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ABSTRACT

The distribution-independent model of concept learning from examples ("PAC-learning")
due to Valiant is investigated. It has previously been shown that the existence of an Occam
algorithm for a class of concepts is a sufficient condition for the PAC-learnability of that class.
(An Occam algorithm is a randomized polynomial-time algorithm that, when given as input
a sample of strings of some unknown concept to be learned, outputs a small description of a
concept that is consistent with the sample.) It is shown here that far any class satisfying the
property of closure under exception lists, the PAC-learnabffity of the class implies the existence
of an Occam algorithm for the class. Thus the existence of randomized Occam algorithms
exactly characterizes PAC-learnability for all concept classes with this property. This reveals a
close relationship between between PAC-learning and information compression for a wide range
of interesting classes.

The PAC-learning model is then extended to that of semi-supervised learning (ss-learning),
in which a collection of disjoint concepts is to be simultaneously learned with only partial
information concerning concept membership available to the learning algorithm. It is shown that
many PAC-learnable concept classes are also ss-learnable. Several sets of sufficient conditions
for a class to be 55-learnable are given. A prediction-based definition of learning multiple
concept classes has been given and shown to be equivalent to ss-learning.

The predictive ability of automata less powerful than Turing machines is investigated. Mod-
els for prediction by deterministic finite state machines, 1-counter machines, and deterministic
pushdown automata are defined, and the classes of languages that can be predicted by these
types of automata are precisely characterized. In particular, these varieties of automata can
predict exactly the finite classes of regular languages, the finite classes of 1-counter languages,
and the finite classes of deterministic context-free languages, respectively. In addition, upper
bounds are given for the size of classes that can be predicted by such automata.

Two new online protocols for graph algorithms are defined. Bounds on the performance of
online algorithms for the graph bandwidth, vertex cover, independent set, and dominating set
problems are demonstrated. Various results are proved for algorithms operating according to a
standard online protocol as well as the two new protocols.

In



INN ININ INN UN MN UM 11111 11111 NMI ONI 11101 MO INS NO NINI INI 1E11 NO IND

DI.
41.41

CO



ACKNOWLEDGEMENTS

First and foremost, I wish to extend my gratitude to my thesis adviser Lenny Pitt for his

encouragement, enthusiasm, and guidance over the past three and a half years. He has always

been available and eager to help, and has provided a seemingly inexhaustible supply of both

interesting new problems to work on and suggestions for their solutions. I'm sure that in the

future I will point with pride to the fact that I was his first doctoral student.

I would also like to thank the other members of my dissertation committee: Professors

Nachum Dershowitz, Michael Loui, C. L. Liu, and Edward Reingold. In particular, I wish to

acknowledge Michael Loui's careful reading of a draft of this thesis, as well as his many valuable

and insightful suggestions for its improvement. The diligence and devotion to duty witnessed

by this effort are his hallmarks.

Professors Carl Jockusch, Jr. and Henry Kierstead were responsible for directing me toward

the study of online algorithms. Dana Angluin pointed out errors in an early version of the

work that appears here as Chapter 3, and Manfred Warmuth offered helpful suggestions for the

presentation of the material in that same chapter. Robert Reinke posed the problem addressed

in Chapter 4. I am grateful to au cd* them.

Finally, I wish to thank the taxpayers of the United States for their generosity, and the

National Science Foundation for steering some of that largesse my way in the form of NSF

grant 111-8809570.

7



TABLE OF CONTENTS

1

2

3

INTRODUCTION
Li Overview

THE PAC MODEL OF LEARNING

OCCAM ALGORITHMS AND PAC-LEARNABILITY

1

1

3

11

3.1 Occam Algorithms 11

3.2 Exception Lists 13

3.3 Results for Finite Representation Alphabets 16

3.4 Results for Infinite Representation Alphabets 19

3.5 DFAs and Occam Algorithms 26

3.6 Discussion 29

4 SEMI-SUPERVISED LEARNING 36

4.1 Notation and Definitions 38
4.2 Semi-supervised Learning of Monomials 41

4.3 A Sufficient Condition for es-Learning 47
4.4 es-Learning Other Boolean Formulas 49
4.5 Unparameterized ss-Learning and the VC-Dimension 50

4.6 Equivalence of Two Types of Learning 57

5 PREDICTION USING WEAK AUTOMATA 62

5.1 A Model for Prediction by Finite State Automata 63

5.2 A Geimal Upper Bound 65

5.3 Languages Predictabk by DFAs 69
5.4 A Model for Prediction by Deterministic Pushdown Automata 71

5.5 A General Upper Bound for DPDAs 73

5.6 Languages Predictable by DPDAs 79

5.7 Prediction Using Counter Machines 83
5.8 Discussion 85

8 ONLINE ALGORITHMS FOR VERTEX LABELING PROBLEMS 86
6.1 The Online Graph Bandwidth Problem 88

6.1.1 Notation and Definitions 80
6.1.2 An Online Algorithm for finding the Bandwidth of a Graph 91
6.1.3 A Lower Bound 100
6.1.4 Other Online Protocols 102
6.1.5 Discumion 111

6.2 Online Algorithms for Vertex Subset Problems 111

6.2.1 The Online Independent Set Problem 113
6.2.2 The Online Vertex Cover Problem 118

6.2.3 The Online Dominating Set Problem 123
6.2.4 Discussion 125

1



I
I
I
I
I
I
I
e

I
I
I
1

I
I
I
I
I
I
I

7 SUMMARY OF RESULTS 127

BIBLIOGRAPHY 129

VITA 136

vii

fi



LIST OF FIGURES

Figure

3.1 Occam algorithm derived from learning algorithm L 18

4.1 Algorithm for so-learning monomialo 44

6.1 Online algorithm to find a B(n, k)-bandwidth function 92

6.2 Protocol 2 algorithm to frnd vertex cove: of size at most 2k 119

viii

0



1 INTRODUCTION

This thesis addresses problems from two areas of theoretical computer science. The first area is

that of computational learning theory, which is the study of the phenomenon of concept learning

using formal mathematical models. Learning is a topic of considerable interest to researchers

in cognitive science and artificial intelligence; the goal 41 computational learning theory is

to investigate learning in a rigorous manner through the use of techniques from theoretical

computer science. Much of the work in this field is in the context of the PAC (an acronym

for "probably approximately correct") model of learning, in which learning is carried out in

a probabilistic environment. Of particular interest are the questions of determining far which

classes of concepts the PAC-learning problem is tractable and discovering efficient learning

algorithms for such classes.

The second area from which topics axe drawn is that of online algorithms for graph-theoretic

problems. Graphs we used to represent a wide variety of problems in such fields as comxnu-

nications, transportation, schedulbig, aud network analysis. Many problems in science and

engineering can be reduced to that of finding a good graph algorithm. An online algorithm

is one that receives its input in discrete stages, and at each stage must produce an output

based only on the informatics it has seen thus far. Online algorithms model, in a limited sense,

"real-time" computation, since they must react to their environment as it is being presented to

them. In addition, online algorithmscan be used to study how well algorithms are able to per-

form with only partial information about the problem instance, and to what extent additional

iomputational resources can compensate for incomplete information.

1.1 Overview

The material in this thesis is organised as follows.

Chapter 2 gives some background information on the field of computational learning theory

in general, and the PAC model of learning in particu/ar. Notation and terminology that will

be used in the rest of the dissertation are defined.

1



In Chapter 3 it is shown that for any concept class having a particular closure property,

the existence of an Occam algors.hm implies that the class is PAC-learnable. Separate results

are proved for the cases when the alphabet used to describe concepts is finite and infinite.

Combining these with two theorems of Blume; Ehrenfeucht, Hauss ler and Warmuth [12, 11]

yields the result that, for a wide range of interesting concept classes, the existence of an Occam

algorithm is equivalent to PAC-learnability. This chapter is based on joint work with Leonard

Pitt [13].

In the next chapter a variation on the standard PAC model of learning, called semi-

supervised learning (ss-learning), is defined. This new model permits the rigorous study of

learning :ituations in which the teacher plays only a very limited role. We prove that a num-

ber of interesting PAC-learnable concept classes are also ss-learnable, and give several sets of

sufficient conditions for a crass to be as-learnable. This chapter is also based on joint work with

Leonard Pitt [14].

Chapter 5 deals with the problem of prediction as performed by automata with less power

than Taring machines. We define models of prediction in which the prediction is performed by

deterministic finite automata, counter machines, and deterministic pushdown automata. For

each of these models we give a precise characterization of the language classes that can be

predicted.

In Chapter 6 we investigate the power of online algorithms for a certain class of graph prob.

lems, referred to as vertex labeling problems. In addition to a standard online protocol, two new

online protocols are defined for these problems. We then prove bounds on the performance of

online algorithms operating according to these protocols for the graph bandwidth, independent

set, vertex cover, and dominating set problems.

The final chapter presents a brief summary of results.

2



2 THE PAC MODEL OF nEARNING

A general model of computational learning can be described as follows. The domain is a scL,

such as the set of points in n-dimensional Euclidean space or the set of au binary strings. A

concept is subset of the domain, and a concept class is a set of concepts. Associated with each

concept is a description of the concept, called its representation. An example of a concept c is an

element of the domain, together with a bit that indicates whether ar not that element is in the

concept c. A learning algorithm, or learner, for a concept class C is an algorithm that accepts

as input examples of some target concept c E C (and possibly some additional information) and

outputs a hypothesis, which is the algorithm's "guess" as to what c is. Depending on the exact

model being used, there may be restrictions as to how accurate the hypothesis must be, how

much time the algorithm is allowed, how the examples are chosen, etc., in order for the algorithm

to be considered a learning algorithm for the class C. A concept class is learnable if there exists

a learning algorithm for it. There are a number of different models of computational learning;

these models vary considerably, but almost all share the characteristks just described. One

mudel that has received considerable attention in the literature recently is the PAC ("probably

approximately correct") model.

The PAC model of learning was introduced by Valiant in [73]. It h..s been widely used

to investigate the learnability of concept classes in several domains (see, for example, papers

in [39] and [67]). Much of its appeal is due to the fact that, rather than requirinet the learning

algorithm to always be exactly right, it is sufficient for the algorithm to almost always find a
hypothesis that is highly, although perhaps not precisely, accurate. By permitting the learner

this leeway, the model allows some interesting concept classes to be learned in polynomial time.

In addition, requiring only approximate correctness is intuitively appealing, since it seems more

closely related to human learning than does requiring exact correctness.

In the PAC model, the learning algorithm is given an amount of time polynomial in the

length of the representation of the concept to be learned and the length of the examples that

are presented. The model assumes that the examples of the unknown concept that the learning

algorithm receives have been selected randomly according to some fixed but arbitrary and

3
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unknown probability distribution over examples of some maximum length n. The elgorithm

must, for any such distribution, output a hypothesis that, with high probability, will have a low

distribution-weighted error relative to the unknown concept.

The fallowing set notation is used throughout this thesis, not just in the chapters on com-

putational learning. If S and T are sets, then S C T and S c T denote that S is a subset

and proper subset, respectively, of T. S U T represents the union of S and T , aad SilT their

intersection. The symbol E indicates set containment, so 2 S means that z is an element of

S. S T denotes the set of elements in S that are not in T, and the symmetric difference of S

and T is written as S (1) T = (S T)u (T S). PI is the cardinality of the set S. The sets of

real and natural numbers are represented liy 3? and EN, respectively. The empty set is denoted

by O.

If E is a (not necessarily finite) alphabet, then E* denotes the set of a finite-length strings

of elements of E. If to E E", then the length of to, denoted lwl, is the number of symbols in the

string to. Let EN denote the set {to E Es : jtol < n}. All logarithms are in base 2.

Define a concept class to be a pair C= (C, X), where X is a set and C C 2x. X is the

domain of C and the elements of C are concepts. X can be thought of as a universe of objects,

and each concept in C as the set of objects with certain properties. We are interested in the

problem of determining which concept classes are learnable; that is, the problem of deciding

which concept classes have learning algorithms.

Since learning algorithms must be able to output their hypotheses, there must be somm

means of representing the concepts in C concisely (there is no requirement that the concepts

be finite, so clearly representing a concept extensionally is not feasible). Thus we must define,

in addition to the concept classes, some means of representing the concepts.

Let the domain X be a set of strings in E*, for some alphabet E. We describe a context for

representing concepts over X.

Ibllowing [4, 75], define a class of representations to be a quadruple B. = (R,T,c,E). E and

are sets of characters. Strings composed of characters in E are used to describe elements of

X, and strings of characters in T are used to describe concepts. R g r is the set of strings

that are concept descriptions or representations. Let e : 2E. be a function that maps

these representations into concepts over E. R may be thought of as a collection of names of

concepts, and for any r E R, c(r) is the concept named by r.

4



For example, we might represent the concept class consisting of all regular binary languages

as follows. Let E = {9,1} and define .R to be the set of all deterministic finite state automata

(DFAs) over the binary alphabet. r is the set of characters needed to encode DFAs under some

reasonable encoding scheme, and c maps DFAs into the regular languages that they accept.

As another example, suppose we wish to represent the concept class of Boolean formulas

over the variables zl, zs, xis. (That is, each concept is the set of n-bit binary strings that

correspond to satisfying assignments of some particular Boolean formula over n variables.) One

possible class of representations would be to let E = {0,1}, r = {21, z2, 9 x199 A, V, 'it (9 )}, R

be the set of all well-formed Boolean formulas over al, 22, z (written using the characters

in 1), and c map each formula in R to the set of its satisfying assignments.

To represent concepts over the real numbers, E can be defined so that each of its elements

corresponds to a different real number. Since it is likely that concept descriptions would aho

need to make reference to real numbers, r could also include au of the reels, and thus both E

and r would be uncountable.

FouYaEEur,Ialisdeflnedtobe 1, and thus if E or I' is an uncoimtable alphabet,

such as the real numbers, then each number counts as one "unit", and we assume for clarity

of exposition that elementary operations are executable in one unit of time. Our results also

hold when the logarithmic cost model is considered, wherein elements are represented to some

finite level of accuracy, and thus require space equal to the munber of bits of precision. In

this scheme, an elementary algorithmic operation on au element takes time proportional to the

number of bits of precision.

Note that if B. = (R, F, c, E) is a class of representations then there is an associated concept

class C(B) = (c(R), s"), where c(R) = fc(r) : r E R}. Since the PAC-learnability of a class

of concepts may depend on the choice of representations [61], PAC-learnability is in fact a

property of classes of representations rather than of concept classes.

For convenience, we write r(z) = 1 if a E c(r), and r(z) = 0 otherwise. We also write

in place of c(r) when the meaning Is clear from context. Thus sometimes r denotes the

representation of a concept, and sometimes it denotus the concept itself. However, whenever

we refer to the sae of r, denoted Irf, the length of the representation is always intended, and

not the cardinality of the concept. An example of r is a pair (z, r(z)), where r(z) is the label

of z. If r(z) = 1 then (z,r(x)) is a positive ezamplq If r(z) = 0 then it is a negative example.

5



The length of an example (x, r(z)) Is J4 A sample of size m of the concept r is a multiset of

m maniples of r. We let Ria] denote the set fr E R : Irj < sl.

For a class of representations, the membership problem is that of determining, given r E R

and z E E', whether or not x E c(r). We consider only classes of representations for which the

membership problem is decidable in polynomial time; classes without this property would be

of little use in a practical setting. Thus we only consider representation classes B. = (R, r, c, E)

for which there exists a polynomial-time algorithm EVAL such that for all r E R and z E E*,

EVAL(r, x) = r(x). EVAL runs in time polynomial in Iri and Izi. Such an algorithm is

a uniform polynomial-time evaluation procedure; "uniform" refers to the fact that there is a

single algorithm that can test membership for any concept in the class.

A randomized algorithm is an algorithm that behaves like a deterministic one with the

additional property that, at one or more steps durins its execution, the algorithm can flip a fair

two-sided coin and use the result of the coin flip in its miming computaVon.1 In this thesis we

make assertions of the form that there exist randomized algorithms that, when given as input a

parameter 7 > 0, will satisfy certain requirements with probability at least 1 7. Without loss

of generality we allow such randomized algorithms to choose one of m > 2 outcomes with equal

probability. Such a choice may be simulated in time polynomial in m and by a two-sided

coin with a small additional error that can be absorbed into 72 With this understanding we

ignore this additional error in the arguments to follow.

If B. = (R,r,c, E) is a class of representations, r E R, and D is a probability distribution

on E., then EXAMPLE(D, r) is an oracle that, when called, randomly chooses an z E E

according to distribution D, and returns the pair (x, r(x)).

The following definition of Immobility (and minor variants thereof) appears widely in the

literature of computational learning theory. (See, for example, [39, 67]; the essence of the

See :"0)) for a tonna treatment.
3In order to limit the total probability of error to 7, we can give as input to the algorithm the parameter

I, and bound the additional mos introduced by the simulated coin nips by the remaining . For example, an
algorithm simulating single m-sided coin flip can flip a twa.aided coin Dog, nil times, interpret the results as
the binary representation of an integer between 1 and 20"2"11, and, if the result is between 1 and in, use this
value to make the choke. If In is not a power of 2 then there will be a nonsero probability that none of the m
possibilities is chosen; in this cam the process can be repeated up to I logs 7 times until one of the m values
is selected. The probability that no choice would have been made after 1log, 7 iterations is no more than
Thus the overall error bound of 7 is maintained with only a small polynomial increase in running time.

6
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definition is from valiant [73].) For a more detailed discussion of this and other models of the

learning problem, see [37].

Definition 2.0.1 The class of representations R. = (R,T, c, E) is PAC-learnable if there ezists

a (possibly randomized) algorithm L and a polynomial in, such that for all n, a > 1, for all e

and (with 0 < e,5 < 1), for oUr E RH, and for all probability distributions D over E1"], if L

is given as input the parameters s, e, and 5, and may access the oracle EXAMPLE(D, r), then

L halts in time pz,(n, a,1,1) and, with probability at least 1 6, outputs a representation I.' E R

such that D(r' 9 r) e. Such an algorithm L is a polynomial-time learning algorithm for R..

Note that the algorithm is given an upper bound s on the size of the representation to be

learned. However, any learning algorithm that receives such a bound can be replaced by one

,rhich does not receive this information, provided we allow the algorithm to halt in polynomial

time only with high probability [37).

Note also that since L runs in time pL(n, a, -1,1,), any ri output must satisfy VI < 14(711 3111 1)-

We will frequently abbreviate "PAC-learnable" by "learnable" in what follows. If

D(7, r) 5 el

then we say that r` is an &approzimation of r (with respect to D), or is e-accurate for r (with

respect to D), omitting the parenthesized phrase whenever D is clear from context.

Thus PAC-learnability requires that a learning algorithm exists that, with high probability

(1 6), can produce an &approximation of any tiallOwn target concept from the class of rep-

resentations being learned. Farther, the running time (and hence the number of examples used

by the learning algorithm) may increase at most polynornially in the inverse of the parameters

e and 6, and polynomially in the length n of each example and the bound a on the size of the

representation of the target concept.

We define some representation classes over the domain (0, l}. Given some n E a literal

is either the symbol zi or its negation for some i sudt that 1 < i < n. In the following, let k

be any fixed natural number.

monomials: uffiziN{m : in is a conjunct of literals over n variables}.

kDNP: k-disjunctive normal form formulas = uneiN{ir r is a disjunct of monomials, each

with at most k literals, over 71 variables).

1 7



kCNF: k-conjunctive normal form formulas = unen{r : r is a conjunct of clauses, each

containing at most k literals, over n variables}, where a clause is a disjunct of literals.

k-term-DNF: uneN{r : r is a disjunct of at most i. monomials over n variables}.

k-clause-CNF: uneiN{r : r is a conjunct of at most k clause: over n variables}.

deeision-lists: unev{DL : DL is a decision-lie over n variables}, where a decision-list (over

n variables, for any n E IN) is a list of pairs DL = ama, bi), , (mi, bj)), where each

raj is a monomial (over n variables) and each bi is either 0 or 1. The value of DL on

z E {0,1}" is defined algorithmically: let i be the least number such that z satisfies mi.

Then DL(z) = bi (or 0 if no such i exists).

k-decision-lists: unisiN{DL : DL is a decision-list over n variables and each m3nomial in DL

contains at most k literals},

The definitions of decision-lists and k-decision-lists are due to Rivest [86].

A common variation on this model is learning the class B. in terms of another class H, in

which the learning algorithm must output hypotheses from the representation class H, rather

than B.. Another variation is polynomial predictability; a class R. :s polynomially predictable if

there exists a class H (for which membership car, be tested in polynomial time) such that R. is

learnable in terms of H.

The following theorem presents some results that will be used in Chapter 4.

Theorem 2.0.2

1. Monomials are PAC-learnable (73].

2. For each k > 1, kDNF is PAC-learnable 1141.

3. For each k > 1, kCNP is PAC-learnable [73).

4. For each k > 1, k-decision-lists are PAC-learnable [661.

5. For each k > 1, k-term-DNF is PAC-learnable in ter= of kCNP [61].

6. For each k > 1, k-clause-CNF is PAC-learnable in terms of kDNP Mil.

8
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In Euclidean domains, classes such as unions of rectangles and unions of ha-spaces have

been proven to be learnable [10, 12] . All nonlearnabiliti results under the model described

above depend on assumed hardness results from complexity theory or cryptography. Under the

assumption that RP 0 NP, the classes of k-texm DNF and k-clause CNF are not learnable [61).

Both of these classes are, however, polynomially predictable, since each can be learned in terms

of another representation class [61]. Each of the other classes mentioned in Theorem 2.0.2 is

also polynomially predictable. 3

A number of other interesting results on PAC-learning have been proved in the literature.

See, for example, [12, 35, 46, 47, 54], and many of the papers in [39, 67].

In [11] and [12] it was shown that a sufficient condition for a representation class to be PAC-

learnable is that there exist an Occam algorithm for the class. An Occam algorithm for a class

R = (R, r, c, E) is an algaithm that, when given a finite sample of any concept in R, outputs

in polynomial time a description of a "simple" concept in the class tht t is consistent with the

given sample. (A concept r is consistent with a sample of the concept r if the examples in the

sample that are in go are exactly those that are in r.) Depending on the domain, the definition

of simple measures either the number of bits in the concept description [11] or the complexity

of the class of possible hypotheses output by the algorithm, as measured by a combinatorial

parameter called the Vapnik-Chervonenlds dimension [12]. An Occam algorithm is thus able

to compress the information contained in the sample. If such a compression algorithm exists,

the representation class is PAC-learnable. We define Occam algorithms formally in the next

chapter.

PAC-leandng, as well as models that follow the general description given above, is a model

of supervised learnirg. In supervised learning there is a teacher (the oracle EXAMPLE(D, r),

in the case of PAC-learning) that gives the learner examples, with each example labeled as to

whether it is in the tariet concept. Depending on the particular model of learning, the teacher

may give the learner additional information about the target concept as well. Unsupervised

learning models the situation in which there are no a priori underlying concepts to be learned,

but rather the objective of the learner is to partition the elements of the domain in a inamier

consistent with some predetermined criterion. This approach I. also lmown as clustering, and

has been studied extensively.

'See [37, 54, 53] for comparisons of this end other models of prediction.
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In Arthur-Merlin games [5], interactive proof systems [32], and games against nature [60],

a "prover" and a "verifier" interact in a manner somewhat similar to that of the teacher and

learner in supervised learning. Under these protocols, as in supervised learning, one of the

parties (the proves) supplies information to the other party (the verifier) in an attempt to

elicit a desired response. As compared to models of learning, the provers in these protocols are

allowed considerably greater computational power than are teachers, and have fewer restrictions

on the type of information they may communicate to the verifier.

10



3 OCCAM ALGORITHMS AND PAC-LEARNABILITY

In this chapter we prove that for many natural concept classes the existence of an Occam

algorithm is also a necessary condition for PAC-learnability. In particular, we show that PAC-

leamability is equivalent to the existence of Occam algorithms for concept classes that are dosed

under exception lists (defined in Section 3.2). Consequently, for such classes PAC-learning is

equivalent to compression, either in terms of the number of bits in a concept description or in

terms of the Vapnik-Chervonenkis dimension.

3.1 Occam Algorithms

Occam's razor, which asserts that "entities shout" be multiplied unnecessarily" [58], has

been interpreted to mean that, when offered a choice among hypotheses that describe a set of

data, the shortest hypothesis is to be preferred. Unfortunately, when applied to the problem

of finding a concept that fits a sample, finding the shortest hypothesis ix often computationally

intractable [11, 30, 61]. It has been shown that settling for a short hypothesis, as opposed to

the shortest one possible, is nonetheless an effective technique in the context of PAC-learning.

Following [11], define an Occam algorithm to be a polynomial-time algorithm that, when given

as input a sample M of the concept induced by an unknown representation r e R and a bound

a on Irl, outputs a short (but not necessarily the shortest) reprerentation r' in R such that r

and r' are identical when only the strings in M are considered. We make this more precise.

Let S, = {M : M is a sample of sise m of r E R, and all examples in M have length

at most n}. (Recall that if M is any sample of r, then r' consistent with M if for every

(a, r(z)) E M, rls) = r(a).) Define atrings(M) to be the set : (2, r(c)) E Ml.

Definition 3.1.1 A randomised polynomial-time (length-based) Occam algorithm for a class

of representations R = (R, ry e,E) is a (possibly randomised) algorithm 0 ouch that there exists

a constant a < 1 and a polynomial po, and such that for ail m,n, a > 1. and r RI14 if 0
is given as input any sample M c S,, any 7 > 0, and s, then 0 halts in time polynomial

in m,n,s, and 4, and, with probability at least 1 7, outputs a representation to E R that is

consistent with M and such that ill < po(n, a4)ne.

11
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The above definition is a slight generalization of that in [11]. As in the definition of PAC-

learnability, we may omit the upper bound a on Irj that is supplied to the algorithm if we

are willing to allow the algorithm to halt in polynomial time only with high probability. Note

that if the sample M is a set (but not a multiset) for which an Occam algorithm O finds a

consistent r' meeting the required length bounds, thea 0 can be modified to ignore duplicate

examples and thus output the same ri on input of any extension of M to a ntultiset W. Thus

to show that an Occam algorithm performs as desired on a given multiset kr it is sufficient

to show that it performs as desired on the set of distinct elements of M. Consequently, we

assume without loss of generality that any sample M input to an Occarn algorithm contains

only distinct elements.

The following theorem is a straightforward generalization of Theorem 2.3 of [111.

Theorem 3.1.2 Let R = (R,r,c,E) be a class of representations, with r finite. If there exists

a randomized polynomial-time (length-based) Occam algorithm for R, then R. is PAC-learnable.

Theorem 3.1.2 generalizes the result in [111 by allowing the running times of learning algo-

rithms and Occam algorithms to be polynomial in the example length n, and by allowing for

randomized Occam algorithms. Similarly, the lengths of the hypotheses output by an Occam

algorithm are now allowed to depend polynomially on n and

Proof: The proof is similar to the one in [11], with minor modifications as follows. We

are parameterizing the representation class by bnth hypothesis size and example length, in-

stead of just by hypothesis size. Thus each occurrence of the hypothesis size Irl (denoted by

n in [11]) should be replaced by the product of the bound a on the hypothesis size and the

example length (an in our notation). Both the Occam algoritlun and the learning algorithm are

given a as a parameter. Since an Occam algorithm can now be randomized, we allocate half of

the permissible probability of error to the Occam algorithm itself (by giving it the parameter

7 = 4) and use the remaining I to bound the probability that the output hypothesis has error

larger than e. The latter is achieved by replacing each occurrence of 6 in the proof in [111 by

4. Thus the total probability of producing a hypothesis with error e or more is bounded by 6. 0

12
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3.2 Exception Lists

In the next section we prove the converse to Theorem 3.1.2 for all classes of representations

that satisfy a certain closure property. The property dictates that a finite list of exceptions may

be incorporated into any representation from the class without a large increase in size. More

specifically, the class of representations must be closed under taking the symmetric difference

of a representation's underlying concept with a finite set of elements from the domain. Further,

there must exist an efficient algorithm that, when given as input such a representation and

finite set, outputs the representation of their symmetric difference.

Definition 3.2.1 A class R = E) is polynomially closed under exception lists if there

exists an algorithm EXLIST and a polynomial pzz such that for all n ? 1, on input of any r E R

and any finite set E C EN, EXLIST hidts in time pEx(n, rj, BI) and outputs a representation

EXLIST(r, E) =rEER such that c(rE) = c(r) E. Note that the polynomial running time of

EXLIST implies that I'll < pEI(n, 1,1,1E1). If in addition there eclat polynomials pi and p2

such that the tighter bound Irzt PION IrItlogIED + P2(n,log fri,logIE)IEI is satisfied, then

we say that R. is strongly polynomially dosed under exception lists.

Clearly any representation class that is strongly polynomially dosed is also polynomially

closed. The definition of polynomial closure above is easily understood it asserts that the

representation rz that incorporates exceptions E into the representation r has size at most

polynoniially larger than the size of r and the total size of .E, the latter of which is at most

nig. The property of strong polynomial closure under exception lists seems less intuitive; we

will motivate the definition after we prove that it is satisfied by the class of Boolean-valued

circuits.

Examples Circuits are strongly polynomially closed Consider the class of Boolean-

valued circuits with n Boolean variables 21, as inputs, and consisting of binary gates AI

and v, and unary gate -1, denoting logical AND, OR, and NOT, respectively. Given such a

circuit C, and a list E of assignments to the input variables, we describe a circuit Cs that on

input of any assigzunent a, produces the same output as C if and only if a g B. Cs computes

the exclusive-OR of two subcircuits C and C'. The subcircuit C' has 0(niED gates, and outputs

1 if and only if the asaignment to the input variables is in the set E. Clearly, Cip has
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the desired behavior. Let k be the number of gates in C. Then the munber of gates in CE is

O(k 701).

We assume that each circuit is represented as a list of tuples of the following form. An OR

gate g. = gy V g1 is denoted by the quadruple (x, v, y, z), where x, y, and r are binary strings

denoting numbers used as names for gates, and the symbol "v" is in the representation alphabet.

AND and NOT gates are handled similarly, as is the specification of the input and output. It

follows that a string of O(k log k) characters is sufficient to represent a circuit containing k

gates. Thus if r and rz are the representations for C and CB above, we have

Irsl = Oak + nIEDlog(k + /tin)

= 0(k log(k + ntED + nIEJ log(k + nIED)

= P1(ndrilloSIED +1)2(ntlin In, loSIEDIRI

for some polynomials pi and p2. Thus the class of Boolean circuits is strongly pqlynomially

closed under exception lists.

The above example is helpful in motivating the definition of strong polynomial closure

under exception lists. Typically, a representation class is a collection of strings, each of which

encodes some underlying mathematical structure (e.g., a circuit). Note that the intuitive size

of the structure is not the same as the number of bits needed to represent it. In the case of

a Boolean circuit, a natural measure of size is the number of gates and wires needed to build

the circuit. Assuming bounded fan-in (as we have done), this is 0(k) where k is the number

of gates (including the input nodes). However, in order to encode the circuit description, we

require O(k log k) bits to name the gates and specify the connection pattern.

In our construction of C2 from C above, all that was necessary was the addition of a new

componrat C' that checked membership in the set E. Then C' and C were easily connected

together to form Cz. Thus the size of Cs is roughly the sum of the size of C and the size of the

exception list, the latter of which is niEi. Strong polynomial closure under exception lists is

meant to model exactly this situation wherein a set /1 of exceptions can be incovorata into

some structure C by simply adding an additional substructure of sise roughly the size of the list

E. The two polynomials pi and ps in the definition of strong polynomial closure under exception

lists are meant to correspond roughly to the sises *Ethos two components in the structure which

incorporates the exceptions. As noted above, there is a logarithmic discrepancy between the

14



intuitive size of the mathematical structure and the number of bits needed to represent it.

Consequently, the polynomials have arguments which allow for logarithmic cross-terms such as

Irl log 1E1 and 1Ellog ITI.

Other Examples We give examples of a number of natural classes of representations that

are strongly polynomially closed under exception lists.

The property for Boolean formulas can be demonstrated as follows. Let 7' be a Boolean

formula and B = {et, , ,et , ei, , el} be a set of exceptions, where the strings with

"+" superscripts satisfy .7' and the strings with "" superscripts do not. Let

fT, f ,f1 be the monomials satisfied only by et, et, et, ei, respectively.

(Recall that a monomial is a conjunct of literals.) Strong polynomial closure under exception

lists is witnessed by the formula P, defined by

Recall that a decision-list over n Boolean variables is a sequence of pairs

((m191,1), (m2262),.. (ins: ba))

where each ni. is a monomial and each bi is either 0 or 1. The value of a decision-list on a

setting of the n Boolean variables is defined to be bi, where i is the least numbt. -nth that in;

is satisfied by the assignment. (If no nsi is satisfied, then the value is 0.) A set of exceptions E

can be incorporated into a decision-list by adding to the beginnhig of the list a pair (in, b,) for

each exception e E 2, where rn,, is satisfied only by assignment e, and b. is 0 if e is accepted by

the original decision-list, and 1 otherwise. This construction satisfies the requirements of strong

polynomial closure under exception lists. Rivest [66) gives an algorithm for learning k-decision-

lists, for each constant k. (Recall that the c/ass of k-decision-lists consists of Ea decision-lists

DL for which each monomial tni in the list DL has at most k literals.) It is not known whether

the class of k-decision-lists is strongly polynondally closed under exception lists.

The reader may verify that the dames of decision-trees and arbitrary programs are strongly

polynomially closed under exception lists, as is any class of resource-bounded Turing machines

that allows at least linear time.

Let R be the class of (hyper)rectangles with faces parallel to the coordinate axes in rs-

dimensional Euclidean space. Let 13(R) be the Boolean clmure of R; that is, the class of
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regions defined by unions, intersections, and complements of a finite nunber of elements of R.

It is easily shown that 13(R) is strongly polynomially closed under exception lists, using either

the unit cost or logarithmic cost model and aro- reasonable encoding scheme.

For any fixed alphabet E, the class of DFAs is strongly polynomiely dosed under exception

lists. However, if we consider DFAs over arbitrary finite alphabets as a single representation

clara, then strong polynomial closure does not appear to hold. In Section 3.5 an ad hoc argument

is given that shows that the class of DFAs over arbitrary finite alphabets is PAC-leamable if

and only if it admits a length-based Occam algorithm. The argument in Section 3.5 also shows

that strong polynomial cksure holds for an/ fixed E.

There are some classes of representations, such as unions of axis-aligned rectangles in Eu-

clidean space, that do not meet the above definitions of closure under exception lists but do

have a weaker closure property that is also sufficient to prove the results of Sections 3.3 and

3.4. 'Ms weaker property is discussed in Section 3.6.

3.3 Results for Finite Representation Alphabets

We consider the case in which the alphabet T (over which the representations of concepts are

described) is finite. This typically occurs when concepts are defined over discrete domains (e.g.,

Boolean formulas, automata, etc.). Representations that rely on infinite alphabets (e.g., those

involving real numbers) are considered in the next section.

We show that strong polynomial cicoure under exception lists guarantees that leamability

is equivalent to the existence of Occam algorithms. Theorem 3.1.2 states that if for the class of

representations R. = (R,1", c, E) there LI a randomized polynomial-time algorithm that, for any

finite sample Ai of r E .R, outputs a rule describing which elements of strings(M) are in c(r)

that is significantly shorter than the sample itself, then B. is PAC-learnable. Thus if there exists

an efficient algorithm that can compress the information about the concept c(r) contained in At,

then the class of representations can be learned. The results of this section show that, for many

interesting classes of representations B., if B. I. learnable then such a compression algorithm

must exist. Thus not only is compressibility a suffident condition fit PAC-learnability, it is a

necessary condition as well. Rance learnability I. equivalent to data compression, in the sense

of the existence of an Occam algorithm, for a large number of natural domains. This answers

an open question in [11] for many classes of representations.
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Theorem 3.3.1 lilt = (R, c, E) is strongly polynomially dosed under exception lists and R

is PAC-learnabk, then there mists a randomized polynomial-time (length-based) Occam algo-

rithm for R.

Corollary 3.3.2 Let F be a finite alphabet- 1:1 r. = (A, c, E) is strongly polynomially closed

under exception lists, then R. is PAC-learnable if and only if there exists a randomized polynomial-

time (length-based) Occam algorithm for R.

Proof of Theorem 3.3.1 and Corollary 3.3.2

Corollary 3.3.2 follows immediately from Theorem 3.1.2 and Theorem 3.3.1. lb prove Theo-

rem 3.3.1, let L be a learning algorithm for R. = r, c, E) with running time bounded by the

polynomial py. Let EXLLST witness that B. is strongly polynozpially dosed under exception

lists, with polynomials pi and p2 as mentioned in Definition 3.2.1. Let a be a sufficiently large

constant so that for all n, s, t > 1, and for au e and 6 such that 0 < e,6 < 1,

PINPL(ny "i! logt) (7181÷116

Let b be sufficiently large such that for all s, t > and for all e and 6 such that 0 < ,6 < 1,

s,;14)),logt) ; (nslo5g(1))1'
FIN log(pL(n,

Let Co be a constant such that for all x > co, log x < x(3+40.+6). Note that for all such z,

(log z)a+b <

We show that algorithm 0 (Figure 3.1) is a randomized polynomial-time (length-based)

Occam algorithm for R., with associated polynomial

po(n, 49 1) = (42,)4144 ab
a-1-4

7 7 )
and constant

a =
2a + 2*

Since r' correctly classifies every x E strings(M) .13 and incorrectly classifies every x E,

III is consistent with M. Since B. is closed under exception lists, rligE R.

The time required for the first step of algorithm 0 is bounded by the running time of L,

which is no more than

2a + 1

PL(ot ;1I 71N ) = PL(NisOnTri-)
7
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Algorithm 0 (Inputs: a; 7; M E

1. Mu the algorithm L, giving it the input parameters s,
e = tn"-* , aad 6 = 7. Whenever L asks for a randomly
generated example, choose an element a E string.(111) ac-
cording to the probability distribution D(a) = I; for each
of the m (without loss of generality, distinct) elements of
strings(M), and supply the example (a, r(z)) to L. Let r' be
the output of L.

2. Compute the exception list B = {a E strings(M) : r'(a)
r(a)}. The list B is computed by running EVAL(r', a) for
each a e strings(M). (The almithm EVAL is defined on
Page 6.)

3. Output r = EXLISTV, B).

Figure 3.1: Occam algorithm derived from learning algorithm L

which is polynomial in n, a, m, and Note that this immediately implies that VI is bounded

by the same polynomial.

For each of the in distinct elements a in strings(M), each of length at most n, the second

step executes EVAL(r', z), so the total running time for step 2 is bounded by (km)pet,1(Ir'1, n),

where k is some constant and pe,ai is the polynomial that bounds the running time of algorithm

EVAL. Since 1,1 is at most pL(n, s, in* , 4.), the running time for the second step is polynomial

in n, a, tn, and

Since EXLIST is a polynomial-time algorithm, the time taken by the third step is a poiy-

nomialfunctlonofVlandtbeloereprentatlonofE. Again, le1 is polynomial in
n, a, in, and :1-1, and the length of the representation of B is bounded by some constant times

nm, since 1E1 < m and each element a E E has size at most n. We conclude that 0 is a

polynomial-time algorithm.

To complete the proof, it remains to be shown that with probability at least 1 7, jr'sj <

po(n, a, i)ma. Since R is strongly polynomialli closed under exception lists,

161 pj(n, Ir`11 log jEl) + log jr`i/log
1 1 1 1

P1(71914(ni a, log 1E1) + PAN log(PL(n, )), IEDIEIe 7 e 7
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I
I lit )ba ina log lE1 r +121722._

(3.1)2 k e7 ) 2 k 7

ISince L is a polynomial-time learning algorithm for R, with probability at least 1-8, D(rer') 5

e. The probability distribution D is uniform over the examples in M; thus, with probability

Iat least 1 - 8, there are no more than em elements z Estrings(M) such that z E r e 7°. Since

5 = 7, with probability at least 1 - 7,

itEl 5 em = nrthrn = m4T. (3.2)

ISubstituting the bound on [Et of Inequality (3.2) into inequality (3.1), and substituting

m- + for e, we find that with probability at least 1 - 7,

I 5
a (nslogns4r) a ± polog m)b 7n71-r

WEI
7 2 \ 7 J

I = a fna 1 * / a X G

i k -7) ka --TI log m) 77172+T

b no b+ i (7) (logn) arn -4T

ab (1Tb7
(log m)bm* .

CASE 1: M < Ca4s, then (log 771)' 4 < Oncor+b < (Ca,b)Q+b, SO

Ir1B1 < (ca,b)°bab (!1-3)a+bm4T
7

5 Po(nts -)771a.
1

I

CASE 2: rn > co, then by choice of c, (log rn)° b < mr4T. Thus (logm)°+bm*

tuft, so

Jr's! 5 at
7

5 Po (72, a 7W,
1

completing the proof of Theorem 3.3.1. 0

3.4 Results for Infinite Representation Alphabets

In this section we extend the results of Section 3.3 to the case in which an infinite alphabet

is used to describe representations of concepts. Such representations typically occur when the
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domain X over which concepts are defined is itself infinite (for example, axis-aligned rectangles,

or other geometric concepts in Euclidean space [12]). We note that Theorem 3.3.1 holds also

for T infinite, but is of dubious interest because the converse (Theorem 3.1.2, which shows that

the existence of length-based Occanz algorithms implies PAC-learnability) holds only when T is

finite. In the case of infinite T, a different notion of "compression" is needed; one based not on

the length of the representation of a class of concepts, but rather on a measure of the richness,

or complexity, of a concept class, called the Vapnik-Chervonenkis dimension (VC dimension).

The importance of the VC dimension and its relationship with PAC-learning was established

in [12].

The VC dimension and Relevant Lemmas

Recall that a concept class C is a pair C (C, X), where C C

Definition 3.4.1 Let C = (C, X) be a concept class, and let S t X . Define 110(S) = {c n S :

c E C}; thus Ile(S) is the set of all subsets of S obtained by taking the intersection of S

and a concept in C . The set S is shattered by C if 11c(S) = 2s . The Vapnik-Chervonenkis

dimension (VC dimension) of C is the size of the largest finite set S C X that is shattered by

C . If arbitvarily large finite subsets of X are shattered by C , then the VC dimension 4 C is

infinite.

The following lemma restates parts of Proposition A2.5 from [12].

Lemma 3.4.2 If (C, X) has VC dimension d, then for any finite se tSC X, Illc(S)I S Isid+1.

Another lemma that we will find useful is one that bounds the VC dimension of a concept

class induced by taking symmetric differences with sets of bounded size.

Lemma 3.4.3 Let (C, X) have VC dimension d. Let C" = {c SE:cE C,EC X ,I,EI <

If > 2 is the VC dimension of (C", X), then 4.4 < d + 1 + 2.

Proofi Let the VC dimension of (C", X) be di > 2, and let P be a set of cardbiality

that is shattered by C". By definition,

Iliccs(P)I = I{(ceE)11P : E C,E 1}I =
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which implies

Ii(ce (E n 11)nP:CECIEC ZIA< 41=24,

and thus

Wee.E)nP:cEC,EC

Since (c E)ri P = (en P) e .E whenever .6 C

WenfleE:sECIEg12,1g<111=24. (3.3)

But the left side of equation (3.3) is at most the product of I{c n c E C}l and RE E

1E1 5 ZN, which is Illc(P)I (t). Thus

Inc(P)1± (d!) 24- (3.4)

Substituting the upper bound on Illc(P)I from Lemma 3.4.2 into inequality (3.4), we obtain

<

< 2(d1)d(ch)+i,

and since di > 2 the above implies that

dt <d+1+2.
logdi

0

Recall that if R = (A, r, c, E) is a class of representations, then there is a naturally associated

concept class C(R) = (c(R), E*), where c(R) = {c(r) : r e R} . The VC dimension of a class of

representations R. is defined to be the VC dimension of the induced concept class C(R). We

write VC-dim(C) and VC-dim(R) to denote the VC dimension of the concept class C and the

class of representations B, respectively.

Recall also that &I consists of strings of E* of length at most n, and that RN is the set

of representations r E R of length at most s. If a = (R,T , c, E), then we define a concept class

En,. consisting of elements of 411141 considered only with respect to examples from Ei"1. This is

accomplished by introducing a new mapping c that interprets any representation r only with
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respect to examples of length at most n. In particular, we define anis = (RN, T, cn, E), where

cn(r) = c(r)n

The next lemma is a minor variant of theorems appearing in [12] aud [25].

Lemma 3.4.4 Let R = (R, r, c, E) be a class of representations, and let d(n, s) be the VC di-

mension of R. If B. is PAC-learnable, then d(n, s) grows polynomially in n and s.

The only difference between Lemma 3.4.4 and a result in [12] is that the latter does not

allow the learning algorithm to depend on a and thus the VC dimension grows polynoznially in

n alone. The modifications to their proof needed to yield the above result are so minor as to

be omitted.

Dimension-based Occam 'Algorithms and PAC-learnability

When I' is infinite, the existence of a length-based Occam algorithm is not sufficient to guaran-

tee PAC-learnability. The proof of sufficiency in the case of finite r relies critically on the fact

that for any given length n, there are at most lir distinct representations r E R of length n.

Consequently the proof fails when 11 is infinite. In order to prove a result analogous to Theo-

rem 3.1.2 that also holds frr infinite r, Blamer et al [12] define a more general type of Occam

algorithm, which we will refer to as a dimension-based Occam algorithm. As was the case with

length-based Occam algorithms, the definition requires the algorithm to output simple hypothe-

ses, but this time using a different definition of "simple". Rather than measuring simplicity by

the size of the concept representation output by the Occam algorithm, this definition uses the

notion of VC dimension to measure the expressibility of the class of concepts that the algorithm

can output. The larger the VC dimension of the class of concepts, the greater the expressibil-

ity, and hence the complexity, of that concept class. Thus instead of requiring the algorithm

to output short hypotheses, the definition of a dimensior.-based Occam algorithm requires the

algorithm to output hypotheses from a class with small VC dimension. The definition below is

a slight variant of the definition in [12].

Definition 3.4.5 A randomized polynomial-time (dimension-based) Occam algorithm for a

class of representations R = (R,r,c, E) is a (possibly randomized) algorithm 0 such that for

some constant a < 1 and polynomial po, for all nt,n,s > 1 and 7 > 0, there exists Emosoo7 C B

such that Vadim((fin,,,,.,, c, E)) po(n,s, Om°, and if 0 is given as input any sample
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M C Sh,. (where r E RH) and the parameters 7 and a, then 0 halts in time polynomial in

rn, n, s, and and, with probability at least 1 y, outputs a representation r' E R,. that is

consistent with M .

As was the case for length-based Oecam algorithms, we may omit the upper bound a on Int

that is supplied to the algorithm if we are willing to allow the algorithm to halt in polynomial

time only with high probability.

The following theorem is a straightforward generalization of Theorem 3.2.1(1) of [12].

Theorem 3.4.6 If there exists a randomized polynomial-time (dimension-based) Occam algo-

rithm for the class of representations R, then B. is PAC-learnable.

Theorem 3.4.6 generalizes the result in [12] by allowing the 71111111.14 times of learning algo-

rithms and Occam algorithms to be polynomial in n and by permitting the VC dimension to

grow polynornially in n. The above theorem also provides for randomized Occam algorithms

and allows the running time of the algorithm as well as the VC dimension of the class of possible

hypotheses to grow polynomially in

Proofi The proof is similar to the one given in [12], with the following minor modifications.

We are parameterizing the representation clue by both n and s, instead of just by s. Because

of this and the fact that randomized Oman algorithms are permitted, each occurrence of the

polynomial p(s) in the proof in [12] should he replaced by p(n, a, :i). For the same reason, the

effective hypothesis space (Ct., In the notation of [12]) should be replaced by 12, as de-

fined above. Both the Occam algorithm and the learning algorithm are given a as a parameter.

Finally, the parameter 5 in [12] should be split between the Occam algorithm itself (which is

run with 7 = I) and the bound on the probability that the output hypothesis has error larger

than e, as described in the proof of Theorem 3.1.2. 0

We prove the following partial converse to Theorem 3.4.6, which I. =slogans to Theo-

rem 3.3.1 of the previous section.

Theorem 3.4.7 If B. = (R,T,c, E) is a class of representations that is polynomially closed

under exception lists and R is PAC-learnable, then there mists a randomized polynomial-time

(dimension-based) Occam algorithm for IL.
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Corollary 3.4.8 1f R = (R, F,4 E) is a class of representations that is polynomially closed un-

der exception lists, then R is PAC-karnabk if and only if there ezists a randomised polynomial-

time (dimension-based) Occam algorithm for R.

Proof of Theorem 3.4.7 and Corollary 3.4.8

Corollary 3.4.8 follows immediately from Theorem 3.4.6 and Theorem 3.4.7. Note that Corol-

lary 3.4.8 holds regardless of whether T is finite or infinite. Note also that for dimension-based

Occam algorithms we only need polynomial closure under exception lists, rather than the more

stringent condition of strong polynomial closure that appears to be required to prove Theo-

rem 3.3.1.

To prove Theorem 3.4.7, let L ..e a learning algorithm for R. = (R, 1", c, E) with polynomial

running time pz, Let d(n, s) = VC-dim(RnA) be a polynomial whose existence is guaranteed

by Lemma 3.4.4. Let EXLIST witness that E. is polynomially closed under exception lists. Let

k > 2 be a constant such that for all n, a > 1, and for all e and 6 such that 0 < e, 5 < 1,

1 1 k naNk
d(n114(nt ? 7)) + 2 5

Let ah be a constant such that for all x > oh, loge <

To prove the theorem, it suffices to prove that algorithm 0 of the last section (with e

of step 1 defined by e = m-lea instead of m- 0+) is in fact a randomized polynomial-time

(dimension-based) Occam algorithm for R, with corresponding polynomial

po(n, s, = ahktit C2)4411
7 7

and constant
k2 + 2ka =

k2+2k-1-1.

We have already argued in Section 3.3 that 0 runs in time polynomial in m, n, s, and

(This argument still holds since B. is polynomially closed under exception lists.) Clearly any

soz that is output by 0 is consistent with M. To complete the proof, we must exhibit a set

C R of VC dimension at mast po(n, s, 7.1)m" such that with probability at least 1

the output r's of 0 is in the set whenever 0 receives as input the parameters 7 and

and a sample M of cardinality m, consisting of examples of length at most n of some r E R of

size at most s.
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Define to be the set of representations r's that 0 outputs on input of 7, s, and any

sample M of (where r is any element of 01), provided that the ezeeption list E obtained

in step 2 satisfies IB1 dill". Thus the only time that 0 fails to produce an element of ammo.,

is when the learning algorithm L fails to produce a representation r' that is correct within e on

the learning task at hand. This can happen with pcobability at most 6 = 7, so with probability

at least 1 7 the algorithm 0 outputs an element of The following claim completes

the proof of Theorem 3.4.7.

maim: The VC dimension of (R",7, cn, E) is at most po(n, ')m°

Proof: Let dit be the VC dimension of (R,,,,,,r,cn,E). The result is immediate if

dR < 1. Assume dE > 2. Let the effective hypothesis space of L, denoted L,9,, be exactly

those representations 70 that L might output on input parameters e, 6 (= 7), s, and randomly

generated examples, each of length at most n, of some representation in RN. Since L runs in

time bounded by polynomialpz, each element of L004.7 has size at most pL(n, s,1,1-ar-), and thus

C RIPLN4'401. Consequently, the VC dimension of the class (L c, E) is at most

the VC dimension of the class (RIP4("14')1, r, c, E). Recall that VC-dim(Rn,$) < d(n, s), and

thus the VC dimension of (L,,,,.7, c,,, E) is at most d(n, pL(n, s, li)).

Note that each element ;Is E is obtained from the symmetric diffesence of some

element r' of 40047 and some list of exceptions E g EE'll of cardinality at most ern. Applying

Lein= 3.4.3 (with (C, X) equal to the concept class induced by c, E), and 1 = cm),

we conclude that dA satisfies

dR , 1 1

logdR >- u(n'pltn, 3e9 )) + ETn + 2.7

By our choice of k, this implies that

dR
logdR 2 k e7)

CASE 1: dR < ak, then clearly dR < po(n, :Idnza, and the claim is proved.

CASE 2: dR > ak, then by choice of ak, log dR < (4)4T. Thus

dR dR =
log dR > (41.7)1

25

35

(3.5)



and, combining this with inequality (3.5) above we have

(dR)10 <
(1:72 +em

(128-7 )k 4- ern

k CLS) MTh'7

Raising each side to the power al, we obtain

dR < kOf (2:72)4* n1PigL

1
< po(n at ')ma

0

3.5 DFAs and Occam Algorithms

As will be shown below, for any fixed alphabet E the class of DFAs defined over alphabet S is

strongly polynomiblly dosed under exception lists. This does not appear to be the case if the

alphabet E is allowed to vary. Nonetheless, an argument very similar to Theorem 3.3.1 may

be employed to show that the class of DFAs (over arbitrary alphabets) is PAC-learnable if and

only if there is a length-based Occam algorithm for the class.

We first define a class of representations that captures the problem of learning an arbitrary

DFA. Let E., = {ao, ai,. ..} be a countably infinite alphabet. Clearly, for any finite nonempty

alphabet E the problem of PAC-learning the class of DFAs over E is captured by the problem

of PAC-learning DFAs over the finite alphabet {a., al, ...,alp...1}. Similarly, we can rename

the states of M to be go, .... Thus for any DFA M to be learned, we assume without loss of

generality that M has the following form. For soine a > 1, M has states and for

some a 1, M has alphabet {ao,

The representation alphabet T consists of the symbols 0, 1, and several punctuation charac-

ters. The representation r of a DFA M with a states and alphabet {ao, is a string

r = z#w#t, where z is a binary string of length flog al indicating that the initial state is q;
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to is a binary string.of length s where the i-th bit (counting from 0) of w is l if and only if gi is

an accepting state; and where t is a list of triples that represents the state transition function 6

of M. The list t contains (i, j, k) if and only if 6(qi, ai) = qb, where i and k are binary numbers

that are indices for states of id, and j is a binary number that is an index into the alphabet

{ao, , a,..1}. Assume that s,cr > 2.1 Then the size of the representation r satisfies

and thus

H = flog sl + 1 + + 1 + scr(2flogil + flog + 4),

< < 12scr log se. (3.6)

Since I' is finite, Theorem 3.1.2 applies, and the class of DFAs is PAC-learnable if it has a

length-based Occam algorithm. We show the converse holds, resulting in the following charac-

terization.

Theorem 3.5.1 The class of DFAs is PAC-learnable if and only if there exists a randomized

polynomial-time (length-based) OCC4171 algorithm for the class.

Proof; It suffices to show that a PAC-learning algorithm for DFAs implies the existence of

an Occam algorithm. The proof is nearly identical to the proof of Theorem 3.3.1, but because

DFAs do not seem to be strongly polynomially closed under exception lists, we need a more

careful analysis. We first define a procedure EXLIST that witnesses polynomial closure under

exception lists for arbitrary DFAs and strong polynomial closure for DFAs over any fixed fuLite

alphabet E.

Let the representation r encode a DFA M = (Q, E,6,0),F), where Q is the finite set of

states, E is a finite alphabet, 8 is the state transition function, qo is the initial state of M, and

C is the set of accepting states. Let IQ! = s. Let E be a finite set of strings of length at

most n. Then EXLIST(r,E) is the encoding of the DFA MB that accepts L(M) E and is

constructed as follows. ME contains as a subautomaton the DFA M plus some additional states

end transitions. Ms has a new start state q, and for each string to E 11 there is a deterministic

path of new states beginning at 0, labeled with the characters of to. (The union of all such paths

forms a tree.) The last :tate of the path will be an accepting state if M rejects to, otherwise it

1 In the cam that ane or both of a and cr is 1, the upper bound on Irl of (3.6) must be adjusted slightly. We
omit tlds adjustment in what failows for clarity of presentation.
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is a rejecting state. The other states in the path will be accepting or rejecting states depending

on whether the string corresponding to the state is accepted or rejected, respectively, by the

original machine M. Each new state of ME is thus uniquely associated with a preilx of some

string of E. If p is a new state of Ms associated with some prefix iv' of w E E, and if fcr

some a E E, w'a is not a prefix of any string in E, then we must indicate the state to which

the transition from state p on input a leads. In this case, the transition leads back to the

appropriate state of the original machine M; i.e., 4(p, a) = 8(qo,ula).

The number of new states is at nwst 4E1+1, and thus the number of states in ME is at most

s + n1E1 + 1. Consequently, if the representation rz encodes Mg, we have by inequality (3.6)

Irsi S. 12(s + nlEi 1)olog((s + n1E1+ 1)a).

Clearly EXLIST may be Implemented to run in polynomial time. Further, if a is treated as a

constant, then by using the fact that Int > au, polynomials pi and p2 are easily found such that

lrEI 5 121(n, jr1103 jEl) p2(n,log

Thus for any fixed alphabet E the class of DFAs over E is strongly polynomially dosed

under exception lists. However, if we do not require E to be fixed, then a is not a constant and

1rE1 is not expressible in the desired form due to the term niEicr.

Let L be a PAC-learning algorithm for DFAs, with polynomial run time py, and let a > 3

be a constant such that for all n, s, > 1, and flr all e and 7 such that < e,7 < 1,

pri(n,1230logscr, .1) 5 ;
We will show that algorithm 0 (as in Figure 3.1, with constant a defined as above) is an

Occam algorithm, with polynomia/ po and constant a < 1 to be determined later.

Let the DFA that r encodes have s states and an alphabet of a symbols. Then in step 1 of

algorithm 0, the output ri of L satisfies

Ho

1 1< PL(), 12sa log sa, )e 7
a hug \

5 e=1, )
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The number of states in the DFA that Is' encodes is at most and thus the number of

states in the DFA encoded by es output in step 3 is at most + niEl + 1. Consequeatly, by

inequality (3.6),

a a a a
Ir'El 5 12 + + glog --) + nIE1 + 1) cr) .

3 cry 3 e7

By the sme reasoning as in the proof of Theorem 3.3.1, inequality (3.2) holds with proba-

bility at least 1 7; substituting for c and 1E1, it follows that

irld 5 12 (c-ii + nm;r1To. + log (i MITITcr ninatra cr)

12a (M)a+1 M4T log (a (112-1 6+1 m7tr) .
7

By algebraic simplification, it is easily shown that there is a constant ca such that

Irk! 5 ea (7)6+2 mni4.

The constant Ca is chosen so as to absorb other constants arising in the simplification, and such

that for all m > c., log m < 1712*-T . Since Irj se, for constant a and for some polyno-

mial po we have Ir's1 po(n, jr14)ma, completing the proof that 0 is an Occam algorithm.

3.6 Discussion

Results in [11] and [12] show that the existence of Occam algorithms is sufficient to ensure

that a class is PAC-learnable. In a sense, this means that if there is an algorithm that, for

any concept in the class, can compress the information about the concept contained in any

finite sample of that concept, then the class can be learned. We have proved that not only

are randomized Occam algorithms a sufficient condition for learnability, but they are in fact

a necessary condition for classes that are closed under exception lists. Thus he existence of

randomised algorithms exactly characterizes PAC-learnability for a wide variety of interesting

representation classes. For such classes, learning is equivalent to information compression, in

the sense just described.
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Extensions

The definitions of closure under exception lists in Section 3.2 require that there exists an

algorithm EXLIST that, when given as input a representation r E R and a finite set E, outputs

a representation rE E R such that Ors) = c(r) B. This condition is, however, stronger

than necasary to prove Theorems 3.3.1 and 3.4.7. These proofs rely only on the fact that the

class is closed under exception lists with respect to a finite sample: It is only necessary that

EXLIST output a representation rE such that c(ri) n strings(M)*= (c(r) e E) n strings(M);

that is, such that c(r5) aud c(r) e E agree on all strings in a given finite sample, though not

necessarily on all strings in the domain. The definitions In Section 3.2 are presented because

they seem to be more natural properties of representation classes. However, since the weaker

definitions of closure are also sufficient to prove the existence of randomized Occam algorithms,

it is possible to show that such algorithms exist for a wider range of representation classes than

satisfy the hypotheses of Theorems 3.3.1 and 3.4.7. (In particular, when concepts are defined

over cnntinnous domains this weaker closure property should be much easier to satisfy.)

An example of such a class is the class of unions of imds-aligned rectangles in the Euclidean

plane, which appears not to be closed under exception lists as defined in Section 3.2. This class

is, however, polynomially closed under exception lists with respect to finite samples, and is thus

learnable if and only it admits a dimension-based Occam algorithm. This can be seen as follows.

A positive exception can be added to any concept in the class by adding to the union a rectangle

that includes the exception, but I. =all enough to exclude each of the negative examples in

the sample. To handle negative exceptions within some rectangle, for each such exception draw

narrow horizontal and vertical bands which form a cross and include the exception in the center.

The bands should be narrow enough so that no pontive example in the sample is included in

both the same vertical band and horizontal band as the exception. Then take the union of a

of the vertical regions bounded by the vertical bands and all of the horizontal regions bounded

by the horizontal bands. This new union (of a number of rectangles linear in the number of

exceptions) covers everything except a small box around each exception.

Recall from Chapter 2 the notion of learning one representation class B. = (R,T, c, E) in

terms of another representation class IV = E) (originally introduced in [61]). Under

this definition, a learning algorithm for R is required to output hypotheses in RI, rather than
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R (of course, ir may be a superset of it). Several interesting representation classes that are

not PAC-learnable have been shown to be learnable In terms of other classes (see, for example,

[1, 36, oil). One may generalise the notion of an Occam algorithm to that of an Occam

al,gorithm for a class B. in terms of another class R.' in a straightforward way. Analogues of

Theorems 3.1.2 and 3.4.6 prove that the existence of an Occam algorithm for R in terms of R.'

implies that B. is PAC-learnable in terms of R.'.

The results of Theorem 3.3.1 and Corollary 3.3.2 can also be extended to the case of learning

R. in terms of R!. The definit" 2n of closure under exception lists is adjusted so that EXLIST,

when if_ Ten as input r It and a finite set 13 C EN, outputs a repmentation tor E R. such

that cqr's) = c(r). R. It is then easily shown that if a class R. is strongly polynomially closed

under exception lists in terms of a class R.', then the existence of a PAC-learning algorithm for

R. in temis of R.' implies the existence of ex Occam algorithm for R. in terms of R.'. It is not

known whether Theorem 3.4.7 and Corollary 3.4.8 can be generalized in this manner.

As defined in Chapter 2, a representation class R. is polynomially predictable if there exists

some representation class R.' with a uniform polynomial-time evaluation procedure (i.e., an

algorithm EVAL as defined in Chapter 2) such that R is PAC-learnable in terms of R.'. If

there is such a class 11.', then there is also a class R" that is strongly polynomially dosed

under exception lists, and such that B. is PAC-learnable in terms of R". (The concepts of

R." are simply the concepts of R.' augmented with finite lists of exceptions. Clearly R." is

strongly polynomially closed under exception lists, and since RP contains all concepts of R.', R.

is PAC-learnable in terms of B.".) Thus, by the analogue of Corollary 3.3.2 just discussed, R

is polynomially predictable if and only if there exists a randomised polynomial-time (length-

based) Ocean: algorithm for R that can output as its hypotheses the concepts of any class with

a uniform polynomial-time evaluation procedure.

Related Work

&lapin [701 has proved a significantly stronger compression result in the particular case of

polynomial predictability in discrete domains. He shows that if a class B. over a discrete

domain is polynomially predictable, then there is a polynomial-time algorithm that, given any

finite sample of a concept in B., outputs a description of the sample that has size at most

polynomially larger than the smallest possible consistent description.
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Schapire also considers the notion of weak pnedictability. A class is weakly predictable if

there exists a learning algorithm that will, with high probability, produce a hypothesis that is

correct only slightly more (by an inverse polynomial) than half of the time. He then proves the

surprising result that if a class is weakly predictable then it is also polynomially predictable

under the regular PAC modeL Thus by his result above, it follows that in discrete domains a

class is we...1dy predictable if and only if it has a randomized polynomial-time Occam algorithm.

By combining our observations above with his result that a class is predictable if and only if

it is weakly predictable, we can obtain the same result for continuous domains as well. These

results demonstrate a relationship between two seemingly quite disparate properties of a class of

representations: If there is an algerithm that can learn a hypothesis that is only slightly better

than random guessing, then there exists another algorithm that can fmd small hypotheses

exactly consistent with finite samples from the class.

The notion of an Occam algorithm can be relaxed to that of an approximate Occam algo-

rithm. More formally, define a randomized polynomial-time (length-based) approximate Occam

algorithm (RPTLBAOA, pronounced "reptile-boa") for a representation class IL = (R, r, c, E)

to be a randomized algorithm that, when given a fmite sample M of some representation r E

and parameters e, 7 < 1, and s, outputs in time polynomial in n, s, IM1, I, and 4,-; a representa-

tion r' E R such that with probability at least 1 7, r' is consistent with at least (1 e)m of

the examples of Ai, and such that Iril < po(n, ini,1,7,1-)m", where rn is the cardinality of M,

is some fixed polynomial, and a < 1 is some fixed constant. Thus a RPTLBAOA is identical

to a length-based Occam algorithm., except that rather than finding a consistent hypothesis,

the algorithm is allowed to find a hypothesis that is approximately consistent; the hypothesis

may err on e of the sample. Implicit in [45] is a proof of the following generalization of The-

orem 3.1.2: If a class of concepts B. has a RPTLBAOA, then the class is PAC-learnable. It

is a stsraightforward observation that the converse holds, i.e., that if a class is PAC-learnable,

then it has a RPTLBAOA. This converse holds regardless of whether the class is closed under

exception lists. Thus, the results of [45] implicitly show that PAC-learnability is equivalent to

the ability to find small approximately consistent hypotheses for a sample in random polynomial

time.

Another result concerning data compression and PAC-learning is due to Sloan [71]. Sloan's

result demonstrates that regardless of the class, PAC-learnability implies the ability to fmd
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exactly consistent hypotheses from the same class that are slightly compressed. In particular,

he shows that if a class is PAC-learnable, then there is a constant k and an algorithm 0 such

that for sufficiently large m and n, if 0 is given as input any sample of cardinality m of examples

of length at most n, then 0 will output with very high prz.bability a hypothesis that is consistent

with the sample and that has size at most (1 Irig)m. This slight compression does not appear

to be enough to guarantee PAC-learnability, wbereas the compression by more than a linear

amount that is guaranteed by Occam algorithms (and by Schapirels result) is sufficient.

It is interesting to note the similarity between samples of concepts from classes for which

there exist length-based Occam algorithms and strings with low Kolmogorov complexity ([521;

see [2, 53] for more recent results). For each there exists a short algorithm that encodes the

information contained in a longer string of characters.

Other Implications

Suppose that, for some class of representations B. that is dosed under exception lists, there is

an algorithm L that is a learning algorithm for R provided that the probability distribution

assigns nonzero probability only to a finite nnmber of strings in the domain, and assigns the

same nonzero probability to each such string. Note that the construction of the algorithm 0

in Section 3.3 only requires that the learning algorithm wall for uniform distributions over

finite samples. Thus the existence of L Is sufficient to construct a randomized polynomial-time

Occam algorithm for B. This in turn implies that B. is PAC-learnable. Hence for many natural

classes, in order for the class to be learnable under arbitrary probability distributions over the

entire domain (PAC-learnable) it is only necessary that the class be learnable under uniform

distributions over finite subsets of the domain. This observation is due to Manfred Warmuth.

Consider classes of representations R = (R,T,e, £), not necessarily closed under exception

lists, with the following property: R = uR, where each r E R is defined over examples

of length n only. (Representation classes of Boolean formulas typically have this structure.)

Suppose further that there exists a polynomial p such that for all n and all r E R, frj <
p(n). We say that such a class is polynennially sise-bounded. A number of restricted classes of

representations are polynomially size-bounded, including k-term DNF formulas,

k-dause CNF formulas, kDNF formulas, and kCNF formulas, where is is any constant. (General

DNF formulas are not polynomially size-bounded.) For any polynomially size-bounded class
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B., if B. is PAC-learnable then the size of the hypothesis output by the learning algorithm

L is always bounded by p(n). Thus for any finite sample M of m examples, if L is given as

input examples from M, drawn randomly according to a uniform distribution, and the accuracy

parameter e of L is set to a value less than then with probability at least 1i L will output a

hypothesis of size polynomial in n that is consistent with M. This is a randomized polynomial-

time (length-based) Occam algorithm for R. Thus for any polynomially size-bounded class,

even if it is not closed under exception lists, immobility is equivalent to the existence of a

randomized (length-based) Occam algccithm.

Currently, all results lmown of the form "B. is not PAC-learnable unless RP = NP" rely on

certain syntactic restrictions on the class R [62]; such results rely on a proof that it is NP-hard

to determine whether there exists any hypothesis from the dans it that is consistent with a

given finite sample. This technique cannot be applied to show the intractability of learning any

class that is syntactically rich enough to allow the expression of disjunctions of singletons, since

in this case a consistent hypothesis for any sample is easily obtained. Consequently, the non-

PAC-learnability of DNF or DFAs cannot be proved in this manner. Our results may provide

a new technique for proving nonlearnability results that rely only on the assumption that R.P

NP.2 For example, in Section 3.5 we showed that the class of DFAs is PAC-learnable if and

only if it admits a length-based Occam algorithm. Such an Occam algorithm would provide a

very weak approximate solution to the minimum consistent DFA probieng partially negative

results in this regard have been demonstrated [64] which, if extended appropriately, would show

that no Occam algorithm for DFAs is possible, and consequently no PAC-learning algorithm

for DFAs is possible unless RP = NP.

An obvious open problem is to determine whether Theorems 3.3.1 and 3.4.7 can be proved

using weaker conditions than closure under exception lists. The exception list property is

satisfied by any class that (1) contains la singleton concepts, and (2) is (polynonsially) dosed

under set union and subtraction. It would be of interest to determine if either of these conditions

can be dropped. In particular, classes such as DNF admit union (via disjunction) but do not

2/31 the case of DPAs, Kearns and Valiant (43j (see also (MD show nonpredictability based on number-theoretic
and cryptographic assumption' that are ostensibly stronger than the widespread complexitp-theoretic assumption
that the classes RP and NP aro different.
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appear to admit set difference; thus they do not appear to be closed under exception lists. Is

the PAC-learnability of DNF equivalent to the existence of an Occam algorithm for DNF?
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4 SEMI-SUPERVISED LEARNING

in this chapter we ask whether it is possible to learn with less information than is provided in

the standard FAC-learnirad model - without a teacher labeling examples of each concept to be

learned as positive or negative. Further, we consider the problem of simultaneously learning a

collection of concepts, instead of just a single one.

There are (at least) two situations that we might wish to model that involve learning in an

environment with no teacher and many concepts to be learned. One is to assume that there are

no a priori underlying concepts against which the learner is to be evaluated, and that the goal

is to partition the examples in a manner consistent with some predetermined criterion. This

approach is traditionally known as clustering, or unsupervised learning, and has been studied

extensively [3, 17, 24, 34, 69].

The other approach, which is undertaken in this chapter, is to assume that there are in

fact specific concepts to be learned, yet there is no teacher labeling each element as to its

concept membership. In this case, the criterion of success is how well the ...earned concepts

approximate the correct underlying concepts. Of course, in the absence of any information about

the underlying concepts, and without a predetermined criterion for measuring the suitability

of a clustering, the learning task is impossible. If, on the other hand, there is a teacher who

labels each element with its corresponding concept name, then (for any reasonable definition

of concept learning) the simultaneous (supervised) learning of a disjoint collection of concepts

trivially reduces to separate instances of learning individual concepts. For each concept, the

positive examples will then be the members of the concept, and the negative examples will be

members of the other concepts.

We strike a compromise between these two extremes, and investigate the simultaneous

learnability of a collection of concepts in a semi-stspervisedmanner, Le., with partial information.

Rather than assuming that concept labels are given, we assume instead that there is an oracle

that, upon request, will randomly and independently choose two examples according to an

unknown probability distribution over the domain and tell the learner whether or not the two

examples belong to the same concept. A possible interpretation or justification of such an oracle
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is a learning environment in which the learner is able to occasionally and randomly notice that

two examples ought to be classified together (or apart), yet does not necessarily have the ability

to relate these two examples to other exaniples previously seen, or likely to be seen.

If there is only one concept to be learned, then the problem is closely related to a form

of concept learning in which the teacher, rather than providing randomly chosen positive and

negative exaniples, instead answers whether two randomly chosen examples are of the same type,

i.e., both positive or both negative, without telling which is the case. Thus the learnability of

a single concept in a semi-supervised manner is an interesting question itself, as it explores the

boundary of the amount of information that is necessary for cancept learning. It would seem

that if, in addition, the examples were from many different concepts to be learned simultaneously

in a semi-supervised manner, then the learning problem would be significantly more difficult.

We show that in fact for a wide range of representation classes R (in which concepts are

represented by of Booloan formulas) known to be PAC-learnable, and for every constant t > 0,

any collection of t disjoint concepts defined by formulas of R. is learnable in a semi-supervised

manner (ss-learnable) in polynomial time.

Sufficient conditions are also even for the ss-learnability of representatim classes of finite

Vapnik-Chervonenlds dimension. In particular, it is shown that if R has finite VC-dimension

and R. is learnable from positive examples only, then any collection of t disjoint concepts from

R. can be ss-learned in time polynomial in t.

Of particular interest is a new technique of learning an intermediate oracle. Many repre-

sentation classes would be ss-learnable if we were to assume the existence of en oracle that,

when asked about two examples, tells us whether or not they are examples of the same concept.

We do not, however, wish to assume the availabnity of such an oracle. Since we have access

to pairs of examples labeled as to whether or not they are in the same concept, in many cases

we can use these examples to learn a concept description that will imitate the desired oracle

quite accurately. We call this concept description an intermediate oracle. Once learned, the

intermediate oracle can be used in place of a "real" oracle. We expect that this technique will

prove useful for other learning problems.

The rest of this chapter is organised as follows. In Section 4.1 we review the necessary

background and define ss-learnability. Section 4.2 gives an algorithm for polynomial-time is-

learning of monomial concept classes. Section 4.3 gives sufficient conditions for ss-learnability
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which, in Section 4.4, are used to prove the u-learnability of other classes of Boolean formulas.

In Section 4.5 the ss-learnability of a concept class is related to the VC-dimension of the class

and additional sufficient conditions are given. In Section 4.6 an ostensibly different definition

of ss-learning is given and shown to be equivalent to that of ss-learnability.

4.1 Notation and Definitions

For each n > 1, let X = {zi,as, ..., c} be a set of n Boolean variables. Define a fam-

ily of Boolean forint:1as to be a representation class F = (F,T,e, E) where E = {0, 1}, F =

{A, Nit -It (9 219 229 and F is a set of Boolean formulas described by strings of characters

l' in the obvious way. For any n > 1, let r E I' denote the set

and 1",, E F denote the set of formulas in 14' that contain only symbols in, Tn. For each f E

f represents the concept e(f) = {2 e {0, 1}* : f(z) = 1). 1

As mentioned in Chapter 2, we occasionally write f in place of c(f) when the meaning

is clear from context. Similarly, the word "formula" is sometimes used to denote "concept

represented by the formula".

We now naturally extend the definition of PAC-learning to the ss-learning of t disjoint

concepts. Let t E IN. Let F = (F, r, c, E) be a family of Boolean formulas, and for some n

let Ii, 12 ,ft E F. be pairwise disjoint (i.e., the sets of satisfying assignments of the fi's are

disjoint). Let D be any probability distribution on {0,1}" such that

D(ULifi) =1. (4.1)

Thus the only elements that may occur when sampling from /, are those which satisfy one (and

hence exactly one) of the fes.

Let LABELED-PAIRSD,fh...,/, be an oracle that, when called, randomly and indepen-

dently chooses two elements c, y E {0,1}" according to the probability distribution D and

returns (z,y,same) if, for some i, z and y both satisfy A, or returns (a, y,d(fferent) if a and y

satisfy different fornrile.s in {A, f2 A}. When LI and ft are dear from context,

we omit the subscripts and write only LABRLED-PAIRS.

'Thus 4f) contains strings of length n or snare. In particular, fat any ening a of length n in 4f), all strings
that have a as a prefix are also in 4f). We will restrict the probability distribution D in the definition of semi-
inpervised leaaring so that D(a) Bs 0 far all a not of length exam:* In this in any particular lemming problem
only strings of length n are considered.
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An alternative definition would permit D to generate examples that are not in any of the

fi's. rlwever, it is then more difficult to find a natural definition of LABELED- PAIRS. (It is

not dear how a pair ONO should be labeled if one or both elements are not in any concept fi.)

crder to define the learning of a collection of t formulas = {At fs I ft} in a semi-

supervised manner we need to measure the error of a collection of u formulas Q = {gi: 92 Mi}

with respect to .7 and a given distribution D. The definition is obtained by the following

intuitive considerations: Ideally, u = t and there is a correspondence between elements of

and .T such that each gi is an approximation of some unique formula fi. However, it is

conceivable that more or fewer than the true number of formulas are learned, and thns there

may be no correspondence between some of the formulas in 0 and some of the formulas in F.

Let ir C 0 be the set of those formulas in 0 for which there is in fact a correspondin formula

in .r. We measure the error of gin the following way: A string E {0, 1}" is an error point if

any of the following conditions hold.

Error-1 z is not in any gi E ci. The intention is that of contains the relevant learned formulas

those corresponding to the underlying formulas in Y. Thus any point falling outside

of the region ugy should be counted towards the error.

Error-2 z is in the synunetric difference of some gi E 0' and the corresponding fi. 'This counts

as error any discrepancy between a learned formula and the corresponding underlying

formula that it is intended to approximate.

Error4 a is in the intersection of two different concepts in 0. This prohibits excessive overlap

among the learned formulas.

To formally restate the above regions of error, let I : (I' -- .7" be an injection mapping

learned formulas in 0' to their corresponding underlying target formulas in 7. Then

El=t7U7

E2 = UNegt(94 Agi))

E3 = u..1.040(9i n gi)

Note that these regions might more accurately be denoted by Ell, E12, and E13, since they

depend on the injection I. In order to simplify notation the superscripts are omitted.

39

49



Now we may define how closely a finite collection 0 of formulas approximates a finite col-

lection .r of formulas.

Definition 4 1.1 Given F = {A, 12 ..., ft}, 0 = and a distribution D on

{0,1}" satiafYing equation (4.1), then g is e-close ioFiftheie exists a subset g' C 0 and an

injection I : .7 such that

D(E1 E2 U .E3) < e.

The motivation for counting the regions El and E2 as error associated with 0 should

be cls.ar. The purpose of region E3 Is to preclude the possibility of malting Q so large that

the difficulty in the learning problem becomes determng the subset 01 that has the desired

properties. Far example, if the third error component was omitted, any family F of formulas

could be ss-learned (as defined below) by simply setting 0 = 2{0,1}11 so that 0 contained formulas

representing every possible concept over n variables. Limiting the amount of overlap among

the concepts of 0 appears to be the best of a number of possible solutions to this problem.

Finally, tshe following definition of ss-learnability essentially parallels that of PAC-learnability,

except that the information available to an ss-learning algorithm consists of LABELED-PAIRS,

and the algorithm is required to output a collection of formulas that is e-close to the un-

derlying collection of formulas. For any collection of formulas .F = {A, h} , define

mAxsIzE(.7) = LAI such that for all 5 < t, ifil > lm. (Thus maxsIzt(F) is the size of the

largest formula in F.)

Definition 4.1.2 The family P = (F,T, c, E) of Boolean formulas is es-learnable (learnable in

a semi-supervised manner) if for each t E IN there exists an algorithm A and polynomial p such

that for all n, 1, for every disjoint collection = {f:,fs. ft} C Fs with MAxsIzz(Y) < By

for any probability distribution D on {0, 1}" satisfying equation (4.1), and for all e, $ > 0, if A is

given as input the parameters e, 5, and a and may access the oracle LABELED-PAIRSDji,h,f

then in time P(n 14111) A *girds a collection {Yu 02 IA'} g As that, with Probability at

fear 11 5, is &close to ffa, h.., fa. Such an algorithm 1 is an es-learning algorithm for the

class F.

Note that this definition does not require that the learned formulas be disjoint, even thoui:

the formulas that they approximate are disjoint. However, any area of overlap among the
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Thus m must also be large enough so that, with high probability, the learned monomials are

sufficiently accurate.

We don't have such an orade; what we do have is LABELED-PAIRS, which can give us

same and different labels, but only for randomly generated pairs of points, not for requested

pairs. We cannot just wait for the pairs that vre're interested in to be generated, since D may

be such that this would take exponential time. In order to get around this problem we learn an

oracle front the emmples of sameness and differentness supplied by LABELED-PAIRS. Again,

it might take too long to learn an oracle that responds correctly on all possible inputs; we

instead learn an approximate oracle, and guarantee that the approximate oracle is accurate

enough so that, with high probability, it will be correct on each pair of points in our sample

of size m. (We call such an oracle an intermediate oracle, as it is not supplied to the learning

algoritlun; instead, it is constructed and used by the learning algorithm as au oracle enabling

a solution of the proper form to be discovered.)

Definition 4.2.2 For any collection of rustomials m1,...,mt over the variable set X (i.e.

monomials in F), the concept SameConcept((ml,...,mt)) g fo,11,1% is the set of all binary

strings of length 2n such that the first n-bit rubstring and the second n-bit substring are in

the same monomial concept; i.e., if s and y are n-bit strings and their concatenation sy E

SameConcept((mil .mt)), then for some i iS i < t, z E mi and y E mi. When dear from

contest, we omit the argument (m1, ..., mt) and refer to the concept as SameConcept.

Note that the oracle LABELED-PAIRSuont,,,,,...,,,,, is a generator of positive and negative

examples for the concept SameConcept((mi, , mt)) (with product distribution Da X2

defined by D2(z) = D(z)D(y), where z = zy).

Define the set of concepts Cs = uniSameConcept((m1, mt)): Int are monomials

over the variable set 14, Consider the coigept class (Cs, E).

Lemma 4.2.3 There is a representation class S for (C s, r) that is PAC-learnable in terms

of t CNF.

Proofi Let x and y be n-bit binary strings, and let z be their concatenation, zy. Suppose

that z E SameConcept((mit2774)). Thm y E mi for some i < t. Por each i < t, let the

monomial (over 2n bits) MI be defined such that for all j <

(z1 774) A (z1++1 /74)* z, Emi
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and

(Irj E "4) (wn+1 Em)*7,Em.

Thus z must satisfy vnl. In fact, the strings that satisfy n4 are exactly those strings that are

concatenations of pairs of strings that both satisfy mi. Thus the set of pairs of strings that are

in the same concept is the set of strings whose concatenations satisfy the t-term DNF expression

774 V m'itv v In:. This mews that the pairs of points that ars in the same (different) concept

are the pairs whose concatenations are positive (negative) examples of a t-term DNF expression

over 2n variables. Let S be the representation class of t-term DNF formulas. Then any concept

in Cs can be represented as a fonnula of S. Although for each t > 2 it is NP-hard to learn an

&accurate t-term DM? expression from examples [61), t-term DNF is PAC-learnable in terms

of tCNF (Theorem 2.0.2). Hence S is learnable in terms of tCNF. 0

Thus we can obtain (with probability at least 1 6) a tCNF expression that is e-accurate

for ns'i v m: in time polynomial in n, I, and 1. The tCNF expression will be used as an

oracle SC for the concept SameConcept in the learning algorithm given below.

Definition 4.2.4 For any q, 0< q < 1, a q-significant concept (or monomial) mi E {mj, . . . , mt}

is one for which D(mi) > q. Elements of {m1, ...,mt} that are not q-significant are q-

insignificant.

Note that

D( mi) s E egmi) E5 =i. (4.2)
nsi is sj2t .burippificant YIN is sOt -Insignificant 11=1

The ss-learning algorithm is sketched in Figure 4.1.

Theorem 4.2.5 Let the variable m in the Monomial ss-Learning Algorithm be such that

2t 2f 4fm = maz(71n7,p2(n,7,10},

where pp is the (polynomial) time bound on the algorithm for PAC-learning a monomial of n

variables with accuracy parameter if and confidence parameter 6. Then the Monomial ss-

Learning Algorithm is an as-learning algorithm for the class of monomials.
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Monomial sa-Learning Algorithm

1. Use LABELED-PAIRS to learn, with probability at least
I I, an oracle SC for SameConcept that is Ay-actuzate. A
learning algorithm odds by Lemma 4.2.3. The time taken is
at most pi(2n, ), where pl(n, i) is the (polynomial)
dme needed to leant a tCNP expression of n variables with
accuracy e and confidence 6.

2. Make it calls to LABELED-PAIRS to obtain, with probabil-
ity at least 1-4, an m-iample (a sample oldie m) containing
at least one element from each *-significant monomial.

3. Use SC to divide the in-sample into equivalence classes in
the obvious way.

4. For each equivalence class, label the in-sample accordingly
and run an algorithm for PAC-learning monomials, with ac-
curacy and confidence parameters * and 4, respectively.
Whenever the algorithm requests an example, give it the first
unused example from the m-sample. Each monomial output
by the learning algorithm is output as a concept descziption.

Figure 4.1: Algorithm for as-learning monomials

Clearly Theorem 4.2.1 follows from Theorem 4.2.5. To prove Theorem 4.2.5 we need the

following definition and lemmas.

Definition 4.2.8 A good run of the Monomial as.Learning Algorithm is one in which

(A) The oracle SC learned in step 1 is in ftict a Ar-approsimation of SameConcept;

(B) The rn-sample obtained in step 2 does have at kat one element of every ft-significant

monomial in frnl, m2,

(C) In step 3, SC makes no mistakes in dividing the particular m-sample into equivalence

classes; and

(D) Bach learned monomial concept fmon step 4 of the algorithm is in fact an trapprozimation

of the ('eal) monomial that covers the elements of the equivalence class labeled as positive

ezampks.

1

1
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Lemma 4.2.7 Let M = 7712 . . mt} be the collection of disjoint monomials to be learned.

If a good ran of the Monomial u-Leorning Algorithm occurs, and g is the set of monomials

psi:deiced, then 0 is e-close to M.

Proof: Set 01 (as described in Definition 4.1.1) equal to 0. Let I be the injection mapping

each learned monomial g E O' to the (real) monomial of A4 that is consistent with the labeling

of the rn-sample that was used to learn g. (By (C), there is exactly one such monomial.) Since

= 0, and since each z such that D(z) > is in exactly one IN E {rni,1722 Mt}, then for

any i, j such that s and gj are in (I' and i j,

zegin g1=. zEgieggi)11zEgieggj).

Thus

B3 = U (gi n g5) U e ggin = B2:
sits

so to show that gf e-close to M it suffices to show that

E2) < e.

By (D), for each g E 01, g I(g) 5 *, and since there are at most t elements of go,

D(E2) = D( U gi ruill 5 =
set,'

To show that gt is e-close to M, it thus suffices to show that

D(E1 £2)

By equation (4.2), equation (4.3) is true if

which is true if

(4.3)

El E2 C U{mi rni is e Ptinsignificant}, (4.4)

£1 n U{mi : /74 is e/2tsignificant} g £2. (4.5)

To see that containment (4.5) &ads, note that if z E mi and Mi is irsignificant, then by

(B), there is some g E such that I(g) = If at is also in El = Lidl, then ft g, so

zEgegg)gE2. 0
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Lemma 4.2.8 Let SC be a AT-approzimation of SameConcept (with respect to the product
1measure LO). I,f we randomly generate m points (from 1 calls to LABELED-PAIRS), then

with probability at least 1 - t, SC will correctly classify each of the CD pairs of points as to

sameness and diffemntness.

Proofi Let SC be a AT-approximation of SameConcept, and thus AT-accurate with respect

to the oracle LABELED-PAIRS. Consider any m-sample generated randomly from ufl calls to

LABELED:PAIRS. Number all of the pairs of points in the tn-sample from 1 to (7) For

each i from 1 to (7), let yi be the probability that the orade SC is wrong on the ith of

the (7) pairs. Since, for any rn-sample, each permutation of the in points is equally likely, 111

(Vi, j (7)) = 7i. In particular, (Vi < (7)) -yi = 71. Note that 71 is the probability that

a 4-2-accurate oracle SC is wrong on the first pair. Thus the probability that SC is wrong on

some pair is at most
(7)
E (1 m) 05

= 71 ( <
2 2 2m2 4

J=1

1

Lemma 4.2.9 If m is as in the hypothesis of Theorem 4.2.5 then the probability of a good run

of the Monomial ss-Learning Algorithm is at 'wail- 5.

Proofs Let A,B,C, and D represent the events that (A), (B), (C), and (D) (as given in

Definition 4.2.6) occur respectiveIy. The probability of not obtaining a good run is then

Pr(I) Pr(A n if) + Pr(A rt B n Z;) Pr(A nBnCn

Thom

Pr(2) is at most 4, by the definition of PAC-learnability.

By hypothesis, m 11n3I, thus the probability that B fails to occur, i.e., that some

irsignificant monomial does not have a representative in the rn-sample, is at most

e ithin- 5) -1" 5 1.

Hence Pr(A n 1) 5 Pr(3) t.
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By Lemma 4.2.8, the probability that (C) fails to occur given that (A) occurs is at most

t, thus Pr(A n B n < Pr(A n 5 Pr(ZIA) I.

Given that A, B, and C occurred, the probability that a particular learned monomial has

error more than jl s at most 6, by the definition of PAC-learnability and the fact that

each time one of the monomial learning alprithms requested an example it was given an

example from the rn-sample that was generated randomly according to D. Because m

is at least as large as the time bound on the monomial learning algorithm, no algorithm

requested more than m examples. Since there were at most t monomial equivalence

classes obtained from the m-sample, the probability that (D) fails to occur, i.e., that

some learned monomial has error more than *, is at most t. Thus Pr(A nBnCriV) <

Pr(D1AABAC) t.

Thus the probability of not obtainhig a good run is at most I + 4t+t=6. 0

To complete the proof of Theorem 4.2.5 (and hence the proof of Theorem 4.2.1), note that by

Lemma 4.2.9 the probability is at least 1-8 that a good run occurs, implying (by Lemma 4.2.7)

that the set of monomials output by the Monomial ss-Learning Algorithm is e-close to the set

of monomials to be learned. 0

4.3 A Sufficient Condition for as-Learning

In the proof of Lemma 4.2.3, the pairs of n-bit strings that were generated by LABELED-

was were concatenated into a single 2n-bit string. It was then shown that the repraentation

class corresponding to pairs labeled as "same" was learnable in terms of tCliTF. Notice that all

that was in fact required was that the concept of "sameness" be polynomially predictable (as

defined in Chapter 2). To apply this technique in general we will need the following definition.

Definition 4.3.1 Let F = (F,r,c, E) be a fasnily of Boolean formulas. Then define

17211 = {f (zit z2, 9 ze) A f(z ib+i, 26441 I ab$) : f e P, , i.e. the collection of formtp

las over 2n variables obtained by conjoining two copies of any formula f from 14, such

that each variable zi appearing in the second description is changed to zn.f.i.

vtFF2 = s/ /2 -v ft e < <
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viFF = u.eiN ve

Fl Pt = (VtFF, T,epirt, E), i.e. a representation class in which the function CFA maps

formulas is vt.FF to their sets of satisfying assignments.

Note that for any collection of formulas = {fl, f2 ft} C Fn, the size of the formula

E V FF2n

(fi(e2,...,z,$) A Man+i I .5 212,$)) V (Mall .../ 211) A f2(C91+1, z2,0) V

v(ft(z11 .1240 A ft(Zn+it -9 Z2n))

is at most

((2t)huasizz(Y) t (t 1) 2t)flog2n1 (6t)htAxsIzE(7) flog 2n1 .

Theorem 4.3.2 If F is PAC-learnable and FFt is polynomially predictable then F is ss-

learnable.

Proof: The proof is a straightforward generalization of the proof of Theorem 4.2.1. We

outline it here. Assume the existence of A, a PAC-learning algorithm for F, that runs in time

bounded by pA(n, 3i, 1, 1), where pA is a Polynomial, f E F is the target formula, and al is

the input parameter bounding the size of f. We also assume the existence of B, an algorithm

that predicts FFt in time at most pB(2n7 321 if 1)1 where pp is a polynomial, fh is the target

formula, and 32 is the input parameter bounding the size of M.

To ss-learn t disjoint concepts fi, ..., ft of I', examples of SameConcept((fl, f2..., ft))

are constructed by forming the conjuncts of the pairs of stlings output by LABELED-PAIRS.

The number of such examples needed is at most is the running time of B. The ss-learning

algorithm is given as &parameter s, which bounds BssisIzE(.7"). Since SameConcept E Vt FF2,

ParaeConceptj < (8t)zukxsIzz(F) flog 2n1 Ots flog 2n1 .

Thus the rurning time of B is no more than pB(2n, tits flog 2n1, 213- , so at most this

maw examples are required in order for B to learn the intermediate oracle. B is then

run; it is given these examples whenever it calls the oracle EXAMPLE(D3,SameConcept),

along with the parameters n, EB = 6a = t, and the sise parameter 6t4Iflog2n1, where

m = Max{ it In ittpA(nt 89 Iv )}. Than B, in time at most pB(2n, 8ta flog 2n1 , 211,1), outputs
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some polynomial-time algorithm Af that is used as an oracle for the concept SameConcept. A

set of m points is then randomly generated, using IABELED-PAMS, and M is applied to

every pair of the m points to obtain equivalence classes. The algorithm A is run once for

each of the equivalence classes, using the nt points as examples, the error parameters cA =

and 64 = and the size parameter a. The time needed is again at most polynomial in

an of the relevant parameters. An analysis identical to the one for the monomial case yields

that the concepts learned by A are e-close to the true concepts with probability at least 1-6. 1:3

4.4 as-Learning Other Boolean Formulas

The sufficient conditions of Theorem 4.3.2 are applied to show as corollaries that for each k,

the families of kDNF, kCNF, and k-decision-lists are u-learnable.

Corollary 4.4.1 For any constant k, the family of kCNF formulas is ss-learnable.

Proofi If F is the family of kCNF expressions, then for each n, FAT, is a family of kCNF

expressions, since the conjunction of two kCNF expressions is also a kCNF expression. Then

utFF, the disjunct of t kCNF expressions, may be represented by a tkCNF expression without

more than a polynomial increase in size, since t and k are constants. To see this, let the

disjunction be

V 'A

where each is a kCNF expression. This I. equivalent to the tkCNF expression

ch cis)

where the conjunction is taken over all possible choices of clauses cii E B1, c1, E E2, , c, E E.
Thus we can learn FFt in terms of tACNF expressiceis (such expressions are PAC-learnable by

Theorem 2.0.2). Consequently, FF I. polynomially predictable. Since the family F itself I.

PAC-learnable, the result follows from Theorem 4.3.2.

Corollary 4.4.2 For any cmatant k, the family of kDNF formulas is ss-learnable.
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Proofs Let F be the family of kDNF expressions. For each n, FF2,, is a set of 2kDNF

expressions, since the conjunct of two kDNF expressions can be described by a 2kDNF ex-

pression. The collection of disjunctions of t such expressions, vtFF, is also a set of 2kDNF

expressions. Thus FIN can be PAC-learned in terms of 2kDNF expressions using any of the

algorithms of [12, 35, 54, 74]. Since 2kDNF expressions are thus polynomially predictable, and

F is PAC-learnable, the result follows from Theorem 4.3.2. 0

Corollary 4.4.3 For any constant k, the family of k-decision-lists i as-learnable.

Proofi Let F be the family of k-decision-lists. Any formula in the set FF2 can be described

by a 2k-decision-list as follows. The monomials of the new list are formed by conjoining one

monomial from each of the two original lists; they are given a label of 1 if both of the con-

stituent monomials are labeled with l's, otherwise they are given a label of 0. The new labeled

111monomials are then sorted so that

1. Every monomial with first half mi occurs before every monomial with first half mj if and

only if mi occurs before mj in the first decision-list.

2. For au monomials with the same first half, every monomial with the second half mh

occurs before every monomial with second half mi if and only if ink occurs before mg in

111the second decision-list.

The disjunction of two k-decision-lists can be represented by a 2k-decision-list which is

constructed in a manzier similar to the coidenctive case. Thus the disjunction of t 2k-decision-

lists can be represented by a 2tk-decision-list, which is PAC-learnable (Theorem 2.0.2). Thus

Fri is PAC-learnable in terms of 2tk-decision-lists, and is therefore polynomially predictable.

Since F is PAC-learnable, the result follows from Theorem 4.3.2. 1

4.5 Unparameterized ss-Learning and the VC-Dimension

As seen from Theorem 4.3.2, in order for our ss-learning algorithm to be applied mccessfully

to a PAC-learnable representation class F, it is sufficient that the class FF1 be polynomially

predictable. In this section we give sufficient conditions for the class FF1 to be polynamially



predictable when the representation class F is over an unparameterized domain and has finite

Vapnik-Chervonenkis dim'ension.

Thus far we have exclusively discussed reprommtation classes F = (F,T,c, M) in which the

set P consists of Boolean formulas, and hence Is implicitly defined as an infmite collection of

subclasses parameterized by n, the number of variables In the formula. Similarly, we have

implicitly parameterized P by irl, the size of the formula to be learned. For any fixed n and

Irk the PAC-learnability of any subclass of formulas of size fri over n variables is uninteresting,

because there are at most a finite munber of possible formulas, and a naive exhaustive search

technique can be shown to successfully PAC-learn. However, nontrivial learning problems do

arise over a single unparameterized domain when the domain is infinite. For example, if the

domain is the Euclidean plane, we raw be interested in the learnability of concepts represented

by rectangles with sides parallel to the coordinate axes. fbr such learning problems, we adopt

the convention that examples are described by single characters from some alphabet X. rather

than strings of characters from X . (This alphabet will be denoted by X, rather than E, in order

to indicate that this convention is in effect.) Thus X is the domain of the learning problem.

We define these problems formally.

Definition 4.5.1 Let B.' = (.1r,I",c', X) be a representation class. A representation class

B. = (R,T ,; X) (over the domain X ) is polynomially learnable in terms of R.' if there ex-

ists a (possibly randomized) algorithm A and polynomial p such that, for all r E R, for every

probability distribution D on , and for all e,6 > 0, # A is given as input the parameters e and

6, and may access the oracle EXAMPLE(D,r), then in time p(1,1) A outputs some ri E

such that with probability at least 1 , D(r r') e. If B. is polynomially learnable in terms of

itself, then R is polynoroially learnable. If there ezists any class (Pr which the membership

problem is decidable in polynomial time) such that R is learnable in terms of B.', then B. is

polynornially predictable.

Thus polynomial learnability ii similar to PAC-learnability, except that the domain and size

parmneters have been eliminated and the running time of the learning algorithm is not allowed

to depend on n or Jr!. Shnilarly, the definitions of learning one class in terms of another and

polynomial predictability for =parameterized concept classes only differ from the definitions
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In the parameterized case in a like manner. Note that the definition of polynomial learnability

makeano allowance for randomized algorithms.2

Shnilarly, we define sa-learnability for a single (=parameterized) class of representations

over a single (=parameterized) domain. The definitions of Ecloseness and the oracle LABELED-

PAIRS are generalised to tha case of representation classes in the obvious way.

Definition 4.5.2 The representation class B. = (R,T,c, X) is ss-learnable (learnable in a semi-

supervised manner) if for each positive integer t, there exists an algorithm A and polynomial p

such that fur every disjoint collection fri, 1.3 , r.j.c.A, for any probability distribution D on

X such that

ri) = 1,,

and foor all e,6 > 0, if A is given as input the parameters e and 6, and may access the oracle

LABELED-PAIRSD01"...04, then in time Xi, 1) A outputs a collection {h2, h) C R

that, with probability at least 1 6, is e-close to {ri, . , rt}. Such an algorithm A is an

ss-learning algorithm for the class B..

Prom Theorem 4.3.2, we saw that (in the parameterized case) the polynomial predictability

of Fit plays an important role in the application of our general technique. Shnilarly, for

any (=parameterized) representation class R the polynomial predictability of the associated

representation class RRt (defined below) will be relevant.

Definition 4.5.3 Let C = (C, X) be a concept class and let R be a representation class for C.

Then

for any c1,c2 E C, the concept c1 x ct (over domain X x X ) is the concept {(m,y) ; z

y e c2}.

C x C is the set of concepts {c1 x es

(C xC,XxX).

cues 6 C}. Let C x C be the concept class

CC i s the set of concepts {c xc:c E Let CC be the concept class (CC, X x X), and

let RR be a representation class for CC.

'The results of this median can be extended to representation daises learnable by randomised algorithms for
clams that contain the concepts 0, , and {r} for each r E R.
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vtC is the set of concepts {ci v v v et E C}. Let Ct be the concept class

(v tO, x X), and let Rt be a representation class for Ct.

v tCC is the set of concepts {c1 V ctv V Ct : Cj e CC}. Let CCt be the concept class

(vtCC, X x X), and let RRt be a representation class for CCt.

Theorem 4.5.4 Let C be a concept class such that B. is polynomially learnable and 1134 is

polynomially predictable. Then B. is sa-learnable.

Proofi Similar to the proof of Theorem 4.3.2, omitting the size and domain parameters. CI

We will refine the sufficient condition of Theorem 4.5.4 by incorporating sufficient conditions

for the polynomial predictability of 11.14. In order to do this, we will rely on a characterization

of the polynomially learnable representation classes due to Blamer et al [12]. In order to state

the relevant necessary and sufficient conditions far polynomial learnability we first review some

definitions.

Recall from Chapter 3 that the Vapnik-Chervonenkis dimension (VC-dimension) of a con-

cept class (C, X) is the size of the largest finite subset of the domain X that is shattered by C.

The VC-dimension is infinite if arbitrarily large subsets of X are shattered. Recall also that

the VC-dimension of a representation class B. is the VC-dimension of its induced concept class

C(11.).

Definition 4.5.5 If R = (R., 11,c, X) is a representation class, then a randomized polynomial-

time hypothesis finder for it is a randomized polynomial-time algorithm that takes as input a

finite sample of a concept in R and, for some 7 > 0, with probability at least 7 outputs some

representation r E R that is consistent with the sample. (Recall that a representation r is

consistent with a sample if every positive er.amp's in the sample is an element of c(r) and no

negative example is an element of c(r).)

The following theorem is a special case of Theorem 3.1.1 in [12].

Theorem 4.5.8 If B. is a representation class, then R is polynomial!, learnable if and only if

the VC-dimension of B. is finite and there is a randomized polynomial-time hypothesis finder

for 11-
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The following is a gight variant of Theorem 3.2.4 from [12].

Lemma 4.5.7 17K is a representation class that is polynomially learnable, then Itt is polyno-

?Wally predictable. Further, the time requited is polynomial in t as well as and

Proofs Modify the proof of Theorem 3.2.4 of [12] in a straightforward manner to allow for

a randomized polynomial-time hypothesis finder, instead of a deterministic one. 0

We now prove a sufficient condition for ss-learnability of an (=parameterized) representation

dam.

Theorem 4.5.8 If C is a concept class such that its representation class R. is polynomially

learnable and there exists a randomized polynomial-time hypothesis finder for RR, then IL is

as-learnable.

Proofs By Theorem, 4.5.4 it is sufficient to show that R.R.t is polynomially predictable. Since

R is polynomially learnable, by Theorem 4.5.6 R. has finite VC-dimension. By Lemma 4.5.9

below, RR also has finite VC-dimension. This, together with the hypothesis that RR has

a randomized polynomial-time hypothesis finder (and an application of Theorem 4.5.6.once

again), implies that RR is polynoznially learnable. Finally, applying Lemma 4.5.7 with RR in

place of R., we conclude that RRt is polynomially predictable. 0

Lemma 4.5.9 C (and thus R) has (finite) VC-dimension d, then CC (and thus RR.) has

(finite) Vadimension at most 4dlog 6.

Proofs For any concept class C = (C,X), let VCdim(C) denote the VC-dimension of

C. Note that CC C C x C, so clearly VCdim(CC) < VCdim(C x C). We show that

VCdim(C x C) < 441og 6.

Define C x X to be the set {c x c E 0), and let C x X be the concept class (C x

X x X). Similarly, define .1xC={.7 fxc:ceC}, and let X x C be the concept class

(X x C,X x X). We claim that VCdim(C x X) = VCdim(X x C) = VCdim(C). We only

show that VCdim(C x X) = VCdim(C). The proof for X x C is virtually identical.
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TO see that VCdim(C x X) > VCdhn(C), note that if S g X is a set of points that is

shattered by C, then S x {e} is shattered byCxX, for any particular point e X. To show

that VCdim(C x X) 5 VCdim(C), let {(zh, y2), (e2,12), ...(ed, yd)} be shattered by C x X.

Observe that for every cx X ECx X, and for all al, y, e X, we have (z,y) EcxX if and

only if (le, y') E c x X. Thus we can replace yl, y2, ...yd with any single point y E X, and then

{(za, y)} is shattered byCxX. Let S = {mum:, ...,ad}. Since S x {y} is

shattered by C x X, for every T g S, there is ace C such that (c x X) n (S x {y}) = T x {y}.

This is true if and only ifcnS=T. Thus for every T g S, there is some c E C such

that cnS=T and thus S is shattered by C. Since ISI = IS x {y}i, this demonstrates that

VCdim(C x < VCdim(C), and thus completes the proof of the clahn that VCdim(C x X) =

VCdim(C).

lrmally, for any concept classes C1 = (C1,X) and C2 = (C2,X), define the internal in-

tersection (denoted n) of CI and G by n C2 = {CI n c3 : E C19c2 E C2}. Let n C2

denote the concept class (C111 C2, X x X). Lemma 3.2.3 of [12] shows that if C has VC-

dimension d, then C n C has VC-dimension at most 4dlog 6. A virtually identical proof shows

that C1 n C2 has VC-dimension at most 4dlog6, for any two concept classes C11 C2 each

with VC-dimension d. This result, together with our claim above, shows that the concept class

(C x X) n (X x C) has VC-dimension at most 4dlog6. To complete the proof of the lemma,

note that C x C = (C X) n (X x C); thus VCdim(C x C) < 4dlog6.

As an example, the representation class of axis-aligned rectangles in the Euclidean plane

satisfies the hypothesis of Theorem 4.5.8, and thus is u-learnable.

As a final sufficient condition, we show that if B. is a representation class over an naps-

rametexised domain that is polynomially learnable from positive examples alone, then B. is

u-learnable. For shnplidty of exposition, the definition below of learnability from positive ex-

amples is slightly nonstandard, although easily shown equivalent to more standard definitions

(for example, the unparameterised version of the definitions of [57] or [81]). It is essentially the

same as the definition of polynomial learnal'ility, but restricts access of the learning algorithm

to positive examples only, aad further requires that the concept it finds have perfect accuracy

on the set of negative examples.
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Definition 4.5.10 Tha tepresentation class ft = (R, r, c, X) is polynomially learnable from

positive examples alone # there exists an algorithm A and polynomial p such that for a r E It,

for every probability distribution D o n elements of c(r) (positive examples), and for all e,6 > 0,

if 4 is given as input the pammeters e and 6 and map access the oracle EXAMPLE(D,r), then

in time p(i, 1) A outputs some mpresentation E R such that with probability at least 1 6 ,

D(r r') < e and r = 0.

Note that there are some representation classes (such as monomials) that are PAC-learnable

from positive examples alone but are not polynonday learnable from positive examples alone.

Also, note that Theorem 4.5.11 does not assert that representation classes that are PAC-

learnable from positive examples alone are ss-learnable.

Theorem 4.5.11 let R = X) be a representation class for the concept class C =

(C, X). If R is polynomially learnable from positive examples alone, then R is sslearnable.

Proofi By Theorem 4.5.8 (and the fact that learnability from positive examples alone

trivially implies polynomial learnability) it suffices to show that if R is polynotnially learnable

from positive examples alone, then RR has a randomised polynomial-time hypothesis finder.

We describe a randomised polynomial-time algorithm that, given as input a collection S

X x X of examples of some concept c(r) x c(r) E CC, will output the representation of a

concept c(e) x c(e) E CC that is consistent with S.

Let S+ consist of the positive examples of c x c in S, and let m = 151. Note that if

(2, y) E S+ then x E c and g E c (whereas if (x, y) is 6 negative example of c x c, we cannot

deduce whether x c, or y g c, or both). Form the set P = (x 31/ such that (x, y) E S+

or (y, E Si. Let A be a learning algorithm for B. that uses positive examples only. Now

run A with accuracy parameter e < 5 III, and confidence parameter 6 < If a positive

example is requested, randomly choose an element of P according to the (uniform) distribution

D assigning each element of P prob.:124y Th. By the definitica of polynomial learning from

positive examples alone, A will find, with probability at least a representation r' E B such

that D(c(r) c(r1) 5 e < ,& and c(ri) c(r) = 0. The first condition in fact amens that c(e)

contains each elenient of P, otherwise the error according to D would be at least TIFT > a

contradiction. The second condition asserts that c(r') contains no element of 477:11. It follows
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that c(r') x c(e) is consistent with S.

Finally, note that by Lemma 4.8.7, Theorems 4.5.8 and 4.5.11 show es-learnability in a

stronger sense; the time needed to ss-learn t disjoint concepts is polynomial in t as well as

andl.

4.6 Equivalence of Two Types of Learning

An interesting aspect of the definition of m-learnabBity is that it is not at all dear how an

algorithm might test a candidate solution for correctness. In concept leaning, it is possible

to test the accuracy of the learned concept using examples of the =known concept which are

provided by the teacher. In ss-learnability, all that I. available is a randomly generated pair,

possibly totally unrelated to any examples seen before.

Eiom this perspective, a reasonable alternate definition of as-learning would only require

that the algorithm find a set of formulas from the set F that correctly predicts (within e) the

labels from randomly genaated LABELED-FAIRS, instead of requiring e-closeness to some

unknown formulas. The alternate definition is given below; "sc" atands for "same concept".

Definition 4.0.1 A family F = (F, r, c, E) of Bookan formulas is sc-learnable if for each t E INT

there exists an algorithm A and polynomial p such that for all n, s > 1, for every disjoint

collection F = f2 fel g F. with ricAxstisz(.F) S s, for any probability distribution D

on {0, l} s satisfying equation (4.1), and for all so > 0, if A is given as input the parameters

e, 8, and s and may access the oracle LABELED-PA1R.SAA,11...4 then in time p(n, a, I, 1) A

*faints a collection 0 = {01th - 013} of (not necessarily disjoint) formulas in F that with

probability at least 1 I has the following property: The probability that a pair of examples

drawn from LABELED-PAIRSD,h,h...4, is incorrectly classified by 0 as to whether or not they

are from the same concept is at most c. (A pair is correctly classified by f' if either the pair

is (z, y,sanie) and both a and y are in exactly ona g e 0, or the pair is (a, ihdifferent) and for

Wine egt g gi E th 11 E Se, and /wither at nor 11 is in ant' other dement of 04

Note that in the above definition if a pair generated by LABELED-PAIRS contains some

string a that is not contained in any formula of gr, then this is counted as an incorrect classifi-
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cation. Similarly, if a pair contains a string in the intersection of two formulas of g, then this

is also an incorrect classification.

Theorem 4.8.2 A family = (F, c, E) of Boolean formulas is sc-learnable if and only if it

is as-learnable.

Proofi Suppose that I! is as-learnable. Then far any n, and any dhdolut ft. /2 .. .,f E

we can obtain with probability at least 1 - 6, and in time polynomial in n, 3, and I, a set of

(not necessarily disjoint) formulas g = {ri 9 gu} such that g is f-close to {At fa..., ft).

We show that using the learned formulas (/ to predict sameness/differentness will satisfy the

requirements of sc-liarnability.

Suppose that g Is i-oloso to ffi, f2 .9 fa, that LABELED-PAIRS outputs (z, y, label),

with label E {same, different}, and that z E fa and y E fy, where fal, E ft}.

Since 0 is f-close to {f1:13. 9 fe} there is by definition a subset 0` g and au injection

I : g' {,h, f2,. .., ft} such that, with probability at least 1 - f, z is in exactly one formula

E 0, g3 is in gf, and z E gg.,) (and thus I(g) = 4). The analogous relationships are true

for v.

Case 1: fv, = fv. With probability at least 1 - e, z is in exactly one concept gg, E is in

exactly one concept gv E g, g, and gy are in 0', and 1(g3) = h = iev = I(gy), so the learned

formulas (I produce the correct response of 'same concept".

Case 2: fv. With probability at least 1 - e, z is in exactly one concept gi, E g, y is in

exactly one concept gv e 0, sh, and are in g', and .f(g.) = fy = I(gv), so Q produces

the correct wsponse of "different concepts",

Thus with probability at least 1 - 4, = is Fclose to {A, ..., ft} and the

probability of correct clauification is at least 1 - e. Hence the fact that P is as-learnable implies

that Ph sc-learnable.

Now suppose that P is sc-learnable. If 7 is PAC-learnable as well, then we are done by using

the sc-learned formulas as an oracle SC and applying Theorem 4.3.2. However, it is not clear

whether P is sc-learnable implies P is PAC-learnahle. (The obvious approach to showing this

by letting t = 1 fails because there are then no negative examples, so nothing constrains the

ss-learning algorithm from overgeneralizing. If we let t = 2, with the second concept being the

negative examples of some target concept to be PAC-learned, then the ss-learning algorithm is
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only required to work provided that the negative examples can also be expressed as a fommula

in F.) We show that regardless of the FAC-learnability of IP, if is sc-learnable then P is

se-learnable.

Let P be sc-learnable. Then for any n and any collection .7 = {fit ft} of disjoint

formulas in IP, we can obtain in polynomial time, with probability at least 1 8, a collection

0 = {91,gs...,g,,} of (not necessarily disjoint) formulas in 11 such that the elements of

correctly classify pairs from LABELED-FAIIS as to sameness/differtmtness with probability

at least 1 y. We will show that 0 is therefore e-close to 7, and the theorem follows.

Claim: For each -significut f E .7 there is a unique g E 0 such that D(f n g) ?*.

Proof of Claim Assume there is no such g. Then the probability of choosing two points

from f not both in some particular g E 0 (and thus obtaining an incorrect classification) is at

least

32t2 > 65t2'
e2 e2

a contradiction. Now assume that there is more than one such element of 0, say g and g'.

Then the probability of choosing two points z, y such that rEfng and yE fn g' (and thus

obtaining au incorrect classification regardless of whether g and g' are disjoint) is at least ( ei)2

> iroia, a contradiction, thus proving the claim.

To complete the proof of Theorem 4.6.2, we find a subset gi c 0 and a bijection : gt

{f E : f is frsignlIcant} (and hence an hdection with range .7) witnessing that is e-close

to 7. For each if-significant f, let the unique g such that D(f n g) > be aa element of 0`,

with l(g) = f.

Now for each g E D(g 1(6)) S for if not, then either D(g IUD *9 or
D(I(g) g)> k. The cases are aimilar; we show that the first case cannot happen: If

IUD= n 1ri5)

then since D(gnAg)) * (by definition of g), we have the probability that a misclandfication

°cc= is at least (fi)2 > Ar, a contradiction.

It follows that
e eD(B2) = Agin 5 tit- =

gier
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Then, as in the proof of Lemzna 4.2.7,

El E2 c U{A A is e/4tinsiPificant}: (4.6)

which is true if

El n U{fi : f,Is e/4t-5ignificant} g E2. (4.7)

Tb see that contabunent (4.7) holds, note that if z E fi and f is *-significant, then by

the claim, there le a unique yi E (/` such that D(fi n *9 and thus I(gi) = A. If z

is also in El = Lir, then z g, so E g, (1) I(g) g E2, and containment (4.7) follows.

Containment (4.6) implies that

By the definition of sc-learnability,

SO

D(E1 E2)

e2 e

D(E3) D( (gi n gl)) 5 65t2 < 2'

E
D(Elu E2u E3) < D(E2)+ D(E1 E2)i- D(E3) < - = e.

Corollary 4.8.3 Each of the families of Boolean formulas described in Theorems 4.2.1 and

Corollaries 4.4.1, 4.4.2, and 4.4.3 is sc-learnable. Furthermore, any family satisfying the hy-

pothesis of Theorem 4.3.2 is se-learnable.

We can also extend the definition of sc-learnability to representation classes over an unpa-

rameterised domain.

Definition 4.8.4 A repruentation class B. = (R, F, c, X) is sc-learnable if for each t E IN there

mists an algorithm A and polynomial p such that for every disjoint collection {r 2, r2 ...7 ft} g 11,

for any probability distrilmtion D over X such that

Datj = 1,
limes

and for all e, > 0, if A is given as input the parameters e and and may access the oracle

LABELED-PAIRSD,,,,,. then in time p( 1) A outputs a collection 7-1 = {111, h2 . . , h} of
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(not necessarily disjoint) representations in II that with probability at least 1-6 has the following

property: The probability that a pair of examples drawn from LiaBELED-PA/RSD",,ri 18

incorrectly classified by 7.1 as to whether or not they are from the same concept is at most e.

A result analogous to Theorem 4.6.2 holds for unparameterised representation classes.

Theorem 4.0.5 A representation class R (over an unpasumeterized domain) is sc-learnable if

and only if it is as-learnable.

Proofi Similar to the proof of Theorem 4.6.2. 0

Corollary 4.0.6 Any representation class satisfying the hypothesis of Theorems 4.5.4, 4.5.8,

or 4.5.11 is se-learnable.
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5 PREDICTION USING WEAK AUTOMATA.

Nearly all of the work done thus far iu computational learning and prediction has allowed the

learner the power of a (possibly time-bounded) Turing machine. An interesting question is

to what extent learning or prediction can be accomplished by less powerful automata, i.e. by

automata with less memory available than an infinite tape. In this chapter we consider this

question in a different setting from the PAC model that was used in earlier chapters.

The predictive power of Turing machines has been studied in some detail, for example in

the literature on NV-eztrapolation [6, 9, 19]. In this model, the predicting machine is shown an

infinite sequence of strings; after each string, the machine outputs a guess as to whether the

string is in the unknown target language. The goal is for the predicting machine to eventually

make only correct guesses. The classes of languages that can be predicted under this model

have been shown to be identical to the classes that can be inferred by a Popperian inductive

inference machine [19]. Littlestone [54] considers bounds on the number of erroneous predictions

for certain types of languages. In [38] the problem of precli-ting {0, 1} functions over a domain

is considered when there is a probability distribution over the domain elements.

Gold [31] introduces a model of prediction in which a "thinker" and an "environment" ex-

change messages. The environment reads as input the thinker's previous response and generates

new infarmation, part of which is a reward/punishment eignal, to be read by the thinker. The

thinker then uses this information (as well as information received in earlier exchanges) to gen-

erate its next response. The goal of the thinker is to generate outputs that, after a sufficiently

large number of message exchanges, result in the maximum possible rewards. Gold proves that

there is a primitive recursive thinker that will eventually maximise its rewards for any finite

state environment, but that no finite state thinker with this property exists.

We investigate the predictive power of weaker ifarieties of automata, specifically determin-

istic finite stzte automata (DFAs), 1-counter machines (1CMs), and deterministic pushdown

automata (DPDAs). The model of precliccion used here is essentially the same as in the model

of NV-extrapolation, except for the type of automata doing the predicting. Alternatively, our

model can be thought of as a restricted version of Gold's paradigm. Note that the study of
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prediction here differs from the probiem of inferring an automaton from training =maples, or

that of pralicting the outputs of an automaton (see, for =ample, [62, 64]). In those problems,

the output may be, for =ample, a DFA, but the autmaton doing the learning (or prediction)

is a Taring machine. In the model defined here the prediction is actually performe r,. by a DFA,

DPDA, etc., rather than by a Turing machine.

In addition to being interesting in its own right, the study of the predictive ability of weak

automata may shed some light on the predictive power of arbitrary programs. In particular,

strong negative results for limited types of machines may suggest techniques by which to prove

analogous results for more powmfid machines. Interesting problems related to this model of

prediction include determining whica classes of languages are predictable and finding upper

bounds on the size of the classes that can be predicted by automata of a certain size (or,

equivalently, finding lows" liounds on the size of the smallest predicting automaton for classes

of a particular size). We consider both of these questions.

5.1 A Model for Prediction by Finite State Automata

Recall that if a is a string of characters, then Jai is the length of a; i.e., the number of characters

in a. Let A be an alphabet. Recall that A* is the set of all finite strings of characters in A of

length at least zaro. Let A+ represent the set of au such strings of length at least one. We use

e to denote the empty string.

The model for prediction by DFAs is as follows. Let Mbea Moore machine [40] andL be

some language over Es (i.e., a subset of El for some finite alphabet E. Initially M is given as

input a finite string 01 E Z. M make a guess as to whether or not cri iz in. L; this guess is

the output associated with the state that M is in after having read rri. If the output is "+",

then M has guessed that ol E L. If the output is "", then M has guessed that cr1 is not in L.

M is then given se input either the cheracter "r" or "to", depending on whether its guess was

right or wrong, respectively. This process is then repeated for the strings cr2,crs,.... If dter

some paint all of M's games are correct, then M is correct on (L,a), where cr =

If M is correct on (L, a) for every cr and for every L in some class of languages C, then /kr is a

predicting DFA for C. We make this more formal.

Let M = (Q, E {r, up}, A, 4, A, g1) be a Moore machine with finite input alphabet E {r, w}

(where r and w are special symbols not in E) and output alphabet A = +, }. Q is the (finite)
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state set and q1 is the start state. The function Q ducn'bes the state outputs and

Q x (E U {r, to}) -- Q is the transition function. As is done in (401, we extend the definition

of the transition function 8 to handle input strings, rather than Just single input characters, as

follows. Define Q x (E {r,w))* Q by

1. For each q E Q, S(q,e) = q, and

2. For. each g E Q, z e (E u {r, to})*, and a e Eu fr, tab S(q, za) = 6(8(q, z), a).

Thus S(q, z) is the state that M is In after starting in state q and reading the input string z.

For convenience we use 6 in place of I in what follows; the two functions agree on all argmnents

for which both are defined, so there will be no ambiguity. Let C be a collection (or class) of

languages over the alphabet E.

Definition 5.1.1 Let a = cr2, vs, ... be an infinite sequasce, where each cri is a finite string

in E*. Let C be a class of languages over E an; let L k a language in C. Define the presentation

of a with respect to L and M (denoted by PRESM(L, a)) to be the string aabia2b2a3b3. wfaere

each character bi is defined as follows. Let pa EQ be the state tha t M is in after reading the

input string cribicr2b2 (i.e. Pi = 6(41, eiher2b2. in)). If In e L and A(pi) = nt or if

L and A(pi) = a "o then bi = "r ". If E L and Mpi) = " ", or if ci L and A(pi) =

"+", then b = "w". If there exists some io such that, far all i > "r", then M is

correct on (L,e). If M is correct on (L,a) for every a, then M is correct for L. If b = "r "

for all i, then M 15 exactly correct on (L,a). If M is madly correct on (L, a) for every a,

then M Is exactly correct for L. The definitions of ezact correctness apply whether a is finite

or infinite.

Thus M is correct for L if, when presented any infinite sequence of finite strings over E,

there is some point past which all of its guesses (as to whether a string is in L) are correct. M

is exactly correct for L if all of its guesses are correct.

Definition 5.1.2 lf, for ail L E C, M is correct for L, then M is a predicting DFA for c. If

there is a predicting DIU for C, then C is DFA-predictable.

The size of a- predicting DFA M (denoted by IMI) is the number of states in M. We also

use this terminology and notation when M is a DFA (Le. not a Moore machine).
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Predicting membership in au unknown language according to the above model appears

to be a more suitable task for DFM than is concept learning. The problem of learning is

closely related to that of finding hypotheses consistent with a finite set of examples [11, 13, 70].

Because of the limited memory available to a DFA, it wenld require a very large automaton

to remember all examples seen or, alternatively, to Aceep track of all hypotheses consistent

with the examples already seen and thus to be able to find consistent hypotheses. In the

prediction model, the automaton lo permitted to minims* some examples; it doesn't need to

remember each example, but instead can wait until it's "ready" for a particular example before

correctly classifying it.

Nate that the predicting DFA is not guaranteed to see a complete presentation of all strings

in the domain. But since the automaton is not required to output a hypothesis describing the

target language, but instead must only be correct an the strings it sees (past some point), this

does not present any difficulties.

5:2 A General Upper Bound

In this section we demonstrate an upper bound on the size of any class that is predictable by

a DFA of size n.

Theorem 5.2.1 Let C be a MA-predictable class of languages. The smallest predicting DFA

for C has size at least 21C1 2. Thus any class with a predicting DFA of size n contains at

most +1 languages.

Let M = (Q, u {r, to}, A,5, qi) be a predicting DFA for C, with Q = {qi,...,q}. For
any state qi e Q, let = (Q,E u hi,J,A,$) (the Moore machine M with start state

6).

Before proving Theorem 5.2.1, we first make the following definitions and prove several

lemmas.

Definition 5.2.2 Let L be any language in C and let qhz e Q. If there exists some sequence

of strings c r such that there ir a finite preliz oliborA ...47kbl, of PRESM(L,a) with

(el elbicr2b2...07,4) =
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then qhz, is reachable modulo prediction. If qhz is reachable modulo inedidion and the automa-

ton Mekr, is exactly correct for L, then qhz is a home state for L.

Thus a state ehi that is reachable modulo prediction is a borne state for L if the predicting

DEA M, when started in state (Az, is exactl,y correct for L. For each E C, let HSL be the set

of home states for L. Lemma 5.2.3 states that each language in C has at least one home state.

Lemma 5.2.3 For eac h LE C, ItSz # 0.

Prooti We assume otherwise and prove that a contradiction results. Suppose that for some

L, S = O. Thus for each q Q, either q is not reachable modulo prediction or Me is not

exactly correct for L (or both). 'Meady there is at least one state that is reachable modulo

prediction. For each such state s, Mqi is not exactly correct for L. Thus there wrists a finite

sequence of strings whose presentation causes Mei to make an incorrect guess; that is, there

must exist a positive integez a; and a sequence of strings cri = ... such that

bt ="w" in the Prefix cribicri2bi ef the Presentation ERESmu(L, cri) (with the bik's

defined analogously to the Ws in Definition 5.1.1). The sequence of strings esistaki defined

by the following procedure forces M to make an infinite number of incorrect guesses. Recall

that qi is the start state of M.

1. Set 01"54$4118" = CFI'. Note that M makes an incorrect guess on the string u.

2. Let qj be the state that M is in after having been given as input PRESkr(L, ceni.""")

(for ceniatabli as defined so far). Since qj is reachable modulo prediction, by assumption

Mei is not exactly correct for L.

3. Append the sequence cri to the end of cr""atakii. M makes an incaiect guess on the string

crii. Retina to Step 2.

Since M makes an infinite number of incorrect guesses in the sequence crmiasak", M is not

correct on (L,cr""h"). Thus M is not correct for L, so M is not a predicting DFA for C.

Since this contradicts the definition of M, HSy must be nonempty for each E C, proving the

lenuna. 0
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Lemma 5.2.4 A state q E Q is a home state for at most one language in C.

Proofit Let q E (4, and let LI and L2 be (distinct) languages in C. Since Li and L2 are

distinct, there exists a string a E LOB £2. 10 cannot be exactly correct on both (La, a) and

(L2, se). Thus mq is not exactly correct for both Li and Lb 90 q is not a home state for both

L1 and LI. 0

Lemma 5.2,5 states that if Ai is in a home state for L after having read as input a prefix of

PRESAf(L, a) ending with an "r" or "w", then from that point on Ad will always be in a home

state for L after each prefix of PRESAr(L,cr) ending with an "r" or "to" has been read.

Lemma 5.2.5 Let or = 02,172, be any infinite sequence of finite strings. Consider the string

PRESAf(L,a), as defined in Definitkn 5.1.1. Tf, for some k,

6(qi,gibig2h c4bk) E HSL,

then for al j > k,

15(111,Gribier2b2 E ESL .

Proof Suppose that k j, q(&) and q(,) are states snch that

$(0%,ffillicrabs saki%) = go)

and

6(4190'0101h . crib j) = qu),

and q(,) is not a home state far L. Then, by the definition of hams states.there exists a sequence

of things 044 such that AVM is not exactly correct on (L,04n). Thus WM is not exactly

correct an (L,olk+141((1)), where 0lk+141 = 0k+1,01+21...gap This is because 111.(4), after

reading as input cr(k+1A, is in state qu), and Airlu) is not exactly correct on (L, cr(i. Hence

MVO is not exactly correct for L, and thus qm is not a home state for I. The result follows

by contraposition. 0

Aar each L E C define

PHSt = e Q :3(q,r) e HSL and MO= " +
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and

PHSi = {q E Q :6(qtr) E HSL and A(q) = u

(The notation is intended to suggest "pre-home states".)

Lemma 5.2.6 Ld L b e any language i C not equal to 0 or V. Then both PHST and PHS7

are nonentpty. Artherrnore, 110 E C then PIM is nonempty, and if Es E C, then 1114. is

nonempty.

Proofs Let as and y be finite strings over E, with z L and y si L. By Lemma 5.2.3, liSz,

is nonempty, so we can let ems be a home state for L. Let qpgs be the state such that

45(111s9z) = OHS.

Since ors is a home state for L and since z E L, by Lemma 5.2.5 and the defmition of home

states 5(qpirs,r) E HSL and A(qpils) ="+". Thus qpms E PHSI. Since such a state qpils

must foist, PHSt 0. By an analogous argument, using the string y L, PHSi 0.

Similar arguments can be used to show tshat PHSi and PHSt. (provided that the languages

0 and V, respectively, are in the class C) are nonempty. 0

Proof of Theorem 5.2.1: Note that for any (not necessarily distinct) languages Li and

£3 in C, PHSt n PHsi. = 0, since the states in the two sets have different images under

the function A. Furthermore, if L Ls then PHSt n PHSL ,rs. 0, due to the fact that the

transition function 6 on input "r" maps the states in the two sets into states in HSin and HSL2,

respectively. By Lemzna 5.2.4, HS1,1 and B.Szo are disjoint, so NISI; n PHst = 0. By a

similar argument, PESin n NUL = 0 for any distinct Li and Li in C.

Thus there are at least ICI 2 languages L in C such that L has associated with it two

nonempty sets of states PHSI and Pan, and all such sets are pairwise disjoint. At most two

languages in C have associated with them a single nonempty set of states (PIK or PHSt0.1})

disjoint from the other sets and from each other. Consequently the number of distinct dates

in co is at least 2(ICI 2) + 2 = 210 2, so the size of M is at least 2ICI 2. This concludes

the proof of Theorem 5.2.1. 1:1
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POT any n > 0, define C, to be the class of languages (over the binary alyhabet) of satisfying

assignments of monomials over n variables, augmented by the two languages 0 and {0, 1}6. It

can be shown that the bound of Theorem 5.2.2 is tight for C,,, provided that only n-bit input

strings are permitted.

5.3 Languages Predictable by DFAs

In this section we characterise the classes of languages that can be predicted by DFAs.

Theorem 5.3.1 The DIA-predictable classes of languages are exactly the finite classes of reg-

ular languages.

Proofi We first prove that any finite class of regular languages is DFA-predictable.

Lemma 5.3.2 Let C = {L11 L3, . . .1 L} be a finite class of regular languages over E, and let

M1,M2,...,Are be finite state machines that accept the languages L19 L29 L., respectively.

Then there exists a predicting DIA M for the class C such that

Iml = I fil+ Im2I + + ImeI.

Note that we asstune that for each A there is a DFA Mi that accepts all strings in Li and

rejects all strings in Z L. A similar result can be shown if we allow each language Li to be

defined over its own alphabet Ei, and assume that the DFA Mj accepts ail strings in Li and

rejects all strinp Li. In this case it is easily seen that there exists a DFA MI of size

!Mil + 1 that accepts Li and rejects Z' A (where E = A). Thus a bound on the size of

M of + + + = ImII + Phi + + plc +C is easily obtained. For Clarity of

presentation we prove the result as stated in the lemma.

Proof; The lemma h proved by constructing a predicting DFA M for C, using the accepting

DFAs. M first simulates M1 and makes all of its guesses based on whether the input strings

are in L1. If M makes an incorrect guess, it then starts Ii211111111thig Mu and makes its guesses

based on the language L. This continues until M ihmis the right language, after which point

all of its guesses wfil be correct.

Bar each i mach that 1 < < c, let = (Qi, E,564,,,t,Fi), where the set of states is

Qj = {0,4,...,qtAid and the set of accepting states is Fi.
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We dedne the predicting DFA M = (Q, EL*, wl, A, gitaf). As for all predicting DEAs,

roe #11 E and = {+, }. Let Q = gi and gits,1 = ea.". The function A is defined as

follows. Let q be any state in Q, and suppose that q E Qi. Then

+ if q E
AN) =

ifq$Fi.
All of the transitions in 62,52, ..., 8 are also in 8. In addition, 8 contains the following Lansi-

tions. For each i = 1, 2, ..., c and each j = 1, 2, ..., 44, 8 contains the transition defined by

$(0, r) = gtert FOr each = 1, 2, ...,c 1 and each j = 1, 2, ..., Igil, 6 contains the transi-

tion defined by 8(qii,w) = &Lt. Finally, for each j = 1, 2, ...,1Q11, 6 contains the transitions

45(4, so) = dt,t. (Actually, it is irrelevart how this last set of transitions is defined.)

Clearly if has size + + + 1Mel. Let Li be any language in C. We prove that

M is correct for 14; it then follows immediately that M is a predicting DFA for C. Let a =

ap, ... be any infinite sequence of finite strings over E. Consider the string PRES/14A, a) =

cri hash -

Claim 5.3.3 The number of to's in the sequence b2,b2,... len than i.

Proof of Clahns Suppose that b,11 is the (i 1)st occurrence of w in b2, .... We show

that no more to's will appear. Note that, by the definition of the transition function 6, au states

entered by if between the ath and (a + 1)st appearances of w in PRESA(Li, a) are states from

Q.4.2, and thus that immediately after reading the ath occurrence of to M is in state 42t. Thus

after reading 01bia3h Ai is in i. Suppose that the string a.+1 is in Li. Then,

since 4." is the start state of A, which accepts LO and since all of the transitions in 5, are in

5, 44,, e Fi. Thus by the definition of A, A(6(qtt.,.t, a,,,+2)) = " + ". Since a,.4.2 E

the value of b.1..1 will be "r". Shnilarly, suppose that v,.1.1 5 L. Then 8(4,t,a,,,.1.1) g F'i.

Thus by the definition of A, A(6(4,..,,, trm+1 )) = ". Since a,,4.1 it Li, the value of will

again be "r". Note that in either case, by the definition of 8, M will be back in state qi,,.t after

having read b,1. An easy induction shows that each of b.+1,b,.+2,... is an "r", proving the

0

Thus only a finite number of the bk's are w's, so there exists some such that for all k

bb = "r". Thus M is correct on (A07). Since a was chosen arbitrarily, M is correct for Li.
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Note that Lemma 5.3.2 also yields an upper bound on the sise of a predicting DFA. In addition,

the proof gives a technique for constructing a predicting DFA for any DFA-predictable class C

that makes at most ICI 1 incorrect predictions.

It remains to be shown that any DFA-predictable class is a finite class of regular languages.

Lemma 5.3.4 states that all languages in a DFA-predictable class must be regular.

Le231133a 5.3.4 Ld C be a DFA-predietable class, and kt L be a langtusge in C. Then L is

regular-

Proofi Let M = (Q ,E u {r,w}, 6, A, th) be a predicting DFA for C. We define a DFA M'

that accepts L. Let be some home state for L; at least one such state exists by Lemma 5.2.3.

Then define M' = (Q, E, 5', g',P), where the set of acceptIng states 1' is defined by

F = fq E Q : A(q) = +

and 6' contains all transitions in 5 that don't involve the symbols r or to. To see that kr ac-

cepts L, let z be any string in E. If z E L, then since q' is a home state for L, the automaton

Me is exactly correct for L, and thus exactly correct on (L,z). Thus A(6(q',z)) = " + ", so
e(qi,z) E F. Similarly, if z 0 L then A(S(st, z)) = " ", so or(q', z) F. Thus 1141 accepts L,

so L is regular. 0

Aay predicting DFA must have a finite number of states; thus by the lower bound of The-

orem 5.2.1, the number of languages in a DFA-predictable class must be finite. Hence the only

DFA-predictable classes are the finite classes of regular languages.

5.4 A Model for Prediction by Deterministic Pushdown Automata

We now define a model of prediction by deterministic pushdown automata (DPDAs). The

model is the same as in the case of DFAs except for the type of machine doing the predicting.

Prediction is now performed by an automaton that is a variant of the standard DPDA in which

there is an output associated with the states of the machine.
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Let M = (Q, E Li {r, w}, F, A,5, A, qi,,Z1) be an automaton with input alphabet E u {r, tv}

(where r, to if E) and stack alphabet I% Q is the set of states, ql is the start state, and E r

is the start symbol (Le., the symbol that is initially on the stack). E, I% and Q are all finite.

The transition function maps elements of Q x (E {r, to} u {e}) x to finite subsets of Q x r.

Ballowing [40], in order to ensure that M is deterministic, we place the following two constraints

on 6.

1. Let q Q, aEELi {roe}, and Z E r. If 5(q,a, Z) 0, then 6(q,e, Z) = 0.

2. Flu each q E Q, ae Eu {r, u {e}, and Z E gq, a, Z) contains at most one element.

Thus at any stage in a computation by M there is at most one transition that can be

applied.

Define 0 C Q x F to be the set of pairs (q, Z) such that 5(q,e,,Z) = 0. Thus if M is in state q

with the symbol Z on top of its stack and (q, Z) E 0, then M cannot make a transition without

reading a new input character. If (q, Z) 0 then M cannot read another input character until

it has made one or more e-moves.

M operates as a deterministic pushdown automaton (as defined in [40]) with the following

exceptions. We are interested in the outputs produced by a DPDA, rather than the language

that it accepts. Thus we dispense with the set of accepting states that is included in the

definition in [40], and instead add an output alphabet A = +, -} and a function A : Q -- A.

The function A associates an output with each state in Q. We are interested in the outputs of

the function A when M has read an input string and has exhausted all possible e-moves.

An instantaneous description (M) of M is a triple (q, 2,7), where qEQ,CE (E {r, )*,

and 7 E r. The ID records the state, input renaining to be read, and stack contents of

M at some point in its computation. The binary relation k-P,sf is defined such that, if IA

and I1)2 are instantaneous descriptions and ID2 describes M's computation at a point one

step later than IA, then IA ID2. More formally, let qi,qi EQ,aEEu {r, w} u {e},

z E (E U {r, tV)).9 Zi e r, And 7i97j E r. If (qi, E 0, then (qi, az, -fai ) r,

If end only If 4004Z) = {(VOA. If (0i, A) 0 0: then (flitee:stiZi) M (qhne, 7171)

if and only if 45(qi,e,Zi) = {(qi,71)}. Note that in this notation the symbol on the top of

the stack is the rightmost symbol in the string of stack symbols. This is the opposite of the

standard convention; in the opinion of the author, however, stack operations are represented
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more naturally under this system. Let t-if represent the refierive and transitive closure of

t-Pm. Thus TD1 ID3 if ID3 describes Ws computation at some point zero or more steps

later than ID1. We omit the subscript M when it is dear from context.

The following definitions are exactly analogous to those in Definition 5.1.1.

Definition 5.4.1 ket 1 1 be aa defsned above. Let a, C, and L be a s in Definition 5.1.1.

Define a presentation Of (I with respect to L and M (denoted by PRESM(L, a)) to be the string

o'sbscr2bersbs . ., whese each chayncter bi is defined as follows. Let pi E Q and Zi E 1" be the

current state and the symbol on top of the stack of M, respectively, after M has read the input

string a1b1a2b2...ai, ezhaustal all possible e-moves, and is prepared to read the neat input

character (so (pi, Zi) E 0). If ai e L and A(pi) = "-i- ", or if en L and A(pi) = "- ", then

= "r". If ai L and A(p,i) = a "I or if ai L and A(pi) = "+", then = "w". If there
exists SOMe io such that, /kn. all i > io, = "r", then M is correct on (L,er). Aer is correct

on (L, a) for every a, then M is correct for L. If bi ="r" for alli, then M is exactly correct

on (L, a). If M is exactly correct on (L, a) for every er, then M is exactly correct for L. The

definitions of exact correctness apply whether a is finite or infinite.

As was the case for DPAs, M is correct for L if eventually it makes only correct guesses as

to whether strings are in L. and is exactly correct for L if all of its guesses are correct.

Definition 5.4.2 If, for all LE C,M is correct for L then M is a predicting DPDA for C.

If there is a predicting DPDA for C, then C is DPDA-predictable.

Note that if M is a predicting DPDA then its stack is never empty in any ID that appears

during a computation on input PRESm(L, cr) for E C and ca. as described above. Since no

transitions are defined when the stack is empty, M would halt if its stack were empty and

be unable to read any more input. This violates the definition of a predicting DPDA, which

requires the automaton to function on arbitrary presentations.

5.5 A General Upper Bound for DPDAi

In this section we prove an upper bound on the size of any DPDA-predictable class relative to

the size of the predicting automaton.
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Theorem 5.5.1 Let = (Q,Eu{r,w},T, A,5, A, A) be a predicting DPDA for some class

C. Then ICI 5 IQIITI.

Proofs We first define home configuntions, which are analogous to home states for predicting

DFAs. Let Q = aud let 7 be a string in r. Define ToP(7) and norrobs(7)

to be the rightmost and leftmost characters, respectively, of 7. Fix. any 6 E Q, we define the

predicting DPDA AlkuM = (Q U lob E u {r, w}, A, go, A), where 457 contains ail of the

transitions in 5, as well as the transition

5(q09e, Z1) = {(qWT)}.

Thus Mkie'd is the predicting DPDA that sets the stack contents equal to 7, moves to state qi,

and then simulates M.

Definition 5.5.2 Let I be any language in C qi be a state in Q, and j be a string in r+. The

pair [6, 7] is a configuration of M. (Note that a configuration is similar to an instantaneous

description, but without the input string information. Thus a configuration is independent of

the input to M.) If (qi, ToP(7)) E 0, then [qi, 7] is an I/O configuration. If [qi,7] is an I/0

configuration and there exists some sequence of strings a with a finite prefix 71614:72b2 crkbk

of PRESAf(L,a) such that

(422 I 01bicr2 b2 . . cfbbb, Zl) 1- = e, 7),

then the configuration ki97) is reachable modulo prediction. IfMkied is exactly correct for L,

then the configuration [qa, 7] is also said to be exactly correct for L. If [q4,7] is both reachable

modulo prediction and exactly correct for L, then ki97] is a home configuration for L.

Thus an I/O configuration [6, 7] that is reachable -modulo prediction is a home configuration

for L if the predicting DPDA M, when started in state 6 with stack contents 7, is exactly correct

for L. For each L E C, let IICL be the set of home configurations for L. Note that for any

qjEQ,zEZU{r,w},and7jEFt,therei5&tmOStOneI/Oc0gtl0fl[gi,7J]5uclltha t

(62 939 Whet lib for same 11; e IQ and E r+.

The following three lemmas are analogous to Lemmas 5.2.3, 5.2.4, and 5.2.5 in the proof

for DFAs.
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Lemma 5.5.3 For each L E C , HCz O.

Proofi We assume otherwise and prove that a contradiction results. Suppose that for some

L, HCL = O. Thus for each configuration [q,7], either [q,7] is not reachable modulo predic-

tion or [q, 7] is not exactly correct for L (or both). Clearly there is at least one configuration

that is reachable modulo prediction. Ear each such configuration [i,7i], 7ij is not exactly

correct for .L. Thus there exists a finite sequence of strings whose presentation causes Migim]

to make an incorrect guess; that is, there must exist a positive integer sij and a sequence of

strings Grid = eiet such that bit =site in the prefix crl'ibtic4;41411...cri42.

of the prestntation PRES,,1)(L,cr41) (with the bes defined analogously to the bk's in Def-

inition 5.4.1). The sequence of strings teniaisku defined by the following procedure forces lid

to make an infinite number of incorrect guesses. Recall that qj and Z1 are the start state and

initial stack contents, respectively, of M. Let 71 denote the string consisting of only the start

symbol Z1.

1. Set ermias°k" = erl,1 (i.e. a sequence that forces an incorrect guesp by the automaton

Mk1,11] = MI. Note that M makes an incorrect guess on the string cr;;, .

2. Let q, be the state and N, be the stack contents of M after M has been given as input

PRESM(L, crmiatak") (for cenumkes as defmed so far), has exhausted all possible e-moves,

and is ready to read the next input character. Thus [q.,7,] is ar. I/0 configuration, and

thus reachable modulo prediction.

3. Append the sequence cr"41 to the end of crmiltals". M makes an incorrect guess on the

string fret. Return to Step 2.

Since M makes an infinite nimilier of incorrect guesses in the sequence amiaak", M is not

correct on (L,ermi4"""). Thus M is not correct for L, so M is not a predicting DPDA for C.

This contradicts the definition of M, so 'JCL must be nonempty for L E C. CI

Lemma 5.5.4 No confiptration can be exactly correct for more than one language in C. Thus

a configuration [go] is a home confignmtion for at most one lahliouge in C .
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Proof: Let E Q, 7 E r+, and let LI and L2 be (distinct) languages in C. Since L1 and

£2 are distinct, there exists a string a: E £1 e L2. Mig,71 cannot be exactly correct on both

(L1, 2) and (L3, z). Thus ArkM is not exactly correct for both La and £29 so jq,71 is not a

home configuration for both La and £3. 0

Lemma 555 Let = 011011 °I be any finite sersence of finite strings, and kt [0,74 be

an I/O configuration that is exactly correct for L. Consider the string PRE.54(L,o). If

(gkt Crlble2b2 .crtbtti k) 1-0° (qh '1)

such that [qh-yi] is an I/0 configuration, then [qi,-yi] is exactly correct for L.

Proofk Suppose that [qj,7j] is not exactly correct for L. '.7hen, by the definition of exact

correctness, there exists a sequence of strings & such that M[91,-q] is not exactly correct on

(L,a). Thus MNbms] is not exactly correct on (L,.70.). This is because M[910,41, after reading

as input the presentation of o. and exhausting all e-moves, is in the configuration [qhmtil, and

MR17,711 is not exactly correct on (L,or). Hence Ileum) is not exactly correct for L, so [qk,-yki

is not exactly correct for L. This contradicts our hypothesis, proving the result.

Let [q,-).] be a home configuration for L. We define IturisTic([q,7]) to be the longest prefix

c2 7 such that, fur au sequences er = $73: , al (where each o E E*), each configuration

of M that is readied in the computation

(q,PLESm(L,a),7)P-P* (4, e,1),

where (4, e, i) is an I/O configuration, is of the form (se, /3, Tta), for some q' E Q, some suffix

P of PRESM(L,a), and some a E F. Thus unTsTK([q,7]) is the maximal bottom portion

of the stack that remains tuick inged throughout any computation of M that begins in the

configuration [q,7] and reads as input a presentation of any sequence a with respect to L and

M.

We partition the class C into two subclasses Ca and C29 as follows. Define C1 to be the set

of languages L E C such that, far every home configuration [q,7] of L, t.he string imirricaq,7])

has length at least one. Define C2 to be the set of languages L E C such that, for some
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[q, 7] 6 HCL, itn4sTx([q,7]) is the empty string. Thus Ca contaLus all languages in L E C such

that, once M is in a home configuration for L, there is some (nonempty) string of characters

on the bottom of the stack that will remain unchanged throughout any possible computation

of M on input any presentation of strings with respect to L and M. The subclass C2 contains

those languages L with at least one home configuration with the property that, if M is started

in that configuration, then there is some presentation that will cause the bottom character on

the stack to be changed. Clearly CI and Cp are disjoint and C = CI U C2. We fvst prove two

claims about C1 and C2.

Clahn 5.5.6 For each E C1, there exists a state 4, a character Z E T, and a string E

such that

(4, r, Z) 1-** (p, e, ZO), (5.1)

when? [p, ZA is an I/0 configuration that is erectly correct for L.

Proof of Claim: Suppose that L E C1 Let [(217] E 'JCL. By Lemma 5.5.3, some such

home configuration exists for L, and by Lemma 5.5.4 it "is not a hom.. configuration for any

other language in C. By the definition of :.71, there must exist some sequence a = q1, o2, .

such that for some state 4,

(q9cr1b1cNit .01,1) '-4° (Cep MINSTIc([q, 7])),

where gr1b1a2b2 .0e is a prefix of PRESM(L, or). (In fact: eijka2b2 e't is all except the

last character of PRESM(L, cr).) That is, there is some sequence a such that after reading

b1o2b2 the stack contents of M is exactly BaNsTx(k,71). If this were not the case then

InNsirx(k, 7j) would not be of 112111bn= length, as is required by its definition. We can assert

that a stack equal to miNsTic([q,7]) is achieved after reading the last character of at, rather

than after seine bi, since if the latter were the case we could define Cri+i to be the empty string.

Note also that since [q,7] e HCL, bt ="r".

Let p E Q and gi E I" be such that

(49bbhuNsTIEUgt 7D) 0-'41 (PI e: /IMBUE( [q, 7D0), (5.2)

where [p, haNsTIc([q,7])fi] is an I/O configuration. (Such p and fi must exist, by the definition

of a predicting DPDA.) Thus

(q, aibicr2h crtbe 7) 1-01 (P, e, BeINSTIcaq, 110).
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Since [q,7] is a home configuration for L, It is an I/0 configuration that is exactly correct

for L. Thus, by Le=a 5.5.5, [p,KIN8Tk([g,7])13l is also exactly correct for L. By the def-

inition of MINSTICas11), if /If Is started in configuration [p, 7))/3] and given in-

put PRESM(Lar), for any sequence ir, at most only the top element of miNsTic([q,7]) (i.e.,

ToP(mixsTic([q,7]))) will ever be scanned by M, and it will never be removed from the stack.

The stack elements beneath ToP(htufirric([q,7])) will never be scanned nor removed from the

stack. Thus if M is started in the configuration [p,Tor(ktiNsucflq,iD)A and shown any pre-

sentation PREShi(L,b), it will always produce the same outputs as if it had been started

in configuration [p,hinssyr([q,7])11. Hence the configuration [p,ToP(NaNsvc([q,7]))13] is also

exactly correct for L. ftrthermore, by (5.2),

N,Top(mmsTh([q, 7]))) (p, 9 TOP(MINSTIC([q, 7]))0).

Since [p, MINSTK(k, -d)8] is an I/O configuration, the pair (p,TOP(MINSTKaq,7DP)) is in

0, and thus fp, TOP(TOP(MINSTIC([q, 7j))/3)] is also in 0, so fp, TOP(MINSTK([q, 7]))13] is also an

I/O configuration. The claim is then proved by setting 2 = ToP(naNsTK([q,7])) and noting

that bt ="r".

A similar result can be shown for the subclass CII

Claim 5.5.7 For each L E C2, there exists a /tate 4, a chanicter E r, and a string E r+

such that

(4: ry Z)I-P* (P, et 0),

where [p,fi] is an I/0 con,figaration that is exactly correct for L.

(5.3)

Proof of Claims Suppose that L E G. Let [q,7] E HCL. By Lemma 5.5.3, some such

home configuration exists for L, and by Lemma 5.5.4 it is not ke home configuration for any

other language in C. By the definition of C3, there must exist some sequence ff = Olt Olt fft

such that for some state 4,

(q gibier2b3 . . (lb ". (49 et BoTrou(7)),

where criltiolh ...et is a prefix of PR,ESm(L, a). That is, there is some sequence a such that

after reading tr1bicr3b3 met the stack contents of M is exactly Boawrobt(7). (Such a must exist
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since it must be possible to empty M's stack with legal input.) We can assat that this situation

is reached after reading the last character; of at, rather than after some bj, since if the latter were

the case we could define ol.1.1 to be the empty string. Note that since [q, 7] E RCL, bt

Let p E Q and /3 E I.+ be such that

(4, bt, BoTrom(7)) 1.- (p, e, /3),

where [p, P] is an I/O configuration. (Such p and /3 must exist, by the definition of a predicting

DPDA.) Thus

(qt fribiffsbx fftbt, 7) 1-** (Pt et /3).

Since [go] is a home configured= for L, it is an I/O configuration that is exactly correct for

L. Time, by Lemma 5.5.5, [AP] is also exactly correct for L. If we set Z = BoTrom(7) and

observe that bt ="r", the claim is proved.

By Claims 5.5.6 and 5.5.7, for each L E C there exists a state 4, a character Z E T, and a

string A E r+ such that

(4, r, Z) tp* (p, e, A),

where [p, A] is an I/0 configuration that is exactly correct for L. For each such ID (4, r, Z) there

is at most one configuration [p, A] for which this is true, since M is deterministic. The number

of possible IDs of the form (4, r, Z) is at most Since, by Lemma 5.5.4, no configuration

is exactly correct far more than one language in C, the number of languages in C can be no

more than iolrf, compledng the proof of Theorem 5.5.1. 0

5.8 Languages Predictable by DPDAs

In this section we exactly characterise the classes of languages that can be predicted by DPDAs.

Theorem 5.0.1 The DPDA-predictable classes of languages are exactly the finite classes of

deterministic context-free languages.

Proofi We first prove that any finite class of deterministic context-free languages is pre-

dictable.
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Lemma 5.6.2 Let C = be a finite class of deterministic context-free lan-

guages. There exists a predicting DPDA M for the class C.

For each Li, let Mi be a DPDA that accepts Li by final state. As in the proof of Lemma 5.3.2,

we assume that each Mi accepts all strings in Li and rejects all strings in E Li. A similar

result can be shown if we allow each language Li to be defined over its own alphabet Ei, and

assume that Mi accepts all strings in Li and rejects all strings in ET Li. For clarity of

presentation we prove the result as stated in the lemma.

Procfs The lemma is proved by constructing a predicting DPDA M for C, using the

accepting DPDAs. M first simulates M1 and makes all of its guesses based on whether the input

strings are in Li. If M makes an incorrect guess it then starts simulating 11/2 and makes its

guesses based on the language L2. This continues until M finds the right language, after which

point an of its guesses will be correct. We introduce the additional states igight,4htt..., ht

and sci, q2 , te,,, in order to keep track of which accepting automaton is being

simulated and whether the most recent guess was right or wrong.

For each i such that I < < c, let M, = (Qi, E, ri, 5i, 0, 4, Pi) be a deterministic PDA that

accepts Li by final state, where the set of states is Qi = {0, 4, ..., gkij}, the tape alphabet

is ri = zfo, and the set of accepting states is Fi. Without loss of generality, we

can assume that no &moves are possible from any state in Fi and that Mi reads its entire input

[40].

We define the predicting DPDA M = (Q, E U {r, to}, 1", A, 8, A, q,g, Zoott,,,) as follows. As

for all predicting DPDAR, rot, E and A = {+,}. Let

Q = U Qi U {11413711 gllight I eritho q:ighsl drofsgl "1 evrono)

and = Vi=1 Ili Li The function A is defined as follows. For any state qj E Qi,

I -I- if E
A(qij) ifqgF.

We define A(q) = " for any state q in

{6tort: 4ight9 9 4149 eprongt egrongt 9 igoron9).

All of the transitions in 61,h, ..., O. are also in 6. In a4i.dition, 8 contains the following

transitions.
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1. 6(qA.,.., e, Zbotto,n) = {(qi, Zemito,,,Z1)}

2. For every i such that 1 5 < c, for every state fei Qi, and for every Z E ri, Z) =

{(40d, e)} and 6(4, r, =

3. For every i such that 1 < < c 1, for every state E Qi, and for every Z E ri,

6(4, to, Z) = sad 6(4, to, = {(q1+1, Zket,,,,,Z1+1)}.

4. For every i sudt that 1 < i < c and for every Z E ri, 5(4ht,e, Z) = {(qiright,e)} and

f5(eright, Zbottom) = Zbato,4)}.

5. For every i such that 1 <i<c 1 and for every Z E ri, e, Z) = ((qtrinv, ell

and itetopong, et Zbettons) = (01+1, Zbettomei÷1)}.

Let LI be any language in C. We prove that M is correct for Li; it then follows immediately

that M is a predicting DPDA for C. Leto = 4'31 . be any infinite sequence of finite strings

over E. Consider the string PRESM(Li, = aibiaab2

Clabn 5.8.2 Vie number of to's in the sequence . is less than I.

Proof of Claim: Suppose that b,,, is the (1-1)st occurrence of to in Eh, 52, .... We show that

no more to's will appear. Note that, by the definition of the transition function 6, a states

entered by M between the oth and (a .1- 1)3t appearances of to in PRESAr(Li, o.) are states

from Q.+1 and thus that immediately after reading the ith occurrence of to and exhausting all

possible e-moves M Is in state 4+1. Similarly, as soon as the sth w in the input is read all

stack symbols are popped and only symbols in 1"9.4.1 u (Zbott,,,} are pushed, until such time

as another to is encountered. Doling the entire computation Zbat,,, appears only once in the

stack, at the bottom. Thus immediately after reading crib51...ff,b, and exhausting all

possible e-moves, M is in state qt and the stack contents is 400.4. Suppose that the string

0,5+1 is in Li. Then, since ql is the start state and rit thestarteymbolofM,whichaccepts

A, and since all of the transitions in are in 5,

(49 ffni+19 zbottmai) (q, -.7)

for some q E Pi and y E Zbott.,11. By ustunption, no e-re nes are possible in Mi from any

state in Fi; thus (q, Tt3P(i)) E O. By the definition of A, ..N(q) = " ". Since orm+1 E Li, the
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value of b,,,4.1 will be "r". Similarly, suppose that cr,,,+1 Li. Since Mi reads all of its input

there is some E Qi and 7 E Zbast..17 such that (q,TOP(.0) E and

(91Zbat.Z1)1-* (q,

Since o.,+1 Li and since Mi accepts q .Pi. Thus A(q) = " ", and the value of b,4.1

will again be "r". Note that in either case, by the definition of 8, M will be state with

stack contents 4,..,4 immediately before the first character of a,,,2 is read. An obvious

induction shows that each of bmit bln+2, IS an "r", proving the clahn.

Hence only a finite number of the Ws are w's, so there exists some ko such that far all

k > ko, bk = "r". Thus M is correct on (Li,o). Since fy was chosen arbitrarily, M is correct

for Li, and the lemma is proved.

Note that the proof above gives a technique for constructing a predicting DPDA for any

DPDA-predictable class C that makes at most ICI - 1 incorrect predictions.

It remains to be shown that every DPDA-predictable class is a finite class of deterministic

context-free languages. Lemma 4.6.4 states that all languages in a DPDA-predictable class

must be deterministic ans.

Lemma 5.6.4 Let C be a DPDA-predktable class, and let L be a language in C . Then L is a

deterministic contezt-free language.

Proof: We prove the lemma by constructing a DPDA M' that accepts L from a predicting

DPDA M for the class C. M' first enters a home configuration for L, and then simulates M.

It accepts or rejects the input string based on the guess rttput by M.

Let M = (Q, Eu{r, to}, T, Zi) be L )reclicting DPDA for C, with Q =

and r = {Z1,z2,...,Ar1}. We define a DPDA that accepts L. Let [qh,7h] be a home

configuration for L; at least one such configuration exists by Lemma 5.5.3. Then define

211' = (Q U E, U {Zaiwt}, Zit,11, where the set of accepting states P

is defined by

The transition function 5' contains an ftansitions of 8 that don't involve the symbols r

or to, as well as the transition oqqat.rt,e, = {(qh,lh)}. Thus at the beginning of any
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computation, lir enters [qh, 74, a home configuration for L. It then simulates M. on the input

string (in E). To see that accepts L, let z be any string in E*. Let E Q and E be

such that (4, TOP()) E 0 and

(099297h) t-.6. (49 e, i').

Since [0,74 is a home configuration for L, it is exactly correct for L. If z L,thenbythe

definition of exact correctness, A(6) = " ", so E .1P. If ft L then A(4) = " ", so 4 P.

Thus AV accepts L, so L is a deterministic CFL. 0

Any predicting DPDA must have & finite number of states and finite tape and input alpha-

bets; thus by the lower bound of Theorem 5.5.1, the number of languages in a DPDA-predictable

class must be finite. Hence the only DPDA-predictable classes are the finite classes of deter-

ministic context-free languages. This concludes the proof of Theorem 5.6.1.

5.7 Prediction Using Counter Machines

An interesting special case of a deterministic PDA is a 1-counter machine (1CM). A 1CM is

a DPDA with only two stack symbols, 0 and 1. Buthermore, the symbol 0 is used only as a

bottom-of-stack marker; it always appears exactly once on the stack, at the bottom. Thus the

stack functions as a counter: it stores a nonnegative integer, corresponding to the number of l's

on the stack. A counter machine, like any DPDA, makes transitions based on the current state,

current input symbol (it can also make e-moves), and the symbol on top of the stack. In the

case of a 1CM, the latter is equivalent to checking whether the number stored in the counter

is zero or positive. Similarly, a k-caunier machine (k01) can be defined for any nonnegative

integer k. Such a machine has k stacks are described above, each of which functions as a
counter. The transitions in a k-counter machine depend on the state, input symbol, and which

of the counters store positive nismbers. Note that a 0-counter machine is a DEA. It has been

shown that any Taring machine can be simnlated by a 2-counter machine [40, 56] vox any k,

a &counter langsage (isCL) is a language that is accepted by some k-counter machine.

By making the necessary adjustments to the definition of predicting DPDAs, we can define

a predicting 1-counter machine in the obvious way. Since it is a svaightforward restriction
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of the general DPDA definition, a formal definition is omitted. Similarly, the definition of a

class of languages that is 1-counter predictable, as well as other related definitions, is exactly

analogous to the definition for DPDA-predictability, and thus omitted.

Theorem 5.7.1 The WM-predictable classes of languages are exactly the finite classes of 1-

counter languages.

Proof Sketch: Since 1-counter machines are a restriction of DPDAs, the result of Theo-

rem 5.5.1 implies that only finite classes are 1CM-predictable. By an argument similar to the

one given in the proof of Lemma 5.6.4, all languages in any 1CM-predictable class are 1-counter

languages. The following lemma states that any finite class C of 1CLs is 1CM-predictable,

completing the proof.

Lemma 5.7.2 Let C = {Li; L2, . L101} be a finite class of 1-counter languages. There exists

a predicting 1CM M for the class C .

Proof Sketch: The proof is similar to the proof of Lemma 5.6.2. By arguments similar to

some in [40], we can assume that for each Li there is a 1CM M that accepts Li that reads all

of its input, and such that no &moves are possible from any accepting state. We construct a

predicting 1CM M for C, using the accepting 1-counter machines. M first simulates Mm and

makes all of its guesses based on whether the input strings are in Li. If 31 makes an incorrect

guess, it then starts simulating M31 and makes its guesses based on the language £2. This

continues until M finds the right language, after which point all of its guesses will be correct.

As in the proof of Lemma 5.6.2, extra states are used to keep track of which machine is being

simulated and whether the last guess was right or wrong. The bottom-of-stack symbol o in the

counter machine takes the place of the stack symbol Zbott, in that proof. After M outputs a

guess and reads the character indicating whether or not it guessed correctly, it pops all l's off

the stack until just the sero remains, using e-moves. The current state contains the information

as to which automaton has just beer. simulated, as well as whether the guess just made was

correct. Using this information, if will either simulate the same machine or move on to the

machine for the next language in the class.
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5,8 Discussion

It is perhaps not surprising that unly finite classes can be predicted by deterministic finite

automata in this model; after all, there I. no infinite component in a DFA. It is, however, much

less intuitive that I-counter machines, and even deterministic pushdown automata, which have

stacks that are allowed to grow without bound, are unable to predict any infinite classes of

languages (not even an infinite class of singleton languages). In fact, even though a predicting

DPDA can make use of such a stack, the size of the classes that can be predicted by DPDAs

only exceeds the size of the classes predictable by DFAs (with the same number of states)

by a factor of about 2in. Thus, although the stack is usefid for allowing the prediction of

classes containing more complex languages, it is much less effective at enabling the automaton

to predict larger classes. The additional number of languages that can be predicted by DPDAs

can largely be explained by the availability of only the top-of-stack symbol, which effectively

increases the number of states in a DFA by a factor of Irl.

It is interesting to note the hierarchy of predictive power for counter machines. The classes

lat can be predicted by 0-counter machines (DFAs) are the finite classes of regular languages.

Similarly, I-counter machines can predict exactly the finite classes of I-counter languages.

However, when the number of counters reaches two, the number of predictable classes grows

considerably. As was mentioned above, 2-counter machines are as powerful as Turing machines.

Thus prediction by 2CMs in this model is equivalent to NV-extrapolation [6, 9, 19]. A result in

[7] shows t any recursively enumerable class of recursive functions (as well as any subclass

of such t, As) can be NV-extrapolated. Thus, although the difference in predictive power

between 0- and 1-counter machines is relatively slight, an enormous difference exists between

the ability of I- and 2-counter machines to predict classes of languages.

85

95



6 ONLINE ALGORITHMS FOR VERTEX LABELING

PROBLEMS

An online algorithmis an algorithm that is given a series of discrete inputs, and must make some

irrevocable decision after seeing each input. An online graph algorithm Is an online algorithm

in which the inputs are pieces of a graph r.nd the decisions are (usually) determining wbat label

to assign to a vertex. At least two online graph problems have been studied in some detail.

In [33] and [51] online algorithms for ccioring the vertices of a graph are considered. The

problem of constructing chain covers and antichain covers of partially ordered sets online has

been has been studied in [491 and [50]. Online algorithms for a variety of other problems, such

as pac.king problems [16, 77], dynamic storage allocation (e.g. [23]), and metrical task systems,

including server and caching problems [15, 21, 55, 65], have also been investigated. Work done

on recursively colorable infinite graphs [8, 18, 29] is related to online graph algorithms. Update

algt ithms, in which graph properties are updated following incremental changes to the graph,

also he.ve much in common with online graph algorithms [26, 27, 41, 42, 68].

The problems considered here are a class of graph problems that we refer to as vertez labeling

problems. In these problems, the oojective is to assign labels to the vertices of a graph such

that the labeling satisfies certain properties. A particular labeling is evaluated according to

some criterion, such as the nnmber of different labels used (as in the vertex coloring problem)

or the number of vertices to which a particular label is assigned (as in the dominating set

problem). The goal is to find an algorithm that always produces a good labeling according to

the criterion. Vertex labeling problems easily lend themselves to an online protocol; at each

stage, an online algorithm must make an ir_evocable decision as to what label a particular

vertex should be assigned. For many such problems, however, it is unrealistic to expect that an

optimal labeling can always be found onlinq a more reasonable approach is to search for online

algorithms whose wcestcase performance is always bounded by some function of the optimal

labeling and perhaps some other parameters of the graph..

The protocol most oft m used for online graph algorithms is as follows. The algorithm A

is given input, and mu e. produce output, in n stages, where n is the number of vertices in
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the graph G. At the ith stage, A is told which of the vertices Vi, v2, ..., 14_2 the vertex vi

is adjacent to. A must then eutput the label to be assigned to N. Thus the algorithm must

make irrevocable decision about the label of vi having seen only the subgraph of G induced

by {v1, v2, ..., vi}. Note that no restrictions are placed on how much time A is allowed to use

before making its decision. The performance of A is measured by how good the labelings it

outputs are relative to the best possible (offline) labeling.

This protocol is too restrictive for any algorithm operating under it to achieve good results

for any of a number of vertex labeling problems, including the independent set, vertex cover,

and dominating set problems. Far each of these problems, it is trivial to establish upper

bounds on the (worse-case) performance of such algorithms that are little better than the worst

performance level possible. In order to achieve any reasonable performance guarantees for these

problems it is necessary to remove some of the restrictions thal; are placed on algorithms by

this protocol. For this reason, we define t wo new online protocols for vertex labeling problems

that will permit us to study how well local heuristics work for these problems.

We will refer to the standard online protocol described above as Protocol 1. The first of

the new protocols, which we cali Protocol 2, is as follows. An online algorithm A operates in

the same manner as a Protocol 1 algorithm, with the following exception. At the ith stage,

rather than being given as input a list of the vertices in (vi, v2, ..., vi...2) that are actacent to

the vertex v, A is given as input a list of all of the vertices in the graph that are adjacent to

Thus at each stage A has more information available to it than merely the subgraph induzed

by the set of vertices that have already been labelel.

The ther new protocol, referred to as Protocol 3, allows an algorithm A to have the same

information for each vertex that it is permitted under Protocol 2, e. d in addition allows A

to select at each stage the vertex that it would like to label next. Since (unlike the case

ia Protocol 1) A may have information about vertices not yet labeled, this is a meaningful

difference. (It can easily be shown that allowing A to choose the next vertex would be of no

advantage if, as in Protocol 1, A only had information about the vertices it had already labeled.)

As was the case with the original protocol, the performance of an algorithm operating under

one of these new protocols is measured by the quality of the labelings it outputs relative to the

best possible (offline) labeling.
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One reason that research on online algorithms is interesting is that it may offer hints as to

the limits of what can be achieved by algorithms that use only local heuristics (Le., algorithms

that are strictly online or else use only a modest amount of lookahead), as opposed to global

ones. For some graph problems in P (e.g., finding a minimum-weight spanning tree) there are

efficient algorithms that use only local heuristics. Because of the fact that local heuristics can

usually be implemented efficiently, they are often used to try to find approximate solutions

to problems for which finding the optimal solution is hard. By considering online algorithms

for NP-complete problems we can study how well local heuristics work for (apparently) more

difficult problems. Recall that there are no restrictions on the amount of time and space that

an online algorithm is permitted to use. Thus studying the performance of online algorithms

for NP-complete problems may lead to a better understanding as to what extent, if at a,

additional computational resources can compensate for having only local knowledge of a graph.

In the remainder of this chapter we investigate how well online algorithms perform on

several vertex labeling problems. First, we consider online algorithms for the graph bandwidth

problem. Next, we look at online algorithms for several problems that are a particular type of

vertex labeling problem that we call vertex subset problems. These include the independent

set, vertex coves, aud dominating set problems.

6.1 The Online Graph Bandwidth Problem

In this section we investigate the performance of online algorithms for the graph bandwidth

problem.

The study of bandwidths originally arose in connection with matrices, but was readily recast

as a problem in graph theory. The problem of finding the bandwidth of a graph is to determine

the smallest possible valuc k such that there exists a bijective function f from the vertex set

V to the set 2, ..., Ill} with the property that if two vertices have an edge between them

then the difference of their images under f is no more than k. The problem of determining the

bandwidth of an arbitrary graph is known to be NP-complete [59). See [20, 22, 76] for farther

results on the graph bandwidth parameter and its extensions. Graph bandwidths also arise in

the study of VLSI circuit design.

We aze interested in the problem of finding online algorithms that construct a function f

with as small a bandwidth as possible for arbitrary graphs. It is not possible to always find
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the minimum possible bandwidth online; thus we try to fmd a function with a bandwidth not

too much largex than the minimums No restrictions are placed on the computational resources

(time and space) available to the algorithms. We do not consider infinite graphs.

An application of this particular problem is as follows. Suppose we receive some data files in

a sequential manner, and must write each file onto a sequential tape as it arrives. The files can

be placed anywhere on the tape, but we want them positioned so as to minimize the longest

distance that the tape head must trnvel between files when the data files are subsequently

accessed. If the pattern of anticipated data accesses is such that it can be modeled by a graph,

the the problem of deciding where to put each file as it arrives can be modeled by an online

graph bandwidth problem.

Turner [72] also studied approximation algorithms for the graph bandwidth problem. How-

ever, he does not consider online algorithms, and he assumes an underlying probability distri-

bution over the possible graphs and uses an average-case performance analysis. We analyze

online algorithms in terms of their worst-case performance.

The outline of this section is as follows. We first present an online algorithm (that operates

under Protocol 1) for the bandwidth problem and demonstrate that its performance close to

optimal. We then define the two new, less restrictive protocols for online graph bandwidth

algorithms, and prove lower bounds on the bandwidth of the function constructed by any

algorithm that operates according to these protocols.

6.1.1 Notation and Definitions

Let G be a simple finite undirected graph with vertex set V = {v1, v2 ..., v} and edge set E.
Note that JV1 = n. If (u, v) E E then u and v are adjacent. For any vi E V we define the

adjacency list for vi as Adj(vi) = {u : (14, u) E E}. We define the restricted adjacency list for

vi as Adii(vi) = Adj(n) n {1,1191,2

Definition 6.1.1 For any integer ns, 1 < m < n 1, an rn-bandwidth function for a graph

G is a bijective function f: V {1, 2...,n} with the property that for any edge (u, v) in E,
11(u) f(v)1 5 tn. Alternatively, a function with this property may be said to have iandwidth

If a function f is an In-bandwidth function for some rn, then f is a bandwidth &action. The

bandwidth of G is the smallest positive integer k such that there exists a k-bandwidth function

for G.
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The size of a graph's bandwidth gives information about how the vertices In the graph are

connected. In a graph with a small bani.width, the vertices tend to have edges only to vertices

in the same part of the graph, while a graph with a large bandwidth has edges between vertices

in different parts of the graph. Thus the bandwidth measures certain locality properties of the

edge set. Note that if G has bandwidth k, then no vertex in G can have degree greater than

2k. In particular, if G has bandwidth 0, then there are no edges in G, so any bijective fat; ction

from V onto 1, 2, ..., n is a 0-bandwidth function for G. We will assume that the edge set E is

not empty, and thus G has bandwidth k > 1.

The problem studied here is the construction of an m-bandwidth function f by an algorithm

A when A is givm its inputs, and outputs the values of f, according to au online protocol

(defined below).

Definition 8.1.2 An algorithm A is an online bandwidth algorithm if its input/output behavior

is as follows. Initially A is given as input (for some graph G) the number of vertices n and

the bandwidth I. Then, for some ordering of the vertices, v2, v , A is presented the

restricted adjacency lists of the vertices in that order. After the list for 14 is seen, A must

output the value of Atli) before it is shown A4j14.1(v1+1). The decision made by A as to the

value of f(vi) is irrevocable. When all of the restricted adjacency lists have been seen by A, it

must have defined the values of f such that f is a bandwidth function for G.

Definition 8.1.3 An online bandwidth algorithm A is an online m-bandwidth algorithm if,

for any n and k, for any graph G with n vertices and bandwidth h, and for any ordering of the

vertices of G, the function f defined by A is an m-bandwidth function.

Note that it is triiial to find an online (n 1)-1:z.ndwidth algorithm. In fact, any algorithm

that produces a bijective function from V onto {1, 2 ..., n} (according to the online protocol)

is an onliae (n *bandwidth algorithm.

This definition of an online algorithm is generally similar to the methG3 of presenting graphs

and partially ordered sets used in other work on online graph algorithm. One difference between

our definition and the protocols used in the problems of online graph coloring and recursively

covering posets with chainsfantichains is that we allow the algorithm to know the number of

vertices in the graph. In the coloring and poset problems, the objective is to construct a function

with domain V and a range as small as possible, provided that it satisfies certain constraints.
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In the bandwidth problem, however, the range of the function must be the same rAze as V; thus

any online algorithm would be severely handicapped if it did not know what the range was

required to be. Note that we also permit an online bandwidth algorithm to know in advance

the actual bandwidth of the graph. Because of the stringent requirements on the algorithm (i.e.

that it must construct a bijective function with the desired properties based on only partial

information about the graph) we feel that it is not unreasonable to provide the algorithm with

this information.

8.1.2 An Online Algorithm for finding the Bandwidth of a Graph

Theorem 8.1.4 There mists a Protocol 1 online I2hs 6Y- -bandwidth algorithm.

Note that an alternative way to phrase the problem and the above result is as follows. The

definition of an online bandwidth algorithm could be changed to drop the condition that the

algorithm be given the value of k. Then the above theorem could state that for any n and k,

there is an online 124-212"1 -bandwidth algorithm for the set of all graphs with n vertices and

bandwidth A:.

Proofi Define B (n, k) = (2k -21P+1. The online algorithm OLBW (Figure 8.1) computes a

B(n, k)-boadwidth function f.

Note that the algorithm OLBW sets f(v) equal to the unused value in {1, 2 ..., farthest

from p that is still consistent with an eventual online band,idth of B(n, k). Since p = p

is the "middle" of 1,2, ...,n

Definition 6.1.5 Let a and fi be elements of {1, 2..., n}. a is more extreme than (or /3

is less extreme than a) if la - > - pl. a is at least as extreme as /3 (or /3 is no more

extreme than a) if ia AI 4
In the following we will frequently refer to the assignment ofan image under f to a vertex

v41 as "labeling ti" or "giving ei a label". Similarly, elements in LABELS will be referred

to as "kunased labels" or "available labels", while elements of {1, 2 n} that are no longer in

LABELS will be referred to as "used labels". Thus OLBW sets f(vi) equal to the most extreme

unused label that I. consistent with f having a bandwidth of at most B(n, k).

f is well-defined and bijective. Ikt show that f has bandwidth B(n, k), we will assume

otherwise and show that a contradiction inevitably arises.
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Algorithm OLBW

1. Set LABELS = {1, 2, n}.

2. Set p = 41.

3. Por each i = 1, 2, ..., n do:

(i) Define f(v) = z, where z is the element in LABELS
that maximises z pi, subject to the constraint that
for each vi e A4h(v4),

IAN) f(11)1 B(n, k).

In case of ties, choose the smaller value.

Set LABELS = LABELS {z}.

Figure 6.1: Online algoritimi to find a B(n, k)-bandwidth function

Suppose that f has a bandwidth greater than B(n, k). Let v, be the first vertex encountered

by OLBW such that labeling v, violates the bandwidth constraint; that is, while OLBW is

processing v it finds that there is no element in LABELS that satisfies the constraint in Step

3(i) of the algorithm.

CASE 0: Adj,(14) = 0, i.e. there are no edges in E between v, and any previously-seen

vertex. Then any label thai is given to v, fails to inaease the bandwidth of f . Thus the

constraint of Step 3(1) cannot have been violated by v after all, and we get a contradiction.

CASE 1: Adijs(17s) = {u}. Thus v, has an edge to exactly one previously-seen vertex, which

we will call u. Since u was processed before v OLBW has already computed f(u).

Fact 6.1.6 Far any k > 1, n B(n, k) < B(n, k) + 1.

If n B(n, k) f(u) < B(n, k) + 1, then If(v.) f(u)I is at most either n (n B(n, k)) =

B(n, k) or (B(n, k)+1)-1 = B(n, k). Hence no label ULM is given to v, will cause the bandwidth

of f to exceed B(n,k). Thus we need only consider the cases when f(u) < n B(n, k) or

f(u) > B(n, k) + 1.

CASE 1-A: f(u) < n B(n, k). Let t be the largest integer such that all of the labels from

1 to t have already 12,en used; thus t + 1 is the smallest unused label. Let rn = t + 1. Note

that if there were any unused labels between 1 and B(n, k) + 1, then v, could be given or
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of those labels. By Fact 6.1.6, n - B(n, k) < B(n, k) + 1, so 11(v1) - f(u)1 would be at most

(B(n, k) + 1) - 1 = B(n, k), and the bandwidth of f would not be forced to exceed B(n, k).

Thus we can assume that t > B(n, k), and hence m > B(n, k) + 2.

For any used label p, let f-1(p) be the vertex that has been assigned the label p by ()LBW.

Consider the set P = {1, 2, ..., t}. All, of the elements of P are labels that have already

been used.

Definition 6.1.7 We define the sets PI and F2 as follows.

PI is the set of labels p in P each that p is at least as extreme as in.

P2 is the set of labelsp in P such that there is an edge in E from f-1(p) to a vertex that

has already been given a label less than In B(n,k).

Lein= 6.1.8 P1 U P2 = P.

Proofi Consider any p E P. Let vi (j < s) be the vertex f-1(p). By Step 3(i) of the

algorithm OLBW, p was at that time the most extreme element in LABELS that would not, if

assigned to vi, force the bandwidth of f to exceed B(n, k). Suppose that p Pi, so m is more

extreme than p. Then the reason that vi was gi Fen p, rather than m, as a label by OLBW

must have been because assigning m to 175 would make the bandwidth of f too large. Since

> B (n, k) + 2, the only way that this could happen would be if there was an edge from vj to

a vertex that bad already been assigned a label smaller than m - B(n, k). Thus p E P2. 0

Lemma 6.1.9 1P11 = n m + 1. 1P21 2k(m - B(n, k) - 1).

Proof: Since m > B(n, k) + 2, In is greater than n/2. Thus the labels that are at least

as extreme as vn are 1, 2, ..., n m + 1 and m, m + 1, ..., n. Since m = t + 1, the only such

labels that are ia P are 1, 2, ..., n m + 1, proving the first part of the lemma. The number

of vertices that have already been assigned a label smaller than vn B (A, k) is dearly bounded

by M B(n, k) - 1. Since G has bandwidth k, each such vertex can have degree no more than

2k, proving the remainder of the lemma.
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DeP1=P1flP, Clearly VW 5 = n - m + 1 = n - t. Thus

1P21 t -112131 t (n - t) = 2t - n.

By Lemma 6.1.9, since m = t + 1,

IP2i 2ktm B(n,k) - 1)

= 2km ((2k - 1)n + 1) - 2k

= 2kt - (2k - 1)n - 1.

(6.1)

Since k > 1 and t < n, 2(k 1)t - 1 < 2(k - 1)n. By algebra, 2kt - (2k 1)n - 1 < 2t - n,

so IP21 < 2t n, contradicting (6.1). Sims we get a contradiction, this case cannot arise.

CASE 1-13: Au) > B(n, k) + 1. Since this case is symmetric to Case 1-A, the exposition

will be shorter. Define t to be minimal such that all of the labels t, t + 1, n have already

been used. Let m = t - 1, the largest unused label. If there were any unused labels between

n - B(n, k) and n, then v, could be assigned one of them, without forcing f's bandwidth to

exceed B(m, k), by Fact 6.1.6. Thus assume that t < n B(n, k) and m < n - B (n,k) - 1.

Define P = ft, t +

Definition 6.1.10 We define the sets Pg anti P4 as follows.

Ps is the set of labels p inPstsch that p is at least as extreme as m.

P4 is the set of labels p in P such that there is an edye B from f-1(p) to a vertez that

has already been given a label greater than Tr: + 131(n, k).

Lemma 6.1.11 Pg Li P4 = P.

Proof: Similar to proaf of Lemma 6.1.8.

Lemma 6.1.12 1P31 = rn. jP41 2k(n m - B(121 k)) .

Proofi Since m < n - B(n, k) - 1 < f, the only labels in P that are at least as extreme as

m are n m + 1, n m + ft. There are m of these, proving the first equality. No more

than n - m - B(n, k) vertices can be assigned labels larger than m + B(n, k); each such vertex
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has degree no more than 2k. This proves the rest of the lemma. 0

Let Pa = P3 n 75. Then !Pal < = m = t 1 and

By Lemma 6.1.12,

1P41 ?

1P41 < 2k(n B(n,k))

= 2kn 2km (2k 1)n 1

= n 2kt + 2k 1

= (n 2t) (-2t + 2kt 2k + 1)

= 2t) (2t(k 1) 2k + 1).

Since t > 2 (because not all labels can have been used already) and k > 1,

Thus

2t(k 1) 2k + 1 > 4(k 1) 2k + 1 = 2k 3 > 1.

S (n 2t) (-1) = n 2t + I.

IN 5 n t 1/3311< n t +1 1Pal,

Since 1/33T1 < t 1,

(6.2)

which contradicts (6.2). Hence this case cannot arise.

CASE 2: IAdj,(v,)I > 2; v, has an edge to two or more previously-seen vertices. Let 1

and r be the smallest and largest labels, respectively, among ail vertices in Add i(v,). (If the

labels 1, 2,...,n are thought of as being written in ascending order, then 1 is the "leftmost",

and r the "rightmost", label of any vertex in it4i.(14).) Note that r 1 < n < 2B(n, k), so
r B(n, k) 5 1 + B(n, k). Any label between max{1, r B(n,k)} and min{n,1 + B(n,k)},

inclusive, is within B(n, k) of of both 1 and r. Thus all such labels must have already been used

since, by hypothesis, any available label that is assigned to v, causes f's bandwidth to exceed

B(n, k).

We split this case into four =beans.
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CASE 2-A; r - B(n, k) < 1 and 1 + B(n, k) > n. Thus all of the labels 1, 2, ..., n have been

used already, so all of the vertices have been labeled. There is no v, left to label.

CASE 2-B: r B(n, k) < 1 and 1 + B(n, k) < n. Thus all of the labels from 1 through

1 + B(n, k) have been used.

Let t be maxin2a1 such that all of the labels 1, 2, , t have been used; thus t > B(n, k) +1.

If the argument in Case 1-A is repeated using u E AdMv,), instead of Adj,(v,) = {u}, thun

this situation is seen not to be achievable; hence this case cannot arise.

CASE 2-C: r - B(n, k) > 1 and + B(n, k) > t. Thus 4 of the labels from r - B(n, k)

through n have been used.

Let t be minimal such that all of the labels t, t + 1, n have been used; thus

B(n, k) < n B(n, k). If the argument in Case 1-B is repeated with tt E Acti,(vs), rather than

Adj,(va) = ful, then this situation is seen to be impossible; hence this case cannot arise.

CASE 2-D: r B(n, k) > 1 and 1 + B(n, k) < n. Thus 4 of the labels from r - B(n, k)

through 1 + B(n, k) have been used.

Define a to be minimal, and b maximal, such that 4 of the labels a + 1, a + 2, ..., b - 2, b - 1

have been used already, and

B(n,k),r B(n, k) +1,...,1+ B(n, k)). C {a + 1,a + b - 1}.

Note that a and b have not yet been used, and that a < r B(n, k) and b > 1 + B(n,k). Let

={a+1,a+2,...,b-2,b-1}.

Definition 6.1.13 We define the sets Ps, Pot P r, and Ps as follows.

* P5 is the set of labels p in P that satisfy both of the following conditions:

1. p is more extreme than a and move extreme than b.

2. f -1(p) is not adjacent to any vertez that has a label either greater than a + B(n, k)

or less than b B(n, k).

Pg i8 the set of labels p in P that satisfy the following thme conditions:

1. p is more extreme than a.

2. f-1(p) is not adjacent to any vanes that has been given a label greater than a +

B(n, k).
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3. f(p) is adjacent to a vertex that has been given a label less than b B(n,k).

v Pr is the set of labels pin P that satisfy the following three conditions:

1. p is more extreme than b.

2. f(p) is adjacent to a vertez that has been given a label greater than a + B(n,k).

2. f-1(p) is not adjacent to any vertex that has been given a label less than b B(n,k).

P8 is the set of labels p in P that satisfy both of the following conditions:

f-1(p) is adjacent to a vertex that has been given a label greater than a + B(n, k).

2. f -1(p) is adjacent to a vertez that has been given a label less than b B(n,k).

Lemma 6.1.14 IPI = IP8I + 1P7 l + iPal.

Proof: Each p E P was selected by OLBW as the label for some vertex f-1(p), rather than

a or b. The possible reasons that p was chosen instead of a or b are as follows.

1. f -1(p) is adjacent to both a vertex with a label more than B(n, k) away from a and a

vertex with a label more than B(n, k) away from b. Thus neither a nor b would have

been chosen instead of p. Note that since a < r - B(n, k) < n B(n, k) < (n, k) + 1

(by Fact 6.1.6) that the vertex with a label more than B(n, k) away from a must have a

label greater than a. Similarly, observe that b > + B(n, k) > 1 + B(n, k), so n b

n - B (n, k) - 1 < B (n, k), by Fact 6.1.6. Hence the vertex with a label more than B(n, k)

away from 6 must have a label less than b. Any such p is contained in Pe

2. f-1(p) is adjacent to a vertex with a label more than B(n, k) away from a, so a would

not have been chosen. Furthermore, p ii more extreme than b, so b would not have been

chosen. Any such p is contained in P7 U Ps.

3. f-1(p) is adjacent to a vertex with a label more than B(n, k) away from b, so b would

not have been chosen. Furthermore, p is more extreme than a, so a would not have been

chosen. Any such p is contained in Ps u Ps.

4. The only other pouible reason would be that p is more extreme than both a and b. Since

a < p < b, this is impossible. Thus P5 = .
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Thus

PçP5UP8UP7UPS=P6UP7UP8.

Since Pe I.) Pr P8 C P, we have P = Pau Fru& and thus 1P1= IPsti Fru Psi.It is immediate

from their definitions that Pe PT and Pe are disjoint sets. Therefore

IPI = IPel IPri IPeI.

We now make one (final) case subdivision, this time depending on which of a and b is more

extreme.

CASE 2-n-1: b is at least as extreme as a. Thus a + b > n 1, so b > n a + 1. Note

that the elements of Pr u Ps are the labels in P that have been assigned to vertices with edges

to vertices whose labels exceed a + B(n, k). Since the maximum degree of any vertex in V is

2k, there are at most 2k distinct elements of P7 U Pa for each vertex with a label exceeding

a + B(n, k). Hence

IFil + IP81 2k(n a B(n,k)).

The labels in Pe are a subset of the set of labels in P that are strictly more extreme than a. If

b > n a+ 3, then the only labels in P more extreme than a are n a + 2,n a + 3, b 1.

b equals n a + 2 or n a + 1 (recall that b can be no smaller than this) then no labels in

P are more extreme than a. Thus

IN 5 max{(b 1) (n a + 2) + 1, 0) = max{b n + a 2, 0}.

Sincea+b>n+ 1,bn+a 2 >-1.Thusbn+a-1 > 0,so

1Pel < max{b n + a 1,0} = b n + a 1.

Therefore

1P1 = IPeI + +

< 2k(n a B(n, k)) b n + a 1

= 2km 2ka (2k 1)n 1 + b n + a 1

= a+b-2ka-2
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= b - a + 2a 2ka - 2

= (b - a -1) - (2a(k - 1) + 1)

< b-a-1.
But by the definition of P it is obvious that IP) b - a - 1. Thus we have derived a

contradiction, so this case cannot occur.

CASE 2-D-ii: a is strictly more extreme than b. Thus a + b < n, so a < n - b. The elements

of P5 u P8 ere the labels in P that have been assigned to vertices with edges to vertices whose

labels are less than b B(n, k). Thus

1,41 + IP8I < 2k(b B (n, k) - 1).

The labels in P7 are each labels in P that are more extreme than b. If a < n b 1, then the

only labels in more extreme than b are a + 1, a + 2, ..., n b. If a = n b, then no labels in

P are more extreme than b. Thus

Therefore

IPTI max{(n b) - (a + 1) + 1,01 = max{n - b - a, 0} = n - b - a.

1P1 = 1Ps! + 1P71+ 1P8l

< 2k(b - B(n, k) - 1) + n b - a

= 2kb - (2k 1)n-1-2k+n-b-a
= (2k 1)b - a + 2n - 2kn - 2k - 1.

Sin,* k > 1 and b < n,

2(k - 1)b < 2k + 2(k - 1)n.

Thus (2k - 1)b - a + 2n 2kn - 2k 1 < b - a - 1. But since !PI = b - a - 1, we have derived

a contradiction, so this case cannot occur.

Therefore, if we amine that v, is the first vertex that OLBW cannot assign a label to

without forcing the bandwidth of f to exceed B(n, k), we inevitably find a contradiction. Hence

no such v, can exist, end OLBW always produces a function f with bandwidth no more than

B(n
This concludes the proof of Theorem 6.1.4.
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Corollary 8.1.15 The above result holds when G is any graph of degree no more than 2k.

Proof: In the proof above G is assumed to have bandwidth k. However, the only conse-

quence of this that is used is that G must then have degree less than or equal to 2k.

It is clear that if k is large the algorithm OLBW does not guarantee an online bandwidth

that is necessarily much better than the bandwidth of n - 1 that is trivial to achieve. The result

in the next subsection shows, however, that the performance guarantee that OLBW offers is

close to optimal.

6.1.3 A Lower Bound

In this subsection we give a lower bound on the bandwidth of the function output by any

Protocol 1 online bandwidth algorithm.

Theorem 6.1.18 For any n and k, and for any online bandwidth algorithm A, there mists a

graph G with n vertices and bandwidth k such that the function f output by A has bandwidth

greater than n - 2 . Thus no online (4Tn - *bandwidth algorithm trists.

Before proving this theorem, we prove the following two lemmas.

Lemma 6.1.17 Let the graph G consist of the connected components G1, G2, G with

bandwidths ka, kst ? km, respectively. Then the bandwidth of G is max{k1, k3,..., k,}.

Proofi For each i = 1,2, ..., m, let fj be a ki-bandwidth function for Go., and let ni be the

number of vertices in G,. The result is witnessed by the bandwidth function f, defined by

j-1
f(v)=- fj(v)+ E nit

i=1

where 5 is such that Gi is the connected component containing the vertex v.

Define a graph G to be a star if, for some vertex v, there Is an edge from v to evay othes

vertex in G, and these are the only edges in G.

Lemma 6.1.18 A star with n vertices has bandwidth Lij
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Proof: Let G be a star, and let v21..., v be some ordering of its vertices such that no

vertex has degree greater than el. (So v2 is the "center" of the star.) Then f is a ii.bandwidth

function for G, where f is defined by

/
Lift + 1 if i = 1

f(va) = i - 1 if 2 i 5. LE + 1

I if i .?. 3.1 + 2

We now return to prove the theorem.

Proof of Theorem 6.1.18: Given n, k, and any algorithm A satisfying the hypothesis, we

will define a graph G with the advertised properties.

We define G by describing the restricted ackjacency lists that A is presented for each vertex.

Without loss of generality, assume that A sees the restricted adjacency lists for the vertices in

the order

We partition the set of labels {1, 2 ... , n} into three disjoint subsets, L, M, and R. These

are defined by

and

n
M 2k+2 + hy [2A?: 21 + 31...97i "'" [2k 2]

R =
II n n I

n- 12k +2j 'n [2k + 2j 4. "n}
The restricted adjacency lists given as input to A are as follows. Let vi be the vertex

currently under consideration. If there are unused labels remaining in L and unused labels

still in R, then Adji(ui) = O. Otherwise, at least one of L and R has had all of its labels

assigned to vertices. Define X to be the first of L and it to have all of its labels used. Let z
be the most extreme label in X such that IA4(f-1(a)) n v2, ..., < 2k. Then define

Aorii(vi) = {ri(z)}. If no such z exists (Le. if each label in X is assigned to a vertex already

on 2k edges), then define = O.

Tb see that G has the desired properties, assume that X = L (the case of I = R is
symmetric). Define Tri, {11 E V : f(v) E L}, Vat = {v E Tr : f(v) E M}, and VR = v E
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V : f(v) E R}. Clearly VL, Vitt, and VA partition V. Note that each edge in G has exactly

one of its vertices in VL. We want to show that there exists an edge connecting a vertex in VL

with a vertex in VR. Consider the point at which the last remaining label in L was assigned

to some vertex. At this time there was still at least one unused label in R (recall that we are

assumhig that L was the first of L and R to have a of its labels used). Note that if the number

of possible edges incident to vertices in VL is greater than the number of unused labels in M,

then the as yet unlabeled vertices in VA will eventually be connected to vertices in VL. Thus

the only way that an edge between vertices in VL and VA can be avoided is if the number of

unused labels in M exceeds the inimber of possible edges incident to vertices in V. Since G is

to have bandwidth k, its vertices may have degree as large as 2k. Thus the number of possible

edges incident to vertices in VL is 2kIVLI > thn + 2k. The number of unused labels in M

cannot exceed IMI < n 2, which is less than the number of possible edges to vertices in

VL. Thus there must exist some edge between vertices in VL and VA. Hence the bandwidth of

f is at least
(I n I) ( n 1

n 1.2k -I- 2.1) 1/4,12k 1- 21 4- 1) > k + ln
It remains to be shown that G has bandwidth k. Each vertex in VL is adjacent to at most 2k

vertices in VA,/ U VA. There are no edges between vertices in VL, and no edges between vertices

in VM U VA. Thus G consists of ILI connected components, each of which is a star with 2k + 1

or fewer vertices. By Lemmas 6.1.17 and 6.1.18, G has bandwidth k.

As was mentioned above, the proof of the case that a of the labels in R are used before a

of the labels in L is symmetric, and hence omitted. CI

Note that the difference between the result achievable by the algorithm OLBW in Theo-

rem 6.1.4 and this lower bound is only about 2143ihn, which is less than fi. Thus the algorithm

1LBW achieves near-optimal performance on all graphs except those with very small band-

width. For example, if G has bandwidth k = for some constant c, then OLBW outputs a

function whose bandwidth is only an additive constant greater than the lower bound.

6.1.4 Other Onlhie Protocols

We wish to consider other possible protocols for online algorithms. In the protocol defined in

Section 8.1.1, which we will hencdorth refer to as Protocol 1, the information that the online
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algorithm was given for each vertex was limited to a list of the vertices in its adjacency list that

it had already labeled. We define two new online protocols, both of which permit an algorithm

to see more of the graph before producing its output than is allowed under Protocol 1. We

then prove lower bounds on the bandwidths of the functions constructed by any algorithms

operating according to these protocols.

One logical extension to the first protocol is to permit the algorithm to see the entire

adjacency list of the current vertex, rather than just the restricted aojacency list. Any Protocol

1 algorithm, such as OLBW, can be readily adapted to operate according to this new protocol

(Protocol 2) with no loss in its power; it is possible, however, that thereare Protocol 2 algorithms

that perform better than any P.otocol 1 algorithm. This is suggested by the observation that

the proof of the bound on the performance of any Protocol 1 algorithm given in Theorem 6.1.16

does not apply to this new protocol.

Definition 6.1.19 An algorithm A is a Protocol 2 online bandwidth algorithm if its in-

put/output behavior is as follows. Initially A is given as input (for some graph G) the number

of vertices n and the bandwidth k. Then, for some ordering of the vertices v1, v2 , vn, A is

presented the adjacency lists of the vertices in that order. After the list for vi is seen, A must

output the value of f(v) before it is shown Adj(vi+1). The decision made by A as to the value

of f(v) is irrevocable. Wizen all of the adjacency lists have been seen by A, it must have defined

the values of f such tha f is a bandwidth function for G.

Definition 6.1.20 A Protocol 2 online bandwidth algorithm A is a Protocol 2 online tn-

bandwidth algorithm if, for any n and h, for any graph G with n vertices and ban :width

k, and for any ordering of the vertices of G, the function f defined by A is an rn-bandwidth

function.

Note that this type afprotocol might also be adapted to other online graph problems, such

as graph coloring.

Theorem 8.1.21 For any n and k, and for any Protocol 2 online bandwidth algorithm A,

there exists a graph G with n vertices and bandwidth k such that the function f output by A

has bandwidth at least i*n I . Thus there is no Protocol 2 online eVn *bandwidth

algorithm.
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Thus for large k the lower bound is only about one quarter the size of the bound obtained

for Protocol 1 algorithms.

Proofi Given n, k, and A satisfying the hypothesis, we define a graph G with the pi operties

described.

We define G by descrioing the adjacency lists of its vertices. Let vi: vat, ty be the

vertices of G in the order in which their adjacency lists are shown to A. As in the proof of

Theorem 6.1.16, we partition the set of labels, {1,2 ..., n}, into three sets. Define

L = {1, 2, , [al +2},

iti={[1-4-
3' nil + [3-12i1nj 2}

Hfr.2k 1 ni n}2k 1
and

Let a = Ninj.
The adjacency lists given as input to A are as follows. Let vi be the current vertex. If A

has not yet used any of the labels in L, or if A has not yet used any of the labels in R, then

Adj(va) = {vt}, where t is minimal such that t > a and the number of edges seen so far that are

incident to VI is less than 2k 1 (it will be shown below that such t < n exists). The other case,

in which A has already used labels from both L and R, is handled as follows. Let vi and v,. be

the first vertices to be assigned labels in L and R, respectively. Assume that 1 < r; the proof

in the other case is exactly analogous. We must define Acfi(vi) for each i > max{1, r} = r. For

some a, b ?. a, Adj(vi) = {I} and Adj(v,.) = {vz,}. Define AC%) = Ado(vb) = {v}, and

Add(v.) = {v, vb}. (We can do this since a, b, and n are at least s, which will be shown below

to be greater than r, and thus this won't contradict any adjacency lists defined earlier.) For

all j > r such that j is not equal to a, b, or n, define Azii(vj) to be consistent with the edges

already seen (no new edges are added).

To see that the G is well-defined, we must show that each adjacency list was defined only

once. First, we show that r < a. The largest that 1 can be is IMI + IRI + 1. Similarly,

r IMI + ILI +1. since ILI = 1E4 we set

r 1M1 + ILI + 1 =
2k 1 I

2k
12ki

1 <
(6.3)

2k
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We must also show that v,1 was not put into the adjacency list of sny vertex other than v,

and vb; i.e. we must show that t is always less than n. Since t is defined only for vertices in

{ttu yr}, it is sufficient to demonstrate that there are enough vertices in {14914+19

tohsveedgestor different vectices. Each vertex in fv v...11 is on at most 2k - 1 edges

incident to vertices in {vi, v2, ..., v,.}, so the number of different vertices that can have edges

incident to vertices in fv v.4.1, ..., v,,,_11 is

2k - 1Rv v.4.11. vis-1}I(2k = (71- s)(2k - 1) > -Tr: >
by (6.3). Thus t < n, so G is well-defined.

Note that (vj, v., v., v, v,.) is a path of length four fromvi to ii,. Since f (v,)- f (v)

at !east one of f(v,.) f(vb), f(vb) - f(v.), f(v) f(v.), and f(v.) - f(vi) must be Ail or

greater. Thns tYi bandwidth of f is at least

+ 1 n ILI - j/11 + 1 n - 2(fw + 3) + 1 k 1 5
4 4

= ra
4k 4

Finally, we show that G has bandwidth k. Each vertex in {v,, - 's a 711)} S

the center of a star with no more than 2k vertices. Each of these connected components has

bandwidth at most k, by Lemma 6.1.18. The remaining component of G resembles two stars,

centered at v4 and vb, except that v, and vb are both adjacent to vn. Let m4 be the number

of other vertices (in addition to v) adjacent to v., and mb be the number of other vertices (in

addition to v.) adjacent to vb. Both tn4 and mb are less than or equal to 2k - 1.

We define a k-bandwidth ftmetion f for this component as follows. Let f(v.) =

and let f assign to the other m ve.Ptices (aside from v.) that are adjacent to v4 the other labels

that are lest than or equal to tn. +1. Set f(on) = Ma + 2. Finally, let f(vb) = ma + rivil+ 2,
and let f assign to the other mb vertites (aside from v.) that are adjacent to vb the remain-

ing labels ras + 31 711,3 + 41. Ona + rmit11 +1,ma+r-val+3,.../ms+mb+ 3. Since f is

a k-bandwidth function for this connected component, G has bandwidth k, by Lemma 6.1.17. 0

A third definition of an online protocol is to allow the algorithm to see the suns information

as in Protocol 2, but permit the algorithm to choose wbich vertex it wants to label next, rather
than allow an adversary to make the decision. Clearly a ly Protocol 2 algorithm can be readily

adapted to perform according to this protocol (Protocol 3) with no loss in its power. Since the
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above proof of the Protocol 2 performance bound does not work for Protocol 3 algorithms, it

is possible that there are more powerful algorithms that operate under the new protocol.

Definition 6.1.22 An algorithm A is a Protocol 3 online bandwidth algorithm if its in-

put/output behavior is as follows. Initially A 8 given as input (for some gruph G) the number

of vertices n and the bandwidth k. A then selects a vertex v and is shown Adj(v). After the

list for v is seen, A outputs the value of f(v). The decision made by A as to the value of

f(v) is irrevocable. Then A selects a new vertex v, and the process is repeated. Men all of

the adjacency lists have been seen by A, it must have defined the values of f such tha t f is a

bandwidth function for G.

Definition 8.1.23 A Protocol 3 online bandwidth algorithm A is a Protocol 3 online m-

bandwidth algorithm if, for any n and k, for any graph G with n vertices and bandwidth

k, and for any ordering of the vertices of G, the function f defined by A is an rn-bandwidth

function.

Like Protocols 1 and 2, this protocol can also be adapted to other graph problems.

Theorem 8.1.24 For any k > 1, for any e > 0, and for any Protocol 3 online bandwidth

algorithm A, there exist n and a graph G with n vertices and bandwidth k such that the function

f output by A has bandwidth greater than (2 e)k . Thus, for any e > 0, there is no Protocol 3

online (2 e)k -bandwidth algorithm.

Proofi Given k, e, and A satisfying the hypothesis, we will define two graphs, G1 and G2.

G will be either G1 or G21 &Pending on the label A gives to the first vertex it sees. G2 and G2

will be shown to have the advertised properties.

Choose n to be an odd integer such that n > (max{4, + 2})k. Note that this implies that

2k < n 2k. Without loss of generality, let v1 be the first vertex that A selects. A is shown

the adjacency fiat A41(v1) = fvuvii...,vvi+i), and mat then define APO.

Suppose that 2k < f(vi) < n 2k. We then set G = Gil where GI is defined by the

following adjacency lists. Par = 2,3,...,2k + 1, let

Adi(vi)=
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For i = 2k + 2,2k + 3, ..., n, let

MAW) 2r vih+11 '0 Vi+19 vi+21 Vii+k} r {v2k+211.111+3,.. tAn}.

All subsequent responses to A are then made according to these adjacency lists.

Note that G1 consists of two sonnected components. The first consists of the subgraph

induced by {el, vb...., v2k4.2}. This subgraph is a star, since there is an edge from th to every

other vertex in this subgraph, and these are the only edges in the subgraph. The remaining

vertices induce the other connected component; in this subgraph each vertex vi has an edge

from every ov,Iter vertex in the sabgraph that has an index between j k and j + k, inclusive.

Due to the nature of this component, we will refer to it as the k-braid.

To see that G1 has bandwidth k, define g2 as follows.

k+1 ifi= 1
MN) = if2 <i<k+1

i ifi>k+2
92 is a k-bandwidth function for G1.

Suppose that f(v1) < 2k er f (v1) > n 2k. We then set G = G2, where G2 is defined as

follows. Order the vertices according to the sequence (recall that n is odd)

1411 tin-2, vis-4, 0411491/1,1)29174, , Vet 30211-1.

There is an edge in G2 between every pair of vertices that are within k positions of each other

in this sequence. Note that G3 has bandwidth k, since we can define a k-bandwidth function

g2 by setting g(v) equal to tv's position in the above sequence. AU responses to A are made

according to this definition of G2. Note that Adj(v2) as defined earlier is consistent with G3.

It remains to be shown that the graphs G1 anc` G2 force f to have a bandwidth greater
than (2 6)k .

CASS 1: 2k < f(v) < 2k, so G = 01. Once again, we partition the set of labels
{1,2 n} into three subsets. Let M be the set containing the smallest continuous sequence

of labels that includes each of f(v1), Avs),...,f(esh+1). Define L to be the set ef labels less
than the smallest label in M, and R to be the set of labels greater than the largest label in

M. Thus If little = mluffiet), Ayr), t f(v2h+1)} and big .74 lual{f(eibf(es)t. f(erk+1)),
then L = {1,2, . . little 1}, M = {little, little + 1, . . . big}, and R = {big + 1, big + 2, . . . n}.
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CASB 1-A: At least one of L and R is equal to 0. Assume that L = 0. (The proof of the

other case is analogous.) By the definitions of 111 and G1, there is some i < 2k + 1 such that vi

is adjacent to vi and f(vi) = 1. Since f(va) > 2k, the bandwidth of f is at least 2k.

CASE 1-B: L 0 and R 0. If there exist vertices e and y with f(z) E L and f(y) E R

and such that there is an edg'e (0,y), then the bandwidth of f is at least kill + 1 > 2k + 2.

Assume no such vertices exist.

Define VL, VM, and YR to be the sets of vertices with labels in,L, Ad, and R, respectively.

Lenuna 6.1.25 There are at least k vertices not in VL that are adjacent to vertices in VL.

There are at least k vertices not in VA that are adjacent to vertices in YR.

Proofi We prove the result for VL; the proof for YR is similar. By the definitions of L and

R, ail of tile vertices in VL and VR are in the k-braid. aor i = 1,2,..., ILI, define to be the

ith-lowest indexed vertex in VL; thus 11 <13 < < ljj. Similarly, let be the jth-lowest

indexed vertex in VR, for j = 1,2, ..., IRI; hence ri < r2 < < rIRI. Think of the k-braid as

being a chain of vertices with V2k+2 on the left end of the chain and v on the right end, with

every vertex having an edge to each vertex within distance k of it. We will find a lower bound

on the total number of distinct vertices in the k-braid that have edges to vertices in VL. There

are four cases to consider.

1. Suppose that h < ?I and ri,RI > Thus vh and v,. are the leftmost and rightmost

vertices, respectively, in the k-braid that are in VL u YR. Note that by the assumption

above there are no edges between vertices in VL and Trib so <nk-1. The vertex
vh is adjacent to at least k vertices. If 13 < 11 k, then vh is adjacent to at least two

vertices thai are not adjacent to oh: vh itself and vh4.b. If 13 > h + k, then vh is adjacent

to at least k vertices that are not adjacent to vh: each of 143+2 042+3, 0430s. For
each i = 3,4, ILI the vertex vi4 is adjacent to at least one vertex (vii+k) that none of

oh, vh, is adjacent to (since lj < n k 1 we don't encounter the problem of

running into the vertices at the right end of the k-braid that have degree less than 2k).

Since by hypothesis k > 2, there are at least k + 2 + ILI 2 = ILI + k vertices adjacent

to vertices in L.
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2. Suppose that ri < 11 and 1.1zi > rja4. Now v,1 and v1 are the leftmost and rightmost

vertices in the k-braid that are in VL U VR. We prove the same bound as in Part 1 by au

analogous proof.

Since there are no edges betweet vertices in VL and VR, note that l > k + 1. The vertex

slim is adjacent to at least k vertices. If - k, then vim, is adjacent to
at least two vertices that are not adjacent to vim: vri21 itself and vitzl_l_k. If 11z,1_1 <

IL + k, then t:/1z1_1 is adjacent to at least k vertices that are not adjacent to s; each

of 1411,1_1-it -2, .1 Vitz+.1-k. For each i = ILI - 2, ILI - 3,...,1 the vertex tn1 is

adjacent to at least one vertex (vh_b) that none of vimi, vh+1 is adjacent to

(since i1 > k+1 we don't encounter the problem of running into the vertices at the left end

of the k-braid that have degree less than 2k). Thus there are at least k+2+ ILI -2 = IL I + k

vertices adjacent to vertf.ces IU VL.

3. Suppose that 11 < r1 and lr& > lip so both the leftmost and rightmost vertices in VyU VR

are in VL. Let r be the rightmost vertex in VA, and let V1 and VL, be the sets of vertices

in VL to the left and right, respectivily, of r. An argument similar to the one given in

part 1 above shows that there are at least !nil k vertices adjacent to vertices in

Since the vertex r E VR lies between the vertices of VL, and V12, and since there are

no edges between vertices in VL and Vit, there are no vertices adjacent to vertices in

both VL, and na. An argument similar to the one given in part 2 above shows that

there are at least IVLII + k vertices adjacent to vertices in VL,. Thus there are at least

Ind +k+IVL,I+k=ILI+ 2k vertices adjacent to vertices in VL.

4. Suppose that tit < 11 and rpti > 11LI. Thus the leftmost and rightmost vertices in VLUVR

are in VR. There are no edges between vertices in VL and VA, so la > k + and <

n k 1. Thevertexvi1 is adjacent to at least 2k vectices. For each i = 2,3, ..., ILI
the vertex v is adjacent to at least one vertex (vhb) that none of vh, vh,..., vh_, is
adjacent to (since 111,1 n - k 1 we don't encounter the problem of running into the

vertices at the right end of the k-braid that have degree less than 2k). Thus there are at
leut 2k + ILI - 1 vertices adjacent to vertices in IS.

Thns there are always at least IP k (distinct) vertices that are adjacent to vertices in VL

At least k of these are not in VL, proving the lemma. A similar argument shows the same result
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for VA. a

Vm contains 2k + 1 vertices not in the k-braid. Since there are no edges between vertices in

Vi and Vat all of the k or more vertices not in ir,, that are adjacent to vertices in VL, and all i
of the k or more vertices not in VR that are adjacent to vertices in VA, must be in Vm.

Suppose that there is no vertex in Vm that is adjacent to vertices in both VL and YR. Then I
the size of Vm, and hence M, is at least 4k + 1. But by the definition of M, if m1 and m2

are the vertices in Vm with the =glen and largest, respectively, labels from M , then both I
rn1 and m2 are in the star. Thus there is a path of length two or less from Int to m2, so

f(1712) f(mi) > # = 2k. Thus the bandwidth of f is at least 2k. I
Alternatively, suppose that there are /a > 0 vertices in Vm that we adjacent to vertices in

both VL and VR ("shared" vertices). Adjusting for the shared vertices, we get I
Ind> 2k+1+2kh=4k+1 h. I

But at least one of the h shared vertices must have a label at least away from the average

value of the labels in M. Thus this vertex has a label at least ail--+1 +hji. away from the label

of some vertex in VL u VR. Hence the bandwidth of f is at least

JM)+ 1 h 1 4k+1h+1 h-1 1
= +&av

2 2 2 2 2'

CASE 2: f(th) < 2k or 1(v0 > n 2k, so G = Gg. We demonstrate a lower bound on the

bandwidth of f for the case when f(v2) < 2k. The other case is symmetric. Since n > + 2)k,

< 1. Choose an integer d such that < d .a. There are 2dk vertices with path

length d or less from v1 (not including v1 itself). Thus at least one such vertex u must have a

label of 2dk or greater. Since f(v1) < 2k, there is a path of length d or less from vi to u, and

f(u) f(v2) 2dk 2k. Thus the bandwidth of f is at least

2dk 2k 2k 2
= 2k

This concludes the proof of Theorem 6.1.24. 0



6.1.5 Discussion

No algorithm that operates according to Protocol 1 or 2 will always output a function with

bandwidth less than an appreciable fraction of n. Because of the weaker lower bound for

Protocol 3 algorithms, it is possible that good algorithms may exist for this protocol. No such

algorithm has yet been fotmd, however.

There are several areas ripe for figure research. The performance bounds for all three

protocols could be tightened. In particular, the best algorithm known under Protocols 2 and 3

is OLBW. It seems likely that there are more powerful algorithms that are specifically designed

to exploit the additional information that is available under these protocols. Also, the algorithm

OLBW requires only modest computational resources. Algorithms that take better advantage

of the =limited time and space permitted by all three of these protocols might yield better

results. It would also be desirable to find good algorithms that don't need to know the actual

graph bandwidth at the outset.

6.2 Online Algorithms for Vertex Subset Problems

The problems that we consider next are a special class of vertex labeling problems that we call

vertex subset problems. In these problems the objective is to construct a subset of the vertex

set of G that satisfies certain constraints. Depending on the particular -.lem, the goal is for

this subset to be either as large or as small as possible, subject to the constraints. Each vertex

is either put into the set or kept out of it; thus the only labels to be assigned to the vertices

are IN and OUT.

The three online protocols defined for the bandwidth problem are readily adapted to the

case of vertex subset problems. Let G = (V, E) be a simple finite undirected graph with vertex

set V and edge set B. A vertex subset problem P for G consists of a constraint function

g 2v -9 {CI, 1} and a bit indicating whether the goal is to construct a maximum- or minimum-

sise subset of V. A solstion to the problem P is a subset V' of such that g(IP) = 1.
The cardinality of r, al,ong with the indicator as to whether large or small sets are desirable,

determines how good a solution V' is.

For any vertex subset problem /3 we make the following definitions.
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Definition 6.2.1 A Protocol 1 algorithm for P is any algorithm A with input/output behavior

as follows. Let G = (V,E) be any simple finite undirected graph, and let V1, v2..., v be any

ordering of the vertices in V. At each stage s = 1,2....,,n, A behaves as follows:

1. A is shown the restricted adjacency list Adj,(v,) of v..

2. A assigns to the vertex v, either the label IN or the label OUT.

Let V' C V be the set of vertices assigned the label III T by A. Then V' is a solution of P .

Definition 6.2.7 A Protocol 2 algorithm for P is any algorithm A with input/output behavior

as follows. Let G = (V,E) be any simple finite undirected graph, and let v be any

ordering of the vertices in V . At each stage a = 1, 2, ..., n, A behaves as follows:

1. A is shown the adjacency list Adj(v,) of v..

2. A assigns to the vertez v, either the label IN or the label OUT.

Let V' C V be the set of vertices assigned the label IN by A. Then V' is a solution of P.

Definition 0.2.3 A Protocol 3 algorithm for P is any algorithm A with input/output behavior

as follows. Let G = (V, E) be any simple finite undirected graph. At each stage s = 1, 2, . n,

A behaves as follows:

1. A selects a vertex v E V that it has not yet labeled.

2. A is shown the adjacency list Adj(v) of v.

2. A assigns to the vertex v either the label IN or the label OUT.

Let V' C V be the set of vertices assigned the label IN by A. Then V' is a aolution of P.

As was the case for the bandwidth problem, a Protocol 1 algorithm must assign a label to

v1 having seen only the adjacency list for v, restricted to those vertices with index less than a

(i.e., those already labeled). A Protocol 2 algorithm is permitted to see all of the edges incident

to v1 before assigning a label to v and a Protocol 3 algorithm is allowed, in addition, to choose

the order in which it labels the vertices. All of this is exactly analogous to the definitions for

the graph bandwidth problem.
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8.2.1 The Online Independent Set Problem

The first vertex subset problem that we consider is the problem of finding a large independent

set of a graph.

Definition 8.2.4 For any graph G = i;), a subset V' of V is an independent set of G if

there are no edges between vertices in V'.

The genital problem of finding the maximum-size independent set ofa graph has been shown

to be NP-complete [28, 43]. Here we ars interested in online algorithms to find large, although

not necessarily maxinnmi-sise, independent sets. Clearly this is a vertex subset problem; the

goal is to construct a large subset V' of V, subject to the constraint that none of the vertices

in V' are adjacent. (Thus the constraint function g maps V' to 1 if there are no edges between

vertices in V', and 0 otherwise.)

Iz the remainder of this subsection we use k to denote the size of the maximum-size inde-

pendent set of a graph and n to denote the number of vertices in the graph.

Protocol 1 algorithms are not powerful enough to find large independent sets. As the

following theorem shows, algorithms operating according to this protocol cannot be guaranteed

to do better than even the most naive algcrithni.

Theorem 8.2.5 There is no Protocol 2 independent set algorithm that, for any graph G , always

outputs an independent set of site greater than ;h. k.

Proofi The result is easily proved by defining, for any Protocol 1 algorithm A, a graph

G with n vertices that forces A to output a singleton set. Suppose A gives vl the label IN.

Then define G to be the n-vertex graph in which there is an edge from v1 to every other edge

in the graph. There are no other edges. Thus {vs,vs, ..., v.} is an independent set of size
n 1. Since A cannot assign the label IN to any vertices other than vi without violating the

constraint function, the result holds.

Suppose that A assigns v1 the label OUT. Until A has assigned some vertex the label TN,

let all of the restricte0 adjacency lists that it sees be empty. Let vi be the first vatex assigned

the label IN by A. Then define G to be the wvertex graph with an edge from vi to each of

va+2, ..., vs. Thus A cannot assign the label IN to any other vertices; since V {vi} is an
independent set, the result follows. (Note that if A never assigns the label IN to any vertex,
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the set it outputs is empty and V itself is an independent set.) 0

Since an algorithm that just assigns the first vertex it sees to the independent set is guaran-

teed a set of size at least 1 > this bound makes it clear that Protocol 1 algorithms are too

restricted to offer satisfactory performance guarantees for the independent set problem. The

problem Is more interesting when we consider algorithms that operate under Protocols 2 and

3.

Theorem 8.2.8 There is no Protocol 2 independent set algorithm that, for any graph G, always

outputs an independent set of size at least

Proofi Let- n > 4 be any perfect square. Rif any independent set algorithm A that operates

under Protocol 2, we define an n-vertex graph G = (V, E) containing an independent set of size

k for which A outputs an independent set of cardinality less than 1_2k.

Define V=UuV1 uV2u ...0 Vvg, where

U = { u3, . . . , uo-}

and

Vli = {149 It! v_1}

for each i = 1, 2, ... , A/g. The first vertices that A will be shown are those in U. For each

uEU,Aistoldthatthelce5adjacenttoujareezaCtlythOseinVs. A then gives ui either

the label IN or OUT. Let ITi and rioug be the sets of vertices in U to which A has assigned the

labels IN and OUT, respectively. At this point we define the rest of the edges in E.

For each i and 5 such that u,uj E U, there is an edge between each pair of vertices in

Vi. Thus the set

eum
induces a complete subgraph of G with Wadi(Nri 1) vertices. We denote this complete

subSr&Ph bY K.

For each i such that ui E there are no edges between any pair of vertices in Vi, nor are

there edges to any vertices in any other set V5.

Note that each ni E gnis has already been labeled OUT by A. Furthermore, since K

is a complete subgraph, at most one vertex in K can be labeled IN, by the definition of an
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independent set. An each i such that ui e Um, none of the vertdces in Vi can be assigned the

label IN, since they are each adjacent to 14, which has already been labeled IN. Thus A can

assign at most Win! + 1 vertices of V the label IN. Let kA be the size of the independent set

that A will output for G. Then ka < 1170,1 + 1.

The set

is an independent set for G of cardinality k = IUuti + 1). Thus

k Woud +
kA 1

Since Wand = Iffi),

+ 1)
kA +

+ An!

And + 21E4,11

+ 1
21f.41

v Ant + 1
> 2.

Thus kA < 7t7i.

A slightly weaker bound applies to algorithms that operate under Protocol 3.

Theorem 6.2.7 There is no Protocol 3 independent set algorithm that, for any graph G, always

outputs an independent set of size at least *k, where n is the number of vertices in G and k

is the size of the tnazimum independent set in G.

Proof Let c be a positive integer. Given a Protocol 3 algorithm A and the valne c we

define a graph G for which A outputs an independent set of cardinality less than *k, where

n is the number of vertices G and k is the sise of the largisst independemt set in G. We

can define such a graph with an arbitrarily large number of vertices by choosing c arbitrarily

large. Alternatively, we can construct au arbitrarily large graph with this property by using

the technique described below to define a subirraph with the property. The procedure can then



be iterated as many times as necessary, using different vertices eac,h time, to produce a graph

as large as desired.

Let kA denote the sise of the independent set output by A. We first define G and prove

that lit < 3.. The graph G is defined according to the order in which A chooses to label the

vertices and the labels A assigns to thcse vertices. Let vi be the first vertex that A selects to

label. Let its adjacency list consist of c new vertices. (In this proof not all of the vertices will

be given explicit names. A "new" vertex is one that A has not yet queried, and that has not

appeared in any adjacency list already shown to A.) If A assigns the label IN to Vi, then the

definition of G is complete; it is the (c + *vertex graph defined by the adjacency list of v1. A

cannot assign the label IN to any of the vertices adjacent to v1, so kA = 1. Since the size k of

the largest independent set for G is dearly c, = I.
If A gives v1 the label OUT, them we must describe how subsequent queries are handled,

and thus how G is defined. For i = 2,3, ... , 2c 1, if A has assigned the label OUT to each of

the first i 1 vertices it has queried, then the ith query is responded to as follows. Let ; denote

the vertex that A chooses as the ith vertex to lab& The adjacency list for vi consists of 24 1

new vertices, as well as any other vertices that must be included (i.e. any previously-labeled

vertices in whose adjacency list ; appeared). If A assigns vi the label OUT, then go on to the

next query. If A gives ; the label IN, then we complete the definition of G by adding a new

vertex w and a number of new edges. Let S be the set of vertices consisting of w and eadi

vertex that has already appeared in some adjacency list, has not been queried (labeled), and is

not adjacent to in. Add edges between every pair of vertices in S, so that S induces a complete

subgraph of G. This completes the definition of G. All reap awes to snbseqnent queries by

A are, of course, based on this definition of G. Since S induces a complete subgraph, A can

assign at most one vertex in S the label IN. Since vi is the only vertex A has already labeled

IN, kA 5 2. However, the set consisting of w and the 2c 1 new vertices that appeared in the

adjacency list for ; forms an independent set for G, so b = 2c. Thus !LA < = 1.

It Zeralliiii to consider the case in which A assigns the label OUT to each of the first 2c 1

vertices that it queries. Suppose this is the case, and that thus far G contains the vertices and

edges defined in the responses to the first 2c 1 queries of A. The remainder of G is defined as

follows. One new vertex, z, is added. Let K be the set of vertices consisting of z and all vertices

in G that were not among the first 2c I queried and labeled by A. (Thus the only vertices
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in G that are not in K are the first 2c 1 vertices that A labeled.) Add an edge between each

pair of vertices in K, so that K induces a complete sabgraph of G. Thus A can assign the label

IN to at most one vertex in K. Since A has already assigned the 2c 1 vertices not in K the
label OUT, kA =1.

Let Q be the set of the first 2c 1 vertices queried by A. In order to construct a lower

bound on k, first note that the subgreph induced by Q is a forest. This can be seen as follows.

Ikr each j = 1,2, ...2c 1, let vj Q denote the jth vertex queried by A. Suppose there is

edge between some vh E Q and vi, with h < j. For auy i between h and j, at the time of
the ith query tti is no longer a new vertex. Since vj has not previously been queried, there is

no way that it could be in the adjacency list of vi. Thus vj is adjacent to at most one vertex

vh with h < j. Hence there are no cycles in the subgraph of G induced by Q, so the subgraph
is a forest.

Lemma 6.2.3 Any forest F with m vertices has an independent set of size at least j.
Proof of Lemma: Consider any connected component C of F. Choose an arbitrary vertex
in C as the root, and express C as a rooted tree T. Define EVEN to be the set of vertices
in C at even levels of T, and ODD to be the set of vertices in C at odd levels of T. Take

whichever of these two sets is larger, and add its contents to the independent set. Repeat for

each connected component of F. Clearly the result is an independent set that contains at least

half of the vertices in each component of F. This proves the lemma. 0

Thus there is an independent set for the subgraph ofG induced by Q of size at least 41. if

we add the vertex a: to this set we get an independent set for 3 of size 41 + 1, so

IQ 2c 1 1

Thus tit < 1.

It remains only to express the upper bound on ht in terms of n and k. We first establishan
upper bound on n, the number of vertices in G. There are c +1 vertices introduced in response

to the first query. In each of the (at most) 2c 2 other queries needed before G is completely

defined, 2c 1 new vertices are introduced in the adjacency list. In addition, the queried vertex
itself could be a new vertex. Finally, the vertex as (or w) is added to G. Thus an upper bound
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on the number d vertices in G is

n S (e+1)+(2c-2)(2e-1+1)+1
sc+ 2

Therefore c > #, so I < Consequently, big. < *, so kA < *k.

There is no known polynomial-time algorithm that is guaranteed to always output an in-

dependent set of size within a constant factor of optimal. In fact, it has been shown that the

existence of any such algorithm would imply the existence of a polynomial-time algorithm that

always outputs an independent set of size within a factce of e times the optimal, far any e >

[28]. This provides strong evidence that no constant factor polynomial-time approximation

algorithm exists. The results of this section show that, even if the restriction on rtmning time

is removed, no good approximation algorithm exists that relies exclusively on local heuristics.

6.2.2 The Online Vertex Cover Problem

Another vertex subset problem is the problem of finding a small vertex cover of a graph.

Definition 6.2.9 For any graph G = (V, B), a subset V' of V is a vertex cover for G if, for

every edge (u, ty) in /3, at least one of u and v ie In V'.

The general problem of finding the minimum-size vertex cover of a graph has been shown

to be NP-complete [28, 431. We are interested in online algorithms to find small, although not

necessarily minhnum-size, vertex covers. The vertex cover problem can be seen to be a vertex

subset problem as follows. The object is to construct a smgl subset V' of V, subject to the

constraint that each edge in B is incident to at least one vertex in V'. (Thus the constraint

function g maps V' to 1 if this condition is met.)

In the remainder of this subsection k is used to denote the cardinality of the minisnum-sise

vertex cover of a graph G.

As was the case for the independent set problem, the only performance guarantees for

Protocol 1 vertex cover algorithms are extremely weak. It can easily be shown that no Protocol 1
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Algorithm VC

L Initialise the set PUT-IN-COVER = 0.

2. For each vertex v to be labeled do:

(1) If v E PUT-IN-COVER then assign v tin label IN.

(ii) Eke, ff there is some w Agu(v) such that w has not
yet been labeled and w PUT-IN-COVER then assign
w the label IN aad rut w into PUT-IN-COVER.

(iii) Else assign v the label OUT.

Figure 6.2: Protocol 2 algorithm to find vertex cover of size at most 2k

algorithm for the vertex cover problem always outputs a cover of size smaller than (n 1)k.

The proof of this is omitted.

Much better results can be obtained when an algorithm is allowed to operate under Proto-

col 2. The following theorem gives an algorithm that always outputs a cover of cardinality at

most twice the size of the optimal (smallest) cover.

Theorem 8.2.10 There is a Protocol 2 (and hence Protocol 3 as well) vertex cover algorithm

that for any graph G always outputs a vertez cover of size at most 2k.

Proofi Given a graph G = (V, E) . The Protocol 2 algorithm VC (Figure 6.2) implements the

well-known approximation algorithm that constructs a vertex cover consisting of the vertices

incident to edges in a maxima matching of G [28].

Let M C E be the set of edges (v, w) such that v is assigned the label IN and w is put into

PUT-IN-COVER in tbe same execution of Step 2(i1) of the algorithm VC. We show that M is

a maximal matching for G.

Since all vertices in PUT-IN-COVER are labeled IN, Step 2(U) of VC is equivalent to

assignhIg the label IN to both v and w. Since v and w are adjacent, this Is tantamount to

adding the edge (v, w) to M. Once such a Step 2(11) has been executed, neither v nor to will

satisfy the conditions of that clause in any future iteration. Thus neither will be incident to

any edge added in a later iteration. Consequently no vertex lies on more than one edge in M,

so M is a matching.
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T b s e e t h a t M is m a x i m a l, s u p p o s e that (r, s) i s a n e d g e n o t in M such that neither r nor

a Is incident to any edge in M. Without loss of generality, assume that r was labeled before a.

Consider the iteration of Step 2 in which r was labeled. At that time, since neither r nor s is

incident to any edge in M, neither would have been in PUT-IN-COVER. Thus the condition of

Step 2(1) would not have been satisfied, but the condition of Step 2(U) would have been. Thus

either both r and s would have ham given the label IN, and (r,$) would be in M, or else same

other edge (r, t) would be added to M. This contradicts our assumption, so no such edge (r, s)

can exist. Hence M is a maximal matching.

Clearly the vertices that are assigned the label IN are exactly those that are incident to

an edge in the maximal matching M; let Vi be the set of such vertices. Since M is maximal,

there is no edge with boa its vertices in V Ifin, and thu- 14,,, is a vertex cover for G. Since

any vertex cover must include at least one vertex incident to each edge in M, and since no two

edges in M have a vertex in common, k IMI = 41. Thus Ind < 2k. (These properties of

the maximum matching approach to finding approximate solutions to the maximum-size vertex

cover problem appear in [28].) 0

The following result shows that this algorithm is optimal among Protocol 2 algorithms.

Theorem 0.2.11 For any e > 0, there is no Protocol 2 vertez cover algorithm that, for any

graph G, always outputs a vertex cover of size less than (2 e)k.

Proof Given any such e and algorithm A, we construct a graph G for which A outputs

a vertex cover of sise at least (2 e)k. Let m be an integer such that m > 1. Then G will

have either 2m or 3m vertices, depending on the labels that A assigns to the first m vertices

it sees. Thus by selecting m sufficiently large we can construct an arbitrarily large graph with

the desired property.

The first in vertices that A labels are th, u, (in that order). As long as A doesn't

assign the label OUT to an; of these vertices, for each ui A is told that tsi is adjacent to

the vertices Vj, v2, v,. There are thua two cases to =udder either A assigns each of

I uns the label IN, or else A assigns some si the label OUT. We denote the size of the

vertex cover output by A by hA.
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CASE 1: A assigns the label IN to each of 1s1, u2,..., u,. Each ui is adjacent to each of

ei, as mentioned above. The remainder of the graph G is then defined as follows.

We add m more vertices eel, to, to G, and for each i = 1,2, ..., m, there is an edge

tai). For each i, A must assign the label IN to at least one of vi and un. Since A has already

given the label IN to each of Witti2/ Iiinst kA itt least 2m. However, {1110221. 04,1} is

vertex cover for G, so k = ns. Thus /IA > 2k.

CASE 2: A assigns the label OUT to some vertex in {14, u2,..., u,}. Let 1 be such that

ui+2 is the first vertex assigned the label OUT by A. Once :4+2 is assigned the label OUT, no

more edges are added to G, and the definition of G is complete. (The vertices u1+2: , um are

in G but have degree sero.) Thus G is a bipartite graph, where the vertex set V is partitioned

into the two subsets v. {tsi,u2, ...,us} and V,, = v2, v,}. For each i < 1 + 1,
there is an edge from tsi to each vertex in V,. In order to cover the edges incident to 111+2, A

must assign the label IN to each vertex in V,. Since A has already assigned the label INT to

each of th, us, sir, the site k4 of the cover output by A is at least rn + 1. However, the set

Oft, u2, ...,1414,21 is a vertex cover for G of minimum size, so k = 1 + 1. Thus lee > "4. To

complete the analysis, we split this case into the following two subcases.

CASE 2-A: m > 1+ 1, so m > 1 + 2. Thus

k 1 +1 '
CASE 2-s: m = 1+ 1. Thns

Thus > 2 e, so kA > (2 e)k.

The prod of this lower bound does not hold for Protocol 3 algorithms. Thus it is possible

that there are algorithms operating under the third protocol that perform better than the
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Protocol 2 algorithm given above. The following theorem gives a smaller lower bound on the

vertex cover output by any Protocol 3 algorithm.

Theorem 6.2.12 There is no Protocol 3 vertex cover algorithm that, for any graph G, always

outputs a verges cover of size less than ik.

Proofs Let A be my Protocol 3 vertex cover algorithm We give a method to construct

a graph G, with arbitrarily large minimum-size vertex cover k and number of vertices n, such

that A outputs a cover of size at least ik. The graph G consists of a collection of connected

components, each with either 3 or 5 vertices.

Suppose A requests the adjacency list for some vertex v. If the connected component

containing vi has already been defined, then the adjacency list of vi is derived from the definition

of the connected component, and given as input to A. If the connected component containing

IN has not yet been &lined, then A is told that vi is adjacent to the vertices ti and (neither

of which has appeared in any previous adjacency list shown to A). If A then assigns to vi the

label OUT, then the vertices tj, NI and vi induce the entire connected component, which is thus

just the simple path of three vertices (4, *). A must then assign both ti and * the label IN,

so as to cover both edges in the component. Thus A uses two vertices to cover this component,

when it is possible to cover it with the single vertex vi.

On the other hand, suppose that A assigns to 'In the label IN. Then the connected component

is defined to include, in addition to *, and vj, two new vertices ri and si (neither of which

has appeared in any adjacency already shown to A). In addition to the edges already defined,

the component also includes the edges (ri,ti) and (*,si). Thus the connected component is

the simple path of five vertices (r4,4, si), with vi the middle vertex on the path. In order

to cover the edges (ri, 4) and (14, si), A will have to assign the label IN to at least one of ri and

tjandatleastoueofuandaj. Since A has already givm vi the label IN, it will use at least

three vertices to cover the connected component, although it is possible to do so with only two

vertices, and na.

This procedure can be iterated until a graph has been constructed with n and k as large as

desired. For each connected component, A uses at least 4 times the number of vertices as are

necessary to cover the component. This proves the theorem.

122

13:2



0.2.3 The Online Dominating Set Problem

Finally, we consider the problem of finding a small dominating set of a graph.

Definition 0.2.13 For any graph G = (V, B), a subset V' of V is a dominating set of G if,

for every vertex v E V , either v V' or else v is adjacent to some vertex in V' .

The dominating set problem is a vertex subset problem where the goal is to construct a

small subset V' of V, subject to the constraint that each vertex not in leis adjacent to a vertex

in V'. As was the case with the vertex subset problems discussed earlier, the problem of finding

the minimum-size dominating set of a graph is NP-complete [23]. In what follows k is used to

denote the size of the minimum-size dominating set for a graph G.

Once again, it is easy to show that Protocol 1 algorithms can offer only extremely weak

performance guarantees. No Protocol 1 dominating set algorithm always outputs a dominating

set with less than (n 1)k vertices. The proof of this is omitted.

The following theorem establishes a lower bound on the size of the dominating set guaranteed

to be output by any Protocol a algorithm. Since any Protocol 3 algorithm can easily be adjusted

to operate according to Protocol 2, the bound holds for Protocol 2 algorithms as well.

Theorem 6.2.14 There is no Protocol 3 dominating set algorithm that, for any graph G

always outputs a dominating set of size less than (2n)1/3k.

Proof: Let c > 2 be a positive integer. Given a Protocol 3 algorithm A and the value c we

define a graph G for which A outputs a dominating set of cardinality at least (2n)1/3k, where

n is the number of vertices in G. We can define such a graph with an arbitrarily large number

of vertices by choosing c arbitaarily large. Alternatively, we can construct an arbitrarily large

graph with this property by using the technique described below to define a subgraph with

the property. The procedure can then be iterated as many times as necessary, using different

vertices each time, to produce a graph as large as desired.

Let isA denote the Ilse of the dominating set output by A. We first define G and prove that

ht > c. The graph G is defined according to the order in which A chooses to label the vertices

and the labels A assigns to those vertices. Let vi be the first vertex that A selects to labeL

Define its adjacency lion to be U = u2, , If A assigns the label OUT to v1, then the

definition of G is complete; it is the (c + *vertex graph defined by the adjacency list ofel . A
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must assign the label IN to each vertex in U, so kA = c. Since {th} is a dominating set for G,

1st

If A gives vi the label IN, then we must describe how subsequent queries are handled, and

thus how G is defined. ilbr = 2, 3, ...,c 1, if A has assigned the label IN to each of the first

1 vertices it has queried, then the ith query is responded to as follows. Let vi denote the

vertex that A chooses as the ith vertex to label. The atkjacency list for vi consists of ic i + 1

new vertices and all vertices in fi that have not previously been queried, as well as any other

vertices that must be included by virtue of vi having already appeared in their atijacency list

in response to an earlier query. (As in the proof of Theorem 6.2.7, not all of the vertices in this

proof will be given explicit names; a "new" vertex is one that A has not yet queried and that

has not appeared in awl adjacency list already shown to A.) If A assigns vi the label IN then

go on to the next query. If A gives vi the label OUT, then the definition of G is complete, and

al responses to subsequent queries by A are, of course, based on this definition. In this case, A

must assign the label IN to each of the ic i + 1 new vertices added in the ith query. Since A

has already given the first i 1 vertices it queried the label DT, kA > (ic i + 1) 4 (i - 1) = ic.

However, the set containing the first I 1 vertices queried by A and the vertex vi forms a

dominating set for G; hence

We still must consider the case in which A assigas the label IN to each of the first c 1

vertices that it queries. Suppose this is the case, and that thus far G contains the vertices and

edges defined in the responses to the first c 1 queries of A. The remainder of G is defined as

follows. Let u be a vertex in U that has not yet been queried by A; at least one exists, since

U contains c vatices and only c 1 queries have been made. Let to be a new vertex. Add an

edge from u to every =queried vertex in G, including to. Since there is already an edge from is

to each vertex that has already been queried, u is adjacent to every other vertex in the graph.

Thus {ts} is a dominating set for G, so k = 1. Since A has already assigned c 1 vertices the

label DT, and must also assign that label to at least one of u and w, kit > c. Hence fre > c.

It remains only to express the upper bound on frt, in terms of n and k. We first establish an

upper bound on n, the number of vertices in G. There are c + 1 vertices introduced in response

to the first query. For each i = 2,3, ..., c 1, at most ic i + 1 new vertices are introduced in

the adjacency list given in response to the ith query made by A. In addition, for each of these

queries the queried vertex itself could be a new vertex. Finally, the vertex te may be added to
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1

G. Thus an upper bound on the number of vertices M G is

n < (c + + + i + 2)

= 2 +
isms3 is=2

c+ 2+(c et"i 2(c 2)
4=3

= 3c 2 + (c 1) 05:4-c -
3c-2-1- cs-2c2-1-c

c
2

= -
2
1LC3 42 -- 1.

2

Since c > 2, c2 Ic + 1 > 0, so

1 5 qie c <
2 2 2

Hence n < ic3, so c > (2n)1/3. Consequently, be > (27)0; thus kA > (2n)2/3k. 0

0.2.4 Discussion

Interestingly, even though each of these three vertex subset problems is NP-complete, there is

a wide variation among the performance levels that can be achieved by Protocol 2 or 3 online

algorithms for these problems. 143r both the independent set problem and the dominating set

problem, no algorithm that operates according to either Protocol 2 or Protocol 3 will always

output a vertex subset of sise bounded by a constant times the size of the opthnal subset.

Even under Protocol 3, the best possible performance bounds for these problems differ from

the optimal solutions by factors of IA and n113, respectively. In contrast, very good results

can be obtained under both Protocols 2 and 3 for the vertex cover problem. This suggests

that the performance of local heuristics for NP-complete graph problems is quite sensitive to

the particular problem under consideration, even though the oSine decision versions of these

problems are of identical diEculty.

On the other hand, for each of these problems any Protocol 1 algorithm has a similar
(dismal) performance bound.
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Note that most of the results in this chapter are negative, rather than positive, in nature.

Although online algorithms are allowed unlimited time and space, because of the fact that at

each stage in its execution only part of the graph is available to an online algorithm as input,

there is only a limited amount of data for the ggorithm to work with. Thus most known online

algorithms for problems of interest run quite efficiently. Consequently, positive results (i.e.

online algorithms with strong performance guarantees) for these problems might well imply the

existence of polynomial-time approximation algorithms for 10-conwlete problems with similar

strong performance guarantees. Such approximation algorithms have eluded researchers for a

long time; this suggests that finding such online algorithms is not an easy matter.
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7 SUMMARY OF RESULTS

If B. is a PAC-learnable representation class that is strongly polynomially dosed under

exception lists then there exists a randomized polynomial-time (length-based) Occam

algorithm for B.. This result also holds in the case of learning one class in terms of

another class and for polynomial predictability.

If B. is a PAC-learnable representation class that is polynomially dosed under exception

lists then there axists a randomized polynomial-tbne (dimension-based) Occam algorithm

for R.

If F is a PAC-learnable family of Boolean formulas and FF5 is polynomially predictable

then F is es-learnable. Thus for any k E DT, the families of monomials, kCNF formulas,

kDNF formulas, and k-decision-lists are es-learnable.

If B. is a representation class that is polynomially learnable and such that Rat is pre-

dictable then R. Is ss-learnable.

If a representation class B. is polynomially learnable and there is a randomized polynomial-

time hypothesis finder for RB. then B. is ss-leavnable. Thus the class of axis-aligned

rectangles in the Euclidean plane is se-learnable.

If the representation class B. is polynonially learnable from positive examples alone then

R. is ss-learnable.

A family of Boolean formulas F is se-learnable if and only if it is se-learnable. A rep-

resentation class B. over au =parameterized domain is sc-learnable if and only if it is

ss-learnable,

The DFA-predictable classes of languages are exactly the finite classes of regular lan-

guages.

The DPDA-predictable classes of languages are exactly the finite classes of deterministic

context-free languages.
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The 1CM-predictable classes of languages we exactly the finite classes of 1-counter lan-

8usties-

* There is a Protocol 1 online algorithm that always outputs a t3ln+1 bandwidth function

for any n-vertex graph with bandwidth k. No Protocol 1 algorithm always outputs a

4rn-2-bandwidth function. There is no Protocol 2 online k1n-2-bandwidth algorithm.

Bar any e > 0, no Protocol 3 algorithm always outputs a (2 4k-bandwidth function.

There is no Protocol 2 algorithm that, for any n-vertex graph with an independent set of

size k, always outputs an independent set of size at least 43k. No Protocol 3 algorithm

always outputs an independent set of size at least *k.

There is a Protocol 2 online algorithm that, for any graph with a vertex cover of size

k, always outputs a vertex cover of size at most ..k. This is the best possible result for

Protocol 2 algorithms. No Protocol 3 algorithm always outputs a cove: of size less than

ik.

a No Protocol 3 online algorithm always outputs a dominating set of size less than (2n)1/3k

for any n-vertex graph with a dominating set of size k.
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