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Knowledge and Understanding in Human Learning

Knowledge and Understanding in Human Learning is an umbrella
term for a loosely connected set of activities lead by Ste Ilan Ohlsson
at the Learning Research and Development Center, University of
Pittsburgh. The aim of KUL is to clarify the role of world knowledge
in human thinking, ieasoning, and problem solving. World
knowledge consists of concepts and principles, and contrasts with
facts (episodic knowledge) and with cognitive skills (procedural
knowledge). The long term goal is to answer six questions: How can
the concepts and principles of particular domains be identified?
How are concepts and principles acquired? How can the acquisition
of concepts and principles be assessed? How are concepts and
principles encoded in the mind? How are concepts and principles
utilized in performance and learning? How can instruction facilitate
the acquisition and utilization of concepts and principles (as opposed
to episodic or procedural knowledge)? Different methodologies are
used to investigate these questions: Psychological experiments,
protocol studies, computer simulations, historical studies, semantic,
logical, and mathematical analyses, instructional intervention
studies, and so on. A list of KUL reports appear at the back of this
report.
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Abstract

In the past, research on learning has been linked to instruction by the
derivation of general principles of instructional design from learning
theories. But such design principles are often difficult to apply to
particular instructional issues. A new method for relating research on
learning to instructional design is proposed: Different ways of teaching
a particular topic can be evaluated by teaching that topic to a
simulation model of learning and recording the complexity of the
resulting learning processes. An application of this method to a
traditional problem in mathematics education suggests that conceptual
instruction in arithmetic causes more cognitive strain than mechanical
instruction, contrary to a widely held belief in the mathematics
education community. The advantages and disadvantages of the general
method are discussed.

Keywords: Arithmetic, augmenting, computer simulation, instructional
design, learning theory, regrouping, subtraction, understanding
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On the Relation Between Learning Theory and Instruction

Instruction is an artefact, a social practice deliberately designed to
achieve a particular purpose. A theory of instruction is therefore a
prescriptive theory. The task of such a theory is to state principles that
constrain search through the space of instructional designs [30]. A
theory of learning, on the other hand, is a descriptive theory. The task of
a learning theory is to state principles that accurately describe the
mechanisms of cognitive change. Instructional theory and learning
theory are distinct intellectual enterprises, just as agriculture and
botany, medicine and physiology, engineering and physics are distinct
enterprises [10, 12].

As these analogies suggest, the enterprises of instruction and
learning, although distinct, are closely related. Physical therapies that
ignore the chemistry and physiology of the human body are likely to do
the patient more damage than good; ma%thines that violate the laws of
physics cannot work. Similarly, instructional designs that are not in
accord with the mechanisms of cognitive change are unlikely to
facilitate learning.

The notion that a theory of instruction should be informed by a
theory of learning is hardly controversial when stated abstractly. Glaser
traces this idea back to both John Dewey and Edward L. Thorndike [10],
but there are many recent advocates [13, 32, 34, 35]. But how,
specifically, are the two enterprises supposed to interact? How can
instructional designs be informed by principles of learffing? The
traditional method for applying learning theory to instructional
questions is to derive general principles of instruction from general
principles of learning; the application of the derived principles to the
design of instruction in a particular topic is left to the designer. The
first systematic application of this method was launcned by the
behaviorists. Principles of stimulus-response relations and
reinforcement gave rise to instructional principles that emphasized
behavioral objectives and maximally efficient reinforcement schedules
[11]. The application of piagetian research to instructional questions
has taken a similar form: The principle that equilibrium requires a
balance between assimilation and accomodation has given rise to

7



Artificial Instruction 5

training programs that deliberately induce disequiiibrium in order to
accelerate cognitive change [221 David Ausubel's theory of learning as
successive elaboration gave rise to Reigeluth's theory of instructional
design [32]. In each approach, general principles of instruction are
derived from general principles of learning, but the application of those
design principles to particular instructional topics is based on
intuition, common sense, and seat-of-the-pants judgments.

Modern cognitive psychology, based on information processing
concepts, has surpassed past approaches with respect to the power of
its theories, and with respect to the depth and the detail of its
descriptions of cognitive processes. But its application to instructional
questions has so far taken the same old form: General principles of
instructional desion are derived from general principles of learning; the
application of those principles to particular instructional designs is
left to the designer. For example, the principles of the ACT* theory [1]
have given rise to several instructional principles, incl ;ding that one
should teach the goal tree for cognitive skills [2]. This principle is
surely correct, but its application to a particular instructional topic is
nevertheless problematic. How is this principle to be applied, for
example, in the teaching of arithmetic? Should one teach the entire goal
tree for subtraction lfith regrouping to all students, even to very young
students? Are there no situations in which the complexity of the goal
tree might be an obstacle to learning? Should the entire goal tree be
taught at once, or should one introduce it component by component? If
so, how should the components be sequenced? The general principle does

not, by itself, answer instructional questions of this detailed sort.

This chapter explores a different approach to the interaction
between the theory of learning and the theory of instruction. Instead of
deriving general principles of instruction from a learning theory, this
approach exploits the fact that information processing theories of
learning can be embodied in runnable simulation models to answer
particular instructional questions. A common and important type of
instructional problem--perhaps the only type--is to decide between
alternative ways of teaching a particular topic. Problems of this type
can be solved, I suggest, by teaching the relevant topic to a simulation
model of learning. To compare two ways of teaching a particular topic,
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we teach that topic to the learning model in both ways, and we measure
the computational complexity of the learning processes induced in the
two cases. If the simulation model expends less computational work to
learn under one form of instruction than under another, then it predicts
that the former is preferable to the latter. The main purpose of this
chapter is to present an application of this method to a traditional issue

in arithmetic instruction.

The method of teachable simulation models has three prerequisites.

First, it requires a runnable model. So-called information processing

models that consist of labelled boxes with arrows of varying thickness

going in and out of them are of no help; neither are computer models

with such shaky implementation that they can barely produce a single
demonstration run without breaking; neither are programs that only

embody some of the assumptions of the underlying theory (while the

other assumptions are embodied in some other program). The method of
teachable simulation models requires a robust, integrated computer
model that can be run on a variety of inputs. Second, the method requires
that the simulation model is capable of learning. A performance model

is not enough. Third, the learning mechanisms of the model must be such
that their inputs can be interpreted as instruction. A model of learning
by doing is not enough; the method requires a model of learning from

declarative messages that originate in an outside source. The HS model
described below satisfies these three prerequisites.

The particular instructional question investigated in this chapter
concerns the teaching of arithmetic. The question of how to teach an
arithmetic skill like subtraction has been approached in different ways
by different generations of researchers. An earlier generation focussed
on the question of which subtraction algorithm is easier for children to
learn. Large scale empirical research programs were launched to answer
this question [5, 6]. The answer was, briefly summarized, that the
method of regrouping (or "decomposition") is easier to learn than the
method of augmentation (or "equal addition"), at least when subtraction
is taught conceptually (as opposed to mechanically). I show in this
chapter that the method of teachable simulation models implies a
different answer to this question.

1)



Artificial Instruction 7

The current generation of researchers in mathematics education

focusses on the contrast between rote and insightful learning of

arithmetic algorithms. They strive to find methods that facilitate

school children's acquisition of the conceptual rationale ior arithmetic

algorithms, in the hope that conceptual understanding will eliminate

errors, improve retention, ano faciliate transfer to unfamiliar problems

[14 The method of teachable simulation models leads me to a rather

contrary answer to this question.

In summary, the present chapter has both a methodological and a

substantive purpose. I propose a general method that exploits the fact

that information processing theories of learning can be embodied in

runnable simulation models to answer particular instructional

questions. The method is introduced in the context of a particular

application. The application is not merely a demonstration of the
method. The specific conclusions reached have important implications

for instruction in arithmetic.

Regrouping versus Augmenting

There are several mathematically correct algorithms for computing

the difference between two multi-digit integers. Educational

researchers at the beginning of this century asked whether one of these

algorithms is easier to learn than the others, a very reasonable

question. In the regrouping algorithm non-canonical columns, i. e.,

columns in which the minuend digit is smaller than the subtrahend digit,

are dealt with by incrementing the relevant minuend digit with one
place-value unit. To keep the value of the minuend constant, this change

in the minuend is compensated by decrementing the first non-zero
minuend digit with a higher place value than the incremented digit. In

the augmenting algorithm non-canonical columns are also dealt with by
incrementing the minuend digit, but in this case the change in the
minuend is compensated by incrementing the subtrahend digit with the

next higher place value. (Strictly speaking, the entities which are
incremented and decremented are the numbers which the digits refer to.

Since no ambiguity results, I use the somewhat inaccurate locution
"decrementing a digit" instead of the accurate but tedious "decrementing
the number a particular digit refers to* .)

10
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Which algorithm is easier?

The regrouping and augmenting algorithms build on different

mathematical ideas. The regrouping algorithm is based on th e

associative law

(a + b) + c - a + (b + c).

The associative law implies that the value of the minuend remains
constant through the regrouping operation. (A complete derivation of the
regrouping algorithm from first principles is available in [25].) The
augmenting algorithm, on the other hand, is based on the constant
difference law

a - b = (a + k) - (b + k).

This law implies that the difference between the minuend and the
subtrahend remains constant through the augmenting operation. (A more
detailed discussion of the rationale for the augmenting algorithm is

available in [8].) Since the two algorithms build on different

mathematical ideas, it is entirely plausible that one of them is easier
to learn and/or to execute than the other.

Large-scale classroom studies were performed in the early decades

of this century in an effort to settle this issue empirically. William
Brownell concluded: "Even a cursory survey of the ... experimental

results ... reveals the impossibility of deciding simply and finally
between D [the regrouping method] and EA [the equal addition method] as

the better procedure for teaching 'borrowing'" [5, p. 169]. Augmenting

was found to be easier than regrouping more often than the other way
around, but the observed difference was small in magnitude. Brownell

argued that the results were only in favor of augmenting when
subtraction was taught as a mechanical performance. If subtraction was
taught conceptually, he claimed, the results favored regrouping [5, 6]).
Brownell's argument was widely accepted and politically instrumental

in settling the issue in favor of teaching the regrouping method in
American schools. Educators in other nations were not equally

1 1
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convinced, and the augmenting method is still taught in some European

schools.

The empirical studies did not clearly distinguish between

performance and learning. They confused the question which algorithm
is easier to use? with the question which algorithm is easier to learn?
One reason for the lack of separation of these two questions is that pure

measures of learning are hard to come by. We can only observe by

recording performances, so most empirical measures will confound the
two questions. In the context of a simulation model, the two questions

can be cleanly separated. This section investigates which algorithm is

easier to use, while the next section investigates which algorlthm is

easier to learn.

In information processing terminology, the question of which
algorithm is easier to use can be reformulated as follows: What is the
relation between the cognitive complexity of the mental procedure
corresponding to the regrouping algorithm and the cognitive complexity

of the procedure corresponding to the augmenting algorithm? This
question can be answered by implementing the two algorithms as
psychologically plausible simulation models, run those models, and
measure their relative complexity.

Simulating regrouping and augmenting

The hypothesis that cognitive skills (mental procedures) are
encoded as production systems was first proposed by Allen Newell
and Herbert A. Simon [23], and has been adopted by a number of

researchers [1, 18, 19]. According to the production system
hypothesis, cognitive skills are encoded in sets of production rules,
where each production rule has the general form

Goal + Situation --> Action.

The symbol "Goal" stands for a specification of a desired situation,
"Situation" stands for a description of the relevant features of the
current situation, and *Action* refers to something the person
knows how to do. The intended interpretation of such a rule is that

2
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when the person has the specified goal, and he or she is in a
situation that fits the situation description, then he or she will
consider the specified action. A collection of interrelated
production rules is a production system. Each cognitive skill is

hypothesized to correspond to a production system.

A production system architecture is a program that can
interpret a production system. In this context, to interpret means to
(a) decide which production rules (in a particular production
system) are satisfied in the current situation, (b) select one or
more rules to be evoked, and (c) execute the actions of the evoked
rules. Each pass through the three steps (a)-(c) is one production
system cycle, or operating cycle. The number of cycles required to
execute a production system is one of the measures of cognitive
complexity used in this chapter.

The satisfied rules are identified by matching the Situation
against the so-called working memory, a data base which contains
the system's information about the current state of affairs, and by
matching the Goal against the system's current goal. If both

components match, the rule is satisfied and is therefore a candidate
for being evoked. Selecting which rules to evoke is sometimes
called conflict resolution [21]. A typical conflict resolution scheme
is to select those rules that match against the most recent
information in working memory. Execution of the primitive actions
must involve calls on motor programs that control the muscles of
the relevant limbs, e. g., the finger muscles for the action of

writing a digit, but production system theories do nnt have much to
say about this aspect of human cognition.

The HS architecture is a relatively standard production system
architecture. It has a single working memory which contains
information about both the current state of affairs, and the
systems' current goal(s). All available rules are matched against
working memory in each operating cycle. There is no conflict
resolution. Every satisfied rule is evoked. There is no complexity
limitation on the left-hand side of the rules, but the right-hand side
(the action part) is limited to a single action. The system continues

13



Artificial instruction 1 1

to match and evoke rules until either there are no satisfied rules, or
the current problem is solved. Detailed descriptions ot the HS
architecture are available in [28, 29].

Table 1. The distribution of production rules in two
canonicalization algorithms.

Rule type Regrouping

Visuat

Maar

Write & cross out

Say answer

4

Augmenting

3

1 1

6

5

Cognitive 20 1 7

Create expressions 1 1 1 2

Revise expressions 9 5

Mf1111.4.11 3 4

All rules 38 35

In order to simulate subtraction with regrouping, the HS system
was extended with a (simulated) task display and a (simulated)
visual-motor interface consisting of an eye and a hand. The task
display is a data structure in the computer which contains the same
information as a piece of paper with a subtraction problem written
on it. Technically speaking, the task display is a two-dimensional
array of digits. (I am assuming that the subtraction problem is
written in vertical format.) Information about the task display

1 4



Artificial instruction 1 2

enters into the working memory of the HS system through a
simulated eye, a program module which can only access one digit at
a time. When the simulated eye 'looks' at a digit, information about
that digit is entered into working memory. In order to gather
information about some other digit, the eye has to be moved. The
eye can move left, right, up, and down. Eye movements are distinct
computational steps, so control of visual attention is encoded in
production rules. The model can alter the external task display only
through the use of a simulated hand. The hand can cross out an
existing digit and write a digit in a blank space. These two
primitive actions count as distinct computational steps, so the hand
is also controlled by prociuction rules. In short, the model simulates
subtraction at the level of individual eye movements and individual
writing actions, a very fine-grained level of analysis compared to
most simulation models.

HS was also equipped with a long-term memory for number
facts, e. g., 8 - 7 = 1. Retrieval of number facts was simulated with
a function which returns the (correct) answer to any query about
relations between two numbers. HS does not simulate the
probabilistic nature of memory retrieval, nor the existence of
incorrect number facts. Like attention allocation and writing,
memory retrieval is a distinct computational step which is
controlled by production rules.

The HS models of regrouping and augmenting consist of 38 and
35 production rules, respectively. The number of different rules in
different categories are shown in Table 1. The distribution of rules
over visual steps (i. e., move the eye), motor steps (i. e., write,
cross out, and say the answer), cognitive steps (i. e., the creation
and revision of working memory expressions), and memory steps 0.
e., retrievals from long-term memory) is approximately the same
for both models. The details of the rules themselves are not
important for present purposes. Examples of complete production
rules are available in [8].

In order to estimate the cognitive complexity of the two
subtraction algorithms, the two simulation models were run on a

15
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subtraction test consisting of 66 subtraction problems which
varied with respect to number of columns, number of non-canonical
columns, and number of blocking zeroes, I. e., zeroes immediately to
the left of a non-canonical column (or another blocking zero). The
number of production system cycles required by each model to
complete each problem was recorded. In addition, each cycle was
classified with respect to the type of rule that was evoked in that
cycle.

The results are shown in Figure 1. The figure shows the
cognitive complexity of the regrouping and augmenting algorithms
on eleven different problem types. Problem types 1-4 have two,
three, four, or five canonical columns, respectively, but no non-
canonical columns. The number of cycles required to complete such
problems is the same for both models. Problem types 5-8 have one,
two, three, or five non-canonical columns, respectively. The
regrouping model requires more steps to handle each such column
than the augmenting model. The difference is small in magnitude.
The difference is located entirely in the visual-motor interface, i.
e., the regrouping algorithm requires more cycles because it
involves more complicated attention allocation.

Problem types 9, 10, and 11 have one, two, or three blocking
zeroes, respectively. (A blocking zero is immediately to the left of
a non-canonical column or another blocking zero.) The regrouping
model has a slight advantage on these problem types. The reason is
that once a set of columns have been traversed by the regrouping
procedure, no further regrouping of those columns is needed. The
aug, ienting algorithm, on the other hand, has to augment every
column with zero as the subtrahend digit and a non-zero minuend
digit. Consequently, if there are several blocking zeroes in a
problem, the regrouping algorithm completes that problem in
slightly fewer operating cycles than the augmenting algorithm. Once
again, the difference is small in magnitude. A more extensive
discussion of these results is available in [8].

lf;
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Figure 1. The number of production system cycles required to
execute the regrouping and augmenting algorithms in eleven
different problem types. The regrouping bar is to the right and the
augmenting bar to the left for each problem type. Each bar is
segmented to show the number of cognitive steps for canonical
columns (bottom segment), cognitive steps for non-canonical
columns (second segment from bottom), memory steps (third
segment from bottom), and the number of eye and hand movements
(top segment).
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Discussion
1 5

The simulations of the regrouping and augmenting algorithms
teach us several lessons. First, the difference between the two
algorithms with respect to cognitive complexity is small in
magnitude. Since the two algorithms are derived from different
mathematical ideas, it is not obvious why this is so. Closer
reflection reveals the reason. Both the law of associativity and the
constant difference law are instances of a more general law which
says that a quantity remains constant if every change in it is
compensated by a corresponding counterchange. The structure of
this law implies that the goal structure of the corresponding
algorithm will contain two main subgoals: a change goal and a
compensate goal. This is indeed the case for both algorithms.
Furthermore, the internal structure of each change or compensation
is always the same: Cross out a digit, compute the replacement
digit, and write the replacement digit. Since the structure of the
goal tree is similar in both algorithms, the number of cycles of
operation is nearly equal. This equality is, in a sense, accidental. In
general, there is no reason to expect different mathematical laws
to generate algorithms with similar goal structures.

Second, the simulations show that the differences between the
two algorithms have different directions on different types of
problems. There is no difference on canonical problems. The
difference is in favor of augmenting on problems which have non-
canonical columns but no blocking zeroes. The difference is in favor
of regrouping on problems which have two or more blocking zeroes.
The implication of this result is that empirical measures of the
cognitive complexity of the two algorithms will depend on the
composition of the test. A test without blocking zeroes will favor
the agumenting algorithm, but a test with many blocking zeroes
will favor regrouping. In a mixed test the differences will tend to
cancel each other. Unfortunately, some of the pre-Wcrld War
studies did not specify which subtraction problems were used to
measure the students' performance.

The outcome of the simulation runs are consistent with the
pattern of empirical results in the literature. If there are only

18
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small differences, and if those differences go in different
directions for different classes of problems, then we would expect
empirical measurements to give inconsistent results. Sometimes
one algorithm should appear to be easier, sometimes the other, due
either to the composition of the test problems or to sampling error.
This is exactly what the literature shows [5, 6].

These simulations imply that it does not matter which
algorithm is taught. Regrouping and augmenting are equally
complicated; the differences in cognitive complexity are too small
to be of pedagogical significance. This conclusion is consistent
with the fact that both algorithms are, in fact, taught in different
school systems, without noticable higher degree of success in one
system than in the other. However, the study summarized in this
section (and reported in more detail in [8]) onl., concerned the
execution of the two algorithms. The two algorithms are equally
complex to use, once learned. But Brownell's argument was that
regrouping is easier to learn than augmenting, at least if
subtraction is taught conceptually. We therefore need to investigate
the cognitive complexity of the construction (as opposed to
execution) of the two algorithms. In addition, we need to compare
the cognitive complexity of the construction under both conceptual
and mechanical instruction.

Conceptual versus Mechanical Instruction

As mathematics educators deepen their analysis of
mathematical cognition, they become more and more concerned with
the question of conceptual understanding [15]. This concern is partly
fuelled by research into childrens' mathematical errors. Catalogues
of error patterns have been compiled for a number of mathematical
tasks, including subtraction [4, 38, 39, 41] and fractions [9, 14, 17,
27, 31, 36, 37]. Most of the error patterns described in these
catalogues are senseless; they have no discornable relation to the
correct mathematical operations. To observe children making
senseless mistakes is a frustrating experience, and it is impossible
not to believe that if children only understood what they are doing,
they would not make those mistakes. Following this line of

1 9



Artificial Instruction 17
reasoning, mathematics educators have tried to design conceptually
based instruction in arithmetic.

Does conceptual understanding help?

The purpose of many instructional interventions in arithmetic
is to show that if children are taught the conceptual rationale for
the arithmetic algorithms, they will have less difficulty in learning
those algorithms, and their performance will be less error prone
and more flexible in response to changing task demands [15].
Unfortunately, this enterprise has not been spectaculaq
successful.

A training study by Resnick and Omansson can serve as an
example [33]. Children with faulty subtraction performance were
taught the conceptual rationale of the regrouping algorithm with
the help of Diene's blocks. The instruction was designed to force
children to map back and forth between blocks and numbers. The
children first performed a step with the blocks, and then performed
the same step with the symbols. At the end of the instruction,
several of the children cou!d explain the correct subtraction
procedure. When they were given subtraction problems to perform,
they nevertheless made errors. As a second example, Ohlsson, Bee,
and Zeller taught children how to add fractions with an interactive
computer tool that enabled children to switch back and forth
between graphical and numerical representations of fractional
quantities [27]. A change in one representation was automatically
mirrored by the corresponding change in the other representation.
detailed analysis of the children's performance on the pre- and
posttests revealed that they could map back and forth between the
fraction symbol x/y and concrete representations of fractional
quantities. All of them nevertheless committed the standard error
of adding fractions by adding both numerators and denominators on
the posttest. In both of these studies, instruction that was
carefully designed to make the meaning of the mathematical
operations evident failed to prevent or cure senseless errors.
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These empirical failures focus attention on the lack of
theoretical analysis of conceptual understanding in the context of
arithmetic. What is meant by conceptual understanding, and what is
its (supposed) function in procedural learning? How does conceptual
instruction interact with the construction of a mental procedure?
Why should we believe that knowledge of the rationale of an
arithmetic procedure facilitates the learning of that procedure? In

spite of the recent emphasis on conceptual understanding in
arithmetic instruction, little effort has been spent in answering
these questions.

My approach to these questions is to extend the HS architecture
with a learning mechanism that enables the model to learn
procedures on the basis of instruction. The instruction is modeled
as a set of declarative knowledge 3 that the user gives to the
system. Such a learning mechanism enables us to teach the model
how to do subtraction. We supply the system with a set of
declarative knowledge units which correspond to the instructions a
teacher would give a student, and the system learns by converting
those knowledge units into a cognitive skill, i. e., into production
rules. By giving the system different sets of declarative knowledge
units, we can simulate the effects of different ways of teaching
subtraction. In particular, we can compare conceptual instruction
with mechanical instruction.

Making HS teachable

In a production system architecture, a /earning mechanism is
any process that can revise existing production rules or generate
new ones. When a new rule is added to a production system, the
behavior of the system changes. The new rule will control behavior
in those situations in which it matches working memory. Since the
new rule is different from previous rules, the system's behavior
will be different. The fact that the behavior changes is the main
reason to regard the generation of new rules as a simulation of
(procedural) learning.
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A number of simulation systems model procedural learning as
the construction of new production rules (see, e. g., [1, 3, 16, 18,
19, 24, 39)). These models simulate learning by doing, i. e., they
model the effects of practice. In spite of their differences, they all
instantiate the same abstract theory. The first principle of this
abstract theory is that humans have access to one or more weak
problem solving mechanisms (analogy, hill climbing, planning,
search, etc.) which can generate task oriented behavior on
unfamiliar problems. The second principle is that information abouteach problem solving step--the reasons for taking it, the
desirability of the outcome, the temporal order of the steps, and soon--is stored in long-term memory. The third principle of the
abstract theory is that the learning mechanisms construct newrules through some form of induction over the individual steps. For
example, the SAGE system described by Langley carries out forward
search and stores steps in which a particular action had good
outcomes, as well as steps in which that action had bad outcomes[20]. The system learns by identifying one or more situation
features that discriminate between the two classes of situations,and it constructs a new rule by incorporating those features intothe rule that controls that action. Different models of learning bydoing differ with respect to which weak methods they postulate,
which information they assume is stored in memory, and which
induction procedure they use, but they all instantiate the three
abstract principles stated above.

Simulation models that instantiate the abstract theory oflearning by doing are quite successful in modeling the effects ofpractice. But models of practice are not sufficient for presentpurposes. There is nothing in such systems that correspond toinstruction, i. e., to a set of messages that originate outside thesystem and which are used to construct new procedural knowledge.A learning mechanism which is to simulate learning frominstruction must take declarative knowledge units among its inputs.

In the HS system, general world knowledge, including knowledgeimparted by instruction, is assumed to consist of constraints oncognitive processes. For example, the laws of the number system
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impose constraints on arithmetic operations. Unless an addition
procedure yields the same result for (a + b) + c as for a + (b 4 C), i.

e., unless it satisfies the constraint imposed by the associative
law, it is not a correct addition procedure. The notion of general
knowledge as constraints is not limited to arithmetic, or, indeed, to
mathematics. For example, the laws of conservation of energy,
mass, and momentum are examples of natural science principles
which are naturally cast as constraints. Traffic laws are good
examples of constraints in everyday life. I do not claim that all
general knowledge can be formulated as constraints, only that
constraints is one important form of knowledge, a form, moreover,
which is particularly relevant to arithmetic. In the HS system,
constraints are encoded in knowledge elements which are distinct
from both working memory elements and from production rules.

An incorrect or incomplete arithmetic procedure typically leads
to results that violate one or more of the relevant constraints. For
example, an incorrect or incompleto regrouping procedure might
violate the constraint that the value of the subtrahend is to remain
constant over regrouping. The basic idea behind the HS system is
that a constraint violation contains information about how to revise
the faulty procedure so that similar constraint violations are
avoided in the future. In each operating cycle, the system matches
all available constraints against the current state of affairs. If a
constraint is satisfied, no action is taken. If one or more
constraints are violated, the learning mechanism is triggered. This
corresponds to having a tutor who watches a problem solution and
provides instruction when needed. (The HS system is given all the
constraints at the beginning of the simulation run, rather than
single constraints--instructions--at select points during a problem
solving. Since the system effectively does not 'see' a constraint
until it is violated, this difference to real tutoring is less
significant than it first appears.) The learning mechanism analyzes
the constraint violation, and revises the faulty rule accordingly. The
technical details of the learning mechanism are not important for
present purposes. A detailed description of the HS learning
mechanism is available in [28, 29].
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Since learning happens when the behavior of the system causes a
constraint violation, there must be some initial rules which can
generate behavior. HS must be supplied with at least one initial rule
for each problem solving operator. In the simulation runs reported
in this chapter, the initial rules are minimal, I e., their condition
sides contain only the applicability conditions for the relevant
action. These incomplete rules generate almost random behavior.
Each action is considered in every situation in which its
applicability conditions are satisfied. The probability of causing a
constraint violation is high. The system detects the violation,
revises the faulty rule, and then starts over on the problem. The
cycle of trying to solve the problem, detecting a violation, revising
the faulty rule, and starting over continues until the problem can be
solved without any constraint violations. This is a reasonable first
approximation model of learning to solve problems under tutelage.

in summary, the HS system encodes declarative knowledge,
including instructions, as constraints on behavior, in arithmetic,
the effect of faulty or incomplete procedural knowledge is typically
to generate results that violate the constraints imposed by the
laws of numbers. HS learns by analyzing a constraint violation and
revising the rule that caused the violation in such a way that
similar constraint violations are avoided in the future. This
capability makes HS teachable: To teach HS a particular procedure,
the user supplies the system with an initial set of (incomplete)
rules and the constraints that define the correct procedure. Each
constraint corresponds to an instruction. The system tries to solve
problems, makes mistakes, and learns from the instructions it has
been given. If the instructions are complete enough, the system will
eventually arrive at the correct procedure.

leaching HS subtraction

The HS system was taught both the regrouping and the
augmenting algorithms for subtraction, and both algorithms were
taught in two different ways, corresponding to conceptual and
mechanical instruction. This subsection describes the inputs to the
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four simulation experiments, and the next subsection describes the
results.

What does it mean to do subtraction procedurally, as a
mechanical skill? A person who does subtraction mechanically is
not thinking about the mathematical objectsthe numbers--
symbolized by the digits in the problem display, nor about the
mathematical relations between those numbers. For example,
he/she does not think about the fact that the "3" in the numeral "32"
denotes the number 30. Instead, he/ she thinks about the digits
themselves. He or she performs crossing out and writing actions on
the physical display (i. e., the paper) without considering the
mathematical meaning of those actions.

Consistent with this interpretation of what it means to do
subtraction mechanically, HS was supplied with a representation of
a subtraction problem that was isomorphic to the information
available in a standard problem display (vertical format). The
representation contained information about which digits occurred in
which spatial arrangement, but little else. In particular, there was
no representation of the place values of the different digits, nor of
the current value of either the subtrahend or the minueno. In this
representation, a subtraction problem appears as two strings of
digits. The representations for the regrouping and the augmenting
algorithms were very similar.

If the learner thinks of a subtraction problem in terms of
physical operations on the digits in the problem display, he or she
cannot benefit from conceptual instruction. For example,
instructions that mention the place value of a particular digit can
have no impact on a learner who has not internally represented that
place value. There is nothing for such an instruction to relate to.
The constraints we supplied to HS in the mechanical case were
shallow and superficial. They were not derived from the laws of the
number system, and they did not mention the conceptual or
mathematical meaning of the operations involved.
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What does it mean to do subtraction conceptually? The learner
who does subtraction conceptually thinks about the numbers
symbolized by the digits in the problem display, and he/she is
aware of the mathematical interpretation of the actions performed
on that display. Consistent with this view, the HS representation
for conceptual learning was very different from the HS
representation for mechanical learning. In the conceptual
representation, a subtraction problem is Grmoded at the top level as
a difference between two numbers. The subtrahend and the minuend
are both associated with particular additive decompositions, i. e.,
sets of numbers that add to those numbers. The elements of the
additive decompositions are associated with a face value and a
place value. In the conceptual representation, the distinction
between numbers and digits is explicit, and the face values of the
additive components are associated with the digits in the problem
display. The operations of crossing out and writing digits
correspond to internal, mental operations on the numbers
symbolized by those digits. The representations for the regrouping
and augmenting algorithms were once again very similar.

In addition to the representation of the problem and the
constraints, HS must also be given some initial procedural
knowledge. Without initial rules HS cannot generate behavior, and so
cannot discover constraint violations. In the simulation runs
presented in this subsectien, HS was given the colect procedure
for canonical subtraction problems, I. e., problems in which the
minuend digit is larger than the subtrahend digit in every column.
The system learned to solve non-canonical problems, i. e., problems
for which the minuend digit is larger than the subtrahend digit in at
least one column. In common parlance, the system learned to
'borrow'. I shall refer to this process as canonicalization, since the
purpose of 'borrowing' is to bring a non-canonical problem onto
canonical form. In summary, the system learned two different
canonicalization methods, regrouping and augmenting, with two
different representations of each method.

In each training run the system tries to solve its current
problem. Since the rules for canonical problems cannot handle non-
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canonical problems, the system commits mistakes. The mistakes
are identified by the constraints, and the system applies its
learning mechanism to revise the rules. It then starts over.
Eventually it learns to solve the problem correctly. If the system is
given a second training problem, it may or may not solve that
problem correctly. It depends on the relation between the training
problems. If it fails to solve the second training problem correctly,
it revises its procedure further. In the simulation runs reported
below, the system was fed successive training problems until it
arrived at the correct subtraction procedure. The number of training
problems required varied between two and four, depending on
condition. The correctness of the learned procedure was verified by
running it on the 66-item subtraction test described earlier in this
chapter.

Computational results

Table 2 shows the amount of computational work required to
learn to canonicalize in each of the four conditions, summed over
all training problems in each condition. It contains several
interesting effects. First, the regrouping models require more
ledrning to handle columns with blocking zeroes than columns
without blocking zeroes. The augmenting models, on the other hand,
are not affected by blocking zeroes. Second, regrouping is
computationally more expensive than augmenting. The only
exception is that if we disregard blocking zeroes, then regrouping is
easier to learn than augmenting with a mechanical representation.
Third, conceptually based learning is more complex than mechanical
learning for both regrouping and augmenting. Also, the difference
between the conceptual and the mechanical representations is
larger in the case of regrouping than in the case of augmenting. The
conceptual regrouping model required 2.3 as many cycles as the
mechanical one, while the conceptual augmenting model required 1.3
as many cycles as its mechanical counterpart. Finally, it makes no
difference whether we measure the computational complexity by
the number of cycles or by the number of search states visited
during learning. All effects mentioned here occur in both variables.
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Table 2. The amount of computation required by the HS model to
learn to canonicalize under four different conditions, measured both
in terms of the number of search states visited and the number of
production system cycles required.

Type of representation

Conceptual Mechanical

Algorithm learned States Cycles States Cycles

Regrouping

968 940

Ii
464 449No blocking zoroes

Blocking zeroes 1843 1815 828 794

Augmenting

No blocking zeroes 889 862 689 687

Blocking zeroes 889 862 689 687

It is, of course, possible to question the psychological relevance
of both the number of production system cycles and the number of
search states visited. Both measures are heavily dependent on the
theoretical assumptions behind the simulation model. If the human
learner is not doing search, or if human cognition is not a
production system architecture, there might be no relation between
these measures and measures of cognitive work in humans. In

addition, both measures depend on the particular implementation of
the four simulation models.
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But the complexity of the four learning processes can also be
measured in terms of the number of learning events and the number
of rules learned. A learning event is an event in which the system
discovers a constraint violation, and revises its current rule set. A
learning event might lead to the construction of one or more new
rules. The number of learning events required is not primarily a
function of the theoretical assumptions behind the models or of the
implementation details. It is a measure of how many 'things' there
are to learn before the correct procedure has been acquired; it is
primarily a function of the logic of the learning task.

Table 3. The amount of lear. :ng required by the HS model to learn
to canonicalize under four different conditions, measured both in
terms of the number of learning events required and the number of
new rules created.

Algorithm learned

Type of representation

Conceptual

Events Rules

Mechanical

Events Rules

Regrouping

No blocking zeroes

Blocking zeroes

Augmenting

No blocking zeroes

Blocking zeroes

23 35 1 6 23

32 50 2 4 32

20 29 1 8 24

20 29 1 8 24
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Table 3 shows the amount of learning required to master
regrouping and augmenting, measured in terms of the number of
learning events as well as the number of new rules learned. All the
effects observed in Table 2 are reproduced in Table 3: Regrouping is
more complex to learn than augmenting (except for problems
without blocking zeroes, in the mechanical representation), the
conceptual versions require more learning than their mechanical
counterparts, and the difference between the conceptual and the
mechanical versions is larger in the case of regrouping than in the
case of augmenting. All effects appear with both measures. The
main difference between Tables 2 and 3 is that both the absolute
values and the relative size of the various effects are smaller.

Table 4. The amount of instruction required by the HS model to
learn to canonicalize under four different conditions, measured both
in terms of the number of constraints (instructions) required and
the number of training problems needed.

Algorithm learned

=,=,,......0.71.ww...o...1.!(
Type of representation

Conceptual Mechanical

Constraints Problems Constraints Problems

Regrouping

Augmenting

31

25

4 2 1

2 2 0

4

5

Table 4 shows yet another way to measure the outcome of the
simulation experiments. Instead of milasuring the amount of
learning, Table 4 measures the amount of instruction needed to
teach the HS model the two subtraction algorithms. The amount of
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instruction is measured in terms of how many constraints--
instructions--we had to provide HS with in order to bring it up to
correct performance. All the relevant effects from the other tables
are reproduced in this variable. Regrouping requires more
constraints than augmenting, and the difference is larger in the
conceptual than in the mechanical case.

The amount of instruction can also be measured in terms of the
number of training problems needed to bring the model up to correct
performance. This measure shows a different pattern: With respect
to regrouping, the number of training problems is the same for both
conceptual and mechanical representations. Augmenting requires
one more training problem than regrouping in the mechanical
representation. Finally, to learn augmenting with the conceptual
representation requires only two training problems, the lowest of
the four measures. This is the only case where the conceptual
representation has an advantage. The number of training problems is
a coarse measure of the complexity of the learning processes
involved, and this result carries little weight against the
consistent pattern across the five other measures.

Discussion of substantive conclusions

The results from the learning runs imply, briefly put, that
regrouping is more difficult than augmenting, and that learning
subtraction conceptually is more difficult than learning it
mechanically. Since these results go against current wisdom in the
mathematics education community, it is natural to ask what
confidence we can place in them. The simulation model that
produced these results might not be an accurate model of human
learning. There is the possibility that the production system
hypothesis is wrong. Also, the particular learning mechanism
implemented in HS might not correspond to any type of learning that
humans do. In either case, we would have to admit that HS does not
simulate human performance or learning. The reluvance of the
computational results to instruction is then doubtful.
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Another possibility which would lessen the relevance of the
computational results is that the production system hypothesis is
correct, but HS is the wrong implementation of it. Simulation
models are always underdetermined by the theories they embody
[26]. Thare is always the possibility that the computational results
depend upon this or that technical detail of the implementation It
would clearly be capricious to base instruction on results which
depend on programming style.

Although both of these objections to computer simulations are
valid in principle, I believe that the particular computational
results reported here are principled. The effects in Tables 2 through
4 are not caused by this or that exotic feature of the
implementation of HS, but by the fact that the gap between
principles and procedures in arithmetic is wide, much wider than
the intuitions of mathematically literate people suggest. To support
this claim, I will discuss three aspects of that gap: the role of
spatio-temporal relations, the function of expediency in algorithm
design, and the importance of attention allocation.

The role of spatio-temporal relations. Equality relations
between quantities are timeless and without spatial interpretation.
For example, the associative law

(a + b) + c = a + (b + c)

states that the sum of any two numbers x and c, where x is the sum
of any two numbers a and b, is equal to the sum of the two numbers
a and y, where y is the sum of b and c. The law does not say anything
about spatial locations or directions. The fact that the law has a
left-to-right linear structure is a property of the paper medium. If
the law was encoded as a list-structure in a computer, the
individual symbols might be distributed in a very different spatial
pattern, but the law would have the same meaning. Neither does the
law speak about temporal order. The addition operations mentioned
in the law are not related through relations such as before and
after; and concepts like first, next, and last have no role in the
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understanding of the law. The laws of the number system express
equality relations abstracted from time and space.

The control of action, on the other hand, is all about spatio-
temporal relations. The main function of an algorithm or a problem
solving procedure is to order primitive actions in time, to regulate
which action is to be done before or after which other action.
Furthermore, the actions, to the extent that they are motor actions,
have to be performed at some particular location in space, on some
particular object. If a digit is to be crossed out, the spatial
coordinates for that object must be known. If the right action is
performed in the wrong spatial location, an error is likely to result.
To learn a cognitive skill is to acquire a structure for the spatio-
temporal control of action.

If the mathematical structure--the set of laws that constitute
the rationale for a particular algorithm--ignores time and space,
and if the cognitive skill involved in executing that algorithm is a
structure for spatio-temporal organization, it follows that the
mathematical structure does not fully determine the skill. One
cannot derive that this action has to be performed before that
action from mathematical laws which do not speak about temporal
relations; one cannot direct an action to this spatial location rather
than that with the help of laws which do not speak about space.
Information about time and space has to be added to the
mathematical principles in order to control action. Knowledge about
the mathematical rationale for an algorithm is not sufficient for
the construction of the algorithm.

The role of expediency in algorithm design. The belief that
mathematical principles determine mathematical action ignores the
role of expediency in the design of the place value algorithms. Why,
for example, do we solve place value problems by processing the
columns in order from lower to higher place values? There is no
mathematical reason for this rule. It is equally correct to begin
subtracting to the left, i. e., with the highest place value column,
and work towards the right, i. e., towards columns with lower place
values. Unlike the standard procedure, this alter: Its procedure,
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although mathematically correct, requires that the already
processed columns have to be processed again every time the
minuend is regrouped. Beginning with the lowest place value column
saves work; it is a choice dictated by expediency, not by
correctness. Indeed, there is no mathematical reason to regroup in
the first place. It is possible to perform subtraction by processing
each column independently of the others, recording negative results
when appropriate, and then combining the column results into the
final answer. The decision to regroup is dictated by economy
considerations, not by mathematical principles.

The place value alg irithms evolved over a long period of time as
efficient means of performing calculations. The main reason to
adhere to those algorithms is that they save work, as compared to
other, equally correct procedures. But there is no relation between
the mathematical theory of place value and the expediency of the
algorithms that build on it. One cannot derive that this way of
doing subtraction is more efficient than that way from the laws of
the number system. The shape of these algorithms is not determined
by the underlying mathematical principles, so understanding those
principles contributes little to the learning of the algorithms. Any
aspect of a procedure which is grounded in expediency rather than in
mathematical concepts and relations will appear arbitrary and
incomprehensible regardless how well the conceptual rationale for
that procedure is understood.

School children cannot be aware of the expediency of the place
value algorithms. In order to realize how economical they are, one
must have something to compare them to. Since children are taught
the efficient algorithms, they have no experience of less efficient
ways of doing calculations. Also, since children are not doing
calculations for a living, they have no interest in expediency.

The importance of attention allocation. One of the most robust
findings of cognitive psychology is that there are severe limits on
how much information can be kept in working memory at any one
point in time. This limitation is simulated in the HS system by
letting working memory elements decay as time passes. The main
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consequence of this limitation is that the control of attention is a
central issue in all action, including mathematical action. If you
cannot keep all information in the problem display in your head
simultaneously, then you have to access it sequentially, by moving
your eye over it in a carefully controlled manner. To learn
subtraction is to learn where to look. Obviously, mathematical
principles have nothing to say about this aspect of mathematical
action. No matter how well one understands the concept of place
value, one still has to figure out where to look at each moment
during subtraction.

In summary, there are at least three principled reasons to
believe in a wide derivational gap between mathematical principles
and mathematical action. First, mathematical principles ignore
questions of space and time, while a cognitive procedure is a
structure for the spatio-temporal control of action. Second,
mathematical principles ignore the cost of computing a result,
while the standard place value algorithms are designed for
maximum expediency. Children cannot understand those features of
place value algorithms which are designed with expediency in mind,
because they have no experience of the less expedient alternatives;
and, unlike the professional calculators who developed the
algorithms, children have no particular interest in economy. Third,
the limited capacity of human working memory implies that all task
information cannot be kept active at all times. Consequently, any
cognitive skill must specify how attention is to be allocated over
the task information. But mathematical principles have nothing to
say about the allocation of attention.

If the gap between mathematical principles and mathematical
action is as wide as the above discussion suggests, then how is an
understanding of the mathematical concepts and principles
underlying a particular algorithm supposed to facilitate the
construction of the cognitive skill? This question has not been
clearly answered by any current theory of mathematical cognition,
and I suggest that no answer exists. The gap between mathematical
knowledge and mathematical action is difficult to bridge; that is
why it took two millennia to develop the place value algorithms,
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and that is why school children make mistakes even after they have
grasped the rationale of an algorithm.

The fact that the derivational distance between mathematical
principles and mathematical action is large does not in and of itself
explain why the HS model needs to compute more in the case of a
conceptual representation than in the case of a mechanical
representation. Granted that the derivational distance is large, we
still need an explanation for why it is larger in one case than in the
other. The explanation is simple: There is more work involved in
updating and processing a rich representation than an impoverished
one. There are more relations to keep track of, and therefore more
operations to perform. Each of those operations has to be controlled
by some procedural rule; hence, there are more rules to learn, or
more complicated conditions for the rules. The same must be true of
humans; updating and maintaining a richer mental representation
must require more cognitive work.

Because the gap between the mathematical principles and the
mathematical procedures is so wide, I believe that any reasonable
simulation model of knowledge-based acquisition of an arithmetic
procedure will reproduce the results reported here. The reader who
disbelieves this is urged to prove me wrong by developing a
simulation model that can learn subtraction both conceptually and
mechanically and which expands less computation in the former
case than in the latter.

According to the results reported here, William Brownell could
not have been more wrong. Regrouping is more difficult to learn
than augmenting. In particular, regrouping in a conceptually rich
representation is more difficult to learn than regrouping done
mechanically, and the disadvantage of the conceptually rich
representation as compared to the mechanical case is much larger
for regrouping than for augmenting. These results directly
contradict Brownell's conclusion that regrouping is easier than
augmenting, particularly when taught conceptually [5, 6].
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At first glance, this contradiction seems devastating for the
mdel. After all, Brownell's conclusion was based on empirical
observations, and in the case of a contradiction between theory and
data, it is the theory that must go. However, unlike simulation
studies, empirical studies cannot differentiate between learning
and performance, between the amount of cognitive work needed to
learn an algorithm and the amount of cognitive work needed to
execute it, once learned. The only way to measure the cost of
learning is to observe performance, so any empirical measure will
necessarily confound the two. As the reader might recall, the
simulation of performance in the first study reported in this
chapter did produce results which fit the empirical data rather
well. It is reasonable to interpret those data as measures of the
cognitive cost of executing the algorithms rather than of the
cognitive cost of learning them. We then have a good fit between the
theory and the data themselves, but no support for Brownell's
interpretation of the data.

The result that conceptual instruction requires more
computational work than mechanical instruction is comforting to
the researcher wIlo desperately wants to know why well-intended,
carefully planned and skillfully executed instructional
interventions that aim to impart conceptual understanding do not
succeed in producing correct performance [27, 33]. But it is less
comforting to the educator or teacher who is responsible for
designing efficient instruction. The simulation results imply that it
is a mistake to expect conceptual understanding to facilitate
procedural learning. Instead, the results indicate that conceptually
based instruction will be more costly in terms of time and effort
than mechanical instruction. The relation between the conceptual
rationale of an arithmetic procedure and the procedure is an
instructional topic in its own right, a topic, moreover, which is
complicated and therefore requires time and effort on the part of
both instructor and student. Instead of being a tool for teaching (the
same old) arithmetic, conceptually based instruction in arithmetic
constitutes a higher pedagogical ambition, as compared to
mechanical instruction.

3 7
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It is easy to feel sympathy with this higher ambition. We
obviously want students to grasp the rationale behind the
arithmetic algorithms. The present discussion is not meant to imply
that conceptual instruction in arithmetic is wrong or undesirable.
What is wrong is the expectation that such instruction can be
digested easier and with less effort than mechanical instruction.

Conceptually based instruction in arithmetic might need to
revisit the idea of a spiral curriculum [7, pp. 52-54]: Teach the
algorithms with a small amount of conceptual interpretation at an
early age; teach them again with a deeper presentation of the
conceptual rationale when the students have aquired more
mathematical knowledge; and so on. Me topic could be visited as
many as four our five times between third grade and college, each
visit probing deeper into the conceptual rationale, until the
students are able to carry out a relatively tight derivation of the
algorithms (e. g., as in [25]). To the best of my knowledge, no large
scale empirical evaluation of such a spiral curriculum for
arithmetic has yet been done.

Evaluation of the General Method

The specific conclusions about arithmetic instruction presented in
this chapter are controversial and unlikely to be accepted without a
debate. Such a debate would be welcome. But the controversial
nature of the domain-specific conclusions should not be allowed to
obscure the fact that the present study also contributes a general
method with a potentially greater impact.

The main method of traditional educational research is well
exemplified by the studies conducted in order to choose between the
regrouping and augmenting algorithms: To determine the relative
advantage of an instructional design A as compared to an
alternative design B, teach one set of students with design A and a
second set of students with design B, and compare the outcomes.
This empirical method is laborious and time consuming. In addition,
it is rarely successful in settling the instructional issue at hand.
Measures of instructional outcomes are so imprecise and coarse
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that a negative outcome is unconvincing. The opponents of the
hypothesis favored by the author of such a study can always feel
justified in questioning whether the measures used were senjitive
enough to register even quite significant effects. On the other hand,
a positive effect is equally unconvincing. An observed effect cannot
be ascribed to the instructional intervention with any certainty,
because it is almost impossible to achieve control over all the
determinants of an instructional outcome. Empirical comparisons
between alternative instructional designs carry little intellectual
authority, regardless of outome.

Teachable simulation models enable an alternative method for
investigating instructional questions. Instead of teaching the
relevant instructional topic in different ways to different groups of
students, we can teach it in different ways to a model of learning,
if that model takes the form of a robust, runnable simulation. The
simulation runs provide us with measures of the amount of
computational work required to learn the target topic under
different modes of instruction. A significantly lower value for mode
A than for its rival B constitutes a prediction that A is the
preferred way of teaching the target topic.

Using this method, an instructional designer can invent a new
approach to a particular topic, use it to teach that topic to the
model, and have a preliminary outcome, all in a matter of days.
Preparing the inputs (the initial procedural knowledge and the
instructions) to a teachable simulation model is not a trivial task,
but it is measured in hours or days, rather than in months or years.
Such rapid turnaround between an instructional idea and its
evaluation has the potential to facilitate search through the space
of instructional designs 130). Many different designs can be tried
and compared at a relatively low cost and in a relatively short time.

A teachable simulation model can also help identify fruitless
questions and inappropriate techniques. Consider once again the
large scale classroom studies of the pre-World War II era that
attempted to settle the controversy between regrouping and
augmenting empirically. My simulation results show that there is no
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reason to expect any differences between regrouping and
augmenting on measures of performance. The two algorithms are
nearly equal in cognitive complexity, once learned. Hence, trying to
measure the difficulty of the two algorithms by measuring
performance is not a useful endeavor. The differences between the
algorithms only affect the amount of cognitive work required to
learn the algorithms. But pure empirical measures of learning are
hard to come by. One possibility is to count the number of learning
events per unit time as revealed by think-aloud protocols, a
measure hardly ever used in learning research (but see [40] for an
exception). No such measure was employed in the pre-World War H

studies that compared regrouping and augmenting. Those studies
could not, in principle, resolve the issue they were addressing,
because they were approaching it with the wrong tools. Theoretical
clarification is a necessary prerequisite for meaningful data
collection in instructional science as in other sciences.
Implementing and using a teachable simulation model is one way to
achieve such clarification.

A second traditional approach to instructional design, over and
above empirical comparisons between alternative teaching methods,
is to base particular decisions on general design principles, which,
in turn, are derived in some more or less intuitive way from a
learning theory. The debate about how to teach subtraction could
conceivably be decided by the application of such a principle. For
example, we could apply the principle of successive elaborations: A
topic should be taught by first presenting a kernel idea, an epitome,
which is then successively elaborated [32]. But this principle does
not discriminate between the different ways of teaching
subtraction. Both regrouping and augmenting can be taught by first
presenting the basic idea of the algorithm, and then elaborating it.
As a second example, consider the principle, proposed by Anderson,
Boyle, Farrell, and Reiser, that one should teach the goal hierarchy
of the target skill [2]. Once again, this principle does not
discriminate between alternative subtraction algorithms. As a last
example, a colleague of mine suggested that one should prefer
regrouping over augmenting on the principle that teaching should
facilitate future learning, and the regrouping operation is more
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generally useful than the augmenting operation. But it is unclear in
what sense the law of associativity is more generally useful than
the constant difference law; both seem equally necessary for
conunued study in mathematics. In short, the disadvantage of using
general design principles as mediators between theories of learning
and instructional designs is that the application of those design
princieales is seldom straightforward.

The method of teachable simulation models links learning theory
to instructional design in a different way. The method brings
learning theory to bear on particular issues, without mediation by
general design principles. For example, the simulation runs
presented in this chapter tell us that augmenting is easier to learn
than regrouping and that the advantage of augmenting is increased
with conceptually based instruction. The simulation runs resolve
the particular issue of regrouping versus augmenting, but they do
not suggest any principle of arithmetic instruction, let alone any
general design principle. The principles of learning embedded in the
model are applied directly to the instructional issue at hand.
Whether this is, in general, a better way to proceed than via general
design principles cannot be determined here. The two different
ways of linking learning theory to instructional design are not
incompatible. A mixture of both approaches will probably prove
most advantageous.

Testing instructional designs by trying them out on a simulation
model seems to presuppose that we have accurate simulation
models. There are three answers to this objection. First, the lack of
accuracy of today's models and theories is a temporary
disadvantage. As research into human learning progresses, we will
be able to construct more accurate theories. It is desirable to have
a method which allows us to channel increased theoretical
understanding into improved instructional designs. The dependence
on the accuracy of our learning theory is not (only) a bug, it is (also)
a feature. Second, the extent to which particular computational
results depend upon the accuracy of the model is a matter for
debate. In the preceeding section I argued that the results reported
in this chapter are consequences of deep features of arithmetic, and
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hence relatively independent of the particulars of the HS model. (It
is clear how to provide evidence for or against claims of this kind:
A claim about independence of results from a particular model is
supported if the results can be repr(duced with a different model.)
Third, a theory need not be entirely accurate to be useful. Even
approximate theories can often supply information that improve
upon common sense and rules of thumb.

Answering questions through theoretical calculations goes
against the grain in a discipline that was shaped in the heydays of
the peculiar brand of empiricism advocated by the logical
positivists. It is therefore useful to look up from our local concerns
and observe that the ratio of theoretical calculation to empirical
observation tends to grow as scientific disciplines mature. Once
upon a time, geometers measured angles in order to decide whether
a triangle was a right triangle or not. By the time Eucl!J wrote his
great treatise, geometry was already a purely theoretical discipline
in which answers to questions are derived from first principles.
Mechanics went through a similar development. Brahe and Galileo
needed observations, but since the "rational mechanics" of the 19th
century, questions like how much force it takes to lift a particular
payload into orbit are answered by calculation, not by observation.
If it were necessary to send up hundreds of rockets with different
payloads and different thrusts in order to decide the issue
empirically, space travel could never have gotten off the ground. In
short, to observe is to confess ignorance; it is what scientists do
when they have little or no theoretical understanding. As a science
matures, calculations replace (some) empirical measurements.
There is every reason to expect instructional science to develop
similarly. The present chaptei is but a small step in that direction.
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