DOCUMENT RESUNE

ED 344 030 CE 060 779

TITLE A Secondary/Post-Secondary Curriculum for the ADA
Programning Language.

INSTITUTION Marion County Schools, Fairmont, W. Va.

SPONS AGENCY Office of Vocational and Adult Education (ED),
Washington, DC.

PUB DATE 81

CONTRACT V199200056

NOTE 205p.; For related documents, see CE 060 777-778.

PUB TYPE Guides - Classroom Use - Teaching Guides (For
Teacher) (052)

EDRS PRICE MF01/PC0S Pilus Postage.

DESCRIPTORS Behavioral Objectives; Computer Assisted Instruction;
Computer Science Education; Conmputer Software;
curriculum Guides; Instructional Materials;
sLaboratory Uxperiments; Learning Activities; Lesson
Plans; Postsecondary BEducation; =Programers;
sPrograming; sPrograming Languages; Secondary
Education; Technical Education; Vocational
Education

IDENTIFIERS *Ada (Programing Language)

ABSTRACT

This guide provides materials for a three-block

curriculum to teach the Ada computer programminc language to
secondary and postsecondary veocational students. The curriculum
design and strategy has the following components: lectures,

audiovisual aids, computer-aided instructional training and reference
materials, laboratory experiences, and feedback devices. Block I,
"Ada and the Department of Defense," consists of five units and four
labs. Block II, "Fundamentals of Ada Programming," contains 19 units
and 20 labs. In Block III, "Advanced Ada Topics," there are 11 units
and 8 labs. Laboratory experiments consist of student worksheets and
teacher guides. Each provides some or all of these components: block,
unit, lab number, lab title; student objectives; procedure;
questions; and a list of any required materials. In addition, the
teacher guide provides teacher notes as needed. The information
lesson plan for each unit consists of the following components:
block, unit, and lesson title; lesson objectives; learning
activities; special resource 1ist; presentation (which includes an
introduction and instructional topics and key points); and questions
with answer key. (YLB)

AR AN AR A A RN AN AR R RN LN RSN RN AR AR R AR A NN KRR AARAA RN RN R RN RS AA RS ARNRRER RS

% Reproductions supplied by EDRS are the best that can be made *

* from the coriginal document.]
AR R AR AN R AR A AR R R R AR R R A AR A AR AN AR AR A AN R AR R AR ARRARANRNRNARRARRAARR AR R

A SECONDARY/POST-SECONDARY
CURRICULUM FOR THE ADA®
PROGRAMMING LANGUAGE

ED344030

U.8. DEPANTMENTY OF EDUCATION
Ofice of Educational Resesich and improvement
EDWNCATIONAL RESOURCES INFORMATION

CENTER (ERIC)
Tnis documant has been reproduced 3s
recaived from the person of Organdation
ongingting it
0 Minor changes have bean made 10 improve
reproduction qualfy

& Points of visw ©f OpINIONS SIATAT N IS doCw
mant do not necessarnly rapresant othciat
OER! position or policy

771

Q Deoveloped by the Marlon County Technical Center, Farmington, West Virginia for the
\» Robotics/Automation Technology Program under Federal Cooperative Demonstration
O PR/Award Number V189A00056.

W

|

. . o

i BEST COPY AVAILABLE

The program solutions included in this curriculum have bsen included
for their Instructional value. They have been tested with care, but are
not guaranteed. In many cases, string output statementis to the
monitor have been sliced to two lines for better readabillity, and must
be concatenated in order to complle properly. The Marion County
Technical Center’s Robotics/Automation Technology program does not
offer any warranties or represeniations, nor does it accept any
liabllities with respect to this curriculum.

wark of the United States Government {Ada

Forward

Table of Contents

IntrOduction L) L[] L L] L L[] L] L] L[] L] e L] [] [] []
Curriculum Design and Strategy e e o s o s & e
Method of Teaching L[] * L[] L[] L L[] L] L] L L[] [] . L L []

BLOCK I -- Ada and the Department of Defense

Lab 01 ~- Introduction to Computer Assisted

Lab 02

Unit A
Unit B
Lab 03
Unit C
Unit D

Lab 04
Unit E

Instruction Software . . « ¢« ¢ « ¢ o &
Introduction to the AETECH'’s
*IntegrAda" with "On-Line Training

and Reference Module® . . « ¢« o « « o o
The Software Crisis « « . .
Goals for Software . . « . ¢ . . . o
"MountainNet / AdaNet Demonstratxon" .
Software Engineering . . . ¢« . . o o &
A Brief History of the Ada Programming
Language . . ¢’ o o ¢ o o o o o o o
Ada Information Clearinghouse
Defense Directives . . . ¢« ¢ ¢ ¢ o o &

BLOCK II -- Fundamentals of Ada Programming

Unit A
Lab 05
Unit B
Lab 06
Unit C
Lab 07
Unit D
Lab 08
Unit E
Lab 09
Unit P

Lab 10
Unit G
Unit H
Lab 11
Unit I
Lab 12
Unit J
Lab 13

A Basic Ada Program
A Basic Ada Program
Existing Packages
Existing Packages
Package Text_ 10 .
Ohm’s Law . . .
Package Standard . . .
Working with Package Standard
Simple Declarations . . .
Simple Declarations Worksheet
Using Existing Packages;
Parameters, Specifications, and
Combining Existing Packages .
Data Types
Ada Scalar Types .
Scalar Types . . .
Enumeration Types .

L) * L) L
L] L] * * L] L] L]
L) [[L L) [
L) L [L) [) L)
L] * * » L] L]
L] L] [] L] L] L]
]]] -]]]] 3]
]] »]] 3] -] 3
[] L] L] L] L] [] L] L] [] L]
] 3 * 3] 3]]] -

Calls

Enumeration Types
Derived Types . .
Derived Types . .

» L] L] L] L] * L]
» L[] L] * * L[] L]

3] -] 3]

]]] »]] 3] 3 L]

i b s

10
12
17
21
24

27
30
35

Unit K
Lab 14
Unit L
Lab 15
Unit M
Lab 16
Unit N

-Lab 17

Unit O
Lab 18

Unit P
Lab 19
Lab 20

Unit Q
Lab 21
Unit R
Lab 22
Lab 23
Lab 24
Unit S

BLOCK IIX

Unit A
Unit B
Unit C
Lab 25
Unit D
Lab 26
Unit E
Lab 27
Unit F
Unit G
Lab 28
Unit H
Lab 29
Unit I
Lab 30
Unit J
Lab 31
Unit K
Lab 32

Table of Contents
(Continued)

Subtypes
Subtypes
Subprograms
Subprograms
Packages . . e e s
Creating Simple Packages e o o
Declaring Subprograms and Creating
Packages . . . e o o e
Declaring Subprograms and Creating
Packages ¢ ¢« ¢ ¢ o 4 4
Ada Language Syntax

Ada Language Syntax:

Using Comments c o o
The ’If’ Control Structure .
The If..Then Control Structure
The If..Then..Elsif..Else
Control Structure
The Case Control Structure
The Case Control Structure
The Loop Control Structure
The Loop Control Structure
Loop and Reverse Loop . . .
The While..Loop Control Structur
Style ¢ ¢ v v e o 4

-~ Advanced Ada Topics

Type Attributes
More Attributes
Records
Recoxrds . .
Arrays . .
Arrays . .
Exceptions

Exceptions

Private Types
Generics . .
Generics . . .

Sequential Files
Sequential Files .
Direct Access Files
Direct Access Files .
Introduction to Tasks
Introduction to Tasks
Tasks and Task COmmunicati
Task Communication . .

L) [] L] L) L) [) L) L) [] [] L) L) L) [)

> L] L] . L] L] e - e L] [L] L] L] e -

L] L] L] L] * [] [] [] [] [] [] [[] [] [] L

[] - L] L] e L) [] L] e L] e L] L] - e - e

L] o [] L] [] L] [] L] L] [] L] [] L] [] » [] L] - L]

-ii-

oy

e

L . [] L] [] [] []

[] L] » L] [] [] L] L]

L] L [] L] [] [] [] L] [] L L] [] L] L] [] » * L] []

L] e L] - - . e L]

- ° - L] L] e e [- [] - [] L] L] [] L] - L] <+

L] * [] L] L] L] [] L] L] [] L] » L] []

132
134

137
139
141
143
146
149
152
157
160
163
166
169
172
178
181
185
188
190
194

L*ww' Thxs” | o esigned «implamentzng wthe“
~IntegrAda’ environment_and ‘CAI module available from: the
-AETECH Corporation.. These: prnducts;were“chosenff'am.oth o
?Ada development“pr’duct ‘be - Of

fp;jfau S.;Naéy,-.uava Postgraduate School,: Aontery,ﬁca,ﬁ
L pused to teach Ada(and'SOftwarefEnginee:ingﬁclasses.wg

C U S. Marine Corps '«
: .-u~software development. i g e
d. U.S. Ammy :*'MéECOM, Ft. Monmouth, “NJ-?’ ‘used for'the’;
,ﬁﬁ_;,development of Command and -Control. Systems fo: the~

~Army | . e g

feg Fand many others.

iwe wish to thank the‘AETECH Corporation fo their- supportf
:in the’ development of th;s currlculumilﬁﬂ,; :

A_SECONDARY/POST-SECONDARY CURRICULUM FOR
~THE_ADA PROGRAMMING LANGUAGE "

INTRODUCTION

Perhaps no other computer language has created quite as
much excitement as the Ada computer programming language.
Developed under a contract for the Department of Defense,
Ada has become the programming language of the future.

Since its inception in the early 1980‘’s, Ada has grown from
being only a language used and proliferated in the defense
community, to a language which businesses and educational
institutions have come to use. Because of its structure,
Ada is an excellent language to use to write programs.
However, due to the large amount of Ada code to be
generated, we now face an extreme shortage of trained Ada
programmers. With this lack of trained programmers in mind,
this secondary/post secondary curriculum has been developed
to teach Ada to students, in hopes of meeting the demand for

a trained Ada community.

CURRICULUM DESIGN AND STRATRGY

The curriculum employs a strategy which includes, but is
not limited to, the following components: lectures,
audio/visual aids, computer aided instructional training and
reference materials, laboratory experiences, and feedback

-1~

devices. The entire curriculum is available in ha.dcopy

form through the West Virginia Curriculum Repository located

at Cedar Lakes, West Virginia. fThe address of the West

Virginia Curriculum Repository is:

A.

Curriculum Technology Resource Center
Cedar Lakes Conference Center
Ripley, West Virginia 25271

(304) 372-7021

Lectures - ILectures will be provided by the individual
instructor, using the included informational lesson plans
and curriculum as guides. The individual instructor

should provide lecture notes as required.

B. Audio/ Visual Aids - Audio/ visual aids should be

utilized to supplement this curriculum. It is felt that
each individual instructor wishing to utilize the
curriculum will have access to an overhead projector and
a VHS video playback machine. Many audio/visual aids,
utilized for the construction of this curriculum, are
available through the West Virginia Curriculum Repository
at Cedar Lakes, West Virginia for dissemination to

interested instructors.

Computer Aided Instructional and Training Reference

Materials - This curriculum was designed utilizing the “Ada

Training Environment" and "IntegrAda® with optional "On-Line
Training and Reference Module". These are commercial
Computer Aided Instruction (CAI) programs available from the
AETECH Corporation for IBM PC compatible computers. Studies
have shown that students will read and comprehend
information at a faster rate if it is presented
interactively on a computer terminal, rather than in a
textbook. The software chosen for use with this project was
developed over a five year period and field-tested by the
AETECH Corporation. It is not meant as a replacement for
individual instructor lectures or demonstrations; but it can
considerably enhance the learning process when used with

this curriculum,

Laboratory Experiences - It is felt that in order for a
student to gain proficiency with the Ada language,
laboratory experiences should be provided to contribute to
the student’s overall learning. Many laboratory experiences
are included in this curriculum, which will allow the
student to demonstrate, through the use of computer
programming exercises, their proficiency with the language.
It is felt that a computer to student ratio is 1:1 is
needed.

The laboratory exercises in this curriculum were designed
around a one hour format using IBM PC compatible computers
and "IntegrAda”, the validated Ada compiler for the IBM PC

-3~

J

compatible produced by AETECH, Inc. Each laboratory
exercise should be preceded by lecture, audio/visual

instruction, and CAI instruction where appropriate.

Feedback Devices -~ Feedback devices are provided within
Block I oé this curriculum. It is felt that instructors
generally prefer to develop their own quizzes and tests, and
no feedback devices have been included in Blocks II and III.
Pre-enrollment and post-enrollment attitude measurement
devices should be administered by the Instructor, to be
utilized as tools for measuring students’ attitudes toward

computers in general, and the Ada programming language in
particular.

METHOD OF TEACHING - It is felt that, in order for the

curriculum to be effective, the following teaching method
should be incorporated as a strategic guide, to insure that

the curriculum is effective:

1. Teacher Lecture - The teacher will present the
required lecture materials to the students, who will
in turn take notes on the presented material.

Lectures shall include audio/visual tools as required.

2. Student Participation - After each presented lesson by

the teacher, all students should be given an
orportunity to ask questions, express concerns, or
make comments concerning the presented material.

-4~

10

3.

Computer Aided Instruction - It is recommended that a
CAI package be incorporated as part of the total Ada

curriculum. This CAI package should be made available
for students to view after the presented lecture

material, and prior to any laboratory experience.

Laboratory Experience - As much as possible,

laboratory experiences should follow the presented
lecture material and CAI training. Laboratory
experiences should include actual programming tasks,
and to simplify the learning process at the secondary
level, it is highly recommended that Ada programming
tools used in the laboratory include user-friendly
"Turbo-like"” Ada programming systems with simple,
easy~-to-use libraries for Screen, Mouse, Sound, and

Pixels.

Feedback Devices -~ Feedback devices should be utilized
after each lecture or completed laboratory experience
as required. The individual teacher will have the
better idea of when feedback from students is
required. It is crucial that feedback devices for
measuring students attitudes prior to Deginning the
curriculum, and feedback devices for measuring
students’ attitudes after the completion of the
course, should be administered at the appropriate

times.

11

LAB intro.l.

LABORATORY EXPERIMENT

V.

VII.

STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Boot up the AETECH Ada Training Environment or the
AETECH On-Line Training and Reference Module used
for this curriculum.

2. Choose from the displayed menus which lesson they
would like to study.

3. Return to the operatirg system from the CAI
package.

REQUIRED MATERIALS: AETECH "Ada Training Environment"
oxr AETECH "IntegrAda” with the "On-Line Training and
Reference Module".

PROCEDURE

1. Power on.

2. Log on to the drive where the "Ada Trainin
Environment” or "IntegrAda" with the "On-~Line
Training and Reference Module" are installed.

3. At the DOS prompt, change to the working directory
where the CAI paciage has been installed. If the
"Ada Training Environment” has been installed, then
tyge CD\ATE\COURSE. 1If the On-Line Training and
Reference Module has been installed, then type
CD\IADA.

4. At the DOS ﬁrompt, type the appropriate command for
the CAI package which has been installed. If the
"Ada Training Environment” has been installed, then
type ATE. If the On-Line Training and Reference
Module has been installed, then type REFER.

12

10.

11.

12.
13.

In the lower right corner of the screen, a square
labeled "Ada Training Environment” will appear.
Each tutorial block is listed. Select the proper
block by using the ug/down cursor key until the
correct block is highlighted, then press Enter.

Within each block, there is a series of lessons.
Unless othexwise instructed, you will take the

~lessons in order. Select the proper lesson by

using the up/down cursor key, then press Enter.

Within each lesson, there is a list of topics.
Most topics consist of one screen of information.
Select each togic in order by using the up/down
cursor keys, then pressing Enter.

Read each screen of information, and take notes on
the key points presented.

Press Enter. This will take you back to the list
of topics.

When you have completed the assignment, select QUIT
from the topic menu. This will return you to the
DOS prompt.

Practice returning to the operating system and
booting up the CAI system several times so that you
are extremely familiar with this procedure.

Power down computer, and clean up area.

Record any questions, comments, or concerns you may
have with using the system for your Instructor.

13

LAB intro.l.
TEACHER GUIDE

RATORY ERIMENT

1, BLOCK: I (Teacher Note: This laboratory is only
.o applicable’ to : those instructors who -are:
utilizing - the ' AETECH ' “"Ada Training
-Environment* or the AETECH "IntegrAda® with'
On~Line Training and Reference Module®). '

‘MIntroduction: to . Computer
Instruction Software"

V. STUDENT OBJECTIVES: At the complétion of this
experiment, the student should be able to:

1. Boot up the AETECH Ada Training Environment or the
AETECH On-Line Training and Reference Module used
for this curriculum.

2. Choose from the displayed menus which lesson they
would like to study.

3. Return to the operating system from the CAI
package.

VI. REQUIRED MATERIALS: AETECH "Ada Training Environment"®
or AETECH "IntegrAda” with the “On-Line Training and
Reference Module",

VII. PROCEDURE
l. Power on.

2. Log on to the drive where the "Ada Trainin
Environment" or “IntegrAda” with the “On-Line
Training and Reference Module” are installed.

3. At the DOS prompt, change to the working directory
where the CAI package has been installed. 1If the
"Ada Training Environment" has been installed, then
type CD\ATE\COURSE. If the On-Line Training and
ggfﬁiggce Module has been installed, then type

4. At the DOS ﬁrompt, t the appropriate command for.
the CAI.package which has been installed. If the
"Ada Training Environment" has been installed, then
type ATE. 1If the On-Line Training and Reference
Module has been installed, then type REFER.

5. In the lower right corner of the screen, a square
labeled “Ada Training Environment® will appear.
Each tutorial block is listed. Select the proper
block by using the ug/down cursor key until the
correct block is highlighted, then press Enter.

6. Within each block, there is a series of lessons.
Unless otherwise instructed, you will take the
lessons in order. Select the proper lesson by
using the up/down cursor key, then press Enter.

7. Within each lesson, there is a list of topics,
Most topics consist of one screen of information.
Select each topic in order by using the up/down
cursor keys, then pressing Enter.

8. Read each screen of information, and take notes on
the key points presented.

9. Press Enter. This will take you back to the list
of topics.

10. When ¥ou have completed the assignment, select
QUIT from the topic menu. This will return you to
the DOS prompt.

11. Practice returning to the operating system and
booting up the CAI system several times so that you
are extremely familiar with this procedure.

12. Power down computer, and clean up area.

13. Record any questions, comments, or concerns you may
have with using the system for your Instructor.

LAB intro.2
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Follow the oral instructions given by your
Instructor on entering the IntegrAda environment.

2. Follow the written instructions within the
IntegrAda Reference Manual, Chapter 12, “"Getting
Started”, and gain an understanding of how to
create, edit, compile, bind, execute, and print Ada
programs.

VI. REQUIRED MATERIALS:
1, Note ‘ iking materials.

2. "IntegrAda” with "On-~Line Training and Reference
Module".

3. Integr%da Reference Manual, Chapter 12:
"Introductory Session'.
VII. PROCEDURE

1. Follow the procedures outlined in Chapter 12 of the
IntegrAda Reference Manual, pages 12-2 through
12-30. Since the system has already been installed
for you, follow the oral instructions given to you
by your Instructor on entering the system.

Continue at steg 5, page 12-2 of the IntegrAda
Reference Manual.

2. Record any questions you have about using the
editor environment.

3. Power down computer, and clean up area.

~10-

ric B §¢

LAB intro.2
TEACHER GUIDE

LABORATORY EXPERIMENT

2cH. *Integrada
d: Reference Modu

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

VII.

1.

2.

Follow the oral instructions given by your
Instructor on entering the IntegrAda environment.

Follow the written instructions within the
IntegrAda Reference Manual, Chapter 12, "Getting
Started”, and gain an understanding of how to
Ccreate, edit, compile, bind, execute, and print Ada
programs.

REQUIRED MATERIALS:

l. Note taking materials.

2. "IntegrAda” with "On-Line Training and Reference
Module*.

3. IntegrAda Reference Manual, Chapter 12:
"Introductory Session”.

PROCEDURE

l. Follow the procedures outlined in Chapter 12 of the
Inte%rAda Reference Manual, pages 12-2 through
12-30. Since the system has already been installed
for you, follow the oral instructions given to you
by your Instructor on entering the system.
Continue at stef 5, page 12-2 of the Inteqrida
Reference Manual.

2. Record any questions you have about using the
editor environment.

3. Power down computer, and clean up area.

-11-

. 17

BILOCK 1

/N

BLOCK 1

Ada and the

Department of Defense

18

ILP I.A
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to :

1. Attribute advances in computer hardware and soft-
ware, in the late sixties and early seventies, with
the advent of the microprocessor.

2. Identify amount of DOD annual expenditures for
software. :

3. Identify two factors responsible for increased cost
of software.

4, Define "Software Maintenance".

5. List the six problem areas associated with software
development.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block I, Unit 1
AETECH "Ada Training Environment' or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on following sections:

a. Increasing demand for software.

b. Increasing software costs.

c. Software to hardware costs.

. Software maintenance costs.

. Other major software costs.
Problems with software development.
Other life cycle problems,

Problems with quality.

Language proliferation.

o a0 A

-12-

Q lt’

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environmert® and "IntegrAda” with
"On-Line Training and Reference Module"”.

Olson/Whitehall, Ada For Programmers, Ch. 1.
Stein, Ada: A Life and Legacy, Preface.
Engle/Dominice, Introductory Ada Workshop.

Softech, Basic Ada Programming 1202~ U.S. Army,
Vol I. '

Sommexville/Morrison, Software Development with Ada
Chc 1.

VIiI. PRESENTATION:
A. Introduction

l. Tell "Invasion of Grenada" story where Army’s
and Navy’s computers couldn’t communicate with
each other, requiring an officer to make a
credit card long distance call to North Carolina
for naval support.

B. Instructional Topics and Key Points

TOPIC KEY POINT
1. Increase Demand for la. Demands due to microproces-
Software sor which made systems more
efficient, reliable, and
accurate.
2. Increased Cost for 2a. 6 billion annually by DOD.
Software
3. Factors responsible 3a. Technological advances.

for software costs

3b. Higher salaries as demands
for highly skilled
programmers exceeds supply.

4. Software Maintenance 4a. Definition - Program which
now works that must be
changed or modified to
work differently.

13-

RIC | ()

TOPIC

KEY POINT

5. Problems with
Software Development

Sa.

5b.

5c.

5d.

5e.

5f.

-14-~

21

Unmodifiable -~ No one other
than writex(s) can
interpret software.

Nontransportable- Software
written & tailored to
specific machine, and does
not work on another
machine.

Not Timely - Typically,
software systems are
delivered late.

Unresponsive -~ Software
doesn’t perform as required.

Inefficient - Software is
frequently larger & slower
than anticipated.

Unreliable -~ Software
typically fails.

LS

Q I.A

2. Define Software Maintenance.

*The Software Crisis"”

QUESTIONS

Place your answer in the provided space for each of
the following questions.

1. Name two factors which are responsible for the high
cost of software.

3. Name the single factor which provided an enormous
demand for software.

4. List five of the six problems associated with
software development.

a.
b.

C.

5. How much does the U.S. Department of Defense spend
annually for software?

~15-

22

“The Software Crisis
ANSWERS TO QUESTIONS
Name two factors which are responsible for the high

cost of software.

Technological advances, demands for skilled
programmers

Define Software Maintenance.

Operation/ program which now works but must be
changed or modified to work differently.

Name the single factor which provided an enormous
demand for software.

Microprocessor

List five of the six problems associated with
software development.

a. Unmodifiable

b. Nontransportable
d. Not Timely

e. Inefficient

f. Unreliable

g. Unxesponsive

- How much does the U.S. Department of DefenseVSpend

zunually for software?

U.S. DOD spends approximately 6 billion dollars
annually for software.

-16-

23

ILP I.B
INFORMATION LESSON PLAN

1. BIOCK: I - "Ada and the Department of Defense’
CmJummes B o
| III. LESSON TITLE:

IVv.

V.

VI.

LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to :

l. List the four goals for software.
2. Describe what understandable software is.
3. Define Modifiability as related to software.

4. Discuss the impact of reliable versus unreliable
software systems.

5. Define Efficiency as related tc software.

6. Discuss the importance of software Portability.
LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2, Participate in class discussion of presented
lecture.

3. CAI Assignment -~ Block I, Unit 2
AETECH "Ada Training Environment” oxr "IntegrAda"
with “On-Line Training and Reference Module".

Read & take notes on following sections:
a. Understandability.
b. Medifiability.
c. Reliability.
d. Efficiency.
e. Portability.
SPECIAL RESOURCES:

AETECH "Ada Training Environment® and “"IntegrAda”
with "On-Line Training and Reference Module®.

Engle/Dominice, Introductory Ada Workshop.

softech, Basic Ada Programming L202~U.S. Army,
ol I.

-17-

4

VII. PRESENTATION:
A. Introduction
l. E.G. Booth quote:
"The basic problem is not our mismanagement of
technology, but rather our inability to manage
the complexity of our systems".
B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Five Goals of Software| la. Understandability - software
must be understood by anyone
who will write the code, look
at the code, or modify the
code. Software may only be
written one time, but it is
read many times. The easier
software is to read, the
easier software is to
understand, the easier it is
modify. (Refer back to costs
for maintaining software).

1b. Modifiability - Allows

program to be changed to meet
the new needs of the user,
with a minimum of time and
expense.

lc. Reliability - Software must

perform as it is supposed to

(Nuclear Attack Warning

System Example). DOD

reliability factors:

a. Systems are lethal.

b. Many systems are
unattended.

c. Systems must be fault-
tolerant.

1d. Efficiency ~ Achievin

maximum performance within
small hardware constraints.
There are two ways to measure
efficiencies of software
systems:

a. Amount of code.

b. Speed of execution,

le. Portability - Ability of
a program to be used on
different computers, where
the software is not hardware
dependent. ’

ERIC Qv

QI.B

"Goals for Software"

QUESTIONS

Place your answer in the provided space for each of
the following questions.

1. Define Understandability.

2. Define Modifiability.

3. Define Reliability.

4. Define Efficiency.

5. Define Portability.

-19-

QI.B

*Goals for Software"

ANSWERS TO QUESTIONS

Define Understandability.

Understandability - Software must be understood by
anyone who will write, read, or modify the code.

Define Modifiability.

Modifiability - Allows program to be changed to
meet new requirements without having to write a new
program.

Define Reliability.

Reliability - Software must perform as it is
supposed to

Define Efficiency.

Efficiency - Achieving maximum performance, 2 ways
to measure by a. small size and b. high speed.

Define Portability.
Portability - Ability of a program to be

transported from one computer to another (software
is not hardware dependent).

~20-

o7

LAB I.B
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
esperiment, the student should be able to:

i. Understand the services provided by MountainNet
and the AdaNet Bulletin Board.

2. Access AdaNet.

3. Sign on and download a file or bulletin from
Adanet.

4. Answer the questions at the end of this
experiment.

VI. REQUIRED MATERIALS:
l. Note taking materials.
2. Blank registration forms for AdaNet.
3. A blank formatted disk.
VII. PROCEDURE

Follow the oral instructions for accessing AdaNet.
Get into the system, and explore various topics,
drawers, etc. Choose various materials that you
would like to keep, and download these files onto
your blank formatted disk.

VIII. Questions
1. what is MountainNet? What is AdaNet?

2. What kinds of information are available from
AdaNet?

-21-

28

LAB I.B
TEACHER GUIDE

RATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this

VI.

VII.

experiment, the student should be able to:

1. Understand the services provided by MountainNet
and the AdaNet Bulletin Board.

2. Access AdaNet.

3. Sign on and download a file or bulletin from
AdaNet.

4. Answer the questions at the end of this
experiment.

REQUIRED MATERIALS:

1. Note taking materials.
2. Blank registration forms for AdaNet.
3. A blank formatted disk.

PROCEDURE

TEACHER NOTE: Contact the MountainNet User
Representative well in advance of the desired date
for the demonstration. If a representative is
unable to come to‘{our school for a demonstration,
it is recommended that the instructor be familiar
enough with the AdaNet system to provide the
demonstration. Otherwise, request registration forms
so that the registration may be completed and the
students already have their packets of information
for accessing AdaNet before the demonstration is
presented. The address of MountainNet is:

MountainNet, Inc.
Eastgate Plaza
P.0. Box 370
Dellslow, WV 26531-0370
(800) 444-1458

-22-

Y

Follow the oral instructions for accessing AdaNet.
Get into the system, and explore various topics,
- drawers, etc. Choose various materials that you
would like to keep, and download these files onto
o your blank formatted disk.

VIII. Questions
1. what is MountainNet? What is AdaNet?

MountainNet is a telecommunications coxporation
in Dellslow, WV, whose purpose is to run the
AdaNet system. AdaNet is an information service
and software reuse research project designed to
provide lic domain software engineering and
Ada for business, government, and academe.

2. What kinds of information are available from
AdaNet?

Ada source code libraries, bibliographic
references and fpubl.ication information,
descriptions of public and commercial
repositories, directories of products,
listings of organizations, 1listing of
forums, etc.

ILP I.C
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to :

1. Define Software Engineering.
2. Describe Abstraction.
3. Define Modularity.
4. Describe Localization.
5. Understand the principle of information hiding.
6. Understand the principle of completeness.
7. Define Confirmability.
V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block I, Unit 3
AETECH "Ada Training Environment” or "IntegrAda”
with "On-Line Training and Reference Module".

Read & take notes on following sections:

a. Combat Logistics Support Example.
Abstraction.

Modularity.

Localization.

Information Hiding.

Completeness.

Confirmability.

sRo YuleNolep

=24 -

31

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and "IntegrAda”
with "On~Line Training and Reference Mocule®”.

Engle/Dominice, Introductory Ada Workshop.

spftgch, Basic Ada Programming L202- U.S. Army,
(o] .

VII. PRESENTATION:
A. Introduction

1. Tell students that there is no uniform concensus
for the definition of Software Engineering; then
tell them that the following are goals of Soft-
ware Engineering for DOD.

B. Instructional Topics and Rey Points

TOPIC KEY POINT

1. Abstraction la. As used in program
development, is a process in
which & system is

viewed at several levels
from simple to complex
(top-down approach); where
the programmer concentrates
on the essentials, leaving
the details for later time.

2. Modularity 2a. Programming tasks may be
broken into individual
modules (divide and conquer).

2b. Module - Unit of code or
program which may be written,
tested, and function
indegendently of other
modules.

3. Localization 3a. Related pieces of program

code should be found in the
system at close proximity to
one another. It would not be
wise to put two pieces of
related code in separate
modules.

4. Information Hiding 4a. Programmer writes parts of
system which are inaccessible
to other parts of system.
Makes code immune to side
effects from changes, to
other parts of the system,
which may occur.

34

B. Instructional Topics and Key Points

TOPIC KEY POINT

5. Completeness 5a. All required components and

resources for a module to
function grogerly must be
made available to that
module.

6. Confirmability 6a. Software module can readil
be tested with a minimum o
support from other modules.

26~

33

ILp I.D
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to :

1. Define "Embedded Systems".

2., Identify the company who developed the Ada
programming language.

3. Gain an understanding of the history/development
of the Ada programming language.

4. Define the function of the AJPO.
5. Discuss the naming of the language.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block I, Unit 4
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module”.

Read & take notes on following sections:

a. A language for embedded computers.

b. The H gher Order Language Working Group.
¢. Establishing the requirement.

d. Starting the design.

e. Completion of the design effort.

f. Naming the new language.

g. Ada Joint Program Office.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and "IntegrAda”
with "On-Line Training and Reference Module”.

-27-

ERIC \ 31

VII. PRESENTATION:

A. Introduction

l, Give a brief oral histo

of why DOD needed a

Higher Order Language which could meet their

needs.

B. Instructional Topics and Key Points

TOPIC

KEY POINT

1. Embedded Systems

2. Development of Ada

la.

2a.

2b.

Definition - a possible
group of machines that are
controlled by one or

more computers, and
function as one indepen-
dent unit.

1975 - Higher Order Language
Working Group (HOLWG)

Made up of members from
academe, government,
industry, and the three
branches of the military
whose purpose was to review
existing computer
programming languages, and
to develop requirements of
the new comﬂnter language
for use with DOD projects.

1. Specify requirements of a
language.

2. Evaluate current
languages against DOD
requirements.

3. Make recommendations on a
language to use based on
that evaluation, or
possibly recommend the
creation of a new
language.

1975 = Strawman document was
developed; document provided
initial specifications for
new language. Strawman was
submitted HOLWG for
review by all parties
invelved in language
development. Comments
incorporated into Strawman
led to development of
Woodenman, and Tinman
documents (which were
changes to Strawman).

Tinman returned wit
relatively few changes.
Changes were made, and new
document was called Ixronman
(1977).

-28-

39

B. Instructional Topics and Key Points

TOPIC

KEY POINT

3. Honeywell-Bull

4. Naming of Language

5. AJPO

3a.

4a.

Sa.

-29-

Company from Europe who won
the language design competi-
tion sponsored by DOD,

to develop the Ada

language.

Named for Lady Augusta Ada
Lovelace (boxrn 1815);
daughter of Lord on
(poet). Worked with Charles
Babbage on his analytical
engine. Is considered to be
first programmer (due to
notes she made during work
on engine.

Ada Joint Program Office
mission is to disseminate
information to milit and
general public concerning
Ada. Runs Ada Information
Clearinghouse (AdalC) and
CREASE (Catalog of Resources
for Education in Ada
Software). Monitors
compiler compliances with
DOD guidelines on Ada.
Funded by AJPO through ITT,
who manages the AdalC.

3b

ILAB I.D
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Identily the resources available from the Ada
Information Clearinghouse.

2. Woite a letter requesting AdaIC to include the
student on their mailing list, to receive AdaIC
information.

VI. REQUIRED MATERIALS:

1. Note taking materials.

2. Letter bond, envelopes, and stamps.

3. Student Data Disk.

VII. PROCEDURE

l. Draft a letter to the Ada Information
Clearinghouse, requesting to be added to their
mailing list. The address is:

AdaIC

c/o ITT Research Institute

4600 Forbes Blvd., Second Floor

Lanham, Maryland 20706-4312
VIII. QUESTIONS

1. What is AdaIlC?
2. How is the program funded?

3. What kinds of information are available from the
Ada Information Bulletin Board?

-30-

37

TEACHER GUIDE
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

l. Identify the resources available from the Ada
Information Clearinghouse.

2. Write a letter requesting AdaIC to include the
student on their mailing list, to receive AdaIC
information.

VI. REQUIRED MATERIALS:
1. Note taking materials.
2. Letter bond, envelopes, and stamps.
3. Student Data Disk.

VII. PROCEDURE

1. Draft a letter to the Ada Information
Clearinghouse, requesting to be added to their
mailing list. The address is:

AdaIC

c/o ITT Research Institute

4600 Forbes Blvd., Second Floor
Lanham, Maryland 20706-4312

Teacher Note: Plan a follow up session for this lab
when the students receive their packets from AdalIC.
They will receive information on how to access the
Ada Information Bulletin Board, as well as other
information that is of interest to the Ada
community.

-31~

VIII. QUESTIONS

1.

What is AdaIC?

AdalC is the Ada Information Clearinghouse which
is part of the AJPO, and is designed to
disseminate information to the Ada community.
How is the program funded?

The program is funded by AJPO through ITT who
runéptggfkdarc. ¥ g

What kinds of information are available from the
Ada Information Bulletin Board?

News articles, contract awards, validated

compiler listings, training seminars, con-
ferences, etc. .

-32-

39

QI.D

"History of Ada"
QUESTIONS

Place your answer in the provided space for each of
the following questions.

1. Define Embedded Systems.

2. What does HOLWG stand for? What was it made up of?
What did they do?

3. What company designed Ada?

4. How was Ada nanmed?

5. What does AJPO stand for? Wwhat do they do?

-33-

40

"History of Ada*
ANSWE TO_QUESTIONS

Define Embedded Systems.

Embedded Systems - A group of machinery which is
controlled by one or more on~board computers, and
functions as an independent unit.

What does HOLWG stand for? what was it made up of?
What did they do?

HOLWG - Bigher Order Language Working Group, it was
made up of academe, government, and military to
develop the requirements for DOD’s new language
(Ada).

What company designed Ada?

Honeywell - Bull

How was Ada named?

Named for Lady Augusta Ada Lovelace, daughter of
Lord Bryon. She is considered the first program-
mer.

What does AJPO stand for? What do they do?

AJPO - Ada Joint Program Office, they operate
AdaIC and CREASE and their purpose is to dis-

seminate information about Ada, and to also
oversee compliance with DOD Ada quidelines.

-34-

11

ILP I.E
INFORMATION LESSON P

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Discuss the differences between standardization
directives and acquisition policies.

2. Understand the implications of DOD Directive
5000.31.

3. ggggrgtand the implications of DOD Directive

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block I, Unit 5
AETECH "Ada Training Environment” or "IntegrAda"
with "On-Line Training and Reference Module”.

Read & take notes on following sections:

a., Background.

b. Warner Amendment.

c. Higher Order Languages.
d. Mission Critical Systems.
e. DOD Directive 5000.31

f. DOD Directive 5000.1

g. DOD Directive 5000.29

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda"
with "On-Line Training and Reference Module".

~35=

32

VII. PRESENTATION:
A. Introduction
l. Ask students question, "Why do you chink there
are rules governing the use of the Ada program-
ming language?*

B. Instructional Topics and Key Points

TOPIC KEY POINT
1. Standardization la. Dictate which Higher Oxrder
Directives Lanquages are allowed to be
used in DOD systems.
2. Acquisition 2a. Govern how systems and
Policies ' software are purchased by
U.S. Government.
3. DOD 5000.31 3a. 1976 - Required use of an

approved Higher Oxder
Language for "Mission-
Critical Systems".

3b. 1983 - stated “The Ada
ggogramming 1an§uage shall
come the single computer
programming language for
Defense Mission Critical
applications."

4. DOD 5000.1 4a. Major Systems Acquisition
Policy - stated “Effective
Jan. 1/84 for programs
entering advanced development
and July 1/84 for programs
entering full-scale
engineering development, Ada
shall be the programming
language. *

-36-

43

/]

BLOCK II

W\

Fundamientals of
Ada Programming

14

ILP II.A

INFORMATYION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this
lesson, the student should be able to:

1. Understand the purpose of each line of code in a
simple Ada program.

2. Understand the concept of a package.
3. Define and identify a context clause.

4. Identify how comments are incorporated in an Ada
program.

5. Understand the purpose of the following Ada
keywords:
a. with
b. use

S: ggocednre

e, begin
f. end

6. Gain an understanding of the conventional
techniques used to make Ada code more readable
and understandable.

7. Gain an understanding of the structure of an Ada
program.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Traininqg Environment" or "IntegrAda’
with “On-Line Training and Reference Module",

Read & take notes on the following sections:
Block II, Lesson 1, Topic 1
a. The Basic Ada Program.

-37-

Q 45

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and "IntegrAda”
with “On-Line Training and Reference Module".

Skansholm, Ada From The Beginning,
Addison - Wesley, 1988, pg. 30-31.

VII. PRESENTATION

A. Introduction

1. Put on board a flowchart of "Hello Program".

B. Instructional Topics and Key Points

TOPIC

KEY POINT

l. "Hello Program"
with Text_I0;

use Text IO

rocedure Hello is

egin
put (“HELLO THERE");

end Hello:;

2. Packages

3. Comments

la. Imports to main procedure
"Hello" Text_IO resources.

1b. Uses abbreviated notation in
lieu of extended dot
notation. Note: Instructor
should also show same pro-
gram using extended dot
notation.

lc. Name of main procedure.

ld. Begin execution of program.

le. Output to screen.

1f. End execution of program.

SYNTAX NOTES

a. note upper and lower case
style and non-sensitivity.

b. note ; delimiter.

c. note () and ** for put
(see Text_IO package).

2a. Definition - A collection of
logically related program
resources grouged together.

2b. Use the predefined package
Text_IO to demonstrate one
such package as per 2a.
above.

2c¢. Identify context clause as
the statement to be used to
gain access to a package.

3a. Explain why comments are
important.

3b. examples of comments for
“Hello Program*.

3c. Handout for program headers
(HII.A.1).

-38-

abL

TOPIC

KEY POINT

4. Keywords

5. Program Structure

4a.

4b.

4c.

4d.
de.
4f.

5a.

with - specifies the
package to be made visible
within another unit.
use - Informs compiler pro-
gram that programmer will not
be using extended dot
notation. :
procedure - One form of Ada
subprogram; the other form is
a function. A procedure
specifies a segquence of
actions, and is invoked by a
ggocedure call statement.

- tells what items arxe
given.
begin - procedure execution
starts here. '
put - procedure provided
within Text IO, puts a string
to the scxeen.
end ~ stop execution of main
procedure.

Show the structure for a
typical Ada program.
(Handout HII.A.2)

-39-

37

HII.Al
PR HEADE

The following format should be incorporated into each of
your grograms to provide necessary documentation, and also
provide identification information for you and your
Instructor.

--*****t****t*t********m-;

--* Program Name Lo
—-*******Q****f****t***--;

-= Author’s Name s
-= Date s
-=- Assignuent Number:

-e

e Ny

-------------- Program Executive o o s o e e e

-e

-- Provide a brief but accurate description of what the
- program does, and any other information which may be
-- useful in describing your program.

=g WY Ny WY

Y ¥ I

48

HII.A2
A TYPICAL, STRUCTURE FOR AN ADA MAIN PROCEDURE

(Context Clauses)
with ; use

e

procedure NAME is
(Place declarations here);

begin

(Program code);

end NAME:;

~41-

34

LAB II.A
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

l. Write a simple Ada program.

2. Compile, bind, debug, and execute a simple Ada
program.

3. Gain an understanding of what occurs in step
(2) above.

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda” with "On-Line Training and
Reference Module".

3. Student Data Disk.
VII. PROCEDURE

1. Using the editor environment, type in the
following code and save it to a file called
LAB5.ADA

Note: Be sure to include information from handout
HII.A here!

with Text_IO; use Text_IO;
rocedure <procedure name> is
egin
put ("HELLO! ") ;
end <procedure_name>;
2. Compile, debug, bind, and execute the program.

3. Make a print out of your program and executable
code to turn in to your Instructor.

4. Power down computer, and clean up area.

-42-

--*#*****t***************i*****—_:

~— A Basic Ada Program R s
-_*t*t***t*****tt**i**t*tt*****-_;

--~ Author’s Name ¢ TEACHER GUIDE ;
-- Assignment Number t LAB # II.A ;

------ ———————— Program Executive - e e o o e e B
-- Below is a solution for Lab # II.A. This solution may

-- be used by the instructor as a guide for helping
-~ Students complete the laboratory assignment.

with Text_IO; use Text_IO;

procedure WELCOME is
begin

put{ "HELLO!");
end WELCOME;

’

-43-

ILP II.B
INFORMATION LESSON PLAN

1T, UNIT: B

IV. LESSON OBJECTIVES: At the completion of this
lesson, the student should be able to:

1. Gain an understanding of how to use existing
code from Ada packages in new Ada programs.

2. Gain an understanding of the following keywords:

a. with
b. use

3. Utilize simple subprograms from existing
ackages to perform fundamental screen and
eyboard operations needed for users to view and
enter data to Ada programs.
V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment” or "IntegrAda"
with "On-Line Training and Reference Module”.
Read & take notes on the following sections:
Block II, Lesson 1, Topic 6
a. Using existing packages.
V1. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and "IntegrAda”
with “On-Line Training and Reference Module™.

Johnson, The Ada Primer, McGraw-Hill, 1985, pg. 61

~44-

S I
o

VII. PRESENTATION
A. Introduction

1.

Handout copies of existing package

specifications for SCREEN, KEYBOARD, and
COLORS, and explain to students all this
grog:amming has already been done

or the student.

B. Instructional Topics and Key Points

TOPIC

KEY POINT

1. Existing Packages la.

1b.

1c.

1d.

2. Keyworxds 2a.

2b.

3. Utilizing Subprograms| 3a.

TEXT IO -~ Standard Ada
package for input and output
of characters and strings of
characters. Does not include
cursor, screen, color,

function keys, or simple

keypresses. Used mainly for
file operations.
SCREEN

- Existingmpackage
used to handle simple cursor
and screen operations.

COLOR -~ Existing package used
to set foreground and
background colors for other
operations found in package
SCREEN above.

YR
used to

- Existing packa%e
eys
pressed

get and identify
y the user.

with - Makes an existing
package visible to your
program (said to import an
existing package to a main
procedure).

use - Tells compiler that the
programmer will not be using
extended dot notation.

Give examgle using resources
of several existing packages
together to clear the screen
in a color, set the cursor,
print a message, and get a
response from the user.

LAB II.B
LABORATORY EXPERI

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

l. Identify the existing gackages which the
following program utilizes.

2. Use existing packages for simple input and output
of data,

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda” with "On-Line Training and
Reference Module".

3. Student Data Disk.

4. Specifications for packages SCREEN, KEYBOARD,
COLORS, TEXT IO.

VII. PROCEDURE

l. Given the following simple program using typical
inprat and output, identify the source gackage
from which each of the following bold faced
procedures and data structures come, by using
extended dot notation. That is, if "SET CURSOR"
is found in package SCREEN, then rewrite the
procedure to read "SCREEN.SET_CURSOR'.

2. Given the specification for Ada package TEXT IO,
list those subprograms which are also available
without other existing packages.

(Program on next page).

Save your program as LAB6.ADA.

with SCREEN,KEYBOARD,COLORS,TEXT_ I0;
use SCREEN, KEYBOARD, COLORS;
procedure TRY_ IT is
KEY:A KEY;
CH: CHARACTER'
begin
SET BACKGROUND(BLUE);
SET_FOREGROUND(YELLOW) ;
CLEAR SCREEN;
loop
SET_CURSOR(25,1);
PUT("ENTER Any Key to Continue or <ESC> to
Escape=>"};
PRESS(A | KEY CH);
PUT(A KEY'IMAGE(KEY))
exit when KEY=ESC;
end loop;
end TRY_IT;

3. Compile, debug, bind, and execute the program.

4. Print out a copy of your program, and your
executable output to turn in to your Instructor.

5. Power down computer, and clean up area.

-47-

(W
(4

_-********i***********0***0**--;

- Existing Packages B s
_-*t*****t**tt*t**tt*i*******--;

-=- Author'’s Name ¢ TEACHER GUIDE ;
-- Assignment Number : LAB # II.B ;
e e e et e Program Executive eccccccmcacccac.a

~- Below is a solution for Lab # II.B. This solution may be
-- used by the instructor as a guide for helping students
-- complete the laboratory assignment

with SCREEN, KEYBOARD, COLORS, TEXT_IO;
use SCREEN, KEYBOARD, COLORS:;

procedure TRY_ IT is
KEY: KEYBOARD.A KEY;
CH : CHARACTER;
begin
COLORS . SET_BACKGROUND(BLUE);
COLORS . SET FOREGROUND(YELLOW);
SCREEN.CLEAR_SCREEN;

Loop
gCREEN.SET CURSOR({ 25, 1);
SCREEN.PUT(¥Any Key to Continue or <ESC> to Escape =>");
KEYBOARD . PRESS Y, CH);
SCREEN.PUT(A_KEY'IMAGE(KEY));
exit when KEY = ESC;
end Loog;
end TRY IT;

with SCREEN, KEYBOARD, COLORS, TEXT IO;
use SCREEN, KEYBOARD,COLORS;
procedure TRY IT is
KEY: KEYBOARD.A KEY;
CH : CHARACTER;
begin
SET_BACKGROUND(BLUE);
SET_FOREGROUND(YELLOW);
CLEAR_SCREEN;

Loop
SET_CURSOR(25, 1);
TEXT IO.PUT{"Any'Key'to Continue or <ESC> to Escape =>");
PRESS(KEY, CH %é
TEXT_I0.PUT(A_XKEY'IMAGE(KEY));
exit when KEY = ESC:
end Loop:;
end TRY_IT;

ILP II.C

INFORMATION TLESSCN PLAN

IV. LESSON OBJECTIVES: At the completion of this
lesson, the student should be able to:

1. Use the non-generic resources provided within
Text_ IO0.

2. Instantiate and use the generic packages
Integer 10, Float_IO, Fixed I0, and
Enumeration_IO.

3. Describe and use the width and base parameters
provided for Integer_ IO.

4. Describe and use the Fore, Aft, and Exg
parameters provided for Fixed IO and Float_IO.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block VI
AETECH "Ada Training Environment® or "IntegrAda”
with "On-Line Training and Reference Module”.

Read & take notes on the following sections:
Block VI, Lesson 4, Topics 1-11

a. Package Text_I0.

b. Instantiation.
Console inggt/output.

File handling.

Characters and new_line.

Strings.

Working with strings.

Integer I0.

Float IU.

Fixed IO,

Enumeration_IO.

ALk 3] HhOD A.O

- » L L]

-49-

L
-

- VI. SPECIAL RBSOURCES:

AETECH "Ada Training Environment” and "IntegrAda”
with "On-Line Training and Reference Module™”.

VII. PRESENTATION
A. Introduction
1. Inform students that package Text_IO provides
the basic resources for input/output of text
or data text files. The standard default
ingut-file is the keyboard. The standard
default output file is the screen.

B. Instructional Topics and Key Points

TOPIC XEY POINT

1. Text_IO la. Is a predefined package which
contains subprogram resources
(for I/0 of strings and
characters) and generxic
package for I/0 of Integers,
Floats, Fixed, and Enumerated
type objects.

2. Generics 2a. Integer I0, Fixed IO,

Float _I0, and Enumieration_IO
are the names of generic
packages within Text IO
which must be instantiated
in order to gain access to
the I/0 resources for their
respective types.

3. Integer_ IO 3a. Width - defaults actual width
of the type when the package
was instantiated.

3b. Base - an optional parameter
which allows for working with
different base number
systems. Default is 10.
where subtype Number_Base is
nteger Range 2..16)

B. Instructional Topics and Key Points

TOPIC

KEY POINT

4. Fixed_ JO and
Float_I0

4a.

4b.

4c.

Fore -~ An optional parameter
which specifies the number
of character positions to
the left of the decimal. For
Floating Point types, Fore
defaults to 2; for fixed,
number in type given.

Aft - An optional parameter
which specifies the number of
character positions to the
right of the decimal. For
floating point types,
defaults to number in type
=12 for fixed, number in

type.

Eﬁg - An optional parameter
which specifies the number

of character positions to use
for the exponent part.

LAB II.C
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

l. Compile, bind, debug, and execute an Ada program
which calculates voltage based on user input
values for current and resistance. Ohm‘’s Law
states that voltage (volts% is equal to
current (amps) multiplied by resistance (ohm’s).

V=1IHM"®*R

2. Modify the Erogram s0 that current is calculated
using floating point types.

3. Modify the program so that resistance is
calculated using floating point types.
VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module”.

3. Student Data Disk.
VII. PROCEDURE

1. Using the editor enviromment, type in the
following code and save it to a file called
LAB7A.ADA. Be sure that you include. all

information as per handout HII.A. "Program
Headers".

-52-

()

__***********t**********t**************--:

-=* Ohm’s Law, Voltage Calculation *«-;
-_************it****************t******--;

== Author’s Name :
-~ Assignment Number : LAB # II.C ;
= e e o e e o e e Program Executive ~emrecccrcceccececew

with TEXT_IO; wuse TEXT_10;
procedure OHMS is
package IntegerIO is new INTEGER_IO(INTEGER);

V, I, R: INTEGER;
begin
PUT("Enter Current (in Amps): “);
IntegerIO.GET(I);
NEW_LINE;
PUT("Enter Resistance (in Ohms): ");
IntegerIO.GET(R);
NEW_LINE;
V :=1 * R;
NEW_LINE; NEW_LINE;
PUT(“**+** Voltage (in Volts) = ");
IntegerIO.PUT(V, Width => 1);
pUT(H *****");
NEW_LINE;
end OHMS;

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4, Modify the program to calculate current based on
input values of voltage and resistance. Change
the type of current, voltage, and resistance to
float. Be sure that you instantiate the required
generic package within Text_IO. Follow steps 2-3
above, saving this new prog¥am as LAB7B.ADA.

5. Modify the program in step 4 to calculate
resistance based on input values of current and
voltage. Follow steps 2-3 above, saving this new
program as LAB7C.ADA.

6. Power down computer, and clean up area.

53

61

--*************************************-—;

-~=-* Qhm’s Law, Current Calculation *--;
--************t**i*********************--;

-=- Author’s Name ¢ TEACHER GUIDE ;
-~ Assignment Number : LAB # II.C, Procedure 4

- e o e - Program Executive e e o 0 o o e e e
-- Below is a solution for Lab # II.C, procedure number 4.
-~ This solution may be used by the instructor as a guide
-~ for helping students complete the laboratory ass:.gnment.

with TEXT IO; use TEXT_IO;
procedure OHMS2 is

package FloatIO is new FLOAT_IO(FLOAT);
use FloatlIO:;

V, I, R: FLOAT;

begin
PUT("Enter Voltage (in Volts): ");
GET(V);
NEW_LINE;
PUT(*Enter Resistance (in Ohms): ");
GET(R);
NEW_LINE;
I :=V / R;
NEW_LINE; NEW_LINE;
PUT("**#*+*% Current (in Amps) = ");
PUT(I, Aft => 2, Exp => 0);
PUT(" *kk*kny,
NEW_LINE;
end OHMS2;

=54~

--**************t*************************-—;

--* Ohm's Law, Resistance Calculation *--;
--*************i****t*********************-_:

-= Author’s Name : TEACHER GUIDE :
~=- Assignment Number ¢ LAB # II.C, Procedure 5;
------ o 0 o e o e e Program Executive ———————————

-- Below is a solution for Lab # II.C, procedure 5.

-- This solution may be used by the instructor as a guide
~- for helping students complete the laboratory
assignment.

--ﬂ----_----,--------------------—----Q-ﬂ---ﬁu---—----_—.

with TEXT_I0; use TEXT_IO;
procedure QOHMS3 is

package FloatIO is new FLOAT_IO(FLOAT);
use FloatlIO;

V, I, R: FLOAT;

begin
PUT("Enter Current (in Amps): *);
GET(I);
NEW_LINE;
PUT("Entexr Voltage (in Volts): ");
GET(V);
NEW_LINE;
Rs=V / I;
NEW_LINE; NEW_LINE;
PUT("w**+* Resistance (in Ohms) = ");
PUT(R, Aft => 2, Exp => 0);
PUT(" **hdwn).
NEW_LINE;
end OHMS3;

~55~

ILP II.D
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define the type Boolean.

2. Understand the following functions, and be able
to diagram the truth tables for them:

not and
ox xor

3. Identify the operations that are available for
mixed types, and describe the returned results.

4. Define the following predefined subtypes:

Natural Positive
Short_Integer Long_Integer
Short_Float Long_Float

5. Identify what predefined operations are provided
b{ package STANDARD for strings, and identify
what is returned by these operations.
V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2., Participate in class discussion of presented
lecture.

~56-

61

V. LEARNING ACTIVITIES (continued):

3. CAI Assignment - Block VI
AETECH "Ada Training Environment® or "IntegrAda”
with “On-Line Training and Reference Module“.

Read & take notes on the following sections:
Block VI, Lesson 1, Topics 1-10

a. Using package STANDARD.
b. Boolean functions.
c. Integer functions.
d. Float functions.
e. Mixed functions.
f. Type Character.
g. ASCII control constants.
. ASCII character constants.
i. Predefined subtypes.
j. String functions.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and “IntegrAda“
with “On-Line Training and Reference Module®.

VII. PRESENTATION
A. Introduction

1. Define package STANDARD as a package which
provides mangaprimary operators for the
predefined Ada types (i.e. '+’ for Integers).
Remind students that they don’t have to
instantiate the package because it is not a
generic. Package STANDARD is automaticallY
withed” and “used" by the compiler for al

units.
B. Instructional Topics and Key Points
TOPIC KEY POINT
1. Type BOOLEAN la. A predefined t which can

have a value of either true
or false., Has the operators
=, », <, etc. defined for it.
(give examples).

2. Logical Operators and | 2a. not (for X) - the value of X
their Truth Values is reversed.

2b, and (X AND Y) ~both X and Y
must be true to return true:

X Y Result

F F F

F T F

T F F

T iy T
-57-

Q ‘ l;s

B. Instructional Topics and Key Points

TOPIC

KEY POINT

2. Logical Operators and

their Truth Values
{(Continued)

3. Mixing Types

4. Predefined Subtypes

5. Strings

2C. or (X OR Y) - either X or Y
must be true to return true:

X Y Result

Hrimgn
W3
3r3n

2d. xor (X OR Y but not both) =
either x or y can be true to
return true, but not both of

them:

X Y Result
F F F

T F T

F T T

T T F

3a. The following operations are
available for mixing real
numbers with integers:
Multiplication - defined for
either real or integer as
first number. Returns real.
Division - denominator is
integer. Returns real.

4a. Natural 0..integer’last
Positive 1l..integer’last
Short_Integer, Long Integer
Short Float, Long Float - all
are implementation defined,
where computer defines
bounda ased on its own
internal structure.

5a., Definition - unconstrained
array of characters.

5b. Operations:
=, € >, <=, >=, [c
(give exampies)

S5c. & - will concatenate any

combination of strings and
characters. Returns string.

58~

Gt

B. Instructional Topics and Key Points

TOPIC KEY POINT

6. Arrays 6a. Basic operations include
assignment, menbership tests,
indexed components, qualifi-
cation, and explicit
conversion. For one dimen-
sional arrays, slices and
string operations are
supported.

-59-

67

LAB II.D
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Compile, bind, debug, and execute an Ada Program
which outputs Natural and Positive type objects.

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda” with "On-Line Training and
Reference Module"”.

3. Student Data Disk.
VII. PROCEDURE

l. Write a procedure which declares Object_1 as a
Positive Integer, and Object_2 as a Natural
Integer. Output the smallest value possible
(‘First) for each of the objects. Save this
program as LAB8.asDA. ,

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

-60-

-_**i*********************%**************t*--3

- Working with Package Standard LY
--*********************************.*******-n:

-- Author’s Name : TEACHER GUIDE ;
-~ Assignment Number s LAB # II.D ;
e o e e e e - e Program Executive ——emmcecce————

-- Below is a solution for Lab # II.D. This solution may
-~ be used by the instructor as a guide for helping
-~ students complete the laboratory assignment.

with TEXT_IO; use TEXT I0;

procedure PRINT FIRSTS is

package PositiveIO is new INTEGER_IO(POSITIVE);
package NaturallO is new INTEGER_IO(NATURAL);

Object_1 : POSITIVE;
Object_2 : NATURAL;

begin
Ob;rct_1 ¢= POSITIVE'FIRST;
bjet_2 := NATURAL’FIRST;
NEWN_ LINE;
PUT("Smallest Possible POSITIVE value is: ");
PositivelId.2('T(Object_1, Width => 2);
NEW_LINE; NWEW_LINE;
PUT("Smallest Possible NATURAL value is: ");
NaturallO.PUT(Object_ 2, Width => 2);
NEW_LINE;

end PRINT FIRSTS;

~61-

64

ILP II.E

INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

l. Define variable objects.
2. Define the following types:
a. Integer (including positive and natural).
b. Real (including fixed and float).
¢. Character.
d. String.

3. Perform simple variable object declarations with
initializations.

4. Perform simple variable object assignment.
V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment" or "IntegrAda”
with "On-Line Training and Reference Module'.
Read & take notes on the following sections:
Block II, Lesson 1, Topic 2
2. Simple Declarations.
VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda”
with "On-Line Training and Reference Module™.

~62-

. il

VII. PRESENTATION
A. Introduction

1. Use an example of a person’s age being a
variable; include:

String - July 1, 1960
integer - 7114%60
Real - 711960.6

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Variables la. In Ada, variables are one
type of objects.

1b. variables provide a way to
save and retrieve data.

l1c. Variables of different t{pes
cannot be mixed implicitly.

2. Variable Types 2a. Discrete:

Integer - A signed (+/-)
wiiole #.(no fractions or
decimals) may utilize
isolated embedded
underscores. Two predefined
subtypes:

Natural-includes 0
Positive-doesn’t include 0.

2b. Real - A signed (+/-)
approximation of a number
with a fractional or decimal
part. Two types:
Fixed - Real numbers where
approximation’s error bound
is specified as an absolute
value. Error bound is called
%he delta of the fixed point

e.
Float - Real numbers where
approximation’s error bound
is specified b{ a8 minimum
ggmygr of significant decimal
igits.

2c. Character -A digit, letter

or some other s ngie symbol.

2d. String - One or more
characters; a one dimensional
unconstrained array whose
components are characters.

-63-

71

B. Instructional Topics and Key Points

TOPIC

KEY POINT

3. Variable Object
Declaration

4. Variable Assignment

3a.

3b.

3c.

3d.

4a,

4b.

4c.

4d.

Select a:meaningfﬁl
identifier to reference the
variable.

Sgecif the type of object
that variable maI
contain. (give examples)

Optionally assign the object
an initial value. Identifiers
must start with alpha
character, may be any
reasonable length, may
contain letters/digits/&
underscores, no blanks, no 2
adjacent underscores (single
ded underscores; no
trailing underscores).

Variables have no value
unless initialized, or given
a value in an assignment
statement.

Use := to make assignment
of right side, to variable
object on left side.

Identifier appears on left
side of assignment statement.

Expression on right side must
be of the same type as

variable on left, because Ada
is a strongly typed language.

May make assignment in
declaration. This is

called initialization.
(give examples).

Y=

72

- ~ LAB II.E

VII.

STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Complete the worksheet "Simple Declarations‘.
REQUIRED MATERIALS:

l. Writing Utensil.

PROCEDURE

l. Complete the attached worksheet "Simple
Declarations".

-65-

73

LAB II.E

A.

"Simple Declarations"”
RKSHE

Perform the following operations:

1. Declare a variable of type integer.
2. Declare a variable of type string.

3. Declare a variable of type character.
4. Declare a variable of type natural.
5. Declare a variable of type positive.
6. Declare a variable of type fixed.

7. Declare a variable of type float.

8. Declare a variable of type string with 10
- characters.

9. Declare a variable of type integer, and assign
it an initial value of 10.

10. Declare a variable of type fixed, and assign it
a value.

Identify whether the following operations and
assignments are legal, or whether an error would
occur. Circle L for legal and E for error. If E,
explain why an error would result.

A:INTEGER; E:FIXED;
B:CHARACTER; F:POSITIVE;
C:STRING(1..6); G:NATURAL;
D:FLOAT;

1, A:=10; L E

2. A:=2041.2; L E

3. C:=A+B; L E

4. B:="A"; L E

5. D:=6.14; L E

6‘ E=3.45 L E

7. B:='C’; L E

9. F:=0; L E
10. G:=0; L E

-66-

LAB II.E

A.

“Simple Declarations*

ANSWERS TO QUESTIONS

Perform the following operations:

For part A, 1-10, each individual student will provide
a different answer, therefore teacher should follow
variable declaration guidelines in determining the
correctness of the provided student answer.

Identify whether the following operations and assign-
ments are legal, or whether an error would occur.
circle L for legal and E for error. If E, explain why
an error would result.

A:INTEGER:; E:FIXED;
B:CHARACTER; F:POSITIVE;
C:STRING(1..6); G:NATURAL;
D:FLOAT;

1. A:=10; L E

2, A:=2041.2; L E - number cannot have

decimal point if it is
declared as integer.

3. C:=A+B; L E - cannot perform
operations on objects
of different type.

4. B:="A"; L E ~ quotes are around
strings, not :
characters; apostrophes
are around characters.

5. D:=6.14; L E

6. E=3.45 L E - missing colon, missing

. semicolon.

7. '='C'. & E

8. F:=6.0; L E - number not positive

9. F:=0; L E - positive doesn’t include 0.

0. Gs=0; L E

ILP II1.F

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify and understand a specification for an
existing package.

2. Identify formal and actual parameters of
subprogram and function specifications.

3. Identify the three modes of parameter passing
and understand how to use each mode of
parameter passing.

4. Identifg "named” and “positional” notaticn for
use with calling subprograms.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAl Assignment - Block II
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".
Read & take notes on the following sections:
Block II, Lesson 1, Topics 3-5
a. Parameters.
b. Specifications.
c. Calling procedures.
VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and "IntegrAda”
with “On-Line Training and Reference Modulc™.

??ggsholm, Ada From The Beginning, Addison-Wesley,

~68-

Q ‘ 76

VII. PRESENTATION
A. Introduction

1. Hand out specifications for any existing

package, and have students loo
ications {those things in () } and ask

speci

at those

if anyone knows what it is.
(Answer: Formal parameters and their modes and

type).

B. Instructional Topics and Key Points

TOPIC

KEY POINT

1. Parameter

2. Specification

3. Modes of Parameters
(As used with a main
program as caller,
and a procedure as
the called unit).

la.

2a.

2b.

3a.

Definition ~ The object
(variable) used in gassing
values when a procedure or
function is called, Values
are passed from main or
calling unit to or from the
subprogram. There are two
types of parameter lists.

FORMATL, - Those parameters
listed in the specification
of a function or subprogram,
which will be used as holders
for the data passed to/from
the actual parameters.

%gggg% ~ Those parameters
isted in the calling
program, which will be used
to pass data to/from the
called function or
subprogram’s formal
procedures, on a 1:1 basis.

Definition - The portion of a
ackage, procedure, or
unction which tells the user

?ow to use, or interface with
t.

Lists parameters

that are used by that

package, function, or

grocedure. For a subprogram
t lists the names, modes,
and types of the parameters.

IN -A main procedure is said
to "drive" system. When the
main procedure calls the sub-
program and the subprogram is
executed, the actua
parameter in the call gives
value to the formal
parameter. In the

subprogram, the formal para-

-69-~

77

B. Instructional Topics and Key Points

TOPIC

KEY POINT

3. Modes of Parameters
(As used with a main
program as caller,
and a procedure as
the called unit).

4, es of
gggociation

3b.

3c.

4a.

meter acts like a constant,
therefore its value cannot be
changed (acts like a literal
in the called unit).

QUT - When the main program
calls the subprogram and the
subprogram is executed, the
formal parameter’s value is
undefined (the formal para-
meter is a variable object

in the main grocedure .

In the called unit, s
formal, since it is
undefined, may not agpear

on the right hand side of

the assignment statement.

The value of formal para-
meter, when assigned, will be
passed back to actual the
parameter upon conmpletion of
subprogram or function (sends
value back to the main
procedure).

IN_QUT

T - The formal parameter
has a value at the time of
call. In a procedure, the
formal parameter is used as
an ordinary variable, whose
value can used & changed.
If formal is changed, then
actual will be changed when
formal exports value upon
completion of the subprogram.
When a call is made the
actual parameters are
associated with formal
parameters by either named
association or positional
association.

QAMED.AggogIAgIOQ - In named

association, the name of the

formal parameter is given in

the actual call list followed
by a "=>" sign followed

by a value or variable.

POSITIONAL ASSOCIATION - In

positional association, the
value of the actual parameter
is passed via its position in
relation to the formal
specification list, on a 131
basis.

-70-

75

LAB II.F
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

l. Write a simple procedure which uses both the
predefined Ada packages STANDARD and CALENDAR for
computations, and other existing Ada SCREEN and
KEYBOARD packages for input and output.

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH “IntegrAda” with "Op-Line Training and
Reference Module".

3. Student Data Disk.

4. AETECH IntegrAda or Alsys "AdaUser" Libraries.
VII. PROCEDURE

1. Using the provided example, enter the simple
grccedure which calculates the time difference
etween two user input responses, the existing
packages SCREEN and KEYBOARD for user control and
the instantiated package from TEXT_ IO for output
of the type DURATION,

-71-

7Y

Example:

with TEXT IO,KEYBOARD,CALENDAR,SCREEN:;
use KEYBOARD,CALENDAR,SCREEN;
procedure TIME_I? is
START TIME,FINISH TIME:TIME;
package DURATION_IO is new
TEXT_I0.FIXED_IO(DURATION);
use DURATION_IO; '
KEY:KEYBOARD.A KEY;
CH:CHARACTER;
begin
loop "
CLEAR SCREEN;
PUT_LINE("Press any key to start timing, or
<ESC> to Quit=>");
PRESS (KEY,CH) ;
START_TIME:=CLOCK;
exit when KEY=ESC;
PUT_LINE("Press any key to stop
t j_mIng smazzoumssy ®
PRESS(KEY,CH);
FINISH TIME:=CLOCK;
PUT("The time elapsed between start and
Stop wag =m===>").
DURATION_IO.PUT(FINISH_TIME-START TIME);
delay 3.0;
end loop;
end TIME IT;

Save your program as LAB10.ADA.
2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program and your
executable output to turn in to ycur Instructor.

4. Power down computer, and clean up area.

.72~

Q b

ILP II1.G
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify two primary declaration statements of
the Ada grogramming language (Object
declarations and Type declarations).

2. Declare objects and types and understand the
operations that may be performed on them.

3. Identify the operation limitations for objects
and types.

4. Understand the use of a declare statement, and
why and when declarations are performed within a
program.

V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAl Assignment - Block IIIX
AETECH "Ada Training Environment" or “IntegrAda’
with "On-Line Training and Reference Module".

Read & take notes on the following sections:
Block III, Lesson 1, Topics 1-5

a. Data structures.

b. Type declarations.

c. Operxations on types.

d. Limitations on operations.

e. Location eof declarations.
VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and “IntegrAda”
with “On-Line Training and Reference Module".

-73-

51

ViI. PRESENTATION
A. Introduction

1. Compare objects and types to packing boxes in
that an object is the name of the emgty box,
and the t is what the box may hoeld. The
packing of boxes is done using initialization
or assignment.

B. Instructional Topics and Key Points
TOPIC KEY POINT

1. Primary Declarations la. Two primary declarations:
a. types b. objects

1b. Types - defines a set of
operations and values that
an object may have.

lc. Object - (variable) -~ entity
which can take on a value and
use the operations defined
for its type.

2. Declaring objects 2a. Ensure that the student can
and types do this by showing many
examples.
3. Limitations 3a. Objects cannot be assigned

values of other types; no
mixing of types (apples and
orangesl. This 1is Ada‘’s
strong typing characteristic.
3b. Objects cannot have
operations performed on them
that are not specified for
that type (refer to package
STAND. for operations).

4. Location of 4a. Declarations nmust come
Declarations bgfore any attempt to use
them.

4b. Declarations can occur in
specification part of
package, or declaration part
of block, package body, or

subprogram.

5. Declare Statement 5a. May use declare statement to
declare objects later in
structure. (i.e. inside a
local block).

5b. Three Components to Declare
Statement: "Declare" followed
by declarations then "begin"
and "end*", where begin/end
represent the local block.

74

52

1LP II.H
INFORMATION LESSON PLAN

. 1. BEOCK: II - “Fundamentals of Ada Programming"

IT. UNIT: H

?::M

111 1msson

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify the predefined Ada types including
Integer, Float, Fixed, Character, and Boolean.

2. Understand the use of explici® typing, and be
able to declare explicit types.

3. Define Integer, Float, and Fixed types.

4. Be Alle to declare objects of prudefined data
types.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented Ly Instructor.

2. Participate in class discussion of prasented
lecture.

3. CAI Assignment ~ Block IIX
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:
Block III, Lesson 2, Topics 1-5, 7, 8.

a. Prede:ined Integer types.

b. Explicit typing.

C. Assignments within e.plicit ranges.

d. Floating point types.

e. Fixed point types.

f. Enumeration type Boolean.
g. Enumeration type Character.

VI. SPECIAL RESOQURCES:

AETECH "Ada Training Environment" and “IntegrAda"
with "On-Line Training and Reference Module™.

-75-

53

VII. PRESENTATION
A. Introduction ,

1. Have students look at gackage STANDARD noting
the various types which have been predefined
by this gackage, and the operations which have
been predefined for these included types.

B. Instructional Topics and Key Points

TOPIC KEY POINT
1. Predefined Discrete la. Integer, Character,
Types Boolean.

1b. Integer - positive or
negative whole #, machine
implementation dependent.

lc. Boolean - enumeration type
which can have two values:
True or False.

1d. Character - A single alpha,
digit, or other special
symbol (the ASCII set).
Enclgse by apostrophes

(’

2. Predefined Real 2a. Float ;ggproximation of a
Types real number with a declared
degree of decimal digits.
2b. Fixed - explicitly defined
error bound or delta,
used where accuracy is

important.
3. Predefined Subtypes 3a. Natural - (0..'Last%.
3b. Positive - (1..’'Last).
4. Unconstrained Array 4a. String -~ an unconstrained
Type array of characters.
Enclosed in quotes. (" ").
5. Fixed Type 5a. Duration.
6. Explicit Typing 6a. Definition - make a certain
tgpe have more constraints
than normal.

6b. Show why to use (accuracy,
lim?ts errxoneous input,
etc).

6c. Integer - range options.
Float -~ digits & range
options.
Fixed - delta & range
options.

-76-

54

LAB II.H

V. STUDENT OBJECTIVES: At the completion of this experi-
ment, the student should be able to:

VII.

1.

Write a procedure which declares and uses scalar
type objects, and provides explicit type
conversion.

REQUIRED MATERIALS:

1.
2,

3.

Note taking materials.

AETECH "IntegrAda” with "On-Line Training and
Reference Module".

Student Data Disk.

PROCEDURE

1.

2.
3.

Write a procedure which declares two objects.
Objectl is of type Integer, and Ohiectz is of type
Float. Provide Object2 with an initial value o
20.0. Prompt the user to enter an integer from 0
to 20 and calculate the percentage of the user
input number to Object2 by:

Percentage = (Objectl/Object2) * 100

Print to the screen the value of percentage.

Save your program as LAB11.ADA.

Compile, debug, bind, and execute the program.

Print out a copy of your program and executable
code to be turned in to your Instructor.

Power down computer, and clean up area.

-77-

o
ot

R

--**it*:**t*tfre*ta*tttt--;

——t Scalar Types B s
-....********t*l‘*********i*-.—;

-- Author’s Name : TEACHER GUIDE ;
-~ Assignment Number : LAB # II.H ;
- ——————————————— - Program Executive ewecmcccccmao. -

-~ Below is a solution for Lab # II.H. This solution may
-- be used by the instructor as a guide for helping
-=- students complete the laboratory assignment.

----------Q—-----n---“--------------—n-----——--u--————---

with TEXT_I0; use TEXT_10;
procedure Scalars is

Objectl : INTEGER;
Object2 : constant FLOAT := 20.0;
Pexcentage : FLOAT;

package FloatIO is new FLOAT IO(FLOAT); .
package IntegerIO is new INTEGER_IO(INTEGER)

begin
put("Please enter an integer value in the range 0 to
20: ");
IntegerlIO.get(Objectl);
NEW_LINE; NEW_LINE;
Pexrcentage := (FLOAT(Objectl) / Object2) * 100.0;
put("Your input value is ");
FloatIO.put(Percentage, Aft => 2, Exp => 0):
put(" percent of ");
FloatIO.put(Object2, Aft => 2, Exp => 0);
put_line(".");
end Scalars;

-78=

56

ILP II.I

INFORMATION LESSON PLAN

1V. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define enumeration type.
2. Describe the ordering of enumeration types.
3. Declare enumerated types.
4. Use enumerated types.
V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block III
AETECH “Ada Training Environment” or "IntegrAda’
with "On-Line Training and Reference Module".
Read & take notes on the following sections:
Block III, Lesson 2, Topics 6
a. User defined enumerated types.
VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda”
with "On-Line Training and Reference Module".

Skansholm, Ada From the Beginning, Addison- Wesley,

VII. PRESENTATION
A. Introduction
1. Show students how much easier it is to

describe certain things using words instead of
numbers (like the days of the week).

-79~

Q - b?

B. Instructional Topics and Key Points

TOPIC

KEY POINY

1. Enumeration Types

2. I/0 of Enumerated
Objects

la,

ib,

lc.

1d.

2a,

Definition -~ allows for the
meaningful description of
real world entities.

Must follow rules for

identifiers, may not be
strings or numbers.

Use of enumerated types
allcw for better readability
and understandability.

Ranges for enumerated types
are declared, and a host of
attributes are supported.

Must provide instantiation
of generic package
Enumerated_IO for 1/0 of
enumerated types, using the
particular enumerated type
as the actual parameter.

LAB II.IX

LABORATORY EXPERIMENT

Fundamentals of Ada

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

l. Write a grocedure which instantiates the package
Enumeration_ IO, and provides output for a user
declared enumerated type.

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module"”.

3. Student Data Disk.
VII. PROCEDURE

l. Write a grocedure which simulates a traffic light.
Use the feollowing declaration:

type StopLightType is (Red, Yellow, Green);
Start the light at green. Delay 5 seconds. Turn
the light to yellow. Delay 3 seconds. Turn the
light to red.” Delay five seconds. Turn the light
back to green. Save your lab as LAB12.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

-81-

--i***************i********tt--;

-t Enumeration Types L
__***t**i*t*t**tti***t*t**ti*--;

-= Author’s Name ¢ TEACHER GUIDE ;
~= Assignment Number ¢ LAB # II.I ;
- e e e e = e o e e Program Executive e

-- Below is a solution for Lab # IX.I. This solution may be
-- used by the instructor as a guide for helping students
-=- complete the laboratory assignment.

D i d € WY - g G S D G G ER G G S G AL 0 S G SIS S War S G I G GED GO W SED GER TR G0 MR Gkt GED GED GuB Gun Em

with TEXT IO; use TEXT_IO;

procedure Stop Light is
type StopLightType is (Red, Yellow, Green):

Signal : StopLightType;
Message : STRING (1..22) := "The Traffic Light is: v;

package LightIO. is new ENUMERATION_IO(StopLightType):
use LightIO;

begin
gut_line("Hit <CTRL/C> to terminate Traffic Light.");
oop

Signal := Green;

put(Message);

put(Signal);

NEW_LINE;

delay(5.0);

Signal := Yellow;

put(Message);

put{(Signal);

NEW_LINE;

delay(3.0);

Signal := Red;

put(Message);

put(Signal);

NEW_LINE;

delay(5.0);

end loop;

end Stop_Light;

30U

ILP IX.J

INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define derived type.

2. Identify the syntax associated with a derived
type.

3. Identify the rules applicable for derived types.

4. Perform conversions between derived types and
base types.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block III
AETECH "Ada Training Environment” or "IntegrAda"”
with "On-Line Training and Reference Module".
Read & take notes on the following sections:
Block III, Lesson 5, Topics 1, 2.

a. Creating derived types.
b. Type conversion.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and “IntegrAda”
with “On-Line Training and Reference Module".

VII. PRESENTATION
A. Introduction
1. Introduce a football field using integer type
to describe the yard markers. Discuss that a

yard marker of 51 yards might be legal, but
wouldn’t make any sense.

-83-

a1

B. Instructional Topics and Key Points

TOPIC

KEY POINT

1. Derived Type

2. Type Conversion

la.

1b.

1c.

2a.

2b.

Definition -~ brand new type
formed f£xom a previously
declared type.

Done with keyword °"new".

May have all operations of
base type.

Derived type may be able to

-be converted back to its base

type if mixing of types is
required. This will allow
comparisons and operations to
be performed on the converted

type.

Syntax uses parenthesis
around old type, and new type
proceeding it. Must be
stored in object of new type.
(i.e. in an assignment
statement).

New_Type Object:=
New_Type(0ld_Type Object);

-84~

42

LAB II.J
RATORY ERT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

l. Write a procedure which declares and uses derived
types.

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH “IntegrAda” with "On-Line Training and
Reference Module”.

3. Student Data Disk.
VII. PROCEDURE
l. Given the following type declarations:
type SpeedLimitType is range 0..65;
3¥88.?§g§?8gimype is digits(2) range
-~ (where 520.0 represents the maximum distance

that a person may travel at the maximum speed
limit in an 8 hour day)

type HourType is range 0..8;
Write a procedure which prompts the user to enter
an expected average speed and the number of hours
expected to be driven during a trip. The program
should calculate and output to the screen the
distance that the user could expect to travel.
Save the program as LAB13.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

~-85-

_-**Q***QQ*.*******‘*****--;

b Derived Fonee s
--****0*0**#***0&_itt***t..;

-~ Author’s Name : TEACHER GUIDE ;
~=- Assignment Number ¢t LAB # II.J ;
—mememmecccecmce-e-= Program Executive «—--—-- e ———

~=- Below is a solution for Lab # IX.J. This solution may
-~ be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT_I10; use TEXT_IO;

procedure Calc_Distance is
type SpeedLimitType is range 0..65;
type DistanceType is digits(2) range 0.00..520.00;
type HourType is range 0..8;

Avg_Speed : SpeedLimitType;
Num Hours : HourType; -
Distance : DistanceType;

package DistanceIO is new FLOAT_IO(DistanceType);
package HourIO is new INTEGER_IO(HourType);
package SpeedIO is new INTEGER IO(SpeedLimitType);

begin
put("Please enter your expected average speed: ");
Speedl0.get(Avg Speed);
NEW_LINE; NEW_LINE;
put("Please enter your expected number of hours
driving: *);
HourIO.get(Num_ Hours
NEW_LINE; NEW_LINE; NEW_LINE;

Distance := DistanceType(Avg_Speed) * DistanceType (
Num_Hours);

put("You can expect to travel * %;
DistancelO.put(Distance, Aft => 2, Exp => 0);
put(" miles.");

NEW_LINE; NEW_LINE;

end CALC DISTANCE;

-86-

34

ILP II.K
INFORMATION LESSON PLAN

"Fundamentals of Ada Programmin

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define a subtype, and compare and contrast
subtypes to derived types.

2. Discuss range constraints and accuracy
constraints of subtypes.

3. Declare subtypes, and -~bjects of type subtype.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II1
AETECH "Ada Training Environment" or "IntegrAda’
with "On~-Line Training and Reference Module'.

Read & take notes on the following sections:
Block III, Lesson 5, Topics 3-6.
a. Subtypes.
b. Range constraints.
c. Accuracg constraints.
d. Index changes.
VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda”
with "On-Line Training and Reference Module”.

Skansholm, Ada from the Beginning, Addison-Wesley,
1988, pg. 105.

~-87-

:"\
(4}

VII. PRESENTATION
A. Introduction

1. Discuss altitude for a plane, and identify how
the set of integers (negative integers)
wouldn’t a§p1¥ to altitude unless plane had
crashed. Review Natural and Positive and show
how these are subtypes of Integer.

B. Instructional Topics and Xey Points

TOPIC KEY POINT
1. Subtypes la. Definition - a possible
:maller range of a declared
ype. '

1b. May be mixed with base type,
thus saving memory and
allowing for faster
execution,

lce. Can place additional range
constraints on base type.

1d. Does not increase accuracy.

le. Useful for unconstirained
arrays.

2. Predefined Subtypes 2a. Natural (0..Integer’Last).

2b. Positive (1..Integer’Last).

-88-

Jb

LAB II.K
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should Pe able to:

1. Create and use a simple proééﬁure in which
subtypes are declared.

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda” witn "On-Line Training and
Reference Module".

3. Student Data Disk.
VII. PROCEDURE

1. Write a procedure which declares the following
subtypes and objects:

Su?tyge'Letter_Grade_Type is Character range

A, .'E’;

Subtype Passing Grade Type is Letter_Grade_Type
range ‘A’..’'D’;

Subtype Num_Grade_Type is Integer range 0..100;
Input Grade:Num Grade_ Type;
Letter_Grade:Letter_Grade_Type;

Have the procedure first prompt the user for a
numeric grade from 0 through 100. When entered,
the number is evaluated and the appropriate letter
grade is assigned to the object Lettexr Grade
according to the following scale:

90 - 100 - A

80 - 89 - B
70 - 79 - C
60 - 69 - D

less than 60 - E

-89-

Q 97

VII. PROCEDURE
{(continued)

Have the procedure ocutput the entered number along
with the appropriate letter grade.
Follow the example below:

Enter a Number (0 - 100): 87

Entered Number = 87
Letter Grade = B

Save this program as LAB14.ADA,
2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

~90=

o K

_-t**t****f*t*t*****--;

—— Subtypes Hem s
__**ti*tttt***t*****__;

-= Author’s Name ¢t TEACHER GUIDE ;
-=- Assignment Number : LAB # II.K ;
-------------------- Program Executive - o e 0 e e

-- Below is a solution for Lab # II.K. This solution may
-~ be used by the instructor as a guide for helping
-~ students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;
procedure CALC_GRADE is

subtype Letter_ Grade_Type is CHARACTER range ‘A’..’E’;
§g?type'gessing_srade_mype is Letter_Grade_Type range
subtype Num Grade Type is INTEGER range 0..100;

Input_Grade : Num Grade_Type;
Letter_ Grade : Letter Grade_Type;

package GradelIO is new INTEGER_IO(Num_Grade Type);
use GradelO;

begin
gggg "Pl?ase enter a numeric grade (between 0 and
s 1 ;

get(Input_Grade);
NEW_LINE; NEW_LINE; NEW_LINE;

if (Input _Grade < 60) then
Letter_8rade := 'E’;

elsif (Input_Grade < 70) then
Letter_ Grade 3= ’'D’;

elsif (Input_Grade < 80) then
Letter Grade := 'C’;

eisif (Input Grade < 80) then
Letter_ Grade := 'B’;

else

Letter Grade := 'A’;
end if:;
put(" Entered Number = ");
put(Input_ Grade, Width => 1);
NEW_LINE;
put(" Letter Grade = ")
put(Letter_Grade);

NEW_LINE;
end CALC_GRADE;

-91-

L‘h
» -
i

ILP II.L
INFORMATION LESSON PLAN

'+ “Subprogrems"

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

Identify the two tygis of subprogram structures.
Identify proper techniques for naming
subprograns.

Compare and contrast functions and procedures.
Identify the modes of subprogram parameters.
Write simple procedures and functions.

Call procedures and functions.

Define formal and actual parameters.

Assign obgects to formal and actual parameters.
Understand the use of local variables.

WONAULILW N

L] - L d » L J L] L]

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2., Participate in class discussion of presented
lecture.

3. CAI Assignment - Block IV
AETECH "Ada Training Environment” or "IntegrAda’
with "On-Line Training and Reference Module".

Read & take notes on the following sections:
Block IV, Lesson 2, Topics 1-10.

Description.

Defini:y subprograms.
Invoking subprograms.
Parameters.

Formal and actual parameters.
Specifications.

Matching parameters.
Notational assignment.
Bodies.

Summary.

" e ® e

" ® e [

DO MO RQODR

-92-

VI.

VII.

SPECIAL RESOURCES:

AETECH "Ada Training Environment” and "IntegrAda“
with "On-Line Training and Reference Module®.

Skansholm, Ada from the Beginning, Addison-Wesley,
1988, Ch. 6, pp. 215~ .

PRESENTATION
A. Introduction
1. Discuss modularity and how programs should be
designed using a top-down approach (written
into the smallest programming units) , then
introduce subprograms.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Subprogram Structure la. Two tgpes: functions and

procedures.

1b. Functions must return a value
rocedures don’t have to.

lc. Both can have parameters;
functions orly of mode "in".

ld. Both aid modularity

le. Both must be declared.

1£. Both have bodies.

2. Parameter Modes 2a. Three types; in, out, in out

in - comes into sub from
caller. Value cannot be
changed (value is the same
after the call).

out - sub creates some value
(no value when it comes in,
or garbage value), and
returns value to where it was
called.

in out - items are passed
into a subprogram. Items can
be modified by subprogram,
and items are then passed
back to

caller.

3. Parameter Types 3a. Two types: formal and actual

formal - ones in
specifications.
actual - ones in call.

3b. Actual values are assigned to
formal values when they are
passed into sub. The sub
when completed, passes the
formal garameters back out
where they assume their
actual names.

4. Syntax 4a. Both may have parameter

specification.
4b. Both have begin and end.

~93~

101

LAB JII.L
LABORATORY EXPERIMENT

BLOCK: I - “Fandamentals of Ada Programing'

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Write a simple function.

2, Write a simple procedure.
vf. REQUIRED MATERIALS:

1. Note taking materials.

2. AETECH "IntegrAda” with “On-Line Training and
Reference Module”.

3. Student Data Disk.
'VII. PROCEDURE

1. Write a function subprogram resource which
calculates the factorial of an integer value.
Example : 41 = 24,

Use the following structure:
begin
i1f value = 1 then
return 1 ;
else

return Value * Factorial(Value - 1);
end if;
end Factorial:

Note: This is called a recursive function.
Save this as LAB 15A.ADA.

2. Compile this subprogram.

~94-

LRI 102

VII. PROCEDURE
(Continued)

3. Write a procedure subprogram resource which
calculates the area of a rectangle, given the
height, and width as integers.

Save this as LAB15B.ADA.

4. Print out a copy ¢f both LAB15A.ADA and LAB15B.ADA
source code to turn in to your Instructor.

5. Power down computer and clean up area.

~95-

103

--****t**t**t*****#****-—;

-t Subprograns R
-***t*Qt****i***t**t**-:

-~ Author’s Name
-~ Assignment Number

TEACHER GUIDE ;
LAB # II.L ;

----------------- ——— Program Executive = o o e e
-~ Below is a solution for Lab # II.L. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.
function Factorial (Value: INTEGER) return INTEGER is
begin

if (value = 1) then
return 1;
else
return Value * Factorial(Value - 1);
end if;
end Factorial;

pProcedure Calc_Area (Height, Width : in INTEGER;
Area :out INTEGER) is
begin
Area := Width * Height;
end Calc_Area;

-96~

104

ILP II.M
INFORMATION LESSON P

I1 - "Fundamentals of Ada Programming’

f@iilﬁ

mSSON r7E: sPackagest

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define package.

2. List and describe the two compilation units that
make up a package.

3. Identify the two parts of a package
specification.

4. Identify the two parts of a package body.
5. Define elaboration.

6. List the three logical ways to group programming
resources into packages.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAl Assignment - Block IV
AETECH "Ada Training Environment" or "IntegrAda"”
with "On-Line Training and Reference Module".

Read & take notes on the following sections:
Block IV, Lesson 1, Topics 1-10.

a. Description.

b. Example of a package.

¢. Package specification.
Package body.

Package bod{ (Cont.).
Package designs.

Object oriented designs.
Shared data packages.
Abstract state machines.
Summary.

Chie O 1O Q.

-97-

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment® and “IntegrAda”
with "On-Line Training and Reference Module®.

Skansholm, Ada from tl.e Beginning, Addison-Wesley,
1988, Ch. 8, pp.341-376.

VII. PRESENTATION
A. Introduction
1. Discuss that we have thus far used only the
resources contained in existing packages, and
that we can actually write our own packages.

B. Instructional Topics and Key Points

TOPIC KEY POINT
1. Packages la. Definition - group of
logically related software
entities.
lb. Two parts; specification and
body.

Specification - tells what
the package does

Body - implements the
functions that the
specification describes,

2. Package Specification | 2a. Could be divided into two
parts;

Visible - part which user can
freely use.

Hidden - (done via private or
limited private t¥pes) no
immediate access for

user; done so that user
cannot alter certain package
items (restricts access).

3. Package Body 3a. May have a declarative
segtion prior to executable
code.,

3b. Contains code that makes
package perform as the
specitication describes.

3. Package Body 3c. If specification has
{continued) procedure or function then
those subprogram bodies
appear here.

3d. May be compiled segarately
from package specification,

~98-

o 106

B. Instructional Topics and Key Points

TOPIC KEY POINT

4. Elaboration 4a. Done via the elaboration of a

*with" clause. Makes package
visible and the resources in
the package usable.

5. Package Designs 5a. Three ways to groug program
elements together into a
package;

Qbiject ented Desiqn -
gioupg g ects togatngré
Sharet ngg - groups data
structures togg:hgg (sorting

etc£ Hai have generics.
ac tat achines -~
contains specification which

tells of certain conditions
and elements within package.
(on, off, etc)

~-99-

o 107

LAB II.M

RY_EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1.

Create a simple package consisting of a procedure
and function.

VI. REQUIRED MATERIALS:

1.
2.

3.

Note taking materials.

AETECH "IntegrAda® with "On-Line Training and
Reference Module*.

Student Data Disk.

VII. PROCEDURE

1.

Using the two subprograms created in Lab 15
(LAB15SA.ADA and LAB15B.ADA) incorporate these
subprograms into a package called MATHPKG.ADA.
Compile this package, and print out a copy of your
source code to turn in to your Instructor.

Write a simple procedure to "drive" your math
package. The procedure should prompt the user to
enter an integer, and then calculate the factorial
of the input integer. 1In addition, the procedure
should prompt the user to enter a hei ht, and
width for a rectangle, and then calculate the area
of the rectangle. "Save this program as Labl6.ada.

Compile, debug, bind, and execute Labl6.ada,
Print out a copy of your package and driver, and a

copy of your executable output to turn in to your
Instructor.

. Power down computer, and clean up area.

~-100-

1C8

~-*i***i***t****ttti_-;

- Packages Poos
__t**t**tti**itt*ttt-_;

-~ Author’s Name ¢ TEACHER GUIDE ;
-~ Assignment Number : LAB # II.M ;
----- - Program Executive - e e e e e

-~ Below is a solution for Lab # II.M. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

package Math Functions is

function Factorial (Value : INTEGER) return INTEGER;
procedure Calc_Area (Height, Width : in INTEGER;
Area : out INTEGER);

end Math_ Functions;
package body Math Functions is

function Factorial (Value: INTEGER) return INTEGER

is
begin
if (Value = 1) then
return 1;
else
return value * Factorirl(Value - 1);
end if;

end Factorial;
procedure Calc_Area (Height, Width : in INTEGER;

Area: out INTEGER) is
begin
Area := Width * Height;
end Calc_Area;
end Math_Functions;

-101-~

1C4H

-—**************i************************0*****--;

 d Driver for Package Math Functions L
-_t***#***ttt*****tti***t***#tt******ti*ti***t*_—;

with TEXT IO, Math_Functions;
use TEXT_IO, Math_Functions;

procedure Test_Functions is

Height, Wide, Area : INTEGER;
Num, Result : INTEGER;

package IntegerIO is new INTEGER IO(INTEGER)
use IntegeriO;

begin
put_line("This program tests the Math_Functions
package.");
put_line("First, the Factorial of a given integer
will be calculated.");
put("Please enter the desired integer value: ")
get(Num);
NEW_LINE; NEW_LINE;
Result := Factorial(Num)
put("The Factorial of *)
put(Num, Width => 1);
put(" is *);
put(Result, Width => 1);
NEW_LINE; NEW_LINE; NEW_LINE;
put_line(“Now, the Area of a given rectangle will be
calculated.");
put("Please enter the Width of a rectangle:);
get(Wide);
NEW_LINE;
put("Please enter the Height of a rectangle: *)
get(Height);
NEW_LINE; NEW_LINE;
Calc_Area(Height, Wide, Area):
put("The Area of the given rectangle is: *);
put(Area, Width => 1);
put_line(" Square Feet.");
NEW_LINE;

end Test_Functions;

;
.
’

-102~

110

ILP II.N
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Create a simple subprogram.

2. Understand how to compile a subprogram and have a
main procedure import it.

3. Identify the two parts of a package.
4. Create a simple package.
V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block Il
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:
Block II, Lesson 1, Topics 7-9
a. Declaring subprograms.
b. Creating packages.
¢. Summary.
VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment’ and "IntegrAda”
with "On-Line Training and Reference Module”.

-103-

1ii

VII. PRESENTATION
A. Introduction

l. Tell students that a large program (such as
the one that controls the space shuttle) is
coded by many programmers; therefore each
programmer only programs a small block of
code, and these small blocks (mostly
subprogramsi are put together to form the
program. This is why we use specifications
(which link the various blocks together).

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Subprogram la. Definition - One small part
of an entire system.
Consists of functions and
procedures.

1b. Two parts to a subprogram:
a. Specification - interface.
b. Body - actual
implementation.

lc. Main Procedure -~ special form

of procedure, xruns on the
operating system, and is said
to "drive" system, .

2. Package 2a. Definition - a group of
logically related entities.

2b. Consist of two parts:
a. Specification -~ interface.
b. Body - actual
implementation.

3. Declaring Subprogram 3a. Show how an internal
subprogram is declared in
a simple procedure.

-104-

112

LAB II.N
LABORATORY EXPERIMENT

. I. BLOCK: II - ‘Fundamentals of Ada Programming”

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create and use a package of mathematical
subprogram resources.

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda” with “On-Line Training and
Reference Module”.

3. Student Data Disk.
.VII. PROCEDURE

1. Add to your math package created in Laboratory 16,
which contains a procedure resource to calculate
the area of a triangle, and a function resource to
calculate square roots. Develop a package driver
program which prompts the user to enter integer
values which are assigned as the sides of the
triangle. If the entered sides are valid sides of
a8 triangle, then return the area of the triangle;
otherwise return a message and a2llow for reentr¥
of valid sides. Valid sides are when the sum o
any two sides are greater then the third. Area is
computed with the formula:

Area = vs(s-a) (s-b) (s--c)

where
s = (a+b+c)/2

Note: You will have to convert the input sides to
floating point numbers, and develop and use

2 Square Root function from this math
library package.

-105~

Q 113

VII. PROCEDURE
(Continued)

1.

To decide whether input sides are legitimate sides
of a triangle, please use the following logic:

if sl+s2>s3 and s2+s3>sl and sl+s3>s2 then

-=-find area:
else
put_line (“"Invalid Sides");
end if;

Compile and debug your math package, saving it
again as MATHPKG.ADA.

Compile, debug, bind, and execute your driver
program, saving it as LAB17.ADA.

Print out copies of package and driver, and
executable code to turn in to your Instructor.

Power down computer, and clean up area.

-106~

114

-******************tt*************Q*f*****t**i**t*****-_;

—* Declaring Subgrograms and Creating Packages o
wmth kbbbt tdbbt Rttt id *ttt********t*i**********tt*tt*t*t-_;

-= Author’s Name ¢ TEACHER GUIDE ;
-~ Assignment Number : LAB # II.N ;
e o e e o e e Program Executive e—cecea- - o -

-~ Below is a solution for Lab # II.N. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.
package MathPkg is
function Factorial (Value : INTEGER) return INTEGER;
procedure Calc Rec_Area (Height, width : in INTEGER;
Area : out INTEGER &;
function Sqrt (Num : FLOAT) return FLOAT;
procedure Calc_Tri_Area (Sidel, Side2, Side3 : in
INTEGER; Area : out FLOAT);
end MathPkg;

package body MathPkg is
function Factorial (Value: INTEGER) return INTEGER is

begin
if (value = 1) then
return 1;
else
return Value * Factorial(Value - 1);
end if;

end Factorial;
procedure Calc_Rec_Area (Height, Width : in INTEGER;
Area : out INTEGER) is
begin
Area := Width * Height;
end Calc_Rec_Area;

- Agproximate square root, using Newton’s method:
- 1f you have a package which provides for a SQRT
-- Function, you may wish to use that, in lieu of
-=- this solution.
function Sqrt(Num : FLOAT) return FLOAT is

Root : Float := Num / 2.0;
begin

while (abs(Num -~ Root ** 2) > 2,0 * Num *

Float’Epsilon) loop
Root := (Root + Num / Root) / 2.0;

end loop;

return Root;
end Sqgrt;

-107-

procedure Calc_Tri_ Area (Sidel, Side2, Side3 : in
INTEGER;
Area : out FLOAT) is
Sum, Temp_Area, A, B, C : FLOAT;
begin
A := FLOAT (Sidel)
B := FLOAT (Side2)
C := FLOAT (Side3)
Sum := (A +B+C) / 2.0;
Temp_Area = Sum * (Sum - A) * (Sum - B) *
(Sum - C);
Area := Sqgrt(Temp_Area);
end Calc_Tri_Area;

end MathPkg;

"l W™s Wy

~108-~

. 116

—_**-—;

- Driver for MathPkg Fom s
--*****************t********i***t*************--;

with TEXT_IO, MathPkgq;
use TEXT_IO, MathPkg;

procedure Triangles is

Sidel, Side2, Side3 : INTEGER;

Area : FLOAT:

Valid : Boolean;

package IntegerIO is new INTEGER_IO(INTEGER);
use IntegerIO;

package FloatlO is new FLOAT_IO(FLOAT);

use FloatlIQ;

begin
put_line("This program will calculate the area of a
given triangle.");
put_line(*Please enter INTEGER values when lengths
are requested.");
Valid := FALSE;
while (not valid) loop
NEW_LINE;
put("Please enter length of side one: ");
get(Sidel);
NEW_LINE;
put("Please enter length of side two: ");
get(Side2);
NEW_LINE;
put("Please enter length of side three: ");
get(Side3d);
NEW_LINE; NEW_LINE;
if (Sidel + Side2 > Side3) and (Side2 + Side3 >
Sidel)
and (Sidel + Side3 > Side2) then
Valid := TRUE;
1 Calc_Tri_Area(Sidel, Side2, Side3, Area)i
else |
put_line("Invalid Sides! Try Again...");
end if;
end loop;
put("The Area of the given Triangle is: *);
put(Area, Aft => 2, Exp => 0);
put_line(" Square Feet.");
NEW_LINE;
end Triangles;

-109-

1i7

ILP II.O
INFORMATION LESSON PLAN

| 1. BUOCK: IT - *Fundanentals of Ada Programning®

| 111 LBSSON TITLE: Ada fanauase Svatax®

I1V. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify what limitations upper and lower case
letters have on Ada syntax.

Define identifiers and discuss their limitations.
Define and identify numeric literals.

Define and identify character literals.

Define and identify string literals.

Define and identify the following delimiters:
(from the Ada Language Reference Manual,

section 2.2)

(15 - N8

; : ’ () . => oo $=

7. Define reserved word and identify their
limitations.

8. Define program documentation, and discuss its
importance for good programming practice.

V. LEARNING ACTIVITIES:

1. Take notes on lecture Eresented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment” oxr "IntegrAda"
with “On-Line Training and Reference Module".

Read & take notes on the following sections:
Block II; Lesson 2, Topics 1~10

a. Character Set.

b. Lexical Units.

c. Identifiers.

d. Numeric Literals.

e. Character Literals.
. Strings

. Simple Declarations.
. Compound Delimiters.
Reserved Words.
Comments.

e 30 Hh

-110~

1i8

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment® and "IntegrAda”
with "On-Line Training and Reference Module®.

igggsholm, Ada From The Beginning, Addison-Wesley,

VII. PRESENTATION
A. Introduction

1. Discuss how our English symbols make our
language understandable to us.

B. Instructional Topics and Key Points
TOPIC KEY POINT

1. Syntax for upper la. Compiler will not distinquish
and lower case between upper and lower case
because Ada is a non-case
sensitive lanquage.

1b. Conventional to put reserved
words in lower case.

2, Identifier 2a. Can be used to name variable
objects, data structures,
program units, constants,
exceptions, etc.

2b. Start with letter followed by
letters, numbers, or single
embedded undexrscores.

2c. Must fit on one line.

3. Numeric literals 3a. Are #'s either exact or real.
: 3b. Can use single embedded
underscores without
any effect (improves
readability).

4. Character Literal 4a. Define ASCII. Also note
package ASCII is inside
package STANDARD.

4b. Any ASCII character enclosed
by apostrophes.

5. Strings 5a. Define Strings.
(Unconstrained array of
characters)

5b. Identify string type and
discuss the need to provide
the string length at the time
of object declaration.

-111-

110

B. Instructional Topics and Key Points

TOPIC

KEY POINT

6. Delimiters

7. Reserved Words

8. Comments

6a.

7a.
7b.

g8a.

8b.

Discuse the uses of the
following delimiters:

; end of line.

type declaration.
separates two objects in
type declaration.

* attributes.

. field identifier.

=> is equal to.

L N 2 ran el

:= assignment.

- 6w

Define.

Give handout with all
reserved words on them and
review each reserved word
discussed to date (get
handout from Ada Language
Reference Manual 2.9)

Discuss the importance of
ood programming
ocumentation.

Discuss how to comment.

-112-

120

LAB II.O

LABORATORY EXPERIMENT

”k;'i;‘BLOCKz.II - “Fnhdaméﬁ;alévof'hhaP:qg:é@mingﬁﬁgiﬁ}j
ITLUNITs O e

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Provide meaningful comments within
Ada programs.

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda” with "On-Line Training and
Reference Module'.

3. Student Data Disk.
VII. PROCEDURE

1. Using the math package and driver created in
Laboratory Experiment 17, edit both the package
and the driver incorporating meaningful comments
within each so that a user will be able to
understand the operation of your package and
driver. Save the package as” MATHPKG.ADA and your

driver as LAB18.ADA.
2. Recompile, debug, bind, and execute the driver
grior to recompiling the math package and see what
appens.

3. Print out a copy of your program, and your
executable ocutput to turn in to your Instructor.

4. Power down computer, and clean up area.

-113~

-_*t***tii***********t****************t*i******-_:

—— Ada Language Syntax: Using Comments LT
-_********t*t***t*t*t**ﬁ*t***t*t*****it**i****t--;

Author’s Name : TEACHER GUIDE ;
Assignment Number ¢ LAB # II.O ;

-~ The quality and quantity of comments will of course vary

from student to student, but a reasonable collection
might include the following:

In the package:
-- In function Factorial:
-- Mention that this is a recursive function.
-- Explain that Factorial(X) is X * X1 * X-2 +
--001*3*2*10
-~ In function Sqrt:
~- Explain (or at least mention) the method used.
-- In procedure Calc_Tri_Area:
-- Explain the need to convert lengths to
-- floating point values.
~~ Possibly point out the usage of package
-=- function Sqrt.

== In the driver program:
-=- State that program calculates the area of a
-= triangle.
-=- Explain the determination of a valid triangle.
-- State that user is repeatedly prompted for¢ lengths
-- of sides until a valid triangle is obtained.
-~ Point out the usage of package procedure (
== Calc_Tri Area).

-114-

ILP II.P

INFORMATION LESSON PLAN

1. BLOCK: II - “Fundamentals of Ada Progremming

| 11, zesson erme

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Understand and develop a simple program using the
if..then control structure.

2. Understand and develop a simple program using an
if.. then..else control structure.

3. Understand and develop a simple program using an
if..then..elsif..else control structure.

V. LLARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Blcck II
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module".
Read & take notes on the following sections:
Block II, Lesson 3, Topics 1-3
a. if..then.
b. if..then..else.
c. if..then..elsif..else.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment' and "IntegrAda”
with "On-Line Training and Reference Module".

Skansholm, Ada From The Beginning, Addison-Wesley,
1988, pp. 55~56.

=115~

L 1:&3

VII. PRESENTATION

A. Introduction

1. Discuss why it is important for computers to
be able to make choices or decisions based
upon known conditions.

B.

Instructional Topics and Key Points

TOPIC

KEY POINT

If..then
la.

1c.
1d.

2. If..then..else 2a.

2b.

2¢C.

3. If..then..elsif..

. 2ls8e

3a.

3b.

3c.

ib. 3

Used to determine whether an
action will be taken. If the
*if" part of the statement is
true, then execute that code,
otherwise ignore it.
Components of structure.

a. if b. then c. end if

No semicolon after then.
Indentation for easier
reading.

Used to make a choice between
2 items. If the "if" part of
statement is true then
execute it, and ignore the
*else” section; otherwise if
the "if" part of the
statement is false then
ignore it, and execute the
"else™ section of the
structure.

4 Components of structure:

a. if b. then c. else

d. end if

Else not followed by
semicolon.

Used to make a choice between
2 or more items. Provides
for unlimited selection of
action. A minimum of five
components of the structure
are required:

a.If b.then
c. else d. elsif e. endif
Identiiy elsif spelling.

Every elsif has a
corresponding then.

-116-

124

LAB II.PA
LABORATO EXPERI

V. STUDENT OBJECTIVES:

l.

The student will learn how to use simple If..Then
control structures in Ada.

VI. REQUIRED MATERIALS:

1.
2.

3.

Note taking materials.

AETECH "IntegrAda" with "On-Line Training and
Reference Module".

Student data diskette.

VII. PROCEDURE:

1.

Write a procedure to prompt the user to enter 2
integers. If the lst Integer entered is larger
than the second integer entered output: "The first
number is larger than the second number"

Save this program as LAB19.ADA.

Compile, debug, bind, and execute the program.

Print out a copy of your program and output to
turn in to your Instructor.

Power down computer, and clean up area.

-117-

125

--*t*****************tt&tﬁ**iﬁ*************-—;

-t The If...Then Control Structure L
-******t*****t*****t********ttt*ttt*tt****-;

-~ Author’s Name ¢ TEACHER GUIDE ;
-- Assignment Number : LAB # II.PA ;
------------------- Program Executive e —m e~ ———

-- Below is a solution for Lab # II.PA. This solution may

-~ be used by the instructor as a gquide for helping
-~ students complete the laboratory assignment,

with TEXT IO; use TEXT I0;
procedure Larger is
First, Second : INTEGER;

package IntegerIO is new INTEGER IO(INTEGER);
use IntegerlO;

begin
put("Please enter an integer value: ");
get(First);
NEW_LINE;
put("Now, please enter a second integer value: ")
get(Second);
NEW_LINE; NEW_LINE;

if (First > Second) then

put(“The first number is larger than the second
number.");
end if;

end Larger;

.
[

-118-

LAB II.PB
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create and use an If..Then..Elsif..Else
Control Structure in Ada.

VI. REQUIRED MATERIALS:
l. Note taking materials.

2., AETECH "IntegrAda" with “On-Line Training and
Reference Module”.

3. Student Data Disk.

.VII. PROCEDURE

l. Write a main procedure which prompts the user to
input a character. The program outputs whether
the character entered was an upper case letter, a
lower case letter, or not a letter at all.
Utilize an If..Then..Elsif..Else Structure. Save
the program as LAB20.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

-119~

-**********tu*t***************************************-_;

- The (f..Then..Elsif..Else Control Structure Fam s
-*********w************t*******i*********t************--;

-=- Author’s Name ¢+ TEACHER GUIDE ;
-~ Assignment Number : LAB # II.PB ;
-------------- - Program Executive ~ceemcccccccceccmanaea

-- Below is a solution for Lab # II.PB. This solution may
-- be used by the instructor as a guide for helping
-- students complete ihe laboratory assignment.

procedure Check_Letter is
Letter : CHARACTER;

begin
put("Pick a character, any character... ");
get(Letter);
NEW_LINE; NEW_LINE;
if (Letter in ’‘A’..’Z’') then
put{ "Chosen character is an uppercase letter.");
elsif (Letter in ‘a’..’z’) then
L put("Chosen character is a lowercase letter.");
else
put("Chosen character is not a letter at all.");
end if;
end Check_Letter;

-120~

128

ILP II.Q
INFORMATION LESSON PLAN

oo o
111 Tessow

T. BLOCK: II - “Pundanentals of Ada Programning®

PITLE, rghe’E

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify the four required components'of a case
structure.

2. Recognize that a case structure must have at
least two alternatives.

3. Understand when to use a case structure.

4. Idegtify what types a case structure may be used
with.

5. Understand the purpose of a null statement.
6. Write a program using the case structure.
V. LEARNING ACTIVITIES:
l. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment” or "IntegrAda”
with "On-Line Training and Reference Module"”.
Read & take notes on the following sections:
Block II, Lesson 3, Topics 4, 10

a. Case statement.
b. Null statement.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and "IntegrAda”
with "On-Line Training and Reference Module”.

Volper, Katz, Introduction to Programming using Ada,

Prentice-Hall, 1990, pp. 191-195,

-121-

124

VII. PRESENTATION
A. Introduction

1, Comgare a case structure with a multiple
choice structure on a test.

B. Instructional Topics and Key Peoints

TOPIC KEY POINT

1. Case Structure la. Four required components
to a case structure:

a. case b. is c¢. when
d. end case

1b. Used for multiple choice
decisions related to a single
variable.

Can only be used with dis-
crete types (t¥pes with a
known number of values). For
types other than discrete, a
case structure may not be
utilized.

1d. All possible values for
¥ariable must be accounted
or.

1c

le. Can accomplish 1ld. above by
using the "when othexs"
option.

l1£. => means "if it is equal to".

2. Null Statement 2a. To satisfy 1d. above,
sometimes it is necessary to
use a null statement.

2b. Null statement means no
action will be taken (as it
relates to case structures).

-122~

Q 13“

LAB II.Q
LABORATORY EXPERIMERT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create and use a case control structure.
VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Mocdule".

3. Student Data Disk.
VII. PROCEDURE

l. Write a program which prompts the user to input 5
integers, and prints to screen after each number
has been entered whether the number is odd or
even. Assume only odd or even numbers between 1
and 20 are evaluated. Use | Notation. Output
variations should use the following: "Odd
Number"; "Even Number"; “Number Out of Range".

Use a case control structure. Save your program
as LAB21.ADA,

2. Compile, debug, bind, and execute the progran,

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

-123-

o 131

‘with TEXT_IO; use TEXT 10;

__*****tt*t*li*i*****’*********t******--;

e The Case Control Structure ¥ 2
--**tt****ttttt*****t*t*tt**tt********--:

~= Author’s Name ¢ TEACHER GUIDE ;
-=- Assignment Number ¢ LAB # II.Q ;
---------------- - Program Executive e e——cee————

- Below is a solution for Lab # II.Q. This solution may
-=- be used by the instructor as a guide for helping
-~ students complete the laboratory assignment.

T W D R D D G GV NS e R G D D S D G G GED D s S S I SED a SED A G 4w WS W

procednre"mry Case is
Numl, Num2, Num3, Num4, Num5 : INTEGER:;

package IntegerIo is new INTEGER_IO(INTEGER);
use Integerl

grocedure Odd_Or_ Even(Num: in INTEGER) is

case Num i
when 1 | 315|179 11]13]15] 17] 19
=>

put_line("Odd Number");

when 2 [4 | 6|8} 10] 12] 14] 16| 18] 20
put line("Even Number®);

when others => put_line("Number Out of Range"

):
end case-
NEW LINE.
end 0dd_Or_ Even;

begin
gpnt _line("Please e?ter Integer values in the range

NEW_LINE:
put("Enter first value: "):
8et Numl);

dd_Or Even(Numl);
put Ehter second value: ");
get Num2);

dd_Or Even(Num2);
put "Enter third value: ")
get Num3);

dd_Or Even(Num3);
put{ "Enter fourth value: *);

et{ Numé4);

dd Or Even(Num4);

"Ehter fifth value: *)

gdt Num5);

d_Or Even(Num5);

end Try Case;

-124-

132

ILP II.R
INFORMATION LESSON PLAN

| T BOCK: I1 - “Tandanentals of Ma Fesgraming:

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Understand when and how to use a loop structure.

2. Describe the differences between a loop..exit,
for..loop, in reverse..loop, and while..loop.

3. Write a program using each of the structures in
(2) above.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module“.
Read & take notes on the following sections:
Block II, Lesson 3, Topics 5-8
a. Loop..exit.
b. For..loop.
¢. In reverse..loop.
d. While..loop.
VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and “IntegrAda”
with "On-Line Training and Reference Module”.

Volper, Katz, Introduction to Programming using Ada,
Prentice Hall, 1990, pp. 159.

VII. PRESENTATION
A. Introduction

1. Compare a loop structure with the countdown of
the space shuttle launch.

B. Instructional Topics and Key Points

TOPIC KEY POINT
1. loop..exit la. Allows for multiple
iteration of Ada program
statements.

1b. Termination of the loop
occurs when the exit
statement is reached, and
program begins execution
after the end loop statement.

1c. Loops may be nested (one loop
completely inside another).

ld. Loops may be named.

2. For..loop 2a. Specialized loop which has a
built in counter to count the
number of times that the loop
has iterated (i.e. an integer
range like 1..10).

2b. Index values exist inside
loop, and do not exist
outside of loop. Loop
garameters cannot be altered
nside loop.

2c. For..loop structures can be
named, and may contain exit
statements.

3. In reverse..loop 3a. Same as for..loop only counts
backwards. However, range is
given forward (from

smallest to largest).

4. While..loop 4a. Conditional loop; will loop
as long as condition remains
true. When condition is
false, program execution
begins after the end loop.

=126~

Q 134

LAB II.RA
LABORATORY EXPERIMENT

T - ‘Fundamentals of Ada Programming’

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create and use a simple Ada loop structure, which
contains an exit statement.

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module"”.

3. Student Data Disk.
'VII. PROCEDURE

1. Create a procedure which uses a simple loop.. exit
structure, which prompts the user to enter
integers from the keyboard, and adds the input
integers in an accumulator. The program quits
when the accumulator equals or exceeds 100. The
program should output to the monitor the value of
the accumulator as it goes through the loop each
time. When the value of the accumulator reaches
or exceeds 100, the program should display "Normal
Program Termination”. Save your program as
LAB22 .ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.

-127-

. 135

——tt****tﬁ*************i*******t***i**-_;

- The Loop Control Structure Ly
—_t*****ifi***t*****tt***B********ttt*_-;

~- Below is a solution for Lab # II.RA. This solution
-=- be used by the instructor as a guide for helping
-~ students complete the laboratory assignment.

with TEXT I0; use TEXT_ IO;
procedure Simple Sum is
Value, Sum : INTEGER;

package IntegerIO is new INTEGER_IO(INTEGER);
use IntegerlIO;

begin
Sum := 0;
loop
put("Please enter an Integer value: ");
get(value);
NEW_LINE;
Sum := Sum + Value;
put("Current Value of Sum is: ");
put(Sum, Width => 1);
NEW_LINE; NEW_LINE;
exit when Sum >= 100;
end loop;
put_line("Normal Program Termination.");
end Simple_Sum;

== Author’s Name ¢ TEACHER GUIDE ;
~= Assignment Number ¢t LAB # II.RA ;
- e 2y o o o e Program EXeCutive eacoccommcmeaa

may

-128~

136

LAB II.RB
RY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Write an Ada program which uses a simple
For.. loop.

2. Write an Ada program which uses a reverse loop.
VI. REQUIRED MATERIALS:
l. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module".

3. Student Data Disk.
'VII. PROCEDURE
1. Write a procedure which prompts the user for a
positive integer, and then outputs the summation
of numbers from 1 to the input integer value.
Save this program as LAB23A.ADA
2. Compile, debug, bind, and execute the prcgram.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

-129-
137

4. Write a program which simulates a shuttle
countdown starting at 10 seconds and going to
zero. Qutput "lift-off" after countdown. Use a
delay statement. Use a reverse loop. Output
should be as follows:

10

W ~I00

"LIFT - OFF"
Save this program as LAB23B.ADA.
5. Follow steps 2 and 3 above.

6. Power down computer, and clean up area.

~-130~

Q 138

_-*ft*****t****i****tt**t********g-;

el Loop and Reverse Loop Pomems
--t*t*t**t********t**t*!t*tttt***-_;

-~ Author’s Name ¢ TEACHER GUIDE ;
-= Assignment Number : LAB # II.RB ;
L Program Executive eccccccocccccace-

-- Below is a solution for Lab # II.RB. This solution may
-- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT_IO; use TEXT IX0;

procedure For Sum is
I, Limit, Sum : NATURAL;
package NatIO is new INTEGER_IO(NATURAL);
use NatIO;
begin
put("Enter a Positive Integer to serve as the limit of a
summation: *);

get(Limit &;
NEW_LINE; NEW_LINE;
Sum := 0:;

for T in 1 .. Limit loop
Sum := Sum + I;
end 1oo§;
put("The Summation of all Integers from 1 to ");
put(Limit, Width => 1);

put{ " iss " %;
put(Sum, Width => 1);
NEW_LINE;

end For_ Sum;

with TEXT_IO; use TiXT_IO;
procedure CountDown is
I : NATURAL:;
package NatIO is new INTEGER_IO(NATURAL);
use NatlIO;
begin
put_line("Countdown...");
NEW_LINE;
for I in reverse 1 .. 10 loop
put(I, Width => 3);
ut _line(" ...")
elay(1.0);
end loop;
put_line(" LIFT-OFF");
end CountDown;

.
s

-131-~

134

LAB II.RC
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create and use a simple Ada procedure which uses a
While..Loop structure.

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda” with "On-Line Training and
Reference Module".

3. Student Data Disk.
VII. PROCEDURE

l. Create a procedure which uses a while loop to
input an undetermined number of student grades.
The grades can have a value between 1 and 100
(range 1..100). Input these grades from the
keyboard. The loop is terminated when a value
outside the grade range is given. Finally, the
procedure outputs to the screen the average of the
grades entered. Save this program as LAB24.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in"to your Instructor.

4. Power down computer, and clean up area.

-132-

140

-—i*tt**.**********t****i*****t*t********t***_-;

- The While..Loop Control Structure T
_-******Qt**********i***tt*t*t*tt*ti**i******--;

-- Author’s Name ¢ TEACHER GUIDE ;
-~ Assignment Number : LAB # II.RC ;
- ot e e e e e e e Program Executive ~eccrcmeccccccaaea

-- Below is a solution for Lab # II.RC. This solution may
-~ be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT IO; wuse TEXT 10;
procedure Average Grades is
Grade, Sum, Nulm_Grades : INTEGER;
Avg : FLOAT;
package IntegerIO is new INTEGER_IO(INTEGER);
use IntegerlO:;
b package ReallO is new FLOAT_IO(FLOAT };
egin
Sum := 0;
Num Grades := 0;
put_line("Please NOTE: All Test Scores are to be in
the range 1 .. 100.");
put_line("Enter a value outside that range
to terminate.");
NEW_LINE; NEW_LINE;
put("Please Enter First Test Score: ");
get(Grade);
NEW LINE;
while (Grade in 1 .. 100) loop
Num_Grades := Num Grades + 1;
Sum := Sum + Grade;
put{ "Please Enter Next Test Score (negative ox > 100
to stop): ”;;
get(Grad ;
NEW_LINE;
end loop;
NEW_LINE; NEW_LINE;
if (Num_Grades > 0) then
vg := FLOAT (Sum) / FLOAT (Num_Grades);

put("Average of ");
put(Num_Grades, width => 1);
put 8 grgdes is:A; H 5
RealIO.put(Avg, => 2, E => 0);
NEW_LINE; *®)
else
put_line(“There is no Average because No Grades were
Entered!i”);
end if;

end Average Grades;

-133-~

141

ILP II.S
ANFORMATION LESSON PLAN

| I. BIOCK: I - "Fundamentals of Ada Programming’

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Understand how a program’s style makes the
program more understandable.

2. Choose appropriate names for types and objects.
3. Choose appropriate names for packages.

4. Choose appropriate names for procedures and
functions.

5. Understand the importance of indentation, and be
able to indent the logical levels of a program.

6. Know when and when not to place a cr/lf in a
program.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II
AETECH “Ada Training Environment" or "IntegrAda”
with "On~-Line Training and Reference Module".

Read & take notes on the following sections:
Block II, Lesson 4, Topics 1, 2, 5-10

a. Precision in naming.

b. Simple objects and types.

c. Packages.

d. Other grogram units.

e. Logical indentation.

f. Declaration/assignment alignment.
g. Conditional blocks,

h. Line spacing.

~134-

142

VI. SPECIAL RESOURCES:

AETECH “Ada Training Environment® and "IntegrAda”
with “On-Line Training and Reference Module®.

ViI. PRESENTATION
A. Introduction
l. Describe how hard it would be to read a book
or text that 2ust ran together, without any

chapters, table of contents, etc. and compare
this to a program without any style.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Naming la. Names should be descriptive
enough to allow another
programmer to understand what
the program is doing.

1b. All lexical units must fit
onto 1 line. 1Block II,
Lesson 2, Topic 2 for lexical
information).

lc. Again, Ada is non-case
sensitive. It makes no
difference to compiler
whether names are in
upper or lower case letters,
or a combination of both.
(Refer to mil-spec 1815a for
required gov’t style; also
AETECH'’s "Integrada® for
"Pretty Print").

2. Objects and Types 2a. Object or "box" must be
declared to be of a certain
type; box can only hold its
own type of things.

2b. Objects and obgect-types
should be named using noun
names. e names should
contain e word "type" at
the end of their new name.

3. Naming Packages 3a. A package should have a name
that conveys to the user
what the package provides,
thus naming of a package may
require additional thought
s0 that the user will know
what tools are available
within package.

-135~

Q 143

B. Instructional Topics and Key Points

TOPIC

KEY POINT

4. Naming procedures
and functions

5. Program Indentation

6. Line Spacing

4a.

4b.

5a.

5b.

5c.

5d.

6a.

Procedures perform some
action; therefore, use
imperative verd phrases when
naming them, that represent
some action.

Functions return a value;
therefore, use a noun when
naming them that represents
the value.

Align a program so that it
becomes more readable and
understandable.

Main programming blocks
(grocedure. begin, end, etc)
should stand out.

If structures, case
structures, loops, etc
should be indented to stand
out. This will not only
create more readable code,
but also makes debugging the
program easier.

Align colons, is, variables,
etc. for better readability.

Use line spaces wherever it
makes a program more
readable. Don’t put line
sgaces in between same kinds
of declarations.

-136~

144

///\\

BLOCK III

Advanced Ada Topics

145

ILP III.A
INFORMATIO SSON PLAN

"

I1 - "Advanced Ada Topics®

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

l. Define attribute.

2. Use the syntax for expressing an attribute.

3. Be able to identify and use the following
attributes:

'First
‘Last
'Succ
'Pred
'PoOS
‘Digits
‘Small
'‘Large

V. LEARNING ACTIVITIES:
l. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block IIIX
AETECH "Ada Training Environment" or “IntegrAda"
with “On-Line Training and Reference Module".

Read & take notes on the following sections:
Block III, Lesson 2, Topics 9-10

a. Using attributes,
b. Scalar attributes.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and “IntegrAda”
with "On-Line Training and Reference Module".

ggggsholm, Ada From the Beginning, Addison- Wesley,

~137-

o 146

VII. PRESENTATION
A. Introduction

1. Explain how attributes may be able to help a
program become more readable and
understandable,
show attributes of list.

Enumerate days of week and

B. Instructional Topics and Key Points

TOPIC

KEY POINT

1. Attributes

2. Integer Attributes

3. Float Attributes

4. Enumeration Attributes

5. Character Attributes

la.

1b.

2a

3a.

4a.

S5a.

Definition - because scalar
types are ordered sets of
elements, attributes
(relationships within list)
may be able to be defined.
An attribute is a
characterxistic of a value in
a set.

Syntax is to use an
apostrophe, then (if
required) other data in
parenthesis.

A'Pirst - yeilds the lower
bound of A for a scalar.

A'Last - yeilds upper bound
of A for a scalar.

'Digits -~ Number of
significant digits.

’Small - smallest number that
can be stored.

'Large - largest number that
can be stored.

'Pirst - first item in
enumerated list.

'Last - last item in
enumerated list.

‘Prec(Item) - returns
predecessor of ITEM in list.
‘Succ(Item) - returns
successor of ITEM in list.

*Pos(Char) -~ gives position
number of Char in ASCII
table.

‘Val(NUM) - gives char. in
Num position within ASCII
table.

-138-

147

ILP III.B

INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify what would be returned by the following
attributes used with their appropriate types:

‘Val(X) ‘Length
*Range ‘Value(X)
‘Aft ! Tiage (X)
‘Fore 'Width

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block V
AETECH "Ada Training Environment" or "IntegrAda”
with “On-Line Training and Reference Module".
Read & take notes on the following sections:
Block V, Lesson 4, Topics 1-4, 6.
a. Notation and use.
b. Discrete types.
c. Integers.

d. Arrays.
e. Floating/Fixed point.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and “IntegrAda”
with "On-Line Training and Reference Module".

~139-

ENTe 148

VII. PRESENTATION
A. Introduction
1. Discuss how using attributes can help in the
describing of items, and make the finding/
retrieving of items easier.

B. Instructional Topics and Key Points

TOPIC KEY POINT

1. List of Attributes la. ’'VAL(X) -returns value of
data at position X.

lb. *value(X) - returns type
value of X.

lc. ’‘Image(X) - returns string
value of X. Returns string
decimal value for integer X.

1d. ’Width - returns the longest
value of X.

le. ’'Length -~ xreturns the number
of items in list.

1f. ’Range ~ returns the range of
the list from 'first..’last.

lg. ’Aft - returns the number of
digits after decimal point.

lh. ’Fore - returns the number of
digits before the decimal
point (includes -sign).

li., ’Delta - returns declared
delta.

lj. ’Digits - returns the
declared digits.

-140~

Q 149

ILP IXI.C
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

l. Define record.

2. Declare a record type.

3. Declare objects of type record.

4. Assign components of a declared object of type
record using dot notation, and either positional
association, or named association.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II & III
AETECH "Ada Training Environment"” or “"IntegrAda"
with "On~Line Training and Reference Module".

Read & take notes on the following sections:
Block II, Lesson 4, Topic 4.

a. Records

Block III, Lesson 4, Topics 1-3, 5, 6.

a. Record types.

b. Object declaration.

C. Selected component notation.
d. Aggregates.

e. Composite types.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and "IntegrAda”
with "On-Line Training and Reference Module”.

Skansholm, Ada from the Beginning, Addison-Wesley,
1988, pg. 320.

-141-

VII. PRESENTATION

A. Introduction

l. Describe how a person’s address is made up of
different data types, and how records could be
used to describe an address.

B. Instructional Topics and Key Points

TOPIC

KEY POINT

1. Record Definition

2. Record Declaration

3. Declaring objects of
type Record

4. Component Assignment

la.

1b.

2a.

2b.
2¢.

3a.

4a.

Group of possible
heterogeneous (not
of the same type) items.

Records usually consists of
components of different types
which may be scalars, arrays,
tasks, or other records.

type is record
<object declarations>

end recorxd;

Indent for readability.

end record has ;

Done as the declaration of
other objects is done; only
mast come after the record
type has been declared.

May be performed several

ways:

a. Dot notation -
object.component_name
followed by :=.

b. positional association

c. named association (moust
readable).

~142-

LAB II1.C
LABORATORY EXPERIMENT

IV. LAB TITLE: ‘"Records"

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create and use a main Ada procedure which utilizes
a record construct.

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH “IntegrAda” with "On-Line Training and
Reference Module".

3. Student Data Disk.
VII. PROCEDURE
1. Create the following record types:

type Name_type is record
Names String(l..20);
F Name: String(1l..20);
MY : Character;
end record;

type St_Type is record
Name: Name_type;
Age Integer:
GPA : Float;

end record;

Declare 3 objects of type St_Type. Have the user
enter the data for 3 students. Output the 3
students names, age, and GPA of each student.
Calculate the average age, and average GPA of the
three students and output this information.
Save this program as LAB25.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable output to turn in to your Instructor.

4. Power down computer, and clean up area.
~143~

152

_-*tﬁtit****i******--;

—— Records et |

__***t*it*******ﬁ**--;

-« Author’s Name ¢ TEACHER GUIDE ;
-~ Assignment Number s LAB # III.C ;
--------- - Program Executive e —m e ——————

-~ Below is a solution for Lab # III.C. This solution may
-=- be used by the instructor as a guide for helping
-- students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO;
procedure Students is

type Name_myge is
recor

L _Name : STRING{ 1..20
F_Name : STRING(1..20
MI : CHARACTER;

end record;

type St_Type is
regoxd N 2yp
ame : Name e;
Age : INTEGER:
GPA : FLOAT;
end record;

St _1, st_2, St_3 : St_Type;
Avg _Age, I : INTEGER;
Avg_GPA : FLOAT;

e N

package IntegerlO is new INTEGER_IO(INTEGER);
use IntegerlO;

package FloatIO is new FLOAT_ IO(FLOAT);
usge FloatlO;

grogedure get_data(Student : out St_Type) is
egin
put(" Last Name: ======> »);

[}
while (not End_of_Line) loop
I :=1I+ 1;
get(Student.Name.L Name(I));
end loop;
Student.Name.L_Name(I + 1..20) := (I + 1..20 => ’);
SKIP_LINE;
gut(6 First Name: =====> *);
s= 0;
while (not End_of_Line) loop
I s=1+ 1;
get(Student.Name.P_Name(I));
end loop;
Student.Name.F_Name(I + 1..20) := (I + 1..20 => ¢ ¥

-144-

153

NEW_LINE;

put{ °® ‘Middle Initial: => ");
get(Student.Name.MI):

NEW_LINE;

put » Ageg mRmmsosomessed> f);
get{ Student.Age);

NEW_LINE;

Put " GPA: ==omsmmooommmzd #)'

get(Student.GPA);
NEW_LINE; NEW _LINE; SKIP_LINE;
end get_ data- |
grogedure print _data({ Student : in St_Type) is
egin
put{ Student.Name.L Name);
put(Student.Name.F | Name :
put(Student.Name.MY L
put{ Student.Age, Width => 9 A,
put(Student.GPA, Fore => 3, Aft => 2, Exp => 0)
NEW_LINE;
end print_data;

begin ~- procedure Students
put line(“Please enter the following information for
Studeg d#é :"S% .
et_data H
gut line "PIéasé enter the following information for
Stu egtdzz :"s .
e a H
gut line{ * Iéaéé enter the following information for
Student #3 :* %
get data(St_3);
W_LINE

NE
put line(" Summary of Student
Data: l
' put_line("=eece-- - Name -wewececccccrnaccccnaa ")s
put_line{ * Last First Initial

Age™ GPA");
print_data(St_1);
print_data(St 2 ;
print data(St_3);
NEW_LINE; NEW LINE;
Avg_Age := (St_1. Age + St 2.Age + St_3.Age l
put "The Awera e Age of the Three Students is:
put(Avg Age, Width => 1);
NEW_LINE; "NEW LINE:
Avg GPA := (SE_1. GPA + St _2.GPA + St_3.GPA i
put{ “The Avergge GPA of the Three Students is:
put(Avg GPA, t => 2, Exp => 0);
NEW_LINE;

end Student5°

z)

Ta” N0
e

- .

-s O
~e

-145-

ILP III.D
I ION LE N _P

IV. LESSON OBJECTIVES: At the completion of this lesson,

the student should be able to:
1. Define array.
2. Identify how to index an array.

3. Define unconstrained array, and identify the
syntax for an unconstrained array.

4. Describe multidimensional arrays, and list an
example of their use.

5. Assign components to a declared array using
named and positional association.

LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2, Participate in class discussion of presented
lecture.

3. CAI Assignment - Block II & III
AETECH "Ada Training Environment"” or "IntegrAda"”
with "On-Line Training and Reference Module".

Read & take notes on the following sections:
Block II, Lesson 4, Topics 3

a. Arrays

Block III, Lesson 3, Topics 1-11

a. Simple arrays.
b. Indices.
c. Unconstrained arrays.
d. Multidimensional arrays.
e. Operations with components.
f£f. Assignments.
g. Aggregates.

. Positional association.
i. Named association.
a. Aggregate Ranges.

. Initialization.

~146~

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "InteqrAda”
with "On-Line Training and Reference Module®.

P. Texel, Introductory Ada, Wadsworth Publishing,
1986, pp. 198-199.

VII. PRESENTATION
A. Introduction
1. Compare an egg box with a regular box, in that
an egg box has several (12) different areas

which store items of the same type (eggs). Then
introduce arrays, and compare them to the eggq

box.
B. Instructional Topics and Key Points
TOPIC KEY POINT
1. Array Definition la. Group of homogeneous (of the

same type) objects.

1b. Two types of arrays;
constrained and
unconstrained.
constrained -~ known
boundaries at time of type
declaration.
unconstrained - boundaries
are not known at time of type
declaration.

2. Indexing Arrays 2a. Definition - indexing is
method of labeling each
element in an array. Any
discrete type may be used to
index an array. Done inside
parentheses.

3. Unconstrained Arrays 3a. Uses < > syntax tu inform the
compiler that bounds are not
known at this time.

4. Multidimensional 4a. Arrays can have as many
Arrays dimensions as required.
Helps to better identify
what’s being programmed,
leading to better under-
standability and read-

ability.

-147-
Q 1}55

B. Instructional Topics and Key Points

TOPIC

KEY POINT

5. Assigning Array
Components

5a. May be done several ways:
1. By index number

2.
3.

5.

~148-

By slice (a range of
indices).

By positional association
(the position of the
assignment items represent
their assignment to

array) . ‘

By named association (list
name of array component,
followed by => to the
assignment component.

By a combination of above.

157

, LAB III.D
LABORATORY EXERCIS

IV. LAB TITLE: ‘“Arxrrays"®

V. STUDENT OBJECTIVES: At the completion of this
laboratory exercise, the student should be able to:

1. Create and use array type objects in an Ada
main procedure.

VI. REQUIRED MATERIALS
1. Note taking materials.

2. AETECH "IntegrAda"” with "On-Line Training and
Reference Module".

3. Student Data Disk.
VII. PROCEDURE

1. Write a procedure which declares two arrays with
indices ranging from 1 to 10. Using a "for" loop,
assign the components of the first array with the
consecutive even numbers from 2 to 20. Using a
simple loop, assign the components of the second
array with the consecutive odd numbers from 1 to
19. Finally, using a "while" loop, output the
following table cf values:

INDEX FIRST SECOND FIRST+SECOND FIRST-SECOND

1 2 1 3 1
2 4 3 7 1
3 6 5 11 1
etc [] e 0 0 o o 0 ¢ 00 o0 e
10 20 19 39 1l

Save your program as LAB26.ADA.
2. Compile, bind, and execute the program.

3. Print out a copy of your source code and output to
be turned in to your Instructor.

4. Power down computer, and clean work up area.

-149~

Q 158

--****l‘*t*i*****t*—-;

—~— Arrays Fonoo 2
B baduieiadod d L T2 2 2 2 L L O

~= Author’s Name
-- Assignment Number

TEACHER GUIDE
LAB # III.D ;

*. 4
~e

————— e ———————— Program Executive e ———————
-« Below is a solution for Lab # III.D. This solution may
-- be used by the instructor as a guide for helping

-- students complete the laboratory assignment.

with TEXT_ IO; use TEXT I0;

procedure Try Arrays is

subtype Positions is POSITIVE range 1 .. 10;
subtype Values is POSITIVE range 1 .. 20;

Even_Array,
Odd_Array : array (Positions) of Values;

I : POSITIVE:

package PosIO is new INTEGER_XO(POSITIVE);
use PoslOQ;

begin
for I in Positions 1loop
Even Array(I) := I * 2;
end loop;

-- The following loop could easily be incorporated into the
-~ above loop

-=- (for example, by adding the statement

~- 0dd_Array(I) := Even Array(I) -~ 1;

-- immediately before the end loop;). The following

-- adheres to the Laboratory Exercise instructions.

I :=1;

loop
Odd Array(I) s=I * 2 - 1;
exit when I = 10;
I s=1+ 1;

end loop;

put_line("INDEX FIRST SECOND FIRST + SECOND
FIRST - SECOND"); |
NEW_LINE;

=150~

BRI 159

-= The following loop could also be incorporated into the
-- first loop above.

I 1= 1;

while (I <= 10) loop
put(I, Width => 3);
put{ Even_Array(I), Width => 10);
put(Odd_Array(I), Width => 11);
put{(Even Array(I) + Odd_Array(I), Width => 14);
put(Even Array(I) - Odd Array(I), Width => 19);
NEW_LINE;
I =14+ 1;

end loop;

end Try_ Arrays;

=151~

160

ILP III.E
INP! TION LE PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Discuss the importance of handling exceptions.

2. Identify Ada’s two types of exception type
objects.

3. List and provide a brief description of the
following predefined exception type objects:

Constriant Error Status_Error End Error
Numeric_ErTor Mode ETror Data_Error
Storage Error Name_Error Layout_Error
Program_Error Use_Error

Tasking Error Device Error

4. List the sequence of events which take place
during the handling of an exception.

5 Provide the necessary Ada statements to declare,
raise, and handle exceptions.

6. Define propagation, and understand the conse-
quences of using handlers.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block V
AETECH "Ada Training Environment" or "IntegrAda"
with "On-Line Training and Reference Module”.

Read & take notes on the following sections:
Block V, Lesson 1, Topics 1-6

a. Exception conditions.

b. Predefined.

c. User defined.

d. Handlingiexceptions.

e. Propagation.
f. Multiple exceptions.

-152-

o 1(;1

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and "IntegrAda“
with "On-Line Training and Reference Module".

Skansholm, Ada from the Beginning, Addison-Wesley,
1988, pp. 431-445. '

VII. PRESENTATION
A. Introduction
1. Discuss how even the best programs can go
haywire, and how even the most thought out
program needs to have a mechanism to handle
unforeseen conditions.
B. Instructional Topics and Key Points

TOPIC KEY POINT

1. Exception Handlers la. pefinition - An Ada structure
which allows for the handling
(correction) of unexpected or
unforeseen circumstances, so
that a program can take the
appropriate action(s).

lb. Exception Declarations -
Declares a name for an
exception. Names are used in
a) raise statements.

b) exception handler.
¢) renaming declarations.

lc. Name 1 [, Name 2...]):
exception; (can use multiple
names).

1d. The response to exceptions is
specified by a handler. The
handler can be coded in a
construct that is either a
block statement, oxr the body
of a subprogram, package,
task unit, or gemeric unit.
Such a construct is called
a "frame".

le. Handlers handle exceptions
raised in their frames.

1f. Raise statement - raises
an exception,
raise [excegtion_name];

lg. Nameless raising can occur
only in a handler, and is
used to re-raise the chosen
exception of the handler and
propagate it, even though it
was handled.

-153-

o | 162

B. Instructional Topics and Key Points

TOPIC

KEY POINT

2. Predefined Exceptions

2. Predefined Exceptions
(continued)

2a. Those exceptions that can be

propagated by the basic
operations and the predefined
operators. Predefined
exceptions are included on
all Ada implementations.

Constraint Error - occurs
when an attempt to violate a
range constraint has been
made, or to access an unknown
component of a composite

type.

Numeric_Error - occurs if an
attempt is made to perform
an impossible numeric
operation (i.e. divide by 0).

Storage Error - occurs if
memory is exhausted.

Program Exrror- occurs upon
an attempt to call a subpro-
gram or activate a task, or
elaborate a generic
instantiation, when the body
of the unit has not been
elaborated.

Status_Error - Occurs if an
attempt is made to read from
or write to a file that is
not open. Also occurs if an
attempt is made to open an
already opened file.

Mode Error - Occurs if an
attempt is made to read from
a file which has been opened
for writing to, or attempting
to write to a file which has
been opened to read from.

Name Error - Occurs if an
attempt to open a file with
the wrong external file_name.

~154-

163

B. Instructional Topics and Key Points

TOPIC

KEY POINT

2. Predefined Exceptions
(continued)

3. User Defined
Exceptions

4. Propagation of
Exceptions

Use_Error - Occurs if an
attempt has been made to open
a file fro an illegal use
(open a LPT1: file for
reading from)

Device Error - Occurs during
a failure of an 1/0 device.

End Error - Occurs if an
attenpt is made to read
something from a file and an
EOF has been reached.

Data_Error - Occurs when an
item is read in from a file
and is not of the correct

type.

Layout~Error - QOccurs if an
attempt is made to reference
a line or column number which
is beyond present boundaries.

3a. Are exceptions whose names

4a.

4al.

4a2.

are given in exception
declaration statenments.
Those names can only be used
in raise statement, renaming
statements, and exception
handlers. ,

Two ways to propagate an
exceptions:
a: By not handling it in
the fram2 it occurred in.
b: By using a raise statement
to handle it.

When an exception is raised,
normal program execution is
abandoned, and control is
transferred to an exception
handler.

The selection of the handler
depends on whether the
exception is raised during
execution of the program
statements, or during
elaboration of the
declarations.

-155-

164

.B. Instructional

Topics and Key Points

TOPIC

KEY POINT

4. Propagation of
Exceptions
(continued)

4a3.

4a4.

4as.

4b.

During execution of
_statements: Frame has a

handler-control passed to
handler; after a successful
handling, the frame doesn’t
have a handler-exception
propagated. o

If in a subprogram body -
raised at call ; If in a
block-raised immediately

‘after block; If in a

package-raised at end of
package frame; If in a task-
task becomes complete.

If an exception occurs
during execution of an
exception handler, the

execution of the handler is

abandoned, and the above
rules are followed.

Exceptions should be
placed at lowest program
level (frames)) as possible.

‘Each frame should handle

its own unforeseen condi-
tions.

4bl. During elaboration of

declarations; if an
exception is raised, then
it will be propogated. If
the exception was raised
in a subprogram body-raised
at call-abandons main;
Raised in a block-raised at
end of frame; Raised in a
package body~raised at end
of frame; Raised during a
task-task completes and
Tasking_Error is raised.

| d

-156-

165

LAB III.E

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1.

Create and use exception handlers inside
subprogram units.

VI. REQUIRED MATERIALS:

1.

2.

3.

Note taking materials.

AETECH "IntegrAda” with "On~Line Training and
Reference Module",

Student Data Disk.

-VII. PROCEDURE

1.

2.

Modify the MATH.PKG created in Laboratory
Experiment 16 and 17 by providing exception
handlers within the package. When the driver
programs prompts the user to input integer values,
either for FACTORIAL, or AREA_OF SQUARE, the
exception handler should be able to handle
erroneous (such as CHARACTER) input data, and
prompt the user for reentry. Save your new
improved package as LAB27.ADA.

Compile, debug, bind, and execute the program.

Print out a copy of your program, and your
executable output to turn in to your Instructor.

- Tower down computer, and clean up area.

~-157-

166

--***Q****i***i*********:

-t Excegtions LB S
s X 1 LT 2T ****0*******;

-= Author’s Name ¢ TEACHER GUIDE ;
-=- Assignment Number : LAB # III.E ;

- Program Executive - o o o o e e o
-- Below is a solution for Lab # III.E. This solution may
~- be used by the instructor as a guide for helping

-~ students complete the laboratory assignment.

with TEXT IO, MathPkg;

use TEXT_ IO, MathPkg;

procedure Triangles is

Sidel, Side2, Side3 : POSITIVE;

Area : FLOAT;

Valid : Boolean;

package PositiveIO is new INTEGER _IO(POSITIVE);
use PositivelO:;

package FloatIO is new FLOAT_IO(FLOAT);

use FloatlIO;

begin
put_;inei "“This program will calculate the area of a
given triangle.*);
pu;_lineé "Please enter INTEGER values when lengths are
requested.”);
Valid := FALSE;
w?ile (not valid) loop
oop
begin -- block
NEW_LINE;
put("Please enter length of side one: ");
get(Sidel);
NEW_LINE;
exit;
exception
when Data_Error =>
put_lines "All Lengths must be Positive
Integersii®);
SKIP LINE;
when Others =>
put_line("Miscellaneous Erxor!!");
: raise; -- propagate
end; -- block
end loop;
SKIP_LINE;
loop
begin -~ block
NEW LINE;
put("Please enter length of side two: ");

~158=-

167

get{ Side2);
NEW_LINE;
exit;
exception
when Data_Error =>
put_line(*"All Lengths must be Positive
Integexsi!”);
SKIP_LINE;
when Others =>
put_line("Miscellaneous Error!i!");
raise; -- propagate
end; -- block
end loop;
SKIP_LINE;
loop
begin -~ block
NEW_LINE;
put("Please enter length of side three: ");
get(Side3);
NEW_LINE;
exit;
exception
when Data_Error =>
put_line("All Lengths must be Positive
Integers!ii*);
SKIP_LINE;
when Others =>
put_line("Miscellaneous Errort!");
raise; -- propagate
end; -~ block
end loop;
NEW_LINE; SKIP_LINE;
if (Sidel + Side2 > Side3) and (Side2 + Side3 > Sidel)
and (Sidel + Side3 > Side2) then
Valid := TRUE;
1 Calc_Tri_Area(Sidel, Side2, Side3, Area);
else
put_line("Invalid Sides! Try Again...");
end if;
end loop;
put("The Area of the given Triangle is: ");
put(Area, Aft => 2, Exp => 0);
put_line(" Square Feet.");
NEW LINE;
end Triangles;

-159-

168

ILP III.F
RMATION ON P

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Identify the uses of private and limited private
types.

2. Discuss the limitations of private and limited
private types.

3. Identify where private and limited private types
may be declared.

4. List the three steps necessary to declare a
private or limited private type.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assi ent - Block V
AETECH "Ada Training Environment” or "IntegrAda”
with "On-Line Training and Reference Module".

Read & take notes on the following sections:
Block V, Lesson 2, Topics 1-6.

a. Limiting operations.

b. Declaration.

c. Private types.

d. Limited private types.
e. Hiding data structures.
f. Information hiding.

V1. SPECIAL RESOURCES:

AETECH "Ada Training Envircnment" and "IntegrAda"
with "On-Line Training and Reference Module".

Skansholm, Ada from the Beginnin Addison-Wesle
1988, pp. 372-376. ! ye

~160-

‘ 169

VII. PRESENTATION
A. Introduction

1. Discuss how easy it is for someone to use a
package in a manner which the programmer
didn’t intend the package to be used. Discuss
why a programmer may want to limit the
availability of certain operations that the -
user could perform; then introduce private and
limited private types.

B. Instructional Topics and Key Points

TOPIC KEY POINT
1. Private and Limited la. Are types for which the set
Private Types of possible values is well

defined, but not directly
available to the user. This
prevents user from making use
of the internal structure of
the type. Also, encapsulates
data, where only those .
operations specified in the

cka ma e rformed on
pa ge > 4 rd og§

those type o ects.
2. Private and Limited 2a. Are only allowed as a dec~-
Private Type larative item at the visible
Declarations. part of a package, or as the

generic parameter declaration
n a generic formal part.
2b. Limit the operations that may
be performed on objects de-
clared as private or limited
private.
2c. The type declaration is in
the visible part of a
package; serves to limit the
uses of objects of type
private by outside program
units.
2d. A type declaration must have
& corresponding declaration
of a type with the same
identifier. It must appear
as a declarative item of the
private part of a package.
2e. Type declaration must not be
an unconstrained type.
2f. T{pe name cannot appear
within simple expressions,
or in occurrences of derived
types.
2g. "Private e Declaration”
creates the type
corresponding; "Full Type
Declaration” specifies the
definition of the type.

-161-

B. Instructional Topics and Key Points

TOPIC

KEY POINT

3. Operations of Private
and Limited Private

Types.

4. Declaring Private
and Limited Private

Types

3a.

3b.

4a.

Operations of a Private Type
{Cutside Package) ~ allows
assignment, membership tests,
selected components, qualifi-
cation and explicit convers-
ion, attributes (type and

- object), tests for eggality
e

or inequality. (Ins
Package) - operations

licitly declared by the
full ¢t declaration.
Operations of a limited
Private - no assignment,
no tests for equality or
inequality; no initialization
of ohiects, no use as a
generic formal *in’
paraneter, no aggegrates, and
no concatenation. Task type
is a limited private type.

Three steps:

a. Declare a t{gg to be
private or ited
private.

b. Identify exgortable
components for type.

c. Complete the corresponding
full ¢t declaration in
the private part of the
package.

-162~

171

ILP III.G
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define generic.
2. Pefine instantiation.
3. Instantiate a predefined generic unit.
4. List the advantages of generic type units.
5. Use generic types in a program.
V. LEARNINIG ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment -~ Block V
AETECH "Ada Training Environment"” or “IntegrAda’
with "On-Line Training and Reference Module".

Read & take notes on the following sections:
Block V, Lesson 3, Topics 1-9

a. Description,
b. Generic package definition.
c. Instantiation. '

d. Instantiation of predefined generic packages.
e. Generic subprograms.

f. Subprogram instantiation.

g. Generic parameters.

h. Passing parameters to generic packages.

i. Generics and productivity.

VI, SPECIAL RESOURCES:

AETECH "Ada Training Environment” and "IntegrAda”
with "On-Line Training and Reference Module”.

~-163~

172

VII. PRESENTATION

A. Introduction

1. Discuss a box of generic corn flakes and
describe how the box could contain Kelloggq's
Corn Flakes, Post Corn Flakes, etc. Then use
this idea to introduce generics in
programming (generic swap).

B. Instructional Topics and Key Points

TOPIC

KEY POINT

1. Generic

2. Instantiation

la.

1b.

1c.
1d.

2a.

2b.

2c.

2d.

Definition - called a tem-
plate, which is parameterized
or not, that allow'ggcka es
and subprograms to coded
which wall work for multiple
types. User must provide type
to generic when
instantiating.

Allows for units to be
reused, which supports
reusability, a software
engineering goal. -

Two types of genexic units,
subprograms and packages.
Generic declarations, along
with their formal parameters,
must be declared before they
can be used.

Definition - to create a co
of a generic package which 1is
usable (to make a generic
package available for use) by
passing the required types
and parameters to the package
or subprogram and namin% a
copy it. An instance of a
generic package becomes a
package. An instance of a
generic subprogram becomes a
subprogram,
Type in generic is conven-
tionally “element", New type
is passed to generic, takes
the place of element type.
May use either positional
or named association when
passing parameters to a
generic.
Rules for Instantiation:
1. Explicit actual for every
formal unless a default.
2. Can use positional or
named.
3. Expressions can match
parameters of mode in.

-164-~

173

B. Instructional Topics and Key Points

TOPIC

KEY POINT

3. Predefined Generic
Package

4. Generic Naming

5. Generic Formal Objects

6. Generic Formal Types

7. Generic Formal
Subprograms

3a.

4a.

4b.

4c.

4d.

5a.

5b.

6a.

7a.

7b.

Integer 10
Float_I0
Enumeration_ IO
Direct_ IO
Sequential_ IO

Outside the specifications
and body of a generic unit,
the name of the unit denotes
the generic unit.

Inside the declarative region
of a generic subprggram, the
name denotes the subprogram
obtained by the current
instantiation of the generic
unit.

Inside the declarative region
of a package, the name
denotes an instantiated
package.

Inside names of subprograms
and packages can be over-
loaded, and can be recur-
sively called.

Have a mode that is either
in or in out, with in as
default.

If declaration ends with an
expression, it is the default
expression (for "in").

Type declarations which allow
an instantiation to select
its types. Available types
are Private, Array, Access,
Discrete, Integer, Float,
Fixed.

Includes a declaration with
2 default forms: <> or
égubprogram or entry(task)).

neric Bodies ~ are a
temglate for the corres-
ponding packages or
subprogram bodies. Everg
generic subprogram must have
a body. Generic bodies
appear the same as bodies
for non-generic units.

-165=~

174

LAB 1I1I.G
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1.

Write a simple generic procedure utilizing a
private type.

VI. REQUIRED MATERIALS:

1.
2.

3.

Note taking materials.

AETECH "IntegrAda” with “On-Line Training and
Reference Module'.

Student Data Disk.

VII. PROCEDURE

1.

2.
3.

4.

Write a generic procedure which takes two objects
éObjectl and Object2), and swaps their contents.
rite a driver which instantiates the generic swap
procedure for integer and character types. The
driver should grompt the user to input an integer
into Objectl, input an integer into Object2, swap
their contents, and display the swapped results.
The same idea should be followed for the swagping
of two characters. Save this program as LAB28.ADA.

Compile, debug, bind, and execute the program.

Print out a copy of your program, and your
executable output to turn in to your Instructor.

Power down computer, and clean up area.

-166~

--******************--;

- Generics L
--*******t*****i****—-;

-= Author’s Name ¢ TEACHER GUIDE ;
-=- Assignment Number ¢ LAB # III.G ;

e o e e Program Executive = e m
~-=- Below is a solution for Lab # III.G. This solution may
-- be used by the instructor as a guide for helping

-=- students complete the laboratory assignment.

- an TS e e L - Al S G5 ED s G S G S GRS Gh G D Gn OF GF G G5 SR G5 S G AF S5 WD Er S S guy tay S G s Sy

with TEXT 10; use TEXT_IO;
procedure Try_Generics is

Intl, Int2 : INTEGER:
Chari, Char2 : CHARACTER;

generic
type Swap Type is private;
procedure Swap (Objectl, okjectz t in out Swap_ Type);

procedure Swap (Objectl, Object2 : in out Swap_Type) is
Temp : Swap_Type := Objectl;
n

begi
Objectl := Object2;
Object2 := Temp;
end Swap;

procedure Swap_Ints is new Swap(INTEGER);
procedure Swap_Chars is new Swap(CHARACTER);

package IntegerIo is new INTEGER_IO(INTEGER);
use IntegerlO;

begin -- Try Generics
put("PleaSe enter an Integer value: ");

et(Intl);
EW_LINE;
put("Now enter a Second Integer value: ");

ggg Int2);
_LINE; NEW_LINE:
Swap_ Ints{ Intl, Int? l;
put_Tine("After Swapping Values: "
put(" First Integer is: ===> *

ut(Intl, Width => 17);

W_LINE;
put{ "And Second Integer is: ===> ");
gg% Int2, Width => 1 &;

LINE; NEW_LINE; NEW_LINE;

put{ "Please emnter one Character: ");
get(Charl);

~-167-

NEW_LINE;

put{ “Now enter a Second Character: ");
get(Char2);

NEW_LINE; NEW_LINE;

Swap_Chars(Charl, Char2);

put_line{ “After Swapping Values: ");

put(* First Character iss ===> *);
put(Charl);
NEW_LINE;

put("And Second Character is: ===> *);
put{ Char2);
NEW_LINE;

end Try Generics;

-168-
177

ILP III.H
INFORMATION T.E

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

1. Define sequential file.
2. Create a sequential file.

3. ogen, close, read, and write sequential files and
their associated information.

4. Identify the following file functions:

Mode Name Form
Is Open End Of Pile

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment ~ Block VI
AETECH "Ada Training Environment” or "IntegrAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:
Block VI, Lesson 2, Topics 1-8, 10

a. Packages.
b. Nontextual data,
c. File objects
d. File mcodes.
e. Creating and opening files.
f. Closing, resetting, and deleting files.
g. Instantiation.
- Sequential I0 reading and writing.
i. Useful file functions.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment" and "IntegrAda”
with "On-Line Training and Reference Module”.

-169-~

Q 178

Skansholm, Ada From The Beginning, Addison-Wesley,

ViI. PRESENTA&ION
A. Introduction

1. Choose a file from a convenient filing
cabinet, and discuss this file , why it is a
file , and what information a file can
contain; then introduce sequential files.

B. Instructional Topics and Key Points
TOPIC KEY POINT

1. Sequential File ' la. Definition - A group of
related information whose
access is somewhat limited
by having to read, or write
information in a sequential
§from first to last) manner.
he file is viewed as a
sequence of values that are
transferred in the order of
their appearance, as produced
by the rrogram or by the
environment.

2. Zaquential File 2a. (P)Create -~ Gives a name to
Operationg operating system storage
Nete. P; = procedure device from a previously

iF = function declared file object
éuy filesFile_type).
ptablishes a new external
file with the given name and
form, and associates this
external file with the given
internal name. Assigns the
file object a file mode.
Default mode is Out_File.
2b. %P)Read - Reads information
rom a previously opened
file in sequential order.
Reads an element from a given
file, and ieturns the value of
the element in the item
parameter.

2c. (P)Write -writes information

to a previously created file,

in sequential order. Writes

2?? value of item to the given
e.

-170-

ny | 179

B. Instructional Topics and Key Points

TOPIC

KEY POINT

2. Sequential Files
Operations
(continued)

3. File Functions

4. Instantiation

5. Conventional Naming
Techniques

2d.

2e,

2f.

2qg.

3a.
3b.

3c.

id.

3e.

(P)Close ~Closes a previously
opened file. Severs the
association between the given
file and its external file.
The file is left closed.

Reset - Resets file pointer of
a sequential file to the first
element in the file.

(P)Open - Associates the

given file with an existing
external file, and sets the
mode of the file. The given
file is left open.

(g&nelete - Deletes the
external file associated with
the given internal name. The
given file is closed, and the
external file ceases to exist.

Mode -~ returns current mode

of the given file.

Name - Returns a string which
identifies the external file.
IS OPEN ~ Returns True if the
ile is open, otherwise

returns false.

End of file - Operates on a
file of mode In_ File.

Returns True if no more

elements can be read from

the given file; otherwise,

it returns False.

Form - Identifies the file'’s

groperties (i.e."save for 90
ays").

Because Sequential IO is

a generic gackage, it must
be instantiated for a given
data type, using parameter
Element Type. é .@, package
Int_I0 Is new Sequential IO
(Integer):

Use identifiers which are
imperative verbs or nouns.
Imperative verbs name actions,
nouns name values or
conditions. This naming
convention is used in
Sequential_ IO, where nouns are
function names, and imperative
verbs are procedure names.

-171-

180

LAB III.H
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

l. Create a sequential file.
2. Instantiate the generic package Sequential_ IO.
3. Write information to the created sequential file.

4. Read previously stored information from the
sequential file.

5. Close the sequential file.
VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module.

3. IntegrAda Environment or Alsys "AdaUser"
Libraries.

3. Student Data Disk.
VII. PROCEDURE

1. Create a sequential file to handle the input and
output of data of the following type:

type PersonDataType is record
Name:String(1l..10);
Age :Integer;
~ Favorite_Color:COLORS.A COLOR;
end record;

-172-

181

3.
4.

The sequential file should provide input and
output for the following data:s

Name Age Favorite Color

l, Susie 23 WHITE

2. Fred 12 RED

3. Barney 10 BLUE

4. Debbie 24 MAGENTA

5. Sam 18 GREEN

6. Andy 16 YELLOW

7. Amy 18 BLUE

Create a procedure to write the above data into a
sequential file, from the keyboard. Save this
program as LAB29A.ADA.

Create a procedure which will xead the data from
the sequential file, and display the data to the

screen as shown above. $Save this program as
LAB29B.ADA.

Compile, debug, bind, and execute the programs.

Print out a copy of each program, and a copy of
your executable output to turn in to your
Instructor.

Write a procedure to display only the fourth name
from the list above, and that name’s age and
favorite color. Save this program as LAB29C.ADA.
Print out a copy of your program, and executable
code *to turn in to your Instructor.

Power down computer, and clean up area.

-173~

182

AT

S AL T I T RIS L T 2 T

- Sequential Files Forms
—-***************'&**********--;

-~ Author’s Name ¢ TEACHER GUIDE ;
-= Assignment Number : LAB # III.H ;
----------------- Program Executive - o o

~-- Below is a solution for Lab # IXIX.H. This solution may
-~ be used by the instructor as a guide for helping
-~ students complete the laboratory assignment.

with TEXT IO, SEQUENTIAL_IO, Colors;
use TEXT_ IO, Colors;

procedure Seq Write is

type Person_Data is

recoxd
Name ¢ STRING(1 .. 10);
Age ¢ INTEGER;
Favorite_Color : Colors.A_Color;

end record;
package IntegerIO is new INTEGER_IO(INTEGER);

package ColorIO is new ENUMERATION_IO(Colors.A_Color);
use ColorIO;

package PersonI0 is new SEQUENTIAL_IO(Person_Data);
use PersonlO;

Tenp_Name § STRING(1 .. 10);
I : NATURAL;

Person_File : PersonlO.FILE_TYPE;
Person : Person_Data;

begin
create(file => Person_File, name => “People.DAT");

-- uses default (and required) mode value of
OUT_FILE

put("Enter Name (type END to quit): ===> *);
I := 0;
while (not End_of_Line) loop
I :=1I+ 1;
get(Temp Name(I));
end loop;

-174~

183

Temp Name{ I + 1 ., 10) ¢= (I + 1 .. 10 =>):
NEW_LINE; |
while (Temp_Name /= “END *) loop
Person.Name := Temp Name; ‘
put({ "Enter Person’s jge: ===ssss=s===s=> ");
IntegerlO.get(Person.Age);
NEW_LINE; ‘
put{ “Enter Pexson’s Favorite Color: ==> ");

ColorI0.get(Person.Favorite_Color);

NEW LINE; NEW_LINE;
SKIP_LINE;

write(file => Person_File, item => Person);
put (sEnter Name (type END to quit): ===> ");
I 2= .

while i not End_of Line) loop

I =1+ 1;

get(Temp Name(I));
end loon;
Temp Name(I + 1 .. 10) t= (I +1 ., 10 => 7 ');
NEW T.INE;

end loop;
close(file => Person_File);

end Seq Write;

with TEXT I0, SEQUENTIAL_IO, Colors;

" use TEXT_TO, Coloxs;

Procedure Seq_Read is
type Person Data is

recoxrd
Name : STRINGé 1 .. 10 Y
Age : INTEGER;

Favorite_Color : Colors.A Color;
end record;

package IntegerIO is new INTEGER_IO(INTEGER);

package ColoxI0 is new ENUMERATION 10(Colors.A_Color);
use ColorIQ;

package PersonlQ is new SEQUENTIAL_IO(Person_Data);
use PersonIO;

~175~

154

"People.DAT");

Person_File : PersonlO.FILE_TYPE;
Person : Person Data;

I : INTEGER;
begin
put_line(" NAME AGE FAVORITE COLOR");

open(file => Person File, mode => in_file, name =>

I s= 0;
whi%e '(Inotlﬂnd_pf_rile(Person_File)) loop
s= I + 1;
read(file => Person_File, item => Person);
IntegerIO.put(I, Width => 1);
put(". ");
puti Person.Name):
IntegerIO.put(Person.Age, Width => 9);
put [2PN ‘ L] -
Colérlo.put(Person.ﬁavorite_polor):
NEW_LINE;
end loop;

close{ file => Person_File);
end Seq_Read;

with TEXT 10, SEQUENTIAL IO, Colors:
use TEXT I0, Colors:
procedure Seq Rd_4 is

type Person_Data is

record
Name : STRING(1 .. 10);
Age ¢ INTEGER;

Favorite Color : Colors.A_Color;
end record; :
package IntegerIO is new INTEGER_IO(INTEGER)

package ColorIO is new ENUMERATION_IO(Colors.A Color);
use ColorlIQ;

package Personl0 is new SEQUENTIAL IO(Person_Data);
use PersonlO;

Person_File : PersonIO.FILE TYPE;
Person : Person_Data;
I : POSITIVE;

begin

~-176-

185

open(file => Person_File, mode => in_file, name =>
“People.DAT");

for I inl .. 4 1loop
read(file => Person_File, item => Person);

end loop;

NEW_LINE;

put{ "Fourth Person’s Name: ==ss===sssz==> ");
put(Pexrson.Name };

NEW_LINE;

put("Fourth Person’s Age: ===ss=ss=s=====> ");
IntegerlIO.put(Person.Age, Width => 1);
NEW_LINE;

put(“Fourth Person’s Favorite Color: ==> ");
ColoxIO.put(Person.Favorite Color);

NEW_LINE;

close(file => Person_File);

end Seq_Rd_4;

=177~

186

ILP III.I
INFORMATION LESSON PLAN

IV. LESSON OBJECTIVES: At the completion of this lesson,
- the student should be able to: '

1. Define direct access file.
2. Create a direct access file.

3. Open, close, read, and write direct access files
and their associated information.

4. Identify the file functions Size, Index and
Set_Index which allow a user to directly access a
particular file item.

V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CA]l Assignment - Block VI
AETECH "Ada Training Environment"” or "IntegrAda"
with "On-Line Training and Reference Module”.

Read & take notes on the following sections:
Block VI, Lesson 2, Topics 1-7, 9, 10.

a. Packages.

b. Nontextual data.

c. File objects.

d. File modes.

e. Creating and opening files.

f. Closing, resetting, and deleting files.
g. Instantiation.

h. Direct_IO reading and writing.

i. Useful file functions.

~178~

Q 187

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment® and "IntegrAda"
with "On-Line Training and Reference Module".

Skansholm, Ada From The Beginning, Addison-Wesley,
1988, pp. 513-518.

VII. PRESENTATION
A. Introduction

1. Exglain that accessing record 999,999 in a
file containing a million records would take
an enormous amount of time; then introduce
direct access files, which allow a user to go
directly to the required record.

B. Instructional Topics and Key Points
TOPIC KEY POINT

l. Direct Access Files la. Definition - A file containing
a list of index numbers which
allows users to directly
access the record within the
file by use of its index
number., For direct access,
the file is viewed as a set of
elements occupying consecutive
positions in Y'nea; order: a
value can be transferred to

or from an element of the file
at any selected position.

2. Direct File Operationsj2a. Open and close same as
sequential files. An open
file has a current mode, which
is a value of one of the
mode types.

2b. Read and write use additional
parameter "from" which is
equivalent to index number.

3. File Functions 3a. Mode, Name, From, Is_Open,
%2?_0£_File same as sequential
es.

3b. Size - Returns number of items
in file (number of index
#’s). Operates on a file of
any mode.

3c¢. (P)Index - Operates on a file
of any mode, returns the
current index of a given file.

3d. éPiSet Index - Operates on a

ile of any mode. Sets the

current index of the given
file to the given value (which
may exceed the current size of
the file).

-179-

158

B. Instructional Topics and Key Points
TOPIC KEY POINT

4. Instantiation 4a. Direct_ IO is a generic
gackage therefore it must be
nstantiated with a given
e, name information, and

g ven a new name. The
:esulting package contains the
declaration of a file type
(called File T{pe for sets of
elements (of the given type)
as well as the operations
applicable to these files
(open, reset, etc.).

~180-

| « 188

LAB III.I
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1. Create Ada procedures to write and read direct
access files.

VI. REQUIRED MATERIALS:
1. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module®.

3. Student Data Disk.
VIi. PROCEDURE

1. Using the data provided in Lab 29, create a
procedure which stores the given data in a direct
access file. Save this program as LAB30A.ADA.

2. Create a procedure which will read the fourth name
from the given file, along with the name’s age and
favorite color. Save this program as LAB30B.ADA.

3. Compile. debug, bind, and execute the programs.

4. Print out a copy of each program, and a copy of
your executable output to turn in to your
Instructor.

5. Power down computer, and clean up area.

-181-

ERIC 190

--*t******************i********--;

- Direct Access Files Ve o
--***t************t*****ttt****--;

-~ Author’s Name ¢+ TEACHER GUIDE ;
-=- Assignment Number ¢t LAB # IIXI.I ;
. ——————— ——————— Program Executive ~=wwee- e

-~ Below ;s a solution for Lab # III.I. This solution may
~- be used by the instructor as a guide for helping
-= students complete the laboratory assignment.

with TEXT IO, DIRECT IO, Colors;
use TEXT_TO, Colorxs;

procedure Direct Write is
type Person Data is

recoxd
Name | : STRING(1 .. 10);
Age t INTEGER;

Favorite Color : Colors.A_Color;
end record;

package IntegerIO is new INTEGER_IO(INTEGER);

package ColorIO is new ENUMERATION_IO(Colors.A Color);
use ColorlIO;

package PersonlO is new DIRECT IO(Person_Data);
use PersonlO;

Temp Name s STRING(1 .. 10);
I : NATURAL;

Person_File : PersonIO.FILE_TYPE;
Person : Person Data;

begin
create(file => Person_File, mode => INOUT_FILE, name =>
"Persons,DAT");

?ut(SEnter Name (type END to quit): ===> ");
t= 0;
while (not End_of_Line) loop
I :=1I+ 1;
get(Temp Name(I));
end loop;
Temp Name(I + 1 .. 10) := (I +1 .. 10 => ');
NEW_LINE;
while (Temp_Name /= "END ") loop

~-182-

191

Person.Name := Temg_ﬂame;

put{ "Enter Person’s Age: —==s===s=====> ¢);

IntegerIO.get(Person.Age);

NEW_LINE;

put("Enter Person’s Favorite Color: ==> * };
-~ might want to list available colors.

COIOrIO.geté Person.Favorite Color);

NEW_LINE;: EW_LINE;

SKIP_LINE;

write(file => Person_File, item => Person);

put(“Enter Name (type END to quit)s: ===> ");

I = 0;
while (not End _of Line) loop
I =1+ 1;
get(Temp Name(I });
end loop;
Temp Name(I + 1 .. 10) s= (I + 1 .. 10 => ' ’);
NEW_LINE;
end loop;

close(file => Person_File);

end Direct_Write;

with TEXT I0, DIRECT_ IO, Colors;
use TEXT_T0, Colors;™

procedure Dir Rd 4 is
type Person Data is

record ‘
Name ¢ STRING(1 .. 10);
Age : INTEGER;

Favorite_Color : Colors.A Color;
end record;

package IntegerIO is new INTEGER_IO(INTEGER):

package ColorIO is new ENUMERATION_IO(Colors.A Color);
use ColorIO;

package PersonlO is new DIRECT_IO(Person_Data):
use PexrsonlIQ;

Pexrson_File : PersonIO.FILE TYPE;
Person : Person Data;

begin
open(file => Person File, mode => in_file, name =>
"Persons.DAT" 7V;

~183-

132

read(file => Person File, item => Person, from => 4):

close(file => Person_File);

NEW_LINE;

put("Fourth Person’s Name: s=s==cmmzzss==p
put(Person.Name);

NEW_LINE;

put("Fourth Person’s Age: =========cz==)
integerIO.put(Person.Age, Width => 1);
NEW_LINE;

put{ "Fourth Person’s Favorite Color: ==>
ColorIO.put(Person.Favorite Color);
NEW_LINE;

end Dir _Rd 4;

");

i);

~-184-

193

-

ILP III.J
INFORMATION LESSON PLAN

| L. mOCK: I - "Mdvanced Ada Topics®

IV. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

l. Define task types and objects.

2. Idintify the two parts of a task programming
unit.

3. Declare task types and objects.

4. Understand task compilation.

5. Understand how a task is started.

6. Understand how a task ends.
V. LEARNING ACTIVITIES:

1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - RBlock 1V
AETECH "Ada Training Environment” or "IntegrAda"
with “On-Line Training and Reference Module".

Read & take notes on the following sections:

Block IV, Lesson 3, Topics 1-7

a.
b'
cl
d.
el
f.

gn

Tasking in embedded computers.
Structure of a task.

Task types.

Encapsulating tasks.

Separate compilation.
Starting tasks.

Ending a task.

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and "IntegrAda’
with "On-Line Training and Reference Module”.

-185~

194

VII. PRESENTATION
A. Introduction

1. Describe the cockpit of an airplane with many
computers in it, all working at the same time
to keep the airplane functioning. Describe
the need for these computers to communicate
with one another to ensure that the plane is
operating correctly; then introduce tasks.

B. Instructional Topics and Key Points
TOPIC KEY POINT

1. Task la. Tasks are program units whose
executions proceed in
parallel; may use different
processors, and would
synchronize their execution
in order to process data.

1b. The properties of a task are
defined in its specification
and body. Specifications are
the interface, and bodies are
the executable statements.

lc. Specifications that begin

with the reserved word task
type declare a type of task.

-Oggects may then declared
of that type. Specifications
which begin with only the
reserved word task declare a
single task object of an
anonymous type.

1d. Tasks may not be compiled
alone; they must be included
in a declarative part of a
structure (i.e. subprogram,
package body, block, etc.).

le. Task specifications and
bodies are Ada compilation
units, and as such, may be
compiied separately from one
another.

-186-

. Q 195

B. Instructional Topics and Key Points

TOPIC

KEY POINT

2. Running Pasks

2a.

2b.

2c.

2d.

If multiple task objects are
declared in the declarative
region of a program unit,
activation occurs after
ggssing the reserved word

gin of the uilit. If they
are in a package, activation
occurs after the declarative
part of the package body is
elaborated.

Each task depends on at least
one “master®. A "master" can
be a task, block, subprogram,
or package. Masters complete
when their end statement is
reached; unless they have
dependent tasks, then they
complete only when no
dependents are left active.

Task types are considered
limited private types; hence,
neither comparison (=,/=) or
assignment (:=) arxre available
for objects of task type.

Tasks are considered frames;
hence, theg can have
exception handlers.
Exceptions that occur during
task activation complete the
task and then raise

Tasking Error in the
declarative region they are
being activated in.

-187-

196

LAR IXI.J
LABORATORY EXPERIMENT

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

1, Write a procedure with an internal task which runs
concurrently with the procedure until a <CTRL C>
is pressed.

VI. REQUIRED MATERIALS:
l. Note taking materials.

2. AETECH "IntegrAda" with "On-Line Training and
Reference Module’.

3. Student Data Disk.
VII. PROCEDURE

l. Write a procedure which outputs to the screen
"This is the procedure". Make this procedure an
infinite loop. 1Include in the procedure a task
which outputs to the screen "This is the task".
Make the task an infinite loop. Program execution
is terminated when <CTRL C> is pressed. Save your
program as LAB31.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program, and your
executable code to turn in to your Instructor.

4. Power down computer, and clean up area.

~188-
197

_-*******************************--;

—— Introduction to Tasks L
--**************t****************-_;

-= Author’s Name ¢ TEACHER GUIDE :
~- Assignment Number $ LAB # III.J ;

e ccce - Program Executive —eessrcc s c———
-- Below is a solution for Lab # III.J. This solution may
-- be used by the instructor as a guide for helping

-- students complete the laboratory assignment.

with TEXT_IO; use TEXT_IO0;
procedure Task Demo is
task Print Msg;

task body Print Msg is
begin
loop
put_line("This is the task.");
end loop;
end Print Msqg;

begin
loop
put_line("This is the procedure."); .
end loop;
end Task_Demo;

~-189-

e s

ILP III.K
INFORMATION LESSON PLAN

1V. LESSON OBJECTIVES: At the completion of this lesson,
the student should be able to:

l. Describe how tasks communicate.
2. Define rendezvous.

3. Describe how a block of action within a task can
be performed through an accept..do structure.

4. Discuss the use of the select statement.
5. List the two ways a task can end.
6. Define the following task attributes:
‘Callable ‘Terminated ‘Storage_Size
V. LEARNING ACTIVITIES:
1. Take notes on lecture presented by Instructor.

2. Participate in class discussion of presented
lecture.

3. CAI Assignment - Block IV
AETECH "Ada Training Environment" or "IntegraAda"
with "On-Line Training and Reference Module".

Read & take notes on the following sections:
Block IV, Lesson 3, Topics 8-15.

a. Communication in tasks.

b. Rendezvous.

c. Accept and do.

d. The select statement.

e. Receive statement.

f. Termination.

g. Abort versus terminate.
. Task units.

-190-

1839

VI. SPECIAL RESOURCES:

AETECH "Ada Training Environment” and "IntegrAda"
with "On-Line Training and Reference Module®.

VII. PRESENTATION
A. Introduction

1. Discuss the importance of tasks being able to
communicate with one another (cockpit
example), rather than just merely continuing
to execute on their own.

B. Instructional Topics and Key Points

TOPIC

KEY POINT

1. Task Communication

2. Rendezvous

la.

1b.

2a.

Tasks can have entries
(specified in their specifi-
cations). An entry of a task
can be called (by name) by
other units. The called
task executes an accept
statement (in its body) for
the entry, and "accepts” the
call. Synchronization is the
rendezvous between an entry
call and an accept. Since
entries can have parameters
(i.e. data to share)
sKnchronization provides

the basic means for
communication between tasks.
Entry Calls- execution
begins with evaluation of
name, parameters; then if an
accept statement to the call
has n reached, the call is
received. If the accept
statement has not been
reached, the call is
suspended, and multiple
waiting calls are queued.

Definition - when two tasks
meet together through an
entry and accept. nce
rendezvous is complete, tasks
resume independent operation.

-191-

200

B. Instructional Topics and Key points
TOPIC KEY POINT

3. Accept..Do Structure 3a. Execution of a delay
statement evaluates the
simple expression, and
suspends execution for
at least the duration
sgecified by the result of
the expression. The
expression must be of
predefined type Duration
with range 0..86400
seconds (one day).

3b. Predefined package Calendar
provides time resources
41.3. function Clock, type

ime, etec.).

4. Select Statements 4a. Used to control task.

Three forms:

1, Selective waits allows
selecting from one or
more alternatives. Must
have at least one accept
alternative. Can have
only one of the following:
terminate, else, delay.
An alternative is said to
be open if it has no
"when" or if the condition
following the "when" is
true, otherwise it is
closed. If an alternative
is closed and there is no
"else" part, tasks can
wait until an alternative
is selected. An open delay
is selected if no other
open can be selected
before the specified time.
An open terminate can only
be selected if all entries
are ended.

2., Conditional Entry Calls
Issues an entry call, if
a rendezvous is not
immediately available,
cancels the entry call
(does else part).

3. Timed Entry Calls -Issues
an entry call, if a
rendezvous is not started
within the given delay,
the call is cancelled.

~192-

201

B. Instructional Topics and Rey Points

TOPIC

KEY POINT

5. Task Attributes
(where T is task
object, and E is
entry of task T)

5a. T ’Cailcble = Returns true if
task is not terminated.
Returns False if T is
completed, terminated, or
abnormal.

T 'Terminated - Returns True
if task has been called and
has completed; returns False
otherwise.

T ’'Storage_Size returns size
of memory allocated for task.

E 'Count - returns number of
gntry calls queued on entry

-193~-

2112

LAB III.K
RATORY EXPERIMENT

IV. LAB TITLE: ‘“Task Communication"

V. STUDENT OBJECTIVES: At the completion of this
experiment, the student should be able to:

l. Write a procedure in which two tasks communicate
with a main procedure.

VI. REQUIRED MATERIALS:
l. Note taking materials.

2. AETECH "IntegrAda" with "On~Line Training and
Reference Module'.

3. Student Data Disk.
ViI. PROCEDURE

1. Writz a procedure which declares two tasks. The
rocedure shall grompt the user to input either a
or a 2. If 1 is input, taskl is communicated
with and outputs to the screen "Task 1
comnunication complete”. If the user enters 2,
then task2 is communicated with, and outputs to
the screen "Task 2 communication complete". Any
other input other than 1 or 2 terminates both
tasks, and the procedure. Utilize a case
structure. Save your program as LAB32.ADA.

2. Compile, debug, bind, and execute the program.

3. Print out a copy of your program and executable
code to turn in to your Instructor.

4. Power down computer, and clean up area.

~194-~

21:3

e T e gy g 2w

--***********t****************_-;

-k Task Communication ¥
__***********i****f*******i***-_;

-= Author’s Name ¢ TEACHER GUIDE ;
-=- Assignment Number ¢ LAB # III.K ;
o e e e Program ExeCutive ecececcccacaaa -

-- Below is a solution for Lab # IIX.K. This solution
-- be used by the instructor as a guide for helping
~- students complete the laboratory assignment.

with TEXT YO; wuse TEXT_IO;
procedure Task_Demo_2 is

Response : CHARACTER;
Done : BOOLEAN;

task One is
entry Print;
entry Quit;
end Onej;

task Two is
entry Write;
entry Leave;
end Two:

task body One is
OKToQuit : BOOLEAN;
begin
OKToQuit := FALSE;
while (NOT OKToQuit) loop
select
accept Print do
put_line("Task 1 communication complete.
end Print;
or
accept Quit do
OKToQuit := TRUE;
end Quit;
end select;
end loop;
end One;

task body Two is
OKToLeave : BOOLEAN;
begin
OKToLeave := FALSE;
while (NOT OKToLeave) loop
select

may

11});

accept Write do
put_line("Task 2 communication complete.”);
end Write;
or
accept Leave do
nToLeave := TRUE;
end Leave;
end select;
end loop;
end Two:

begin

Done := FALSE;

while (NOT Done) loop
put_line("Enter a 1 to communicate with Task One...");
put_line(“"a 2 to communicate with Task Two...");
put_line("or anything else to terminate...");
NEW_LINE;
put(“Please enter your choice now ===> ");
qet(Response);
NEW_LINE; NEW_LINE;

case Response is
when ’1’ => One.Print;
when ‘2’ => Two.Write;
when othexs =>
One.Quit;
Two.Leave;
Done := TRUE;
end case;

NEW_LINE; NEW_LINE;
end loop;
end Task Demo_2;

-196-

