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Abstract

The inappropriate use of ANCOVA appears to be ti ie rather than

the exception (Thompson, 1991). As Keppel and Zedeck (1989, e.g., pp. 455,

456, 466, 478-479, 480) repeatedly and emphatically argue, ANCOVA is only

appropriate for use in conjunction with randomly assigned groups. Keppel

and Zedeck (1989, p. 481) cogently explain why and point out the importance

of the homogeneity of regression assumption. As they note:

It is somewhat depressing to note that while all statistical

methodology books continue to stress [would that this were

true] the conclusion that ANCOVA should not be used in

'quasi-experimental designs, misapplications of the procedure

are still committed and reported in the literature. (p. 482)

Anyone contemplating an ANCOVA should seriously consider thE

trenchant arguments made by Campbell and ErlebEicher (1975). The

purpose of this paper is to explain the homogeneity of regression

assumption, and why it is so important to evaluate this assumption before

conducting an analysis of covariance. Small heuristic data sees will be

employed to make this discussion concTete.
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The Homogeneity of Regression Assumption in the Analysis of Covariance

An analysis of covariance (ANCOVA) is done to correct for chance

differences that occur when subjects are assigned randomly to the treatment

groups. When properly used this correction results in (a) an adjustment of the

group means for those pre-existing differences caused by sampling error and

(b) the size of the error variance in the analysis is reduced, thus increasing

statistical power. The adjustment of the means is done to reduce bias that may

be caused by the differences. This hoped-for increase in power, according to

Huitema (1980, p. 13), is "the major payoff in selecting the analysis of

covariance".

Ckroglasu pf,12i_NcaYA

Before we look at a graphical and mathematical representation of

ANCOVA, let's look at a simplified "pie" version of ANCOVA. The "pie"

version means that the sum of squares total is, represented by a pie. We want to

eat (explain) as much of the pie as we can. (In Figure 1, it is the Y "pie" that

we want to eat.) The more Y pie we eat, the more variance we can explain.

Any uneaten..(or unexplained) part is error. The eaten part of the pie is the

percent of overlap of X and Y and the covariate (see Figure 1). This percent of

overlap represents r2 which has several names - coefficient of determination,

common variance and effect size.

Desired Condition Undesired Condition

Y X Y X
Figure 1 Conditions showing when ANCOVA use would be desired and when ANCOVA use

would be undesired
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Loftin and Madison (1991, P. 134) list five conaitions that must be met for

correct ANCOVA usage. The first two of these conditions will be examined and

illustrated. Referring to Figure 1 we will see why these conditions must be met.

The first condition is that the covariate should be an independent variable

(which means it is pre-existing) that is highly correlated with the variable. "If

the correlation is not high, the covariate will do little to reduce the error sum of

squares, and this is the primary objective Gf ANCOVA" (Loftin & Madison,1991,

p. 135). The desired condition, in Figure 1, shows that the covariate is highly

co related with Y, that is, it eats a good portion of the Y pie.

The second condition is that the covariate should be uncorrelated with the

independent variable. The desired condition, in Figure 1, shows that the

covariate and the independent variable X are uncorrelated, that is, they eat

different parts of the Y pie. The covariate adjustment is always made first and

all the error sum of square will be attributed to the the covariate if there is a

correlatidn between the'covariate and independent varia-[)le (see Figure 1,

undesired condition). In this case, the covariate and the independent variable

are highly correlated and are eating much of the same parts of the pie. The

problem with this is that the covariate will get the first credit for eating the pie

and X will be credited only with the "leftovers" it eats.

anA -ti 41 40 I 1O A1

Huitema introduces ANCOVA as an integration of the analysis of

variance (ANOVA) and "ANOVA of regression" (ANOVAR). The ANOVA

model accounts for between-group variance and the ANOVAR model accounts

for regression variance, "The ANCOVA mode, treats both between-group and

regression variance as systematic (nonerror) components" (Huitema, 1980, p.

25).
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Figure 2 presents a comparison of the three analyses, both mathematically

and graphically. When the ANOVAR model is added to the ANOVA, the result

is the ANCOVA model. The power that Huitema refers to comes from the

reduction of the error term. Huitema (1980) states:

If the assumptions for the analysis of covariance are met for a given set of
data, the error term will be smaller than in ANOVA because much of the
within-group variability will be accounted for and removed by the
regression of the dependent variable on the covariate. Since the result of
the smaller error term is an increase in power, it is quite possible that data
analyzed by -tw T ANCOVA will yield highly significant results where
ANOVA yields null-significant results. (p. 25)

arehl_gusii Model Variance Partitim

ANOVA

ANOVA of
Regre7sion =Po+ PI X +

or

131 ( T(..) + 61

ANCOVA = L +aj +131(Nr X..) +et

Figure 2 Comparison of ANOVA, ANOVAR, and ANCOVA when ANCOVA assumptions
are met. (Adapted from Huitema, 1980, p. 26)
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The linear model for the ANCOVA, Yu =i + aj (Xij - R..) + eij ,

illustrates that this procedure is actually an ANOVA on adjusted scores

(Hinkle, Wiersma, & Jurs, 1988) where

= dependent variable score of ith individual in jth group
population mean (on dependent variable) common to all observations

aj = effect of treatmentj (a constant associated ith all individuals in
treatment j)

= linear regression coefficient of Y on X
Xj = covariate score for ith individual in jth group
R.. = mean of all individuals on covariate
eu = error component associated with ith individual in jth group

The pi(Xipx..) is the adjustment for each individual score. The ANCOVA

variance partition shows the treatment effects that are independent of X (the

adjusted treatment), the differences in achievement among subjects that can be

predicted from test X; and the differences among subjects that are not due to

treatment effects and cannot be predicted from test X (i.e., error) (Huitema,

1980). These three parts of the variance make up the sums of squares total.

The sum of squares (SS) total, the SS between and the SS within are adjusted for

the variance attributed to the covariate. The total regression) area represents

variability on Y predictable from X. If that area is removed, then the

remaining area contains only variability due to treatment effects independent of

X and variability due to error (Huitema, 1980). This remaining area is referred

to as the SS residual total.

The SS within groups represents differences predictable from X and

differences not predictable from X. By subtracting the SS due to predictable

differences among subjects within groups from SS within groups, the SS

residual is obtained to then be used as the SS error in ANCOVA. The SS error

accounts for differences that are not predictable from X and are not accounted

for by treatment differences. In Figure 1, the SS residual within is the SS error.

4
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The SS adjusted treatments effects (see Figure 2, ANCOVA) is obtained by

subtracting the SS residual within from the total residual SS (Huitema, 1980).

This area is the quantity that was referred to as the treatment effects

independent of X. The ratio obtained from the SS adjusted treatment and the SS

residual total is the " descriptive measure of the proportion of the variability

explained by the treatments when the effects of the covariate are controlled

statistically" (HuitAna, p. 31).

ANCOVA sounds like it would offer a great statistical solution to the

researcher's problems. As Loftin and Madison (1991, p. 134) point out, "the

'correction' of the dependent variable scores is seen by some as a device to

adjust for all kinds of problems, but very few data sets can meet the very specific

requirements that make the adjustment appropriate"and Thompson (1991)

states that "the inappropriate use of ANCOVA appears to be the rule rather

than the exception".

What is "inappropriate use"? Keppel and Zedeck (1989) repeatedly state

that ANCOVA is only appropriate for use with randomly assigned groups and

then only after the homogeneity of regression assumption has been met. These

authors notez

It is somewhat depressing to note that while all statistical methodology
books continue to stress [would that this were true] the conclusion that
ANCOVA should not be used in quasi-experimental designs,
misapplications of the procedure are still committer7 and reported in the
literature. (p. 482)

Campbell and Erlebacher (1975) cite several authors who have warned of

the dangers of ANCOVA, but other authors give wrong recommendations on

correcting the serious problems with ANCOVA. Campbell and Erlebacher

discuss the article by Williams and Evan,: (1969) describing the analysis of the

Head Start program: "The one weakness in Williams and Evans' otherwise

5
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outstanding paper comes at this point. They state that ex pW facto studies are

a respected and widely used scientific procedure" (p.613). Campbell and

Erlebacher say that in actuality:

most methodology texts are silent on the issue and condone comparable
procedures...On using analysis of covari ince to correct for pretreatment
differences, the texts that treat the issue are either wrong or noncommittal
(that is, they fail to specify the direction of the bias), and probably 99% of the
experts that know of the procedure would make the error of
recommending it. (p. 613)

In the Head Start program analysis, the analysis of covariance made an

underadjustment and made the Head Start program seem as if it actually

damaged low socioeconomic children (Campbell&Erlebacher, 1975). Thompson

(1989) notes that because of the inappropriate use of ANCOVA the Head Start

program was almost discontinued.

What are the conditions required for correct ANCOVA usage? , Loftin and

Madison (1991, p. 134) state the following conditions that must be met (as

referred to at the beginning of this paper):

1. The covariate (or covariates) should be an independert variable highly

correlated with the dependent variable.

2. The covariate should be uncorrelated with the independent variable or

variables.

3. With respect to the dependent variable, (a) the residualized dependent

variable (Y*) is assumed to be normally distributed for each level of the

independent variable, and (b) the variances of the residualized

dependent variable (Y*) for each level of the independent variable are

assumed to be equal.

4. The covariate and the dependent variable must have a linear

relationship, at least in conventional ANCOVA analyses.

6
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5. The regression slopes between the covariate and the dependent variable

must be parallel for each independent variable group.

This paper is concerned with assumption 5 and will describe and illustrate the

assumption of the homogeneity of regression as it relates to ANCOVA with

three treatment groups.

I-1 juugplalty_ollawpadgn

Homogeneity of regression means that the slopes for each of the three

groups, m her_ the regression equations are computed individually within

groups, must be parallel. Figure 3 below shows an actual regression plot of the

data in Table 1 with an individual line for each group. In order for the

homogeneity of regression assumption to be met, the relationship between X

and Y has i,o be the same for each of the three groups. Figure 3 shows that the

slopes are roughly the same, therefore we could be confident that any

adjustment made using the covariate would res in the same adjustment for

each group.

0 20 40 60 80 100 120

Figure 3 Illustration of a data set that meets ,e homogeneity of regression assumption



Why is it so important that the three groups have the same regression

slope? Loftin and Madison (1991) state:

If the regression slopes are equal, a single pooled regression slope may be
used for all the subjects , regardless of their group assignment, to
calculate the solicited adjustments in the dependent variable (Y). And
ANCOVA always uses a pooled equation created under an assumption
that since the equations are supposed to be the same in the different
groups, an "average" equation can be used for all the subjects regardless of
their groups. (p. 141)

The ANCOVA uses a pooled regression line when making the

adjustments and totally ignores the regression slope for each group. To test the

homogeneity of regression mathematically a residual sums of squares is

computed for each group and then compared to the residual sums of squares

using a pooled regression equation that ignores group membership. If these

are equal, the slopes are said to be homogeneous and "the adjusted means are

descriptive measures because the treatment effects are the same at different

levels of the covariate" (Huitema, 1980, p. 43).

An F test can be done to see if the difference in the slopes is statistically

significant or not. This can be helpful when a scatterplot of the data results in

a graphic reisresentation such as Figure 4. Does this data set meet the

homogeneity of regression assumption or not? Using an F test, yes, these data

(see Table 2) do meet the homogeneity of regression assumption. Of course, we

should keep in mind though that an F test is influenced by !-)1e size and that

we would get statistical significance if we had a large enough sample size.



80

60

40

20

0

-20
0 20 40 60 80 100 120

Figure 4 Illustration of a data set that meets the homogeneity of regression assumption using
an F test

What steps are actually involved in doing the F test? After computing the

within-group residual sum of squares (SSresw), individual sums of squares

residual are computed for each group and added together to obtain a sum of

squares residual individual (SSresi). The next step is to compute the

heterogeneity of slopes sum of squares. This is done by subtracting the (SSresi)

from the (SSresw). This difference "reflects the extent to which the individual

regression slopes are different from the pooled within-group slope" (Huitema)

p. 45). Huitema (1980) also points out:

that SSresi can never be larger than SSresw , just as, in an ordinary
ANOVA, the sum of squares within can never be larger than the sum of
squares total. There is only one explanation for SSresw being larger than
SSresi - the individual within-group slopes must be different. (p. 45)

Figure 5 illustrates the heterogeneous slope case which was generated from the

data set in Table 3.
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Figure 5 Illustration of a data set that has heterogeneous slopes

When the individual slopes of the lines are the same, they are also equal to

the pooled regression line slope, but when the slopes differ, as in Figure 5, the

pooled regression slope line cannot possibly have residuals as low as the

individual regression lines. Stated differently, if the individual slopes are

equal, the points fall around each of the slope lines in the same way and the

pooled regression line represents an average of the residuals. But if the pGints

do not fall around the slope lines in the same way (creating different slopes)

then an average of the three slopes cannot possibly be an accurate description

or representation of the three different groups. If we were to draw the pooled

regression line on Figure 5, we would see that the points would be much

further away from this pooled line than they are from the individual regression

lines. Huitema (1980, p. 46) states, "A single regression slope simply cannot fit

different samples of data as well as can a separate slope for each sample,

unless there are no differences among the slopes."



What happens during the ANCOVA correction that makes the

homogeneity of regression assumption important? All of the Y scores are

adjusted into new Y scores (Y*) by the following formula:

.V*k= 7k -bw (- X)

where

adjusted group mean on the dependent variable

= unadjusted group mean on the dependent variable

Xk = group mean on the covariate

Xk = grand mean on the covariate

bw = pooled within-groups regression coefficient reflecting the correlation

between the dependent variable and the covariate

The pooled regression coefficient is used in the correction and a straight

line relationship between X and Y is assumed. Loftin and Madison (1991)

emphatically state:

Since a single regression equation is used to correct ell Y.scores,
regardless of independent variable groups, if the "pooled or "averaged"
single equation does not accurately describe the Y and X relationship in a
given group, the corrections producing the residual Y scores...will
actually bias the data rather than "correct" them. (p. 1:43)

Summary.

One consequence of violating the homogeneity of regressiPn assumption is

biased F tests. If the individual regression lines for each group are not

parallel, then the pooled regression line does not fit and is not a good average

for the three groups. As the heterogeneity of the slopes increases, the pooled

regression line is less able to represent the individual groups. So the error sum

of squares increases. Furthermore, when the homogeneity of regression



assumption is not met the residualization using the covariate may actually

reduce the sum of squares for the intervention, thus artificially making it look

less effective or even completely ineffective. Consequently, in the F test, the

more heterogeneous the slopes are the smaller the ANCOVA F will be. Since

smaller F values are associated with larger probabilities, then the bias occurs

because the null hypothesis is rejected when it should not have been.

An ANCOVA has its place in limited situations and only after meeting

necessary assumptions. For these very reasons other methods of analysis

should be considered seriously before an analysis of covariance when intact

groups are employed in a study.
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Tabl el
Group 1 - IQ Group 2 IQ Group 3 IQ Group 1 - Ach. Group 2 - Ach Group 3 - Ach

98 96 102 60 55 65
102 102 117 63 58 68
104 104 108 66 59 72
103 110 117 69 67 76
112 108 105 72 64 78
113 113 116 75 63 80
118 117 111 71 75 82
120 110 120 70 70 84
115 113 107 67 68 75
106 109 104 70 69 77
112 125 128 69 65 79
122 118 119 72 65 81

Table 2
Group 1 IQ Group 2 IQ Group 3 IQ Group 1 - Ach. Group 2 - Ach Group 3 - Ach

98 104 102 60 62 65
102 109 117 63 63 68
104 104 108 66 67 72
!03 117 117 69 71 76
112 120 105. 72 77 78
113 113 116 75 79 80
118 117 111 78 82 82
120 126 120 80 84 84

115 113 107 67 64 75
106 109 104 70 68 77
112 125 128. 74 72 79
122 118 119 76 77 81

Table 3
Group 1 IQ Group 2 - IQ Group 3 - IQ Group 1 - Ach. Group 2 - Ach Group 3 - Ach

98 104 102 62 65
102 109 117 81 63 68
104 104 108 83 67 72
103 117 117 82 71 76
112 120 105 72 77 78
113 113 116 75 71 80
118 117 111 78 70 82
120 126 120 80 88 84
115 113 107 67 64 75
106 109 104 70 68 77
112 125 128 74 75 79
122 118 119 72 74 81
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