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ABSTRACT

This paper discusses a radically different set of

assumptions tc improve educational outcomes for disadvantaged
students. It is argued that Gisadvantaged children, when exposed tc
carefully organized thinking-oriented instruction, can acquire the
traditional basic skills in the process of reasoning and solving
problems. The paper is presented in three sections. The first
discusses the intuitaive bvasis for early mathematical reasoning,
describing the reasoning about amounts and sizes of material that
bpreschool children do without measurement or exact numerical
quantification as "protoguantitive®™ reasoning. The integration of
protoguantitative schema ané counting, the first step in making
quantitati /e judgements, is discussed. The second sectiorn discusses
SiX princaiples for a reason-based arithmetic program: (1) develop
children's trust in thear own knowledge; (2) draw children’'s informal
knowledge, developed cutside school, into the classroom; {(3) use
formal notations as a public record of discussions and conclusions;
(4) introduce key mathematical structures as guickly as possible; (5)
encourage everyday problem finding; and (6) talk about mathematics,
don't just dc arithmetic. The final section presents the results of
the program. Two cohorts of first- ang second-graders were evaluated
by the California Achievement Test (CAT) on reacing and mathematics
achievement with an experimental group and a control group at each

levei. The intervention group 1in mathematics rose from about the 25th
percentile to the 70th percentile and maintained that level into the
second year of the program. The paper concludes that an
interpretation- and discussion-oriented mathematics program is an
effective instructional aprroach, suitable for children not socially
favored, and provides mathematics classroor activities trat exercise
reasoning skills. {MDH)
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THINKING IN ARITHMETIC CLASS

For many years naw, most efforts to improve educational outcomes for
disadvantaged students have been based on the premise that what such children need
is higher expectations for learning coupled with intensified and careful application of
traditional classroom methods. Thus, what is typically prescribed is more careful
explanations, more practice, and more frequent testing to monitor progress. Such
methods seem to work—up to a point. That is, they produce gains on basic skills tests.
But they are not designed to teach children to reason and solve problems. Today, such
abilities are fundamental for participation in the economy and society in general.

The nearly exclusive focus on the kinds of "basic skills” that can be taught by
repetitive drill does not necessarily derive from a lack of ambition for disadvantaged
students or from a belief that the children are inherently incapable of thinking and
problem solving. Rather, it is rooted in an assumption that most educators share about
all ieaming by nearly all children (some would except the "gifted”): that successfut
leamning means working step by step through a hierarchical sequence of skills and
concepts. The common view is that skilis and concepts are ordered in rather strict
hierarchies, and that asking children to perform complex skills before they master the
prerequisite, simpler ones is to doom them to failure, or at least to frustration, in the
course of learning. This hierarchical mastery learing approach dictates that children
who have trouble leamning some of the simpler skills practice them longer. Butin
practice this turns out to deny disadvantaged children the opportunity to learn higher-
order abilities. Because many disadvantaged are among those who learn slowly at the
outset, they are doomed tc more and more supervised practice on the “basics." They
never get to graduate to the more demanding and interesting problems that constitute
the “higher-order” part of the curriculum.

The work we describe in this paper is premised on a radically different set of
assumptions. We argue that disadvantaged children, like all children, can begin their
educational fife by engaging in active thinking and problem solving. We argue further
that, when thinking-oriented instruction is carefully organized for this purpose, children
can acquire the traditional basic skills in the process of reasoning and solving problems.
As a resutt, they can acquire not only the fundamentals of a discipline, but aiso the ability

to apply those fundamentals, and—critically—a belief in their own capacities as learners
and thinkers.

Reviewing research and practical efforts to teach higher-order thinking skiils a few
years ago, Resnick (1937) concluded that shaping a disposition to critical thought is as
important in developing higher-order cognitive abilities in students as is teaching
particular skills of reasoning and thinking. Acquiring such dispositions, she proposed,
requires regular participation in activities that exercise reasoning skills within social
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environments that value thinking and judgment and that communicate to children a
sensa of their own competence in reasoning and thinking. This, in tum, calls for
educational programs suffused with thinking and reasoning, programs in which oasic
subject matter instruction serves as the daily occasion for exercising and extending
cognitive abilities. Explicit attention to thinking and reasoning seems particularly
important for children who are not experiencing daily practice in such reasoning in their
homes or wno do not trust their own out-of-school experience as being relevant {0
school success. Such children often fail to learn the *hdden curriculum” of thinking and
reasoning that more favored children acquire without much explicit help from teachers.

We report here on the early results of an effort to apply these ideas to early
mathematics teaching for disadvantaged children. To embed basic mathematics
leaming in a thinking curriculum, we had to design a new set of practices for the
mathematics classroom. We wanted to create an environment in which children would
practice mathematics as a field in which there are open guestions and arguments, in
which interpretation, reasoning, and debate—all key components of critical thought—
play a legitimate and expected role. To do this, we needed to revise mathematics
teaching in the direction of treating mathematics as if it were an ill-struciured discipline.
That is, we needed to take seriously, with and for young leamers, the propositions that
mathematical statements can have more than one interpretation, that interpretation is
the responsibility of every individual using mathematical expressions, and that argument
and debate about interpretations and their implications are a normai part of
mathematical activity. Participating in such an environment, we thought, would develop
capabilities and dispositions for finding relationships among mathematical ideas and
between mathematical statements and problem situations. it would develop skill not
only in applying mathematics but also in thinking mathematically. In short, it would
socialize children into a developmentally appropriate form of the practice of mathematics
as a mode of thought, reasoning, and problem solving.

This goal, however, seemed at first to pose an insurmountable problem for school
beginners—especially, perhaps, those we label disadvantaged. To engage in the kind of
mathematical discussions we were aiming for, children would have to know some
mathematics at the outset. They would need something to think about if the exercise
was not to be an empty one. A first question, then, was whether children entering school
knew enough about numbers and quantities to permit a reasoning- and discussion-
oriented program from the outset. Fortunately, a large body of research accumulated
over the past decade suggests that aimost all children come to school with a substantic
body of knowledge about quantity relations and that children are capable of using this
knowledge as a foundation for understanding numbers and arimmétic_(see Resnick,
1989: Resnick & Greeno, 1990, for interpretive reviews). This knowledge. we thought,
could provide the initial foundations for children’s participation in a reasoning-based
mathematics program.

136




The intuitive Basis for Early Mathematical Reasoning

Children come to school with two kinds of intuitively developed knowledge relevant to
mathematics learning. First, they know a good deal about amounts of physical material
and the relations among these amounts, even though they cannot yet use numbers to
describe these relations. Second, most children know the rules for counting sets of
objects. This gives them the beginning tool for using numbers to manipulate and
aescribe quantity relations.

Protoquantitative Schemas

During the preschool years, children develop a large store of knowledge about how
quantities of physical material behave in the world. This knowledge, acquired from
manipulating and talking about physical maturial, allcws children to compare amounts
and sizes and o reason about changes in amounts and quantities. Because this early
reasoning about amount of material is done without measurement or exact numerical
quantification, we refer to it as protoquantitative reasoning. We can document
development during the preschool years of three sets of protoquantitative schemas:
compare, increase/decrease, and part-whols (see Figure 1).

The protoquantitative compare schema makes greater-smaller comparative
judgments of amounts of material. Before they are two years oid, children express
quantity judgments in the form of absolute size labels such as big, small, lots, and little.
Only a iittle later, they begin to put linguistic labeis on the comparisons of sizes they
made as infants. Thus, they can look at two circles and declare cne bigger than the
other, see two trees and daclare one taller than the other, examine two glasses of milk
and declare that one contains more than the other. These comparisons initially are
based on direct perceptual judgments without any measurement process. However,
they form a basis for eventual numerical comparisons of quantity.

The protoquantitative increasefdecrease schema interprets changes as increases or
decreases in quantities. This schema allows children as young as three or four years of
age to reason about the effects of adding or taking away an amount from a starting
amount. Children know, for example, that if they have a certain amount of something
and they get another amount of the same thing (perhaps mother adds another cookie to
the two already on the child’s plate), they have more than before. Or, if some of the
original quantity is taken away, they have less than before. Equally important, children
know that if nothing has been added or taken away, they have the same amount as
before. For example, children show surprise and label as “magic” any change in the
number of objects on a plate that occurs out of their sight (Geiman, 1972). This shows
that children have the underpinnings of number conservation well before they can pass
the standard Piagetian tests. They can be fooled by perceptual cues or language that
distracts them from quantity, but they possess a basic understanding of addition,
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subtraction, and conservation. The protoquantitative increase/decrease schema is also
the foundation for eventual understanding of unary addition and subtraction.

The protoquantitative pan-whole schema is really a set of schemas that organize
children’s knowledge about the ways in which material around them comes apart and
goes together. The schemas specily that material is additive. That is,onecancuta
quantity into piecss that, taken together, equal the original quantity. One car: aiso put
two quantities together to make a bigger quantity and then join that bigger quantity with
yet another in a form of hierarchical additivity. implicitly, children know about this
additive property of quantities. This protoquantitative knowiedge allows them to make
judgments about the relations betwaen parts and wholes, including class inclusion
(Markman & Siebert, 1976) and the effects of changes in the size of parts on the size of
the whole. The protoquantitative part-whoie schema is the foundation for later
understanding of binary addition and subtraction and for several fundamental
mathematical principles, such as the commutativity and associativity of addition and the
complementarity of addition and subtraction. it also provides the framework for a
concept of additive composition of number that underties the place value system.

Counting

Counting is the first step in making quantitative judgments exact. Itis a
measurement system for sets. Gelman and her colleagues have shown that children as
young as three or four years of age implicitly know the key principles that allow counting
to serve as a vehicle of guantification (Gelman & Gallistel, 1978). These principles
include the knowledg2 that number names must be matched one-for-one with the
objects in a set and that the order of the number names matters, bt the order in which
the objects are touched does not. Knowledge of these principles is inferred from the
ways in which children solve novel counting problems. For example, it asked to make
the second object in a row “number 1,” children do not negiect the first object entirely
but, rather, assign it one of the higher number names in the sequence.

Other research has challenged Geiman’s assessment of the ages at which children
can be said to have acquired all of the counting principles. Some of the challenges are
really arguments about the criteria for applying certain terms. For example, (Gelman has
aftributed knowledge of cardinality, a key mathematical principle, to chiidren as soon as
they know that the iast number in a counting sequence names the quantity in the whole
set; others would reserve the term for a more advanced stage in which children reliably
conserve quantity under perceptual transformations. A challenge that goes beyond
matters of terminology comes from research showing that, although children may know
all the principles of counting and be able to use counting to quantify given sets of objects
or to create sets of specified sizes, they may not, at a certain point, have fully integrated
their counting knowledge with their protoquantitative knowledge. Several investigators
(e.g., Sophian, 1987) have shown that many children who know how to count sets do not
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spontaneously count in order to compare sets. This means that counting and the
protoquantitative cchemas exist initialty as separate knowledge systems, isolated from
gach other. )

Integrating counting with the protoquentitative schemas. Such findings make it
clear that, even after knowledge of counting principles is gstablished, there is
substantially more growth in number concepts still to be attained. A first major step in
this growth is integration of the number-name sequence with the protoquantitative
comparison schema. This seems to happen as young as about four years of age. At
this point, children behave as if the counting word sequence constitutes a kind of “mental
number line" (Resnick, 1983). They can quickly identity which of a pair cf numbers is
morn tv: mentally consulting this number line, without actually stepping through the
sequence to determine which number comes later.

in the child's subsequent development, counting as a means of quantifying sets is
integrated with the protoquantitative part-whole and increase/decrease schemas. This
integration seems to develop as a result of participating in situations in which changes
and combinations of quantity are calied for and there is a cultural mandate for exact
quantification. Out of school, this can occur in various play or household activities—
particularly when age segregation is not strict so that young children engage freely with
older children and adults. School settings can mimic the conditions of everyday life to
some extent. However, a principal resource for promoting quantification of the schemas
in school is the story problem. Several researchers (e.g.. De Corte & Verschaffel, 1987,
Riley & Greeno, 1988) have shown that children entering school can solve many simple
story problems by applying their counting skills to sets they create as they build physical
models of the story situations. Because the stories involve the sama basic relationships
among quantities as the protoguantitative schemas extansive practice in solving
problems via counting should help children quantify their original schemas. Such
practice should not only develop children’s ability to solve problems using exact
numerical measures, but aiso lead them to interpret numbers themselves in terms of the
relations specified by the protoquantitative schemas. Eventually, children should be abie
to construct an enriched meaning for numbers—treating numbers (rather than measured
quantities of material) as the entities that are mentally compared, increased and
decreased. or organized into parts and wholes.

Principles for a Reasoning-Based Arithmetic Program

With this research base as a grounding for our efforts, we set out 10 develop a
primary arithmetic program (for grades 1 through 3) that would engage children from the
outset in invention, reasoning, and verbal justification of mathematical ideas. The school
in which we worked served mainly minority (34% were African-Americans), low-income
(69% were eligible for free or reduced-price lunches) children. Our goal was to use as
little traditional school drill material as possible in order to provide for children a
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consistent environment in which they would ba socialized 1o think ot themseives as
mathematical reasoners and to behave accordingly. This meant that we needed a
program in which children would successfully learn the traditional basics of arithmetic
calculation as well as more complex forms of reasoning and argumentation. The
program evolved gradually over a nariod of months. We describe it here in somewhat
schematized form as the instantiation of a set of six principles that guided our thinking
and experimentation.

1. Develop children’s trust in their own kn_wiedge. Traditional instruction, by
tocusing on specific procedures and on special mathematical notations and vocabulary,
tends to teach children that what they already know is not legitimately mathematics. To
develop children’s trust in their own knowledge as mathematics, our program stresses
the possibility of multiple procedures for solving any probiem, invites children's invention
of these multiple procedures, and asks that children explain and justity their procedures
using everyday language. In addition, the use of manipulatives and finger counting
ensures that children have a way of establishing for themselves the truth or faisity of
their proposed solutions. Figure 2 provides examples of multiple procedures used by
seccnd-grade children to solve the same addition problem, 158 + 74. The exampies are
copied from six different children's homework papers. Child A used a procedure of
adcing the value of the leftmost digits, first 700 + 70, then 50 + 4. This unusual
decomposition left the 8of 158 still o be added, which the child added to the already
accumulated 54. To add the resulting 62 to 7170, the child decomposed it to 6C and 2,
He added to 60 first, yielding 230, and then the 2, to yield the final answer. Child F used
a more conventional place value decomposition, first adding up the hundreds (note that
she indicates that there are 0 hundreds in 74), then the tens, then the units, and finally
combiniry the three partial sums. Child E also used a place value decomposition but
worked initially on the hundreds and tens combined (150 + 70). These and the other
solutions in the figure illustrate the ways in which written notation and mental arithmetic
are combined in the children's procedures.

2. Draw children’s informal knowledge, developed outside school, into the
classroom. Animportant early goal of the program is to stimulate the use of counting in
the context of the compare, increase/decrease, and part-whole schemas to promote
children’s construction of the quantified versions of those schemas. This is done through
extensive problem-selving practice, using both story problems and acted-out situations.
Counting (including counting on one's fingers) is actively encouraged. Figure 3 gives an
exampie of a typical class problem, showing how it can generate several solutions: the
notations shown are copied from the notebook in which a child recorded the solutions
proposed by several teams who had worked on the problem.
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Mary told her friend Tonya that she would give her 95

barrettes. Mary had 4 bags of barrettes and each bag had
9 barrettes. Does Mary have enough barrettes?

The class first developed an estimated answer. Then they were

asked, "How many more does she need?” The scolutions below ware
genereted by difterent class groups.

Group 1 first soived for the number of barrettes by repeated addition.
Then they decomposed 4 x 9 into 2x9 plus 2x9. Then they set up »

missing addend problem, 36 « 59, which they solved by s combination
of estimstion end correction.

.“

Group 2 ssf up a subtraction equation snd then developed a solution
that used & negative partial result,

Group 4 began with total number of barrettes needed and subtracted
out the successive bags of 9.
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3. Use formal notations (identity sentences and equations) as a public record
of discussions and concluslons. Children's intuitive knowledge must be linked to the
tormal language of mathematics. By using a standard mathematical notation to record
conversations carried out in ordinary language and rooted in well-understood problem
s.tuations, the formalisms take on a meaning directly linked to children'’s mathematica!
intuitions. First used by the teacher as a way of displaying for the class whata child had
proposed, equations quickly became common currency in the classroom. Most of the
children began to write equations themseives only a few weeks into the school year.
Figure 4 shows part of a typical teacher-led sequence in which children propose a
solution 1o a story problem. The teacher carefully linked elements of the proposed
solution to the actual physical material invoived in the story (the tray of cupcakes) and an
overhead schematic of the material. Only after the referential meaning of each number
had been carefully established was the number written into the equation. The total
sequence shown took about 1 minute 20 seconds.

4. Introduce key mathematical structures as quickly as possible. Children’s
protoquantitative schemas already allow them to think reasonably powerfully about how
amounts of material compare, increase and decrease, come apart and go together. in
other words, they already know, in nonnumerically quantified form, something about
properties such as commutativity, associativity, and add'dve inverse. A major goal of the
first year or two of school mathematics is to “mathematize™ this knowledge—that is,
quantify it and link it to formal expressions and operations. I was our conjecture that
this could best be done by laying out the additive structures (e.g., for first grade: addition
and subtraction problem situations, the composition of large numbers, regrouping as a
special application of the part-whole schemas) as quickly as possible and then allowing
full mastery (speed, fiexibility of procedures, articulate explanations) of elements of the
system to develop over an extended time. Guided by this principie, we found it possible
to introduce addition and subtraction with regrouping in February of first grade.
However, no specific procedures were taught; rather, children were encsuraged to
invent (and explain) ways of solving muitidigit addition and subt-action problems, using
appropriate manipulatives and/or expanded notation formats that they developed.

It is important to note that a program buiit around this principle constitutes a major
challenge to an idea that has been widely accapted in the past twenty or thirty years of
educational research and practice. This is the notion of learning hierarchies—
specifically, that it is necessary for lsamers to master simpler components before they
try to learn complex skills. According to theories of hierarchical and mastery learning,
children should thoroughly master single-digit addition and subtraction, for example,
tefore attempting multidigit procedures, and they should be abie to perform muitidigit
arithmetic without regrouping smoothly before they tackie the complexities of regrouping.
We propose instead a distributed curriculum in which multiple topics are developed all
year long, with increasing levels of sophistication and demand, rather than a strictly
sequeritial curriculum.
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To convey the flavor of the process, Figure 5 shows the range of topics planned for a
single month of the second-grade program. All topics shown are treated at changing
levels of sophistication and demand throughout the school year. This distributed
curriculum discourages decontextualized teaching of components of arithmetic skill. it
encourages children to draw on their existing knowledge framework (the
protoquantitative schemas) to interpret advanced material, while gradually building
computational fluency.

Domain B Specific Content

Reading/Writing Numerais 0-9,999

Set Counting 0-9,999

Addition 2- and 3-digit regrouping, Basic Facts 20

Subtraction 2-digit renaming, Basic Facts 20

Word Problems Addition, Subtraction, Muitiplication

Problem Solving Work backward, Solve an easier problem, Patterns

Estimation Quantities, Strategies, Length

Ratio/Proportion Scaling up, Scaling down

Statistics/Probability Scaling up, Scaling down, Spinner (1/4), Dice (1/16),
3 graphs

Muitiplication Array (2, 4 tables), Allocation, Equal groupings

Division Oral problems involving sharing sets equally

Measurement Arbitrary units

ecimals Money

Fractions Paris of whole, Parts of set, Equivaient pieces

Telling Time To hour, To half hour

Geometry Rectangle, square (properties)

Negaii_\f integers Ones, tens

FIGURES5 TOPIC COVERAGE PLANNED FOR A SINGLE MONTH OF GRADE 2
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5. Encourage everyday problem finding. In stating this principle, we deliberately
use the term everyday in two senses. First, it means literally doing arithmetic every day,
not only in school but also at home and in other informal settings. Children need
massive practice in applying arithmetic ideas, far more than the classroom itself can
provide. For this reason, we thought it important to encourage children to find problems
for themseives that would keep them practicing number facts and mathernatical
reasoning. Second, everyday means nonformal, situated in the activities of everyday
lite. Itis important that children come to view mathematics as something that can be
found everywhere, not just in school, not just in formal notations, not just in problems
posed by a teacher. We wantad to get children in the habit of noticing quantitative and
other pattern relationships wherever they are and of posing questions for themselves
about those relationships. Two aspects of the program represent etforts to instantiate
this principle. First, the problems posed in class are drawn from things children know
about and are actually involved in. Second, homework projects are designed so that
they use the events and objects of children’s home lives: for example, finding as many
sets of four things as possibie in the home; counting fingers and toes of family members;
recording numbers and types of things removed from a grocery bag after a shopping trip.
From child and parent reports, there is good, although informal, evidence that this
strategy works. Children in the program are noticing numbers and relationships and
setting problems for themselves in the course of their everyday activities. Figure 6
shows part of a letter from a parent to the teacher, sharing a story of a child's everyday
math engagement.

6. Talk about mathematics, don't Just do arithmetic. Discussion and argument
are essential to creating a culture of critical thought. Te encourage this talk, our program
uses a combination of whole-class, teacher-led discussion and structured small-group
activity by the children. In a typical daily lesson, a single relatively complex problem is
presented on the chalkboard. The first phase is a class discussion of what the problem
means—what kind of information is given, what is to be discovered, what possibie
methods of solution there are, and the like. in the second phase, teams of children work
together on solving the problem, using drawings, manipulatives, and role playing to
support their discussions and solutions. The teams are responsible not only for
developing a solution to the problem, but aiso for being able to explain why their solution
is mathematically and practically appropriate.
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FIGURE6 EXCERPT OF A LETTER FROM A PARENT
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The following transcript of a four-minute segment of a third-grade team’s conversation
as they work independently on a problem, shows how linguistic interpretation and
development of manipulative displays interact in the children's work.

Mick, Joe, Anna, and Ms. B. were working on the following story problem:

Mr. Bill bought 3 boxes of Ninja Turtle cookies for $3.79. One box costs
$1.50 at other stores. Which is the better buy?

How much are the $3.79 Ninja Turtles per box?
Ms. B.: | wantto discuss it with your groups. | want you to show how you
figured it out. And when you have it, raise your hand. I'll let you put it
on. if you need manipulatives, you may just get them.

Ms. B. circulates around the room while children work at solving the problem in

their respective discussion teams.

Joe: Four doliars and that's automatically over.

Anna: So here's the three boxes. [Anna puts three pieces of coloreu paper
on the desk]

Joe: Now it's time t0 . . . now it's time to . . . Wait, wait a minute.

Mick: What. ..

Anna: What kind of probiem could we do?

Mick: We could say, we could say three doilars and seventy-nine cents.
Okay, three doilars and seventy-nine cents divided by the three
boxes, because we're taking the three seventy-nine and trying to see
how much each box would cost if it wasn't in a bulk. [Ms. B. appears
at group table carrying the three-box unit of Ninja Turtle cookies])

Joe: Ali right.
Anna: | agree, | agree because we have three seventy-nine in three boxes . . . .

Ms. B. brought it for second grade. Third grade will divideditup ... in
into and divided it up for second grade and third grade class.

Joe: All right, now.

Anna: So | agree.

Joe: All right, now. [inaudible] What's over three dollars [writing in notebook]
Mick: | agree.

Anna: | agree.
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Joe: | agree with myself. [all three students writing in notebooks] We have
to show [three doliars divided by three]. We have to put the date.

Anna: i agree. |agree. .. three doilars divided by three.

Joe: We have to show this [Joe stands and reaches into the manipulatives
bin which contains bundles of 10 and 100 popsicle sticks, as well as
single popsicle sticks]

Anna: How can we show this, Joe?

Mick: Youcouldsay....

Joe: Three dollars. These are our three doliars. [puts down three bundles of
hundred and writes somathing in his notebook])

Mick: So what is this, Anna, three dollars or three pennies?
Anna: Three pennies.
Mick: Okay, so three, so what do we do with this three dollars?

Anna: We divide it three hundred. [Anna picks up a bundled of one-hundred
and begins to take off the rubber band)

Mick: Wait a minute ...
Joe: We have the other two hundred.

Mick: Yeah, so . . . but are we taking off the rubber band? {addressing Anna]

Anna: Yeah, we have to.
Joe: No, we don't. Here are two more. One, two, three. [picks up and puts
down the three bundies]

Anna: One goes here, one goes here, and one goes there. [puts bundles of
one hundred, one at a time, on top of the pieces of colored paper]

In the third phase of the lesson, teams successively present their solutions and
justifications to the whole class, and the teacher records these on the chaikboard. The
teacher presses for explanations and challenges those that are incomplete or incorrect;
other children join in the challengss or attempt to help by expanding the presented
argument. By the end of the class period, multiple solutions to the problem, aiong with
their justitications (as in Figures 2 and 3), have been considered, and there is frequently
discussion of why several different solutions could all work, or why certain ones are better
than others. In all these discussions, children are permitted to express tiiemselves in
ordinary language. Mathematical language and precision are deliberately not demanded
in the oral discussion. However, the equation representations that the teacher and
children write to summarize oral arguments provide a mathematically precise public
record, thus linking everyday language to mathematical language (as in Figure 4).
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Resulits of the Program

We are describing here a program that has been under development for a little over
two years. The project began not as a resaarch project but as an effort to help an
ambitious teacher apply research findings to improve her teaching. During the
developmental period, we did not want to impose testing programs beyond those that
the school regularly administered. We are thus limited, in this period of the project’s life,
to data from the school’s standardized testing program and from clinical interviews that
we conducted with some of the children, along with some impressionistic reports of child
and parent reactions to the overall program.

Formal evaluation data consist of scores from the California Achievement Test
(CAT), which is administered in the schoo! each September. First-graders were tested
at the beginning of second grade, second-graders at the beginning of third grade.
Scores on the Metropolitan Reading Readiness Test, administered by the school in
March of the kindergarten year, provide data on children’s general academic level before
entering first grade. We have data on two coh~~s of children who participated in the
program, one beginning in first grade, one t . ng in second grade. Figure 7a shows

three years of reading and math data for Cohort A, who began the program in first grade.

The children were low performers (about the 25th percentile) in both math and reading in
kindargarten and remained quite low in reading in grades 1 and 2. However, their math
scores rose dramatically, to a mean of the 80th percentile and stayed high (mean of 70th
percentile) during the second year of the program. Figura 7b shows four years of data
for Cohort B, who began the program during second grade. Like Cohort A, they were
low scorers before the program. When the program was introduced in second grade,
their math scores jumped to nearly the 70th percentile on average and stayed in that
range through third grade. For this cohort, reading scores also rose somewhat.

Reading was taught by a different teacher in the school. We are now investigating what
might have been responsible for this gain. For comparison, Figure 7¢ shows three years
of data for a cohort of children taught by the intervention program teacher before she
adopted the new program. Throughout the period, mean scores remained at a low 40th
to 45th percentile. An important point, one that cannot be seen in the means of the
graphs, is that the math gains were not limited to only a few of the chiidren. in Cohort A,
tor example, the Jowsst-scoring child at the end of the first grade was at the 66th
percentile. Thus, the program appeared effective for children of ail ability levels.

These global data tell only pan of the story, of course. We would like to know much
more for which systematic data are not yet available. Nevertheless, we can point to
some indicators based on our interviews, class observations, and reports from the
school. We interviewed all first-graders three times during the year, focusing on their
knowledge of counting and addition and subtraction facts, along with their methods for
calculating and their understanding of the principles of commutativity, conservation, and
the complementarity of addition and subfraction. At the outset, these children, as
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might be expected given their socioeconomic status and their parents’ generaily low
educational background, were not highly proficient. Only one-third of them could count
orally to 100 or beyond, and most were unabie to count reliably across decade
boundaries (e.g., 29-30, 59-60). The size of the sets that they could quantify by counting
ranged from 6 to 20. About one-third of these children could not solve small-number
addition problems, aven with manipulatives or finger counting and plenty of encouraging
support from the interviewer. Only about six appeared able to perform simple
subtractions using counting procedures. Thus. these children seemed very weak in
entering arithmetic knowledge, especially compared with data presented by a number of
investigators for middie-class and educationally favored populations. By December the
picture was sharply different. All but a handful of chiidren were performing both addition
and subtraction problems successfully, and all of these demonstrated knowledge of the
commutativity of addition. At least half also were using invented procedures, such as
counting on from the larger of two addends, or using procedures that showed that they
understood principles of complementarity of addition and subtraction. By the end of the
school year, all children were performir.g in this way, and many were successfully
solving and explaining multidigit problems.

The following additional evidence indicates that the program was having many of the
desired effects. The children displayed various examples of confidence in doing
mathematical work. Many sang to themselves as they took the standardized test. When
visitors came to the classroom, they would offer to show off by solving math problems.
They frequently asked for harder problems. These displays came from children of
aimost ali ability levels. They had not been typical of any except the most able children
the preceding year. Homework was more regularly turned in than in preceding years,
without nagging or pressure from the teacher. Children often asked for extra math
periods. Many parents reported that thelr children loved math and wanted to do math all
the time. Parents also sent to school exampies of problems that chikdren had soived on
their own in some everyday family situation. Knowing that the teacher frequently used
such problems in class, parents asked that their child’s problems be used. It is notable
that this kind of parent engagement occurred in a population of parents that is
traditionally alienated from the school and tends not to interact with teachers or school
officials.

Conclusion

We believe we have made a promising start at reaching our goais. We have shown
that an interpretation- and discussion-oriented mathematics program can begin at the
outset of school by building on the intuitive mathematical knowledge that children have
as they enter school. Our standardized test score data show that this kind of thinking-
based program also succeeds in teaching the basic number facts and arithmetic
procedures that are the core of the traditional primary mathematics program. It is not
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necessary to teach facts and skills first and only then go on to thinking and reaconing.
The two can be developed simultaneously. Assuming that we can maintain and
replicate our results, this means that an interpretation- and discussion-oriented program
can serve as the basic program in arithmetic, not just as an adjunct to a more traditional
knowledge and skills curriculum.

Morsovaer, our results show that an interpretation-oriented mathematics program can
be suitable even for children who are not socdially favored or, initially, educationally able.
The children with whom we have worked come disproportionately from among the least
favored of American families. Many are considered to be educationally at risk; their
educational prognosis, without special interventions or changéd educational programs, is
poor. Yet these children leamned effectively in a type of program that, if present in
schools at all, has been reserved for children judged able and talented—most often
those from favored social groups.

What is at issue here, as we suggested at the outset, is not only an apparently
successful program but aiso some fundamental challenges to dominant assumptions
about learning and schooling. As we worked to develop this program, we realized that a
new theoretical direction was increasingly dominating our thinking about the nature of
development, leaming, and schooling. This is the view, shared by a growing minority of
thinkers in the various disciplines that comprise cognitive science, that human mental
functioning must be understood ¢ fundamentally situation-specific and context-
dependent, rather than as a collection of context-free abilities and knowledge. This
apparently simple shift in perspective in fact entails reconsideration of 2 number of long-
held assumptions in both psychology and education.

Until recently, educators and scholars have defined the educational task as one of
teaching specific knowledge and skills. As concern has shifted from routine to higher-
order or thinking abilities, we have developed more complex definitions of the skills to be
acquired and gven introduced various concepts of meta skill in the search for teachable
general abilities. But wa have continued to think of our major concern as one of
identifying and analyzing particular skills of reasoning and thinking and then finding ways
to teach them, on the assumption that successful students then will be able to apply
these skills in a wide range of situations.

As we developed our program, we found ourselves less and less asking what
constitutes mathematics competence or ability for young schoolchildren, and mere and
more analyzing the features of the mathematics classruom that provide activities that
exercise reasoning skills This meant choosing story problems on the basis of the
mathematical principles they might illustrate and developing forms of classroom
conversation designed to evoke public reasoning about these principles. Our focus on
mathematics as a form of cultural practice did not deny that children engaging in
mathematical activity must be knowledgeable and skillful in many ways. However, our
emerging perspective led us to focus far less on the design of “lessons” than on the

155

24



development of a sequence of problem-soiving situations in which children could
successfully panticipate. Another way of saying this Is that we were trying to create an
apprenticeship environment for mathematical thinking in which children could participate
daily. We expected them to acquire thereby not only the skills and knowledge that
expert mathematical reasoners possess, but also a social identity as a person who :s
able to and expected to engage in such reasoning (see Lave, in press).

Our program constitutes a version of the cognitive apprenticeship called for by
Collins, Brown, and Newman (1989) in a racent influential paper. its very success,
however, calls into question somse aspects of the apprenticeship metaphor as applied to
early leaming in a school environment. Among these is the nature of the master—
apprentice relationship. in traditional apprenticeship, apprentices seek to become like
their masters, and masters continually display all elements of skilled productive activity
in their field of expertise. Teaching is only a secondary function of the traditional master.
This simple—indeed, perhaps oversimpiified—relationship does not seem applicable to
the school setting, where the teacher's predominant function is not to do mathematics
but to teach it. We will need to work out the particular role of the teacher in designing an
environment specifically for leaming purposes. A second issue surrounding cognitive
apprenticeship in school is how to ensure that necessary particular skiils will be
acquired, even though the daily focus of activity is on problem solving and reasoning.
Our first-year standardized test results suggest that we have not done badly on this
criterion, but we need to understand better than we do now just what it is in our program
that has succeeded and what the limits of our methods might be. in short, we offer this
paper as only a very preliminary report on what we expect to be a long-tenr =ffort to
revise instructional practice in ways that will bring educators closer to being able to meet
the goal of shaping dispositions and skills for thinking through a form of socialization into
cultural environments that value and practice thinking.
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