DOCUNENT RESUME

ED 342 665 SE 052 621

AUTHOR Board, Raymond Acton

TITLE Topirs in Computational Learning Theory and Graph
Algorithms.

INSTITUTION Illinois Univ., Urbana. Dept. of Computer Science.

SPONS AGE'TY National Science Foundation, Washington, D.C.

REPORT NO UIUCDCS-R-90~-1611

PUB DATE Jul S0

CONTRACT NSF~IRI-8B09570

NOTE 147p.; Ph.D. Thesis, University of Illinois.

PUB TYPE Dissertations/Theses - Doctoral Dissertations (041)

EDRS PRICE MF01/PC06 Plus Postage.

DESCRIPTORS sAlgorithms; sComputer Science; Computer Science

Education; Higher Education; sLearning Theories;
sMathematical Models; Mathematics Education; Problem
Solving

IDENTIFIERS *Computational Models; »Graph Theory; Probabilistic
Models

ABSTRACT

This thesis addresses Problems from two areas of
theoretical computer science. The first area is that of computational
learning theory, which is the study of the phenomenon of concept
learning using formal mathematical models. The goal of computational
learning theory is to investigate learning in a rigorous manner
through the use of techniques from theoretical computer science. Much
of the work in this field is in the context of "probably
approximately correct® (PAC) model of learning, which is carried out
in a probabilistic environnent. Of particular interest are the
guestions of determining for which classes of concepts the
PAC-learnirg problem is tractable and discovering efficient learning
algorithres for such classes. The second area from which topics are
drawn is that of online algorithms for graph~theoretic problems. Many
problems in such fields as communications, transportation,
scheduling, and networking can be regduced to that of finding a good
graph algorithm. After an introduction in Chapter 1, some background
information is provided in Chapter 2 on the field of computational
learning theory. In Chapter 3 it is shown that for any concept Class
having a particular closure property, the existence of a gra.l
algorithm implies that the class is PAC-learnable. Chapter 4 defines
a variation on the standard PAC model of learning called
semi-supervised learning, & model which permits the rigorous study of
learning situations where the teacher plays only a limited role.
Chapter 5 deals with the problem of prediction as performed by
deterministic finite automata, counter machines, and deterministic
pushdown automata. Chapter € investigates the power and the
perforrance of online algorithms for a certain class of graph
problems, referred to as vertex labeling problems. (77 references)
(JIK)

ARRRARARRARARRRARARRRARAARNARARARARRARARNAARSARRNARARARAEARAARRAARARARARRKARARKARKARKR

* Reproductions supplied py EDRS are the best that can be made *

* from the original document. o
AR RR R R R RERRAAR AR R AR ARRARARAR R R ARNARRRARARRR AR AR R ARRARRARRARAARNNRNNRALRR

l DEPARTMENT OF COMPUTER SCIENCEL
UNIVERSITY OF ITLLINOIS AT URBANA-CHAMPAIGN
I -
e
1 ©
o\
j
o
I = g
= L ==
M 1L
' REPORT NO. UTUCDCS-R-90-1611 UILU-ENG-90-1750
l TOPICS IN COMPUTATIONAL LEARNING THEORY AND GRAPH ALGORITHMS
i "
L mmmeee RemodAdmBomt LSS
EDUCATIONAL RESOURCES INFORMATION N
l - % 1ra mmij;E'R::ﬂiC)mnroducad » mmm
(.'(m ',;T the person of orgamzation me 1990
[* Minor changes have been made 10 MprOve
' 3 raproduction qualfy
® Ponts of vew of aptons stated in tha doc o TO THE EDUCATION
/s;; rvsmemenamtees BEST OOPY AVAILABLE weommionCenrnena o
P) N

A

Ld

TOPICS IN COMPUTATIONAL LEARNING THEORY AND GRAPH ALGORITHMS

BY
RAYMOND ACTON BOARD

B.S., Massachusetts Institute of Technology, 1979

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of Nllinois at Urbana-Champaign, 1990

DEPARTMENT OF COMPUTER SCIENCE
1304 W. SPRINGFIELD AVENUE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
URBANA, IL 61801

o

©Copyright by
Raymond Acton Board
1980

ABSTRACT

The distribution-independent model of concept learning from examples (“PAC-learning”)
due to Valiant is investigated. It has previously been shown that the existence of an Occam
algorithm for a class of concepts is a sufficient condition for the PAC-learnability of that class.
(An Occam algorithm is a randomized polynomijal-time algorichm that, when given as input
a sample of strings of some unknown concept to be learned, outputs a small description of a
concept that is consistent with the sample.) It is shown here that for any class satisfying the
property of closure under ezception lists, the PAC-learnability of the class implies the existence
of an Occam algorithm for the class. Thus the existence of randomized Occam algorithms
exactly characterizes PAC-learnability for all concept classes with this property. This reveals a
close relationship between between FAC-learning and information compression for a wide range
of interesting classes.

The PAC-learning model is then extended to that of semi-supervised learning (ss-learning),
in which a collection of disjoint concepts is to be simmltaneously learned with only partial
information concerning concept membership available to the learning algorithm. It is shown that
many PAC-learnable concept classes are also ss-learnable. Several sets of sufficient conditions
for a class to be ss-learnable are given. A prediction-based definition of learning multiple
concept classes has been given and shown to be equivalent to ss-learning.

The predictive ability of antomataless powerful than Turing machines is investigated. Mod-
els for prediction by deterministic finite state machines, 1-counter machines, and deterministic
pushdown automata are defined, and the classes of languages that can be predicted by these
types of automata are precisely characterized. In particular, these varieties of automata can
predict exactly the finite classes of regular langnages, the finite classes of 1-counter languages,
and the finite classes of deterministic context-free languages, respectively. In addition, upper
bounds are given for the size of classes that can be predicted by such automata.

Two new online protocols for graph algorithms are defined. Bounds on the performance of
online algorithms for the graph bandwidth, vertex cover, independent set, and dominating set
problems are demonstrated. Various results are proved for algorithms operating according to a
standard online protocol as well as the two new protocols.

To my parents
iv

ACKNOWLEDGEMENTS

First and foremost, I wish to extend my gratitude to my thesis adviser Lenny Pitt for his
encouragement, enthusiasm, and gnidance over the past three and a half years. He has always
been available and eager to help, and has provided a seemingly inexhaustible supply of both
interesting new problems to work on and suggestions for their solutions. I'm sure that in the
future I will point with pride to the fact that I was his first doctoral student.

I would also like to thank the other members of my dissertation committee: Professors
Nachum Dershowitz, Michael Loui, C. L. Liu, and Edward Reingold. In particular, I wish to
acknowledge Michael Loui’s careful reading of a draft of this thesis, as well as his many valuable
and insightful suggestions for its improvement. The diligence and devotion to duty witnessed
by this effort are his hallmarks.

Professors Carl Jockusch, Jr. and Henry Kierstead were responsible for directing me toward
the study of online algorithms. Dana Angluin pointed out errors in an early version of the
work that appears here as Chapter 3, and Manfred Warmuth offered helpful suggestions for the
presentation of the material in that same chapter. Robert Reinke posed the problem addressed
in Chapter 4. I am grateful to all of them.

Finally, I wish to thank the taxpayers of the United States for their generosity, and the
National Science Foundation for steering some of that largesse my way in the form of NSF
grant TRI-8809570.

TABLE OF CONTENTS

INTRODUCTION e e et e e e e ae e 1
1.7 OVETVIEW o & o v v o o v v o o o s s s o o s 18 8 s ot 0 s s o8 s 08 o0 s s oo 1
THE PACMODELOFLEARNING e e 3
OCCAM ALGORITHMS AND PAC-LEARNABILITY e e 11
3.1 Occam Algorithms P e e e e s e e se s e e e 11
32 Exception Listso e e s e e e e 13
3.3 Results for Finite Representation Alphabets 16
3.4 Results for Infinite Representation Alphabets 19
35 DFAsandOccam Algorithmso v ittt i v it e vt o oo 26
3.6 Discussion . . o ¢ - s e o st st s e s s e e s s st e s e s e e e s 29
SEMI-SUPERVISED LEARNING+ ¢t e tv v eonnnsonens 36
4.1 Notationand Definitions v ¢ 0 o ot v o s e s v v e oo 0t o b 0o 38
4.2 Semi-supervised Learningof Monomials 41
4.3 A Sufficient Condition for ss-Learning f e e et et e e e e e 47
4.4 ss-Learning Other BooleanFormulas+ .00 49
4.5 TUnparameterized ss-Learning and the VC-Dimension 50
4.6 Equivalence of Two TypesofLearning0 ou o 57
PREDICTION USING WEAK AUTOMATA¢ccc 0t 62
5.1 A Model for Prediction by Finite State Automata 63
52 AGensral UpperBoundttt vttt ettt e s o ass oo 65
5.3 Languages Predictable by DFAs.o vton e 69
5.4 A Model for Prediction by Deterministic Pushdown Automata 71
5.5 A General Upper Boundfor DPDAs e e s e e e 73
5.6 Languages Predictableby DPDAs f e s s e e e e e 79
5.7 Prediction Using Counter Machines 83
58 Discussion . - . + ¢ s s 0 s s bttt st e a a0 e v e s e s s ase e v 85
ONLINE ALGORITHMS FOR VERTEX LABELING PROBLEMS ... 86
6.1 The Online Graph Bandwidth Problem 88

6.1.1 Notationand Definitions. 89

6.1.2 An Online Algorithm for ﬁnding the Bmdwidth ofaGraph 91

6.1.3 A Lower Bound . .. o s ¢ o s s s s e s m s e s s s as 0 e e 100

6.1.4 Other Online Protocoll e e e e s e e e e . 102

6.1.5 Discussiom . « « o o ¢« ¢ o 0 c b0t bt b s e ettt e s e e 111
6.2 Online Algorithms for Vertex Subset Problems f e e 111

6.2.1 The Online Independent Set Problem 113

8.2.2 The Online VertexCoverProblem 118

6.2.3 The Online Dominating Set Problem 123

624 Discussion.......... Gt e e s e s s s e e e s e st e 125

vi
S

127

129

136
¥

® # 3 ¢ o 3 2 8 & & & & O & & 3 A & O & B & & a2 9 6 U S S B 0 0 0 2 @ A @

7 SUMMARYOFRESULTS

BIBLIOGRAPHY .

OF

\Ul

B

Figure

LIST OF FIGURES

3.1 Occam algorithm derived from learning algorithm L

4.1 Algorithm for ss-learning monomisls

6.1 Online algorithm to find a B(n, k)-bandwidth function
6.2 Protocol 2 algorithm to find vertex cover of size at most 2k

vili

10

oooooooooooooooo

ppppppppppppppppppppppppp

1 INTRODUCTION

This thesis addresses problems from two areas of theoreticai computer science. The first area is
that of computational learning theory, which is the study of the phenomenon of concept learning
using formal mathematical models. Learning is a topic of considerable interest to researchers
in cognitive s;ience and artificial intelligence; the goal uf computational learning theory is
to investigate learning in a rigorous manner through the use of techniques from theoretical
computer science. Much of the work in this field is in the context of the PAC (an acronym
for “probably approximately correct”) model of learning, in which learning is carried out in
a probabilistic environment. Of particular interest are the questions of determining for which
classes of concepts the PAC-learning problem is tractable and discovering efficient learning
algorithms for such classes.

The second area from which topics are drawn is that of online algorithms for graph-theoretic
problems. Graphs are used to represent a wide variety of problems in such fields as commu-
nications, transportation, scheduling, and network analysis. Many problems in science and
engineering can be reduced to that of finding a good graph algorithm. An online algorithm
is one that receives its input in discrete stages, and at each stage must produce an output
based only on the informaticn it has seen thus far. Online algorithms model, in a limited sense,
“real-time” computation, since they must react to their environment as it is being presented to
them. In addition, online algorithms can be used to study how well algorithms are able to per-
form with only partial information about the problem instance, and to what extent additional

computational resources can compensate for incomplete information.

1.1 Overview

The material in this thesis is organised as follows.

Chapter 2 gives some background information on the field of computational learning theory
in general, and the PAC model of learning in particular. Notation and terminology that will
be used in the rest of the dissertation are defined.

11

In Chapter 3 it is shown that for any concept class having a particular closure property,
the existence of an Occam algorichm implies that the class is PAC-learnable. Separate results
are proved for the cases when the alphabet used to describe concepts is finite and infinite.
Combining these with two theorems of Blumer, Ehrenfeucht, Haussler and Warmuth [12, 11]
yields the result that, for a wide range of interesting concept classes, the existence of an Occam
algorithm is equivalent to PAC-learnability. This chapter is based on joint work with Leonard
Pitt [13].

In the next chapter a variation on the standard PAC model of learning, called semi-
supervised learning (ss-learning), is defined. This new model permits the rigorous study of
learning ituations in which the teacher plays only a very limited role. We prove that a num-
ber of interesting PAC-learnable concept classes are also ss-learnable, and give several sets of
sufficient conditions for a class to be ss-learnable. This chapter is also based on joint work with
Leonard Pitt [14].

Chapter 5 deals with the problem of prediction as performed by automata with less power
than Turing machines. We define models of prediction in which the prediction is performed by
deterministic finite automata, counter machines, and deterministic pushdown automata. For
each of these models we give a precise characterization of the language classes that can be
predicted.

In Chapter 6 we investigate the power of online algorithms for a certain class of graph prob-
lems, referred to as vertez labeling problems. In addition to a standard online protocol, two new

" online protocols are defined for these problems. We then prove bounds on the performance of

online algorithms operating according to these protocols for the graph bandwidth, independent
set, vertex cover, and dominating set problems.
The final chapter presents a brief summary of results.

2 THE PAC MODEL OF T.EARNING

A general model of computational learning can be described as follows. The domain is a sci,
such as the set of points in n-dimensional Euclidean space or the set of all binary strings. A
concept is _ subret of the domain, and a concept class is a set of concepts. Associated with each
concept is a description of the concept, callrd its representation. An ezample of a concept ¢ is an
element of the domain, together with a bit that indicates whether or not that element is in the
concept c. A learning algorithm, or learner, for a concept class C is an algorithm that accepts
as input examples of some target concept ¢ € C (and possibly some additional information) and
outputs a Aypothesis, which is the algorithm’s “gness” as to what ¢ is. Depending on the exact
model being nsed, there may be restrictions as to how accurate the hypothesis must be, how
much time the algorithm is allowed, how the examples are chosen, etc., in order for the algorithm
to be considered a learning algorithm for the class C. A concept cluss is learnabdle if there exists
a learning algorithm for it. There are a number of different models of computational learning;
these models vary considerably, but almost all share the characteristics just described. One
mudel that has received considerable attention in the literature recently is the PAC (*“probably
approximately correct”) model.

The PAC model of learning was introduced by Valiant in [73]. It h:..s been widely used
to investigate the learnability of concept classes in several domains (see, for example, papers
in [39] and [87]). Much of its appeal is dus to the fact that, rather than requirins the learning
algorithm to always be exactly right, it is sufficient for the algorithm to almost always find a
hypothesis that is highly, although perhaps not precisely, accurate. By permitting the learner
this leeway, the model allows some interesting concept classes to be learned in polynomial time.
In addition, requiring only approximate correctness is intuitively appealing, since it seems more
closely related to human learning than does requiring exact correctness.

In the PAC model, the learning algorithm is given an amount of time polynomial in the
length of the representation of the concept to be learned and the length of the examples that
ave presented. The model assumes that the examples of the unknown concept that the learning
algorithm receives have been selected randomly according to some fixed but arbitrary and

13

unknown probability distribution over examples of some maximum length n. The elgorithm
must, for any such distribution, output a hypothesis that, with high probability, wiil have a low
distribution-weighted error relative to the unknown concept.

The following set notation is nsed throughout this thesis, not just in the chapters on com-
putational learning. If § and T are sets, then § C T and § C T denote that S is a subset
and proper subset, respectively, of 7. 5§ U T represents the anion of § and T, and § N T their
intersection. The symbol € indicates set containment, so z < § means that 2 is an element of
S. S - T denotes the set of elements in § that are not in T, and the symmetric difference of §
and T is writtenas S® T = (§ - T)U (T — S). |5] is the cardinality of the set S. The sets of
real and natural numbers are represented by R and IN, respectively. The empty set is denoted
by 0.

If T is a (not necessarily finite) alphabet, then £* denotes the set of all finite-length strings
of elements of T. If w € £°, then the length of w, denoted |w], is the number of symbols in the
string w. Let T denote the set {w € =* : |w| < n}. All logarithms are in base 2.

Define a concept class to be a pair C= (C, X), where X is a set and C C 2%, X is the
domain of C and the elements of C are concepts. X can be thought of as a universe of objects,
and each concept in C as the set of objects with certain properties. We are interested in the
problem of determining which concept classes are learnable; that is, the problem of deciding
which concept classes have learning algorithms.

Since learning algorithms must be able to oatput their hypotheses, there must be som~
means of representing the concepts in C concisely (there is no requirement that the concepts
be finite, so clearly representing a concept extensionally is not feasible). Thus we must define,
in addition to the concept classes, some means of representing the concepts.

Let the domain X be a set of strings in °, for some alphabet . We describe a context for
representing concepts over X.

Following (4, 75], define a class of representations to be a quadruple R = (BR,TI',¢, Z). T and
T are sets of characters. Strings composed of characters in ¥ are nused to describe elements of
X, and strings of characters in I’ are used to describe concepts. R C I'* is the set of strings
that are concept descriptions or representations. Letc: R — 2Z° be a function that maps
these represent.cions into concepts over *. R may be thought of as a collection of names of
concepts, and for any r € R, c(r) is the concept named by r.

14

S |

For example, we might represent the concept class consisting of all regular binary languages
as follows. Let T = {9,1} and define R to be the set of all deterministic finite state automata
(DFAs) over the binary alphabet. I is the set of characters needed to encode DFAs under some
reasonable encoding scheme, and ¢ maps DFAs into the regular languages that they accept.

As another example, suppose we wish to represent the concept class of Boolean formulas
over the variables z;,23,...,25. (That is, each concept is the set of n-bit binary strings that
correspond to satisfying assignments of some particular Boolean formula over n variables.) One
possible class of representations would be to let = {0,1}, T = {21,22,...,2n, A, V,~,{,)}, R
be the set of all well-formed Boolean formulas over z,, 23,...,2, (Written using the characters
in T'), and ¢ map each formula in R to the set of its satisfying assignments.

To represent concepts over the real numbers, £ can be defined so that each of its elements
corresponds to a different real number. Since it is likely that concept descriptions would also
need to make reference to real numbers, I' could also include all of the reals, and thus both £
and T would be uncountable.

For any a € L UT, |a| is defined to be 1, and thus if £ or I is an uncountable alphabet,
such as the real numbers, then each number counts as one “unit”, and we assume for clarity
of exposition that elementary operations are executable in one unit of time. Our resuits also
hold when the logarithmic cost model is considered, wherein elements are represented to some
finite level of accuracy, and thus require space equal to the number of bits of precision. In
this scheme, an elementary algorithmic operation on an element takes time proportional to the
number of bits of precision.

Note that if R = (R, T, ¢, I) is a class of representations then there is an associated concept
class C(R) = (c(R), Z*), where c(R) = {c¢(r) : » € R}. Since the PAC-learnability of a class
of concepts may depend on the choice of representations [61], PAC-learnability is in fact a
property of classes of representations rather than of concept classes.

For convenience, we write r(2) = 1 if z € ¢(r), and »(z) = 0 otherwise. We also write
r in place of c(r) when the meaning is clear from context. Thus sometimes r denotes the
representation of a concept, and sometimes it denot=s the concept itself. However, whenever
we refer to the size of r, denoted |r|, the length of the representation is always intended, and
not the cardinality of the concepi. An ezample of r is a pair (2,r(z)), where r(z) is the label
of z. If r(2) = 1 then (2, r(z)) is a positive ezample; if »(z) = 0 then it is a negative ezample.

The length of an example (z,r(z)) is |z|. A sample of size m of the concept r is a multiset of
m examples of ». We let RI*] denote the set {r € R: |r| < s}.

For a class of representations, the membership problem is that of determining, given » € R
and z € £°*, whether or not z € ¢(r). We consider only classes of representations for which the
membership problem is decidable in polynomial time; classes without this property would be
of little nse in a practical setting. Thus we only consider representation classes R = (R,T',¢, L)
for which there exists a polynomial-time algorithm EVAL such that for all » € R and z € Z°,
EVAL(r,z) = r(z). EVAL runs in time polynomial in |r| and |z|. Such an algorithm is
a uniform polynomial-time evaluation procedure; “uniform” refers to the fact that there is a
single algorithm that can test membership for any concept in the class.

A randomized algorithm is an algorithm that bebaves like a deterministic one with the
additional property that, at one or more steps durins, its execution, the algorithm can flip a fair
two-sided coin and use the result of the coin flip in its ensuing computation.! In this thesis we
make assertions of the form that there exist randomized algorithms that, when given as input a
parameter v > 0, will satisfy certain requirements with probability at least 1 —y. Without loss
of generality we allow such randomized algorithms to choose one of m > 2 outcomes with equal
probability. Such a choice may be simulated in time polynomial in m and -}; by a two-sided
coin with a small additional error that can be absorbed into 7.2 With this understanding we
ignore this additional error in the arguments to follow.

IR =(RT,c,X)is a class of representations, » € R, and D is a probability distribution
on X*, then EXAMPLE(D, r) is an oracle that, when called, randomly chooses an z € *
according to distribution D, and returns the pair (2, r(z)).

The following definition of learnability (and minor variants thereof) appears widely in the
literature of computational learning theory. (See, for example, [39, 67]; the essence of the

!See (0] for a formal trestment.

*In order to limit the total probability of exxor to v, we can give as input to the algorithm the parameter
%, and bound the additional exror introduced by the simulated coin fiips by the remaining 3. For example, an
algorithm simulating » single m-sided coin fip can flip » two-sided coin [log, m] times, interpret the results as
m&mm&nwmlnndzu""’,nd,ﬂthermhkhet'aeulmdm,mﬂﬁs
value to make the choice. If m is not a powez of 3 then there will be & nonsero probability that none of the m
poesibilitics is chosen; in this case the process can be repeated up to 1 ~ log, v times until one of the m values
is selected. The probability that no choice would bave been made after 1 - log, v iterations is no more than 1.
Thus the overall exror bound of v is maintained with only a small polynomial increase in running time.

16

definition is from Valiant [73].) For a more detailed discussion of this and other models of the
learning problem, see [37].

Definition 2.0.1 The class of representations R = (R,T, ¢, Z) is PAC-learnable if there ezists
a (possibly randomized) algorithm L and a polynomial py, such that for alln,s > 1, for all €
and § (with 0 < €, < 1), for all r € R, and for all probability distributions D over T, if L
is given as input the parameters s, €, and §, and may access the oracle EXAMPLE(D, r), then
L haits in time pr(n,s,1,3) and, with probability at least 1 — §, oulputs a representation v’ € R
such that D(»' @ r) < €. Such on algorithm L is a polynomial-time learning algorithm for R.

Note that the algorithm is given an upper bound s on the sige of the representation to be
learned. However, any learning algorithm that receives such a bound can be replaced by one
shich does not receive this information, provided we allow the algorithm to halt in polynomial
time only with high probability [37).

Note also that since L runs in time pr(n, 3,1, }), any ' output must satisfy |#'| < pz(n, s, 1, }).
We will frequently abbreviate “PAC-learnable” by “learnable” in what follows. If

D(r'e’) <k¢

then we say that r' is an e-approzimation of r (with respect to D), or is e-accurate for » (with
respect to D), omitting the parenthesized phrase whenever D is clear from context.

Thus PAC-learnability requires that a learning algorithm exists that, with high probability
(1 = &), can produce an e-approximation of any unknown target concept from the class of rep-
resentations being learned. Further, the running time (and hence the number of examples used
by the learning algorithm) may increase at most polynomially in the inverse of the parameters
€ and 4, and polynomially in the length n of each example and the bound s on the size of the
representation of the target concept.

We define some representation classes over the domain {0,1}*. Given some n € IN, a literal
is either the symbol z; or its negation Z; for some i such that 1 < i < n. In the following, let &
be any fixed natural number.

monomialss U,y {m : m is a conjunct of literals over n variables}.

EDNF: k-disjunctive normal form formulas = U {r : r is a disjunct of monomials, each
with at most k literals, over n variables}.

17

kCNF: k-conjunctive normal form formulas = U gy{r : r is a conjunct of clanses, each
containing at most k literals, over n variables}, where a clause is a disjunct of literals.

k-term-DNF: U_qy{r: 7 is a disjunct of at most » monomials over n variables}.
k-clause-CNF; U q{r:r is a conjunct of at most k clauses over = variables}.

decision-lists: U qgy{DL : DL is a decision-lis* over n variables}, where a decision-list (over
n variables, for any n € IN) is a list of pairs DL = ((my, 41),-«+,(m;,b;)), where each
m; is a monomial (over i variables) and each b; is either 0 or 1. The value of DL on
z € {0,1}" is defined algorithmically: let i be the least number such thut z satisfies m;.
Then DL(z) = b; (or 0 if no such § exists).

k-decision-lists: U, y{DL : DL is a decision-list over n variables and each monomial in DL

contains at most k literals},

The definitions of decision-lists and k-decision-lists are due to Rivest [66).

A common variation on this model is learning the class R in terms of another class H, in
which the learning algorithm must output hypotheses from the representation class H, rather
than R. Another variation is polynomial predictability; a class R s polynomially predictable if
there exists a class H (for which membership cax. be tested in polynomial time) such that R is
learnable in terms of H.

The following theorem presents some results that will be used in Chapter 4.

Theorem 2.0.2
1. Monomials are PAC-learnable [78].
2, For each k > 1, kDNF is PAC-learnable [7}].
3. For each k > 1, kCNF is PAC-learnable [73].
4. For each k > 1, k-decision-lists are PAC-learnable [66].
5. For each k > 1, k-term-DNF is PAC-learnable in terms of kCNF [61).

6. For each k > 1, k-clause-CNF is PAC-learnable in terms of kDNF [61].

1§

In Euclidean domains, classes such as unions of rectangles and unions of half-spaces have
been proven to be learnable {10, 12]. All nonlearnability results under the model described
above depend on assumed hardness resuits from complexity theory or cryptography. Under the
assumption that RP # NP, the classes of k-texm DNF and k-clause CNF are not learnable [61].
Both of these classes are, however, polynomially predictable, since each ¢can be learned in terms
of ancther representation class [61]. Each of the other classes mentioned in Theorem 2.0.2 is
also polynomially predictable. 3 .

A number of other interesting results on PAC-learning have been proved in the literature.
See, for example, [12, 35, 46, 47, 54], and many of the papers in [39, 67].

In [11] and [12] it was shown that a sufficient condition for a representation class to be PAC-
learnable is that there exist an Occam algorithm for the class. An Occam algorithm for a class
R = (R,T,c, Z) is an algorithm that, when given a finite sample of any concept in R, outputs
in polynomial time a description of a “simple” concept in the class the t is consistent with the
given sample. (A concept r' is consistent with a sample of the concept r if the examples in the
sample that are in r/ are exactly those that are in r.) Depending on the domain, the definition
of simple measures either the number of bits in the concept description [11] or the complexity
of the class of possible hypotheses output by the algorithm, as measured by a combinatorial
parameter called the Vapnik-Chervonenkis dimension [12]. An Occam algorithm is thus able
to compress the information contained in the sample. If such a compression algorithm exists,
the representation class is PAC-learnable. We define Occam algorithms formally in the next
cnapter.

PAC-learning, as well as models that follow the general description given above, is a model
of supervised learnirg. In supervised learning there is a teacher (the oracle EXAMPLE(D, r),
in the case of PAC-learning) that gives the learner examples, with each example labeled as to
whether it is in the target concept. Depending on the particular model of learning, the teacher
may give the learner additional information about the target concept as well. Unsupervised
learning models the situation in which there are no a priori underlying concepts to be learned,
but rather the objective of the learner is to partition the elements of the domain in a manner
consistent with some predetermined criterion. This approach is also known as clustering, and
has been studied extensively.

’See[ﬂ,“,”]hmpaﬁsmdthhndothcmddsdm

19

In Arthur-Merlin games [5], interactive proof systems [32], and games against nature [60],
a “prover” and a “verifier” interact in a manner somewhat similar to that of the teacher and
learner in supervised learning. Under these protocols, as in supervised learning, one of the
parties (the prover) supplies information to the other party (the verifier) in an attempt to
elicit a desired response. As compared to models of learning, the provers in these protocols are
allowed considerably greater computational power than are teachers, and have fewer restrictions
on the type of information they may communicate to the verifier.

10

20

3 OCCAM ALGORITHMS AND PAC-LEARNABILITY

In this chapter we prove that for many natural concept classes the existence of an Occam
algorithm is also a necessary condition for PAC-learnability. In particular, we show that PAC-
learnability is equivalent to the existence of Occam algorithms for concept classes that are closed
under em;ptmn lists (defined in Section 3.2). Consequently, for such classes PAC-learning is
equivalent to compression, either in terms of the number of bits in a concept description or in
terms of the Vapnik-Chervonenkis dimension.

3.1 Occam Algorithms

Occam'’s razor, which asserts that “entitjes shoul’ be multiplied unnecessarily” [58], has
been interpreted to mean that, when offered a choice among hypotheses that describe a set of
data, the shortest hypothesis is to be preferred. Unfortunately, when applied to the problem
of finding a concept that fits a sample, finding the shortest hypothesis i» often computationally
intractable [11, 36, 61]. It has been shown that settling for a short hypothesis, as opposed to
the shortest one possible, is nonetheless an effective technique in the context of PAC-learning.
Following 11], define an Occam algorithm to be a polynomial-time algorithm that, when given
as input a sample M of the concept induced by an unknown representation » € R and a bound
s on |r|, outputs a short (but not necessarily the shortest) representation » in R such that r
and r’ are identical when only the strings in M are considered. We make this more precise.

Let Sy = {M : M is a sample of sise m of r € R, and all examples in M have length
at most n}. (Recall that if M is any sample of r, then 7' iv consistent with M if for every
(=,r(=)) € M, r'(z) = r(z).) Define strings(M) to be the set {z : (z,7(2)) € M}.

Definition 8.1.1 4 randomised polynomial-time (length-based) Occam algorithm for a class
ofmeuhﬁoml:(&r,c,z)ha(miblymdmn&ed)wmomhﬂxuthenem'at:
6 consiant a < 1 and a polynomial po, and such that for allm,n,s > 1 and r € RM, if O
is given as input any sample M C Sp, ., any v > 0, and s, then O halts in time polynomial
in myn,s, and 3 ond, with probability at least 1 - v, ouiputs a representation v’ € R that is
consistent with M and such that |*’'| < po(n, s, 1)m=.

11

D1

The above definition is a slight generalization of that in [11]. As in the definition of PAC-
learnability, we may omit the upper bound s on |r| that is supplied to the algorithm if we
are willing to allow the algorithm to halt in polynomial time only with high probability. Note
that if the sample M is a set (but not a multiset) for which an Occam algorithm O finds a
consistent ' meeting the required length bounds, thea O can be modified to ignore duplicate
examples and thus output the same ' on input of any extension of M to a multiset M’. Thus
to show that an Occam algorithm performs as desired on a given multiset M it is sufficient
to show that it performs as desired on the set of distinct elements of M. Consequently, we
assume without loss of generality that any sample M input to an Occam algorithm contains
only distinct elements.

The following theorem is a straightforward generalization of Theorem 2.3 of [11].

Theorem 3.1.2 LetR = (R,T,¢,) be a class of representations, with T’ finite. If there ezists
a randomized polynomial-time (length-based) Occam algorithm for R, then R is PAC-learnable.

Theorem 3.1.2 generaliges the result in [11] by allowing the running times of learning algo-
rithms and Occam algorithms to be polynomial in the example length n, and by allowing for
randomized Occam algorithms. Similarly, the lengths of the hypotheses output by an Occam
algorithm are now allowed to depend polynomially on n and 2.

Prooft The proof is similar to the one in [11], with minor modifications as follows. We
are parameterizing the representation class by tnth hypothesis size and example length, in-
stead of just by hypothesis size. Thus each occurrence of the hypothesis size |r| (denoted by
n in [11]) should be replaced by the product of the bound s on the hypothesis size and the
example length (sn in our notation). Both the Occam algorithm and the learning algorithm are
given s as a parameter. Since an Occam algorithm can now be randomized, we allocate half of
the permissible probability of error to the Occam algorithm itself (by giving it the parameter
7 = §) and nse the remaining § to bound the probability that the output hypothesis has error
larger than ¢. The latter is achieved by replacing each occurrence of § in the proof in [11] by
£. Thus the total probability of producing a hypothesis with error ¢ or more is bounded by 6. O

12

3.2 Exception Lists

In the next section we prove the converse to Theorem 3.1.2 for all classes of representations
that satisfy a certain closure property. The property dictates that a finite list of exceptions may
be incorporated into any representation from the class without a large increase in size. More
specifically, the class of representations must be closed under taking the symmetric difference
of a representation’s underlying concept with a finite set of elements from the domain. Further,
there must exist an efficient algorithm that, when given as input such a representation and
finite set, outputs the representation of their symmetric difference.

Definition 3.2.1 A class R = (R,T, ¢, I) is polynomially closed under exception lists if there
ezists an algorithm EXLIST and a polynomsial pgx such that for alin > 1, on input of anyr € R
and any finite set E C T, EXLIST hults in time ppx(n, |rl, |E|) and ov’puts a representation
EXLIST(r,E) = rg € R such that c(rg) = ¢(r) ® E. Note that the polynomial running time of
EXLIST implies that |rg| < pex(n,|r|,|E|). If in addition there ezist polynomials p, and p,
such that the tighter bound |rg| < pi(n, |r|,1og|E|) + pz(n,log|r|, 108 |E|)|E| is satisfied, then
we say that R is strongly polynomially closed under ezception lists.

Clearly any representation class that is strongly polynomially closed is also polynomially
closed. The definition of polynomial closure above is easily understood — it asserts that the
representation rg that incorporates exceptions E into the representation r has size at most
polynomially larger than the sise of » and the total size of E, the latter of which is at most
n|E|. The property of strong polynomial closure under exception lists seems less intuitive; we
will motivate the definition after we prove that it is satisfied by the class of Boolean-valued

circnits.

Example: Circuits are strongly polynomially closed Consider the class of Boolean-
valued circuits with n Boolean variables z,,. ..z, as inputs, and consisting of binary gates A,
and V, and unary gate -, denoting logical AND, OR, and NOT, respectively. Given such a
circuit C, and a list E of assignments to the input variables, we describe a circuit Cg that on
input of any assignment a, produces the same output as C if and only if ¢ ¢ E. Cg computes
the exclusive-OR of two subcircuits C and C'. The subcircnit C’ has O(n| E|) gates, and outputs
1 if and only if the assignment to the input variables z4,...z,, is in the set E. Clearly, Cg has

13 Qf}

o~

,,,,,

the desired behavior. Let k& be the number of gates in C. Then the number of gates in Cg is
O(k + n|E|).

We assume that each circuit is represented as a list of tuples of the following form. An OR
gate g, = gy V g, is denoted by the quadruple (=, V,y,), where z,y, and 2 are binary strings
denoting numbers used as names for gates, and the symbol “v” is in the representation alphabet.
AND and NOT gates are handled similarly, as is the specification of the input and output. it
follows that a string of O(klog k) characters is sufficient to represent a circuit containing
gates. Thus if r and rg are the representations for C and Cg above, we have

Irg]l = O((k+ n|E|)log(k+ n|EI))
= O(klog(k + n|E]) + n|E|log(k + n|E]))
= pi(n,Ir|,Jog|E]) + p2(n, log|r|,log|E})| E|

for some polynomials py and p;. Thus the class of Boolean circuits is strongly pqlynomially
closed under exception lists.

The above example is helpful in motivating the definition of strong polynomial closure
under exception lists. Typically, a representation class is a collection of strings, each of which
encodes some underlying mathematical structure (e.g., a circuit). Note that the intuitive size
of the structure is not the same as the number of bits needed to represent it. In the case of
a Boolean circnit, a natural measure of sise is the number of gates and wires needed to build
the circuit. Assuming bounded fan-in (as we have done), this is O(k) where k is the number
of gates (inclnding the input nodes). However, in order to encode the circuit description, we
require O(klogk) bits to name the gates and specify the connection pattern.

In our construction of Cg from C above, all that was necessary was the addition of a new
component C’ that checked membership in the set E. Then C’ and C were easily connected
together to form Cg. Thus the size of Cg is roughly the sum of the size of C and the size of the
exception list, the latter of which is n|E|. Strong polynomial closure under exception lists is
meant to model exactly this situation — wherein a set E of exceptions can be incorporated into
some structure C by simply adding an additional substructure of sise roughly the size of the list
E. The two polynomials p and p; in the definition of strong polynomial closure under exception
lists are meant to correspond roughly to the sises of these two components in the structure which
incorporates the exceptions. As noted above, there is a logarithmic discrepancy between the

14

intuitive size of the mathematical structure and the number of bits needed to represent it.
Consequently, the polynomials have arguments which allow for logarithmic cross-terms such as
|r|log | E| and |E|log|r|.

Other Examples We give examples of a number of natural classes of representations that
are strongly polynomially closed under exception lists.

The property for Boolean formulas can be demonstrated as follows. Let F be a Boolean
formuls and E = {e,e],...,¢],e7,¢7,...,¢]} be a set of exceptions, where the strings with
“+” superscripts satisfy F and the strings with “—" superscripts do not. Let £, f,..., /i,
STy f35--+, f; be the monomials satisfied only by ef,ef,...,ef, €7, e5,..., €}, respectively.
(Recall that a monomial is a conjunct of literals.) Strong polynomial closure under exception
lists is witnessed by the formula 77, defined by

F=(FVEVEV NN A AGR).

Recall that a decision-list over n Boolean variables is a sequence of pairs

((mh bl); (mh b?)’ ceey(m,, b.'))

where each m; is 8 monomial and each b; is either 0 or 1. The value of a decision-list on a
setting of the n Boolean variables is defined to be b;, where i is the least numbe. ~uch that m;
is satisfied by the assignment. (If no m; is satisfied, then the value is 0.) A set of exceptions E
can be incorporated into a decision-list by adding to the beginning of the list a pair (g4 be) for
each exception e € E, where m, is satisfied only by assignment e, and b, is 0 if ¢ is accepted by
the original decision-list, and 1 otherwise. This construction satisfies the requirements of strong
polynomial closure under exception lists. Rivest {66] gives an algorithm for learning k-decision-
listz, for each constant k. (Recall that the class of k-decision-lists consists of all decision-lists
DL for which each monomial m; in the list DL has at most k literals.) It is not known whether
the class of k-decision-lists is strongly polynomially closed under exception lists.

Thcmdumayvuifythuthedumofdedmummdnbitruypmmmnmngly
polynomially closed under exception lists, as is any class of resource-bounded Turing machines
that allows at least linear time.

Let R be the class of (hyper)rectangles with faces parallel to the coordinate axes in n-
dimensional Euclidean space. Let B(R) be the Boolean closure of R; that is, the class of

18

regions defined by unions, intersections, and complements of a finite number of elements of R.
It is easily shown that B(R) is strongly polynomially closed under exception lists, using either
the unit cost or logarithmic cost model and a.ny reasonable encoding scheme.

For any fixed alphabet I, the class of DFAs is strongly polynomially closed under exception
lists. However, if we consider DFAs over arbitrary finite alphabets as a single representation
class, then strong polynomial closure does not appear to hold. In Section 3.5 an ad hoc argument
is given that shows that the class of DFAs over arbitrary finite alphabets is PAC-learnable if
and only if it admits a length-based Occam algorithm. The argument in Section 3.5 also shows
that strong polynomial clusure holds for any fixed .

There are some classes of representations, such as unions of axis-aligned rectangles in Eu-
clidean space, that do not meet the above definitions of closure under exception lists but do
have a weaker closure property that is also sufficient to prove the results of Sections 3.3 and
3.4. This weaker property is discussed in Section 3.6.

3.3 Results for Finite Representation Alphabets

We consider the case in which the alphabet I' {over which the representations of concepts are
described) is finite. This typically occurs when concepts are defined over discrete domains (e.g.,
Boolean formulas, automata, etc.). Representations that rely on infinite alphabets (e.g., those
involving real numbers) are considered in the next section.

We show that strong polynomial closure under exception lists guarantees that learnability
is equivalent to the existence of Occam algorithms. Theorem 3.1.2 states that if for the class of
representations R = (R, I, ¢, L) there I3 a randomized polynomial-time algorithm that, for any
finite sample M of r € R, outputs a rule describing which elements of strings(M) are in ¢(r)
that is significantly shorter than the sample itself, then R is PAC-learnable. Thus if there exists
an efficient algorithm that can compress the information about the concept ¢(r) contained in M,
then the class of representations can be learned. The results of this section show that, for many
interesting classes of representations R, if R is learnable then such a compression algorithm
must exist. Thus not only is compressibility a sufficient condition for PAC-learnability, it is a
necessary condition as well. Hence learnability is equivalent to data compression, in the sense
of the existence of an Occam algorithm, for a large number of natural domains. This answers
an open question in [11] for many classes of representations.

16

26

Theorem 3.3.1 IfR = (R,T,¢,) is strongly polynomially closed under ezception lists and R
is PAC-learnable, then there ezists a randomized polynomial-time (length-based) Occam algo-
rithm for R..

Corollary 3.8.2 Let T be a finite alphabet. If o = (R,T, ¢, X) is strongly polynomially closed
under ezception lists, then R is PAC-learnable if and only if there ezists a randomized polynomial-
time (length-based) Occam algorithm for R.

Proof of Theorem 3.3.1 and Corollary 3.3.2

Corollary 3.3.2 follows immediately from Theorem 3.1.2 and Theorem 3.3.1. To prove Theo-
rem 3.3.1, let L be a learning algorithm for R = (R, T, ¢, Z) with running time bounded by the
polynomial pz. Let EXLIST witness that R is strongly polynomially closed under exception
lists, with polynomials p, and p; as mentioned in Definition 3.2.1. Let a be a suficiently large
constant so taat for all n,s,t > 1, and for all e and § such that 0 < ¢, < 1,

11 a {nslogt*
Pl(nvPL(nv’v'c'!E)’hst)S‘z'(668) .

Let b be sufficiently large such that foralln, s,z > 1,and for all eand § such that 0 < ¢,6 < 1,
11 b {nslog($)\®
Pa(m,log(pr(n, 3, -, =), logt) < 5 (a‘;‘i—)) .

Let c5p be a constant such that for all z > ¢, 3, Jogz < ;ﬂ#ﬁ{#ﬁ, Note that for all such =z,
(logz)*** < 2757,

We show that algorithm O (Figure 3.1) is a randomiged polynomial-time (length-based)
Occam algorithm for R, with associated polynomial

1 a+d
Po(m 4, 2) = (cas)™*ab (22)
and constant
_20+1
" 2342
Since ' correctly classifies every z € strings{M) — E and incorrectly classifies every z € E,

rg is consistent with M. Since R is closed under exception lists, s € R.
The time required for the first step of algorithm O is bounded by the running time of L,
which is no more than
11 1
Pb(nv 8, ;v 3) =PL(“1’1m#T’ :;')’

17

27

Algorithm O (Inputs: s; 7; M € Smn,s)

1. Run the algorithm L, giving it the input psrameters s,
e=m"=h,u66 = 4. Whenever L asks for a randomly
generated example, choose an clement & € strings(M) ac-
cording to the probability distribution D(z) = 1 for each
of the m (without loss of generality, distinct) elements of
strings(M), and supply the example (=, #(2)) to L. Let »’ be
the output of L.

2. Compute the exception list £ = {o € strings(M) : #'(2) #
#(2)}. The list E is computed by running EVAL(~’, z) for
each @ € sirings(M). (The algorithm EVAL is defined on
page 6.)

3. Output r; = EXLIST(+, E).

Figure 3.1: Occam algorithm derived from learning algorithm L

which is polynomial in n,s, m, and % Note that this immediately implies that |»'| is bounded
by the same polynomial.

For each of the m distinct elements z in strings(M), each of length at most n, the second
step executes EVAL(r’, z), so the total running time for step 2 is bounded by (km)peva(|r’], n),
where k is some constant and peya; is the polynomial that bounds the running time of algorithm
EVAL. Since |r'| is at most pr(n, s, m=h', ;}), the running time for the second step is polynomial
in n, s, m, and ,-},-

Since EXLIST is a polynomial-time algorithm, the time taken by the third step is a poly-
nomial function of |r’| and the length of the representation of E. Again, || is polynomial in
n, s, m, and -};, and the length of the representation of E is bounded by some constant times
nm, since |E| < m and each element z € E has size at most n. We conclude that O is a
polynomial-time algorithm.

To complete the proof, it remains to be ahm that with probability at least 1 — v, |rp| <
po(n, s,3)m®. Since R is strongly polynomially closed under exception lists,

75l < ma(n,I#'l1og|E]) + pa(n,log |+, log | EDIE]
< P pu(m 9,5, 2)OBLE]) + Za(mlogtpu(n, 5,) log | EDIE]

18

28

y ° 181\
< 2 (————“"‘”'E') +2 (———L’“h‘) |E]. (3.1)
2 €Y 2 v

Since L is a polynomial-time learning algorithm for R, with probability at least 1-4, D(r®r') <
€. The probability distribution D is uniform over the examples in M; thus, with probability
at least 1 — §, there are no more than em elements z €sirings(M) such that z € » @ #'. Since
¢ = v, with probability at least 1 - v,

|E| € em = m™®Tm = maT, (3.2)

Substituting the bound on |E| of inequality (3.2) into inequality (3.1), and substituting
m~ 5T for €, we find that with probability at least 1 — 4,

a b
el <2 (mlogm#") ma 4 % (mlogm) L

-2 v 8
= E(E)u(2 o m)GmT'*-'r +£ (-ni)b(lo m)‘m'-‘?‘i'
- 2\7/) \a¥1 B 2\ 7/ °

< ab (-’;—3) = (logm)***meit,

CASE 1: m < cqp, then (logm)®+® < (logcap)°*® < (cap)?*?, 50

ns a+b
) me

Bl < (cap)rbab (22

1
< po(n, s,;)m"-

CASE 2: m 2 ¢,, then by choice of ¢,p, (logm)*+ < Mm%+, Thus (logm)**+tmet <
miH, 50

o4b
o € ob(2)™ mith
1
< Po(ﬂaﬁ’;)m",

completing the proof of Theorem 3.3.1. [

3.4 Resulis for Infinite Representation Alphabets

In this section we extend the results of Section 3.3 to the case in which an infinite alphabet
is used to describe representations of concepts. Such representations typically occur when the

19

29

domain X over which concepts are defined is itself infinite (for example, axis-aligned rectangles,
or other geometric concepts in Euclidean space [12]). We note that Theorem 3.3.1 holds also
for T infinite, but is of dubious interest because the converse (Theorem 3.1.2, which shows that
the existence of length-based Occam algorithms implies PAC-learnability) holds only when I is
finite. In the case of infinite I', a different notion of “compression” is needed; one based not on
the length of the representation of a class of concepts, but rather on a measure of the richness,
or complexity, of a concept class, called the Vapnik-Chervonenkis dimension (VC dimension).
The importance of the VC dimension and its relationship with PAC-learning was established
in [12).

The VC dimension and Relevant Lemmas
Recall that a concept class C is a pair C = (C, X), where C C 2%,

Definition 3.4.1 Let C = (C, X) be a concept class, and let § C X. Define ¢(S) = {cn S:
¢ € C}; thus I¢(S) is the set of all subsets of S obtained by taking the intersection of S
and a concept in C. The set S is shattered by C if Ig(S) = 25. The Vapnik-Chervonenkis
dimension (VC dimension) of C is the size of the largest finite set § C X that is shattered by
C. If arbitrarily large finite subsets of X are shattered by C, then the VC dimension of C is
infinite.

The following lemma restates parts of Proposition A2.5 from [12].
Lemma 3.4.2 If(C, X) has VC dimension d, then for any finite set § C X, [Hic(S)| < |S|9+1.

Another lemma that we will find useful is one that bounds the VC dimension of a concept
class induced by taking symmetric differences with sets of bounded size.

Lemma 3.4.3 Let (C,X) have VC dimensiond. Let C¥ = {¢c®@E:c€ C,EC X,|E|< I}.

If dy > 2 is the VC dimension of (C®4,X), then 3 <d+1+2.

Prooft Let the VC dimension of (C®4,X) be d; > 2, and let P be a set of cardinality d;
that is shattered by C®4, By definition,

Mgea(P) = [{(c®E)NP:ceC,EC X,|E|< I} =2%,

20

30

which implies
H(c®(EnP))NnP:ceC,EC X,|E|< 1} =2%,

and thus
{(c®E)nP:ceC,EC P |E| ST} =24

Since (¢ ® E)NP = (enN P) ® E whenever E C P,
H(eNnP)®E:c€C,EC P,|E| <} =2%. _ (3.3)

But the left side of equation (3.3) is at most the product of |[{cNP:c€ C}| and |[{E: E C
P, |E| < 1}, which is [lc(P)| Tiep (¥). Thus

i
To(P) Y (‘f) > 2%, (34)
i=0

Substituting the upper bound on |II¢(P)| from Lemma 3.4.2 into inequality (3.4), we obtain

{
d;
2% < ((d)¥+1) ()
Z\s
< 2(dl)d(d‘)l+1’
and since d; > 2 the above‘implies that
d
— <d+1+2
logd; ~ ¥

0O

Recall that if R = (R, T, ¢, £)is a class of representations, then there is a naturally associated
concept class C(R) = (¢(R), Z*), where ¢(R) = {c(r): r € R}. The VC dimension of a class of
representations R is defined to be the VC dimension of the induced concept class C(R). We
write VC-dim(C) and VC-dim(R) to denote the VC dimension of the concept class C and the
class of representations R, respectively.

Recall also that 2" consists of strings of £° of length at most n, and that Rl is the set
of representations r € R of length at most s. If R = (R, T, ¢, I), then we define a concept class
Ry s consisting of elements of R considered omly with respect to examples from T, This is
accomplished by introducing a new mapping c, that interprets any representation r only with

21

respect to examples of length at most n. In particular, we define Rp 4 = (R['l,l’,c,., Z), where
en(r) = e(r)n B,
The next lemma is a minor variant of theorems appearing in {12] and [25].

Lemma 3.4.4 Let R = (R,T, ¢,) be o class of representations, and let d(n, s) be the VC di-
mension of Rns. If R is PAC-learnable, then d(n, s) grows polynomially in n and s.

The only difference between Lemma 3.4.4 and a result in [12] is that the latter does not
allow the learning algorithm to depend on s and thus the VC dimension grows polynomially in
n alone. The modifications to their proof needed to yield the above result are so minor as to
be omitted.

Dimension-based Occam ~lgorithms and PAC-learnability

When I is infinite, the existence of a length-based Occam algorithm is not sufficient to guaran-
tee PAC-learnability. The proof of sufficiency in the case of finite I' relies critically on the fact
that for any given length n, there are at most |I'|" distinct representations » € R of length n.
Consequently the proof fails when T is infinite. In order to prove a resuit analogous to Theo-
rem 3.1.2 that also holds frr infinite I', Blumer et al [12] define a more general type of Occam
algorithm, which we will refer to as a dimension-based Occam algorithm. As was the case with
length-based Occam algorithms, the definition requires the algorithm to output simple hypothe-
ses, but this time using a different definition of “simple”. Rather than measuring simplicity by
the size of the concept representation output by the Occam algorithm, this definition uses the
notion of VC dimension to measure the expressibility of the class of concepts that the algorithm
can output. The larger the VC dimension of the class of concepts, the greater the expressibil-
ity, and hence the complexity, of that concept class. Thus instead of requiring the algorithm
to output short hypotheses, the definition of a dimensior-based Occam algorithm requires the
algorithm to output hypotheses from a class with small VC dimension. The definition below is
a slight variant of the definition in [12].

Definition 3.4.5 A randomized polynomial-time (dimension-based) Occam algorithm for a
class of representations R = (R,T,¢,Z) is a (possibly randomszed) algorithm O such that for
some constant a < 1 and polynomial po, for allm,n,s > 1 and v > 0, there exists Ry .y C R
such that VC-dim((Rum,n,eys T €ny Z)) < po(n,8,1)m®, and if O is given as input any sample

22

M C Sy, (where r € RI”) and the parameters v and s, then O halts in time polynomial in
m,n, s, and % and, with probability at least 1 — v, outputs a representation v’ € Ry n .y that is
consistent with M.

As was the case for length-based Occam algorithms, we may omit the upper bound s on |r|
that is supplied to the algorithm if we are willing to allow the algorithm to halt in polynomial
time only with high probability.

The following theorem is a straightforward generalization of Theorem 3.2.1(i) of [12].

Theorem 3.4.8 If there ezists a randomized polynomial-time (dimension-based) Occam algo-
rithm for the class of representations R, then R is PAC-learnable.

Theorem 3.4.6 generalizes the result in [12] by allowing the sunning times of learning algo-
rithms and Occam algorithms to be polynomial in n and by permitting the VC dimension to
grow polynomially in n. The above theorem also provides for randomized Occam algorithms
and allows the running time of the algorithm as well as the VC dimension of the class of possible
hypotheses to grow polynomially in %

Proofi The proof is similar to the one given in [12], with the following minor modifications.
We are parameterizing the representation class by both n and s, instead of just by s. Because
of this and the fact that randomized Occam algorithms are permitted, each occurrence of the
polynomial p(s) in the proof in [12] should be replaced by p(n, a,-},—). For the same reason, the
effective hypothesis space (C2y, in the notation of [12]) should be replaced by R ...y, a8 de-
fined above. Both the Occam algorithm and the learning algorithm are given s as a parameter.
Finally, the parameter § in [12] should be split between the Occam algorithm itself (which is
run with ¥ = £) and the bound on the probability that the output hypothesis has error larger
than ¢, as described in the proof of Theorem 3.1.2. 0

We prove the following partial converse to Theorem 3.4.8, which is analogous to Theo-
rem 3.3.1 of the previous section.

Theorem 3.4.7 If R = (R,T,c, L) is a class of representations that is polynomsally closed
under ezception lists and R is PAC-learnable, then there exists a randomized polynomial-time
(dimension-based) Occam algorithm for R.

Corollary 3.4.8 IfR = (R,T,c, I) is a class of representations that is polynomially closed un-
der ezception lists, then R is PAC-learnable if and only if there ezists a randomized polynomial-
time (dimension-based) Occam algorithm for R.

Proof of Theorem 3.4.7 and Corollary 3.4.8

Corollary 3.4.8 follows immediately from Theorem 3.4.6 and Theorem 3.4.7. Note that Corol-
lary 3.4.8 holds regardiess of whether I is finite or infinite. Note also that for dimension-based
Occam algorithms we only need polynomial closure under exception lists, rather than the more
stringent condition of strong polynomial closure that appears to be required to prove Theo-
rem 3.3.1.

To prove Theorem 3.4.7, let L ..e a learning algorithm for R = (R, T',c, L) with polynomial
running time pr. Let d(n,s) = VC-dim(Rpn4) be a polynomial whose existence is guaranteed
by Lemma 3.4.4. Let EXLIST witness that R is polynomially closed under exception lists. Let
k > 2 be a constant such that for all n,s > 1, and for all ¢ and § such that 0 < ¢,6 < 1,

d(n,pr(n, s, %’ %)) +2< 'g‘ (%)b .
Let aj be a constant such that for all z > ay, logz < =TT,

To prove the theorem, it suffices to prove that algorithm O of the last section (with ¢
of step 1 defined by € = m~FT instead of m'i'lﬂ') is in fact a randomized polynomial-time
(dimension-based) Occam algorithm for R, with corresponding polynomial

po(n, a,-l-) = agk%ﬁ' (_n_a_)
7 2/
and constant
oz k? 4 2k
TR 4+2k+1

We have already argued in Section 3.3 that O runs in time polynomial in m, n, s, and %
(This argument still holds since R is polynomially closed under exception lists.) Clearly any
g that is output by O is consistent with M. To complete the proof, we must exhibit a set
Ry sy € R of VC dimension atmmtpo(n,s,;})m" such that with probability at least 1 — v
the output rz of O is in the set R, Whenever O receives as input the parameters v and s
andgsampchofcardinalitym,comistingofempluoflengthatmostnofsomereRof

size at most s.

24

Define R n,,y to be the set of representations rp that O outputs on input of v, s, and any
sample M of Sy, (Where r is any element of R*)), provided that the ezception list E obtained
in step 2 satisfies |[E| < ¢|M|. Thus the only time that O fails to produce an element of Ry, 4
is when the learning algorithm I fails to prodnce a representation r’ that is correct within ¢ on
the learning task at hand. This can happen with probability at most § = 7, so with probability
at least 1 — v the algorithm O ountputs an element of R, 5,y The following claim completes
the proof of Theorem 3.4.7.

Claim: The VC dimension of (Rmn,s9sT'scny T) is at most po(n, s, 1)m".

Proof: Let dp be the VC dimension of (Rmn,y)Iycny E). The result is immediate if
dr < 1. Assume dg > 2. Let the effective hypothesis space of L, denoted Ly, ¢y, be exactly
those representations r’ that L might output on input parameters ¢, § (= v), s, and randomly
generated examples, each of length at most n, of some representation in Rl*l. Since L runs in
tims bounded by polynomial p, each element of Ln,, .,y has size at most pz(n, 5, 2,1), and thus
Ln ey C RPH™ 53, Consequently, the VC dimension of the class (Ln o ¢, T, cn,) is at most
the VC dimension of the class (RP*(™#2-3) T ¢ %), Recall that VC-dim(Rn) < d(n, 5), and
thus the VC dimension of (L,s,e,y, T, sy E) is at most d(n, pz(n, s, 1, -,‘;)).

Note that each element rp € Ry p 4, is obtained from the symmetric difference of some
element #’ of Ly, and some list of exceptions E C Tl of cardinality at most em. Applying
Lemma 3.4.3 (with (C, X) equal to the concept class induced by (Ln ,.¢,yyI'sny Z); and | = em),
we conclude that dg satisfies

h‘;—‘;ﬂ < d(n, p(n, 8,%, %)) +em +2.
By our choice of k, this implies that

< 4(2) o m

Cas® 1: dR < gy, then clearly dg < po(n, s,2)m?, and the claim is proved.
CASE 2: dp > as, then by choice of aj, logdg < (dg)™7¥. Thus

dr dr
fogds ~ (dg)™7 i,

25

35

and, combining this with inequality (3.5) above we have
A
() < x (g—) +em

I
| &
~—~
|2
~—
»

m
*

+4-

]
i
~
T
sl‘
i
+
3
i

A
< &k (1‘.) m¥T,
Raising each side to the power 13, we obtain
A’&}E 2
dr < ki (E) mET
7

1
< po(n,s, ;-,-)m"-

3.5 DFAs and Occam Algorithms

As will be shown below, for any fixed alphabet ¥ the class of DFAs defined over alphabet T is
strongly polynomiully closed under exception lists. This does not appear to be the case if the
alphabet T is allowed to vary. Nonetheless, an argument very similar to Theorem 3.3.1 may
be employed to show that the class of DFAs (over arbitrary alphabets) is PAC-learnable if and
only if there is a lJength-based Occam algorithm for the class.

We first define a class of representations that captures the problem of learning an arbitrary
DFA. Let £, = {ap,a3,...} be a countably infinite alphabet. Clearly, for any finite nonempty
alphabet T the problem of PAC-learning the class of DFAs over £ is captured by the problem
of PAC-learning DFAs over the finite alphabet {ay,a;,...,a)r)-1}. Similarly, we can rename
the states of M to be ¢o,¢1,.... Thus for any DFA M to be learned, we assume without loss of
generality that M has the following form. For some s 2> 1, M has states go,...,g,-1, and for
some ¢ > 1, M has alphabet {ag,ay,...0,-1}.

The representation alphabet I’ consists of the symbols 0, 1, and several punctuation charac-
ters. The representation r of a DFA M with s states and alphabet {ap,a1,...0,-1} is a string
r = 2#w4t, where 2 is a binary string of length [log s] indicating that the initial state is go;

26

36

w is a binary string of length s where the i-th bit (counting from 0) of w is 1 if and only if g; is
mueupﬂngstate;;ndwhmtisnmtoftriples that represents the state transition function §
of M. The list ¢ contains (3, j, &) if and only if §(g;, a;) = ga, where i and k are binary numbers
that are indices for states of M, and j is a binary number that is an index into the alphabet
{a0,...,85—1}. Assume that s,0 > 2.! Then the size of the representation r satisfies

|r| = Mlogs] +1+ 5+ 1+ s0(2logs] + [logo] +4),

and thus
80 < |r| € 1230 log s0. (3.6)

Since T’ is finite, Theorem 3.1.2 applies, and the class of DFAs is PAC-learnable if it has a
length-based Occam algorithm. We show the converse holds, resulting in the following charac-

terization.

Theorem 3.5.1 The class of DFAs is PAC-lesrnable if and only if there ezists a randomized
polynomial-time (length-based) Occam algorithm for the class.

Proof: It suffices to show that a PAC-learning algorithm for DFAs implies the existence of
an Occam algorithm. The proof is nearly identical to the proof of Theorem 3.3.1, but because
DFAs do not seem to be strongly polynomially closed under exception lists, we need a more
careful analysis. We first define a procedure EXLIST that witnesses polynomial closure under
exception lists for arbitrary DFAs and strong polynomial closure for DFAs over any fixed fiLite
alphabet E.

Let the representation r encode 8 DFA M = (Q, £, 4, go, F), where Q is the finite set of
states, T is a finite alphabet, § is the state transition function, go is the initial state of M, and
F C Q is the set of accepting states. Let |Q| = s. Let E be a finite set of strings of length at
most n. Then EXIIST(r, E) is the encoding of the DFA Mg that accepts L(M) ® E and is
constructed as follows. Mz contains as a subautomaton the DFA M plus some additional states
and transitions. Mx has a new start state g, and for each string w € E there is a deterministic
path of new states beginning at g, labeled with the characters of w. (The union of all such paths
forms a tree.) The last ztate of the path will be an accepting state if M rejects w, otherwise it

'In the case that ane or both of s snd ¢ is 1, the upper bound on |r| of (3.6) must be sdjusted slightly. We
omit this adjustment in whas frilows for clarity of presentation.

27

37

is a rejecting state. The other states in the path will be accepting or rejecting states depending
on whether the string corresponding to the state is accepted or rejected, respectively, by the
original machine M. Each new state of Mg is thus uniquely associated with a prefix of some
string of E. If p is a new state of Mg associated with some prefix v’ of w € E, and if fer
some a € I, w'a is not a prefix of any string in E, then we must indicate the state to which
the transition from state p on input @ leads. In this case, the transition leads back to the
appropriate state of the original machine M; i.e., (p, 2) = §(go, w'a).

The number of new states is at most n|E|+1, and thus the number of states in Mg is at most
s + n|E| + 1. Consequently, if the representation rg encodes Mg, we have by inequality (3.6)

lrg] € 12(s + n|E| + 1)olog((s + n|E| + 1)7).

Clearly EXLIST may be implemented to run in polynomial time. Further, if o is treated as a
constant, then by using the fact that |r] > so, polynomials p; and p; are easily found such that

Ire] < p1(m, Ir|, 1o {E|) + pa(n, log |7}, log | E])| E|.

Thus for any fixed alphabet T the class of DFAs over T is strongly polynomially closed
under exception lists. However, if we do not require T to be fixed, then 7 is not a constant and
|rg| is not expressible in the desired form due to the term n|E|o.

Let L be a PAC-learning algorithm for DFAs, with polynomial run time pr, and let a > 3
be a constant such that for all n,s,c > 1, and for all e and ¥ such that 0 < ¢,y < 1,

pr(m, 12swlogso, 2, 7)< 3 (o).

We will show that algorithm O (as in Figure 3.1, with constant a defined as above) is an
Occam algorithm, with polynomia po and constant a < 1 to be determined later.

Let the DFA that r encodes have s states and an alphabet of & symbols. Then in step 1 of
algorithm O, the output »’ of L satisfies

' 11
l"’i < PL(“’"”:’;)

11
< pr(n,12sclogso, - ;)
nso a
< "a- (_) .
28
35

.

The number of states in the DFA that »’ encodes is at most |*'| and thus the number of
states in the DFA encoded by r output in step 3 is at most |r'| + n|£| + 1. Consequently, by

inequality (3.6),

Il < 12 (-g- (-—";—’)' +nlE| + 1) olog ((-} (%)" +nlE| + 1) o‘) .

By the same reasoning as in the proof of Theorem 3.3.1, inequality (3.2) holds with proba-
bility at least 1 — v; substituting for ¢ and | E], it follows that .

lrel € 12 (g (%)cmﬁa +nm*o + a) log (g (_"s";). m* o + nmeH o + a')

a4+l o+l
< 12a (ﬂ) maT log (a (ﬂ) m#l') .
v Y
By algebraic simplification, it is easily shown that there is a constant ¢, such that

a+2
Irgl < e (-’”—E) mict,

7

The constant c, is chosen so as to absorb other constants arising in the simplification, and such
that for all m > ¢4, logm < mT5T, Since [r] 2. so, for constant a = %{-} and for some polyno-
mial po we have |rz| < po(n, }r],-};)m", completing the proof that O is an Occam algorithm. J

3.8 Discussion

Results in [11] and [12] show that the existence of Occam algorithms is sufficient to ensure
that a class is PAC-learnable. In a sense, this means that if there is an algorithm that, for
any concept in the class, can compress the information about the concept contained in any
finite sample of that concept, then the class can be learned. We have proved that not only
are randomized Occam algorithms a sufficient condition for learnability, but they are in fact
a necessary condition for classes that are closed under exception lists. Thus he existence of
randomised algorithms exactly characterises PAC-learnability for a wide varicty of interesting
representation classes. For such classes, learning is equivalent to information compression, in
the sense just described.

29

Extensions

The definitions of closure under exception lists in Section 3.2 require that there exists an
algorithm EXLIST that, when given as input a representation r € R and a finite set E, outputs
a representation rg € R such that ¢(rg) = ¢(r) ® E. This condition is, however, stronger
than necessary to prove Theorems 3.3.1 and 3.4.7. These proofs rely only on the fact that the
class is closed under exception lists with respect to a finite sample: It is only necessary that
EXLIST output a representation rg such that c(rg) N strings(M) = (c(r) ® E) N strings(M);
that is, such that ¢(rs) and c(r) @ E agree on all strings in a given finite sample, though not
necessarily on all strings in the domain. The definitions in Section 3.2 are presented because
they seem to be more natural properties of representation classes. However, since the weaker
definitions of closure are also sufficient to prove the existence of randomized Occam algorithms,
it is possible to show that such algorithms exist for a wider range of representation classes than
satisfy the hypotheses of Theorems 3.3.1 and 3.4.7. (In particular, when concepts are defined
over cnntinuous domains this weaker closure property should be much easier to satisfy.)

An example of such a class is the class of unions of axis-aligned rectangles in the Euclidean
plane, which appears not to be closed under exception lists as defined in Section 3.2. This class
is, however, polynomially closed under exception lists with respect to finite samples, and is thus
learnable if and only it admits a dimension-based Occam algorithm. This can be seen as follows.
A positive exception can be added to any concept in the class by adding to the union a rectangle
that includes the exception, but is small enough to exclude each of the negative examples in
the sample. To handle negative exceptions within some rectangle, for each such exception draw
narrow horizontal and vertical bands which form a cross and include the exception in the center.
The bands should be narrow enough so that no positive example in the sample is included in
both the same vertical band and horizontal band as the exception. Then take the union of all
of the vertical regions bounded by the vertical bands and all of the horisontal regions bounded
by the horizontal bands. This new union (of a number of rectangles linear in the number of
exceptions) covers everything except a small box around each exception.

Recall from Chapter 2 the notion of learning one representation class R = (R,I,¢,Z) in
terms of another representation class R’ = (R',I", ¢, Z) (originally introduced in [61])). Under
this definition, a learning algorithm for R is required to output hypotheses in R’, rather than

30

R (of course, R' may be a superset of X). Several interesting representation classes that are
not PAC-learnable have been shown to be learnable in terms of other classes (see, for example,
[1, 36, vl]). One may generalize the notion of an Occam algorithm to that of an Occam
algorithm for a class R in terms of another class R’ in a straightforward way. Analogues of
Theorems 3.1.2 and 3.4.6 prove that the existence of an Occam algorithm for R in terms of R’
implies that R is PAC-learnable in terms of R’.

The results of Theorem 3.3.1 and Corollary 3.3.2 can also be extended to the case of learning
R in terms of R'. The definit’'on of closure under exception lists is adjusted so that EXLIST,
when g 7en as input r € R and a finite set E C Em,mtputsarqmentationr's € R' such
that c'(rg) = c¢(r) @ E. It is then easily shown that if a class R is strongly polynomially closed
under exception lists in terms of a class R/, then the existence of a PAC-learning algorithm for
R in terms of R’ implies the existence of an Occam algorithm for R in terms of R'. It is not
known whether Theorem 3.4.7 and Corollary 3.4.8 can be generalized in this manner.

As defined in Chapter 2, a representation class R is polynomially predictable if there exists
some representation class R’ with a uniform polynomial-time evaluation procedure (i.c., an
algorithm EVAL as defined in Chapter 2) such that R is PAC-learnable in terms of R’. If
there is such a class R’, then there is also a class R” that is strongly polynomially closed
under exception lists, and such that R is PAC-learnable in terms of R”. (The concepts of
R" are simply the concepts of R’ augmented with finite lists of exceptions. Clearly R” is
strongly polynomially closed under exception lists, and since R” contains all concepts of R/, R
is PAC-learnable in terms of R"”.) Thus, by the analogue of Corollary 3.3.2 just discussed, R
is polynomially predictable if and only if there exists a randomised polynomial-time (length-
based) Occam algorithm for R that can output as its hypotheses the concepts of any class with
a uniform polynomial-timpe evaluation procedure.

Related Work

Schapire [70] has proved a significantly stronger compression result in the particular case of
polynomial predictability in discrete domains. He shows that if a class R over a discrete
domain is polynomially predictable, then there is a polynomial-time algorithm that, given any
finite sample of a concept in R, outputs a description of the sample that has size at most
polynomially larger than the smallest possible consistent description.

31

41

Schapire also considers the notion of weak predictability. A class is weakly predictable if
there exists a learning algorithm that will, with high probability, produce a hypothesis that is
correct only slightly more (by an inverse polynomial) than half of the time. He then proves the
surprising result that if a class is weakly predictable then it is also polynomially predictable
under the regular PAC model. Thus by his result above, it follows that in discrete domains a
class is we.kly predictable if and only if it has a randomized polynomial-time Occam algorithm.
By combining our observations above with his result that a class is predictable if and only if
it is weakly predictable, we can obtain the same result for continuous domains as well. These
results demonstrate a relationship betwsen two seemingly quite disparate properties of a class of
representations: If there is an algorithm that can learn a hypothesis that is only slightly better
than random guessing, then there exists another algorithm that can find small hypotheges
exactly consistent with finite samples from the class.

The notion of an Ocecam algorithm can be relaxed to that of an approzimate Occam algo-
rithm. More formally, define a randomiged polynomial-time (length-based) approzimate Occam
algorithm (RPTLBAOA, pronounced “reptile-boa”) for a representation class R = (R, I, ¢, X)
to be a randomized algorithm that, when given a finite sample M of some representation r € Rl
and parameters €,7 < 1, and s, outputs in time polynomial in n, s, |M l,_-:-, and ,-t- a representa-
tion » € R such that with probability at least 1 — v, »' is consistent with at least (1 — ¢)m of
the examples of M, and such that |r'| < po(n, |r|, 4, 2)m®, where m is the cardinality of M, po
is some fixed polynomial, and & < 1 is some fixed constant. Thus a RPTLBAOA is identical
to a length-based Occam algorithm, except that rather than finding a consistent hypothesis,
the algorithm is allowed to find a hypothesis that is approzimately consistent; the hypothesis
may err on ¢ of the sample. Implicit in [45] is a proof of the following generalization of The-
orem 3.1.2: If a class of concepts R has a RPTLBAOA, then the class is PAC-learnable. It
is a straightforward observation that the converse holds, i.e., that if a class is PAC-learnable,
then it has a RPTLBAOA. This converse holds regardless of whether the class is closed under
exception lists. Thus, the resuits of [45] implicitly show that PAC-learnability is equivalent to
the ability to find small approzimately consistent hypothzses for a sample in random polynomial
time.

Another result concerning data compression and PAC-learning is due to Sloan [71]. Sloan’s
result demonstrates that regardless of the class, PAC-learnability implies the ability to find

32

exactly consistent hypotheses from the same class that are slightly compressed. In particular,
he shows that if a class is PAC-learnable, then there is a constant k and an algorithm O such
that for sufficiently large m and n, if O is given as input any sample of cardinality m of examples
of length at most n, then O will output with very high pzcbability a hypothesis that is consistent
with the sample and that has size at most (1 —n~*)m. This slight compression does not appear
to be enough to guarantee PAC-learnability, whereas the compression by more than a linear
amount that is guaranteed by Occam algorithms (and by Schapire’s result) is sufficient.

It is interesting to note the similarity between samples of concepts from classes for which
there exist length-based Occam algorithms and strings with low Kolmogorov complexity ([52];
see [2, 53] for more recent results). For each there exists a short algorithm that encodes the
information contained in a longer string of characters.

Other Implications

Suppose that, for some class of representations R that is closed under exception lists, there is
an algorithm L that is a learning algorithm for R provided that the probability distribution
assigns nonzero probability only to a finite nnmber of. strings in the domain, and assigns the
same nonzero probability to each such string. Note that the construction of the algorithm O
in Section 3.3 only requires that the learning algorithm wo:k for uniform distributions over
finite samples, Thus the existence of L is sufficient to construct a randomized polynomial-time
Occam algorithm for R. This in turn implies that R is PAC-learnable. Hence for many natural
classes, in order for the class to be learnable under arbitrary probability distributions over the
entire domain (PAC-learnable) it is only necessary that the class be learnable under uniform
distributions over finite subsets of the domain. This observation is due to Manfred Warmuth.
Consider classes of representations R = (R, T, ¢, T), not necessarily closed under exception
lists, with the following property: R = U,R,, where each r € R, is defined over examples
of length n only. (Representation classes of Boolean formulas typically have this structure.)
Suppose further that there exists a polynomial p such that for all n and all » € R, Ir| <
P(n). We say that such a class is polymomially size-bounded. A number of restricted classes of
representations are polynomially size-bounded, including k-decision-lists, k-term DNF formulas,
k-clause CNF formulas, kDNF formulas, and kCNF formulas, where & is any constant. (General
DNF formulas are not polynomially sise-bounded.) For any polynomially size-bounded class

33

43

R, if R is PAC-learnable then the size of the hypothesis output by the learning algorithm
L is always bounded by p(n). Thus for any finite sample M of m examples, if L is given as
input examples from M, drawn randomly according to a uniform distribution, and the accuracy
parameter € of L is set to a value less than 2, then with probability at least 1 ~¢& L will output a
hypothesis of size polynomial in n that is consistent with M. This is a randomized polynomial-
time (length-based) Occam algorithm for R. Thus for any polynomially size-bounded class,
even if it is not closed under exception lists, learnability is equivalent to the existence of a
randomized (length-based) Occam algorithm.

Currently, all resnlts known of the form “R. is not PAC-learnable unless RP = NP” rely on
certain syntactic restrictions on the class R [62]; such results rely on a proof that it is NP-hard
to determine whether there exists any hypothesis from the class R that is consistent with a
given finite sample. This technique cannot be applied to show the intractability of learning any
class that is syntactically rich enough to allow the expression of disjunctions of singletons, since
in this case a consistent hypothesis for any sample is easily obtained. Consequently, the non-
PAC-learnability of DNF or DFAs cannot be proved in this manner. Our results may provide
a new technique for proving nonlearnability results that rely only on the assumption that RP
4 NP. For example, in Section 3.5 we showed that the elass of DFAs is PAC-learnable if and
only if it admits a length-based Occam algorithm. Such an Occam algorithm would provide a
very weak approximate solution to the minimum consistent DFA problem; partially negative
results in this regard have been demonstrated [64] which, if extended appropriately, would show
that no Occam algorithm for DFAs is possible, and consequently no PAC-learning algorithm
for DFAs is possible unless RP = NP.

An obvious open problem is to determine whether Theorems 3.3.1 and 3.4.7 can be proved
using weaker conditions than closure under exception lists. The exception list property is
satisfied by any class that (1) contains all singleton concepts, and (2) is (polynomially) closed
under set union and subtraction. It would be of interest to determine if either of these conditions
can be dropped. In particular, classes such as DNF admit union (via disjunction) but do not

2In the case of DFAs, Kearns and Valiant [48] (see also [44]) show nonpredictability based on numbez-theoretic

and cryptographic asswanptions thas are osicnsibly stronger than the widespread complexity-theoretic sssumption
that the classes RP and NP are different.

4

appear to admit set difference; thus they do not appear to be closed under exception lists, Is
the PAC-learnability of DNF equivalent to the existence of an Occam algorithm for DNF?

35

4 SEMI-SUPERVISED LEARNING

In this chapter we ask whether it is possible to learn with less information than is provided in
the standard PAC-learning model - without a teacher labeling examples of each concept to be
learned as positive or negative. Further, we consider the problem of simultaneously learning a
collection of concepts, instead of just a single one.

There are (at least) two sitnations that we might wish to model that involve learning in an
environment with no teacher and many concepis to be learned. One is to assume that there are
1n0 & priori underlying concepts against which the learner is to be evaluated, and that the goal
is to partition the examples in a manner consistent with some predetermined criterion. This
approach is traditionally known as clustering, or unsupervised learning, and has been studied
extensively [3, 17, 24, 34, 69].

The other approack, which is undertaken in this chapter, is to assume that there are in
fact specific concepts to be learned, yet there is no teacher labeling each element as to its
concept membership. In this case, the criterion of success is how well the .earned concepts
approximate the correct underlying concepts. Of course, in the absence of enyinformation about
the underlying concepts, and without a predetermined criterion for measuring the suitability
of a clustering, the learning task is impossible. If, on the other hand, there is a teacher who
labels each element with its corresponding concept name, then (for any reasonable definition
of concept learning) the simultaneous (supervised) learning of a disjoint collection of concepts
trivially reduces to separate instances of learning individual concepts. For each concept, the
positive examples will then be the members of the concept, and the negative examples will be
members of the other concepts.

We strike a compromise between these two extremes, and investigate the simultaneous
learnability of a collection of concepts in a semi-supervised manner, i.e., with partial information.
Rather than assuming that concept labels are given, we assume instead that there is an oracle
that, upon request, will randomly and independently choose two examples according to an
unknown probability distribution over the domain snd tell the learner whether or not the two
examples belong to the same concept. A possibie intespretation or justification of such an oracle

46

[}

is a learning environment in which the learner is able to occasionally and randomly notice that
two examples ought to be classified together (or apart), yet does not necessarily have the ability
to relate these two examples to other examples previonsly seen, or likely to be seen.

If there is only one concept to be learned, then the problem is closely related to a form
of concept learning in which the teacher, rather than providing randomly chosen positive and
negative examples, instead answers whether two randomly chosen examples are of the same type,
i.e., both positive or both negative, without telling which is the case. Thus the learnability of
a single concept in a semi-supervised manner is an interesting question itself, as it explores the
boundary of the amount of information that is necessary for concept learning. It would seem
that if, in addition, the examples were from many different concepts to be learned simnltaneously
in a semi-supervised manner, then the learning problem would be significantly more difficult.

We show that in fact for a wide range of representation classes R (in which concepts are
represented by of Bool=an formulas) known to be PAC-learnable, and for every constant ¢ > 0,
any collection of ¢ disjoint concepts defined by formulas of R is learnable in a semi-supervised
manner (ss-learnable) in polynomial time.

Sufficient conditions are also given for the ss-learnability of representatior classes of finite
Vapnik-Chervonenkis dimension. In particular, it is shown that if R has finite VC-dimension
and R is learnable from positive examples only, then any collection of ¢ disjoint concepts from
R can be ss-learned in time polynomial in ¢.

Of particular interest is a new technique of learning an intermediate oracle. Many repre-
sentation classes wonld be ss-learnable if we were to assume the existence of an oracle that,
when asked about two examples, tells ns whether or not they are examples of the same concept.
We do not, however, wish to assume the availability of such an oracle. Since we have access
to pairs of examples labeled as to whether or not they are in the same concept, in many cases
we can use these examples to learn a concept description that will imitate the desired oracle
quite accurately. We call this concept description an intermediate oracle. Once learned, the
intermediate oracle can be used in place of a “real” oracle. We expect that this technique will
prove useful for other learning problems.

The rest of this chapter is organised as follows. In Section 4.1 we review the necessary
background and define ss-learnability. Section 4.2 gives an algorithm for polynomial-time ss-
learning of monomial concept classes. Section 4.3 gives sufficient conditions for ss-learnability

37

which, in Section 4.4, are used to prove the ss-learnability of other classes of Boolean formulas.
In Section 4.5 the ss-learnability of a concept class is related to the VC-dimension of the class
and additional sufficient conditions are given. In Section 4.6 an ostensibly different definition
of ss-learning is given and shown to be equivalent to that of ss-learnability.

4.1 Notation and Definitions

For each n 2 1, let X,, = {z3,23,-.-,2n} be a set of n Boolean variables. Define a fam-
ily of Boolean formulas to be a representation class F = (F,T',¢,Z) where © = {0,1}, T =
{A VY, (5)s21,22,.. .}, and F is a set of Boolean formulas described by strings of characters
in I in the obvious way. For any n > 1, let I', € T’ denote the set {A,V,~,(,),21,22,...12n}
and F, € F denote the set of formulas in F that contain only symbols in I',. For each f € F,
f represents the concept ¢(f) = {z € {0,1}*: f(z)=1}. !

As mentioned in Chapter 2, we occasionally write f in place of ¢(f) when the meaning
is clear from context. Similarly, the word “formula” is sometimes used to denote *“concept
represented by the formula”.

We now naturally extend the definition of PAC-learning to the ss-learning of ¢ disjoint
concepts. Let t € IN. Let F = (F,I,¢,I) be a family of Boolean formulas, and for some n
let fi,f2..., ft € F,, be pairwise disjoint (i.e., the sets of satisfying assignments of the f;’s are
disjoint). Let D be any probability distribution on {0,1}" such that

D(Uias fi) = 1. (4.1)

Thus the only elements that may occur when sampling from D are those which satisfy one (and
hence exactly one) of the f;’s.

Let LABELED-PAIRSp 4,.4..,5; e an oracle that, when called, randomly and indepen-
dently chooses two elements z,y € {0,1}” according to the probability distribution D and
returns (z, y,sanze) if, for sozae 4, z and y both satisfy f;, or returns (2, y,different) if z and y
satisfy d:iﬂ'mt fornmlzs in {fy, f2..., ft}. When D and fi, fa..., f; ave clear from context,
we omit the subscripts and write only LABELED-PAIRS.

1Thus c(f) contains sixings of length n or more. In particulaz, for any string = of length n in c(f), all strings
that have = as a prefix are also in c(f). We will restrict the probability distribution D in the definition of semi-
supervised learning g0 that D(z) == 0 for all s not of length exnctly n; thus in any particular leaming problem
only strings of length n are considered.

A U TN .
oA

An alternative definition would permit D to generate examples that are not in any of the
Ji's. F~wever, it is then more difficult to find a natural definition of LABELED-PAIRS. (It is
not <lear how a pair (2, y) should be labeled if one or both elements are not in any concept f;.)

In crder to define the learning of a collection of ¢t formulas F = {fy, fa..., f;} in a semi-
supervised manner we need to measure the error of a collection of u formulas ¢ = {g1,93..., 9.}
with respect to 7 and a given distribution D. The definition is obtained by the following
intuitive consideratiomns: Ideally, u = ¢ and there is a correspondence between elements of
g and F such that each g; is an approximation of some unique formula f;. However, it is
conceivable that more or fewer than the true number of formulas are learned, and thus there
may be no correspondence between some of the formulas in § and some of the formulas in F.
Let 0’ C G be the set of those formulas in g for which there is in fact a corresponding formula
in F. We measure the error of ¢ in the following way: A string z € {0, 1}" is an error point if
any of the following conditions hold.

Error-1 z is not in any g; € ¢’. The intention is that G’ contains the relevant learned formulas
— those corresponding to the underlying formulas in . Thus any point falling outside
of the region UG’ should be counted towards the error.

Error-2 z is in the symmetric difference of some g; € §’ and the corresponding f;. This counts
as error any discrepancy between a learned formula and the corresponding underlying
formula that it is intended to approximate.

Error-3 = is in the intersection of two different concepts in . This prohibits excessive overlap
among the learned formulas,

To formally restate the above regions of error, let I : §' — F be an injection mapping
learned formulas in ¢’ to their corresponding underlying target formulas in F. Then

e FE1 :W
o B2 =}, co(9: ® I(g;))

o E3 = Uy, g e0.40i(8 N 95)

Note that these regions might more accurately be denoted by E71, E12, and E'3, since they
depend on the injection I. In order to simplify notation the superscripts are omitted.

39

49

Now we may define how closely a finite collection § of formulas approximates a finite col-
lection F of formmulas.

Definition 4 1.1 Given F = {fi, fs....ft}, § = {91,93...19u}, and & distribution D on
{0,1}" satisfying equation (4.1), then G is e-close to F if there ezists a subset §' C § and an
snjection I : §' — F such that

D(E1U E2U E3)< e

The motivation for counting the regions E1 and E2 as error associated with § should
be cl.ar. The purpose of region E3 is to preclude the possibility of making § so large that
the difficulty in the learning problem becomes determining the subset ¢’ that has the desired
properties. For example, if the third error component was omitted, any family F of formulas
could be ss-learned (as defined below) by simply setting § = 2{%3}" 5o that § contained formulas
representing every possible concept over n variables. Limiting the amount of overlap among
the concepts of G appears to be the best of a number of possible solutions to this problem.

Finally, the following. definition of ss-learnability essentially parallels that of PAC-learnability,
except that the information available to an ss-learning algorithm consists of LABELED-PAIRS,
and the algorit.hm is required to output a collection of formulas that is ¢-close to the un-
derlying collection of formulas. For any collection of formulas F = {fi, fa,..., fi}, define
MAXSIZE(F) = |f;| such that for all § < ¢, |fi] 2 |f;l. (Thus MAXSIZE(F) is the size of the
largest formula in F.)

Definition 4.1.2 The family F = (F,T, ¢,) of Boolean formulas is ss-learnable (learnable in
o semi-supervised manner) if for each t € IN there ezists an algorithm A and polynomial p such
that for all n, s > 1, for every disjoint collection F = { };, f2..., ft} C F, with MAXSIZE(F) < s,
for any probability distribution D on {0,1}" satisfying equation (4.1), and foralle,6 > 0, if A is
given as input the parameters €, §, and s and may access the oracle LABELED-PAIRSp 4 4.0/
then in time p(n,s,1,}) A outputs a collection {g1,91...,9u} C F, that, with probability at
least 1 - 8, is e-close to {f1,fa..., t}. Such an algorithm A is an ss-learning algorithm for the
class F.

Note that uhis definition does not require that the learned formulas be disjoint, even thoug .
the formulas that they approximate are disjoint. However, any area of overlap among the

40

v
»

learned formulas contributes towards the allowable error (region E3). Similarly, the union of
the learned formulas is not required to exhaust the instance space, but any region that is in
one of the original formulas but in none of the learned formulas is counted towards the error
(region F1).

Noie also that we allow the algorithm to depend on the number of formulas ¢ to be learned.
In particular, the run time need not be polynomial in t. Of course, it would be preferable
to have an algorithm that always runs in time polynomial in #, but we have not been able
to extend our results in this manner. This is similar to the problem of PAC-learning where
for many concept classes {e.g. DNF'), although it is not known whether the class as a whole
is PAC-learnable, positive learnability results have been found for subclasses in which some
measure of the concept size is assumed to be bounded by a constant (e.g. X\DNF).

4.2 Semi-supervised Learning of Monomials

In this section we assume that the formnlas to be learned are monomials m;,m;..., m; over
n variables. We show that, given access to randomly generated pairs of strings from concepts
defined by monomials, labeled only as to whether or not they are members of the same con-
cept, we can learn monomials that accurately describe the concepts in polynomial time. In
Sections 4.3 and 4.4 we generalize the techniques to ss-learn other collections of formulas.

Theorem 4.2.1 Let F be the family of monomials. Then F is ss-learnable.

The general idea of the proof of Theorem 4.2.1 is as follows. Suppose we have an oracle that
can tell us, for any pair of n-bit strings z and y, whether = and y are in the same concept, i.e.,
satisfy the same monomial. Then we can learn a collect.on ¢ of monomials that satisfies the
definition of ss-learnability. This can be done by collecting enough individual points, say m of
them (obtained by m/2 calls to LABELED-PAIRS), to ensure that, with high probability, we
have at least one representative from each monomial of significant weight with respect to the
distribution. Then, using our assumed oracle, we can query each of the (7) pairs of these points
to see which of them are in the same concept, and use the results to build eqnivalence classes.
We can then use the m points as examples (positive or negative, depending on the particular
concepi) with which to leamn the monomials defining membership in the particular concepts.

41

Thus m must also be large enough so that, with high probability, the learned monomials are
sufficiently accurate.

We don't have such an oracle; what we do have is LABELED-PAIRS, which can give us
same and different labels, but only for randomly generated pairs of points, not for requested
pairs, We cannot just wait for the pairs that vge’reinterutedintobegmmed,sinceDmay
be such that this would take exponential time. In order to get around this problem we learn an
oracle from the examples of sameness and differentness supplied by LABELED-PAIRS. Again,
it might take too long to learn an oracle that responds correctly on all possible inputs; we
instead learn an approzimate oracle, and guarantee that the approximate oracle is accurate
enough so that, with high probability, it will be correct on each pair of points in our sample
of size m. (We call such an oracle an intermediate oracle, as it is not supplied to the learning
algorithm; instead, it is constructed and used by the learning algorithm as an oracle enabling
a solution of the proper form to be discovered.)

Deflnition 4.2.2 For any collection of mcaomials my,...,m; over the variable set X,, (i.e.
monomials in F,), the concept SameConcept{(my,...,m¢)) C {0,1}°" is the set of all binary
strings of length 2n such that the first n-bit substring and the second n-bit substring are in
the same monomial concept; i.e., if = and y are n-bit strings and their concalenation zy €
SameConcepi({m,,...m,)), then for some i, 1 < i< t, 2 € m; and y € m;. When clear from
contezt, we omit the argument (m,,...,m;) and refer io the concept as SameConcept.

Note that the oracle LABELED-PAIRS p m, m,...m, i8 & generator of positive and negative
examples for the concept SameConcept({r=;,...,m:)) (with product distribution D? : X;, — R
defined by D?(z) = D(2)D(y), where z = zy).

Define the set of concepts Cg = U,{SameConcept({m;,...,m¢)): my,..., m; are monomials
over the variable set X,,}. Consider the concept class (Cs, Z°).

Lemma 4.2.3 There is o representation class S for (Cg,I*) that is PAC-learnable in terms
of tCNF.

Prooff Let z and y be n-bit binary strings, and let z be their concatenation, zy. Suppose
that z € SameConcept((my,...,my)). Then 2,y € m; for some i < ¢, For each i < ¢, let the
monomial {over 2n bits) m] be defined such that for all j < n,

(25 € M) A (Znsj € M) @ 25 € My

42

[~
T
(2

and
(%5 € M) A (Znsj € m)) & 2; € ms.

Thus z must satisfy m]. In fact, the strings that satisfy m! are exactly those strings that are
concatenations of pairs of strings that both satisfy m;. Thus the set of pairs of strings that are
in the same concept is the set of strings whose concatenations satisfy the t-term DNF expression
m}vm}V...vml. This means that the pairs of points that are in the same (different) concept
are the pairs whose concatenations are positive (negative) examples of a t-term DNF expression
over 2n variables. Lzt S be the representation class of £-term DNF formulas. Then any concept
in Cs can be represented as a formnla of S. Although for each 2 > 2 it is NP-hard to learn an
e-accurate t-term DNF expression from examples [61], ¢-term DNF is PAC-learnable in terms
of tCNF (Theorem 2.0.2). Hence S is learnable in terms of tCNF. O

Thus we can obtain (with probability at least 1 — §) a tCNF expression that is e-accurate
for mj V...V m} in time polynomial in 1,2, and . The tCNF expression will be used as an
oracle SC for the concept SameConcept in the learning algorithm given below.

Definition 4.2.4 Foranygq, 0 < ¢ < 1, a g-significant concept (or monomial) m; € {m,,...,m;}
is one for which D(m;) > q. Elements of {m;,...,m} that are not g-significant are g-
insignificant.

Note that

t
D U m) <) D(m;) < Z: 5 = (4.2)

m; is ¢/2¢ -insignificans m; is ¢/2¢ -insignificant i=
The ss-learning algorithm is sketched in Figure 4.1.

N m

Theorem 4.2.5 Let the variable m in the Monomial ss-Learning Algorithm be such that

2P

where p; is the (polynomial) time bound on the algorithm for PAC-learning a monomial of n
variables with accuracy parameter % and confidence parameter £. Then the Monomial ss-
Learning Algorithm is an ss-learning algorithm for the class of monomials.

2t 4¢
m= m{?lnT,p:(n,

o |
()

Monomial ss-Learning Algorithm

1. Use LABELED-PAIRS to learn, with probability at least
1—4, an oracle SC for SameConcept that is giy-accnrate. A
leunmgalgonthmmﬁubylmmaéz.a The time taken is

at most p1(2n, 23,), wheze py(n, 3,) is the (polvnomal)
ﬁmenndedtohamamexpmonof variables wi

accuracy ¢ and confidence 4.

2. Make 2 calls to LABELED-PAIRS to obtain, with probabil-

ity at least 1—4, an m-sample (a sample of sise m) containing
at least one element from each y-significant monomial.

3. Use SC to divide the m-sample into equivalence classes in
the obvious way.

4, For each equivalence class, label the m-sample accordingly
and run an algorithm for PAC-learning monomials, with ac-
curacy and confidence parameters & and %, respectively.
Whenever the algorithm requests an example, give it the first
unused example from the m-sample. Each monomial output
by the learning algorithm is output as a concept description.

Figure 4.1: Algorithm for ss-learning monomials

Clearly Theorem 4.2.1 follows from Theorem 4.2.5. To prove Theorem 4.2.5 we need the
following definition and lemmas.

Definition 4.2.8 4 good run of the Monomial ss-Learning Algorithm is one in which
(A) The oracle 5C learned in step 1 is in fact o 3z -approzimation of SameConcept;

(B) The m-sample obtained in step 2 does have at least one element of every £ -significant
monomial in {my, m3,...,m};

(C) In step 3, SC makes no mistakes in dividing the particular m-sample into equivalence
classes; and

(D) Each learned monomial concept from step 4 of the algorithm is in fact an 5;-approzimation
of the (real) monomsial that covers the elements of the equivalence class labeled as positive
ezamples.

|9 |
Nea

Lemma 4.2.7 Let M = {my,m3...,m;} be the collection of disjoint monomials to be learned.
If a good run of the Monomial ss-Learning Algorithm occurs, and § is the set of monomials
produced, then § is e-close to M.

Prooft Set ¢’ (as described in Definition 4.1.1) equal to §. Let I be the injection mapping
each learned monomial g € ¢’ to the (real) monomial of MM that is consistent with the labeling
of the m-sample that was used to learn g. (By (C), there is exactly one such monomial.) Since
g' = ¢, and since eachz.snch that D(z) > 0 is in exactly one m; € {m;,m3...,m;}, then for
any i, j such that g; and g; are in ¢’ and § # j,

zEgGNg =>2€g0I(g)V=zeEg;dI(g;)

E3= |J (mng)C | (5o I{g)=E2
ﬁrﬂjegﬁﬁj htd

so to show that §’ is e-close to M it suffices to show that
D(E1UE2)<e.
By (D), for each ¢ € §', ¢ ® I{g) < £, and since there are at most ¢ elements of ¢/,

DE2)=D(|J g:®I(g:)) <t
gi€s’

oim

£
2
To show that §’ is e-close to A1, it thus suffices to show that

D(E1-E2) < (4.3)

im

By equation (4.2), equation (4.3) is true if
E1 - E2 C | J{m; : m; is ¢/2t—insignificant}, (4.4)

which is true if
E1 n | J{mi : m; is ¢/2t—significant} C E2. (4.5)
To see that containment (4.5) holds, note that if 2 € m; and m; is £-significant, then by
(B), there is some g € O’ such that I{g) = m;. F 2 is also in E1 = U, then z ¢ g, 50
zcg@I(g) C E2. o

45

91
(o |

Lemma 4.2.8 Let SC be o 3iy-approzimation of SameConcept (with respect to the produci
measure D?). If we randomly generate m points (from 3 calls to LABELED-PAIRS), then
with probability at least 1 — £, SC will correctly classify each of the (7) pairs of points as to
sameness and differentness.

Prooff Let SChea ;f-‘,-appmximationof SameConcept, and thus ,—'f-.raccmte with respect
to the oracle LABELED-PAIRS. Consider any m-sample generated randomly from Z calls to
LABELED-PAIRS. Number all of the pairs of poiuts in the m-sample from 1 to (7). For
each i from 1 to (7), let % be the probability that the cracle SC is wrong on the itR of
the (7) pairs. Since, for any m-sample, each permutation of the m points is equally likely,
(Vi,7 € (7)) % = ;- In particular, (Vi < (7)) 7i = 71. Note that v; is the probability that
a m‘f,-accurate oracle SC is wrong on the first pair. Thus the probability that SC is wrong on

(3) P
Y= (3)ns (3)mm <t

=1

some pair is at most

Lemma 4.2.9 Ifm is as in the hypothesis of Theorem 4.2.5 then the probability of a good run
of the Monomial ss-Learning Algorithm is at least 1 — §.

Prooft Let A,B,C, and D represent the events that (A), (B), (C), and (D) (as given in
Definition 4.2.8) occur respectively. The probability of not obtaining a good run is then

Pr(A)+Pr(ANE)+Pr(AnBNnT)+Pr(AnBnCND).
Then
o Pr(7) is at most £, by the definition of PAC-learnability.

» By hypothesis, m > #1n ¥, thus the probability that B fails to occur, i.e., that some
4-significant monomial does not have a representative in the m-sample, is at most

f1-)¥e¥ < %.
Hence Pr{ANTE) < Pr(B) < §.

46

» By Lemma 4.2.8, the probability that (C) fails to occur given that (A) occurs is at most
§,thus P(AnBnT) < Pr(4AnT) < Pr(T)4) < §.

o Given that 4, B, and C occurred, the probability that a particular learned monomial has
error more than f is at most £, by the definition of PAC-learnability and the fact that
each time one of the monomial learning algorithms requested an example it was given an
example from the m-sample that was generated randomly according to D. Because m
is at least as large as the time bound on the monomial learning algorithm, no algorithm
requested more than m examples. Since there were at most ¢ monomial equivalence
classes obtained from the m-sample, the probability that (D) fails to occur, i.e., that
some learned monomial has error more than 3, is at most £. Thus Pr(ANBNCNnD) <
Pr(DlAABAC) < §.

Thus the probability of not obtaining a good run is at most § +§ + § + § = 4.]

To complete the proof of Theorem 4.2.5 (and hence the proof of Theorem 4.2.1), note that by
Lemma 4.2.9 the probability is at least 1~ & that a good run occurs, implying (by Lemma 4.2.7)
that the set of monomials output by the Monomial ss-Learning Algorithm is e-close to the set
of monomials .to be learned. O

4.3 A Sufficient Condition for ss-Learning

In the proof of Lemma 4.2.3, the pairs of n-bit strings that were generated by LABELED-
PAIRS were concatenated into a single 2n-bit string. It was then shown that the representation
class corresponding to pairs labeled as “same™ was learnable in terms of tCNF. Notice that all
that was in fact required was that the concept of “sameness” be polynomially predictable (as
defined in Chapter 2). To apply this technique in general we will need the following definition.

Definition 4.3.1 Let F = (F,T,c,) be a family of Boolean formulas. Then define

o FFn = {f(21)22:--.120a) A f(Z041) Zn43y- - - B2m) : f € F,}, i.e. the collection of formu-
las over 2n variables obtained by conjoining two copies of any formula f frum F,, such
that each variable z; appearing in the second description is changed 10 z,,.;.

] v,FF,,.:{f;v_f,v...v,fg:f;eFF,,,,lSs'St}.

47

o ViFF = U 4N Ve FFon.

o FFy = (WWFF,T,crp,, L), i.c. a representation class in which the'function CFF, Maps
formulas in Vi FF to their sets of satisfying assignments.

Note that for any collection of formulas F = {fi, f2.. -, ft} C Fn, the size of the formnla
(fi(z1y.cs2n) A fi(Zag1yeany 32!!)) v (f:(zh ceny @) A fa(Zn41s--)} V...

V(ft(zh- . 'vzn) A ft(zu-i-ls' . -73211)) € VFan
t

is at most
((2t)MAXSIZE(F) 4 t + (¢t — 1) + 2¢)[log 2n] < (6t)MAXSIZE(F)[log 2n].

Theorem 4.8.2 If F is PAC-learnable and FF; is polynomially predictable then F is ss-
learnable.

Proofi The proof is a straightforward generalization of the proof of Theorem 4.2.1. We
outline it here. Assume the existence of 4, a PAC-learning algorithm for F, that runs in time
bounded by pa(n,s1,1,3), where p, is a polynomial, f € F is the target formula, and s, is
the input parameter bounding the size of f. We also assume the existence of B, an algorithm
that predicts FFy in time at most pp(2n, 53, 1, }), where pp is a polynomial, ff; is the target
formula, and 3 is the input parameter bounding the sise of ff;.

To ss-learn ¢ disjoint concepts fi, f2..., f; of F, examples of SameConcept({fi, f3..., f2})
are constructed by forming the conjuncts of the pairs of strings output by LABELED-PAIRS.
The number of such examples needed is at most is the running time of B. The ss-learning
algorithm is given as a parameter s, which bounds MAXSI1ZE(F). Since SameConcept € V, FFz,,

|SataeConcept| < (6t)MAXS1ZE(F)[log2n] < 6tsflog2n].

Thus the rurning time of B is no more than pa(zmsuﬂogzn],#,f), so at most this
many examples are required in order for B to learn the intermediate oracle. B is then
run; it is given these examples whenever it calls the oracle EXAMPLE(D?, SameConcept),
along with the parameters n, e = -5‘;,-, g = %, and the sise parameter 62s{log 2n], where
m = maz{#In §,p,(n, s, i, $£)}. Then B, in time at most pp(2n, 6ts{log 2n], 2® 4) outputs

48

9
Ly

some polynomial-time algorithm M that is used as an oracle for the concept SameConcept. A
set of m points is then randomly generated, nsing LABELED-PAIRS, and M is applied to
every pair of the m points to obtain equivalence classes. The algorithm 4 is run once for
each of the equivalence classes, using the m points as examples, the error parameters €4 = 5
and 64 = %, and the size parameter s. The time needed is again at most polynomial in
all of the relevant parameters. An analysis identical to the one for the monomial case yields
that the concepts learned by A are e-close to the true concepts with probability at least 1-4. O

4.4 ss-Learning Other Boolean Formulas

The suflicient conditions of Theorem 4.3.2 are applied to show as corollaries that for each k,
the families of kDNF, kCNF, and k-decision-lists are ss-learnable.

Corollary 4.4.1 For any constant k, the family of kCNF formulas is ss-learnable.

Proofi IfF is the family of kCNF expressions, then for each n, FF;, is a family of kCNF
expressions, since the conjunction of two kCNF expressions is also a *CNF expression. Then
V¢ FF, the disjunct of ¢ kKCNF expressions, may be represented by a tkCNF expression without
more than a polynomial increase in size, since ¢t and % are constants. To see this, let the

disjunction be
t
V E
i=1
where each E; is a k\CNF expression. This is equivalent to the tiCNF expression
Ales Vep vee-vey)

where the conjunction is taken over all possible choices of clauses ¢;, € E,cj € Ez,-+-,cj, € E.
Thus we can learn FF; in terms of tkCNF expressions (such expressions are PAC-learnable by

Theorem 2.0.2). Consequently, FF; is polynomially predictable. Since the family F itself is
PAC-learnable, the result follows from ‘'heorem 4.3.2. 0

Corollary 4.4.2 For any constant k, the famsly of kDNF formulas is ss-learnable.

49

S

Prooft Let F be the family of kDNF expressions. For each n, FFi, is a set of 2kDNF
expmdons,sineethecnnjnngt of two EDNF expressions can be described by a 2kDNF ex-
pression. The collection of disjunctions of ¢ such expressions, V;FF, is also a set of 2kDNF
expressions. Thus FF; can be PAC-learned in terms of 2kDNF expressions using any of the
algorithms of [12, 35, 54, 74]. Since 2kDNF expressions are thus polynomially predictable, and
F is PAC-learnable, the result follows from Theorem 4.3.2. 0

Corollary 4.4.8 For any constant k, the family of k-decision-lists is ss-learnable.

Proofs Let F be the family of k-decision-lists. Any formula in the set FF3, can be described
by a 2k-decision-list as follows. The monomials of the new list are formed by conjoining one
monomial from each of the two original lists; they are given a label of 1 if both of the con-
stituent monomials are labeled with 1’s, otherwise they are given a label of 0. The new labeled
monomials are then sorted so that

1. Every monomial with first half m; occurs before every monomial with first half m; if and
only if m; occurs before m; in the first decision-list.

2, For all monomials with the same first half, every monomial with the second half m,
occurs before every monomial with second half m; if and only if m; occurs before m; in

the second decision-list.

The disjunction of two k-decision-lists can be represented by a 2k-decision-list which is
constructed in a manner similar to the conjunctive case. Thus the disjunction of ¢ 2k-decision-
lists can be represented by a 2tk-decision-list, which is PAC-learnable (Theorem 2.0.2). Thus
FF, is PAC-learnable in terms of 2tk-decision-lists, and is therefore polynomially predictable.
Since F is PAC-learnable, the result follows from Theorem 4.3.2. O

4.5 Unparameterized ss-Learning and the VC-Dimension

As seen from Theorem 4.3.2, in order for our ss-learning algorithm to be applied successfully
to a PAC-learnable representation class F, it is sufficient that the class FF; be polynomially
predictable. In this section we give sufficient conditions for the class FF; to be polynomially

w e - . - . Ve . . :

predictable when the representation class F is over an unparameterised domain and has finite
Vapnik-Chervonenkis dimension.

Thus far we have exclusively discussed representation classes F = (F,I',c, Z) in which the
set F consists of Boolean formulas, and hence is implicitly defined as an infinite collection of
subclasses parameterised by n, the number of variables in the formula. Similarly, we have
implicitly parameterized F by |r|, the size of the formula to be learned. For any fixed n and
|r], the PAC-learnability of any subclass of formulas of sige |r| over n variables is uninteresting,
because there are at most a finite number of possible formulas, and a naive exhaustive search
technique can be shuwn to successfully PAC-learn. However, nontrivial learning problems do
arise over a single unparameterized domain when the domain is infinite. For example, if the
domain is the Euclidean plane, we may be interested in the learnahility of concepts represented
by rectangles with sides parallel to the coordinate axes. For such learning problems, we adopt
the convention that examples are described by single characters from some alphabet X. rather
than strings of characters from X. (This alphabet will be denoted by X, rather than I, in order
to indicate that this convention is in effect.) Thus X is the domain of the learning problem.
We define these problems formally.

Deflaition 4.5.1 Let R’ = (R',I",c', X) be a represeniation class. A representation class
R =(R,T,c, X) {over the domain X) is polynomially learnable in terms of R’ if there ez-
ists o (possibly randomized) algorithm A and polynomial p such thas, for all r € R, for every
probability distribution D on X, and for all €,§ > 0, if A is given as input the parameters € and
é, and may access the oracle EXAMPLE(D,r), then in time p(3,3) A outputs some v’ € R’
such that with probability ot least 1§, D(r@r’) < . IfR is polynomially learnable in terms of
itself, then R is polynomially learnable, If there ezists any class R’ (for which the membership
problem is decidable in polynomsal time) such that R is learnable in terms of R', then R is
polynomially predictable.

Thus polynomial learnability is similar to PAC-learnability, except that the domain and size
parameters have been eliminated and the running time of the learning algorithm is not allowed
to depend on n or |r|. Similarly, the definitions of learning one class in terms of another and
polynomial predictability for unparameterized concept classes only differ from the definitions

51

61

in the parameterized case in a like manner. Note that the definition of polynomial learnability
makes no allowance for randomised algorithms.?

Similarly, we define ss-learnability for a single (unparameterized) class of representations
over a single (unparameterised) domain. The definitions of e-closeness and the oracle LABELED-
PAIRS are generalized to the case of representation classes in the ohvious way.

Definition 4.5.2 The represeniation classR = (R, T, ¢, X) is ss-learnable (learnable in a semi-
supervised manner) if for each positive integer t, there ezists an algorithm A and polynomial p
such that for every disjoint collection {ry,73...,7¢} C R, for any probability distribution D on
X such that .
D(Urm)=1,

i=1
and for all €,0 > 0, if A is given as input the parameters ¢ and §, and may access the oracle
LABELED-PAIRS Dy, m...es; then in time p(2,3) A outputs a collection {h1,h3..., A} C R
that, with probability at least 1 — &, is e-close to {ry,73...,7}. Such an algorithm A is an
ss-learning algorithm for the class R.

From Theorem 4.3.2, we saw that (in the parameterized case) the polynomial predictability
of FF; plays an important role in the application of our general technique. Similarly, for
any (unparameterized) representation class R the polynomial predictability of the associated
representation class RR¢ (defined below) will be relevant.

Deflnition 4.5.3 Let C = (C, X) be a concept class and let R be a represeniation class for C.
Then

o for any c1,c3 € C, the concept c; X ¢3 (over domain X x X) is the concept {(=,y):z €
e1,9 € 3}

o C X C is the set of concepts {¢1 X c3 : ¢1,c3 € C}. Let C x C be the concept class
(CxC, X xX).

o CC is the set of concepts {¢ X c: ¢ € C}. Let CC be the concept class (CC, X x X), and
let RR be a representation class for CC.

3The results of this section can be extended to representation classes learnable by randomised algorithms for
classes that contain the concepts @, X, and {r} for each r € R.

52

o ViC is the set of concepts {c; Veca V-V e : ¢ € C}. Let Cy be the concept class
(VeC, X x X), and let Ry be a representation class for C;.

o V(CC s the set of concepts {1 VeaV -V :¢; € CC). Let CCy be the concept class
(v¢CC, X x X), and let RR¢ be a representation class for CC;.

Theorem 4.5.4 Let C be a concept class such that R is polynomially learnable and RR; is
polynomially predictable. Then R is ss-learnable.

Prooft Similar to the proof of Theorem 4.3.2, omitting the size and domain parameters. [

We will refine the sufficient condition of Theorem 4.5.4 by incorporating sufficient conditions
for the polynomial predictability of RR4. In order to do this, we will rely on a characterization
of the polynomially learnable representation classes due to Blumer et al {12]. In order to state
the relevant necessary and sufficient conditions for polynomial learnability we first review some
definitions.

Recall from Chapter 3 that the Vapnik-Chervonenkis dimension (VC-dimension) of a con-
cept class (C, X) is the size of the largest finite subset of the domain X that is shattered by C.
The VC-dimension is infinite if arbitrarily large subsets of X are shattered. Recall also that
the VC-dimension of a representation class R is the VC-dimension of its induced concept class
C(R).

Definition 4.5.5 IfR = (R,T,c, X) is a representation class, then a randomized polynomial-
time hypothesis finder for R is a randomized polynomsial-time algorithm that takes as input o
finite sample of a concept in R and, for some v > 0, with probability at least v outputs some
representation r € R that is consistent with the sample. (Recall that o represeniation r is
consistent with o semple if every positive ezamp’e in the sample is an element of c(r) and no
negative ezample is an element of c(r).)

mmmn;wmdms.l.lh[m].

Theorem 4.5.8 IfR is a representation class, then R is polynomially learnable if and only if
the VC-dimension of R is finite and there is o randomized polymomial-time hypothesis finder
for R.

53

63

The following is a slight variant of Theorem 3.2.4 from [12].

Lemma 4.5.7 If R is a representation class that is polynomially learnable, then Ry is polyno-
mially predictable. Further, the time required is polynomial in t as well as 1 and 3.

Proofi Modify the proof of Theorem 3.2.4 of [12] in a straightforward manner to allow for
a randomized polynomial-time hypothesis finder, instead of a deterministic one. O

-

We now prove a sufScient condition for ss-learnability of an (unparameterized) representation
class.

Theorem 4.5.8 If C is a concept class such that its represeniation class R is polynomially
learnable and there exists a randomized polynomial-time hypothesis finder for RR, then R is
ss-learnable.

Prooft By Theorem 4.5.4 it is sufficient to show that RR; is polynomially predictable. Since
R is polynomially learnable, by Theorem 4.5.6 R has finite VC-dimension. By Lemma 4.5.9
below, RR also has finite VC-dimension. This, together with the hypothesis that RR has
a randomired polynomial-time hypothesis finder (and an application of Theorem 4.5.6 once
again), implies that RR is polynomially learnable. Finally, applying Lemma 4.5.7 with RR in
place of R, we conclude that RR;4 is polynomially predictable. O

Lemma 4.5.9 If C (ond thus R) has (finite) VC-dimension d, then CC (and thus RR) has
(finite) VC-dimension at most 4dlog6.

Proofi For any concept class C = (C, X), let VCdim(C) denote the VC-dimension of
C. Note that CC C C x C, so clearly VCdim(CC) < VCdim(C x C). We show that
VCdim(C x C) < 4dlog6.

Define C X X to be the set {¢ X X : ¢ € C}, and let C x X be the concept class (C x
X,X x X). Similarly, define X X C = {X X ¢: c € C}, and let X x C be the concept class
(X x C,X x X). We claim that VCdim(C x X) = VCdim(X x C) = VCdim(C). We only
show that VCdim(C x X) = VCdim(C). The proof for X x C is virtually identical.

64

To see that VCdim(C x X) > VCdim(C), note that if § C X is a set of points that is
shattered by C, then 5 x {2} is shattered by C x X, for any particular point 2 € X. To show
that VCdim(C x X) < VCdim(C), let {{z1,11), (22, ¥2),-..{®4, ¥a)} be shattered by C x X.
Observe that for every ¢ X X € C x X, and for all 2,y,5’ € X, we have (z,y) € ¢ x X if and
only if (2,3’) € ¢ X X. Thus we can replace g1, 33, .. .y¢ Wwith any single point y € X, and then
{{z1, 9} (223, ¥)y .- (24, ¥)} is shattered by C x X. Let § = {2;,23,...,24}. Since § x {y} is
shattered by C x X, forevery T C S, thereisa c € C such that (e x X)N(Sx {y}) =T x {y}.
This is true if and only if e N § = T. Thus for every T C S, there is some ¢ € C such
that ¢cN S = T and thus S is shattered by C. Since |§| = |§ x {y}|, this demonstrates that
VCdim(C x X) £ VCdim(C), and thus completes the proof of the claim that VCdim(C x X) =
VCdim(C).

Finally, for any concept classes C; = (C3,X) and C3 = (C3, X), define the internal in-
tersection (denoted N) of C; and C2 by C1NC3 = {c; Ncz:c; € Cy,e2 € Ca}. Let C1; NCa
denote the concept class (C; N C3, X x X). Lemrua 3.2.3 of [12] shows that if C has VC-
dimension d, then C N C has VC-dimension at most 4dlog6. A virtunally identical proof shows
that C; N C3 bas VC-dimension at most 4dlog6, for any two concept classes Cy,Ca each

. with VC-dimension d. This result, together with our claim above, shows that the concept class

(C x X) N (X x C) has VC-dimension at most 4dlog6. To complete the proof of the lemma,
note that C x C = (C x X) N (X x C); thus VCdim(C x C) < 4dlog6. O

As an example, the representation class of axis-aligned rectangles in the Euclidean plane
satisfies the hypothesis of Theorem 4.5.8, and thus is ss-learnable.

As a final sufficient condition, we show that if R is a representation class over an unpa-
rameterized domain that is polynomially learnable from positive ezamples alone, then R is
ss-learnable. For simplicity of exposition, the definition below of learnability from positive ex-
amples is slightly nonstandard, although easily shown equivalent to more standard definitions
(for example, the unparameterised version of the definitions of [57] or [61]). It is essentially the
same as the definition of polynomial learnability, but restricts access of the learning algorithm
to positive examples only, and further requires that the concept it finds have pexfect accuracy
on the set of negative examples,

56

ERIC

Aruitoxt provided by Eic:

Definition 4.5.10 The representation class R = (R, T, ¢, X) is polynomially learnable from
positive examples alone if there exists an algorithm A and polymomial p such that forallr € R,
for every probability distribution D on elements of ¢(r) (positive ezamples), and for all e,6 > 0,
if A is given as input the porameters ¢ and § and may access the oracle EXAMPLE(D, r), then
in time p(,}) A outputs some representation ' € R such that with probability at least 1 - §,
Dir—r')<eondr -r=9.

Note that there are some representation classes (such as monomials) that are PAC-learnable
from positive examples alone but are not polynomially learnable from positive examples alone.
Also, note that Theorem 4.5.11 does not assert that representation classes that are PAC-
learnable from positive examples alone are ss-learnable.

Theorem 4.5.11 Let R = (R,T, ¢, X) be a representation class for the concept class C =
(C, X). If R is polynomially learnable from positive ezamples alone, then R is ss-learnable.

Proof: By Theorem 4.5.8 (and the fact that learnability from positive examples alone
trivially implies polynomial learnability) it suffices to show that if R is polynomially learnable
from positive examples alone, then RR has a randomised polynomial-time hypothesis finder.
We describe a randomized polynomial-time algorithm that, given as input a collection § C
X x X of examples of some concept c¢(r) X ¢(r) € CC, will ontput the representation of a
concept c(r’) x ¢(r') € CC that is consistent with .

Let S* consist of the positive examples of ¢ X ¢ in §, and let m = |5%|. Note that if
{z,y) € §* theancandyEc(whermif(a,y)‘isaneguivempleofcx«:,wecmnot
deduce whether z € ¢, or y € ¢, or both). Form the set P = {2 : 3y such that {z,y) € §*
or (y,2) € §*}. Let A be a learning algorithm for R that nses positive examples only. Now
mdﬂthumqmﬁue<*s]h,mdcmﬁdmm6< {. If a positive
example is requested, randomly choose an element of P according to the (uniform) distribution
Dndgningeuhalmentof?pmbt.‘.:i‘.iiyﬁl. By the definition of polynomial learning from
positive examples alone, A will find, with probability at least 3, a representation #' € R such
that D(c(r) ~ e(r')) € € < 5 and ¢(r') - ¢(r) = 0. The first condition in fact asser.s that c(r)
mtahsachdemmtof?,otherﬁuthemumdhgtoDwﬂdbealeutﬁ'2%,3
contradiction. The second condition asserts that c(r’) contains no element of ¢(r). It follows

56

thstc(r’)xc(r’)iaéomi:tentwith s, O

Finally, note that by Lemma 4.5.7, Theorems 4.5.8 and 4.5.11 show ss-learnability in a
stronger sense; the time needed to ss-learn ¢ disjoint concepts is polynomial in ¢ as well as 3

4.6 Equivalence of Two Types of Learning

An interesting aspect of the definition of ss-learnability is that it is not at all clear how an
algorithm might test a candidate solution for correctness. In concept learning, it is possible
to test the accuracy of the learned concept using examples of the unknown concept which are
provided by the teacher. In ss-learnability, all that is available is a randomly generated pair,
possibly totally unrelated to any examples seen before.

From this perspective, a reasonable alternate definition of ss-learning would only require
that the algorithm find a set of formulas from the set F,, that correctly predicts (within €) the
labels from randomly generated LABELED-PAIRS, instead of requiring e-closeness to some
unknown formulas. The alternate definition is given below; “sc” stands for “same concept”.

Definition 4.8.1 4 family F = (F,T,¢,Z) of Booleﬁnfomulaa is sc-learnable if for eacht € IN
there ezists an algorithm A and polynomial p such that for all n,s > 1, for every disjoint
collection F = {fi, fr..., £} C F, with MAXS1ZB(F) < s, for any probability distribution D
on {0,1}" satisfying equation (4.1), and for all ¢,6 > 0, if A is given as input the parameters
¢, §, and s and may access the oracle LABELED-PAIRSp, 4, 4,...1,, then in time p(n,s,1,}) 4
outputs o collection 0 = {g1,93...,9u} of (not necessarily disjoint) formulas in F, that with
probability at least 1 — § has the following property: The probability that a pasir of ezamples
drawm from LABELED-PAIRSp ;, 4,....s, 8 incorrectly classified by O as to whether or not they
are from the same concept is ot most €. (A pair is correctly classified by O if either the poir
ia(z,y,m)mdboﬂzcmdymhmcﬂymgeﬁ,mthcpdric(z,y,diﬂ'emu)mdfor
some g,g'€0,g#¢',2€g,y€g, and neither 2 nor y is in any other element of G.)

Note that in the above definition if & pair generated by LABELED-PAIRS contains some
string 2 that is not contained in any formula of g, then this is counted as an incorrect classifi-

57

67

cation. Similarly, if & pair contains a string in the intersection of two formulas of ¢, then this
is also an incorrect classification.

Theorem 4.6.2 A family F = (F,T,c, £) of Boolean formulas is sc-learnable if and only if it
is ss-learnable.

Prooft Suppose that F is ss-learnable. Then for any n, and any disjoint fi. f2..., f¢ € Fa,
we can obtain with probability at least 1 — §, and in time polynomial in n, 4, and }, a set of
(not necessarily disjoint) formulas 0 = {g3,93...,9.} such that G is §-close to {f3, fa..., fe}.
We show that using the learned formulas G to predict sameness/differentness will satisfy the
requirements of sc-learnability.

Suppose that § is §-close to {fi, fz..., /t}, that LABELED-PAIRS outputs (z,y, label),
with label € {same, different}, and that z € f, and y € f,, where f;, £, € {f, f2..., fir}-
Since 0 is §-close to {f1, f3...,fi} there is by definition a subset §' C J and an injection
I:¢' ~ {fi, f2y- .y ft} such that, with probability at least 1 — §, z is in exactly one formula
g €0, ge isin ¢’, and z € I(g,) (and thus I(g;) = fz). The analogous relationships are true
for y.

Case 1: f, = f,. With probability at least 1 - ¢, z is in exactly one concept g, € ¢, y is in
exactly one concept g, € §, g5 and g, are in §', and I(ga) = f5 = fy = I(gy), so the learned
formmlas G produce the correct response of “same concept”.

Case 2: f, # f,- With probability at least 1 — ¢, = is in exactly one concept g; € ¢, y is in
exactly one concept g, € O, g and g, ave in §', and J(gs) = fu # fy = I(gy), s0 G produces
the correct Tesponse of “different concepts”.

Thbus with probability at least 1 -5, 0 = {g1,92...,9u} is §-close to {f3, f..., f} and the
probability of correct classification is at least 1 —e. Henve the fact that F is ss-learnable implies
that F is sc-learnable.

Now suppose that F is sc-learnable. If F is PAC-learnable as well, then we are done by nsing
the sc-learned formulas as an oracle SC and applying Theorem 4.3.2, However, it is not clear
whether F is sc-learnable implies F is PAC-learnable. (The obvious approach to showing this
by letting ¢ = 1 fails because there are then no negative examples, so notlung constrains the
ss-learning algorithm from ovargeneralizing. If we let ¢ = 2, with the second concept being the
negative examples of some target concept to be PAC-learned, then the ss-learning algorithm is

»

only required to work provided that the negative examples can also be expressed as a formula
in F.) We show that regardless of the PAC-learnability of F, if F is sc-learnable then F is
ss-learnable.

Let F be sc-learnable. Then for any » and any collection F = {f}, fa..., fi} of disjoint
formulas in F,, we can obtain in polynomial time, with probability at least 1 — §, a collection
G = {g1,92-..)9u} of (not necessarily disjoint) formulas in F,, such that the elements of ¢
correctly classify pairs from LABELED-PAIRS as to sameness/differentness with probability
at least 1 — ;5. We will show that G is therefore e-close to F, and the theorem follows.

Claim: For each §-significant f € there is a unique g € J such that D(fng) > &.
Proof of Claim: Assume there is no such g. Then the probability of choosing two points
from f not both in some particular g € § (and thus obtaining an incorrect classification) is at

least
€ e & e

w% 5 = 28 wa
a contradiction. Now assume that there is more than one such element of g, say ¢ and ¢’.
Then the probability of choosing two points z,y such that z € fNngand y € fN g’ (and thus
obtaining an incorrect classification regardless of whether g and ¢’ are disjoint) is at least ()?
>g§’p,aconuadictian,thusprovinsthedaim. O

To complete the proof of Theorem 4.6.2, we find a subset ¢’ C ¢ and a bijection I : ¢' —
{f € F: f is f-signiicant} (and hence an injection with range F) witnessing that G is e-close
to F. For each j-significant f, let the unique g such that D(f Ng) > & be an element of ¢/,
with I(g) = .

Now for each g € @', D(g @ I(g)) < &; for if not, then either D(g - I(g)) > &, or
D(I(g) — g) 2 3+ The cases are similar; we show that the first case cannot happen: If

D(g - I(s)) = D nTW) 2 &,

then since D(gNJ(g)) 2 5 (by definition of g), we bave the probability that a misclassification
occurs is at least (§)? > zir, & contradiction.
It follows that

D(E2)=D(|) sol(s)) <t
nHEY’

e_e
it 4

59

63

Aruitoxt provided by Eic:

ERIC

Then,_asinthepxoofqumu.T,
E1- E2C| J{f; : fi is ¢/4t~insignificant}, (4.8)
which is true if
E1 n | J{f; : f; is ¢/4t—significant} C E2. (4.7)
To see that containment {4.7) holds, note that if z € f; and f; is #;-significant, then by
the claim, there is a unique g; € @' such that D(f; Ng;) > &, and thus I(g;) = fi. K 2
is also in E1 = UJ', then 2 € g;, 50 2 € g; ® I(g9;) C E2, and containment (4.7) follows.

Containment (4.6) implies that
D(E1- E2)< §

By the definition of sc-learnability,

e
DE)=D(|J (%ne))<ga<
0ir0s EQ 3% 5

?

aim

S0

€
=+

D(E1u E2U E3) < D(E2) + D(E1—- E2) + D(E3) < % 3 %

Corollary 4.6.8 Fach of the families of Boolean formulas described in Theorems 4.2.1 and
Corallaries 4.4.1, 4.4.2, and 4.4.3 is sc-learnable. Furthermore, any family satisfying the hy-
pothesis of Theorem 4.3.2 is sc-learnable.

We can also extend the definition of sc-learnability to representation classes over an unpa-
rameterised domain.

Definition 4.8.4 A represeniation class R = (R,T, ¢, X) is sc-learnable if for cacht € IN there

ezists an algorithm A and polynomial p such that for every disjoint collection {ry,r3...,7} C R,
for any probability distribution D over X such that

D(O l',') =1,
i=1

and for all ,§ > 0, if A is given as input the parameters ¢ and § and may access the oracle
LABELED-PAIRS D, ry...r:, then in time p(, }) A outputs a collection ™ = {hy, hs..., hu} of

60

70

. L . . . A

(not necessarily disjoint) represeniations in R that with probability at least 18 has the following
property: The probabilily that a pair of ezamples drawn from LLiBELED-PAIRSp,, ,...r, 8
incorrectly classified by M as to whether or not they are from the same concept is af most ¢.

A result analogous to Theorem 4.6.2 holds for unparameteriged representation classes.

Theorem 4.6.5 A representation class R (over an unparameterized domain) is sc-learnable if
and only if it is ss-learnable.

Prooft Similar to the proof of Theorem 4.6.2, 0

Corollary 4.8.8 Any representation class satisfying the Aypothesis of Theorems §.5.4, 4.5.8,
or {.5.11 is sc-learnadle.

61

71

5 PREDICTION USING WEAK AUTOMATA

Nearly all of the work done thus far in computational learning and prediction has allowed the
learner the power of a (possibly time-bounded) Turing machine. An interesting question is
to what extent learning or prediction can be accomplished by less powerful antomata, i.e. by
automata with less memory available than an infinite tape. In this chapter we consider this
question in a different setting from the PAC model that was used in easlier chapters.

The predictive power of Turing machines has been studied in some detail, for example in
the literature on NV-eztrapolation {6, 9, 19]. In this model, the predicting machine is shown an
infinite sequence of strings; after each string, the machine outputs a guess as to whether the
string is in the unknown target language. The goal is for the predicting machine to eventually
make only correct gnesses. The classes of languages that can be predicted under this model
have been shown to be identical to the classes that can be inferred by a Popperian inductive
inference machine [19]. Littlestone [54] considers bounds on the number of erroneous predictions
for certain types of languages. In [38] the problem of predi~ting {0, 1} functions over a domain
is considered when there is a proMility distribution over the domain elements.

Gold [31] introduces a model of prediction in which a “thinker” and an “environment” ex-
change messages. The environment reads as input the thinker’s previous response and generates
new information, part of which is a reward/punishment signal, to be read by the thinker. The
thinker then uses this information (as well as information received in earlier exchanges) to gen-
erate its next response. The goal of the thinker is to generate ontputs that, after a sufficiently
large number of message exchanges, result in the maximum possible rewards. Gold proves that
there is a primitive recursive thinker that will eventually maximige its rewards for any finite
state environment, but that no finite state thinker with this property exists.

We investigate the predictive power of weaker varieties of automata, specifically determin-
istic finite stzte antomata (DFAs), 1-counter machines (1CMs), and deterministic pushdown
automata (DPDAs). The model of predicdon used here is essentially the same as in the model
of NV-extrapolation, except for the type of automata doing the predicting. Alternatively, our
model can be thought of as a mtricted version of Gold’s paradigm. Note that the study of

62

«

prediction here differs from the problem of inferring an automaton from training examples, or
that of predicting the outputs of an automaton (see, for example, [62, 64]). In those problems,
the output may be, for example, a DFA, but the automaton doing the learning (or prediction)
is a Turing machine. In the model defined here the pre:liction is actually performeu by a DFA,
DPDA, etc., rather than by a Turing machine.

In addition to being interesting in its own right, the study of the predictive ability of weak
automata may shed some light on the predictive power of arbitrary programs. In particular,
strong negative results for limited types of machines may suggest techniques by which to prove
analogous results for more powerful machines. Interesting problems related to this model of
prediction include determining which classes of languages are predictable and finding upper
bounds on the size of the classes that can be predicted by automata of a certain sige (or,
equivalently, finding lowse Lounds on the sise of the smallest predicting automaton for classes
of a particular size). We consider both of these questions.

5.1 A Model for Prediction by Finite State Automata

Recall that if a is a string of characters, then |a] is the length of a; i.e., the number of characters
in a. Let A be an alphabet. Recall that A® is the set of all finite strings of characters in A of
length at least zero, Let A* represent the set of all such strings of length at least one. We use
€ to denote the empty string.

The model for prediction by DFAs is as follows. Let M be a Moore machine [40] and L be
some language over I° (i.e., a subset of £*) for some finite alphabet Z. Initially M is given as
input a finite string oy € 2°. Mmakuawutowhethéornotc;i:in.L;thisgueasis
the output associated with the state that M is in after having read ;. If the output is “+”,
then M has guessed that oy € L. If the output is “—7, then M has guessed that ¢y is not in L.
M is then given as input either the character “r” or “w”, depending on whether its gness was
right or wrong, respectively. This process is then repeated for the strings o3,c3,... If after
some point all of M’s guesses are correct, then M is correct on (L,c), where 0 = 0y, 03,03,. .
If M is correct on (L, o) for every o and for every L in some class of languages C, then M is a
predicting DFA for C. We make this more formal.

Let M = (Q,Zu{r,w}, A,§, A, q1) be a Moore machine with finite input alphabet U {r, w}
(where r and w are special symbols not in £) and output alphabet A = {+,-}. Q is the (finite)

63

73

state set and ¢ is the start state. The function A : @ — A describes the state outputs and
§:Q x (SU{r,w}) = @ is the transition function, As is done in [40], we extend the definition
of the transition function § to handle input strings, rather than just single input characters, as
follows. Define § : Q x (S U {r,0})* = Q by

1. Foreach g € Q, 3(q,e) = g, and
2. FW,M g€@,2€(ZuU{r,w})’ anda _E ZU {r,w}, 3(9! za) = 6(3(4! z),a).

Thus §(g,) is the state that M is in after starting in state ¢ and reading the input string z.
For convenience we use § iv. place of § in what follows; the two functions agree on all arguments
for which both are defined, so there will be no ambiguity. Let C be a collection (or class) of

languages over the alphabet Z.

Definition 5.1.1 Lei 0 = 04,03,0s,... be an infinite sequence, where each o; is a finite siring
in B°. Let C be a class of languages over T an . let L be a language in C. Define the presentation
of o with respect to L and M (denoted by PRESy(L,0)) to be the string 01b102b203b3. . ., wirere
each character b; is defined as follows. Let p; € Q be the state that M is in after reading the
input string o1b103b3...0; (i.e. oy = §(q1, 0 0102b2...03)). If o5 € L and A(p;) =47, or if
o;¢Land A(ps) = “=", thenby = “r”. Ifo; € L and A(p;) = “~", or if o; € L and A(p;) =
“4” then by = “w” If there ezists some iy such that, for alli > o, b = “r”, then M is
correct on (L,c). If M is correct on (L,o) for every o, then M is correct for L. If b; =“r”
for all i, then M is exactly correct on (L,0). If M is ezactly correct on (L,o) for every o,
then M is exactly correct for L. The definstions of ezact correciness apply whether o is finite
or infinite,

Thus M is correct for L if, when presented any infinite sequence of finite strings over I,
there is some point past which all of its guesses (as to whether a string is in L) are correct. M
is exactly correct for L if all of its guesses are correct.

Definition 5.1.2 If, for all L € C, M is correct for L, then M is a predicting DFA for . If
there is o predicting DFA for C, then C is DFA-predictable.

The size of a predicting DFA M (denoted by |M]) is the number of states in M. We also
use this terminology and notation when M is a DFA (i.e. not a Moore machine).

64

-1
a

z . -
w0 ‘i

Predicting membership in an unknown language according to the above model appears
to be a more suitable task for DFAs than is concept learning. The problem of learning is

closely related to that of inding hypotheses consistent with a finite set of examples [11, 13, 70].
Because of the limited memory available to a DFA, it wonld require a very large automaton
tc remember all examples seen — or, alternatively, to ceep track of all hypotheses consistent
with the examples already seen — and thus to be able to find consistent hypotheses. In the
prediction model, the antomaton iz permitted to misclassify some examples; it doesn’t need to
remember each example, but instead can wai: until it’s “ready” for a particular example before
correctly classifying it.

Note that the predicting DFA is not guaranteed to see a complete presentation of all strings
in the domain. But since the automaton is not required to output a hypothesis describing the

target language, but instead must only be correct on the strings it sees (past some point), this
does not present any difficulties.

5.2 A General Upper Bound

In this section we demonstrate an upper bound on the size of any class that is predictable by
a DFA of size n.

Theorem §.2.1 Let C be a DFA-predictable class of languages. The smallest predicting DFA
Jor C has size at least 2|C| ~ 2. Thus any class with a predicting DFA of size n contains at
most 3 + 1 languages.

Let M = (Q,Z U {r,w}, A, 4, A, q1) be a predicting DFA for C, with @ = {q,...,¢,}. For
any state ¢; € Q, let M% = (Q,Z U {r,w}, A, §,A,q;) (the Moore machine M with start state
)

Before proving Theorem 5.2.1, we first make the following definitions and prove several

lemmas.

Definition 5.2.2 Let L be any language in C and let , € Q. If there exists some sequence
of strings o such that there is o finite prefiz o1by103by ... 00y of PRESy(L, o) with

g, o1b03bz...ou0s) = g,

then gy, is reachable modulo prediction. If gn, is reachable modulo prediction and the automa-
ton M®: is ezactly correct for L, then q, is a home state for L.

Thus a state g, that is reachable modulo prediction is a home state for L if the predicting
DFA M, when started in state gy, , is exactly correct for L. For each L € C, let HS; be the set
of home states for L. Lemma 5.2.3 states that each language in C has at least one home state.

Lemma 5.2.8 Foreach L € C, HSL # 0.

Prooff We assume otherwise and prove that a contradiction results. Suppose that for some
L, HS; = 0. Thus for each ¢ € Q, either g is not reachable modulo prediction or M*? is not
exactly correct for L (or both). “learly there is at least one state that is reachable modulo
prediction. For each such state ¢;, M% is not exactly correct for L. Thus there exists a finite
sequence of strings whose presentation causes M% to make an incorrect guess; that is, there
must exist a positive integes s; and a sequence of strings 0* = ¢},0%,...,0},,... such that
b, =“w” in the prefix ojbioibi...ol b5, of the presentation PRESsw(L,0") (with the b}’s
defined analogously to the by’s in Definition 5.1.1). The sequence of strings c™****** defined
by the following procedure forces M to make an infinite number of incorrect guesses. Recall
that gy is the start state of M.

1. Set g™istskes — 51 Note that M makes an incorrect guess on the string o},.

2. Let g; be the state that M is in after having been given as input PRESy(L, o™ *ta4*)
(for g™mistabes o5 defined so far). Since g; is reachable modulo prediction, by assumption
M% is not exactly correct for L.

3. Append the sequence o7 to the end of o™i*3%**, M makes an inco:rect guess on the string
o}, Return to Step 2.

Since M makes an infinite number of incorrect guesses in the sequence o™**a**s_ 3 is not
correct an {L,o™ista%s) Thus M is not correct for L, so M is aot a predicting DFA for C.
Since this contradicts the definition of M, HSz; must be nonempty for each L € C, proving the

lemma. g

66

i e e o . . - - R

Lemma 5.2.4 A state ¢ € Q is a home state for ot most one language in C.

Prooff Let ¢ € @, and let L; and L3 be (distinct) languages in C. Since Ly and L are
distinct, there exists a string 2z € Ly ® L1. MY cannot be exactly correct on both (L,;,z) and
(L3,2). Thus M?" is not exactly correct for both L; and L3, so g is not a home state for both
L, and L,. 0

Lemma 5.2.5 states that if M is in a home state for L after having read as input a prefix of
PRES (L, o) ending with an “r” or “w”, then from that point on M will always be in a home
state for L after each prefix of PRESy (L, o) ending with an “r” or “w” has been read.

Lemma 5.2.5 Let o = 01,03,... be any infinite sequence of finite strings. Consider the siring
PRES)(L, o), as defined in Definition 5.1.1. If, for some k,

6(911 o1byoszds.. -albh) € HSz,

then for all 7 > &k,
6(q1y01b102bs ... 0;b;) € HSy.

Prooft Suppose that k < j, g(s) and g(;) are states such that

6(q1’ Vzbw'zbz ,e .ﬂbh) = Q(h)
and
6(‘1‘11 cib!ﬂbﬂ 20 oﬂ,‘bj) = q‘i)’

and g(;) is not a home state for L. Then, by the definition of home states, there exists a sequence
of strings (%) such that MU is not exactly correct on (L,o(¥)). Thus M™% is not exactly
correct on (L,ol*+9lol)), where ol*+1dl = 04,1,0043,...,0;. This is because MUY, after
reading as input ¢{*+14), is in state g(;), and M%) is not exactly correct on (L,0(?)). Hence
M) is not exactly correct for Z, and thus g() is not a home state for L. The result follows
by contraposition. 0

For each L € C define
PHS = {g€ Q:5(q,r) € HSz and Mg)=“+"}

67

77

and
PHS; = {g€ Q :8(q,r) € HS; and A(g) =* - "}.

(The notation is intended to suggest “pre-home states”.)

Lemma 5.2.8 Let L be any language in C not equal to § or £*. Then both PHS} and PHS;
are nonempty. Furthermore, if @ € C then PHS; is nonempty, and if Z* € C, then PHSE. is

nonempty.

Proofi Let z and y be finite strings over I, with 2 € L and y ¢ L. By Lemma 5.2.3, HSg
is nonempty, so we can let ¢zs be a home state for L. Let gpgs be the state such that

d(qms, =) = qprus.

Since ggg is a home state for I and since z € L, by Lemma 5.2.5 and the definition of home
states 5(gpgs,r) € HS; and M(gpgs) =“+". Thus gpgs € PHS}. Since such a state gpgs
must exist, PHS} # §. By an analogous argument, using the string y ¢ L, PHS; # 0.

Similar arguments can be used to show that PHS; and PHSZ. (provided that the languages
§ and I*, respectively, are in the class C') are nonempty. O

Proof of Theorem 5.2.1: Note that for any (not necessarily distinct) languages L; and
L; in C, PHSE N PHSE, = 0, since the states in the two sets have different images under
the fanction A, Furthermare, if L, # Ls then PES} n PHSE, = 0, due to the fact that the
transition function 4 on input “r” maps the states in the two sets into states in HS;, and HS,,
respectively. By Lemma 5.2.4, HS;, and HS;, are disjoint, so PHSf N PHS = 0. By a
similar argument, PES; NPHSZ, = @ for any distinct L; and L, in C.

Thus there are at least |C| — 2 languages L in C such that L has associated with it two
nonempty sets of states PHS} and PHS7, and all such sets are pairwise disjoint. At most two
lmsnaguinChmmodatedwiththmadnglenmptymdsma(PHS;orPHS‘{"M}.)
disjoint from the other sets and from each other. Consequently the mumber of distinct states
in Q is at least 2(|C| — 2) 4+ 2 = 2|C]| — 2, so the size of M is at least 2|C| — 2. This concludes
the proof of Theorem 5.2.1. O

For any n > 0, define C,, to be the class of languages (over the binary alphabet) of satisfying
assignments of monomials over n variables, augmented by the two languages # and {0,1}". It
can be shown that the bound of Theorem 5.2.1 is tight for C,,, provided that only n-bit input
strings are permitted.

5.3 Languages Predictable by DFAs

In this section we characterize the classes of languages that can be predicted by DFAs.

Theorem 5.3.1 The DFA-prediciable classes of langnages ave ezactly the finiie classes of reg-
ular languages.

Prooft We first prove that any finite class of regular languages is DFA-predictable.

Lemma 5.3.2 Let C = {L;,Ls,...,L.} be a finite class of regular languages over T, and let
My, M, ..., M. be finite state machines that accept the languages Ly,Ls,..., L., respectively.
Then there ezists a predicting DFA M for the class C such that

|M| = | M| + | M| +--- + | Mc].

Note that we assume that for each L; there is a DFA M; that accepts all strings in L; and

rejects all strings in £°* — ;. A similar result can be shown if we allow each language I; to be
defined over its own alphabet I;, and assume that the DFA M; accepts all strings in I; and
zejects all strings in I} — L;. In this case it is easily seen that there exists a DFA M! of size
|M;| + 1 that accepts L; and rejects £* — L; (where £ = |J,, Z;). Thus a bound on the sise of
M of |M]| + |M3] + ... + |M}| = |My| + |Ma] + ...+ |M.| + c is easily obtained. For clarity of
presentation we prove the resvlt as stated in the lemma.
Proofi Thelemma is proved by constructing a predicting DFA M for C, using the accepting
DFAs. M first simulates M; and makes all of its guesses based on whether the input strings
are in L;. If M makes an incorrect guess, it then starts simulating M3, and makes its guesses
based on the language L3. This continnes until M finds the right language, after which point
all of its guesses will be correct.

For each i such that 1 < i < ¢, let M; = (Q;, 5,8, gleprsr F;), Where the set of states is
Q;={q{,ﬁ',...,q"'ud} and the set of accepting states is F;.

79

We define the predicting DFA M = (Q, Zu{r,w}, A, §, A, iraer). As for all predicting DFAs,
r,w ¢3S and A = {+,-}. Let @ = Ufs; @i And Getart = @heope- The function A is defined as
follows. Let g be any state in Q, and suppose that g € @*. Then

if g € F;
A(q)={+ -1
- ifqgF.

All of the transitions in &y, 83,...,8, are also in 4. In addition, § contains the following t.ansi-
tions. For each i = 1,2,...,c and each j = 1,2,...,]/Q;|, § contains the transition defined by
J(q;'-,r) = Qlgere Foreach i = 1,2,...,c— 1 and each j = 1,2,...,]Q;], § contains the transi-
tion defined by G(Qj-,w) = gif1,. Finally, for each j = 1,2,...,]Q.], § contains the transitions
6(5,) = @Gtoesr (Actually, it is irrelevart how this last set of transitions is defined.)

Clearly M has size |M;] + |Ma] + ...+ | M,]. Let L; be any language in C. We prove that
M is correct for Ly; it then follows immediately that M is a predicting DFA for C. Let 0 =
oy, 03,. .. be any infinite sequence of finite strings over E. Consider the string PRES p¢(L;,0) =
o1byosbdy....

Claim 5.8.83 The number of w’s in the sequence by, b3,... is less than i.

Proof of Claim: Suppose that b, is the (i - 1)” occurrence of w in by, d2,.... We show
that no more w’s will appear. Note that, by the definition of the transition function 4, all states
entered by M between the sth and (s +1)° appearances of w in PRES z¢(L;, o) are states from
Qa41, and thus that immediately after reading the s*2 occurrence of w M is in state g/1,. Thus
after reading o1d1a3bs . ..Ombyw, M Is in iy, Suppose that the string 41 is in L;. Then,
sinceq';m.,isthe start state of M;, which accepts L;, and since all of the transitions in §; are in
8, 8(@isaets Fm+1) € Fi. Thus by the definition of A, A(§(gisgrts Tm+1)) = “+ ™. Since omys € L;,
the value of 3,,4; will be “r”. Similarly, suppose that o4y @ Li. Then §(gii0pssOmi1) € Fi.
Thus by the definition of A, M(6(@ieares Tm+1)) = * — . Since opm41 & L, the value of dnyy will
again be “r”. Note that in either case, by the definition of §, M will be back in state gi,.,, after
having read bpyy. AD easy induction shows that each of Bm41sBmsy. - - is a0 “r”, proving the
claim, O

Thus only a finite number of the b3 's are w's, so there exists some "y such that for all k > kp,
by = “". Thus M is correct on (L;, o). Since o was chosen arbitrarily, M is correct for L,.

70

50)

1 e ‘ : .

o

This proves the lemma. O

Note that Lemuma 5.3.2 also yields an upper bound on the sige of a predicting DFA. In addition,
the proof gives a technique for constructing a predicting DFA for any DFA-predictable class C
that makes at most |C| — 1 incorrect predictions.

It remains to be shown that any DFA-predictable class is a finite class of regular langunages.
Lemma 5.3.4 states that all languages in a DFA-predictable class must be regular.

Lemma 5.3.4 Let C be a DFA-predictable class, and let L be o language in C. Then L is
regular,

Prooft Let M =(Q,XU{r,w},A,)\ q) be a predicting DFA for C. We define a DFA M’
that accepts L. Let ¢’ be some home state for L; at least one such state exists by Lemma 5.2.3.
Then define M’ = (Q, I, ¥, ¢, F), where the set of accepting states F is defined by

F={geQ:Xq)="+"}

and §’ contains all transitions in § that don’t involve the symbols r or w. To see that M’ ac-
cepts L, let = be any string in £*, If z € L, then since ¢’ is a home state for L, the automaton
MY is exactly correct for L, and thus exactly correct on (L,z). Thus A{d§(g,z)) =*+", s0
¥'(¢',z) € F. Similasly, if 2 € L then A\(#(¢',2)) = “ - ", 50 §'(¢',z) ¢ F. Thus M’ accepts L,
8o L is regular. D

Auy predicting DFA must have a finite number of states; thus by the lower bound of The-
orem 5.2.1, the number of languages in a DFA-predictable class must be finite. Hence the only
DFA-predictable classes are the finite classes of regular languages. O

5.4 A Model for Prediction by Deterministic Pushdown Automata

We now define a model of prediction by deterministic pushdown antomata (DPDAs). The
mode] is the same as in the case of DFAs except for the type «f machine doing the predicting.
Prediction is now performed by an antomaton that is a variant of the standard DPDA in which
there is an output associated with the states of the machine.

71

51

Let M = (Q,2 U {r,w},T',A,4, A\, q1, 21) be an automaton with input alphabet T U {r, w}
(where r,w ¢ L) and stack alphabet I'. Q is the set of states, g, is the start state, and Z; € T
is the start symbol (i.e., the symbol that is initially on the stack). T, I, and Q are all finite.
The transition function § maps elements of Q x (Z U {r, w} U {¢€}) x I to finite subsets of Q x I'".
Following [40), in order to ensure that M is deterministic, we place the following two constraints

on §.
1. Let g€ Q,a€ LU {r,w},and Z € I. If 5(g,a,2) # @, then §(g,¢,Z) = 0.
2, Foreachg€ Q,a€ ZU{r,w}u{e},and Z €T, §(q,a, Z) contains at most one element.

Thus at any stage in a computation by M there is at most one transition that can be
applied.

Define O C @ xT to be the set of pairs (g, Z) such that §(g,¢, Z) = 0. Thusif M isin stateg
with the symbol Z on top of its stack and (g, Z) € O, then M cannot make a transition without
reading a new input character. If (g, Z) ¢ O then M cannot read another input character until
it has made one or more e-moves.

M operates as a deterministic pushdown automaton (as defined in [40]) with the following
exceptions. We are interested in the outputs produced by a DPDA, rather than the language
that it accepts. Thus we dispense with the set of accepting states that is included in the
definition in [40)], and instead add an output alphabet A = {+,~} and a function A: Q — A.
The function A associates an output with each state in Q. We are interested in the outputs of
the function A when M has read an input string and has sxhausted all possible &-moves.

An insiantaneons description (ID) of M is a triple (g,2,7), where g € @, z € (T U {r, w})*,
and v € I'*. The iD records the state, input remaining to be read, and stack contents of
M at some point in its computation. The binary relation ¢ is defined such that, if ID,
and ID; are instantaneous descriptions and I D; describes M’s computation at a point one
step later than ID,, then 1Dy ++p ID3. More formally, let ¢;,¢; € @, 8 € T U {r,w} U {¢},
2 € (EU{r,w})’, Z €T, and v,7; € I'*. If (%, Z;) € O, then (g, a2, %:2;) —un (g),2,%7;)
if and onmly if §(q,0,2;) = {(gj,75)} ¥ (%,2;) € O, then (g, 02,%2) ~ar (g 02,7%7;)
if and omly if &(gi,¢,2Z;) = {(gj,7;)}. Note that in this notation the symbol on the top of
the stack is the rightmost symbol in the string of stack symbols. This is the opposite of the
standard convention; in the opinion of the author, however, stack operations are represented

72

2 S . - .

more naturally under this system. Let 3, represent the reflexive and transitive closure of
—ar. Thus Dy w3 ID; if ID; describes M’s computation at some point zero or more steps
later than ID,. We omit the subscript M when it is clear from context.

The following definitions are exactly analogous to those in Definition 5.1.1.

Definition 5.4.1 Let M be as defined above. Let o, C, and L be as in Definition 5.1.1.
Define a presentation of o with respect to L and M (denoted by PRESy(L,c)) to be the string
o1b1o3by03bds . .., where each chavacter b; is defined as follows. Let p; € Q and Z; € T be the
current stale and the symbol on top of the stack of M, respectively, after M has read the input
string 015,02b3...0;, ezhausted all possible e-moves, and is prepared to read the nezt input
character (so (p,2;) € 0). If o; € L and A(gs) =%+”, or if oy € L and A(p;) = “-7, then
bi= “r”. Ifo; € L and A(;x) = “~", orifo; € L and A(») = “+7, then b; = “w”. If there
ezists some io such that, for all i > 5o, b = “r”, then M is correct on (L,o). If M is correct
on {L,c) for every o, then M is correct for L. If b; =“r” for all i, then M is exactly correct
on (L,c). If M is ezactly correct on (L,o) for every o, then M is exactly correct fox L. The
definitions of ezact correciness apply whether o is finite or infinite.

As was the case for DFAs, M is correct for L if eventually it makes only correct guesses as
to whether strings are in L, and is exactly correct for L if all of its gnesses are correct.

Definition 5.4.2 If, for all L € C, M is correct for L then M is a predicting DPDA for C.
If there is a predicting DPDA for C, then C is DPDA-predictable.

Note that if f is a predicting DPDA then its stack is never empty in any ID that appears
during a2 computation on input PRESy(L,0) for L € C and o as described above. Since no
transitions are defined when the stack is empty, M wounld halt if its stack were erpty and
be unable to read any more input. This violates the definition of a predicting DPDA, which
requires the automaton to function on arbitrary presentations.

5.5 A General Upper Bound for DPDAs

In this section we prove an upper bound on the size of any DPDA-predictable class relative to
the size of the predicting automaton.

53

Theorem 5.5.1 Let M = (Q,Su{r,w},I, A, A, q1, Z1) be a predicting DPDA for some class
C. Then |C| < |Q]ITY.

Proofs We first define home configurations, which are analogous to home states for predicting
DFAs. Let Q = {q1,3,.+ .18} and let ¥ be a string in T*, Define ToP(7) and BoTTOM(Y)
to be the rightmost and leftmost characters, respectively, of 7. For any ¢; € @, we define the
predicting DPDA M %) = (QU {g}, Zu{r,w}, T, A,&, A, qo, Z), where &, contains adl of the

transitions in 4, as well as the transition

6(90’) zl) = {(ql" 7)}'

Thus MI%+] is the predicting DPDA that sets the stack contents equal to 7, moves to state g;,
and then simulates M.

Definition 5.5.2 Let L be any language in C, ¢; be a state in Q, and v be a string inT'+. The
pair [, 7] is o configuration of M. (Note that a configuration is similar to an instanianeous
description, but without the input string information. Thus a configuration is independent of
the input to M.) If (g, TOP(7)) € O, then [gi,7] is an 1/O configuration. If [g;,7] is an I/O
configuration and there ezists some sequence of strings o with a finite prefiz o1byoaba .. ouby
of PRESy(L,c) such that

(qryoiyoraba...oubn, Z1) —*= (g, €, 7),

then the configuration [g;,7] i reachable modulo prediction. If M9 iy ezactly correc: for L,
then the configuration [g;,7] is also said o be exactly correct for L. If [g;, 7] is both reachable
modulo yrediction and ezactly correct for L, then [g,7) is ¢ home configuration for L.

Thus an I/0 configuration [g;, 7] that is reachable .nodulo prediction is a home configuration
for L if the predicting DPDA M, when started in state g; with stack contents 7, is exactly correct
for L. For each L € C, let HC be the set of home configurations for L. Note that for any
& € Q, z € 2U {r,w}, and 7; € T'*, there is af most one I/O configuration [g;,v;] such that
(g3, 2,73) =% (24y € 75), for some ¢; € @ and v; € T+,

The following three lemmas are analogous to Lemmas 5.2.3, 5.2.4, and 5.2.5 in the proof
for DFAs.

74

Lemma 5.5.8 Foreach L € C, HCy, # 0.

Prooft We assume otherwise and prove that a contradiction results. Suppose that for some
L, HCg = 9. Thus for each configuration (g, 7], either [g,7] is not reachable modulo predic-
tion or [g, 7] is not exactly correct for L (or both). Clearly there is at least one configuration
that is reachable modulo prediction. For each such configuration [g;, v;], [, ;] is not exactly
correct for L. Thus there exists a finite sequence of strings whose presentation causes M%7
to make an incorrect guess; that is, there must exist a positive integer s; ; and a sequence of
strings o = 0}%,09%,...,0%55,,... such that ¥, =*10" in the prefix o;7by 037y ... ok b
of the presentation PRES, iy,.v,1(L, 0*9) (with the 57s defined analogously to the 5’s in Def-
inition 5.4.1). The sequence of strings o™i**ek®s defined by the following procedure forces M
to make an infinite number of incorrect guesses. Recall that ¢; and Z; are the start state and
initial stack contents, respectively, of M. Let v; denote the string consisting of only the start

symbeol Z;.

1. Set o™istakes — 41 (ie. a sequence that forces an incorrect guess by the automaton
Mlnnl = M), Note that M makes an incorrect guess on the string oL

2. Let g, be the state and v, be the stack contents of M after M has been given as input
PRES pq(L, omistakes) (for gmistakes g4 defined so far), has exhausted all possible e-moves,
and is ready to read the next input character. Thus [g,,v,] is ax I/O configuration, and
thus reachable modulo prediction.

3. Append the sequence o' to the end of o™*%* M makes an incorrect guess on the
string 05" . Return to Step 2.

Since M makes an infinite number of incorrect guesses in the sequence g™"takes Af i5 not
correct on (L, o™ Thus M is not correct for L, so M is not a predicting DPDA for C.
This contradicts the definition of M, so HCz must be nonempty for ~ach L € C. O

Lemma 5.5.4 No configuration can be exactly correct for more than one language in C. Thus
a configuration [g,7) is a home configuration for at most one lasuige in C.

75

Prooft Let g€ Q,v € I't, and let L; and L; be (distinct) languages in C. Since L; and
Ly are distinct, there exists a string = € Ly ® L3. MI97 cannot be exactly correct on both
{I1,2) and {L3,2). Thus Misl is not exactly correct for both Ly and L3, so [g,7] is not a
home configuration for both L, and L. O

Lemma 5.5.5 Let o = 04,03,...,0: be any finite sequence of finite strings, and let [qx, i) de
an I/0 configuration that is ezactly correct for L. Consider the string PRESy(L, o). If

(gus 1010202 . . .aebey T) —° (g0 €, 75)
such that [g;,7;] is an I/O configuration, then [g;,v;] is ezactly correct for L.

Prooft Suppose that [g;,7;] is not exactly correct for L. ""hen, by the definition of exact
correctness, there exists a sequence of strings & such that M%7l is not exactly correct on
(L,5). Thus Ml js not exactly correct on (I, #5). This is because M9l after reading
as input the presentation of o and exhausting all e-moves, is in the configuration [g;,v;], and
M!%i] is not exactly correct on (Z, 7). Hence M len is not exactly correct for L, so gk,)

is not exactly correct for L. This contradicts our hypothesis, proving the result. 0

Let [g,] be a home configuration for L. We define MINSTX([g,v]) to be the longest prefix
4’ ¢4 such that, for all sequences ¢ = &4,03,...,0; (where each o; € £*), each configuration
of M that is reached in the computation

(%PR-ESM(L’ ")’7) —-* (q.’ €, '7),

where (§,¢,7) is an I/O configuration, is of the form (¢, 8, 7'a), for some ¢’ € Q, some suffix
B of PRESy(L,7), and some a € I'". Thus MiNsTK([g,7]) is the maximal bottom portion
of the stack that remains uncl wnged throughout any computation of M that begins in the
configuration [g,7] and reads as input a presentation of any sequence o with respect to L and
M.

We partition the class C into two subclasses C; and C3, as follows. Define C; to be the set

of languages L € C such that, for every home configuration [g, 7] of L, the string MINsTK([g,7])
has length at least on2. Define C; to be the set of languages L € C such that, for some

76

&6

[g, 7] € HCL,, MINSTK([g, 7]) is the empty string. Thus C; contains all languages in L € C such
that, once M is in a home configuration for L, there is some (nonempty) string of characters
on the bottom of the stack that will remain unchanged throughout any possible computation
of M on input any presentation of strings with respect to L and M. The subclass C; contains
those languages L with at least one home configuration with the property that, if M is started
in that configuration, then there is some presentation that will cause the bottom character on
the stack to be changed. Clearly C; and C; are disjoint and C = Cy U C;. We first prove two
claims about C; and Cs.

Claim 5.5.8 For each I € C), there ezists a state §, a character Z € T, and a string 8 € T*
such that

(d, 7, Z2) =" (p,€, ZB), (5.1)
where [p, 2B} is an I/O configuration that is ezactly correct for L.

Proof of Claim: Suppose that L € C;. Let [3,7] € HC;. By Lemma 5.5.3, some such
home configuration exists for L, and by Lemma 5.5.4 it is not a hom. configuration for any
other language in C. By the definition of C;, there must exist some sequence & = 04,02,...,0;
such that for some state §,

(gy 0101033 .. .04, v) —* (§, €, MINSTK([g, 7])),

where 0110303 ...0¢ is a prefix of PRESy(L,0). (In fact, o1b103b;...0; is all except the
last character of PRESa(L,c).) That is, there is some sequence o such that after reading
01010303 . .. 0y the stack contents of M is exactly MINSTK([g,7]). If this were not the case then
MINSTK([g,7]) would not be of minimum length, as is required by its definition. We can assert
that a stack equal to MINSTX([g, 7]) is achieved after reading the last character of o, rather
than after some &;, since if the latter were the case we could define ¢;,; to be the empty string.
Note also that since [g, 7] € HCf, b =“r".
Let p € Q and § € T'* be such that

(4, be, M1nsTR([g, 7)) =* (p, €, M1nsT([g, 7])8), (5.2)

where [p, MINSTX([g,7])8] is an I/O configuration. (Such p and S must exist, by the definition
of a predicting DPDA.) Thus

(q' o1d103d3. .. opby, 7) -t (Fv €, MiNSTK([q’ 7])ﬁ)'

77

§7

Since [g,7] is & home configuration for L, it is an I/O configuration that is exactly correct
for L. Thus, by Lemma 5.5.5, [p, MINSTK([g,7])8] is also exactly correct for L. By the def-
inition of MINSTK([g,v]), if M is started in configuration [p, MINSTK([g,7])8] and given in-
put PRESx(L,&), for any sequence &, at most only the top element of MINSTK([g,7]) (i.e.,
rop{MINSTK([g,7]))) will ever be scanned by M, and it will never be removed from the stack.
The stack elements beneath ToP(MINSTK([g,])) will never be scanned nor removed from the
stack. Thus if M is started in the configuration [p, ToP(MINSTK([g, 7]))5] and shown any pre-
sentation PRESx (L,), 'i't will always produce the same outputs as if it had been started
in configuration [p, MINsTK([g,7])8]. Hence the configuration [p, ToP(MINSTK([g,7]))8] is also
exactly correct for L. Furthermore, by (5.2),

«J be, TOP(MINSTK([g, 7]))) —* (P, & TOP(MINSTK([g, 7]))B)-

Since [p, MINsTK([g,7])A] is an 1/O configuration, the pair (p, ToP(MINSTK([g,7])8)) is in
0, and thus [p, ToP(ToP(MINSTK([g,7]))8)] is also in O, so [p, ToP(MINSTK([g,7]))B] is also an

1/0 configuration. The claim is then proved by setting Z = ToP(MINSTK([g,7])) and noting
that b, =“r". 0

A similar result can be shown for the subclass C.

Claim 5.5.7 For each L € Ca, there exists o state §, @ character Z € T, and a string § € T+
such that

| (4,7, Z) =* (e, B)s (5.3)
where [p, B) is an I/O configuration that is ezactly correct for L.

Proof of Claims Suppose that L € C;. Let [g,7] € HC;. By Lemma 5.5.3, some such
home configuration exists for L, and by Lemma 5.5.4 it is not » home configuration for any
other langnage in C. By the definition of C;, there must exist some sequence ¢ = 1,03,...,0¢
such that for some state §,

(g, o1dvo2ba. .. a8, 1) —* (4, €, BOTTOM(T)),

where o1010303...0; is a prefix of PRES (L, o). That is, there is some sequence o such that
after reading o1 510303 .. .o the stack contents of M is exactly soTTOM(7). (Such o must exist

78

55

©

ERIC

3
L R I . .. - * ° ' ’

.7 - - N - - N

since it must be possible to empty M’s stack with legal input.) We can assert that this situation

is reached afier reading the last character of 0y, rather than after some b;, since if the latter were

the case we could define 034, to be the empty string. Note that since [g,y] € HC, b, =“r".
Let p € Q and § € T'* be such that

(d, by BOTTOM(7)) —° (D)€, B),

where [p, 3] is an I/0 configuration. (Such p and 8 must exist, by the definition of a predicting
DPDA.) Thus
(g, 1b10ab3 .. .aedey 7) =° (py e, B).

Since [g,v] is a home configuration for L, it is an I/O configuration that is exactly correct for
L. Thus, by Lemma 5.5.5, [p, 8] is also exactly correct for L. If we set Z = BoTTOM(7) and
observe that by =“r", the claim is proved. O

By Claims 5.5.6 and 5.5.7, for each L € C there exists a state §, a character Z €T, and a
string A € T't such that

(@r2)"° (pse,A),

where [p, A] is an I/O configuration that is exactly correct for L. For each such ID (§,r, Z) there
is at most one configuration [p, A] for which this is true, since M is deterministic. The number
of possible IDs of the form (g, r, Z) is at most |Q||T|. Since, by Lemma 5.5.4, no configuration
is exactly correct for more than one language in C, the number of languages in C can be no
more than |Q||T|, completing the proof of Theorem 5.5.1. 0

5.6 Languages Predictable by DPDAs
In this section we exactly characterise the classes of languages that can be predicted by DPDAs.

Theorem 5.8.1 The DPDA-predictable classes of languages are ezactly the finite classes of

Prooft = We first prove that any finite class of deterministic context-free languages is pre-
dictable.

79

59

Lemma 5.8.2 Let C = {L1,L3,...,Lc} be a finite class of deterministic contest-free lan-
guages. There exists a predicting DPDA M for the class C.

For each I;, let M; be a DPDA that accepts L; by final state. As in the proof of Lemma 5.3.2,
we assume that each M; accepts all strings in I; and rejects all strings in Z* — L;. A similar
result can be shown if we allow each language L; to be defined over its own alphabet I;, and
assume that M; accepts all strings in L; and rejects all strings in Ef — L;. For clarity of

° presentation we prove the result as stated in the lemma.

Procfs The lemma is proved by constructing a predicting DPDA M for C, using the
accepting DPDAs. M first simulates M; and makes all of its guesses based on whether the input
strings are in I;. If M makes an incorrect guess it then starts simulating M; and makes its
guesses based on the langnage L;. This continues until M finds the right langunage, after which
point all of its guesses will be correct. We introduce the additional states g}, pe) @2ione + 3 Tighe
and gl onos Gdrongs - - -3 Qorong iR Order to keep track of which accepting automaton is being
simulated and whether the most recent guess was right or wrong.

For each i such that 1 < i < ¢, let M; = (Q;, T, T, 8i, ¢}, Zi, F;) be a deterministic PDA that
accepts L; by final state, where the set of states is Q; = {g}, 4}, . +sGjg,}» the tape alphabet
isI; = {#,23,..., Zlil‘il}’ and the set of accepting states is F;. Without loss of generality, we
can assume that no e-moves are possible frorn any state in F; and that M; reads its entire input
[40].

We define the predicting DPDA M = (Q,ZuU {r,w}, T, A,), ¢starty Zboteom) 88 follows. As
for all predicting DPDAs, r,w € £ and A = {+,~}. Let

Q= QQ.‘ U {Gutart: Srights Grights + - -1 Grights Trongs Tarongs - - -3 Sovong }
iz

and T = UL; T; U { Zoreom}- The function) is defined as follows. For any state ¢} € Q;,

Mg}) = * ifq;:EE
- € ¢FR.

We define A(g) = * — ” for any state ¢ in

{QM’Q:W’Q:';M’---s#igﬂsq:rm!qarmi""qzrm}’

All of the transitions in §,83,...,5; are also in §. In addition, § contains the following
transitions.

80

NI

- . .
R T -

1. 8(qatarts €& Bsottom) = {(03, ZbottomZ})}

2. For every i such that 1 < i < ¢, for every state ¢} € Q;, and for every Z € I, §(g, 7, Z) =
{(q:-qlm E)} and 6(4;.'!"’ zbctum) = {(qi, Zmnz?)}-

3. For every i such that 1 < i < e~ 1, for every state ¢} € Q;, and for every Z € I},
§(g5,w, 2) = {(ins €)} and 5(q§-, 0, Zhottorm) = {(8}*?) ZoortomZi 1)}

4. For every i such that 1 < i < c and for every Z € I, 6(g};p0 €, Z) = {(0%; 1 €)} and
J(Q';.,-'M, € zboM) = {(9§, zboﬂamz;)}-

5. For every s such that 1 < s < c~—1 and for every Z € T, J(qf,,.m,e,Z) = {(q:,,m,e)}
and §{(Gemongs & Zbottom) = {(€*, ZrottomZ3)}

Let L; be any langunage in C. We prove that M is correct for L;; it then follows immediately
that M is a predicting DPDA for C. Let o = 04,3, ... be any infinite sequence of ﬁni.te strings
over I. Consider the string PRES(L;, o) = o1by03b;.. ..

Claim 5.8.3 The number of w’s in the sequence by, by, ... is less than i.

Proof of Claim: Suppose that b, is the (i - 1)“ occurrence of w in by, bq,.... We show that
no more w’s will appear. Note that, by the definition of the transition function 4, all states
entered by M between the st and (s + 1)5t appearances of w in PRESx(L;, o) are states
from Q,41 and thus that immediately after reading the s*2 occurrence of w and exhausting all
possible e-moves M is in state ¢f**. Similasly, as soon as the s w in the input is read all
stack symbols are popped and only symbols in T,41 U {Zpotsom} are pushed, until such time
as another w is encountered. During the entire computation Zyeesom appears only once in the
stack, at the bottom. Thus immediately after reading o15,0303...7mb, and exhaunsting all
possible e-moves, M is in state g and the stack contents is ZpoetomZ]. Suppose that the string
Om41 i8 in L;. Then, since ¢j is the start state and 2% the start symbol of M;, which accepts
L;, and since all of the transitions in §; are in &,

(q§, Tm+1y Zmz;) ~* (g,«7)

for some ¢ € F; and v € ZyusomI';. By assumption, no ¢ sves are possible in M; from any
state in Fj; thus (g, TOP(7)) € O. By the definition of A, Mg) = “ + ”. Since o1 € L, the

81

J1

value of bns; will be “r”. Similarly, suppose that omq1 € Li- Since M; reads all of its input
there is some g € Q; and 7 € Zyostom I} such that (g, ToP(7v)) € O and

(?{v Om+1y zmnz;) ~* (g,¢ 7).

Since Oms1 & L; and since M; accepts L;, ¢ € Fi. Thus A(q) = “ — ", and the value of bn4y
will again be “r”, Note that in either case, by the definition of §, M will be in state g} with
stack contents ZyomZi immediately before the first character of o2 is read. An obvious
induction shows that each of bni1yBmi3;. - - Is an “r”, proving the claim. O

Hence only a finite oumber of the b,’s are w's, so there exists some ko such that for all
k > ko, by = “r". Thus M is correct on {L;, o). Since o was chosen arbitrarily, M is correct
for L;, and the lemma is proved. a

Note that the proof above gives a technique for constructing a predicting DPDA for any
DPDA-predictable class C' that makes at most |[C| — 1 incorrect predictions.

It remains to be shown that every DPDA-predictable class is a finite class of deterministic
context-free languages. Lemma 5.6.4 states that all languages in a DPDA-predictable class

must be deterministic CFLs.

Lemma 5.6.4 Let C be a DPDA-predictoble class, and let L be a language in C. Then L is a
detern.inistic coniezi-free language.

Proofs We prove the lemma by constructing a DPDA M’ that accepts L from a predicting
DPDA M for the class C. M’ first enters a home configuration for L, and then simmlates M.
It accepts or rejects the input string based on the guess ostput by M.

Let M = (Q, Bu{r, w},T, A, 6,A,q1, Z;) be: predicting DPDA for C, with @ = {q1,...,9q}
and T = {2, 2,,...,2Zr)}. We define 8 DPDA M’ that accepts L. Let [gn,7a] be & home
configuration for L; at least one such configuration exists by Lemma 5.5.3. Then define
M = (Q U {guart} 2y T U {Zstart}s &'y Qotarts Zatart, F), where the set of accepting states F
is defined by

F={geQ:Xg)=%+"}.

The transition function §’ contains all tzansitions of § that don’t involve the symbols »

or w, as well as the transition 0'(Qrtares €, Zotart) = {(gny72)}. Thus at the beginning of any

82

computation, M’ enters [gy, 73], a home configuration for L. It then simulates M on the input
string (in £°*). To see that M’ accepts L, let = be any string in £°. Let § € Q and 4 € I'* be
such that (g, ToP(¥)) € O and

(a8, 2, 1) ~° (, &%)

Since [gn, 7] is & home configuration for L, it is exactly correct for L. If 2 € L, then by the
definition of exact correctness, A(§) =“*+ ", s0d€ F. Fz2 g Lthen A(§) =“-",50§ & F.
Thus M’ accepts L, so L is a deterministic CFL. O

Any predicting DPDA must have a finite number of states and finite tape and input alpha-
bets; thus by the lower bound of Theorem 5.5.1, the number of languages in a DPDA-predictable
class must be finite. Hence the only DPDA-predictable classes are the finite classes of deter-
ministic context-free languages. This concludes the proof of Theorem 5.6.1. O

5.7 Prediction Using Counter Machines

An interesting special case of a deterministic PDA is a I-counter machine (1CM). A 1CM is
a DPDA with only two stack symbols, 0 and 1. Furthermore, the symbol 0 is used only as a
bottom-of-stack marker; it always appears exactly once on the stack, at the bottom. Thus the
stack functions as a counter: it stores a nonnegative integer, corresponding to the number of 1’s
on the stack. A counter machine, like any DPDA, makes transitions based on the current state,
current input symbol (it can also make e-moves), and the symbol on top of the stack. In the
case of & 1CM, the latter is equivalent to checking whether the number stored in the counter
is zero or positive. Similarly, a k-counter machine (kCM) can be defined for any nonnegative
integer k. Such a machine has & stacks are described above, each of which functions as a
counter. The transitions in a A-counter machine depend on the state, input symbol, and which
of the counters store positive numbers. Note that a O-counter machine is a DFA. it has been
shown that any Turing machine can be simmlated by s 2-counter machine [40, 56] For any k,
a k-counter language (bCL) is a langunge that is accepted by some k-counter machine.

By making the necessary adjustments to the definition of predicting DPDAs, we can define
a predicting 1-counier machine in the obvious way. Since it is a suraightforward restriction

33

of the general DPDA definition, a formal definition is cmitted. Similarly, the definition of a
class of languages that is I-counter predictable, as well as other related definitions, is exactly
analogous to the definition for DPDA-predictability, and thus omitted.

Theorem B.7.1 The 1CM-predictable classes of languages are ezactly the finite classes of 1-
counter languages.

Proof Sketch: Since 1-counter machines are a restriction of DPDAs, the result of Theo-
rem 5.5.1 implies that only finite classes are 1CM-predictable. By an argument similar to the
one given in the proof of Lemma 5.6.4, all languages in any 1C}-predictable class are 1-counter
languages. The following lemma states that any finite class C of 1CLs is 1CM-predictable,
completing the proof. a

Lemma 5.7.2 Let C = {Ly} L3,..., Lic|} be a finite class of 1-counter languages. There ezists
a predicting 1ICM M for the class C.

Proof Sketch: The proof is similar to the proof of Lemma 5.6.2. By arguments similar to
some in [40], we can assume that for each L; there is a 1ICM M; that accepts L; that reads all
of its input, and such that no e-moves are possible from any accepting state. We construct a
predicting 1CM M for C, using the accepting 1-counter machines. M first simulates M; and
makes all of its guesses based on whether the input strings are in L;. If M makes an incorrect
guess, it then starts simulating M;, and makes its gnesses based on the language L. This
continues until M finds the right language, after which point all of its guesses will be correct.
As in the proof of Lemma 5.6.2, extra states are used to keep track of which machine is being
simulated and whether the last guess was right or wrong. The bottom-of-stack symbol 0 in the
counter machine takes the place of the stack symbol Zyesom in that proof. After M outputs a
guess and reads the character indicating whether or not it guessed carrectly, it pops all 1’s off
‘the stack until just the sero remains, using e-moves. The current state contains the information
as to which automaton has just beer. simulated, as well as whether the gness just made was
correct. Using this information, M will either simulate the same machine or move on to the
machine for the next language in the class. O

5.8 Discussion

It is perhaps not surprising that only finite classes can be predicted by deterministic finite
automata in this model; after all, there is no infinite component in a DFA. It is, however, much
less intuitive that 1-counter machines, and even deterministic pushdown automata, which have
stacks that are allowed to grow without bound, are unable to predict any infinite classes of
langnages (not even an infinite class of singleton languages). In fact, even though a predicting
DPDA can make use of such a stack, the size of the classes that can be predicted by DPDAs
only exceeds the size of the classes predictable by DFAs (with the same number of states)
by a factor of about 2[I'|. Thus, although the stack is useful for allowing the prediction of
classes containing more complex languages, it is much less effective at enabling the automaton
to predict larger classes. The additional mumber of languages that can be predicted by DPDAs
can largely be explained by the availability of only the top-of-stack symbal, which effectively
increases the number of states in a DFA by a factor of |T').

It is interesting to note the hierarchy of predictive power for counter machines. The classes
‘hat can be predicted by 0-counter machines (DFAs) are the finite classes of regular langnages.
Similarly, 1-counter machines can predict exactly the finite classes of 1-counter languages.
However, when the number of counters reaches two, the number of predictable classes grows
considerably. As was mentioned above, 2-counter machines are as powerful as ‘Turing machines.
Thus prediction by 2CMs in this model is equivalert to NV-extrapolation [6, 9, 19]. A result in
[7] shows .t any recursively ecamerable class of recursive functions (as well as any subclass
of such » _.ss) can be NV-extrapolated. Thus, althongh the difference in predictive power
between 0- and 1-counter machines is relatively slight, an enormous difference exists between
the ability of 1 and 2-counter machines to predict classes of languages.

86

6 ONLINE ALGORITHMS FOR VERTEX LABELING
PROBLEMS

An online algorithm is an algorithm that is given a series of discrete inputs, and must make some
irrevocable decision after seeing each input. An online graph algorithm is an online algorithm
in which the inputs are pieces of a graph ~.nd the decisions are (usually) determining what iabel
to assign to a vertex. At least two onmline graph problems have been studied in some detail.
In [33] and [51) online algorithms for ccloring the vertices of a graph are considered. The
problem of constructing chain covers and antichain covers of partially ordered sets online has
been has been studied in {49] and [50]. Online algorithms for a variety of other problems, such
as packing problems {16, 77], dynamic storage allocation (e.g. [23]), and metrical task systems,
including server and caching problems [15, 21, 35, 65), have also been investigated. Work done
on recursively colorable infinite graphs (8, 18, 29] is related to online graph algorithms. Update
alg: -ithms, in which graph properties are updated following incremental changes to the graph,
also have mmch in common with online graph algorithms [26, 27, 41, 42, 68].

The problems considered here are a class of graph problems that we refer to as vertez labeling
problems. In these problems, the cojective is to assign labels to the vertices of a graph such
that the labeling satisfies certain properties. A particular labeling is evaluated according to
some criterion, such as the number of different labels used (as in the vertex coloring problem)
or the number of vertices to which a particular label is assigned (as in the dominating set
problem). The goal is to find an algorithm that always produces a good labeling according to
the criterion. Vertex labeling problems easily lend themselves to an online protocol; at each
stage, an online algorithm must make an ir evocable decision as to what label a particular
vertex should be assigned. For many such problems, however, it is unrealistic to expect that an
optimal labeling can always be found online; a more reasonable approach is to search for online
algorithms whoss worst-case performance is always bounded by some function of the optimal
labeling and perhaps some other parameters of the graph.

The protocol most oft m used for online graph algorithms is as follows. The algorithm A
is given input, and mve. produce output, in n stages, where n is the number of vertices in

()
PR |

the graph G. At the sth stage, A is told which of the vertices vy,vs,...,v;-1 the vertex v;
is adjacent to. A must then cutput the label to be assigned to v;. Thus the algorithm must
make an irrevocable decision about the label of v; having seen only the subgraph of G induced
by {vi,v2,...,v}. Note that no restrictions are placed on how much time A is allowed to use
before making its decision. The performance of 4 is measured by how good the labelings it
outputs are relative to the best possible (offline) labeling.

This protocol is too restrictive for any algorithm operating under it to achieve good results
for any of a number of vertex labeling problems, including the independent set, vertex cover,
and dominating set problems. For each of these problems, it is trivial to establish upper
bounds on the (worse-case) performance of such algorithms that are little better than the worst
performance level possible. In order to achieve any reasonable performance gnuarantees for these
problems it is necessary to remove some of the restrictions tha’ are placed on algorithms by
this protocol. For this reason, we define t¥0 new online protocols for vertex labeling problems
that will permit us to study how well local heuristics work for these problems.

We will refer to the standard online protocol described above as Protocol 1. The first of
the new protocols, which we call Protocol 2, is as follows. An online algorithm A operates in
the same manner as a Protocol 1 algorithm, with the following exception. At the ith stage,
rather than being given as input a list of the vertices in {vy,vs,...,v;-1} that are adjacent to
the vertex v;, A is given as input a list of all of the vertices in the graph that are adjacent to v;.
Thus at each stage A has more information available to it than merely the subgraph indtced
by the set of vertices that have already been labelel.

The < ther new protocol, referred to as Protocol 3, allows an algorithm A to have the same
information for each vertex that it is permitted under Protocol 2, ¢.'d in addition allows 4
to select at each stage the vertex that it would like to label next. Since (unlike the case
in Protocol 1) A may have information about vertices not yet labeled, this is a meaningful
difference. (It can easily be shown that allowing A to choose the next vertex would be of no
advantage if, as in Protocol 1, A only had information about the vertices it had already labeled.)
As was the case with the original protocol, the performance of an algorithm operating under
one of these new protocols is measured by the quality of the labelings it outputs relative to the
best possible (offline) labeling.

87

37

One reason that research on online algorithms is interesting is that it may offer hints as to
the limits of what can be achieved by algorithms that use only local heuristics (i.e., algorithms
that are strictly online or else use only a modest amount of lookahead), as opposed to global
ones. For some graph problems in P {e.g., finding a minimum-weight spanning tree) there are
efficient algorithms that use only local heuristics. Because of the fact that local heuristics can
usually be implemented efficiently, they are often used to try to find approximate solutions
to problems for which finding the optimal solution is hard. By considering online algorithms
for NP-complete problems we can study how well local heuristics work for (apparently) more
difficult problems, Recall that there are no restrictions on the amount of time and space that
an online algorithm is permitted to use. Thus studying the performance of online algorithms
for NP-complete problems may lead to a better understanding as to what extent, if at all,
additional computational resources can compensate for having only local knowledge of a graph.

In the remainder of this chapter we investigate how well online algorithms perform on
several vertex labeling problems. First, we consider online algorithms for the graph bandwidth
problem. Next, we look at online algorithms for several problems that are a particular type of
vertex labeling problem that we call vertex subset problems. These include the independent
set, vertex cover, and dominating set problems.

6.1 The Online Graph Bandwidth Problem

In this section we investigate the performance of online algorithms for the graph bandwidth
problem.

The study of bandwidths originally arose in connection with matrices, but was readily recast
as a problem in graph theory. The problem of finding the bandwidth of a graph is to determine
the smallest possible value ¢ such that there exists a bijective function f from the vertex set
V to the set {1,2,...,|V|} with the property that if two vertices have an edge between them
then the difference of their images under f is no more than k. The problem of determining the
bandwidth of an arbitrary graph is known to be NP-complete [69]. See [20, 22, 76)] for further
results on the graph bandwidth parameter and its extensions. Graph bandwidths also arise in
the study of VLSI circuit design.

We are interested in the problem of finding online algorithms that const:'uct a function f
with as small a bandwidth as possible for arbitrary graphs. It is not possible to always find

88

}
i

the minimum possible bandwidth online; thus we try to find a function with a bandwidth not
too much larger than the minimum. No restrictions are placed on the computational resources
(time and space) available to the algorithms. We do not consider infinite graphs.

An application of this particular problem is as follows. Suppose we receive some data files in
a sequential manner, and must write each file onto a sequential tape as it arrives. The files can
be placed anywhere on the tape, but we want them positioned so as to minimize the longest
distance that the tape head must travel between files when the data files are subsequently
accessed. If the pattern of anticipated data accesses is such that it can be modeled by a graph,
the the problem of deciding where to put each file as it arrives can be modeled by an online
graph bandwidth problem.

Turner [72] also studied approximation algorithms for the graph bandwidth problem. How-
ever, he does not consider online algorithms, and he assumes an underlying probability distri-
bution over the possible graphs and uses an average-case performance analysis. We analyze
online algorithms in terms of their worst-case performance.

The outline of this section is as follows. We first present an online algorithm (that operates
under Protocol 1) for the bandwidth problem and demonstrate that its performance close to
optimal. We then define the two new, less restrictive protocols for online graph bandwidth
algorithms, and prove lower bounds on the bandwidth of the function comstructed by any
algorithm that operates according to these protocols.

6.1.1 Notation and Definitions

Let G be a simple finite undirected graph with vertex set V = {#,v;...,v,} and edge set E.
Note that |[V| = n. If (u,v) € F then u and v are adjacent. For any v; € V we define the
adjacency list for v; as Adj(v;) = {u : (v;,u) € E}. We define the restricted adjacency list for
v as Adji(v) = Adj(v;) N {v1,73...,0i1}.

Definition 6.1.1 For any integerm, 1< m<n-1, an m-bandwidth function for a graph
G is a bijective function f: V — {1,2...,n} with the property that for any edge (u,v) in E,
|£(u)- £(v)] < m. Alternatively, a function with this property may be said io have bandwidth m.
If a function f is an m-bandwidth function for some m, then f is ¢ bandwidth function. The
bandwidth of G is the smallest positive integer k such that there ezists a k-bandwidth function
for G,

89

99

The size of a graph’s bandwidth gives information about how the vertices in the graph are
connected. In a graph with a small bancwidth, the vertices tend to have edges only to vertices
in the same part of the graph, while a graph with a large bandwidth has edges between vertices
in different parts of the graph. Thus the bandwidth measures certain locality properties of the
edge set. Note that if G has bandwidth &, then no vertex in G can have degree greater than
2k, In pasticular, if G has bandwidth 0, then there are no edges in G, so any bijective furction
from V onto 1,2,...,n is a 0-bandwidth function for G. We will assume that the edge set E is
not exnpty, ard thus G has bandwidth & > 1.

The problem studied here is the construction of an m-bandwidth function f by an algorithm
A when A is given its inputs, and outputs the values of f, according to an online protocol
(defined below).

Definition 6.1.2 An algorithm A is an online bandwidth algorithm if its input/output behavior
is as follows. Initially A is given as input {for some graph G) the number of vertices n and
the bandwidth k. Then, for some ordering of the vertices, vy, v3,...,7n , A is presented the
restricted adjacency lists of the vertices in that order. Afier the list for v; is seen, A must
oulput the value of f(v;) before it is shown Adji11(viy1). The decision made by A as to the
value of f(v;) is irrevocable. When all of the restricted adjacency lists have been seen by A, it
must have defined the values of f such that f is a bandwidth function for G.

Definition 6.1.3 An online bandwidih algorithm A is an online m-bandwidth algorithm if,
for any n and k, for any groph G with n vertices and bandwidth k, and for any ordering of the
vertices of G, the function f defined by A is an m-bandwidth function.

Note that it is trivial to find an online (n — 1)-*~ndwidth algorithm. In fact, any algorithm
that produces a bijective function from V onto {1,2...,n} (according to the online protocol)
is an onliae (n — 1)-bandwidth algorithm.

This definition of an online algorithm is generally similar to the methe d of presenting graphs
and partially ordered sets used in other work on online graph algorithms. One difference between
our definition and the protocols used in the problems of online graph coloring and recursively
covering posets with chains/antichains is that we allow the algorithm to knov: the number of
vertices in the graph. In the coloring and poset problems, the objective is to construct a function
with domain V and a range as small as possible, provided that it satisfies certain constraints.

80

1

In the bandwidth probiem, however, the range of the function must be the same size as V; thus
any online algorithm would be severely handicapped if it did not know what the range was
required to be. Note that we also permit an online bandwidth algorithm to know in advance
the actnal bandwidth of the graph. Because of the stringent requirements on the algorithm (i.e.
that it must construct a bijective function with the desired properties based on only partial
information about the graph) we feel that it is not unreasonable to provide the algorithm with
this information.

8.1.2 An Online Algorithm for finding the Bandwidth of a Graph
Theorem 8.1.4 There exists a Protocol 1 online -‘“—'ﬂﬂi -bandwidth algorithm.

Note that an alternative way to phrase the problem and the above result is as follows. The
definition of an online bandwidth algorithm conld be changed to drop the condition that the
algorithm be given the value of k. Then the above theorem counid state that for any n and &,
there is an online E:gl'"—l -bandwidth algorithm for the set of all graphs with n vertices and
bandwidth #.

Prooft Define B(n, k) = 22-}%31 The online algorithm OLBW (Figure 6.1) computes a
B(n, k)-bandwidth function f. '

Note that the algorithm OLBW sets f(v;) equal to the unused valuein {1,2...,n} farthest
from u that is still consistent with an eventual online band-¥idth of B(n, k). Since p = 241, 4
is the “middle” of 1,2,...,n .

Definition 6.1.5 Let a and S be elements of {1,2...,n}. a is more extreme than § (or 8
is less extreme than a) if |a — 4| > |8 - 4|. a is at least as extreme as # (or 3 is no more
extreme than a) if ja — p] > |8 ~ i

In the following we will frequently refer to the assignment of an image under f to a vertex
v; as “labeling v;" or “giving % a label”. Similarly, elements in LABELS will be referred
to as “nnused labels” or “available labels”, while elements of {1,2...,n} that are no longer in
LABELS will be referred to as “used labels”. Thus OLBW sets f(v;) equal to the most extreme
unused label that is consistent with f having a bandwidth of at most B(n, k).

f is well-defined and bijective. To show that f has bandwidth B(n,k), we will assume
otherwise and show that a contradiction inevitably arises.

91

101

Algorithm OLBW
1. Set LABELS = {1,2,...,n}.

2. Sety:ﬂ-‘fl.

3. Foreachi=1,2,...,ndo:

(i) Define f(%) = z, where z is the element in LABELS
that maximiges |z — u|, subject to the constraint that
for each v; € Adjy(ws),

|£(2:) — f(v3)] < B(n, k).

In case of ties, choose the smaller value,
(i) Set LABELS = LABELS —{z}.

Figure 6.1: Online algorithm to find a B(n, k)-bandwidth function

Suppose that f has a bandwidth greater than B(n, k). Let v, be the first vertex encountered
by OLBW such that labeling v, violates the bandwidth constraint; that is, while OLBW is
processing v,, it finds that there is no element in LABELS that satisfies the constraint in Step
3(i) of the aigorithm.

CASE 0: Adj,(v,) = 8, i.e. there are no edges in F between v, and any previously-seen
vertex. Then any label ths: is given to v, fails to increase the bandwidth of f. Thus the
constraint of Step 3(i) cannot have been violated by v, after all, and we get a contradiction.

Casg 1: Adj,(v,) = {u}. Thus v, has an edge to exactly one previously-seen vertex, which
we will call u. Since u was processed before v,, OLBW has already computed f{u).

Fact 6.1.8 Foranyk > 1, n — B(n, k) < B(n,k) + 1.

If n— B(n,k) < f(u) < B(n, k) +1, then | f(v,) — f(u)] is at most either n— (n— B(n,k)) =
B(n, k) or (B(n, k)+1)—1 = B(n, k). Hence no label ti:at is given to v, will cause the bandwidth
of f to exceed B(n, k). Thus we need only consider the cases when f(u) < n — B(n, k) or
f(u) > B(n, k) + 1.

CasE 1-a: f(u) < n— B(n, k). Let t be the largest integer such that all of the labels from
1 to ¢ have already b:en used; thus ¢ 4 1 is the smallest unused label. Let m = ¢+ 1. Note
that if there were any unused labels between 1 and B(n, k) + 1, then v, could be given or-

of those labels. By Fact 6.1.6, n — B(n, k) < B(n, k) + 1, so |f(v,) = f(u)| would be at most
(B(n,k) + 1) = 1 = B(n, k), and the bandwidth of f would not be forced to exceed B(n, k).
Thus we can assume that ¢ > B(n, k), and hence m > B(n, k) + 2.
For any used label p, let f~2(p) be the vertex that has been assigned the label p by OLBW,
Consider the set P = {1,2,...,2}. All of the elements of P are labels that have already

'beenused.

Definition 6.1.7 We define the sets P, andP.g as follows.
o P, is the set of labels p in P such that p is at least as ezireme as m.

o P isthesetoflabelap‘inPsuchthatﬂtmisanedgeinEﬁmnf“(p) to a vertez that
has already been given a label less than m — B(n, k).

Lemma 8.1.8 L UP; = P,

Proofi Consider any p € P. Let v; (j < s) be the vertex f~)(p). By Step 3(i) of the
algorithm OLBW, p was at that time the most extreme element in LABELS that would not, if
assigned to v;, force the bandwidth of f to exceed B(n, k). Suppose that p ¢ P;, so m is more
extreme than p. Then the reason that v; was given p, rather than m, as a label by OLBW
must have been because assigning m to v; would make the bandwidth of f too large. Since
m 2 B(n, k) + 2, the only way that this could happen would be if there was an edge from v; to
a vertex that had already been assigned a label smaller than m — B(n, k). Thuspe P,. [

Lemma 6.1.9 |P| =n-m+ 1. | P3| £ 2k(m — B(n, k) — 1).

Prooft Since m > B(n, k) + 2, m is greater than n/2. Thus the labels that are at least
as extreme as 7 are 1,2,...,n—~m+1and m,m+1,...,n. Since m = ¢ + 1, the only such
labels thai are in P are 1,2,...,n — m + 1, proving the first part of the lemma. The number
of vertices that have already been assigned a label smaller than m ~ B(n, k) is clearly bounded
by m - B(n, k) - 1. Since G has bandwidth k, each such vertex can have degree no more than
2k, proving the remainder of the lemma. O

93

103

Define P,z = P, NF;, Cleatly |Pyz| < |Pjj=n-m+1=n-t Thus
| Pa| Zt—lpﬁl 2t-(n—-t)=2t-n. (6.1)
By Lemma 6.1.9,since m =¢ + 1,

1Pl < 2kym - B(n,k) - 1)
= 2km-((2k-1)n+1)-2k
= 2kt—-(2k-1)n-1.

Since k> land t < n, 2(k—-1)2—1 < 2(k - 1)n. By algebra, 2kt - (2k~-1)n—-1< 2t —n,
so | P3| < 2t — n, contradicting (6.1). Sincs we get a contradiction, this case cannot arise.

Casg 1-8: f(u) > B(n,k) + 1. Since this case is symmetric to Case 1-A, the exposition
will be shorter. Define ¢t to be minimal such that all of the labels ¢, + 1,...,n have already
been used. Let m =t — 1, the largest unused label. If there were any unused labels between
n — B(n, k) and n, then v, could be assigned one of them, without forcing f’s bandwidth to
exceed B(n, k), by Fact 6.1.6. Thus assume that ¢t < n — B(n,k) and m < n - B(n,k) - 1,
Define P = {t,t +1,...,n}.

Definition 8.1.10 We define the sets P; and P, as follows.
e Py is the set of labels p in P such that p is at least as eztreme as m.

o P, is the set of labels p in P such that there is an edge in E from f~'(p) to a vertez that
has already been given a label greater than m + B(n, k).

Lemma 6.1.11 P U Py = P.

Prooft Similar to proof of Lemma 6.1.8. D

Lemma 6.1.12 | P3| = m. |Py| < 2k(n — m - B(n, k)).

Prooft Since m < n— B(n, k) —1 < §, the only labels in P that are at least as extreme as
maren~m+ 1,n—-m+2,...,n. There are m of these, proving the first equality. No more
than n - m — B(n, k) vertices can be assigned labels larger than m + B(n, k); each such vertex

94

17

has degree no more than 2%. This proves the rest of the lemma. g

Let Py = P;NP,. Then |Pyg|< |Psi=m=1t~1and
|Pa} 2 [Pl - \Pgl=n—-t+1-|Pgl (6.2)
By Lemma 6.1.12,

|Psl < 2k(n~m-B(n,k))

2kn - 2km - (2k-1)n—1
n—2kt+2k~-1

(n—2t)-(-2t+2kt—2k-f1)

(n—2t)~(2t(k-1)-2k+1).
Since t > 2 (because not all labels can have been used already) and & > 1,
(k—1)-2k+12>4(k~1)-2k+1=2k~3> -1.

Thus
|[Pej<(n=2t) - (~-1)=n-2t+1.

Since |Pg| <t -1,
|Pal<n-t-|Pgl<n-~t+1-]|Pg|,

which contradicts (6.2). Hence this case cannot arise.

CasE 2: |Adj,(v,)| 2 2; v, has an edge to two or more previously-seen vertices. Let /
and r be the smallest and largest labels, respectively, among all vertices in Adj,(v,). (If the
labels 1,2,...,n are thought of as being written in ascending order, then ! is the “leftmost”,
and r the “rightmost”, label of any vertex in Adj,(v,).) Note that r — | < n < 2B(n, k), so
r — B(n,k) < |+ B(n,k). Any label between max{1,r — B(n,k)} and min{n,! + B(n, %)},
inclusive, is within B(n, k) of of both ! and r. Thus all such labels must have already been used
since, by hypothesis, any available label that is assigned to v, causes f’s bandwidth to exceed
B(n, k).

We split this case into four subcases.

95
115

CASE 2-A; r— B(n,k) < 1 and l + B(n, &) > n. Thus all of the labels 1,2,...,n have been
used already, so all of the vertices have been labeled. There is no v, left to label.

CAsB 2-B: r - B(n,k) € 1 and [+ B(n, k) < n. Thus all of the labels from 1 through
I + B(n, k) have been used.

Let ¢ be maximal such that all of the labels 1, 2,...,¢ have been used; thus ¢ > B(n, k) + 1.
If the argument in Case 1-A is repeated using u € Adj,(v,), instead of Adj,(v,) = {u}, then
this situation is seen not to be achievable; hence this case cannot arise.

CasB 2-C: r— B(n,k) > 1 and | + B(n, k) 2 : Thus all of the labels from r — B(n, k)
through n have been used.

Let ¢ be minimal such that all of the labels ¢,z + 1,...,n have been used; thus ¢t < r —
B(n, k) < n -~ B(n, k). If the argument in Case 1-B is repeated with u € Adj,(v,), rather than
Adj,(v,) = {u}, then this situation is seen to be impossible; hence this case cannot arise.

Case 2-p: r — B(n,k) > 1 and | 4+ B(n, k) < n. Thus all of the labels from r — B(n, k)
through { + B(n, k) have been used.

Define a to be minimal, and b maximal, such that all of the labelsa+1,2+2,...,6-2,0-1
have been used already, and

{r - B(n,k),r — B(n,k) +1,...,l+ B(n,k)} C {a+1,0a+2,...,5-1}.

Note that a and b have not yet been used, and that ¢ < » — B(n, %) and b > I + B(n, k). Let
P={a+1la+2,...,0-2,b-1}.

Definition 6.1.13 We define the sets Ps, Pg, Py, and Py as follows.
o Ps is the set of labels p in P that satisfy both of the following conditions:

1. p is more ezireme than a and more eztreme than b.

2. f~1(p) is not adjacent to any vertez that has a label either greater than a + B(n, k)
or less than b — B(n, k).

o P; is the set of labels p in P that satisfy the following three conditions:

1. p is more ezireme than a.

2. f~Y(p) is not adjocent to any vertez that has been given a label greater than a +
B(n, k).

17

8. f~Y(p) is adjacent to a vertez that has been given a label less than b— B(n, k).
» P; is the set of labels p in P that satisfy the following three conditions:

1. p is more eztreme than b.
2. f~}(p) is adjacent to a vertez that has been given a label greater than a + B(n, k).
3. f~1(p) is not adjacent to any vertez that has been given a label less than b— B(n, k).

o Py is the set of labels p in P that satisfy both of the following conditions:

1. 17*(p) is adjacent to a vertez that has been given a label greater than a + B{n, k).
2. f~1(p) is adjacent to a vertes that has been given a label less than b— B(n, k).

Lemma 8.1.14 |P| = |Pg| + | Py| + | Py).

Proof: Each p € P was selected by OLBW as the label for some vertex f~(p), rather than

a or b. The possible reasons that p was chosen instead of a or b are as follows.

1. f~}(p) is adjacent to both a vertex with a label more than B(n, k) away from a and a
vertex with a l.abel more than B(n, k) away from 4. Thus neither a nor b would have
been chosen instead of p. Note that since @ < r — B(n, k) < n~ B(n, k) < B(n, k) + 1
(by Fact 6.1.6) that the vertex with a label more than B(n, k) away from a must have a
label greater than a. Similarly, observe that b > I + B(n,k) > 1+ B(n,k),s0 n - b <
n—B(n,k)—1 < B(n, k), by Fact 6.1.6. Hence the vertex with a label more than B(n, k)
away from b must have a label less than b. Any such p is contained in P,.

2. f~1(p) is adjacent to a vertex with a label more than B(n, k) away from a, so ¢ would
not have been chosen. Furthermore, p is more extreme than b, so b wonld not have been
chosen. Any such p is contained in P; U P,.

3. f“(p)isadiacenttoamrtuwithahbdmmthanB(n,k) away from b, so b would
not have been chosen. Furthermore, p is more extreme than a, so a wonld not have been
chosen. Any such p is contained in Py U P,.

4. The only other possible reason would be that p is more extreme than both a and 5. Since
a < p < b, this is impossible. Thus Ps = 0.

97

107 ‘

PCPUPsUPUPy=PsUPUDP;s.

Since PsUP; UPy C P, wehave P = PgU P, U P, and thus |P| = |PsU Pru Psl. It is immediate
from their definitions that Py, P;, and Py are disjoint sets. Therefore

|P) = |Ps| + | Pr| + | Psl-

O

We now make one (final) case subdivision, this time depending on which of a and b is more
extreme.

CASE 2-D-1: b is at least as extreme as a. Thusa+d>n+1,s0bd > n—~a+ 1. Note
that the elements of Py U Py are the labels in P that have been assigned to vertices with edges
to vertices whose labels exceed a + B(n,). Since the maximum degree of any vertex in V is
2k, there are at most 2k distinct elements of P; U Py for each vertex with a label exceeding
a + B(n, k). Hence

|P7| + |Ps| € 2k(n — a ~ B(n, k)).

The labels in Ps are a subset of the set of labels in P that are strictly more extreme than a. If
b > n—a+ 3, then the only labels in P more extreme thana aren—-a+2,n-a+3,...,0~1.
If bequals n — a+ 2 or »n — a + 1 (recall that b can be no smaller than this) then no labels in
P are more extreme than a. Thus

|Ps| € max{(d-1) - (n-a+2)+1,0} = max{db—n +a-2,0}.
Sincea+d>n+1,0b—-n+a-22>-1. Thmb—n+a-lzb,so
|Pg| S max{db-n+a-1,0}=b-n+a-1.
Therefore

|P|

|Ps| + | Pyl + | Pol
2k(n ~a - B(n,k))+b-n+a-1

IA

2kn -2k -(2k-1n-1+bdb-n+a-1

a+b—2ka-2

98

= b-a+2a~2ka-2
= (b—a—1)—(2a(k-1)+1)
< b-a-1
But by the definition of P it is obvious that |P] = b - a — 1. Thus we have derived a
contradiction, so this case cannot occur.
CASE 2-p-11: g is strictly more extreme than . Thus a+b < n, 50 a < n— 5. The elements

of Pg U Py are the labels in P that have been assigned to vertices with edges to vertices whose
labels are less than — B(n, k). Thus

|Po| + | Po] < 2k(b— B(n, k) - 1).

The labels in P7 are each labels in P that are more extremue than 5. If a < n — b ~ 1, then the
only labels in .~ more extreme than b are a4 1,6+ 2,...,n~ b. If a = n — b, then no labels in
P are more extreme than 5. Thus

|Pr| < max{(n—~b)-({a+1)+1,0} =max{n -b-a,0} =n-b-a.

Therefore

|P] | Pg| + | Pz} + | Py

< 2k(b-B(n,k)-1)+n-b—a

2kb—(2k~1)n—1-2k+n-d—-a

(2k~1)b—a+2n—2kn-2k—1.

Sinre k> 1and b < n,
2(k-1)b< 2k+2(k~1)n.
Thus (2k—1)b-a+2n—2kn -2k~ 1 < b—a~— 1. But since |P| = b - a — 1, we have derived
a contradiction, so this case cannot oceur.

Therefore, if we assume that v, is the first vertex that OLBW cannot assign a label to
without foreing the bandwidth of f to exceed B(n, k), we inevitably find a contradiction. Hence
no such v, can exist, and OLBW always produces a function f with bandwidth no more than
B(n, k).

This concludes the proof of Theorem 6.1.4. 0

109

Corollary 8.1.15 The above result holds when G is any graph of degree no more than 2k.

Proof: In the proof above G is assumed to have bandwidth k. However, the only conse-
quence of this that is used is that G must then have degree less than or equal to 2. O

It is clear that if k is large the algorithman OLBW does not guarantee an online bandwidth
that is necessarily much better than the bandwidth ot n— 1 that is trivial to achieve. The result
in the next subsection shows, however, that the performance guarantee that OLBW offers is
close to optimal.

6.1.3 A Lower Bound

In this subsection we give a lower bound on the bandwidth of the function output by any
Protocol 1 online bandwidth algorithm.

Theorem 8.1.18 For any n and k, and for any online bandwidth algorithm A, there e2ists a
graph G with n vertices and bandwidth k such that the function f output by A has bandwidth
greater than 7;:-313 — 2 . Thus no online (%n — 2)-bandwidth algorithm czists.

Before proving this theorem, we prove the following two lemmas.

Lemma 6.1.17 Let the graph G consist of the connected components Gy, Gz,...,Gm, with
bandwidths ky, k3, . .., ky,, respectively. Then the bandwidth of G is max{k;, k3,...,km}.

Prooft Foreachi =1,2,...,m, let f; be a k;-bandwidth function for G;, and let n; be the
number of vertices in G;. The result is witnessed by the bandwidth function f, defined by

j=1

f(0) = fi(v) + Y,
i=1

where j is such that G; is the connected component containing the vertex v. O

Define a graph G to be a star if, for some vertex v, there is an edge from v to every other
vertex in GG, and these are the only edges in G.

Lemma 6.1.18 A stor with n vertices has bondwidth |3 |.

100

-

Prooff Let G be a star, and let vy, v3,...,v, be some ordering of its vertices such that no
vertex has degree greater than v;. (S0 v; is the “center” of the star.) Then f is a | 3 |-bandwidth
fanction for G, where f is defined by

(3] +1 fi=1
fl)=q i-1 f2<i<|3]+1
i ifi>{3)+2

We now return to prove the theorem.

Proof of Theorem 6.1.16: Given n, k, and any algorithm A satisfying the hypothesis, we
will define a graph G with the advertised properties.

We define G by describing the restricted adjacency lists that A is presented for each vertex.
Without loss of generality, assume that 4 sees the restricted adjacency lists for the vertices in
the order vy, vs,...,70, .

We partition the set of labels {1,2...,n} into three disjoint subsets, L, M, and R. These

are defined by
n
L= {1,2,..., [m] +1},
n n n
M= {[2“2]*2’ [2k+2]+3"“’"' [2k+2J ‘1}’
and

R‘{""[zb’:zJ’“'lﬁEJ+1""’"}'

The restricted adjacency lists given as input to A are as follows. Let v; be the vertex
currently under consideration. If there are nnused labels remaining in I and unused labels
still in R, then Adj;(v;) = 0. Otherwise, at least one of L and R has had all of its labels
assigned to vertices. Define X to be the first of L and R to have all of its labels used. Let z
be the most extreme label in X such that |Adj(f~2(2)) N {vy,vs,...,vi_1}| < 2k. Then define
Adji(v;) = {f7(=)}. If no such 2 exists (i.e. if each label in X is assigned to a vertex already
on 2k edges), then define Adji(v;) = .

To see that G has the desired properties, assume that X = L (the rase of X = R is
symmetric). Define Vi = {v € V: f(v) €L}, Ve ={v eV : f(v) e M},and Vg = {v €

101

111

V : f(v) € R}. Clearly V;, Var, and Vi partition V. Note that each edge in G has exactly
one of its vertices in V7. We want to show that there exists an edge connecting a vertex in Vg,
with a vertex in Vg. Consider the point at which the last remaining label in L was assigned
to some vertex. At this time there was still at least one unused label in R (recall that we are
assuming that L was the first of L and R to have all of its labels used). Note that if the number
of possible edges incident to vertices in V7, is greater than the number of unused labels in M,
then the as yet unlabeled vertices in Vg will eventually be connected to vertices in Vz. Thus
the only way that an edge between vertices in Vz and Vg can be avoided is if the number of
unused labels in M exceeds the number of possible edges incident to vertices in V7. Since G is
to have bandwidth k, its vertices may have degree as large as 2k. Thus the number of possible
edges incident to vertices in Vi is 2k|Vz| > y2yn + 2k. The number of unused labels in M
cannot exceed |M| < 1.%" ~ 2, which is Jezs than the number of possible edges to vertices in
Vz. Thus there must exist some edge between vertices in ¥z and V3. Hence the bandwidth of

f is at least k
("' lzk:-zD - (l’ﬁil “) O Tl

It remains to be shown that G has bandwidth k. Each vertex in V7, is adjacent to at most 2k
vertices in Vs U V. There are no edges between vertices in V7, and no edges between vertices

in Vas U Vg. Thus G consists of |L| connected components, each of which is a star with 2k + 1
or fewer vertices. By Lemmmas 6.1.17 and 6.1.18, G has bandwidth .

As was mentioned above, the proof of the case that all of the labels in R are used before all
of the labels in L is symmetric, and hence omitted. 0

Note that the difference between the result achievable by the algorithm OLBW in Theo-
rem ©.1.4 and this lower bound is only about ¥4z n, which is less than 7. Thus the algorithm
OLBW achieves near-opiimal performance on all graphs except those with very small band-
width. For example, if G has bandwidth & = 2 for some constant c, then OLBW outputs a
function whose bandwidth is only an additive constant greater than the lower bound.

6.1.4 Other Online Protocols

We wish to consider other possible protocols for online algorithms. In the protocol defined in
Section 6.1.1, which we will henceforth refer to as Protocol 1, the information that the online

102

algorithm was given for each vertex was limited to a list of the vertices in its adjacency list that
it had already labeled. We define two new online protocols, both of which permit an algorithm
to see more of the graph before producing its output than is allowed under Protocol 1. We
then prove lower bounds on the bandwidths of the functions constructed by any algorithms
operating according to these protocols.

One logical extension to the first protocol is to permit the algorithm to see the entire
adjacency list of the current vertex, rather than just the restricted agjacency list. Any Protocol
1 algorithm, such as OLBW, can be readily adapted to operate according to this new protocol
(Protocol 2) with no loss in its power; it is possible, however, that there are Protocol 2 algorithms
that perform better than any P.otocol 1 algorithm. This is suggested by the observation that
the proof of the bound on the performance of any Protocol 1 algorithm given in Theorem 6.1.16
does not apply to this new protocol.

Deflnition 6.1.19 An algorithm A is a Protocol 2 online bandwidth algorithm if its in-
put/outpui behavior is as follows. Initially A is given as input (for some graph G) the number
of vertices n and the bandwidth k. Then, for some ordering of the vertices vy,v3...,v,, A is
presented the adjacency lists of the vertices in that order. After the list for v; is seen, A must
oulput the value of f(v;) before it is shown Adj(viy;). The decision made by A as to the value
of f(v;) is irrevocable. When all of the adjacency lists have been seen by A, it must have defined
the values of f such that f is a bandwidth function for G.

Definition 8.1.20 4 Protocol 2 online dandwidth algorithm A is a Protocol 2 online m-
bandwidth algorithm if, for any n and k, for any graph G with n vertices and bon widih
k, and for any ordering of the vertices of G, the function f defined by A is an m-bandwidth
Junction.

Note that this type of protocol might also be adapted to other online graph problems, such
as graph coloring.

Theorem 8.1.21 For any n and %, and for any Protocol 2 online bandwidth algorithm A,
there ezists o graph G with n vertices and bandwidth k such that the function f output by A
has bandwidth at least Ezin — § . Thus there is no Protocol 2 online (X5ln - 2)-bandwidth
algorithm.

103

113

Thus for large k the lower bound is only about one quarter the size of the bound obtuined
for Protocol 1 algorithms.
Prooff Given n, k, and A satisfying the hypothesis, we define a graph G with the pioperties
described.

We define G by descrining the adjacency lists of its vertices. Let vy,vz...,vn be the
vertices of G in the order in which their adjacency lists are shown to A. As in the proof of
Theorem 6.1.16, we partition the set of labels, {1,2...,n}, into three sets. Define

L= {1,2,..., E%] +2},

M= {[2%] +3, [2—'2-] +4,... l2k2;1"J -2},
e {[Bde] o, Bk a)
Let s = lz-‘ﬁ—‘-nj

The adjacency lists given as input to A are as follows. Let v; be the current vertex. If A
has not yet used any of the labels in L, or if A has not yet used any of the labels in R, then
Adj(w;) = {v,}, where ¢ is minimal such that ¢ > s and the number of edges seen so far that are
incident to v, is less than 2k — 1 (it will be shown below that such ¢ < n exists). The other case,
in which A has already used labels from both L and R, is handled as follows. Let v; and v, be
the first vertices to be assigned labels in I and R, respectively. Assume that / < r; the proof
in the other case is exactly analogous. We must define Adj(v;) for each i > max{l,r} = r. For
some a,b > s, Adj(v;) = {v.} and Adj(v,) = {n}. Define Adj(vs) = {vn}, Adj(ns) = {vn}, and
Adj(va) = {vs, }. (We can do this since a, 5, and n are at least s, which will be shown below
to be greater than r, and thus this won’t contradict any adjacency lists defined earlier.) For
all 7 > r such that j is not equal to a, b, or n, define Adj(v;) to be consistent with the?dges
already seen (no new edges are added).

To see that the G is well-defined, we must show that each adjacency list was defined only
once. First, we show that r < s. The largest that ! can be is |[M| + |R| + 1. Similasly,
r < |M| +|L| + 1. Since |L| = |R], we get

and

2k-1 2k-1
rslM]+IL|+1—l 2% nJ—1<l 7k nJ—a. (8.3)

104

11

(' GaE MR WE U N G g G5 S Ow G Un G Ob e By I Wy

We must also show that v, was not put into the adjacency list of any vertex other than v,
and o; i.e. we must show that ¢ is always less than n, Since ¢ is defined only for vertices in
{v1y..., v}, it is sufficient to demonstrate that there are enongh vertices in {v,,v,41,..., Un-1}
to have edges to r different vertices. Each vertex in {v,,...,v,-1} is on at most 2k — 1 edges
incident to vertices in {v;,73,...,%}, so the number of different vertices that can have edges
incident to vertices in {v,,Yp41y-..yUn—1} is

2k -1

{20 Bass s Tmma H(2k = 1) = (n - 8)(2k - 1) 2 =2

n>r,

by (6.3). Thus ¢ < n, so G is well-defined.
Note that (v, v,, 7, s, 7) is a path of length four from v; to v,. Since f(v,)~ f(v;) > |M]|+1,

~ at east one of f(v,) = f(m), f(») — f(vn), f(vn) — f(va), and f(vg) — f(2;) must be E{’u or

greater. Thus th.: bandwidth of f is at least
]M:+1=n-]Ll-]R]+1 > n-2(+3)+1 _k-1 5

4 4 4 4k 4

Finally, we show that G has bandwidth k. Each vertex in {v,, v,11,.. ey Un1} — {va,)} is
the center of a star with no more than 2k vertices. Each of these connected components has
bandwidth at most k, by Lemma 6.1.18. The remaining component of G resembles two stars,
centered at v, and vy, except that v, and v, are both adjacent to v,. Let m, be the number
of other vertices (in addition to v,) adjacent to vs, and m; be the number of other vertices (in
addition to v,) adjacent to v. Both m, and m; are less than or equal to 2k — 1.

We define a k-bandwidth function f for this component as follows. Let f(vo) = [Zati] 41,
and let f assign to the other m, vertices (aside from v,,) that are adjacent to v, the other labels
that are les. than or equal to m, +1. Set f(v,) = m, +2. Finally, let f(n) = m, + [2431] 4+ 2,
and let f assign to the other my vertizes (aside from v,) that are adjacent to v the remain-
ing labels mq + 3, mq + 4,...,mq + [241] + 1, m, + [24EL] 4+ 3,...,m, + my + 3. Since f is
a k-bandwidth function for this connected component, G has bandwidth , by Lemma 6.1.17. [J

A third definition of an online protocol is to allow the algorithm to see the same information
as in Protocol 2, but permit the algorithm to choose which vertex it wants to label next, rather
than allow an adversary to make the decision. Clearly s 1y Protocol 2 algorithm can be readily
adapted to perform according to this protocol (Protocol 3) with no loss in its power. Since the

105

above proof of the Protocol 2 performance bound does not work for Protocol 3 algorithms, it
is possible that there are more powerful algorithms that operate under the new protocol.

Definition 6.1.22 An algorithm A is a Protocol 3 online bandwidth algorithm if its in-
put/outpul behavior is as follows. Initially A ‘s given as input (for some graph G) the number
of vertices n and the bandwidth k. A then selects a vertez v and is shown Adj(v). After the
list for v is seen, A oulpuis the value of f(v). The decision made by A as to the value of
f(v) is irrevocable. Then A selects a new vertez v, and the process is repeated. When all of
the adjacency lists have been seen by A, it must have defined the values of f such that f is a
bandwidth function for G.

Definition 6.1.28 4 Protocol 3 online bandwidth algorithm A is ¢ Protocol 3 online m-
bandwidth algorithm if, for any n and k, for any graph G with n vertices and bandwidth
k, and for any ordering of the vertices of G, the function f defined by A is an m-bandwidth
funclion.

Like Protocols 1 and 2, this protocol can also be adapted to other graph problems.

Theorem 68.1.24 For any k > 1, for any € > 0, and for any Protocol 8 online bandwidth
algorithm A, there ezist n mdagmthwithnverﬁcuandb«mdﬁdﬂzk such that the function
J output by A has bandwidth greater than (2 - €)k . Thus, for any € > 0, there is no Protocol 3
online (2 — €)k -bandwidth algorithm.

Prooft Given k, ¢, and A satisfying the hypothesis, we will define two graphs, G; and G3.
G will be either G; or G3, depending on the label A4 gives to the first vertex it sees. G; and G3
will be shown to have the advertised properties.

Choose n to be an odd integer such that n > (max{4,4 + 2})k. Note that this implies that
2k < n - 2k. Without loss of generality, let v; be the first vertex that A selects. A4 is shown
the adjacency list Adj(v;) = {vs,vs,...,P2041}, and must then define f(v;).

Suppose that 2k < f(v) < n — 2k. We then set G = G;, where G, is defined by the
following adjacency lists. For i = 2,83,...,2k + 1, let

Adj(;) = {m}.

106

116

Fori=2k+2,2k+3,...,n, let

Adj(0) = {Oiny Tiht1se e o9 Bic1y Big1s Visdy oo 3 itk } D {Vahe2) V2k43s: 0 os Tn)

All subsequent responses to A are then made according to these adjacency lists.

Note that G; consists of two connected components. The first consists of the subgraph
induced by {v,v3,...,v3441}. This subgraph is a star, since there is an edge from vy to every
other vertex in this subgraph, and these are the only edges in the subgraph. The remaining
vertices induce the other connected component; in this subgraph each vertex v; has an edge
from every oulier vertex in the subgraph that has an index between j — & and j + k, inclusive.
Due to the nature of this component, we will refer to it as the k-braid.

To see that Gy has bandwidth &, define g; as follows.

E+1 ifi=1
ai(w) = f2<i<k+1
] fi>k+2
g1 is a k-bandwidth function for G;.
Suppose that f(v;) < 2k or f(vy) > n — 2k. We then set G = G, where G, is defined as
follows. Order the vertices according to the sequence (recall that n is odd)

Uy Une2y Unegy s+ 29y UBy U3y V14 U2, Vgy y + + »y Una3y U1

There is an edge in G; between every pair of vertices that are within k positions of each other
in this sequence. Note that G; has bandwidth %, since we can define a k-bandwidth fanction
g2 by setting g3(v;) equal to v;’s position in the above sequence. All responses to A are made
according to this definition of G;. Note that Adj(vy) as defined earlier is consistent with G,.

It remains to be shown that the graphs G; and G3 force f to have a bandwidth greater
than (2 - €)k .

CaASD 1: 2k < f(m) < n— 2k, 50 G = Gy. Once again, we partition the set of labels
{1,2...,n} into three subsets. Let M be the set containing the smallest continuous sequence
of labels that includes each of f(v1), f(v3),..+, f(vans1). Define L to be the set of labels less
than the smallest label in M, and R to be the set of labels greater than the largest label in
M. Thus if little = min{f(v1), f(v3),... ., f(v2841)} and big = max{f(v1), f(v3), ..., f(v2ss1)},
then I = {1,2,...,little—1}, M = {little, little+1,...,big}, and R = {big+1,big+2,...,n}.

107

117

CASB 1-A: At least one of L and R is equal to . Assume that L = 0. (The proof of the
other case is analogous.) By the definitions of M and G, there is some i < 2k + 1 such that v;
is adjacent to v; and f(v;) = 1. Since f(vy) > 2k, the bandwidth of f is at least 2k.

Case 1-B: L # 0 and R # 0. If there exist vertices ¢ and y with f(z) € L and f(y) € R
and such that there is an edge (z,y), then the bandwidth of f is at least |M| +1 > 2k + 2.
Assume no such vertices exist,

Define V7, Vaq, and Vg to be the sets of vertices with labels in. L, M, and R, respectively.

Lemma 6.1.25 There are ot least k vertices not in Vi that are adjacent to vertices in V.
There are at least k vertices not in Vi that are adjocent to vertices in Vp.

Prooft We prove the result for V; the proof for Vg is similar. By the definitions of I and
R, all of the vertices in Vi and Vg are in the k-braid. For ¢ = 1,2,...,|L|, define v, to be the
ith-lowest indexed vertex in Vi; thus /; < I3 < ... < ljz). Similarly, let v,; be the jth-lowest
indexed vertex in Vg, for j = 1,2,...,|R|; hence r; < r3 <... < rig;. Think of the k-braid as
being a chain of vertices with vz4.2 on the left end of the chain and v, on the right end, with
every vertex having an edge to each vertex within distance k of it. We will find a lower bound
on the total number of distinct vertices in the k-braid that have edges to vertices in V. There

are four cases to consider.

1. Suppose that /; < r; and riz| > /iz). Thus v, and v, , are the leftmost and rightmost
vertices, respectively, in the k-braid that are in ¥z U Vg. Note that by the assumption
above there are no edges between vertices in Vz and V3, so Ijz; < n— k — 1. The vertex
vy, is adjacent to at least k vertices. If I; < /3 + k&, then v, is adjacent to at least two
vertices that are not adjacent to vy,: vy, itself and vy, 45. If I; > I; + k, then v}, is adjacent
to at least k vertices that are not adjacent to v;,: each of w, 1,91,43,...,V1,4+4. For
each i = 3,4,...,|L| the vertex v, is adjacent to at least one vertex (v, ;i) that none of
Vlys Viyy» 09 Tl;_, i8 adjacent to (since /jz) < n — k — 1 we don’t encounter the problem of
running into the vertices at the right end of the k-braid that have degree less than 2k).
Since by hypothesis k > 2, there are at least k 4+ 2 4 |L| — 2 = |L| + k vertices adjacent
to vertices in V.

108

)

2.

4.

Suppose that ry < I; and ljz; > r\5. Now v, and v}, are the leftmost and rightmost
vertices in the k-braid that are in V, U Vg. We prove the same bound as in Part 1 by an
analogous proof.

Since there are no edges betweer. vertices in V7 and Vp, note that /; > k + 1. The vertex
vy, is adjacent to at least k vertices. If Ijz)_; > Iz — &, then v, is adjacent to
at least two vertices that are not adjacent to Uiyt Wy, itself and oy, 4. My <
liz; + k, then v, is adjacent to at least k vertices that are not adjacent to 9, each
of L FTIVETL. NS TRPPPL N B For each i = |L] - 2,|L]| - 3,...,1 the vertex v, is
adjacent to at least one vertex (v,_;) that none of Vleyr Mgiyr = - -y Wiy, 18 adjacent to
(since I; > k+1 we don’t encounter the problem of running into the vertices at the left end
of the k-braid that have degree less than 2k). Thus there are at least k+2+|L|-2 = |L|+k
vertices adjacent to vertices in V;.

. Suppose that /; < r; and Jjz; > r|5), 30 both the leftmost and rightmost vertices in VL, UVg

arein V7. Let r be the rightmost vertex in Vg, and let ¥z, and V7, be the sets of vertices
in V7 to the left and right, respectivcly, of r. An argument similar to the one given in
part 1 above shows that there are at least |V, | + k vertices adjacent to vertices in V7,.

Since the vertex r € Vx lies between the vertices of V7, and Vz,, and since there are
no edges between vertices in Vz and Vg, there are no vertices adjacent to vertices in
both Vi, and ¥z,. An argument similar to the one given in part 2 above shows that
there are at least |Vp,| + k vertices adjacent to vertices in Vz,. Thus there are at least
[Vi,| + k + |VL,| + k = |L] + 2k vertices adjacent to vertices in V7.

Suppose that r; < /; and 7|z > Ijz;. Thus the leftmost and rightmost vertices in Vz U Vg
are in V3. ThcemnoedgubetweenvmicesinVLanan,ml;2k+1mdlm5
n — k ~ 1. The vertex v, is adjacent to at least 2k vertices. For each i = 2,3,...,|L]
the vertex vy, is adjacent to at least one vertex (vy,4s) that nome of vy, v,,...,m,_, is
adjacent to (since /jz) < n ~ & ~ 1 we don’t encounter the problem of running into the
vertices at the right end of the &-braid that have degree less than 2k). Thus there are at
least 2k + | L] — 1 vertices adjacent to vertices in V.

Thus there are always at least |L| + k (distinct) vertices that are adjacent to vertices in V.

At least k of these are not in Vi, proving the lemma. A similar argument shows the same result

109

: 119

for Vg. O

Vas contains 2k + 1 vertices not in the k-braid. Since there are no edges between vertices in
Vi and Vg, all of the k or more vertices not in Vz that are adjacent to vertices in Vg, and all
of the k& or more vertices not in Vg that are adjacent to vertices in Vg, must be in Vjy.

Suppose that there is no vertex in Viy that is adjacent to vertices in both ¥z and Y’3. Then
the size of Vas, and hence M, is at least 4k + 1. But by the definition of M, if m; and m;
are the vertices in Vs with the smallest and largest, respectively, labels from M, then both
m, and mj are in the star. Thus there is a path of length two or less from m; to m;, so0
f(ma) = f(my) > 4 = 2k. Thus the bandwidth of f is at least 2k.

Alternatively, suppuse that there are A > 0 vertices in Var that are adjacent to vertices in
both Vi and Vg (“shared” vertices). Adjusting for the shared vertices, we get

[Vag| 22k +1+2k-—h=4ak+1-h.

But at least one of the A shared vertices must have a label at least b—;—'- away from the average
value of the labels in M. Thus this vertex has a label at least 24131 4 Bzl away from the label
of some vertex in Vi U Vg. Hence the bandwidth of f is at least

M{+1 h-1 4k+1-h+1 h-1 1
2 + i 2 + 2 —2k+-2-.

CaSE 2: f(vy) < 2k or f(r;) 2 n — 2k, s0 G = G3. We demonstrate a lower bound on the
bandwidth of f for the case when f(v;) < 2k. The other case is symmetric. Since n > (1 4+ 2)k,
-}(3% — 1. Choosea.nintegudmchthat% < d < 4. There are 2dk vertices with path
length d or less from v; (not including vy itself). Thus at least one such vertex u must have a
label of 2dk or greater. Since f(vy) < 2k, there is a path of length d or less from vy to u, and
f(6) = f(vy) > 2dk — 2k. Thus the bandwidth of f is at least

2dk — 2k

2k 2
3 —2&—-;-—(2—;)&)(2—()k.

This concludes the proof of Theorem 6.1.24. O

110

120

8.1.5 Discussion

No algorithm that operates according to Protocol 1 or 2 will always ontput a function with
bandwidth less than an appreciable fraction of n. Because of the weaker lower bound for
Protocol 3 algorithms, it is possible that good algorithms may exist for this protocol. No such
algorithm has yet been found, however.

There are several areas ripe for future research. The performance bounds for all three
protocols conld be tightened. In particular, the best algorithm known under Protocols 2 and 3
is OLBW. It seems likely that there are more powerful algorithms that are specifically designed
to exploit the additional information that is available under these protocols. Also, the algorithm
OLBW reqjuires only modest computational resources. Algorithms that take better advantage
of the unlimited time and space permitted by all thiree of these protocols might yield better
results, It would also be desirable to find good algorithms that don't need to know the actual
graph bandwidth at the outset.

6.2 Online Algorithms for Vertex Subset Problems

The problems that we consider next are a special class of vertex labeling problems that we call
vertez subset problems. In these problems the objective is to construct a subset of the vertex
set of G that satisfies certain constraints. Depending on the particular p;. -Jem, the goal is for
this subset to be either as large or as small as possible, subject to the constraints. Each vertex
is either put into the set or kept out of it; thus the only labels to be assigned to the vertices
are IN and OUT.

The three online protocols defined for the bandwidth problem are readily adapted to the
case of vertex subset problems. Let G = (V, E) be a simple finite undirected graph with vertex
set V and edge set E. A vertex subset problem P for G consists of a constraint function
9 :2¥ — {0,1} and a bit indicating whether the goal is to construct a maximom- or minimum-
sise subset of V. A solstion to the problem P is a subset V/ of ¥ such that g(V') = 1.
The cardinality of ¥, along with the indicator as to whether large or small sets are desirable,
determines how good a solution V' is.

For any vertex subset problem P we make the following definitions.

111

121

Deflnition 6.2.1 4 Protocol 1 algorithm for P is any algorithm A with inpui/output behavior
as follows. Let G = (V,E) be any simple finite undirected graph, and let vy, v3...,v, be any
ordering of the vertices in V. At each stage s = 1,2....,n, A behaves as follows:

1. A is shown the restricted adjacency list Adj,(v,) of v,.
2. A assigns io the veriez v, either the label IN or the label OUT.

Let V' C V be the set of vertices assigned the label IN by A. Then V' is a solution of P.

Deflnition 6.2.2 A Protocol 2 algorithm for P is any algorithm A with input/output behavior

as follows. Let G = (V,E) be any simple finite undivected graph, and let v1,v3...,vn be any
ordering of the vertices in V. Al each stage s = 1,2,...,n, A behaves as follows:

1. A is shown the adjacency list Adj(v,) of v,.
2. A assigns to the vertez v, either the label IN or the label OUT.

Let V! C V be the set of vertices assigned the label IN by A. Then V' is a solution of P.

Definition 8.2.8 A4 Protocol 3 algorithm for P is any algorithm A with input/output dehavior
as follows. Let G = (V, E) be any simple finite undirected graph. At each stage s =1,2,...,n,
A behaves as follows:

1. A selects a vertez v € V that it has not yet labeled.
2. A is shown the adjacency list Adj(v) of v.
3. A assigns to the vertez v either the label IN or the label OUT.

Let V! C V be the set of vertices assigned the label IN by A. Then V' is a solution of P.

As was the case for the bandwidth problem, a Protocol 1 algorithm must assign a label to
v, having seen only the adjacency list for v, restricted to those vertices with index less than s
(i.e., those already labeled). A Protocol 2 algorithm is permi*ted to see all of the edges incident
" to v, before assigning a label to v,, and a Protocol 3 algorithm is allowed, in addition, to choose
the order in which it labels the vertices. All of this is exactly analogous to the definitions for
the graph bandwidth problem.

112

8.2.1 The Online Independent Set Problem

The first vertex subset problem that we consider is the problem of finding a large independent
set of a graph.

Definition 8.2.4 For any graph G = (V, &), a subset V' of V is an independent set of G if
there are no edges between vertices in V.

The genetal problem of finding the mazitaum-size independent set of a graph has been shown
to be NP-complete [28, 43]. Here we are interested in online algorithms to find large, although
not necessarily maximum-size, independent sets. Clearly this is a vertex subset problem; the
goal is to construct a large subset ¥V’ of V, subject to the constraint that none of the vertices
in V' are adjacent. (Thus the constraint function g maps ¥’ to 1 if there are no edges between
vertices in V’/, and 0 otherwise.)

Ir. the remainder of this subsection we use £ to denote the sise of the maximum-size inde-
pendent set of a graph and n to denote the number of vertices in the graph.

Protocol 1 algorithms are not powerful enough to find large independent sets. As the
following theorem shows, algorithms operating according to this protocol cannot be guaranteed
to do better than even the most naive algerithm.

Theorem 6.2.5 There is no Protocol | independent set algorithm that, for any graph G, always
outputs an independent set of size greater than —irk.

Proofi The result is easily proved by defining, for any Protocol 1 algorithm A, a graph
G with n vertices that forces A to output a singleton set. Suppose A gives vy the label IN.
Thende.ﬁnthobethen-vertexmphinwhichthereismedgefrommtoevexyotheredge
in the graph. There are no other edges. Thus {vs,vs,...,v,} is an independent set of size
n-1, SineeAcannotusignthelabelthoanymimotherthano;withoutviolatingthe
constraint function, the result holds.

Suppose that A assigns v; the label OUT. Until A has assigned some vertex the label IN,
letanofthemtﬂctedaﬂmqﬁnsthnitmbempty.Letwbetheﬂrstvertemusigned
the label IN by A. Then define G to be the n-vertex graph with an edge from v; to each of
D41, %42y - .-y ¥n. Thus A cannot assign the label IN to any other vertices: since V —{v;}is an
independent set, the result follows. (Note that if A never assigns the label IN to any vertex,

113

123

the set it ontputs is empty and V itself is an independent set.) O

Since an algorithm that just assigns the first vertex it sees to the independent set is gnaran-
teed a set of sige at least 1 > 1k, this bound makes it clear that Protocol 1 algorithms are too
restricted to offer satisfactory performance guarantees for the independent set problem. The
problem is more interesting when we consider algorithms that operate under Protocols 2 and

.S

Theorem 8.2.8 There is no Protocol 2 independent set algorithm that, for any graph G, always
outputs an independent set ofsizedleauvé_—,k.

Prooft Le: n > 4 be any perfect square. For any independent set algorithm A that operates
under Protocol 2, we define an n-vertex graph G = (V, E) containing an independent set of size
k for which A outputs an independent set of cardinality less than 7;‘-_—21:.

Define V=UuV,UV2U...UV 5, where

U={u;,ug,...,u‘/,-;}

and
Vi = {5k 0hyerer 0 e}

for each i = 1,2,...,4/n. The first \/n vertices that 4 will be shown are those in U. For each
u; € U, A is told that the vertices adjacent to u; are exactly those in V;. A then gives u; either
the label IN or OUT. Let Ui, and Uy be the sets of vertices in U to which A has assigned the
labels IN and OUT, respectively. At this point we define the rest of the edges in E.

For each i and j such that w;,u; € U, there is an edge between each pair of vertices in
V; UV;. Thus the set

U %

s €Uous
induces a complete subgraph of G with |[Upu|(/m ~ 1) vertices. We denote this complete
subgraph by XK. '
For each i such that u; € Uy,, there are no edges between any pair of vertices in V;, nor are
there edges to any vertices in any other set V.
Note that each u; € U,y has already been labeled OUT by A. Furthermore, since K
is a complete subgraph, at most one vertex in K can be labeled IN, by the definition of an

114

independent set. Fo: each i such that u; € U;,, none of the vertices in ¥; can be assigned the
label IN, since they are each adjacent to u;, which has already been labeled IN. Thus 4 can
assign at most |Us,| + 1 vertices of V' the labei IN. Let k4 be the size of the independent set
that A will output for G. Then k4 < |Uiy| + 1.

The set

UaU U W%
MEU‘I

is an independent set for G of cardinality k = |Upz| + |Uinl(v/n - 1). Thus

ka ~ [Usn] +1

Since |Uout| = /A — |Usa|,
k. > V1 ~ U] + |Uin)(v/B = 1)

ka lU;,,I +1
VD = Uil + |Uin|v1 = |Usnl]
Uil + 1
= \/’-‘.(lUml + 1) - 2'Uinl
|Usn] + 1
= on_ U]
= vh [Uin] + 1
> vn-2.
Thus k4 < 7’?_—: O

A slightly weaker bound applies to algorithms that operate under Protocol 3.

Theorem 6.2.7 There is no Protocol 3 independent set algorithm that, for any graph G, always
outpuuanindependentsetafaizeaﬂmat*k,whmn:'sthemsmberofwticesinG and k
is the size of the mazimum independent set in G.

Proofi Let c be a positive integer. Given a Protocol 3 algorithm A and the value ¢ we
dﬁneamthfmwhiehAontpnumindependemmdmdinaﬁtylesathma;k,whue
n is the number of vertices in G and & is the sise of the largest independent set in G. We
can define such a graph with an arbitrarily Iarge number of vertices by choosing ¢ arbitrasily
large. Alternatively, we can construct an arbitrarily large graph with this property by using
the technique described below to define a subgraph with the property. The procedure can then

115

125

be iterated as many times as necessary, using different vertices each time, to produce a graph
as large as desired.

Let k4 denote the size of the independent set output by A. We first define G and prove
that 24 < 1. The graph G is defined according to the order in which A chooses to label the
vertices and the labels A assigns to those vertices. Let vy be the first vertex that A selects to
label. Let its adjacency list consist of ¢ new vertices. (In this proof not all of the vertices will
be given explicit names. A “new” vertex is one that A has not yet queried, and that has not
appeared in any adjacency list already shown to A.) If A assigns the label IN to v;, then the
definition of G is complete; it is the (¢ + 1)-vertex graph defined by the adjacency list of v;. A
cannot assign the label IN to any of the vertices adjacent to n, so k4 = 1. Since the size &k of
the largest independent set for G is clearly ¢, 34 = 1.

If A gives vy the label OUT, then we must describe how subsequent queries are handled,
and thus how G is defined. For i = 2,3,...,2¢c—~ 1, if A has assigned the label OUT tc each of
the first ¢ ~ 1 vertices it has queried, then the ith query is responded to as follows. Let v; denote
the vertex that A chooses as the ith vertex to label. The adjacency list for v; consists of 2¢ -1
new vertices, as well as any other vertices that must be included (i.e. any previously-labeled
vertices in whose adjacency list v; appeared). If A assigns v; the label OUT, then go on to the
next query. If A gives v; the label IN, then we complete the definition of G bv adding a new
vertex w and a number of new edges. Let S be the set of vertices consisting of w and each
vertex that has already appeared in some adjacency list, has not been queried (labeled), and is
not adjacent to v;. Add edges between every pair of vertices in §, so that § induces a complete
subgraph of G. This completes the definition of G. All respinses to subsequent queries by
A are, of course, based on this definition of G. Since S induces a complete subgraph, 4 can
assign at most one vertex in 5§ the label IN. Since v; is the only vertex A has already labeled
IN, k4 < 2. However, the set consisting of w and the 2c — 1 new vertices that appeared in the
adjacency list for ¢; forms an independent set for G, so k = 2c. Thus 24 < 2 = 1,

It remains to consider the case in which A assigns the label OUT to each of the first 2¢~ 1
vertices that it queries. Suppose this is the case, and that thus far G contains the vertices and
edges defined in the responses to the first 2¢ — 1 queries of A. The remainder of G is defined as
follows. One new vertex, 2, is added. Let K be the set of vertices consisting of z and all vertices
in G that were not among the first 2¢ — 1 queried and labeled by A. (Thus the only vertices

116

126

) I U G U WS G G on O GO0 B U0 &N G) G0 U On N

in G that are not in KX are the first 2c — 1 vertices that A labeled.) Add an edge between each
pair of vertices in K|, so that X induces a complete subgraph of G. Thus A can assign the label
IN to at most one vertex in K. Since 4 has already assigned the 2¢c — 1 vertices not in X the
label OUT, k4 = 1.

Let Q be the set of the first 2c — 1 vertices queried by 4. In order to construct a lower
bound on &, first note that the subgraph induced by Q is a forest. This can be seen as follows.
For each j = 1,2,...2c ~ 1, let v; € Q denote the jth vertex queried by A. Suppose there is
an edge between some v), € Q and v;, with 4 < ;. For any i between A and 7, at the time of
the ith query v; is no longer a new vertex. Since v; has not previously been queried, there is
no way that it could be in the adjacency list of v;. Thus v; is adjacent to at most one vertex
vp With A < j. Hence there are no cycles in the subgraph of G induced by Q, so the subgraph
is a forest.

Lemma 8.2.8 Any forest F with m vertices has an independent set of size at least .

Proof of Lemma: Consider any connected component C of F. Choose an arbitrary vertex
in C as the root, and express C as a rooted tree T. Define EVEN to be the set of vertices
in C at even levels of T', and ODD to be the set of vertices in C at odd levels of T. Take
whichever of these two sets is larger, and add its contents to the independent set. Repeat for
each connected component of F. Clearly the result is an independent set that contains at least
half of the vertices in each component of F. This proves the lemn.a. O

Thmthe:eisanindependentutforthembgraphothdueedbyQofsiseatlmt1§1.If
we add the vertex z to this set we get an independent setfoanfsiselglﬁ-l,so

k?_l;ﬂ+1=£—;—1+1=c+%>c.

Thus 38 < 1,

It remains only to express the upper bound on 44 in terms of n and k. We first establish an
upper bound on n, the number of vertices in G. There are ¢ +1 vertices introduced in response
to the first query. Ineac.hofthe(atmoot)zc—zotharqnuiuneededbeforeaiscomplctely
deﬂned,2c~1newvuticumintrodncedintheaﬁmqlht. In addition, the queried vertex
itself could be a new vertex. Finally, the vertex z (or w) is added to G. Thus an upper bound

117

127

on the number of vertices in G is

n < (e+1)+(2c-2)(2c~1+1)+1

= 4c3-3c+2
< 4c
Thereforec>3¢,so-}<§;.Consaqnmtly,!f<73;,sok4<§;k. O

There is no known polynomial-time algorithm that is guaranteed to always output an in-
dependent set of size within a constant factor of optimal. In fact, it has been shown that the
existence of any such algorithm would imply the existence of a polynomial-time algorithm that
always outputs an independent set of size within a factor of € times the optimal, for any € > 0
[28]. This provides strong evidence that no constant factor polynomial-time approximation
algorithm exists. The resnlts of this section show that, even if the restriction on running time
is removed, no good approximation algorithm exists that relies exclusively on local heuristics.

8.2.2 The Online Vertex Cover Problem

Another vertex subset problem is the problem of finding a small vertex cover of a graph.

Definition 6.2.8 For any graph G = (V, E), a subset V' of V is a vertex cover for G if, for
every edge (u,v) in E, ot leastone of u and v is in V",

The general problem of finding the minimum-size vertex cover of a graph has been shown
to be NP-complete [28, 43]. We are interested in online algorithms to find small, although not
necessarily minhmum-size, vertex covers. The vertex cover problem can be seen to be a vertex
subset problem as follows. The object is to construct a small subset V' of V, subject to the
constraint that each edge in E is incident to at least one vertex in V’. (Thus the constraint
fonction g maps V’ to 1 if this condition is met.)

In the remainder of this subsection k is used to denote the cardinality of the minimum-size
vertex cover of a graph G.

As was the case for the independent set problem, the only performance guarantees for
Protocal 1 vertex cover algorithms are extremely weak. It can easily be shown that no Protocol 1

118

125

Algorithm VC
1. Initialise the set PUT-IN-COVER = 0.
2. For each vertex v to be labeled do:

(i) v € PUT-IN-COVER then assign v the label IN.

(ii) Else, if there is some w € Adj{v) such that w has not
yet been labeled and w ¢ PUT-IN-COVER then assign
v the label IN and rnt w into PUT-IN-COVER.

(iii) Else assign v the Iabel OUT.

Figure 6.2; Protocol 2 algorithm to find vertex cover of size at most 2k

algorithm for the vertex cover problem always outputs a cover of size smaller than (n — 1)k.
The proof of this is omitted.

Much better results can be obtained when an algorithm is allowed to operate under Proto-
col 2. The following theorem gives an algorithm that always outputs a cover of cardinality at
most twice the size of the optimal (smallest) cover.

Theorem 8.2.10 There is a Protocol 2 (and hence Protocol 3 as well) vertez cover algorithm
that for any graph G always outputs a vertez cover of size at most 2k.

Proofi Given a graph G = (V, E). The Protocol 2 algerithm VC (Figure 6.2) implements the
well-known approximation algorithm that constructs a vertex cover consisting of the vertices
incident to edges in a maximal matching of G [28].

Let M C E be the set of edges (v, w) such that v is assigned the label IN and w is put into
PUT-IN-COVER in the same execution of Step 2(ii) of the algorithm VC. We show that M is
a maximal matching for G.

Since all vertices in PUT-IN-COVER are labeled IN, Step 2(ii) of VC is equivalent to
assigning the label IN to both v and w. Since v and w are adjacent, this is tantamount to
adding the edge (v,w) to M. Once such a Step 2(ii) has been executed, neither v nor w will
satisfy the conditions of that clanse in any future iteration. Thus neither will be incident to
any edge added in a later iteration. Consequently no vertex lies on more than one edge in M,
so M is a matching.

119

1293

To see that M is maximal, suppose that (r, 5) is an edge not in M such that neither » nor
s is incident to any edge in A, Without loss of generality, assume that » was labeled before s.
Consider the iteration of Step 2 in which r was labeled. At that time, since neither r nor s is
incident to any edge in M, neither would have been in PUT-IN-COVER. Thus the condition of
Step 2(i) would not have been satisfied, but the condition of Step 2(ii) would have been. Thus
either both r and s would have b2en given the label IN, and (r, s) would be in M, or else some
other edge (,¢) would be added to M. This contradicts our assumption, so no such edge (r, s)
can exist. Hence M is a maximal matching.

Clearly the vertices that are assigned the label IN are exactly those that are incident to
an edge in the maximal matching M; let ¥;, be the set of such vertices. Since M is maximal,
there is no edge with botl its vertices in V - V;,,, and thu- V}, is a vertex cover for G. Since
any vertex cover must include at least one vertex incident to each edge in M, and since no two
edges in M have a vertex in common, k > | M| = al. Thus |V;,] < 2k. (These properties of
tAe maximum matching approach to finding approximate solutions to the maximum-size vertex
cover problem appear in {28].) O

The following result shows that this algorithm is optimal among Protocol 2 algorithms.

Theorem 8.2.11 For any € > 0, there is no Protocol 2 vertez cover algorithm that, for any
graph G, always outputs a veriez cover of size less than (2 - €)k.

Prooft Given any such ¢ and algorithm A, we construct a graph G for which 4 outputs
a vertex cover of sise at least (2 — ¢)k. Let m be an integer such that m > 1. Then G will
have either 2m or 3m vertices, depending on the labels that A assigns to the first m vertices
it sees. Thus by selecting m sufficiently large we can construct an arbitrarily large graph with
the desired property.

The first m vertices that A labels are uy, u3,..., 1, (in that order). As long as 4 doesn’t
assign the label OUT to any of these vertices, for each u; A is told that u; is adjacent to
the vertices vy,m,...,0,. There are thus two cases to consider: ejther 4 assigns each of
Ug, U3, .. ., Uyy the label IN, or else A assigns some u; the label OUT. We denote the size of the
vertex cover output by A by k4.

120

130

CAsB 1: A assigns the label IV to each of uy,u3,...,un. Each u; is adjacent to each of
1,93, ..., %m, &8 mentioned above. The remainder of the graph G is then defined as follows.
We add m more vertices w;,w,...,wn to G, and for each i = 1,2,...,m, there is an edge
(%, ;). For each i, A must assign the label IN to at least one of v; and w;. Since A has already
given the label IN to each of uy,u3,..., 1y, k4 is at least 2m. However, {v;,vs,...,0n} is a
vertex cover for G, so k= m. Thus k4 > 2k.

CAsB 2: A assigns the label OUT to some vertex in {u;,u3,...,um}. Let ! be such that
U4 is the first veriex assigned the label OUT by A. Once uy; is assigned the label OUT, no
more edges are added to G, and the definition of G is complete. (The vertices u;;3,..., ti, are
in G but have degree zero.) Thus G is a bipartite graph, where the vertex set V is partitioned
into the two subsets V;, = {u;,us,...,%m} and ¥, = {vy,v3,...,0}. Foreachi <[+ 1,
there is an edge from u; to each vertex in V;. In order to cover the edges incident to uy,;, 4
must assign the label IN to each vertex in V;. Since A has already assigned the label IN to
each of uy, u3,...,u, the size k4 of the cover output by A is at least m + /. However, the set
{ts1,u2,.. ., 4141} is & vertex cover for G of minimum size, so k = [+ 1. Thus % > 2. To
complete the analysis, we split this case into the following two subcases.

Case 2-a:m>I+1,50m>1+2 Thus

ka m+1
T 27122
CaAsB 2-8: m = 1+ 1. Thus
kg m+1
£ > T
E = I1+1
_ 2A+41
T 1+1
1
R S
= 2—l
m
2 2-e
Tlnul'{zz-e,sob‘a(z-e)b. O

The proof of this lower bound does not hold for Protocol 3 algerithms, Thus it is possible
that there are algorithms operating under the third protocol that perform better than the

121

131

Protocol 2 algorithm given above. The following theorem gives a smaller lower bound on the
vertex cover output by any Protocol 3 algorithm.

Theorem 6.2.12 There is no Protocol 3 vertez cover algorithm that, for any graph G, always
outpuis a vertez cover of size less than $k.

Prooft Let A be any Protocol 3 vertex cover algorithm. We give a method to construct
a graph G, with arbitrarily large minimum-size vertex cover k and number of vertices n, such
that A outputs a cover of size at least 3k. The graph G consists of a collection of connected
components, each with either 3 or 5 vertices.

Suppose A requests the adjacency list for some vertex v;. If the connected component
containing v; has already been defined, then the adjacency list of v; is derived from the definition
of the connected component, and given as input to A. If the connected component containing
v; has not yet been defined, then A is told that v; is adjacent to the vertices #; and wu; (neither
of which bas appeared in any previous adjacency list shown to A). If A then assigns to v; the
label OUT, then the vertices ¢;, u;, and v; induce the entire connected component, which is thus
just the simple path of three vertices (2;, vi, ;). A must then assign both ¢; and u; the label IN,
so as to cover both edges in the component. Thus A uses two vertices to cover this component,
when it is possible to cover it with the single vertex v;.

On the other hand, suppose that 4 assigns to v; the label IN. Then the connected component
is defined to include, in addition to t;, u;, and v;, two new vertices r; and s; (neither of which
has appeared in any adjacency already shown to A). In addition to the edges already defined,
the component also includes the edges (r;,#;) and (u;, 5;). Thus the connecied component is
the simple path of five vestices (r;, %, v;, w;, &), with v; the middle vertex on the path. In order
to cover the edges (r;,¢;) and (u;, 8;), A will have to assign the label IN to at least one of r; and
t; and at least one of u; and s;. Since A has already given v; the label IN, it will use at least
three vartices to cover the connected component, although it is possible to do so with only two
vertices, ¢; and w;.

This procedure can be iterated until a graph has been constructed with n and k as large as
desired. quchcmeﬁadmpmmt,Amatlmtitimuthembuofmﬁmum
mmtomm&empmm.mmmm D

122

132

6.2.3 The Online Dominating Set Problem

Finally, we consider the problem of finding a small dominating set of a graph.

Definition 6.2.13 For any graph G = (V,E), a subset V' of V is udominatin,g set of G if,
Jor every vertez v € V, either v € V' or else v is adjacent to some vertez in V',

The dominating set problem is a vertex subset problem where the goal is to construct a
small subset ¥V’ of V, subject to the constraint that each vertex not in V"is adjacent to a vertex
in V'. As was the case with the vertex subset problems discussed earlier, the problem of finding
the minimmm-size dominating set of a graph is NP-complete [28]. In what follows k is used to
denote the size of the minimum-size dominating set for a graph G.

Once again, it is easy to show that Protocol 1 algorithms can offer only extremely weak
performance guarantees. No Protocol 1 dominating set algorithm always outputs a dominating
set with less than (n — 1)k vertices. The proof of this is omitted.

The following theorem establishes a lower bound on the size of the dominating set guaranteed
to be output by any Protocol 3 algorithm. Since any Protocol 3 algorithm can easily be adjusted
to operate according to Protocol 2, the bound holds for Protocol 2 algorithms as well.

Theorem 6.2.14 There is no Protocol 3 dominating set algorithm that, for any graph G,
always outputs a dominating set of size less than (2n)/3k.

Proofi Let ¢ > 2 be a positive integer. Given a Protocol 3 algorithm A and the value ¢ we
define a graph G for which A outputs s dominating set of cardinality at least (2n)*/3k, where
n is the number of vertices in G. We can define such a graph with an arbitrarily large oumber
of vertices by choosing ¢ arbitrarily large. Alternatively, we can construct an arbitrarily large
graph with this property by using the technique described below to define a subgraph with
the property. The procedure can then be iterated as many times as necessary, using different
vertices each time, to produce a graph as large as desired.

Let k4 denote the sise of the dominating set output by 4. We first define G and prove that
24 > c. The graph G is defined according to the order in which A chooses to label the vertices
and the labels A assigns to those vertices. Let vy be the first vertex that A selects to label.
Define its adjacency list to be U = {uy, ua,...,%.}. If A assigns the label OUT to vy, then the
definition of G is complete; it is the (¢ + 1)-vertex graph defined by the adjacency list of v,. 4

123

133

must assign the label IN to each vertex in U, so k4 = ¢. Since {»} is a dominating set for G,
e

If A gives vy the label IN, then we must describe how subsequent queries are handled, and
thus how G is defined. For ¢ = 2,3,...,¢ — 1, if A has assigned the label IN to each of the first
i — 1 vertices it has queried, then the ith query is responded to as follows. Let v; denote the
vertex that A chooses as the ith vertex to label. The adjacency list for v; consists of ¢ -5+ 1
new vertices and all vertices in U that have not previously been queried, as well as any other
vertices that must be included by virtue of v; having ake;dy appeared in their adjacency list
in response to an earlier query. (As in the proof of Theorem 6.2.7, not all of the vertices in this
proof will be given explicit names; a “new” vertex is one that A has not yet queried and that
has not appeared in any adjacency list already shown to 4.) If A assigns v; the label IN then
go on to the next query. If A gives v; the label OUT, then the definition of G is complete, and
all responses to subsequent queries by A are, of conrse, based on this definition. In this case, A
must assign the label IN to each of the ic — i + 1 new vertices added in the ith query. Since 4
has already given the first i — 1 vertices it queried the label IN, k4 > (fc—1i4+1)4 (i — 1) = ic.
However, the set containing the first s — 1 vertices queried by A and the vertex v; forms a
dominating set for G; hence k < i,s0 32 > ¥ = ¢,

We still must consider the case in which A assigns the label IN to each of the first ¢ -1
vertices that it queries. Suppose this is the case, and that thus far G contains the vertices and
edges defined in the responses to the first ¢ — 1 queries of 4. The remainder of G is defined as
follows. Let u be a vertex in U that has not yet been queried by A; at least one exists, since
U contains ¢ vertices and only ¢ — 1 queries have been made. Let w be a new vertex. Add an
edge from u to every unqueried vertex in G, including w. Since there is already an edge from u
to each vertex that has already been queried, u is adjacent to every other vertex in the graph.
Thus {u} is a dominating set for G, s0 k = 1. Since A has alrendy assigned c ~ 1 vertices the
label IN, and must also assign that label to at least one of u and w, k4 > c. Hence 34 > c.

It remains only to express the upper bound on 44 in terms of n and k. We first establish an
upper bound on n, the number of vartices in G. There are ¢ 4 1 vertices introduced in response
to the first query. For each § = 2,3,...,c~ 1, at most ic — ¢ + 1 new vertices are introduced in
the adjacency list given in response to the ith query made by A. In addition, for each of these
queries the queried vertex itself could be a new vertex. Finally, the vertex w may be added to

124

134

G. Thus an upper bound on the number of vertices in G is

n < (c+1)+1+§(k-i+z)
=3

c=-1 e=1
c+2+) (ie~-d)+ Y 2
i=3 =2

c+2+ (e~ 1)§s’+2(c-2)

=3

I—-24+(c—-1) (Lf-—l-)f-l)

2
S-23+¢
2

-2+ —-c+1

I

}
n

i
Y
+

!
1]

I
[y

Sincec > 2,¢* - §c+120, 50

Hence 7 < 3¢, 50 ¢ > (2n)}/3. Consequently, 38 > (2n)/3; thus k4 > (2n)Y/3E. O

6.2.4 Discussion

Interestingly, even though each of these three vertex subset problems is NP-complete, there is
a wide variation among the performance levels that can be achieved by Protocol 2 or 3 online
algorithms for these problems. For both the independent set problem and the dominating set
problem, no algorithm that operates according to either Protocol 2 or Protocol 3 will always
output a vertex subset of sise bounded by a constant times the sise of the optimal subset.
Even under Protocol 3, the best possible performance bounds for these problems differ from
the optimal solutions by factors of /n and n'/3, respectively. In contrast, very good results
can be obtained under both Protocols 2 and 3 for the vertex cover problem. This suggests
that the performance of local heuristics for NP-complete graph problems is quite sensitive to
the particular problem under consideration, even though the offine decision versions of these
problems are of identical difficulty.

On the other hand, for sach of these problems any Protocol 1 algorithm has a similar

(dismal) performance bound.

125

Ec 135

Aruitoxt provided by Eic:

Note that most of the results in this chapter are negative, rather than positive, in nature.
Although online algorithms are allowed unlimited time and space, because of the fact that at
each stage in its execution only part of the graph is available to an online algorithm as input,
there is only a limited amount of data for the algorithm to work with. Thus most known online
algorithms for problems of interest run quite efficiently. Consegaently, positive results (i.e.
online algorithms with strong performance gnarantees) for these problems might well imply the
existence of polynomial-time approximation algorithms for NP-complete problems with similar
strong performance guarantees. Such approximation algorithms have eluded researchers for a
long time; this suggests that finding such online algorithms is not an easy matter.

126

135

©

ERIC

7 SUMMARY OF RESULTS

o If R is a PAC-learnable representation class that is strongly polynomially closed under
exception lists then there exists a randomized polynomial-time (length-based) Occam
algorithm for R. This result also holds in the case of learning one class in terms of
another class and for polynomisl predictability.

e If R is a PAC-learnable representation class that is polynomially closed nander exception
lists then there exists a randomized polynomial-time (dimension-based) Occam algorithm
for R.

o If F is a PAC-learnable family of Boolean formulas and FF; is polynomially predictable
then F is ss-learnable. Thus for any k € IN, the families of monomials, *CNF formulas,
kDNF formulas, and k-decision-lists are ss-learnable.

» If R is a representation class that is polynomially learnable and such that RRy is pre-
dictable then R is ss-learnable.

o If arepresentation class R is polynomially learnable and there is a randomized polynomial-
time hypothesis finder for RR then R is ss-learnable. Thus the class of axis-aligned
rectangles in the Euclidean plane is ss-learnable.

o If the representation class R is polynomially learnable from positive examples alone then
R is ss-learnable.

o A family of Boolean formulas F is sc-learnable if and only if it is ss-learnable. A rep-
resentation class R over an unparameterised domain is sc-learnable if and only if it is
ss-learnable,

o The DFA-predictable classes of languages are exactly the finite classes of regular lan-
guages.

» The DPDA-predictable classes of languages are exactly the finite classes of deterministic
context-free langnages.

127

137

» The 1CM-predictable classes of languages are exactly the finite classes of 1-counter laa-
guages.

o There is a Protocol 1 anline algorithm that always outputs s 2253+ handwidth function
for any n-vertex graph with bandwidth £&. No Protocol 1 algorithm always outputs a
piyn—2-bandwidth function. There is no Protocol 2 online 43t n—2-bandwidth algorithm.
For any € > 0, no Protocol 3 algorithm always outputs a (2 — €)k-bandwidth function.

» There is no Protocol 2 algorithm that, for any n-vertex graph with an independent set of
sige k, always outputs an independent set of size at least 7;}:;&. No Protocol 3 algorithm
always outputs an independent set of size at least ﬁ:b.

o There is a Protocol 2 online algorithm that, for any graph with a vertex cover of size
k, always outputs a vertex cover of size at most k. This is the best possible result for
Protocol 2 algorithms. No Protocol 3 algorithm always outputs a cover of size less than
3
5k.

e No Protocol 3 online algorithm always outputs a dominating set of size less than (2n)!/3k
for any n-vertex graph with a dominating set of size k.

128

133

BIBLIOGRAPHY

[1] N. Abe. Polynomial learnability of semilinear sets. In Proceedings of the 1989 Workshop
on Computational Learning Th-ory, pages 25~40. Morgan Kaufmann, Angust 1989.

2] E. Allender. The generalized Kolmdgorov complexity of sets. In Proceedings of the jth An-
nual IEEE Conference on Structure in Complezity Theory, pages 186-194. IEEE Computer
Society Press, June 1989.

[3] M. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

[4] D. Angluin. Equivalence queries and approximate fingerprints. In Proceedings of the 1989
Workshop on Computational Learning Theory, pages 134-145. Morgan Kaufmann, August
1989.

(5] L. Babai. Trading group theory for randomness. In Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, pages 421-429. ACM, May 1985.

(6] J. M. Barzdin. Prognostication of Auvtomata and FPunctions, pages 81-84 Elsevier North-
Holland, New York, 1972.

[7] J. M. Barzdin and R. V. Freivald. On the prediction of general recursive functions. Soviet
Mathematics Doklady, 13:1224-1228, 1972.

(8] D. Bean. Effective coloration. Journal of Symbolic Logie, 41(2):469—480, June 1976.

(9] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information
and Control, 28:125-155, 1975.

[10] A. Blumer, A. Ehrenfencht, D. Haussler, and M. Warmuth. Classifying learnable geometric
concepts with the Vapnik-Chervonenkis dimension. In Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, pages 273-282. ACM, May 1986.

(11] A. Blumer, A. Ehrenfencht, D. Haussler, and M. Warmuth. Occam’s rasor. Information
Processing Letters, 24(6):377-380, April 1987.

129

139

[12] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the Vapiik-
Chervonenkis dimension. Journal of the ACM, 36(4):928-965, October 1989.

[13] B. Board and L. Pitt. On the necessity of Occam algorithms. In Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing. Assoriation for Computing Machinery,
May 1990.

[14] R. A. Board and L. Pitt. Semi-supervised learning. Machine Learning, 4(1):41-65, October
1989.

[15] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for metrical task systems.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages 373—
382. Association for Computing Machinery, May 1987.

[16] D. Brown, B. Baker, and H, Katseff. Lower bounds for online two-dimensional packing
algorithms. Acta Informatica, 18(2):207-225, 1982.

[17] J. G. Carbonell, R. S. Michalski, and T. M. Mitchell. An Overview of Machine Learning.
Tioga, 1983.

[18] H. Carstens and P. Pappinghaus. Recursive coloration of countable graphs. Annals of Pure
and Applied Logic, 25(1):19-45, October 1983.

[19] J. Case and C. Smith. Comparison of identification criteria for machine inductive inference.
Theoretical Comyuter Science, 25:193-220, 1983,

[20] P. Chinn, J. Chvatalova, A. Dewdney, and N. Gibbs. The bandwidth problem for graphs
and matrices — a survey. Journal of Graph Theory, 8:223-254, 1982,

[21] M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results on server problems.
In Proceedings of the First Annual ACM-SIAM Symposism on Discrete Algorithms. ACM,
January 1990. To appear, SIAM Jouwrnal on Discrete Mathematics,

[22] F. BR. K. Chung. Labelings of Graphs, pages 151-168. Academic Press, San Diego, 1988.

[23] E. Coffman Jr. and F. Leighton. A provably efficient algorithm for dynamic storage allo-
cation. Jowrnal of Computer and System Science, 38(1):2-35, February 1989.

130

110

[24] R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley and Sons,
Inc., 1973.

[25] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. G. Valiant. A general lower bound on the
number of examples needed for learning. Information and Computation, 82:247-261, 1989,

[26] S. Even and Y. Shiloach. An on-line edge-deletion problem. Journal of the A CM, 28(1):1—4,
Jaonary 1981.

[27] G. Frederickson. Data structures for on-line updating of minimum spanning trees. In

Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pages 252-257.
ACM, April 1983.

[28] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. W. H. Freeman, San Francisco, California, 1979.

[29] W. Gasarch. Recursion theoretic techniques in complexity theory and combinatorics. Ph.D.
Thesis, Computer Science Department, Harvard University, 1985.

(30] J. Gill. Probabilistic Turing machines. SIAM Journal on Computing, 6(4):675-695, 1977.
[31] E. M. Gold. Universal goal-seekers. Information and Control, 18(5):395-403, June 1971.

[32] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-

systems. In Proceedings of the 17th Annual ACM Symposium on Theory of Computing,
pages 291-304. ACM, May 1985.

[83] A. Gy4rfés and J. Lehel. Online and first fit colorings of graphs. Journal of Graph Theory,
12(2):217-227, Summer 1988.

[34] J. Hartigan. Cluster Algorithms. John Wiley and Sons, New York, 1975.

[35] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s learning
framework. Artificial Intelligence, (38):177-221, 1988.

[36] D. Haussler. Learning conjunctive concepts in structural domains. Machine Learning,
4(1):7-40, October 1989.

131

141

[37) D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence of models for
polynomial learnability. In Proceedings of the 1988 Workshop on Computational Learning
Theory, pages 42-55. Morgan Kaufmann, August 1983. To appear in Information and
Computation.

[38] D. Hausaler, N. Littlestone, and M. K. Warmuth. Predicting {0,1} fanctions on randoxnly
drawn points. In Proceedings of the 29th Annual IEEE Symposium on Foundations of
Computer Science, pages 100-109. IEEE Computer Society Press, October 1988.

[39] D. Haussler and L. Pitt, editors. Proceedings of the /988 Workshop on Computational
Learning Theory. Morgan Kaufmann, San Mateo, California, 1988.

[40] 3. E. Hopcroft and J. D. Ullman. Iniroduction to Automata Theory, Languages, and
Compuiation. Addison-Wesley, Reading, Massachusetts, 1979.

[41] T. Ibaraki and N. Katoh. On-line computation of transitive closures of graphs. Information
Processing Letters, 16(2):95-97, February 1983.

[42] G. Italiano. Amortized efficiency of a path retrieval data structure. Theoretical Computer
Science, 48:273-281, 1986.

[43] R. M. Karp. Reducibility Among Combinatorial Problems, pages 85-104. Plenum Press,
New York, 1972.

[44] M. Kearns. The computational complexity of machine learning. Technical Report TR-13-
89, Ph.D. Thesis, Aiken Computation Laboratory, Harvard University, 1989.

[45] M. Kearns and M. Li. Learning in the presence of malicions errors. In Proceedings of the
20th Annual ACM Symposium on Theory of Computing, pages 267-280. ACM, May 1988.

[46] M. Kearns, M. Li, L. Pitt, and L. G. Valiant. On the learnability of boolean formulae.

In Proceedings of the 19th Annual ACM Symposium on Theory of Computing. ACM, May
1987. '

[47] M. Kearns, M. Li, L. Pitt, and L. G. Valiant. Recent results on boclean concept learning.
In Proceedings of the jth International Workshop on Machine Learning, pages 337-352.
Morgan Kaufmann, June 1987.

132

142

[48] M. Kearns and L. G. Valiant. Cryptographic limitations on learning Boolean formmlae
and finite automata. In Proceedings of the 21st Annual ACM Symposivm on Theory of

Compuiing, pages 433—444. ACM, May 1989,

*

[49] H. Kierstead. An effective version of Dilworth’s theorem). Transactions of the American
Mathematical Society, 268(1):63-77, November 1981.

[50] H. Kierstead. Recursive ordered sets. Contemporary Mathematics, 57:75-102, 1986.

[51] H. Kierstead. The linearity of first-fit coloring of interval graphs. Unpublished manuscript,
1988,

[52] A. Kolmogorov. Three approaches to the quantitative definition of information. Problems
in Information Transmission, 1(1):1-7, 1965.

[53] M. Li and P. Vitanyi. Two decades of applied Kolmogorov complexity: In memoriam
of Andrei Nikolaevich Kolmogorov 1903-1987. In Proceedings of the 3rd Annual IEEE
Clonference on Structure in Complezity Theory. IEEE Computer Society Press, June 1988.

[54] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285-318, 1987.

[55] M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for online problems. In

Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pages 322-333.
ACM, May 1988.

[66] M. Minsky. Recursive unsolvability of Post’s problem of ‘tag’ and other topics in the theory
of Turing machines. Annals of Mathematics, 74(3):487-455, 1961.

[67] B. K. Natarajan, On learning boolean functions. In Procezdings of the 19th Annual ACM
Symposium on Theory of Computing, pages 296-304. ACM, May 1987.

58] William of Oceam. Quodlideta Septem (in translation), cira 1320.

[69] C. Papadimitrion. The NP-completeness of the bandwidth minimization problem. Com-
puting, 16(3):263-270, 1976.

133

[43

[60] C. Papadimitrion. Games against nature. Journal of Coraputer and System Scien. 2,
31(2):288-301, October 1985.

[61] L. Pitt and L. G. Valiant. Computational limitations on learning from examples. Journal
of the ACM, 35(4):965-984, 1988,

[62] L. Pitt and M. K. Warmuth. Prediction preserving reducibility. Technical Report UCSC-
CRL-88-26, University of California, Santa Crns, November 1988. Preliminary version
appeared in Proceedings of the 3rd Annual IEEE Conference on Structure in Complexity
Theory, pages 60-69, June 1988.

[63] L. Pitt and M. K. Warmmth. Reductions among prediction problems: On the difficulty of
predicting automata. In Proceedings of the Srd Annual IEEE Conference on Structure in
Complezity Theory, pages 60-69. IEEE Computer Society Press, June 1988,

[64] L. Pitt and M. K. Warmuth. The minimum consistent DFA problem cannot be approxi-
mated within any polynomial. Technical Report UTUCDCS-R-89-1499, University of Illi-
nois at Urbana-Champaign, February 1989. To appear, J. ACM. A preliminary version
appears in the 21st annual ACM Symposium on Theory of Computing, May 1989.

[65] P. Raghavan and M. Snir. Memory versus randomization in online algorithms. In Pro-
ceedings of the 16th International Collogquium on Auvtomata, Languages, and Programming;
Lecture Notes in Computer Science 372, pages 687-703. Springer-Verlag, July 1989.

[66] R. L. Rivest. Learning decision lists. Machine Learning, 2:229-246, 1987.

[67] R. L. Rivest, D. Haussler, and M. K. Warmuth, editors. Proceedings of the 1989 Workshop
on Computational Learning Theory. Morgan Kaufmann, San Mateo, California, 1989.

[638] H. Rohnert. A dynamisation of the all pairs least cost problem. In Lecture Notes in
Computer Scicnce 182, pages 279-286. Springer- Verlag, 1985.

[68] H. Romesburg. Cluster Analgsis for Resesrchers. Lifetime Learning, Belmont, California,
1984.

[70] R. Schapire. The strength of weak learnability. Technical Report MIT/LCS/TM-415,
MIT Laboratory for Computer Science, October 1989. To appeas, Machine Learning. A

134

preliminary version appears in the Proceedings of the 30th Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, October, 1989.

[71] R. Sloan. Computational learning theory: New models and algorithms. Technical Report
MIT/LCS/TR-448, Ph.D. Thesis, MIT, 1989.

[72] J. Turner. On the probable performance of heuristics for bandwidth minimization. STAM
Journal on Computing, 15(2):561-580, May 1986.

[78] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142,
November 1984.

[74] L. G. Valiant. Learning disjunctions of conjunctions. In Proceedings of the 9th International
 Joint Conference on Artificial Intelligence, vol. 1, pages 560-566, Angust 1985.

[75] M. K. Warmuth. Towards representation independence in PAC-learning. In Proceedings
of AIlI-89 Workshop on Analogical and Inductive Inference; Lecture Notes in Artificial
Inteiligence 397, pages 78-103. Springer-Verlag, October 1989,

(78] M. Weaver. Graph labelings. Ph.D. Thesis, Mathematics Department, University of Dllinois
at Urbana-Champaign, 1988.

{77] A. Yao. New algorithms for bin packing. Journal of the ACM, 27(2):207-227, April 1980.

135

145

VITA

Raymond Acton Board was born on June 28, 1957 in Waterloo, Iowa. He received a Bache-
lor of Science degree in Mathematics from MIT in 1979, From 1979 until 1983 he worked as
consulting actuary in Lincolnshire, Illinois. In August of 1983 he enrolled at the University of
Iowa as a nondegree student, where he also worked part-time as a computer programmer. He
entered graduate school at the University of lllinois in August of 1984, where he was awarded a
University of Illinois Graduate Fellowship in 1986. In 1990 he received his Ph.D. in Computer
Science under the direction of Dr. Leonard Pitt. Dr. Board is a member of the Phi Kappa Phi
Honor Society and the Association of Computing Machinery, and is an Associate Member of
the Society of Actuaries. His papers include:

1. “Semi-supervised Learning,” Machine Learning, Volume 4, Number 1, October 1989 (with
L. Pitt).

2. “On the Necessity of Occam Algorithms,” Proceedings of the 22nd Annual ACM Sympo-
sium on Theory of Computing, May 1990, Baltimore, MD (with L. Pitt).

3. “The Online Graph Bandwidth Problem” (submitted for publication).
4. “Prediction by Weak Automata” (submitted for publication).

136

146

s A
Raymond Acton Board

\aeiarmins Orandisati AL jdeens

Uvu'si:y of Illinois

1304 W. Springfield Avenue
Urbana, Illinois 61801

Department of Computer Science Fm‘- Ne.

2 Spessariag Organizaciss Name aad Address 12 Type of & Peried
[:m Repore

%

15 Supplemescary Neuas

The distribution-independent modal of conceps laarning from examples (“PAC-learning™)
due to Vallans is iovestigated. It has previously besn shown that the existence of an Occsmn
algorithes for a class of concepts is a sufficient condition for the PAC-learnability of thas class.
(An Occam algorithm is & sandomised polynomial-time algosithm that, when given as input
a sample of strings of some cnimown concept to be leamed, cutputs a small desesiption of »
concept that i consistent with the sample.) It is ahown here that for any class satisfying the
property of clossre snder esception Ksts, the PAC-lsarsability of the class impHes the existence
of an Occam algorithm for the class. Thus the axistence of randomised Occam algorithms
axactly characterises PAC-learnability for all conceps classas with this property. This reveals a
close relationship between between PAC-leamning and information compression for a wide range

of intevesting classes. .

The PAC-learning modal is then axtended to that of semi-superwised lasrning (ss-learning),
hM»Mdehhthﬂdwm‘ww:l
information concerning concept membership available to the lesrning algosithm. It is shown that
masy FAC-learnahle concept clasess are also ss-Jearnable. Several sets of mufficiens conditions
for a class to be se-lesxnable are given. A prediction-besed defizition of Jeamning mmitiple
concept classes has besn given and showa te be equivalent to se-leurning.

mmmamnmmmmuwm
els for prediction by deterministic fnite state machines, 1-counter machines, and deterministic
Mmm“dhhaf”“mhuﬂhh
typss of sutomasts are precisely charecterised. In particuler, these varioties of antomasa can
predict exactly the finite classes of regular languages, the finite classes of 1-countar languages,
and the finite classes of deterministic context-free languages, respectivaly. In addition, upper
bounds are given fir the sise of classes thas can be predicted by such sutomata.

Two new caline protocals for graph algoeitions sve dafined. Bounds oa the performancs of
online algorithms for the graph bandwidth, vertex coves, independant s, and dominating set

-,

peoblams are demonstrated. Various resuits aze proved for algosithms operating according
wmm-ﬂ-mm::m o
.,. Rey Vords asd Documens Amlysis. 17 Descriprors

Computational Learning Theory
' PAC-learning

Online Algorithms
Language Prediction
Theoretical Computer Science

3% No. of Pages |
146 l

sy Clase
"‘fmﬂ ACGIFIET

i3 Prics

