. Types - defines a set of
operations and values that
an object may have.

lc. Object - (variable) - entity
which can take on a value and
use the operations defined
for its type.

2a. Ensure that the student can
do this by showing many
examples.

3a. Objects cannot be assigned
values of other types; no
mixing of types (apples and
oranges). This is Ada's
strong typing characteristic.

3b. Objects cannot have
operations performed on them
that are not specified for
that type (refer to package
STANDARD for operations).

4a. Declarations must come
before any attempt to use
them.

4b. Declarations can occur in
specification part of
package, or declaration part
of block, package body, or
subprogram.

5a. May use declare statement to
declare objects later in
structure. (i.e. inside a
local block).

5b. Three Components to Declare
Statements "Declare" followed
by declarations then "begin"
and "end", where begin/end
represent the local block.

-74-

b2

INFORMATION LESSON PLAN

ILP II.H

"Fundamentals of d1Progratiri
1MOV:

III. IESSON TITLE:

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify the predefined Ada types including
Integer, Float, Fixed, Character, and Boolean.

2. Understand the use of explicit typing, and be
able to declare explicit types.

3. Define Integer, Float, and Fixed types.

4. Be qble to declare objects of prt.tdefined data
types.

V. LEARNING ACTIVITIM:

1. Take notes on lectare presented by Instructor.

2. Participate in class discussion of Inasented
lectlue.

3. CAI Assignment - Block III
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block III, Lesson 2/ Topics 1-5, 7, 8.

a. Predelined Integer types.
b. Explicit typing.
c. Assignments wlthin tplicit ranges.
d. Floating point types.
e. Fixed point types.
f. Enumeration type Boolean.
g. Enumeration type Character.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

VII. PRESENTATION

A. Introduction

1. Have students look at package STANDARD noting
the various types which have been predefined
by this package, and the operations which have
been predefined for these included types.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Predefined Discrete
Types

2. Predefined Real
Types

3. Predefined Subtypes

4. Unconstrained Array
Type

5. Fixed Type

6. Explicit Typing

la. Integer, Character,
Boolean.

lb. Integer - posittve or
negative whole #, machine
implementation dependent.

lc. Boolean - enumeration type
which can have two values:
True or False.

ld. Character - A single alpha,
digit, or other special
symbol (the ASCII set).
Enclosed by apostrophes
(o)

2a. Float -approximation of a
real number with a declared
degree of decimal digits.

2b. Fixed - explicitly defined
error bound or delta,
used where accuracy is
important.

3a. Natural - (0..fLast).
3b. Positive - (1..fLast).

4a. String - an unconstrained
array of characters.
Enclosed in quotes. (" ").

5a. Duration.

6a. Definition - make a certain
type have more constraints
than normal.

6b. Shaw why to use (accuracy,
limits erroneous input,
etc).

6c. Integer - range options.
Float - digits & range
options.
Fixed - delta & range
options.

-76-

54

LAB II.H

LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this experi-
ment, the student should be able to:

1. Write a procedure which declares and uses scalar
type objects, and provides explicit type
conversion.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Write a procedure which declares two objects.
Objectl is of type Integer, and Object2 is of type
Float. Provide Object2 with an initial value of
20.0. Prompt the user to enter an integer from 0
to 20 and calculate the percentage of the user
input number to Object2 by:

Percentage = (Objectl/Object2) * 100

Print to the screen the value of percentage.

Save your program as LAB11.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program and executable
code to be turned in to your Instructor.

4. Power down computer, and clean up area.

-77-

65

--**********************..;
..* Scalar Types *.

Author's Name : TEACHER: GUIDE ;
-- Assignment Number : LAB # II.H

Program Executive
Below is a solution for Lab # II.H. This solution may
be used by the instructor as a guide for helping
students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;

procedure Scalars is

Objectl : INTEGER;
Object2 : constant FLOAT := 20.0;
Percentage : FLOAT;

package FloatIO is new FLOAT_I0(FLOAT);
package IntegerIO is new INTEGER I0(INTEGER);

begin
put("Please enter an integer value in the range 0 to

20: ");

IntegerIO.get(Objectl);
NEW LINE; NEW_LINE;
Percentage := (FLOAT(Objectl) / Object2) * 100.0;
put("Your input value is ");
FloatIO.put(Percentage/ Aft => 21 Exp => 0);
put(" percent of 1;
FloatIO.put(Object2/ Aft => 2/ Exp => 0);
put_line(".");

end Scalars;

-78-

bi;

ILP III

INDIumQIIN_LJNEMN_ELAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define enumeration type.

2. Describe the ordering of enumeration types.

3. Declare enumerated types.

4. Use enumerated types.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block III
AETECH "Ada Traininq Environment" or "IntegrAda"
with "On-Line Traiming and Reference Module".

Read & take notes on the following sections:

Block III, Lesson 2, Topics 6

a. User defined enumerated types.

VI. SPECIAL RESOURCES:

AETECH "Ada Traininq Environment" and "IntegrAda"
with "On-Line Trainzng and Reference Module".

Skansholm, Ada From the Beginning, Addison- Wesley,
1988, pp. 172-173.

VII. PRESENTATION

A. Introduction

1. Show students how much easier it is to
describe certain things using words instead of
numbers (like the days of the week).

-79-

S7

B. Instructional Topics and Key Points

TOPIC I REY POINT

Enumeration Types

2. X/0 of Enumerated
Objects

la. Definition - allows for the
meaningful description of
real world entities.

lb. Must follow rules for
identifiers, may not be
strings or numbers.

lc. Use of enumerated types
allcw for better readability
and understandability.

ld. Ranges for enumerated types
are declared, and a host of
attributes are supported.

2a. Must provide instantiation
of generic package
Enumerated XO for I/0 of
enumerated-types, using the
particular enumerated type
as the actual parameter.

-80-

bS

LAB 11.1

LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Write a procedure which instantiates the package
Enumeration_IO, and provides output for a user
declared enumerated type.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Write a procedure which simulates a traffic light.
Use the following declaration:

type StopLightType is (Red, Yellow, Green);

Start the light at green. Delay 5 seconds. Turn
the light to yellow. Delay 3 seconds. Turn the
light to red. Delay five seconds. Turn the light
back to green. Save your lab as LAB12.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

-

4,01MO

OP
IMMO

..***************************..;
a.* Enumeration Types *_ .

Author's Name : TEACHER GUIDE ;
Assignment Number : LAB #

Program Executive
Below is a solution for Lab # II.I. This solution may be
used by the instructor as a guide for helping students
complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;

procedure Stop Light is

type StopLightType is (Red, Yellow, Green);

Signal StopLightType;
Message : STRING (1..22) := "The Traffic Light is:

package LightIO.is new ENUMERATION_I0(StopLightType
use LightIO;

begin
put_line("Hit <CTRL/C> to terminate Traffic Light."
loop

Signal := Green;
put(Message);
put(Signal);
NEW LINE;
delay(5.0);
Signal := Yellow;
put(Message);
put(Signal);
NEW_LINE;
delay(3.0);
Signal := Red;
put(Message);
put(Signal);
NEW LINE;
delay(5.0);

end loop;
end Stop_Light;

0*

);

);

ILP

INFORMATION LESSON PLAN

undamentals of Ada Programming

II. UNIT:

II/..LESSON TITLE: erived TypeSi

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define derived type.

2. Identify the syntax associated with a derived
typo.

3. Identify the rules applicable for derived types.

4. Perform conversions between derived types and
base types.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block III
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block III, Lesson 5, Topics 1, 2.

a. Creating derived types.
b. Type conversion.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

VII. PRESENTATION

A. Introduction

1. Introduce a football field using integer type
to describe the yard markers. Discuss that a
yard marker of 51 yards might be legal, but
wouldn't make any sense.

-83-

91

B. Instructional Topics and Key Points

TOFIC KEY POINT

1. Derived Type

2. Type Conversion

la. Definition - brand new type
formed from a previously
declared type.

lb. Done with keyword "new".

lc. May have all operations of
base type.

2a. Derived type may be able to
be converted back to its base
type if mixing of types is
required. This will allow
comparisons and operations to
be performed on the converted
type.

2b. Syntax uses parenthesis
around old type, and new type
proceeding it. Must be
stored in object of new type.
(i.e. in an assignment
statement).

New Type_Object:=
New Type(Old.Type_Object);

-84-

:3 2

pABORATORY EXPERIMENT

"Fundamentals o Ada Pro rammin

LAB II.J

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able toz

1. Wtite a procedure which declares and uses derived
types.

V/. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Given the following type declarations:

type SpeedLimitType is range 0..65;

type DistanceType is digits(2) range
0.00..520.00;
-- (where 520.0 represents the maximum distance
that a person may travel at the maximum speed
limit in an 8 hour day)

type HourType is range 0..8;

Write a procedure which prompts the user to enter
an expected average speed and the number of hours
expected to be driven during a trip. The program
should calculate and output to the screen the
distance that the user could expect to travel.
Save the program as LA313.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

-85-

--* DerivedX *...
rw:*****

-- Author's Name s TEACHER, GUIDE ;
-- Assignment Number : LAB # II.J ;

Program Executive
-- Below is a solution for Lab # 11.3. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT_IO; use TEXT_10;

procedure Calc_Distance is

type SpeedLimitType is range 0..65;

type DistanceType is digits(2) range 0.00..520.00;

type HourType is range 0..8;

Avg_Speed SpeedLimitType;
Num Hours : HourType;
Distance : DistanceType;

package DistanceI0 is new FLOAT_I0(DistanceType);

package HourIO is new INTEGER ID(HourType);

package SpeedIO is new INTEGER I0(SpeedLimitType);

begin
put("Please enter your expected average speed: ");
SpeedIO.get(Avg Speed);
NEW LINE; NEW EINE;
putt "Please enEer your expected number of hours

driving: ");
HourIO.get(Num_Hours);
NEW_LINE; NEW_LINE; NEW_LINE;

Distance :=DistanceType(Avg_Speed) *DistanceType(
Num Hours);

put("You can expect to travel ");
DistanceIO.put(Distance, Aft => 2, Exp => 0),
put(" miles.");
NEW_LINE; NEW_LINS;

end CALC_DISTANCE;

ILP II.K

INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define a subtype, and compare
subtypes to derived types.

2. Discuss range constraints and
constraints of subtypes.

3. Declare subtypes, and -Nbjects

and contrast

accuracy

of type subtype.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block III
AETECH 1.01da Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block III, Lesson 5, Topics 3-6.

a. Subtypes.
b. Range constraints.
c. Accuracy constraints.
d. Index changes.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

Skansholm, Ada from the Beginning, Addison-Wesley,
1966, pg. 105.

VII. PRESENTATION

A. Introduction

1. Discuss altitude for a plane, and identify how
the set of integers (negative integers)
wouldn't apply to altitude unless plane had
crashed. Review Natural and Positive and show
how these are subtypes of Integer.

B. Instructional Topics and Key Points

TOPIC KEY POINT

Subtypes

2. Predefined Subtypes

la. Definition - a possible
smaller range of a declared
type.

lb. May be mixed with base type,
thus saving memory and
allowing for faster
execution.

lc. Can place additional range
constraints on base type.

ld. Does not increase accuracy.

le. Useful for unconstrained
arrays.

2a. Natural (0..Integer'Last).

2b. Positive (1..Integer'Last).

-88-

136

LAB II.K

LABORATORY EXPERIMBWr

V. STUDENT OBJECTIVES: At the completion of this
experiment/ the student should be able to:

.1.
1. Create and use a simple procedure in which

subtypes are declared.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" witn "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Write a procedure which declares the folleming
subtypes and objects:

Subtype Letter_Grade_Type is Character range
'A' 'E';
Subtype Passing_Grade_Type is Letter_Grade_Type

range 'Af..IDI;
Subtype Num_Grade_Type is Integer range 0..100;

Input_Grade:Num_Grade_Type;
Letter_GradesLetter_Grade_Type;

Have the procedure first prompt the user for a
numeric grade from 0 through 100. When entered,
the number is evaluated and the appropriate letter
grade is assigned to the object Letter_Grade
according to the following scale:

90 - 100 - A
80 - 89 - B
70 - 79 C
60 - 69 - D
less than 60 - E

-89-

fi7

VII. PROCEDURE
(continued)

Have the procedure output the entered number along
with the appropriate letter grade.
Follow the example below:

Enter a Number (0 - 100): 87

Entered Number = 87
Letter Grade = B

Save this program as LAB14.ADA.

2. Compile/ debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Pawer down computer, and clean up area.

-90-

Subtypes

-- Author's Name : TEACHER GUIDE ;
-- Assignment Number : LAB # II.K ;

Program Executive
- - Below is a solution for Lab # II.K. This solution may
-- be used by the instructor as a guide for helping
- - students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;

procedure CALC_GRADE is

subtype Letter_Grade_Type is CHARACTER range 'A' ..131;
subtype Passing_Grade_Type is Letter_Grade_Type range
'A' ..

subtype Num_Grade_Type is INTEGER range 0.1100;

Input_Grade Num_Grade_Type;
Letter_Grade Letter_Grade_Type;

package GradeI0 is new INTEGERI0(Num_Grade_Type);
use GradeIO;

begin
put("Please enter a numeric grade (between 0 and
100): ");
get(Input_Grade);
NEW_LINE; NEW_LINE;

if (Input Grade < 60
Letter grade 'E'

elsif (Iiiput Grade <
Letter Gra& := 'D'

elsif (IHput Grade <
Letter_GraBe := 'C'

elsif (Input Grade <
Letter_Grade s= 'B'

else
Letter_Grade :=

end if;

put(" Entered Number = ");
put(Input_Grade, Width => 1);
NEW LINE;
putt" Letter Grade = ");
put(Letter_Grade);
NEW LINE;

end CAEC_GRADE;

NEW_LINE;

) then

70) then

80) then

40) then

ILP 1I.L

INFORMATION LESSON PLAN

Iv. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify the two types of subprogram structures.
2. Identify proper techniques for naming

subprograms.
3. Compare and contrast functions and procedures.
4. Identify the modes of subprogram parameters.
5. Write simple procedures and functions.
6. Call procedures and functions.
7. Define formal and actual parameters.
8. Assign objects to formal and actual parameters.
9. Understand the Use of local variables.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block IV
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block IV, Lesson 2, Topics 1-10.

a. Description.
b. Defini.t;.; subprograms.
c. Invoking subprograms.
d. Parameters.
e. Formal and actual parameters.
f. Specifications.
g. Matching parameters.
h. Notational assignment.
i. Bodies.
j. Summary.

-92-

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with °On-Line Trainlng and Reference Module".

Skansholm, ArtafgretogReginning, Addison-Wesley,
1988, Ch. 6, pp. 1 -

VII. PRESENTATION

A. Introduction

1. Discuss modularity and how programs should be
designed using a top-down approach (written
into the smallest programming units) r then
introduce subprograms.

B. Instructional Topics and Key Points

TOPIC KEY POINT

Subprogram Structure

2. Parameter Modes

3. Parameter Types

4. Syntax

la. Two types; functions and
proceaures.

lb. Functions must return a value
procedures don't have to.

lc. Both can have parameters;
functions only of mode "in".

ld. Both aid modularity
le. Both must be declared.
lf. Both have bodies.

2a. Three types; in, out, in out

in - comes into sub from
caller. Value cannot be
changed (value is the same
after the call).
out - sub creates some value
(no value when it comes in,
or garbage value), and
returns value to where it was
called.
in out - items are passed
into a subprogram. Items can
be modified by subprogram,
and items are then passed
back to
caller.

3a. Two types: formal and actual
formal-- ones in
specifications.
actual - ones in call.

3b. Actual values are assigned to
formal values when they are
passed into sub. The sub/
when completed, passes the
formal parameters back out
where they assume their
actual names.

4a. Both may have parameter
specification.

4b. Both have begin and end.

-93-

1,U 1

LAB II.L

LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Write a simple function.

2. Write a simple procedure.

Vf. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Write a function subprogram resource which
calculates the factorial of an integer value.
Example : 41 = 24.

Use the fo2lowing structure:

begin
if value = I then

return 1 ;

else
return Value * Factorial(Value 1);

end if;
end Factorial;

Note: This is called a recursive function.
Save this as LAB 15A.ADA.

2. Compile this subprogram.

-94-

1(2

VII. PROCEDURE
(Continued)

3. Write a procedure subprogram resource wbich
calculates the area of a rectangle, given the
height, and width as integers.

Save this as LAB15B.ADA.

4. Print out a copy cf both LAB15A.ADA and LAB15B.ADA
source code to turn in to your Instructor.

5. Power dawn computer and clean up area.

-95-

1(3

--* Subprograms

- - Author's Name : TEACHER GUIDE ;
- - Assignment Number : LAB # II.L ;

Program Executive
- - Below is a solution for Lab # II.L. This solution may
-- be used byfthe instructor as a guide for helping
- - students complete the laboratory assignment.

function Factorial (Value: INTEGER) return INTEGER is
begin

if (Value = 1) then
return 1;

else
return Value * Factorial(Value - 1);

end if;
end Factorial;

procedure Calc Area (Height, Width : in INTEGER;
Area :out INTEGER) is

begin
Area := Width * Height;

end Calc Area;

-96-

ILP 11.14

INFORMATION LESSON PLAN

I. BLOCK

UNIT:

III. LESSON TITLE: Packagses

undamentals o Ada Programmin

IV. LESSON OBJECTIVES: At the completion
the student should be able to:

1. Define package.

2. List and describe the two
make up a package.

3. Identify the two parts
specification.

4. Identify the two parts

5. Define elaboration.

of this lesson,

compilation units that

of a package

of a package body.

6. List the three logical ways
resources into packages.

V. LEARNING ACTIVITIES:

1.
2.

to group programming

Take notes on lecture presented by Instructor.

Participate in class discussion of presented
lecture.

3. CAI Assignment - Block IV
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block IV, Lesson 11 Topics 1-10.

a.
b.
c .
d.

.
f .

g.

.

Description.
Example of a package.
Package specification.
Package body.
Package body (Cont.).
Package designs.
Object oriented designs.
Shared data packages.
Abstract state machines.
Summary.

-97-

1(5

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

Skansholm, Ada from tLe Beginning, Addison-Wesley,
1988, Ch. 8, pp.341-376.

VII. PRESENTATION

A. Introduction

1. Discuss that we have thus far used only the
resources contained in existing packages, and
that we can actually write our own packages.

B. Instructional Topics and Key Points

TOPIC
I KEY POINT

1. Packages la. Definition - group of
logically related software
entities.

lb. Two parts; specification and
body.
Specification - tells what
the package does
Body - implements the
functions that the
specification describes.

2. Package Specification 2a. Could be divided into two
parts;
Visible - part which user can
freely use.
Hidden - (done via private or
limited private types) no
immediate access for
user; done so that user
cannot alter certain package
items (restricts access).

3. Package Body 3a. May have a declarative
section prior to executable
code.

3b. Contains code that makes
package perform as the
specification describes.

3. Package Body 3c. If specification has
(continued) procedure or function then

those subprogram bodiao
appear here.

3d. Nay be compiled separately
from package specification.

-98-

1(6

B. Instructional Topics and Key Points

TOPIC KEY POINT

4. Elaboration

5. Package Designs

4a. Done via the elaboration of a
"with" clause. Makes package
visible and the resources in
the package usable.

5a. Three ways to group program
elements together into a
package;
°bleat Oriented Design -
groups objects together.
4haned_Data - groups data
structures together (sorting
etc) May have generics.

t t ines
contaxns speci icat on which
tells of certain conditions
and elements within package.
(on, off, etc)

-99--

107

LAB II.M

LABORATORY EXPERIMENT

I. BLOM IX "Fundamentals of Ada Programmin,

II. T'

III TAB :NUMB

LAB Creating Simple Packages

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create a simple package consisting of a procedure
and function.

VI. REQUIRED MATERIALS:

1. Vote taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Using the two subprograms created in Lab 15
(LAB15A.ADA and LAB15B.ADA) incorporate these
subprograms into a package called MATHPKG.ADA.
Compile this package, and print out a copy of your
source code to turn in to your Instructor.

2. Write a simple procedure to "drive" your math
package. The procedure should prompt the user to
enter an integer, and then calculate the factorial
of the input integer. In addition, the procedure
should prompt the user to enter a height, and
width for a rectangle, and then calculate the areaof the rectangle. Save this program as Lab16.ada.

3. Compile, debug, bind, and execute Labl6.ada,

4. Print out a copy of your package and driver, and a
copy of your executable output to turn in to your
Instructor.

5. Power down computer, and clean up area.

-100-

I

-_* Packages *--;

-- Author's Name : TEACHER GUIDE ;
- - Assignment Number : LAB # II.M. ;

Program Executive ------- ------
- - Below is a solution for Lab # hIM. This solution may
- - be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

package NAth_Functions is
function Factorial (Value : INTEGER) return INTEGER;
procedure Calc Area (Height, Width : in INTEGER;

Area : out INTEGER);
end Math_Functions;

package body Math_Functions is

function Factorial (Value: INTEGER) return INTEGER

begin
if (Value = 1) then

return 1;
else

return Value * FactoriPit Value - 1);
end if;

end Factorial;
procedure Calc Asea (Height, Width : in INTEGER;

Area: out INTEGER) is
begin

Area := Width * Height;
end Calc Area;

end Nath_Functions;

--* Driver for Package Math Functions

with TEXT_IO, Math_Functions;
use TEXT_IO, Math_Functions;

procedure Test_Functions is

Height, Wide, Area : INTEGER;
Num, Result INTEGER;

package IntegerIO is new INTEGER ID(INTEGER);
use IntegerTO;

begin
put_line("This program tests the Math_Functions
package.");
put_line("First, the Factorial of a given integer
will be calculated.");
put("Please enter the desired integer value: ");
get(Num);
NEW LINE; NEW LINE;
Result := Factorial(Num);
put("The Factorial of ");
put(Num, Width => 1);
put(" is ");
put(Result, Width => 1);
NEWLINE; NEW_LINE; NEW_LINE;
put_line("Now, the Area of a given rectangle will be
calculated.");
put("Please enter the Width of a rectangle: ");
get(Wide);
NEW LINE;
put("Please enter the Height of a rectangle: ");
get(Height);
NEW LINE; NEW LINE;
Cale Area(Height, Wide, Area);
put("The Area of the given rectangle is: ");
put(Area, Width => 1);
put_line(" Square Feet.");
NEW_LINE;

end Test_Functions;

INFORMATION LESSON PLAN

ndamentals of Ada Programmin

I. UNIT: N

rri LESSON TITLE "Declarina Subprograms and Creating
Packages"

IV. LESSON OBJECTIVES: At the completion of this lesson/
the student should be able to:

1. Create a simple subprogram.

2. Understand how to compile a subprogram and have a
main procedure import it.

3. Identify the two parts of a package.

4. Create a simple package.

V. LEARNING; ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block II, Lesson 1/ Topics 7-9
a. Declaring subprograms.
b. Creating packages.
C. Summary.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment° and "IntegrAda"
with "On-Line Training and Reference Module".

VII. PRESENTATION

A. Introduction

1. Tell students that a large program (such as
the one that controls the space shuttle) is
coded by many programmers; therefore each
programmer only programs a small block of
code, and these small blocks (mostly
subprograms) are put together to form the
program. This is why we use specifications
(which link the varlous blocks together).

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Subprogram

2. Package

la. Definition - One small part
of an entire system.
Consists of functions and
procedures.

lb. Two parts to a subprogram:
a. Specification - interface.
b. Body - actual

implementation.

lc. Main Procedure - special form
of procedure, runs on the
operating system, and is said
to "drive" system.

2a. Definition - a group of
logically related entities.

2b. Consist of two parts:
a. Specification - interface.
b. Body - actual

implementation.

3. Declaring Subprogram 3a. Show how an internal
subprogram is declared in
a simple procedure.

-104-

112

LAB II.N
LfrBORATORY EXPERIMENT

III. LAB NUMBER=

TITLE Declaring Subprograms
and Creating Packages"

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create and use a package of mathematical
subprogram resources.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Add to your math package created in Laboratory 16,
which contains a procedure resource to calculate
the area of a triangle, and a function resource to
calculate square roots. Develop a package driver
program which prompts the user to enter 3 integer
values which are assigned as the sides of the
triangle. If the entered sides are valid sides of
a triangle, then return the area of the triangle;
otherwise return a message and allow for reentry
of valid sides. Valid sides are when the sum of
any two sides are greater then the third. Area is
computed with the formula:

Area = Vs (s-a) (5.4ET

where
s = (a+b+c)/2

Note: You will have to convert the input sides to
floating point numbers, and develop and use
a Square Root function from this math
library package.

-105-

113

VII. PROCEDURE
(Continued)

1. To decide whether input sides are legitimate sides
of a triangle, please use the following logic:

if s1-1132>s3 and s2+s3's1 and sl+s3>s2 then
--find area;

else
put_line ("Invalid Sides");

end if;

2. Compile and debug your math package, saving it
again as MATHPKG.ADA.

3. Compile, debug, bind, and execute your driver
program, saving it as L1S17.ADA.

4. Print out copies of package and driver, and
executable code to turn in to your Instructor.

5. Power down computer, and clean up area.

_* Declaring Subprograms and Creating Packages *--;
.***--;

Author's Name : TEACHER GUIDE ;
Assignment Number : LAB # II.N ;

Program Executiva
Below is a solution for Lab # U.N. This solution may
be used by the instructor as a guide for helping
students complete the laboratory assignment.

package MathPkg is
function Factorial (Value : INTEGER) return INTEGER;
procedure Calc Rec Area (Height, Wldth : in INTEGER;

Area : out INTEGER)i
function Sqrt (Num : FLOAT) return FLOAT;
procedure Calc_Tri Area (Sidel, Side2, Side3 : in

INTEGER; Area :out FLOAT);
end MathPkg;
package body MathPkg is

function Factorial (Value: INTEGER) return INTEGER is
begin

if (Value = 1) then
return 1;

else
return Value * Factorial(Value - 1);

end if;
end Factorial;
procedure Calc_Rec_Area (Height, Width : in INTEGER;

Area : out INTEGER) is
begin

Area := Width * Height;
end Calc_Rec Area;

Approximate square root, using Newton's methods
If you have a package which provides for a SORT
Function, you may wlsh to use that, in lieu of
this solution.

function Sqrt(Num : FLOAT) return FLOAT is
Root : Float := Num / 2.0;

begin
while (abs(Num - Root ** 2) > 2.0 * Num *

Float'Epsilon) loop
Root := (Root + Num / Root) / 2.0;

end loop;
return Root;

end Sqrt;

procedure Calc_Tri Area (Sidel, Side2, Side3 : in
INTEGER;
Area : out FLOAT) is

Sum, Temp_Area, A4 B, C s FLOAT;
begin

A := FLOAT (Sidel
B := FLOAT (Side2
C := FLOAT (Side3
Sum s= (A4-134- C
TempArea := Sum *

(Sum
Area := Sqrt(Temp

end Calc_Tri_Area;

end NathPkg;

);
)1;

);
) / 2.0;

_Area);

..* Driver for MathPkg *...

with TEXT_IO, MathPkg;
use TEXT_IO, MathPkg;

procedure Triangles is

Sidel, Side2, Side3 : INTEGER;
Area : FLOAT;
Valid : Boolean;
package IntegerIO is new INTEGER I0(INTEGER);
use IntegerIO;
package FloatIO is new FLOAT IQ(FLOAT);
use FloatIO;

begin
put line("This program will calculate the area of a
givgn triangle.");

put line("Please enter INTEGER values uten lengths
are-requested.");
Valid := FALSE;
while (not Valid) loop

NEW_LINE;
put("Please enter length of side one: ");
get(Sidel);
NEW_LINE;
put("Please enter length of side two: ");
get(Side2);
NEW LINE;
puir "Please enter length of side three: "):
get(Side3);
NEW_LINE; NEW_LINE;
if (Sidel + Side2 > Side3) and (Side2 + Side3 >

Sidel)
and (Sidel + Side3 > Side2) then

Valid := TRUE;
Calc_Tri_Area(Sidel, Side21 Side3, Area);

else
put_line("Invalid Sides! Try Again...");

end if;
end loop;
put("The Area of the given Triangle is: ");
put(Area, Aft => 2, Exp => 0);
put line(" Square Feet.");
NEW-LINE;

end Triangles;

-109-

117

ILP 11.0
INFORMATION LESSON PLAN

I. BLOCK II - "Fundamentals of Ada Programming"

II UNIT: 0

III. LESSON TITLE: "Ada Lanaua e Svntax"

IV. LESSON OBJECTIVES: At the completion of this lesson/
the student should be able to:

1. Identify what limitations upper and lower case
letters have on Ada syntax.

2. Define identifiers and discuss their limitations.
3. Define and identify numeric literals.
4. Define and identify character literals.
5. Define and identify string literals.
6. Define and identify the following delimiters:

(from the Ada Language Reference Manual,
section 2.2)

=, :=

7. Define reserved word and identify their
limitations.

8. Define program documentation, and discuss its
importance for good programming practice.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.
2. Participate in class discussion of presented

lecture.
3. CAI Assignment - Block II

AETECH "Ada Training Environment" or "IntegrAda"
wlth "On-Line Trainlng and Reference Module".

Read & take notes on the following sections:

Block II, Lesson 21 Topics 1-10

a. Character Set.
b. Lexical Units.
c. Identifiers.
d. Numeric Literals.
e. Character Literals.
f. Strings
g. Simple Declarations.
h. Compound Delimiters.
i. Reserved Words.
j. Comments.

-110-

S

VI. SPECIAL RESOURCES:

AETRCH "Ada Traininq Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

Skansholm, Ada From The Beginning, Addison-Wesley,
1988.

VII. PRESENTATION

A. Introduction

1. Discuss how our English symbols make our
language understandable to us.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Syntax for upper
and lower case

2. Identifier

3. Numeric literals

4. Character Literal

5. Strings

la. Compiler wtll not distinguish
between upper and lower case
because Ada is a non-case
sensitive language.

lb. Conventional to put reserved
words in lower case.

2a. Can be used to name variable
objects, data structures,
program units, constants,
exceptions, etc.

2b. Start with letter followed by
letters, numbers, or single
embedded underscores.

2c. Must fit on one line.

3. Are #'s either exact or real.
3b. Can use single embedded

underscores wlthout
any effect (improves
readability).

4a. Define AACII. Also note
package ASCII is inside
package STANDARD.

4b. Any ASCII character enclosed
by apostrophes.

5a. Define Strings.
(Unconstrained array of
characters)

5b. Identify string type and
discuss the need to provide
the string length at the time
of object declaration.

119

B. Instructional Topics and Key Points

TOPIC KEY POINT

Delimiters

7. Reserved Words

8. Comments

6a. Discuss the uses of the
following delimiters:
; end of line.
: type declaration.

separates two objects in
type declaration.
attributes.
field identifier.

=> is equal to.
range.

:= assignment.

Ta. Define.
71,. Give handout with all

reserved words on them and
review each reserved word
discussed to date (get
handout from Ada Language
Reference Manual 2.9)

8a. Discuss the importance of
good programming
documentation.

8b. Discuss how to comment.

-112-

120

LAB 11.0
Lik_L3f2WjyRA EXPERIMENT

I. BLOCK: II - °Fundamentals of Ada Programming"

II. UNIT: 0

III. LAB NUMBER: 18

I LAB TITLE 141-4-1-4a1--MAMIMI-kL--J"Laing-S-g-L"

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Provide meaningful comments within
Ada programs.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Using the math package and driver created in
Laboratory Experiment 17, edit both the package
and the driver incorporating meaningful comments
within each so that a user will be able to
understand the operation of your package and
driver. Save the package as MATHPKG.ADA and your
driver as LAB18.ADA.

2. Recompile, debug, bind, and execute the driver
prior to recompiling the math package and see what
happens.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

aft. 00* Ada Language Syntax: Using Comments

-- Author's Name : TEACHER GUIDE ;
Assignment Number s LAB # 11.0 ;

The quality and quantity of comments will of course vary
-- from student to student, but a reasonable collection
-- might include the following:
-- In the packages

-- In function Factorial:
-- Mention that this is a recursive function.
-- Explain that Factorial(X) is X * X-1 * X-2 ** 3 * 2 * 1.
- - In function Sqrt:

-- Explain (or at least mention) the method used.
- - In procedure Calc_Tri Areas

-- Explain the need to convert lengths to
-- floating point values.

Possibly point out the usage of package
-- function Sqrt.

-- In the driver program:
- - State that program calculates the area of a
- - triangle.
- - Explain the determination of a valid triangle.
-- State that user is repeatedly prompted for lengths
- - of sides until a valid triangle is obtained.
-- Point out the usage of package procedure (

Calc_Tri Area) .

-114-

1."It Aar

ILP II.P

INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Understand and develop a simple program using the
if..then control structure.

2. Understand and develop a simple program using an
if.. then..else control structure.

3. Understand and develop a simple program using an
if..then..elsif..else control structure.

V. LLARNING, ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECR "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block II, Lesson 3, Topics 1-3

a. if..then.
b. if..then..else.
c. if..then..elsif..else.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

Skansholm, Ada From 'fiet Beginning, Addison-Wesley,
1998, pp. 55-56.

VII. PRESENTATION

A. Introduction

1. Discuss why it is important for computers to
be able to make choices or decisions based
upon known conditions.

S. Instructional Topics and Key Points

TOPIC KEY POINT

1. If..then

2. If..then..else

3. If..then..elsif..
..else

la. Used to determine whether an
action will be taken. If the
"if" part of the statement is
true, then execute that code,
otherwise ignore it.

lb. 3 Components of structure.
a. if b. then c. end if

lc. No semicolon after then.
ld. Indentation for easier

reading.

2a. Used to make a choice between
2 items. If the "if' part of
statement is true then
execute it, and ignore the
"else" section; otherwise if
the 'if" part of the
statement is false then
ignore it/ and execute the
'else' section of the
structure.

2b. 4 Components of structure:
a. if b. then c. else
d. end if

2c. Else not followed by
semicolon.

3a. Used to make a choice between
2 or more items. Provides
for unlimited selection of
action. A, minimum of five
components of the structure
are required:

a.If b.then
c. else d. elsif e. endif

3b. IdentiZy elsif spelling.

3c. Every elsif has a
corresponding then.

-116-

124

LAB II.PA

LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES:

1. The student will learn haw to use simple If..Then
control structures in Ada.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student data diskette.

VII. PROCEDURE:

1. Write a procedure to prompt the user to enter 2
integers. If the 1st Integer entered is larger
than the second integer entered output: "The first
number is larger than the second number"

Save this program as LA219.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program and output to
turn in to your Instructor.

4. Power down computer, and clean up area.

-117-

125

--* The If...Then Control Structure

-- Author's Name : TEACHER GUIDE ;
-- Assignment Humber : LAB # II.PA

Program Executive ---
Belouris a solution for Lab # II.PA. This solution may

- - be used by the instructor as a guide for helping
- - students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;

procedure Larger is

First, Second : INTEGER;

package IntegerIO is new INTEGER_IN INTEGER);
use IntegerIO;

begin
put("Please enter an integer value: ");
get(First);
NEW_LINE;
put("Naw, please enter a second integer value: ");
get(Second);
NEW_LINE; NEW_IAINE;
if (First > Second) then

put("The first number A.s larger than the second
number.");

end if;
end Larger;

-118-

126

LAB II.PB

TABOR/WORT' EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create and use an If..Then..Elsif..Else
Control Structure in Ada.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Rodule".

3. Student Data Disk.

VII. PROCEDURE

1. Write a main procedure which prompts the user to
input a character. The program outputs wbether
the character entered was an upper case letter, a
lower case letter, or not a letter at all.
Utilize an If..Then..Elsif..Else Structure. Save
the program as LAB20.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

.**********0,.***__;
The a..Then..Elsif..Else Control Structure

- - Author's Name : TEACHER GUIDE ;
- - Assignment Number : LAB # II.PB ;

Program Executive ------- -----
-- Below is a solution for Lab # II.PB. This solution nay
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;

procedure Check_Letter is

Letter : CHARACTER;

begin
put("Pick a character, any character... ");
get(Letter);
NEW.LINE; NEW LINE;
if (Letter in 'A'..) then

put("Chosen character is an uppercase letter.");
elsif (Letter in 'a'..'z') then

put("Chosen character is a lowercase letter.");
else

put("Chosen character is not a letter at all.");
end if;

end Check_Letter;

-120-

INgORNATION LESSON PLAN

ILP II.Q

"Fundamentals of Ada Programming"

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify the four required components of a case
structure.

2. Recognize that a case structure must have at
least two alternatives.

3. Understand when to use a case structure.

4. Identify what types a case structure may be used
with.

5. Understand the purpose of a null statement.

6. Write a program using the case structure.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block II, Lesson 3, Topics 4, 10

a. Case statement.
b. Null statement.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

volper, Katz, Introduction to Programming using Ada,
Prentice-Hall, 1990, pp. 191-195.

-121-

.12,13

VII. PRESENTATION

A. Introduction

1. Compare a case structure with a multiple
choice structure on a test.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Case Structure

2. Null Statement

la. Four required components
to a case structure:
a. case b. is c. when
d. end case

lb. Used for multiple choice
decisions related to a single
variable.

lc. Can only be used with dis-
crete types (types with a
known number of values). For
types other than discrete, a
case structure may not be
utilized.

ld. All possible values for
variable nust be accounted
for.

le. Can accomplish ld. above by
using the "when others"
option.

lf. => means "if it is equal to".

2a. To satisfy Id. above,
sometimes it is necessary to
use a null statement.

2b. NUll statement means no
action will be taken (as it
relates to case structures).

-122-

130

LABORATORY EXPERIMENT

I. BLOCK: "Fundamentals of Ada progtammin

umal4

LAB NUMBER:

LAB 1I.Q

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create and use a case control structure.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Write a program which prompts the user to input 5
integers, and prints to screen after each number
has been entered whether the number is odd or
even. Assume only odd or even numbers between 1
and 20 are evaluated. Use I Notation. Output
variations should use the following: "Odd
Number"; "Even Number"; "Number Out of Range".
Use a case control structure. Save your program
as LAB21.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

A. I--* The Case Control Structure w...

-- Author's Name : TEACHER GUIDE ;
-- Assignment Number : LAB # II.Q ;

Program Executive
- - Below is a solution for Lab # II.Q. This solution may
-- be used by the instructor as a guide for helping
- - students complete the laboratory assignment.

with TEXT IO; use TEXT_IO;
procedureTry...Case is

Numll Num21 Num31 Num4/ Num5 INTEGER;

package IntegerIO is new INTEGER IQ(INTEGER);
use IntegerIO;

procedure Odd_Or_Even(Num: in INTEGER) is
begin

case Num is
when 1131517191111131151171 19

=>
put_line("Odd Number");

when 2 1 4 I 6
I
8

J
10 1 12

I
14 1 16 j 18

J
20

=>
put_line("Even Number");

when others => put_line("Number Out of Range"
;

end case;
NEW LINE;

end Odd_Or_Even;

begin
put_line("Please enter Integer values in the range

1..20.");
NEW LINE;
putt "Enter first value: ");
get(Numl);
Odd Or Even(Numl);
putt "Enter second value: ");
get(Num2);
Odd Or Even(Num2);
putt "Ehter third value: ");
get(Num3);
Odd Or Even(Num3);
putT "Enter fourth value: ");
get (Num4);
Odd Or Even(Num4);
putt "'Enter fifth value: ");
get(Num5);
Odd Or Even(Num5);

end TrY Case;

-124-

132

ILP II.R

INFORMATION ussop PLAN

Loop Control Structure"

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Understand when and how to use a loop structure.

2. Describe the differences between a loop..exit,
for..loop, in reverse..loop, and while..loop.

3. Write a program using each of the structures in
(2) above.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block II, Lesson 3, Topics 5-8

a. Loop..exit.
b. For..loop.
C. In reverse..loop.
d. While..loop.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
wlth "On-Line Training and Reference Module".

Volper, Katz, Introduction to Programming using Ada,
Prentice Hall, 1990, pp. 159.

-125-

133

VII. PRESENTATION

A. Introduction

1. Compare a loop structure wlth the countdown of
the space shuttle launch.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. loop..exit

2. Por..loop

3. In reverse..loop

4. While..loop

la. Allows for multiple
iteration of Ada program
statements..

lb. Termination of the loop
occurs when the exit
statement is reached, and
program begins execution
after the end loop statement.

lc. Loops may be nested (one loop
completely inside another).

ld. Loops may be named.

2a. Specialized loop which has a
built in counter to count the
number of times that the loop
has iterated (i.e. an integer
range like 1..10).

2b. Index values exist inside
loop, and do not exist
outside of loop. Loop
parameters cannot be altered
inside loop.

2c. For..loop structures can be
named, and may contain exit
statements.

3a. Same as for..loop only counts
backwards. However, range is
given forward (from
smallest to largest).

4a. Conditional loop; will loop
as long as condition remains
true. When condition is
false, program execution
begins after the end loop.

-126-

134

LAB II.RA

ERITO MENT

I. BLOCK II "Fundamentals of Ada Programmin

II. UNIT:

III. LAB NUMBER:

The Loop Ctatrol StructUre"

41

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able tos

1. Create and use a simple Ada loop structure, which
contains an exit statement.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with °On-Line Training and
Reftrence Module".

3. Student Data Disk.

VII. PROCEDURE

1. Create a procedure which uses a simple loop., exit
structure, which prompts the user to enter
integers from the keyboard, and adds the input
integers in an accumulator. The program quits
when the accumulator equals or exceeds 100. The
program should output to the monitor the value of
the accumulator as it goes through the loop each
time. When the value of the accumulator reaches
or exceeds 100, the program should display "Normal
Program Termination". Save your program as
LAB22.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

-127-

135

The Loop Control Structure

-- Author's Name : TEACHER GUIDE ;
-- Assignment Number : LAB # 11.RA ;

Program Executive
-- Below is a solution for Lab # II.RA. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;

procedure Simple_Sum is

Value, Sum : INTEGER;

package IntegerIO is new INTEGER_I0(INTEGER
use IntegerIO;

begin
Sum := 0;
loop

put("Please enter an Integer value:
get(Value);
NEW_LINE;
Sum := Sum + Value;
put("Current Value of Sum is: ");
put(Sum, Width => 1);
NEW_LINE; NEW_LINE;
exit when Sum >= 100;

end loop;
put_line("Normal Program Termination."

end Simple_Sum;

11

);

);

);

LAB II.RB

LABORATQRY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able tos

1. Write an Ada program which uses a simple
For.. loop.

2. Write an Ada program which uses a reverse loop.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Write a procedure which prompts the user for a
positive integer, and then outputs the summation
of numbers from 1 to the input integer value.
Save this program as LAB23A.ADA

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

-129-

137

4. Write a program which simulates a shuttle
countdown starting at 10 seconds and going to
zero. Output "lift-off" after countdown. Use a
delay statement. Use a reverse loop. Output
should be as follows:

10
9
8
7
6

5
4
3
2
1

"LIFT - oFFN

Save this program as L1B23B.ADA.

5. Follow steps 2 and 3 above.

6. Power down computer, and clean Up area.

-130-

133

Loop and Reverse Loop
**********************--;

Author's Name : TEACHER GUIDE ;
Assignment Number : LAB # /I.RB

Program Executive
Below is a solution for Lab # II.RB. This solution may
be used by the instructor as a guide for helping
students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;

procedure For Sum is
/, Limit, gum : NATURAL;
package NatIO is new INTEGER_I0(NATURAL);
use NatIO;

begin
put("Enter a Positive Integer to serve as the limit of a

summation: ");
get(Limit);
NEW LINE; NEW LINE;
Surti:= 0;
for I in 1 .. Limit loop

Sum := Sum + I;
en4 loop;

I

put "The Summation of all Integers from 1 to ");
put Limit, Width => 1);
put " is: ");
put Sum, Width => 1);
NEW LINE;

end FOE Sum;

with TEXT_IO; use TIDET_IO;
procedure CountDown is

I : NATURAL;
package Nat/0 is new INTEGER_I0(NATURAL
use NatIO;

begin
put_line("Countdown...");
NEW LINE;
forI in reverse 1 .. 10 loop

put(I, Width => 3);
put_line(" ...");
delay(1.0);

end loop;
put line(" LIFT-OFF");

end CoUntDown;

);

-131-

1.39

LAB II.RC

LABO 1XMMR31.=PERI

UNIT:

I/I. LAB NUMBER=

LAB TI

Fundamentals of Ada Programming

he While. Loop Coptrol Structure

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create and use a simple Ada procedure which uses a
While..Loop structure.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with HOn-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Create a procedure which uses a while loop to
input an undetermined number of student grades.
The grades can have a value between 1 and 100
(range 1..100). Input these grades from the
keyboard. The loop is terminated when a value
outside the grade range is given. Finally, the
procedure outputs to the screen the average of the
grades entered. Save this program as LAB24.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a c..opy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

-132-

140

The While..Loop Control Structure

Author's Name : TEACHER GUIDE ;
Assignment Number : LAB # II.RC ;

Program Executive
Below is a solution for Lab # II.RC. This solution may
be used bythe instructor as a guide for helping
students complete the laboratory assignment.

with TEXT IO; use TEXT IO;
procedureAverage Gradig is

Grade, Sum, Num Grades : INTEGER;
Avg : FLOAT;
package IntegerIO is new INTEGER_I0(INTEGER);
use IntegerIO;
package RealIO is new FLOAT_I0(FLOAT);

begln
Sum := 0;
Num Grades := 0;
put:line("Please NOTE: All Test Scores are to be in
the range 1 .-. 100.1;
put line("Enter a value outside that range
to terminate.");
NEW LINE; NEW LINE;
putT "Please Miter First Test Score: I,);
get Grade);
NEW LINE;
while (Grade in 1 .. 100) loop

Num Grades := Num_Grades + 1;
Sum := Sum + Grade;
put("Please Enter Next Test Score (negative or > 100
to stop): ");
get(Grade);
NEW LINE;

end lap;
NEW LINE; NEW L/NE;
if T Num_;Gradeg > 0) then

Avg := FLOAT (Sum) / FLOAT (Num_Grades);
put "Average of ");

I

put Num_prades, Width => 1);
put " grades is: ");
Rea IO.put(Avg, Aft => 2, Exp => 0);
NEW LINE;

else
put_line("There is no Average because No Grades were
Entered!'");

end if;
end Average_Grades;

-133-

141

ILP II.S

INFORMATION LESSON PLAN

I. BLOCK II "Fundamentals of Ada Programming"

I. UNIT: S

III. LESSON TITLE: "Style"

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Understand how a program's style makes the
program more understandable.

2. Choose appropriate names for types and objects.

3. Choose appropriate names for packages.

4. Choose appropriate names for procedures and
functions.

5. Understand the importance of indentation, and be
able to indent the logical levels of a program.

6. Know when and when not to place a cr/lf in a
program.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block II, Lesson 4, Topics 1, 2, 5-10

a. Precision in naming.
b. Simple objects and types.
c. Packages.
d. Other program units.
e. Logical indentation.
f. Declaration/assignment alignment.
g. Conditional blocks.
h. Line spacing.

-134-

142

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

VII. PRESENTATION

A. Introduction

1. Describe how hard it would be to read a book
or text that just ran together/ without any
chapters, table of contents, etc. and compare
this to a program without any style.

B. Instructional Topics and Key Points

L__
TOPIC

1. Naming

KEY POINT

2. Objects and Types

3. Naming Packages

la. Names should be descriptive
enough to allow another
programmer to understand what
the program is doing.

lb. All lexical units must fit
onto I line. (Block II,
Lesson 2/ Toplc 2 for lexical
information).

lc. Again, Ada is non-case
sensitive. It makes no
difference to compiler
whether names are in
upper or lower case letters,
or a combination of both.
(Refer to mil-spec 1815a for
required gov't style; also
AETECH's "Integrada" for
"Pretty Print").

2a. Object or "box" must be
declared to be of a certain
type; box can only hold its
own type of things.

2b. Objects and object-types
should be named using noun
names. Type names should
contain the word "type" at
the end of their new name.

3a. A package should have a name
that conveys to the user
what the package provides,
thus naming of a package may
require additional thought
so that the user will know
what tools are available
within package.

-135-

143

B. Instructional Topics and Key Points

TOPIC KEY POINT

4. Naming procedures
and functions

5. Program Indentation

6. Line Spacing

4a. Procedures perform some
action; therefore, use
imperative verb phrases when
naming them, that represent
same action.

4b. Functions return a value;
therefore, use a noun when
naming them that represents
the value.

5a. Align a program so that it
becomes more readable and
understanddble.

5b. Min programming blocks
(procedure, begin, end, etc)
should stand out.

5c. If structures, case
structures(loops, etc
should be Indented to stand
out. This will not only
create more readable code,
but also makes debugging the
program easier.

5d. Align colons, is, variables,
etc. for better readability.

6a. Use line spaces wherever it
makes a program more
readable. Don't put line
spaces in between same kinds
of declarations.

Advanced Ada Topics

145

ILP 1II.A
INFORMATION LESSON PLAN

BLOCK: "Advanced Ada Topics

III ISSON TITLE ITKRElittratICI

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able tr.:

1. Define attribute.

2. Use the syntax for expressing an attribute.

3. Be able to identify and use the following
attributes:

"First
'Last
'Succ
'Pred
'Pos
'Digits
'Small
'Large

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block III
AETECH "Ada Training Envlronment" or "IntegrAda"
with "On-Line Trainlng and Reference Module".

Read & take notes on the following sections:

Block III, Lesson 2, Topics 9-10

a. Using attributes.
b. Scalar attributes.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

Skansholm, Ada From the Beginning, Addison- Wesley,
1988.

-137-

146

VII. PRESENTATION

A. Introduction

1. Explain how attributes nay be able to help a
program become more readable and
understandable. Enumerate days of week and
show attributes of list.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Attributes

2. Integer Attributes

3. Float Attributes

4. Enumeration Attributes

5. Character Attributes

la. Definition - because scalar
types are ordered sets of
elements, attributes
(relationships within list)
may be able to be defined.
An attribute is a
characteristic of a value in
a set.

lb. Syntax is to use an
apostrophe, then (if
required) other data in
parenthesis.

2a A'First yeilds the lower
bound of A for a scalar.

A'Last - yeilds upper bound
of A for a scalar.

3a. 'Digits - Number of
significant digits.
°Small - smallest number that
can be stored.
'Large - largest number that
can be stored.

4a. 'First - first item in
enumerated list.
'Last - last item in
enumerated list.
'Prec(Item) - returns
predecessor of ITEM in list.
'Succ(Item) - returns
successor of ITEM in list.

5a. 'Pos(Char) - gives position
number of Char in ASCII
table.
'Val(NUM) - gives char. in
Num position within ASCII
table.

-138-

147

ILP 111.3

INFORMATION LESSON PLAN

I. BLOCK III - Advanced Ada Topics"

II. UNIT

III. LESSON TITLE: re Attributes"

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify what would be returned by the following
attributes used with their appropriate types:

'Val(X) 'Length
°Range 'Value(%)
'Aft 'bulge(%)
'Fore qiidth
'Delta

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block V
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block V, Lesson 4, Topics 1-4, 6.

a. Notation and use.
b. Discrete types.
c. Integers.
d. Arrays.
e. Floating/Fixed point.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

VII. PRESENTATION

A. Introduction

1. Discuss how using attributes can help in the
describing of items, and make the finding/
retrieving of items easier.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. List of Attributes la. 91MM -returns value of
data at position X.

lb. gralue(E) - returns type
value of X.

lc. 'Image(X) - returns string
value of X. Returns string
decimal value for integer X.

ld. 'Width - returns the longest
value of X.

le. 'Length - returns the number
of items in list.

lf. 'Range - returns the range of
the list from 'first..11ast.

lg. 'Aft - returns the number of
digits after decimal point.

lh. 'Fore - returns the number of
digits before the decimal
point (includes -sign).
'Delta - returns declared
delta.

1. 'Digits - returns the
declared digits.

-140-

149

ILP
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define record.

2. Declare a record type.

3. Declare objects of type record.

4. Assign components of a declared object of type
record using dot notation, and either positional
association, or named association.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II & III
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block II, Lesson 4, Topic 4.

a. Records

Block III, Lesson 4, Topics 1-3,

a. Record types.
b. Object declaration.
c. Selected component notation.
d. Aggregates.
e. Composite types.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Train2ng and Reference Module".

Skansholm, Ikda from the Beginning, Addison-Wesley,
1988, pg. 320.

-141-

150

VII. PRESENTATION

A. tntroduction

1. Describe how a person's address is made up of
different data types, and how records could be
used to describe an address.

S. Instructional Topics and Key Points

TOPIC I KEY POINT

Record Definition

2. Record Declaration

3. Declaring objects of
type Record

4. Component Assignment

la. Group of possible
heterogeneous (not
of the same type) itens.

lb. Records usually consists of
components of different types
which may be scalars, arrays,
tasks, or other records.

2a. type is record
<object declarations>

end record;
2b. Indent for readability.
2c. end record has ;

3a. Done as the declaration of
other objects is done; only
must came after the record
type has been declared.

4a. May be performed several
ways:
a. Dot notation -

object.component_name
followed by :=.

b. positional association
c. named association (must

readable).

-142-

151

LAB III.0
LABORATORY EXPERIMW

IV. LAB TITLE: "Records"

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create and use a main Ada procedure which utilizes
a record construct.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Create the following record types:

type Name_type is record
L Name: String(1..20);
F-Name: String(1..20);
MI : Character;

end record;

type St Type is record
Name:-Name_type;
Age : Integer;
GRA : Float;

end record;

Declare 3 objects of type St Type. Have the user
enter the data for 3 students. Output the 3
students names, age, and GPA of each student.
Calculate the average age, and average GPA of the
three students and output this information.

Save this program as LAB25.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

-143-

152

..* Records *...

-- Authorss Name : TEACHER GUIDE ;
-- Assignment Number : LAB # III.0 ;

Program Executive
-- Below is a solution for Lab # III.C. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT 10; use TEXT_IO;
procedure-Students is

type Name_Type is
record
L Name : STRING(1..20);
F-Name STRING(1..20);
MY : CHARACTER;

end record;

type St_Type is
record

Name : Name Type;
Age s INTECER;
GPA : FLOAT;

end record;

St 1, St 2, St 3 St Type;
Av4 Age,-I : INTEGERf-
Avg_GPA : FLOAT;

package IntegerIO is new INTEGER_/0(INTEGER);
use IntegerIO;

package FloatIO is new FLOAT_I0(FLOAT);
use FloatIO;

procedure get_data(Student : out St_Type) is
begin

put(" Last Name: ======> ");
I := 0;
while (not End of Line) loop

I := I + 1;
get(Student.Name.L_Name(I));

end loop;
Student.Name.L Name(I + 1..20) := (1 + 1..20 => *

SKIP LINE;
putr" First Name: =====> ");
I := 0;

while (not End of Line) loop

get(Student.Name.F_Name(I));
end loop;
Student.Name.F_Name(I + 1..20) := (I + 1..20 => r

);

-144-

153

ARPm.11.

NEW LINE;
putT " Middle Initial: => ");
get(Student.Name.MI);
NEW LINE;
putT " Age: ======
get Student.Age);

======> H);

NEW LINE;
putT " GpA: ============>
get Student.GRA);

");

NEW LINE; NEILLINE; SKIP_LINE;
end grat data;
proceduie print_data(Student ; in St_Type) is
begin

put Student.Name.L_Name);

I

put Student.Name.F Name);
put Student.Name.Mi);
put Student.Age, Width => 9);
put Student.GPA, Fore => 3, Aft => 2, Exp => 0);
NEW LINE;

end pant_data;

begin -- procedure Students
put line("Please enter the following information for

StudenE #1 0);
get_data(St 1);
put line("PIease enter the following information for

Student. #2 s");
get_data(St 2);
put line("Please enter the following information for

StudenE #3 :");
get data(St 3);
NEW-LINE;
put-line("

Data: -5.);
put_linei " Name

Summary of Student

put line Last First
Age- GRA");

print data St 3);

);
print...data St_2);

NEW IINE; NEWLLINE;
Avg-Age := (St 1.Age + St 2.Age +
put/ "The Avert Age of tEe Three
put Avgjige, W dth => 1);
NEW LINE; NEW LINE;
Avg-GPA := (SE 1.GPA + St 2.GRA +
putt "The Average GRA of tEe Three
put(Avg GRA, Aft => 2, Exp => 0);
NEW LINE.).

end StUdents;

St 3.Age
StUdents

St 3.GRA
Stridents

"
Initi);al

) / 3;
Is: ");

) / 3.0;
is: ");

ILP III.D
INFOFMATION Isom PLAN

IV. LESSON OBJECTrVES: At the completion of this lesson,
the student should be able to:

1. Define array.

2. Identify how to index an array.

3. Define unconstrained array, and identify the
syntax for an unconstrained array.

4. Describe multidimensional arrays, and list an
example of their use.

5. Assign components to a declared array using
named and positional association.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II & III
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block II, Lesson 4, Topics 3

a. Arrays

Block III, Lesson 3, Topics 1-11

a. Simple arrays.
b. Indices.
c. Unconstrained arrays.
d. Multidimensional arrays.
e. Operations with components.
f. Assignments.
g. Aggregates.
h. Positional association.
i. Named association.
j. Aggregate Ranges.
k. Initialization.

-146-

155

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

P. Texel, Introductory Ada, Wadsworth Publishing,
1986, pp. 198-199.

VII. PRESENTATION

A. Introduction

1. Compare an egg box with a regular box, in that
an egg box has several (12) different areas
which store items of the same type (eggs). Then
introduce arrays, and compare them to the egg
box.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Array Definition

2. Indexing Arrays

3. Unconstrained Arrays

4. Multidimensional
Arrays

la. Group of homogeneous (of the
same type) objects.

lb. Two types of arrays;
constrained and
unconstrained.
constrgammg - known
boundaries at time of type
declaration.
unconstraine4 - boundaries
are not known at time of type
declaration.

2a. Definition - indexing is
method of labeling each
element in an array. Any
discrete type may be used to
index an array. Done inside
parentheses.

3a. Uses < > syntax tc, inform the
compiler that bounds are not
known at this time.

4a. Arrays can have as many
dimensions as required.
Helps to better identify
what's being programmed,
leading to better under-
standability and read-
ability.

B. Instructional Topics and Key Points

TOPIC KEY POINT

5. Assigning Array
Components

Sa. May be done several ways:
1. By index number
2. By slice (a range of

indices).
3. By positional association

(the position of the
assignment items represent
their assignment to
array).

4. By named association (list
name of array component,
followed by => to the
assignment component.

5. By a combination of above.

-148-

157

LAB III.D
LABORATORY EXERCISE

IV. LAB TITLE: "Arrays"

V. STUDENT OBJECTIVES: At the completion of this
laboratory exercise, the student should be able to:

1. Create and use array type objects in an Ada
main procedure.

VI. REQUIRED BATERIALS

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Mtdule".

3. Student Data Disk.

VII. PROCEDURE

1. Write a procedure which declares two arrays with
indices ranging from 1 to 10. Using a "for" loop,
assign the components of the first array with the
consecutive even numbers from 2 to 20. Using a
simple loop, assign the components of the second
array with the consecutive odd numbers from 1 to
19. Finally, using a "while" loop, output the
following table of values:

INDEX FIRST SECOND FIRST-I-SECOND FIRST-SECOND

1 2 1 3 1
2 4 3 7 1
3 6 5 11 1

etc.
10 20 19 39 1

Save your program as LAB26.ADA.

2. Compile, bind, and execute the program.

3. Print out a copy of your source code and output to
be turned in to your Instructor.

4. Power down computer, and clean work up area.

-149-

158

--* Arrays

-- Author's Name : TEACHER GUIDE ;
-- Assignment Number : LAB # III.D ;

Program Executive
Below is a solution for Lab # M.D. This solution may

- - be used by the instructor as a guide for helping
- - students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;

procedure Try Arrays is

subtype Positions is POSITIVE range 1 .. 10;
subtype Values is POSITIVE range 1 . 20;

Even Array,
Odd Array : array (Positions) of Values;

I : POSITIVE;

package PosIO is new INTEGER 10(POSITIVE);
use PosIO;

begin
for I in Positions loop

Even_Array(I) := I * 2;
end loop;

-- The following loop could easily be incorporated into the
-- above loop
-- (for example, by adding the statement
-- Odd Array(I) := Even Array(I) 1;
- - immediately before the end loop;). The following
- - adheres to the Laboratory Exercise instructions.

I := 1;
loop
Odd Array() := I * 2 - 1;
exit when I = 10;

:= I + 1;
end loop;

put_line("INDEX FIRST SECOND FIRST + SECOND
FIRST - SECOND");

NEW_LINE;

-150-

159

-- The following loop could also be incorporated into the
-- first loop above.

I := 1;
while (<= 10) loop

put(If Width => 3)

put(Even_Array(I)

put(Odd_Array(I),
put(Ever:Array(I)
put(Even_Array(I)
NEW_LINE;

:= I + 1;
end loop;

end TryArrays;

f Width => 10);
Width => 11);
+ Odd_Array(I)/ Width => 14);
- Odd_Array(I)/ Width => 19);

-151-

160

ILP III.E
INFORMATION LESSOR PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Discuss the importance of handling exceptions.

2. Identify Ada's two types of exception type
objects.

3. List and provide a brief description of the
following predefined exception type objects:

Constriant Error
Numeric ErFor
Storage-Error
Program_Error
Tasking_Error

Status Error End Error
Mode riror Datil Error
Name-Error Layolit Error
Use Error
Device_Error

4. List the sequence of events which take
during the handling of an exception.

5 Provide the necessary Ada statements to
raise, and handle exceptions.

6. Define propagation, and understand the
quences of using handlers.

place

declare,

conse-

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assi/nment - Block V
AETECH " da Training Environment" or "IntegrAda"
with "On-Line Trainlng and Reference Module".

Read & take notes on the following sections:

Block V, Lesson 1, Topics 1-6

a. Exception conditions.
b. Predefined.
c. User defined.
d. Handling exceptions.
e. Propagation.
f. Multiple exceptions.

-152-

161

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

Skansholm, Ada from the Beginning, Addison-Wesley,
1988, pp. 431-445.

VII. PRESENTATION

A. Introduction

1. Discuss how even the best programs can go
haywire, and how even the most thought out
program needs to have a mechanism to handle
unforeseen conditions.

B. Instructional Topics and Key Points

TOPIC

1. Exception Handlers

KEY POINT

la. Definition - An Ada structure
which allows for the handling
(correction) of unexpected or
unforeseen circumstances, so
that a program can take the
appropriate action(s).

lb. Exception Declarations -
Declares a name for an
exception. Names are used in
a) raise statements.
b) exception handler.
c) renaming declarations.

lc. Name 1 [1 Name 2...]:
exception; (can use multiple
names).

ld. The response to exceptions is
specified by a handler. The
handler can be coded in a
construct that is either a
block statement, or the body
of a subprogram, package,
task unit, or generic unit.
Such a construct is called
a "frame".

le. Handlers handle exceptions
raised in their frames.

lf. Raise statement - raises
an exception.
raise (exception_name);

lg. Nameless raising can occur
only in a handler, and is
used to re-raise the chosen
exception of the handler and
propagate it, even though it
was handled.

-153-

162

B. Instructional Topics and Key Points

TOPIC

2. Predefined Exceptions

2. Predefined Exceptions
(continued)

KEY POINT

2a. Those exceptions ihat can be
propagated by the basic
operations and the predefined
operators. Predefined
exceptions are included on
all Ada implementations.

Constraint Error - occurs
when an atiempt to violate a
range constraint has been
made, or to access an unknown
component of a composite
type.

Numeric Error - occurs if an
attempti-is usde to perform
an impossible numeric
operation (i.e. divide by 0).

Storage Error - occurs if
memory i't3 exhausted.

Program Error- occurs upon
an attempt to call a subpro-
gram or activate a task, or
elaborate a generic
instantiation, when the body
of the unit has not been
elaborated.

Status_Error - Occurs if an
attempt is made to read from
or write to a file that is
not open. Also occurs if an
attempt is made to open an
already opened file.

Node_Error - Occurs if an
attempt is made to read from
a file which has been opened
for writing to, or attempting
to write to a file which has
been opened to read from.

Name.Error - Occurs if an
attempt to open a file with
the wrong external file_name.

-154-

163

B. Instructional Topics and Key Points

TOPIC KEY POINT

2. Predefined Exceptions
(continued)

3. User Defined
Exceptions

4. Propagatior of
Exceptions

Use_Error - Occurs if an
attempt has been made to open
a file fro an illegal use
(open a LPTI: file for
reading from)

Device Error - Occurs during
a failure of an I/0 device.

End Error - Occurs if an
attempt is made to read
something from a file and an
EOF has been reached.

Data Error - Occurs when an
item is read in from a file
and is not of the correct
type.

Layout-Error - Occurs if an
attempt is made to reference
a line or column number which
is beyond present boundaries.

3a. Are exceptions whose names
are given in exception
declaration statements.
Those names can only be used
in raise statement, renaming
statements, and exception
handlers.

4a. Two ways to propagate an
exceptions
a: By not handling it in

the frame it occurred in.
bs By using a raise statement

to handle it.

4a1. When an exception is raised,
normal program execution is
abandoned, and control is
transferred to an exception
handler.

4a2. The selection of the handler
depends on whether the
exception is raised during
execution of the program
statements, or during
elaboration of the
declarations.

B. Instructional Topics and Key Points

TOPIC KEY POINT

Propagation of
Exceptions
(continued)

4a3. During execution of
statements: Frame has a
'handler-control passed to
handler; after a successful
handling, the frame doesn't
have a handler-exception
propagated.

4a4. If in a subprogram body -
raised at call If in a
block-raised imMediately
after block; If in a
package-raised at end of
package frame; If in a task-
task becomes complete.

4a5. If an exception occurs
during execution of an
exception handler, the
execution of the handler is
abandoned, and the above
rules are followed.

4b. Exceptions should be
placed at lowest program
level (frames)) as possible.
Each frame should handle
its own unforeseen condi-
tions.

4b1. During elaboration of
declarations; if an
exception is raised, then
it will be propogated. If
the exception was raised
in a subprogram body-raised
at call-abandons main;
Raised in a block-raised at
end of frame; Raised in a
package body-raised at end
of frame; Raised during a
task-task completes and
Tasking Error is raised.

-156-

165

LAB III.E

IABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able tos

1. Create and use exception handlers inside
subprogram units.

VI. REQUIRED HATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Modify the MATH.PKG created in Laboratory
Experiment 16 and 17 by providing exception
handlers within the package. When the driver
programs prompts the user to input integer values,
either for FACTORIAL, or AREA OF_SQUARE, the
exception handler should be ale to handle
erroneous (such as CHARACTER) input data, and
prompt the user for reentry. Save your new
improved package as LAB27.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Tower down computer, and clean up area.

..* Exceptions
********************;

-- Author's Name : TEACHER GUIDE ;
-- Assignment Number : LAB # III.E ;

Program Executive
-- Below is a solution for Lab # III.E. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT 10, MathPkg;
use TEXT MI MathPkg;
procedur5 Triangles is

Sidel, Side2, Side3 : POSITIVE;
Area : FLOAT;
Valid : Boolean;
package PositiveI0 is new INTEGER I0(POSITIVE);
use PositiveIO;
package FloatIO is new FLOAT_I0(FLOAT);
use FloatIO;

begin
put...line("This program will calculate the area of a
given triangle.");
put_line("Please enter INTEGER values when lengths are
requested.");
Valid := FALSE;
while (not Valid) loop
loop
begin -- block
NEW LINE;
putT "Please enter length of side one: ");
get(Sidel);
NEW LINE;
exiE;
exception

when Data_Error =>
put_line("All Lengths must be Positive
Integersil");
SKIP LINE;

when Offiers =>
put_line("Miscellaneous Error!!"
raise; -- propagate

end; -- block
end loop;
SKIP_LINE;
loop
begin -- block
NEW LINE;
put"("Please enter length of side two: ");

get(Side2);
NEW_LINE;
exit;
exception

when Data_Error =>
put_line("All Lengths must be Positive
Integersil");
SKIP_LINE;

when Others =>
put...line("Miscellaneous Errorll");
raise; -- propagate

end; -- block
end loop;
SKIP_LINE;
loop
begin -- block
NEW_LINE;
put("Please enter length of side three: ");
get(Side3);
NEW LINE;
exit;
exception

when Data_Error =>
put_line("All Lengths must be Positive
Integersli");
SKIP LINE;

when Others =>
put_line("Miscellaneous Errorll");
raise; -- propagate

end; -- block
end loop;
NEW LINE; SKIP_LINE;

if (Sidel + Side2 > Side3) and (Side2 + Side3 > Sidel)
and (Sidel + Side3 > Side2) then

Valid := TRUE;
Calc_Tri_Area(Sidel, Side2/ Side3, Area);

else
put_line("Invalid Sides! Try Again...");

end if;
end loop;
put("The Area of the given Triangle is: ");
put(Area, Aft => 2, Exp => 0);
put_line(" Square Feet.");
NEW LINE;

end Triangles;

ILP III.F
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify the uses of private and limited private
types.

2. Discuss the limitations of private and limited
private types.

3. Identify where private and limited private types
may be declared.

4. List the three steps necessary to declare a
private or limited private type.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block V
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block Vi Lesson 2/ Topics 1-6.

a. Limiting operations.
b. Declaration.
c. Private types.
d. Limited private types.
e. Hiding data structures.
f. Information hiding.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

Skansholm, Ada from the Beainning, Addison-Wesley,
1988, pp. 372-376.

-160-

169

VII. PRESENTATION

A. Introduction

1. Discuss how easy it is for someone to use a
package in a manner which the programmer
didn't intend the package to be used. Discuss
why a programmer may want to limit the
availability of certain operations that the
user could perform; then introduce private and
limited private types.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Private and Limited
Private Types

2. Private and Limited
Private Type
Declarations.

la. Are types for which the set
of possible values is well
defined, but not directly
available to the user. This
prevents user from making use
of the internal structure of
the type. Also, encapsulates
data, where only those .

operations specified in the
package may be performed on
those type of objects.

2a. Are only allowed as a dec-
larative item at the visible
part of a package, or as the
generic parameter declaration
in a generic formal part.

2b. Limit the operations that may
be performed on objects de-
clared as private or limited
private.

2c. The type declaration is in
the visible part of a
package; serves to limit the
uses of objects of type
private by outside program
units.

2d. A type declaration must have
a corresponding declaration
of a type with the same
identifier. It must appear
as a declarative item of the
private part of a package.

2e. Type declaration must not be
an unconstrained type.

2f. Type name cannot appear
withiu simple expressions,
or in occurrences of derived
types.

2g. "Private Type Declaration"
creates the type
corresponding; "Full Type
Declaration" specifies the
definition of the type.

-161-

B. Instructional Topics and Key Points

TOPIC KEY POINT

3. Operations of Private
and Limited Private
Types.

4. Declaring Private
and Limited Private
Types

3a. Operations of a Private Type
(Outside Package) - allows
assignment, membership tests,
selected components, qualifi-
cation and explicit convers-
ion, attributes (type and
object), tests for equality
or inequality. (Inside
Package) - operations
implicitly declared by the
full type declaration.

3b. Operations of a limited
Private Type - no assignment,
no tests fOr equality or
inequality; no initialization
of objects, no use as a
generic formal minr
parameter, no aggegi...tes, and
no concatenation. Task type
is a limited private type.

4a. Three steps:
a. Declare a type to be

private or limited
private.

b. Identify exportable
components for type.

c. Complete the corresponding
full type declaration in
the private part of the
package.

-162-

171

ILP III.G

INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define generic.

2. Define instantiation.

3. Instantiate a predefined generic unit.

4. List the advantages of generic type units.

5. Use generic types in a program.

V. LEARNINIG ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block V
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block V, Lesson 3, Topics 1-9

a. Description.
b. Generic package definition.
C. Instantiation.
d. Instantiation of predefined generic packages.
e. Generic subprograms.
f. Subprogram instantiation.
g. Generic parameters.
h. Passing parameters to generic packages.
i. Generics and productivity.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

-163-

172

VII. PRESENTATION

A. Introduction

1. Discuss a box of generic corn flakes and
describe how the box could contain Kellogg's
Corn Flakes, Post Corn Flakes, etc. Then use
this idea to introduce generics in
programming (generic swap).

S. Instructional Topics and Key Points

TOPIC

1. Generic

KEY POINT

2. Instantiation

la. Definition - called a tem-
plate, which is parameterized
or not, that allow packages
and subprograms to be coded
which w.l,l work for multiple
types. User must provide type
to generic when
instantiating.

lb. Allows for units to be
reused! which supports
reusabxlity, a software
engineering goal.

lc. Two types of generic units,
subprograms and packages.

ld. Generic declarations, along
with their formal parameters,
must be declared before they
can be used.

2a. Definition - to create a copy
of a generic package which Is
usable (to make a generic
package available for use) by
passing the required types
and parameters to the package
or subprogram and naming a
copy it. An instance of a
generic package becomes a
package. An instance of a
generic subprogram becomes a
subprogram.

2b. Type in generic is conven-
tionally "element". New type
is passed to generic/ takes
the place of element type.

2c. May use either positional
or named association when
passing parameters to a
generic.

2d. Rules for Instantiation:
1. Explicit actual for every

formal unless a default.
2. Can use positional or

named.
3. Expressions can match

parameters of mode in.

-164-

173

B. Instructional Topics and Key Points

3. Predefined Generic
Package

4. Generic Naming

5. Generic Formal Objects

6. Generic Formal Types

Generic Formal
Subprograms

3a. Integer IO
Float I5
Enundiation_IO
Direct_IO
Sequential_XO

4a. Outside the specifications
and body of a generic unit,
the name of the unit denotes
the generic unit.

4b. Inside the declarative region
of a generic subprogram, the
name denotes the subprogram
obtained by the current
instantiation of the generic
unit.

4c. Inside the declarative region
of a package, the name
denotes an instantiated
package.

4d. Inside names of subprograms
and packages can be over-
loaded, and can be recur-
sively called.

5a. Have a mode that is either
in or in out, with in as
default.

5b. If declaration ends with an
expression, it is the default
expression (for "in").

6a. Type declarations which allow
an instantiation to select
its types. Available types
are Private, Array, Access,
Discrete, Integer, Float,
Fixed.

7a. Includes a declaration with
2 default forma: 4> or
(subprogram or entry(task)).

7b. Generic Bodies - are a
template for the corres-
ponding packages or
subprogram bodies. Every
generic subprogram must have
a body. Generic bodies
appear the same as bodies
for non-generic units.

LAB III.G

LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Write a simple generic procedure utilizing a
private type.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Write a generic procedure which takes two objects
(Objectl and Object2), and swaps their contents.
Write a driver which instantiates the generic swap
procedure for integer and character types. The
driver should prompt the user to input an integer
into Objectl, input an integer into Object2, swap
their contents, and display the swapped results.
The same idea should be followed for the swapping
of two characters. Save this program as LAB2S.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

..******************--:
Generics

-- Author's Name : TEACHER GUIDE ;
-- Assignment Number : LAB # III.G ;

Program Executive
-- Below is a solution ft= Lab # M.G. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT_IO; use TEXT_10;

procedure Try Generics is

Intl, Int2 : INTEGER;
Charl, Char2 : CHARACTER;

generic
type Swap Type is private;

procedure gimp (Oblectl, Object2 : in out Swap_Type);

procedure Swap (Objectl, Object2 : in out Swap_Type) is
Ttmp Swap_Type := Objectl;

begin
Objectl := Object2;
Ob3ect2 := Temp;

end Swap;

procedure Swap_Ints is new Swap(INTEGER);

procedure Swap_Chars is new Swap(CHARACTER);

package IntegerIO is new INTEGER_I0(INTEGER);
use IntegerIO;

begin -- Try Generics
put("Please enter an Integer value: ");
get(Intl);
NEW LINE;
put/ "Naw enter a Second Integer value: ");
et Int2);

NEW LINE; NEW LINE;
Swag Ints(Int17 Int2);
put Tine("After Swapping Values:

i;putt " First Integer is: ===> ;

put(Intl, Width => 1);
NEW LINE;
putt "And Second Integer is: ===> ");
ut(Int21 Width => 1);

NEW LINE; NEW LINE; NEW LINE;
putt "Please efter one ChNracter: ");
get(Charl);

-167-

176

NEW LINE;
put("Now enter a Second Character: ");
get(Char2);
NEW LINE; NEW LINE;
Swap.Chars(Charle Char2);
put.line("After Swapping Values:);
put(" First Character is: ===> ");
put(Charl);
NEW LINE;
put("And Second Character is: ===> ");
put(Char2);
NEW LINE;

end Try Generics;

-168-
177

ILP III.H
_QINFANATMICLAKIIO_MAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define sequential file.

2. Create a sequential file.

3. Open, close, read, and write sequential files and
their associated information.

4. Identify the following file functions:

Node Name Form
Is Open End Of File

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block VI
AETECH ",01,da Training Environment" or "IntegrAda"
wlth "On-Line Trainlng and Reference Module".

Read & take notes on the following sections:

Block VI, Lesson 2, Topics 1-8, 10

a. Packages.
b. Nontextual data.
c. File objects
d. File modes.
e. Creating and opening files.
f. Closing, resetting, and deleting files.
g. Instantiation.
h. Sequential_IO reading and writing.
i. Useful file functions.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Trainlng and Reference Module".

-169-

17S

Skansholm, Ada Prom The Bectinning, Addison-Wesley,
1988, pp. 492-498.

VII. PRESENTATION

A. Introduction

1. Choose a file from a convenient filing
cabinet, and discuss this file why it is a
file 1 and what information a file can
contain; then introduce sequential files.

B. Instructional Topics and Key Points

ITOPIC KEY POINT

1. Sequential File

2. Saquential Plle
Operations
Note (P) = procedure

(F) 2 function

la. Definition - A group of
related information whose
access is somewhat limited
by having to read, or write
information in a sequential
(from first to last) manner.
The file is viewed as a
sequence of values that are
transferred in the order of
their appearance, as produced
by the program or by the
environment.

2a, (P) Create - Gives a name to
operating system storage
device from a previously
declared file object
(My filesPile_type).
Eetiblishes a new external
file with the given name and
form, and associates th*.s
external file with the given
internal name. Assigns the
file object a file mode.
Default mode is Out Pile.

2b. (P)Read - Reads information
from a previously opened
file in sequential order.
Reads an element from a given
file, and Leturns the value of
the element in the item
parameter.

2c. (P)Write -writes information
to a previously created file,
in sequential order. Writes
the value of item to the given
file.

-170-

179

B. Instructional Topics and Key Points

TOPIC REY POINT

2. Sequential Files
Operations
(continued)

3. File Functions

4. instantiation

5. Conventional Naming
Techniques

2d. (P)Close -Closes a previously
opened file. Severs the
association between the given
file and its external file.
The file is left closed.

2e. Reset - Resets file pointer of
a sequential file to the first
element in the file.

2f. (P)Open - Associates the
given file with an existing
external file and sets the
mode of the file. The given
file is left open.

2g. (P)Delete - Deletes the
external file associated with
the given internal name. The
given file is closed, and the
external file ceases to exist.

3a. Mode - returns current mode
of the given file.

3b. Name - Returns a string which
identifies the external file.

3c. IS OPEN - Returns True if the
fire is open, otherwise
returns false.

3d. End of file - Operates on a
fil5 oT mode In File.
Returns True if-no more
elements can be read from
the given file; otherwise,
it returns False.

3e. Form - Identifies the file's
properties (i.e."save for 90
days").

Because Sequential_IO is
a generic package, it must
be instantiated for a given
data type, using parameter
Element Type. (i.e. package
Int IO Ts new Sequential_IO
(Integer):

Use identifiers which are
imperative verbs or nouns.
Imperative verbs name actions,
nouns name values or
conditions. This naming
convention is used in
Sequential_IO, where nouns are
function names, and imperative
verbs are procedure names.

-171-

s

LAB III.H

LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create a sequential file.

2. Instantiate the generic package Sequential_./0.

3. Write information to the created sequential file.

4. Read previously stored information from the
sequential file.

5. Close the sequential file.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module.

3. IntegrAda Environment or Alsys "AdaUser"
Libraries.

3. Student Data Disk.

VII. PROCEDURE

1. Create a sequential file to handle the input and
output of data of the following type:

type PersonDataType is record
Name:String(1..10);
Age :Integer;
Favorite ColorsCOLORS.A_COLOR;

end record;

-172-

151

The sequential file should provide input and
output for the following data:

Name

1. Susie
2. Fred
3. Barney
4. Debbie
5. Sam
6. Andy
7. Amy

Aga Favorite Coiror

23
12
10
24
18
16
18

WHITE
RED
BLUE
MAGENTA
GREEN
YELLOW
BLUE

Create a procedure to write the above data into a
sequential file, from the keyboard. Save this
program as LAB29A.ADA.

2. Create a procedure wbich will read the data from
the sequential file, and display the data to the
screen as shown above. Save this program as
LAB29B.ADA.

3. Compile, debug, bind, and execute

4. Print out a copy of each program,
your executable output to turn in
Instructor.

the programs.

and a copy of
to your

5. Write a procedure to display only the fourth name
from the list above, and that name's age and
favorite color. Save this program as LAB29C.ADA.
Print out a copy of your program, and executable
code to turn in to your Instructor.

6. Power down computer, and clean up area.

-173-

182

--* Sequential Files *.

-- Author's Name : TEACHER GUIDE
- - Assignment Number : LAB # III.H ;

Program Executive
- - Below is a solution for Lab # /II.H. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

wtth TEXT_IO, SEQUENTIAL_IO, Colors;
use TEXT_IO, Colors;

procedure Seq_Write is

type Person_Data is
record
Name : STRING(1 .. 10);
Age : INTEGER;
Favorite_Color Colors.A Color;

end record;

package IntegerIO is new INTEGER_I0(INTEGER);

package ColorIO is new ENUMERATION_I0(Colors.A_Color);
use ColorIO;

package PersonI0 is new SEQUENTIAL_I0(Person_Data);
use PersonIO;

Temp_Name s STRING(1 .. 10)

/ : NATURAL;

Person_File 3 PersonIO.FILE_TYPE;

Person : Person_Data;

begin
create(file => Person_File, name => °People.DAT");

-- uses default (and required) mode value of
OUT_FILE

put("Enter Name (type END to quit): ===> ");
I := 0;
while (not End_of_Line) loop

I := I + 1;
get(Temp_Name(I));

end loop;

-174-

Temp Name(I + 1 .. 10) := (I + 1 .. 10 =>
NEW EINE;
while (Temp_Name 1= "END ") loop

Person.Name := Temp Name;
put("Enter Personqi-Age: =============> ");
IntegerIO.get(Person.Age);
NEW LINE;
putt "Enter Penton's Favorite Color: ==> ");

ColorIO.get(Person.Favorite_Color);

NEW LINE; NEW LINE;
SKIP LINE;

write(file => Person_File, item => Person);

put("Enter Name (type END to quit): ===> ");
I := 0;
while (not End of_pine) loop

get(Temp_Name(I));
end loop;
Temp Name(I + 1 .. 10) := (+ 1 .. 10 =>
NEW EINE;

end lap;

close(file => Person_File);

end Seq_Write;

);

);

with TEXT IO, SEQUENTIAL_IO, Colors;
use TEXT To, Colors;

procedure Seq_Read is

type Person Data is
record
Name : STRING(1 .. 10);
Age z INTEGER;
Favorite Color : Colors.A_Color;

end recordi

package IntegerIO is new INTEGER_IN INTEGER);

package ColorIO is new ENUMERATION_IN Colors.A_Color);
use ColorIO;

package Personal is new SEQUENTIAL_I0(Person_Data);
use PersonIO;

-175-

1S4

Person_File PersonIO.FILE.TYPE;
Person : Person Data;
I : INTEGER;

begin
put.line(" NAME AGE FAVORITE COLOR");
open(file => Person_File, mode => in file, name =>

"People.DAT");
I := 0;
while (not End_Of_File(Person_File)) loop

:= I + 1;
read(file => Person File, item => Person);
IntegerIO.put(I, Width => 1);
put(". ");
put(Person.Name);
IntegerIO.put(Person.Age, Width => 9);
put("
ColorIO.put(Person.Favorite_Color);
NEW LINE;

end 1o5p;

close(file => Person_File);

end Seq_Read;

with TEXT IC), SEQUENTIAL Mr Colors;
use TEXT Yof Colors;
procedure' Seq_Rd_4 is

type Person Data is
record

Name : STRING(1 10);
Age : INTEGER;
Favorite Color : Colors.A Color;

end recordi

package IntegerIO is new INTEGER I0(INTEGER);

package ColorIO is new ENUMERATION_IN Colors.A Color);
use ColorIO;

package PersonI0 is new SEQUENTIAL_10(Person_Data);
use PersonIO;

Person_File PersonIO.FILE_TYPE;
Person : Person Data;
I : POSITIVE;

begin

-176-

1S5

open(file => Person_File, mode => in_file, name =>
"People.DAT");

for I in 1 .. 4 loop
read(file => Person_File, item => Person);

end loop;
NEW LINE;
putt "Fourth Person's Name: ============>
put(Person.Name);
NEW LINE;
put("Fourth Person's Age: =============>
IntegerIO.put(Person.Age, Width => 1);
NEW LINE;
put("Fourth Person's Favorite Color: ==>
ColorIO.put(Person.Favorite_Color);
NEW LINE;

close(file => Person_File);

end Seg_Rd_4;

");

");

");

utwommaTIoN LESSON PLAN

vance Topics"
. .

ILP

LESSON OITLEt `113i.ria:CiAcC6ts Files

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define direct access file.

2. Create a direct access file.

3. Open, close, read, and write direct access files
and their associated information.

4. Identify the file functions Size, Index and
Set_Index which allow a user to directly access a
particular file item.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block VI
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Trainlng and Reference Module".

Read & take notes on the following sections:

Block VI, Lesson 2, Topics 1-7, 9, 10.

a. Packages.
b. Nontextual data.
c. File objects.
d. File modes.
e. Creating and opening files.
f. Closing, resetting, and deleting files.
g. Instantiation.
h. Direct_IO reading and writing.
i. Useful file functions.

VI. SPECIAL RESOURCES:

AETECH %oda Training Environment" and "IntegrAda"
with "On-Line Trainlng and Reference Abdille".

Skansholm, Ada Prop The Beginning. Andison-Wesley,
1988, pp. 513-518.

VII. PRESENTATION

A. Introduction

1. Explain that accessing record 999,999 in a
file containing a million records would take
an enormous amount of time; then introduce
direct access files, which allow a user to go
directly to the required record.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Direct Access Files la. Definition - A file containing
a list of index numbers which
allows users to directly
access the record within the
file by use of its index
number. For direct access,
the file is viewed as a set of
elements occupying consecutive
positions in linear order: a
value can be transferred to
or from an element of the file
at any selected position.

2. Direct File Operations 2a. Open and close same as
sequential files. An open
file has a current mode, which
is a value of one of the
mode types.

2b. Read ahd write use additional
parameter "from" which is
equivalent to index number.

3. File Functions 3a. Mode, Name, From, Is Open,
End_Of File same as Sequential
files:-

3b. Size - Returns number of items
in file (number of index
Cs). Operates on a file of
any mode.

3c. (P)Index - Operates on a file
of any mode, returns the
current index of a given file.

3d. (P)Set Index - Operates on a
file or any mode. Sets the
current index of the given
file to the given value (which
may exceed the current size of
the file).

-179-

iSs

B. Instructional Topics and Key Points

TOPIC KEY POINT

Instantiation 4a. Direct_IO is a generic
package; therefore it must be
instantiated with a given
type, name information, and
given a new name. The
resulting package contains the
declaration of a file type
(called File Type) for sets of
elements (orthe given type)
as well as the operations
applicable to these files
(open, reset, etc.).

-180-

189

LAB 111.1

LABORATORY EXPERIMENT

irect Access Piles"

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create Ada procedures to write and read direct
access files.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Using the data provided in Lab 29, create a
procedure which stores the given data in a direct
access file. Save this program as LAB30A.ADA.

2. Create a procedure which will read the fourth name
from the given file, along with the name's age and
favorite color. Save this program as LAB3OB.ADA.

3. Compile: debug, bind, and execute the programs.

4. Print out a copy of each program, and a copy of
your executable output to turn in to your
Instructor.

5. Power down computer, and clean up area.

-181-

190

..* Direct Access Files *..;

..*****************************..;

-- Author's Name : TIMMER GUIDE ;
-- Aasignment Number : LAB # III.I ;

Program Executive
-- Below is a solution for Lab # III.I. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT IO, DIRECT ID, Colors;
use TEXT TO, Colorsi-

procedure Direct Write is

type Person Data is
recora

Name : STRING(1 .. 10);
Age INTEGER;
Favorite Color : Colors,A Color;

end recordi

package IntegerIO is new INTEGER ID(INTEGER);

package ColorIO is new ENUMERATION_IN ColorsA Color);
use ColorIO;

package PersonI0 is new DIRECT_I0(Person_Data);
use PersonIO;

Temp Name : STRING(1 . 10);
I : NATURAL;

Person_File PersonIO.FILE_TYPE;

Person Person_Data;

begin
create(file => Person_File, mode => INOUT_FILE, name =>

"Persons.DAT");

put("Enter Name (type END to quit): ===> ");
I := 0;
while (not End_of Line) loop

:= I + 1;
get(Temp_Name(I));

end loop;
Temp Name(I + 1 .. 10) := (I + 1 .. 10 =>);
NEW EINE;
whine (Temp_Name 1= "END ") loop

-182-

191

Person.Name := Tempilame;
put("Enter Person's Age: =============> ");
IntegerIO.get(Person.Age);
NEW LINE;
putt "Enter Person's Favorite Color: ==> ");

-- might want to list available colors.
ColorIO.get(Person.Favorite_Color);
NEW LINE; NEW LINE;
Slta LINE;

write(file => Person_File, item => Person);

put("Enter Name (type END to quit)s ===> ");

while (not End_of Line) loop

get(Temp_Name(I));
end loop;
Temp Name(I + 1 . 10) := (I + 1 .. 10 =>
NEW LINE;

end loCip;
close(file => Person_File);

end Direct Write;

);

with TEXT IO, DIRECTIO, Colors;
use TEXT TO, Colors;

procedure Dir_Rd_4 is

type Person Data is
recora

Name s STRING(1 .. 10);
Age s INTEGER;
Favorite Color s Colors.A Color;

end recordi

package IntegerIO is new INTEGER_IN INTEGER);

package ColorIO is new ENUMERATION_IN Colors.A Color);
use ColorIO;

package Person= is new DIRECT_IN Person_Data);
use PersonIO;

Person_File s PersonIO.FILE_TYPE;
Person : Person_Data;

begin
open(file => Person File, mode => in_file, name =>

"Persons.DAT"

-183-

192

read(file => Person_File, item => Person, from => 4);

close(file => Person_File);

NEW_IJINE;
put("Fourth Person's Name: ============>
put(Person.Name);
NEW LINE;
put("Fourth Person's Age: =============>
IntegerIO.put(Person.Age, Width => 1);
NEW_LINE;
put("Fourth Person's Favorite Color: ==>
ColorIO.put(Person.Favorite_Color);
NEW_LINE;

end Dir_ltd_4;

);

-184-

193

ILP 111.3
INFORMATION LESSON PLAN

I. BLOCK III "Advanced. Ada Topics"

II. UNIT: J

III. LESSON TITLE "Introduction o Tasks"

IV. LESSON OBJECTrVES: At the completion of this lesson,
the student should be able to:

1. Define task types and objects.

2. Identify the two parts of a task programming
unit.

3. Declare task types and objects.

4. Understand task compilation.

5. Understand how a task is started.

6. Understand how a task ends.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

CAI Assignment - Block IV
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block IV, Lesson 3, Topics 1-7

a. Tasking in embedded computers.
b. Structure of a task.
c. Task types.
d. Encapsulating tasks.
e. Separato compilation.
f. Starting tasks.
g. Ending a task.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "Ot-Line Training and Reference Module".

-185-

194

VII. PRESENTATION

A. Introduction

1. Describe the cockpit of an airplane with many
computers in it, all working at the same time
to keep the airplane functioning. Describe
the need for these computers to communicate
with one another to ensure that the plane is
operating correctly; then introduce tasks.

B. Instructional Topics and Key Points

TOPIC

1. Task

KEY POINT 1
la. Tasks are program units whose

executions proceed in
parallel; may use different
processors, and would
synchronize their execution
in order to process data.

lb. The properties of a task are
defined in its specification
and body. Specifications are
the interface, and bodies are
the executable statements.

lc. Specifications that begin
wIth the reserved word task
type declare a type of task.
Objects may then be declared
of that type. Specifications
which begin wlth only the
reserved word task declare a
single task object of an
anonymous type.

ld. Tasks may not be compiled
alone; they must be included
in a declarative part of a
structure (i.e. subprogram,
package body, block, etc.).

le. Task specifications and
bodies are Ada compilation
units, and as such, may be
compiled separately from one
another.

-186-

195

B. Instructional Topics and Key Points

TOPIC KEY POINT

2. Running Tasks 2a. If multiple task objects are
declared in the dec arative
region of a program unit,
activation occurs after
passing the reserved word
begin of the udit. If they
are in a package, activation
occurs after the declarative
part of the package body is
elaborated.

2b. Each task depends on at least
one "master". A "master" can
be a task, block, subprogram,
or package. Masters complete
when their end statement is
reached; unless they have
dependent tasks, then they
complete only when no
dependents are left active.

2c. Task types are considered
limited private types; hence,
neither comparison (=,/=) or
assignment 09 are available
for objects of task type.

2d. Tasks are considered frames;
hence, they can have
exception handlers.
Exceptions that occur during
task activation complete the
task and then raise
Tasking Error in the
declarative region they are
being activated in.

-187--

196

LABORATORY EXPERIMENT

"Advanced Ada Topics"

LAE III.J

LAB'NUMBER:

LAB TITLE: 1!..Lntssu*K142.0_1...E.T

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Write a procedure with an internal task which runs
concurrently with the procedure until a <CTRL C>
is pressed.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.

VII. PROCEDURE

1. Write a procedure wbich outputs to the screen
"This is the procedure". Make this procedure an
infinite loop. Include in the procedure a task
which outputs to the screen "This is the task".
Make the task an infinite loop. Program execution
is terminated when <CTRL C> is pressed. Save your
program as LAB31.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable code to turn in to your Instructor.

4. Power down computer, and clean up area.

-188-

197

-.* Introduction to Tasks *--;

-- Author's Name s TEACHER GUIDE ;
-- Assignment Number : LAB # 111.3 ;

Program Executive
-- Below is a solution for Lab # 111.3. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;

procedure Task_Demo is

task Print_Msg;

task body Print_Msg is
begin

loop
put_line("This is the task.");

end loop;
end Print_Msg;

begin
loop

put_line("This is the procedure."
end loop;

end Task_Demo;

-189-

198

ILP III.X
INFORMATION LEggpN PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able tos

1. Describe how tasks communicate.

2. Define rendezvous.

3. Describe how a block of action within a task can
be performed through an accept..do structure.

4. Discuss the use of the select statement.

5. List the two ways a task can end.

6. Define the following task attributes:

'Callable 'Terminated 1Storage_Size

V. LEARNING ACTIVITIES:

I. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block IV
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:

Block IV, Lesson 3, Topics 8-15.

a. Communication in tasks.
b. Rendezvous.
c. Accept and do.
d. The select statement.
e. Receive statement.
f. Termination.
g. Abort versus terminate.
h. Task units.

-190-

1f19

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

VII. PRESENTATION

A. Introduction

1. Discuss the importance of tasks being able to
communicate with one another (cockpit
example), rather than just merely continuing
to execute on their own.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Task Communication

2. Rendezvous

la. Tasks can have entries
(specified in their specifi-
cations). An entry of a task
can be called (by name) by
other units. The called
task executes an accept
statement (in its body) for
the entry, and "accepts" the
call. Synchronization is the
rendezvous between an entry
call and an accept. Since
entries can have parameters
(i.e. data to share)
synchronization provides
the basic means for
communication between tasks.

lb. Entry Calls- execution
begins with evaluation of
name, parameters; then if an
accept statement to the call
has been reached, the call is
received. If the accept
statement has not been
reached, the call is
suspended, and multiple
waiting calls are queued.

2a. Definition - When two tasks
meet together through an
entry and accept. Once
rendezvous is complete, tasks
resume independent operation.

-191-

2o o

B. Instructional Topics and Key points

TOPIC KEY POINT

3. Accept..Do Structure

4. Select Statements

3a. Execution of a delay
statement evaluates the
simple expression, and
suspends execution for
at least the duration
specified by the result of
the expression. The
expression must be of
predefined type Duration
with range 0..86400
seconds (one day).

3b. Predefined package Calendar
provides time resources
(i.e. function Clock, type
wime, etc.).

4a. Used to control task.
Three forms:
1. Selective waits allows

selecting from one or
more alternatives. NUst
have at least one accept
alternative. Can have
only one of the following:
terminate, else, delay.
An alternative is said to
be open if it has no
"when" or if the condition
following the "when" is
true, otherwise it is
closed. If an alternative
is closed and there is no
"else" part, tasks can
wait until an alternative
is selected. An open delay
is selected if no other
open can be selected
before the specified time.
An open terminate can only
be selected if all entries
are ended.

2. Conditional Entry Calls
Issues an entry call, if
a rendezvous is not
immediately available,
cancels the entry call
(does else part).

3. Timed Entry Calls -Issues
an entry call, if a
rendezvous is not started
within the given delay,
the call is cancelled.

-192-

2(1

B. Instructional Topics and Key Points

KEY POINT

5. Task Attributes
(where T is task
object, and E is
entry of task T)

5a. T 'Callcble - Returns true if
task is not terminated.
Returns False if T is
completed, terminated, or
abnormal.

T 'Terminated - Returns Ttue
if task has been called and
has completed; returns False
otherwise.

T 'Storage_Size returns size
of memory allocated for task.

'Count - returns number of
entry calls queued on entry
E.

LAB III.K

LABORATORY EXPERIMENT

I. BLOCK: III

UNIT: K

III LAB NUMBER: 3

"Advanced Ada Topics"

IV. LAB TITLE: "Task Communication"

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Write a procedure in which two tasks communicate
with a main procedure.

V7. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference hodule".

3. Student Data Disk.

VII. PROCEDURE

1. Writs a procedure which declares two tasks. The
procedure shall prompt the user to input either a
1 or a 2. If 1 is input, taskl is communicated
with and outputs to the screen "Task 1
communication complete". If the user enters 21
then task2 is communicated with, and outputs to
the screen "Task 2 communication complete". Any
other input other than 1 or 2 terminates both
tasks, and the procedure. Utilize a case
structure. Save your program as LAB32.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program and executable
code to turn in to your Instructor.

4. Power down computer, and clean up area.

....****************************.
--* Task Communication

-- Author's Name : TEACHER GUIDE ,
- - Assignment Number : LAB # III.K ;

Program Executive
- - Below is a solution for Lab # III.K. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;

procedure Task_Demo_2 is

Response : CHARACTER;
Done : BOOLEAN;

task One is
entry Print;
entry Quit;

end One;

task Two is
entry Write;
entry Leave;

end Two;

task body One is
OKToQuit : BOOLEAN;

begin
OKToQuit := FALSE;
while (NOT OKToQuit) loop

select
accept Print do

put line("Task 1 communication complete. ");
end Print;

or
accept Quit do

OKToQuit := TRUE;
end Quit;

end select;
end loop;

end One;

task body Two is
OKToLeave : BOOLEAN;

begin
OKToLeave := FALSE;
while (NOT OKToLeave) loop

select

accept Write do
put_line("Task 2 communication complete. "

end Write;
or

accept Leave do
OZToLeave := TRUE;

end Leave;
end select;

end loop;
end TWo;

begin
Done :
while
put_
put_
put_
NEW_
put(
get(
NEW

= FALSE;
(NOT Done) loop
line("Enter a 1 to communicate with Task One...");
line("a 2 to communicate with Task TWo...");
line("or anything else to terminate...");
LINE;
"Please enter your choice now ===>);

Response);
LINE; NEW LINE;

case Response is
when '11 => One.Print;
when '2' => Two.Write;
when others =>

One.Quit;
Two.Leave;
Done := TRUE;

end case;

NEW_LINE;
end loop;
end Task_Demo_2;

NEW_LINE;

