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Abstract

This study seeks to establish which scientific reasoning skills are rrimarily domain-

general and which appear to be domain-specific. The subjects, 12 university

undergraduates, each participated in self-directed experimentation with three

different content domains. The experimentation contexts were computer-based

laboratories in cl.c. circuits (Voltaville), microeconomics (Smithtown), and the

refraction of light (Refract). Subjects spent three 1-1/2 hr sessions working with each

laboratory and took pretests and posttests that assessed their learning. Specific

patterns of strategies used in each laboratory depended primarily on the structural

form of the discovery task and the nature of the domain. In a situation that

required the discovery of correlational regularities, evidence-generation activities,

like the heuristic of controlling variables, were primary. In contexts where the

regularities were functional rules, evidence interpretation became important.

When the rules were quantitative, mathematical and algebraic heuristics were

important. Students appeared very sensitive to the task demands of each laboratory,

and adjusted their strategies accordingly. Regardless, they learned more as they

proceeded from domain to domain, indicating that they were becoming more

effective in planning and carrying out experiments, and in formulating and testing

hypotheses based on those experiments. The findings suggest that the most

generally useful skills for direct instruction may be those for evaluating the kind of

problem at hand and for selecting the most appropriate processes and strategies.
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Previous work in scientific reasoning, our own (Shute, Glaser, & Raghavan, 1989;

Schaub le, Glaser, Raghavan, & Reiner, 1990) as well as others' (Langley, Simon, Bradshaw, &

Zytgow, 1987; Klahr & Dunbar, 1988) has empirically investigated scientific reasoning in various

discovery tasks with the objective of characterizing the strategic or reasming processes associated

with successful discovery of lawful regularities. Most of these studies have been carried out in the

context of one domain of knowledge. However, we have noted as we work in different domains

that there appear to be strong influences of the structure and content of the domain on the particular

reasoning and inference skills that subjects employ. This observation has led us to investigate the

reasoning of subjects who work to discover the principles that apply in three computer laboratories

incorporating simulations of different content domains in the physical and social sciences.

Historically, most of the psychological research on scientific discovery has regarded

scientific reasoning in one of two ways. Some studies investigate reasoning processes, in

particular, strategies of scientific experimentation, such as designing and interpreting valid

experiments, hypothesis testing, identifying regularities in patterns of data, and reasoning about

conelation and covariation in events. This tradition tends to cast these skills as being rather general

reasoning abilities that presumably are applied across content domains. Other work emphasizes the

content and strucwral characteristics of domain knowledge as a function of prior misconceptions or

as a function of expertise. Within this line of work, the emphasis is on strategies and heuristics

thai are quite specific to the domain and the task. When an individual is perceptive of the features

of a problem, these heuristics often become proceduralized, with the consequence that they may be

employed almost automatically when particular task requirements elicit them. For example, experts

appear to solve physics problems by spontaneously perceiving and classifing the problems in terms

of the underlying domain principles that comprise their deep stnicture, in contrast to novices, who

focus upon the surface structure (Chi, Feltovich, & Glaser, 1981).

Empirical research on scientific reasoning is increasingly attending to the relations between
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domain-general strategies and domain-specific reasoning heuristics. For example, Kulkarni and

Simon (1988) have reconstructed the reasoning processes employed by Hans Krebs as he solved a

particular problem solved in the history of science, the discovery of the urea cycle. They

concluded that some of the heuristics he employed were closely tied to the domain of biochemistry,

whereas others were more general strategjes applicable to discovery in all domains of science or to

other forms of problem solving.

This study continues the investigation of the relations between general and specific

reasoning in science. Kulkarni and Simon's conclusions were based on a reconstruction from

historical records, such as Krebs' notebooks; we here move on to investigating these issues

experimentally. Unlike Krebs, our subjects are university undergraduates who are novices in the

domains of investigadon. Each of our subjects participates in self-directed exploration in three

different content domains, providing us with the opportunity to investigate which reasoning and

inference activities are employed with some consistency and systematicity fnain domain to domain,

and which activities appear to be used more narrowly within a more limited range of content.

The three computer laboratories used in this study simultate phenomena in the domains of

economics (Smithtown), d.c. electric circuits (Voltaville), and the refraction of light through lenses

(Refract). In each laboratory, students can construct experiments by varying variables and

parameters, take relevant rmasurements, make predictions about outcomes, record and manage

data, and develop and revise hypotheses about the laws and principles that apply in the domain.

METHOD

Subjects

Participants were recruited on a university campus. Since the study required relative

novices in the domains of interne, criteria for acceptance in the study were that the candidate be an

undergraduate majoring in a nonscience discipline. The first twelve applicants who fit these criteria

were admitted as subjects, yielding a group of 4 men and 8 women, mean age 21 years (range

from 18-25). No participant was currently studying physics or economics.
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Procedure

Sequence of Experimental Sessions

The study was described to subjects as a study concerning learning with computer

laboratories. They were told that they would be shown how to use the laboratories and then would

spend several sessions waking with each lab "as a scientist mien" to try to discover as many laws

and regularities in the domain as possible.

All participants took a brief test designed to screen for competence in simple algebra and in

the ability to make qualitative and quantitative interpretations based on tables of numerical data.

Subsequently, each subject came to the university laboratory from two to three times per week to

participate in a total of eleven expeiimental sessions lasting one and one-half hrs each. Total

duration of the study was therefore approximately 16 hrs for each subject, extending over six

weeks.

Subjects were randomly assigned to one of two treatment orders. Because of the time-

intensive nature of the study, a comnetely counterbalanced design was not feasible. Our task

analysis predicted that Voltaville and Smithtown share the least amount of overlap in the activities

and skills required for successful learning. In contrast, Voltaville and Refract overlap somewhat in

their requirements for interpreting evidence, whereas Smithtown and Refract appears to require

some common skills in generating evidence. Because Refract has mixed characteristics, sharing

some task requirements with Smithtown and others with Voltaville, it was the most useful

laboratory for studying consistency or transfer of reasoning from the other two labs. Six of the

subjects worked for several sessions on Voltaville, and then on Smithtown, whereas for the

remaining six, the order was reversed. All subjects worked last on Refract.

Working With the Laboratories

Work with each laboratory was preceded by a short pretest (about 20 min) to assess

subjects' prior knowledge in the domain. Each pretest included qualitative questions addressing

conceptual understanding. In addition, for those domains in which the relations take the form of

6
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mathematical expressions (tefract and Voltaville), pretests also included items designed to assess

knowledge of awl ability to apply these laws. After the pretest, an interviewer prompted the

subject through a standard tnining and demonstratim session (of about 40 min duration) with the

appropriate computer laboratory. The purpose was to ensure that the subject understood the

activities suppated by the laboratory, could operate the computer interface, and was familiar with

the discovery tools common to all three laboratories. After this demonstration was completed, the

expaimenter informed the subject of the task objective: to discover as many laws and regularities

as possible. The subject spent the remainder of this introductory session in self-directed

experimentation with the computer laboratory. In subsequent sessions subjects continued their

exploration. Since the ccenputer laboratccies saved each student's activity to a personal file,

experiments and records were preserved from session to session, and subjects started off each

session with the information and discoveries they had generated in previous sessions. Thus, the.

study focused on learning that was cumulative over several sessions. In addition, since the

computer records contained a complete trace of all stixle nt actions with the laboratories, they were a

primary data source for the study.

During the learning sessions subjects worked individually with one of three interviewers.

The interviewer answered questions about operating the laboratory but avoided directing student

exploration. In addition, when appropriate, she prompted subjects to describe what they were

thinking, to justify conclusions, and to explain what they were inspecting on the screen. These

comments were recorded on audiotape.

Including the introductory sessions, each subject spent a total of three sessions working

with Voltaville and Refract. Smithtown encompasses a somewhat larger domain, includes a

greater number of goals to discover, and requires a greater number of experiments to support each

hypothesis. Consequently, each subject spent four sessions working with Smithtown. At the end

of the final session on each laboratory, students took a posttest composed of items parallel to the

pretest items.

7
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Analysis of Similarities andDiiTerences Amora the Domains

The three computer laboratories share a common interface and an identical set of tools that

suppon the recording, smting, and graphing of data, and the development of hypotheses. In

addition to the laboatoies sharing many common components and operating in the same manner,

at the top level, the task posed to students working in each laboratory was identical: to try to find

as many laws and regularities as possible. To discover the laws in these three laboratories, one

must generate valid and informative experiments, record and manage the data from observation.

and then appropriately interpret the data by developing genendizable laws. We refer to these

classes of activities as the generation of evidence, data management, and evidence interpretation,

respectively. However, because of differences in the overall stnicture of the domains, the

experimentation strategies and activities that are most adaptive should differ from laboratory to

laboratory.

The structure un&rlying Smithtown, the laboratory in microeconomics, is a correlational

structum. Changes in catain &pendent variables covary with changes to independent variables and

parameters. The laws degcribing these correlational relations are qualitative statements of the farm,

"As price of tea increases, quantity demanded decreases," a principle in micmeconomics known as

the Law of Demand. Finding these principles involves generating evidence that supports

appropriate inferences of inclusion (that is, identifying which variables are involved in a particular

relationship, as well as the general direction of the relationship) and also exclusion (noting that

some variables are not relevant in a particular relation and can therefore be ruled out of further

consideration). Identifying these correlational relationships requires the generation of carefully

structured patterns of evidence in which extraneous variation is controlled, and which thus permit

the isolation of pertinent causal effects from other candidate causes. It is particularly important to

avoid errors of false inclusion, that is, inferring that a variable plays a causal role when in fact

other variables are also varying arui therefore may be responsible for or contributing to the

outcome. Therefore, it is likely that strategies and activities in the generationof evidence will be

8
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particularly important to succeuful learning with Smithtown.

In contrast, Voltaville, the d.c. circuit laboratory, is analagous to the classic rule discovery

tasks widely explcaed in cognitive psychology. Pertinent examples include cryptogram tasks

(Simon & Kotovsky, 1963) and Wason's (1960) 2-4-6 task. That is, the objective is to find a nee

that correctly and exactly specifies the relations among all variables in the task These rules take on

fonns such as "V = I times R." or "RI + R2 + R3 = total R." In such a rule discovery task the

important operations ate not inclusion and exclusion of relevant variables, but confirmation and

disconfinnation of candidate rules where the relevant variables are apparent Unlike the case with

Smithtown, finding principles does not depend upon setting up carefully designed sets of

observations that vary in prescribed manners. Rather, in Voltaville, each experimental observation

is fully informative, since each observation embodies the laws that apply in a particular kind of

circuit. For example, on the basis of measuremcnts of the values in a series circuit with three

resistors, it is possible for a subject to induce Ohm's Law, as well as Kirchhoff's Laws for

Resistance, Current, and Voltage. Thus, it is likely that evidence generation strategies will be less

important in Voltaville than in Smithtown. Instead, evidence interpretation skills are fundamental,

including the use of mathematical heuristics.

Refract represents a mixed case. It is also a rule discovery task, with laws taking the form

of mathematical expressions. A look at the handout indicates that the rulesin Refract require more

sophisticated mathematical knowledge than those in Voltaville, and strategies for the interpretation

of evidence are likely to be important. However, as in Smithtown, one of the challenges in Refract

is to identify the particular variables that are implicated when an independent variable or a

parameter is manipulated. Managing the complexity of data in this laboratory is greatly facilitated if

one systematically generates evidence in regular patterns. Since not all variables play a role in all

laws, systematicity is particularly important in discerning which independent variables are

responsible for changes in the corresponding dependent variables. Thus, strategies in the

generation of evidence should also play an important role.

9
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Beyond these differences in the strixture of the three domains, there are important

differences in the salience of the structure. The parameters in Refract and Voltaville represent

changes in physical objects which can actually be manipulated: lenses made of different materials

and shapes, cinuits with resisters wired in series or in parallel. Subjects find it intuitively

reasonable that changes in these parameters may change tne way the entire system works. In

corrzast, the parameters in Smithtown are not easy to distinguish from the variables. Income level,

interest rates, and price of a good all seem comparable, and subjects expect that they all have

similar effects. Discerning the underlying structure of Smithtown is thus more difficult for most

individuals.

In sum, Smithtown has a correlational structure, and the distinction between variables and

parameters is particularly difficult to make in this laboratory. Voltaville is a rule discovery task,

and the distinction between variables and parameters seems consistent with differences in the

physical materials represented in the laboratory. Refract has a mixed structure. Since it is

necessary to find out which independent and dependent variables are lawfully related, some

correlational reasoning is required. On the other hand, the basic structure of the task is a rule

discovery structure, with the objective of finding a rule that expresses the relations among the

relevant variables and parameters. As in Voltaville, differentiating between variables and

parameters is facilitated by the fact that parameter changes map onto changes in concrete physical

materials like lens shape and material. These differential task characteristics should affect the use

and character of exploratory and inference activities in these three laboratories.

Results

We first report student performance in the three laboratories, in particular, with respect to

the task characteristics of each laboratory. Next, we discuss the extent to which subjects who work

over an extended period with these laboratories both learn content knowledge and acquire

proficiency in the processes of inference and discovery that lead to learning.

1 0
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Experimentation Activity

Evkicnce Generation

First we consider the generation of evidence in the three laboratMes. Generation of

evidence encompasses the amount and breadth of search, the informativeness of search, and the

structure of swell.

Amount and Breadth of Sefirclt. The problem space comprising the number of possible

experiments in scientific domains, sometimes referred to as the e-space (Klahr & Dunbar, 1988),

can be very large. Furthermore, the informativeness of experiments designed will vary, with some

regions of the e-space representing experiments that do not distinguish between rival hypotheses,

and other regions representing comparisons that suppm definitive judgments about a hypothesis.

The computer laboratories studied here have e-spaces that are quite large in compaiison to those

employed in many laboratory tasks. Of the three,Voltaville supports the smallest e-space: it

includes three major variables (voltage, with 40 possible values, resistance, with 10, and current, a

dependent variable that varies as a function of the values of the other two), and one parameter

(circuit type) with eight different levels. In contrast, Refract has two variables (image distance,

with 5 values and angle of incident ray, with 7) and two parameters, the relative optical density of

lenses, with four levels, and lens shape, with eight levels. In contrast, Smithtown has only one

variable, price. However, this variable has an exceptionally large range of values, since it is

possible to vary dollar costs in various markets. In addition, Smithtown includes eight parameters

(such as income level, population, interest rates, weather, and the like) which also have a very

wide range of permissible values that shift the relations among the simple variables. Most subjects

find it more difficult to identify the way that parameters work than to discover lawful variable

changes (Shute et al., 1989; Schauble et al., 1990). Therefore, the relative proportion of

parameters and variables, as well as its overall larger e-space, make Smithtown the most complex

and difficult to master of the computer laboratories. For the same reasons, Refract is of

intermediate complexity, and Voltaville contains the least complexity, both in amount and kind of

1 1
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possible variation.

As Table 1 shows, the larger the e-space suppcated by a lab, the more experiments subjects

actually genemted. Thus, our subjects appeared to be sensitive to the cceditions under which more

variation is possible, and responded by searching =we broadly, thus generating more information.

In addition, Table 1 shows that at the average, students made more changes to parameters in

Smithtown than in either Voltaville or Refract, and changed variables more frequently in Refract

and Smithtown than in Voltaville, a straightforward reflection of the differences in domain

structure.

1=10.10 MI OM= IMI*MIIMIN.M.M...MIMINO NNW =1 OR =I

Insert Table I About Here

MPINNI.O.msm. mmilPN.M.=.1=MML=api==..M.

Informativentss of Search. Although each of the computer laboratories permits the

generation of many potential experimental combinations, there is for each a much more tractable

number that comprises the minimum set required to discover all the laws. This minimal amount of

evidence varies from a low of only 6 experiments in Voltaville to 20 in Refract and approximately

50 in Smithtown (the number fluctuates somewhat depending on the path of experimentation).

Consequently, not only does Smithtown have the largest and most complex e-space whereas

Voltaville has the least; in addition, the minimal amount of evidence that must be generated to

discover all the laws and relations is also greatest for Smithtown and least for Voltaville. As Table

1 shows, subjects typically senerate smaller percentages of the minimum required evidence in

Smithtown and Refract, a reflection of the larger and more complex evidence patterns required in

those laboratories. On the average, students generate all or nearly all of the evidence required to

support discovery of all eight laws in Voltaville, even though they may not go on to infer them. In

contrast, they generate only half the evidence required for discovering Smithtown's twelve laws.

Structure of Search. Although subjects may operate in the most informative regions of

infoimation, they may still fail to structure their experiments so that they support valid inferences.

12
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As discussed above, in Smithtown, laws are qualitative relations, whereas in Voltaville and

Refract, they are mathematical expressions. Furthermote, for any one law being exploted, most of

the facton in Smithtown do not play a causal role, whereas in Refract and Voltaville, all the factors

art indeterdependent. Because of these domain differences, discovering the laws in these thrfee

worlds entails strwturing experiments in different ways.

To discover a law in Smithtown, students must generate three price points at several levels

of a relevant parameter. In canvas', in Refract, relevant comparisons are pairs of obsavations that

differ by only one variable change. This experimentation pattern is less complex than the structure

of informative experiments in Smithtown, and there are more alternative paths to solution. In both

Refract and Smithtown, conclusions are based upon noting tegularities in changes from one

observation to the next. If the comparisons are not valid, no definitive conclusion can be drawn.

In contrast, in Voltaville all observations include information that can support valid inference. To

yield meaningful data, there is no need as in the other laboratories to &sign a set of coordinated

exmiments that serve as contrasts, because each observation stands alone in supporting the

induction of the relevant laws.

To generate valid patterns of evidence, it is necessary in Smithtown and desirable in Refract

to follow the pattern of varying only one variable at a time, holding all other variables constant. As

indicated, experiments in Voltaville are infotmative whether one varier, one variable, two variables,

or many. Our subjects appeared to be aware of this task stnicture. As Table 1 shows, the

percentage ofexperiments in which subjects controlled extraneous variation was very high in

Smithtown, and only slightly lower in Rtfract, but much lower in Voltaville. Note that although

students generated controlled experiments much less frequently in Voltaville than in the other lats,

they still did so nearly one third of the time, a substantial use of an evidence-generation strategy,

given that there is no discernible advantage to using it here. Perhaps this performance reflects the

fact that control of variables is one of the most commonly taught strategies in science instruction.

Evidence_InterpretatioA

13
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Generating valid and informative experiments is a necessary but not sufficient conditice for

discovering the laws in the computer laboratories, for obviously it is also necessary to

appropriately interpret and make inferenca about the evidence generated We turn next to strategies

in evidence intemetation that can be identified in the three computer labonitories.

Making Predictions. Predictions serve both as tlw pnxiucts of inferences and as the

engines for further inference. As Table 1 indicates, students more regularly made predictions

about the outcomes of their experinvnts in both Voltaville awl Refract than in Smithtown. We

observed fiom protocols that subjects appeared to find it much meat satisfying to generate a

specific quantitative prediction, which was then unambiguously confirmed or disconfirmed by the

computer feedback, rather than to generate a qualitative prediction such as, "Quantity demanded

will decrease." Confirmation and disconfmnation of qualitative predictions of this 'rind are

seemingly more ambiguous, and students appeared to find the feedback less helpful or satisfying,

apparently because a mere correlational statement provides less information. The more informative

feedback apparently results in more hypothesis-driven search. When a subject's prediction is

disconfimied in Voltaville or Refract, he or she learns not only that the working hypothesis is

wrong, but specific information about how it is wrong, information which can be used in revising

the hypothesis or generating additional informative search. In Smithtown, subjects in the same

position learn only that they are wrong, with no special conswaints to guide further search except

the information that this particular statement should be eliminated as a hypothesis. Despite this

point, attempts it inference through predictions resulted in an equal percentage of correct

predictions in all three laboratories, averaging about three quarters of the time.

Prior Knowledge. Evidence interpretation is also influenced by prior knowledge. In

general, subjects have experience with buying and selling, and therefore have a great deal of

knowledge afr.,ut consumer and market behavior. As a consequence, they hold a number of

expectations about likely causes and effects in Smithtown, which might be corrector false

misconceptions. Most of our subjects reported that they were much less knowledgeable about the

14
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physics domains, in particular, stating that they knew more about economics than electricity, and

matt about electricity than refraction. These differences in prim knowledge may either help cr

mislead subjects in deciding where to search for relations, may influence them to be more or less

active in search for disconfirming evidence, and may affect their confidence in their conclusions as

well as their ability to remember and apply the laws they discover. Differing prior knowledge

could also affect the tendency to check to see whether a camlidate law makes "sense" consistent

with one's understanding of the phenomenon being described.

Table 1 shows that subjects stated a greater number of alternative hypotheses of all kinds

(general and specific, conect and incorrect) while working with Smithtown, in comparison to both

Voltaville and Refract. Most of our subjects were not hesitant to try out these tentative conclusions

by submitting them to computer evaluation, even if little relevant evidence was available.

However, this prior knowledge was a mixed blessing. On the average, subjects discovered a

smaller percentage of the Smithtown goals than in either Refract or Voltaville. The mean

percentage of goals discovered was 52.1%, 58.3%, and 88.5% in Smithtown, Refract, and

Voltaville, respectively. Prior knowledge sometimes helps subjects to interpret patterns of

evidence, but if prior knowledge is incorrect or only partly correct, it can encourage subjects to

distmt, ignore, or selectively interpret the evidence that they generate. This finding is a common

one in research on scientific reasoning.

attallieagargfil

The differences among the laboratories also result in differences in how students manage

their nxmory by recording and organizing data. In Smithtown, laws often involve parameter

changes that iesult in function shifts. Consistent with this characteristic, we found that our subjects

graphed data more frequently in Smithtown than in the other two laboratories. As mentioned, the

Refract laws are moderately complex mathematical expressions. As Table 1 shows, in Refract

students were particularly likely to use the computer capability for organizing tables, with its

spreadsheet sorting and expression-generating functions. With the exception of one relation, the

15
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laws in Voltaville are algebraically simple, and thus there was less necessity for students to store or

organize data to support the discovery of the relevant laws.

In sum, differences in domain content and structure welt associated with differences in

task requirements from laboratory to laboratory. These, in turn, Welt associated with different

patterns of student activity as they detect domain differences in self-directed exploration. The

results just described are coffoborated by a pattern of intercorrelations run across the relevant

activities for all twelve subjects. These correlations reflected no activities in which subject

performance was higly related across all three laboratories. Where strong correlations did exist,

they were between pairs of laboratories, and they reflected the general structural and task

differences already discussed.

In sum, there is no simple story about consistency of performance, at least at the group

level. In general, our students did not tend to apply certain activities and processes across the three

domains. Instead, the general picture is one of adaptiveness to the constraints of the task at hand.

Those relations that did appear, were located in the discovery components in which laboratories

shared common structural or task requirements.

Learning awl Transfer in the Computer Laboratories

What does this pattern of specificity of performance imply for student learning? At least at

the top level, the tasks posed by all three computer laboratories are the same. Students generate

experiments, take measurements, makepredictions, record data, and develop and revise

hypc..heses about the laws that apply. Much work on scientific discovery proceeds from the

assumption that subjects dit zr in their skills or abilities to perform these activities. Our own earlier

work proceeded from similar assumptions toward the objective of identifying patterns of activity

that account for effective and ineffective learning (Schauble, Glaser, Raghavan, & Reiner, 1990;

Shute, Glaser, & Raghavan, 1989). However, it appears based on our current results that these

patterns are seriously attenuated by domain characteristics. These specificities in performance have

two kinds of implications for student learning. The first concerns the way that students e.nploy the

16



1 4

skills they have to learn specific content knowledge. If individuals have differential skills, it is to

be expected that some will do better in some domains, and others will do better in others. The

second implication is for students' growing capability in learning how to learn. A group of

students who possess the identical skills in scientific reasoning may still yaw considerably in their

self-regulatory sldlls for determining whether their skills are appropriate in a particular

circumstance, how those skills will be applied, and what other skills need to be developed. Those

of our students who learn effectively in more than one domain succeed not by generally applying

an invariant set of skills, but by reacting more adaptively than other students to the fluctuating task

demands posed by the three laboratories.

To explore these issues, we measured amount of learning for each computer laboratory by

computing student pre/post test gain scores. Students accomplished significant gains in each of the

laboratories. Their gains were relatively higher in Voltaville and Smithtown than in Refract, the

most difficult discovery context Mean gain score for Smithtown was 26.5 percentage points, for

Voltaville was 26.3 percentage points, and for Refract was 11.9 percentage points (all of these

gains are significant).

However, tlwre was no clear relationship between amount of achievement in one laboratory

and amount of achievement in the others. A correlation run on the three gain scores for the 12

subjects yielded only a modest correlation between gains in Refract and Voltaville (r = .27), the

two worlds in which the rule discovery structure was shared. There was a negative correlation

between gains in Voltaville and Smithtown (r = -.31), the two labs with different structures, rule

discovery versus correlational. There was no meaningful correlation between gain scores on

Smithtown and Refract (r = .008), which has mixed properties, so that students who were

effective in Smithtown varied in the perfomiance in Refract, and vice versa. In general, then, at

the group level, learning in our laboratories appeared to depend to a large extent upon adaptibility

to structural and task requirements rather than the exercise of generalized reasoning strategies.

This specificity of student performance is also manifested by the fact that in these complex
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exploratory situations, no student was clearly the best in all laboratories and no student was the

worst No student was among the one-thind with the highest gain saxes on all three laboratories

(although five students were among the top third achievers on at least two labs). Similarly, no

student was among the one-third with the lowest gain scores on all three laboratories (although

three students were low achievers on at least two labs).

Thus, sonz students were better at some kinds of learning than others. But are students

really this specific in their strengthsV We have empirkal data at the group level which imply some

general characteristics of perfcanance. This general character mi./ lie not only in the ability to

adaptively apply relevant skills, but also in the ability to evaluate them. This is indicated by our

data, which show that the subjects showed more and more learning as they progressed over the

three different lab experiences. On the average, there was a mean increase in gain score of 9

percentage points from Lab 1 to Lab 2, regardless of whether subjects began with Voltaville or

Smithtown (to evaluate the magnitude of this increase, recall that total gain score far each of these

labs was about 25 percentage points). Thus, not only did the students adaptively apply their skills,

but at a more general level of understanding, they became mare fmniliar with the overall activity of

experimentation and its component processes, including ways of generating evidence, making

inferences from this information, searching for regularities, and testing them.

Furthermore, generality of ability in learning how to learn is revealed by a comparison of

student learning in Voltaville and Smithtown, the first two labs, with their learning in Refract, the

final laboratory explored by all students. From the group of twelve subjects, fourwere identified,

for want of a better woul, as "improvers." These were the students who made the greatest increase

in learning gains when their gain scores on the second laboratory were compared to their gain

scores on the first laboratory. Average increase in gain scores among this "improver" group was

333 percentage points from the first laboratory to the second. A second gmap of four made the

smallest increase in gain scores, an average increase of -9.5 percentage points. On the third lab,

Refract, the improvess gained an average of 19.5 percentage points from pretest to posuest. ln
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fact, three of the four improvers made the largest overall learning gains in Refract, as well. In

contrast, the non-improvers' mean gain score was only 5.8 percentage points, indicating that the

amount of improvement from Lab 1 to Lab 2 was associated with the amount of learning achieved

in Lib 3. Apparently, those students who learned the most about the general objectives and nature

of scientific discovay by wcwidng with the earlier two labs were able to apply this understanding

in Refract. In addition, since Refract is a lab with a mixed structure, it represented an opportunity

for subjects to apply the particular relevant skills practiced in both Voltaville and Smithtown.

In summary, then, although for individual students low ce high learning in one laboratory

was not directly associated with low or high learning in the others, on the average for the group as

a whole, students appeared to learn how to learn with computer laboratories. This appeared to

involve becoming more sensitive to task similarities and differences from domain to domain, and

learning how to adapt their experimentation activities accordingly.

Discussion

Recent research on experinvntation has increasingly addressed the complexity of scientific

discovery by studying the entire cycle of planning, designing, carrying out, and interpreting

experiments, in contrast to earlier work, which typically focused on one of these component

processes at a time, such as how people interpret disconfirming evidence. What contribution is

being made by studying larger, more coherent episodes of scientific reasoning? One robust

conclusion, consistent with our fmdings here, is that experimentation involves a complex

orchestration of activities, and there is typically a great deal of variability in people's performance

on the component processes. There are many alternative ways to perform in each, and many

alternative paths to success in the overall enterprise. Although in general successful discoverers

perform some activities and heuristics more often than those who are unsuccessful or inefficient,

there appears to be no pattern of strategies that guarantees six t ess (e.g., Schauble et al, 1990;

Shute et al., 1989), a fact that undoubtedly contributes to the lack of consistent patterns of student

activity found in this study.
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Other researchers have sugggested that the development of scientific reasoning entails not

only mastery over particular inference strategies, but also increasing ability to coordinate we's

existing theories with patterns of evidence (Klahr & Dunbar, 1988; Kuhn, 1989), Improvement in

this coordination of strategies is accomplished by coming to understand the strengths and

weaknesses of we's own strati -ies, and to recognize the occasions and situations when it is

appropriate to apply them. Our results suggest that the ability to effect the appropriate deployment

and integration cf strategies can be learned. With practice, our undergraduates improved in their

ability to learn content knowledge from self-directed exploration. That is, they learned more as

they proceeded from domain to dixnain, indicating that they were somehow beaming more

effective in planning and carrying out experiments, and in formulating and testing hypotheses

based on those experiments. However, as our vim* imbed into the differential complexity and

variance of actual &mains of science, we have become increasingly aware of the content and

context specificity of effective performance. The activity of scientific discovery depends upon

variability in the structural form of the discovery task and the nature of the domain.

We found differences in student activity as a function of the particular task and domain

characteristics of each of the three computer laboratories. In a situation that required the discovery

of convlational regularities, evidence-generation activities, like the heuristic of controlling

variables, were primary. Where subjects held prior misconceptions, controlled experiments were

essential if biases were to be overcome. In discovery situations where the regularities were

functional rules, evidence interpretation became important. When the rules were quantitative,

mathematical and algebraic heuristics were particularly strong abilities.

What do these findings imply for understanding scientific discovery? For a psychology

that studies the reasoning of professional scientists, it implies that since most scientists work

primarily within the boundaries of their chosen fields and even specialize additionally within those

fields, the expertise that develops may be chiefly domain-specific. Sociologists (Latour &

Woolgar, 1979) and contemporary philosophers of science (Giere, 1979) confirm that for
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professionals or journeymen practitioners, acquiring good scientific skills is chiefly a matter of

being socialized into the skills of a particular discipline and practice.

The implications are somewhat different if we consider scientific reasoning as part of

general education. Given that most students do not become members of any practicing scientific

community, much less the infeasibility of introducing them deeply into the practices and reasoning

styles common to different topics and domains of science, what do we want students to understand

about scientific discovery? It appears that the most generally useful message is that discovery is

not a monolithic enterprise where one applies cookbook heuristics described in the standard

"scientific method" chapter that begins most secondary school texts. Actual problem solving in

science requires adaptibility of reasoning to roperties. Our point here is not to emphasize

extreme domain specificity, nor to discount generally useful strategies. When various discovery

contexts are compared, they do have specificities and commonalities. However, when a novel

problem is encountered, it is necessary to consider what kind of problem it is, and to apply

evaluative and self-regulatory skills to decide which processes and strategies are appropriate to the

particular task at hand. That is, the most generally useful heuristics may be those involved in

learning to evaluate the discovery and inference requirements of a particular scientific setting.

Our emphasis here is reminiscent of a story told by Schoenfeld (1985) about attempts to

teach his university students mathematics not as rote or mindless application of learned algorithms,

but as a problem solving activity. Although students had considerable knowledge that was relevant

to the solution of the novel problems that Schoenfeld posed mem, they did not appear to know

when their mathematical knowledge was useful to them, and therefore, they did not always apply

the skills they had. Schoenfeld emphasizes the need to be explicit about the applicability of the

problem solving heuristics that we teach, including how to evaluate the problem, when to apply a

particular heuristic, and how to consider whether alternative appropriate strategies might be

available that have their own limitations and advantage for that situation.

The implication is that acquiring reasoning skills per se is not sufficient. In scientific
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reasoning it is important to master the skills in evidence generation and evidence interpretation.

Individuals can be skilled ct unskilled in this regard, and particular skills are associated with

learning swcess or learning failure in particular contexts. However, as students work to acquire

skills in the control of variables, measurement, equation-finding, relations between quantitative and

qualitative reasoning, identifying correlations, and the like, they must also learn to evaluate their

applicability. For science instruction, the implication is the value of repeated opportunities for self

regulationkw practice in specific and varying situational contexts where skills in scientific

reasoning can be selectively and adaptively used to discover the ldnds of lawful regularities

relevant to the principles of a particular domain of investigation.
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Footnote

lOne limitation of this study is that the analysis we have completed so far focuses at the

group level. It is likely that strategic consistencies will show up most clearly when we analyze

patterns of behavior at the level of individual subjects, an analysis we are now proceeding with.

9 3
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Table 1

Student Activities that Differed Significantly Across Laboratories*

Activity

GENERATION OF EVIDENCE

Mean number of experiments run 15.0

Mean number of changes to parameters 6.3

Percentage of parametexs changed 78.0%

Mean number of changes made to variables 6.9

31.0 46.0

9.1 13.9

69.0% 38.0%

22.7 25.2

Informativeness of search:

Percentage of minimal required evidence 95.8% 80.8% 50.5%

Structure of search:

Percentage of controlled experiments 30.4% 82.5% 88.5%

INTERPRETATION OF EVIDENCE

Making predictioar.

Percentage of experiments with predictions 74.9% 73.5% 53.4%

Effects of prim knowledge:

Number of alternative hypotheses stated 11.7 12.1 17.2

Percentage of goals discovered 88.5%% 58.3% 52.1%

DATA MANAGEMENT

Percentage of experiments recorded in notebook 91.4% 99.3% 92.1%

Number of tables created 0.9 3.3 2.3

N. ANOVAs performed on each of these measures are significant, p < .05.
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