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ABSTRACT

It is argued that given the importance and the increased use of
multivariate techniques such as factor analysis and canonical correlation,
students need to be made aware of multivariate methods and the appropriate
ways in which they can be applied. As a general linear mod el that subsumes
all other parametric methods, canonical correlation analysis provides a
natural framework for instruction involving all the various parametric
procedures (e.g., ANOVA, ANCOVA). Furthermore, when canonical
correlation analysis is used as an instructional tool, students gain an
understauding of how all parametric procedures are special cases of canonical
correlation analysis, that all parametric procedures involve the application of
weights to derive synthetic scores, and that all parametric procedures are
correlational, thus yielding a measure of effect important to the interpretation -
of one's results. A small heuristic data set is employed to demonstrate how
canonical correlation analysis can be used as an instructional device in

teaching both univariate and multivariate parametric methods.



Canonical Correlation Analysis:

An Instructional Tool for All Parametric Statistical Procedures

Traditionally, graduate level courses in research methodology have
focused primarily on univariate procedures. As research by Willson (1982)
indicates, until the 1970's textbooks in the field emphasized analysis of
variance (ANOVA) methods. Following Cohen's (1968) seminal article on
linear regression as a general linear model, textbooks, such as Kerlinger and
Pedhazur's (1973) text, stressed the application of regression techniques. This
also led to extensive application of regression analyses, as reported by Willson
(1980) in a review of a decade of research. More recently, researchers have
noted an increase in the application of multivariate techniques, such as factor
analysis and canonical correlation analysis (Goodwin & Goodwin, 1985;
Thompson, 1989a). While these techniques have existed for some time, this
slow trend towards an increase in the use of multivariate procedures can be
attributed to the incorporation of such methods into major statistical
computer packages (Krus, Reynolds, & Krus, 1976), which removed associated
problems of mathematical complexity involved in calculation by hand.

Many have stressed the importance of multivariate techniques and
their advantages over traditional univariate methods (Campo, 1990; Fish,
1988; Kerlinger, 1986). The strongest argument in favor of multivariate
techniques has been summarized by LaGaccia (1991) as follows:

Researchers who believe that most outcomes are multiply

caused, and that most interventions have multiple outcomes,

simply must use multivariate analyses, or risk the seriously

incorrect interpretations that can directly result from the failure
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to use analytic methods that honor a view of reality presuming

that reality is complex (p.153).

Given the importance and the increased use of such techniques, students
need to be made aware of multivariate methods and the appropriate ways in
which they can be applied. As Kerlinger (1986) states, "one cannot conceive of
modern behavioral research without also recognizing the necessity for
students of research to study these admittedly difficult yet indispensable
approaches to research problems" (p. ix).

Multivariate methods do involve complex, restrictive mathematical
manipulations. The mathematical training required to implement these
procedures by hand, however, is typically beyond the scope of most graduate
programs within the behavioral sciences. Therefore, if students are to acquire
a basic conceptual understanding of multivariate methods, a heuristic
framework that does not require an extensive mathematical background is
essential. Such a framework is inherent in the multivariate procedure
referred to as canonical correlation analysis.

Researchers have for some time recognized that canonical correlation
analysis, not regression analysis, is the most general linear model that
subsumes all other parametric procedures (Baggaley, 1981; Fornell, 1978;
Knapp, 1978). As such, it provides a natural instructional tool for ail
parametric methods, both univariate and multivariate. Knapp (1978) and
others (Campo, 1990; Thompson, 1985) have detailed how canonical
correlation analysis will produce the same results as other parametric
methods. The purpose of the present paper is to demonstrate in concrete,
mathematically simple terms, how canonical correlation analysis can be
employed as an instructional device for teaching research methodology. This

discussion will include a brief review of the basics of canonical correlation
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analysis, its value as an instructional tool, and its advantages over other

statistical procedures.

The Basics of Canonical Cerrelation Analysis

In general, canonical correlation analysis is a method for investigating
the relationship between two sets of variables, a set of dependent variables
and a set of independent variables, where each set contains two or more
variables (Thompson, 1984). Simply put, it involves the calculation of a set of
weights for each group of variables which, when applied, yields a linear
composite, or synthetic score, for each set. These weights are derived such
that the bivariate correlation between the pairs of composite scores is
maximized. This bivariate correlation is the canonical correlation, R¢, which
can be squared to obtain an estimate of the variance shared by the composite
scores. If the first set of variables contains p variables ard the second set has q
variables, where q is less than or equal to p, then a total of g-1 linear
combinations are possible, and that each set of composite scores will be
perfectly uncorrelated with all previously derived composites (Cooley &
Lohnes, 1971; Stevens, 1986; Thompson, 1984). For a more detailed discussion
of canonical correlation analysis and its interpretation, the reader is referred

to Thompson's (1984) treatment of the method.

Instructional Value of Canonical Correlation Analysis
Thompson (1984) describes to canonical correlation analysis using the
framework of the very familiar bivariate technique as the resulting canonical
correlation is the bivariate correlation coefficient. This approach to canonical
correlation analysis is attractive instructionally "because most students feel

comfortable working with bivariate correlation coefficients" (Thompson,



1987, p.3). Furthermore, it aids students in gaining "important insights
regarding the relatedness of all parametric methods" (Campo, 1990, p-9).
Campo (1990) discusses three such "insights" that contribute to the value of
canonical correlation analysis as an instructional tool. First, since canonical
correlation analysis subsumes all other parametric methods, all such methods
can be considered special cases of canonical correlation analysis. As such,
canonical correlation analysis can be applied to perform any parametric
analysis. The obverse is not true, however; {hat is, canonical correlation
analysis can not be performed using less sophisticated methods (Campo,
1990).

Use of canonical correlation analysis as a heuristic framework also
enables the student to see how all parametric methods apply weights to create
synthetic scores. Furthermore, it is these synthetic scores that is the focus of
all analyses (Campo, 1990; Thompson, 1987).

Finally, a bivariate approach to canonical correlation analysis
demonstrates that all parametric methods are correiational and, as such, yield
a measure of effect size analogous to r2. Thompson (1989b) emphasizes the
importance of interpreting effect size estimates with all analyses in order to

gain an understanding of the importance of cne's results.

Canonical Correlation Analysis as a Heuristic Framework
Before examining how canonical correlation analysis yields the same
results as other parametric procedures, a comment concerning some of the
various statistics reported by the different methods is in order. Students are
familiar with the F statistic reported by most univariate procedures, and in
particular, in ANOVA techniques. They are not, however, as familiar with

the various test statistics that are reported with many multivariate
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procedures.. In canonical correlation analysis, a particular test statistic of
interest, other than the canonical correlation R, is Wilk's lambda. As Glass
and Stanley (1970) have pointed out, all test statistics, such as Z, t, chi-square
and F, are related. Although the relationship between F and Wilk's Lambda
is not a direct one, Rao (1952) has provided a formula for converting the
lambda resulting from a canonical correlation analysis to a value whose
distribution approximates the F distribution. When either p or q is less than
or equal to two, which is the case when canonical correlation analysis is
applied in place of many univariate procedures, this conversion is exact

(Knapp, 1978) and simplifies to (Coley & Lohnes, 1971; Thompson, 1985):

F= 1-lambda , df error

lamda df effect

Presented in Table 1 is a small heuristic data set employed to
demonstrate how canouical correlation analysis produces the same results as
other univariate and multivariate methods. The data set contains two
continuous dependent variables, Y and X, and two independent variables, a
discrete variable, A, which might represent experimental groupings or
categories, and a continuous variable, B. The discrete variable B' is a
dichotomization of the variable B, created by collapsing B in a manner similar
to how researchers often treat aptitude variables when investigating an
aptitude-treatment interaction effect through an ANOVA design. Note that
both sets contain two variables, the minimum requirement for performing a
true canonical correlation analysis.

As many researchers have noted, in order to apply canonical

correlation analysis in place of some parametric methods, specifically various



ANOVA techniques, some form of contrast coding must be employed
(Campo, 1990; Knapp, 1978; Thompson, 1985). A review of the various
methods of contrast coding is beyond the scope of this discussion; the
interested reader is referred to Pedhazur (1982), who provides an excellent
elaboration of such coding techniques. For the present discussion, included
with the data set in Table 1 is the contrast coding for both of the independent
variables A and B'. Appendix A contains the SAS program statements to
perform all of the analyses discussed below. The statements for creating the

contrast coding are included.

Insert Table 1 about here.

Table 2 compares the Pearson product moment correlation between X
and B to the canonical correlation analysis between the same variables. As
noted previously, R¢ is the bivariate correlation coefficient between the two
composite ccores derived through canonical correlation analysis. Since
multiplicative constants applied to variables have no impact whatsoever on
correlations between the variables, the r between the variables is also the
canonical R¢ between the variables after weighting by the canonical
coefficients to transform the observed variables into laient composite scores.
In this case, each set contains only one variable, that is, p=q=1. Thus, the two
sets of variables cannot be reduced any further and the canonical correlation
Rc is equivalent to the bivariate correlation r. Note that while R¢ can never

be negative, the magnitude between R¢ and r will always be the same.

Insert Table 2 about here.




Table 3 demonstrates how canonical correlation analysis and t-test
analysis yield the same results. A t-test analysis was performed for the
dependent variable Y with the independent variable B'. Recall that the
squared value a { statistic with n degrees of freedom is equivalent to an F
statistic with 1 and n degrees of freedom (Glass & Stanley, 1970). Thus, using
Rao's conversion to calculate F, it is evident that the two procedures are

equivalent.

Insert Table 3 about here.

The conventional ANOVA summary table for a 2 X 2 factorial analysis
on the dependent variable Y and the factors A and B' is presented in Table 4.
To conduct a two factor ANOVA through canonical correlation analysis, four
separate canonical correlation analyses are required. The first analysis
includes all of the contrast variables, A1, A2, B1, A1B2, A2B2, representing
both factors and their interaction (.2, all possible effects). Each of the
remaining three analyses excludes the specific contrast variables associated
with a specific effect. The resulting lambda's from these analyses are

contained in table 5.

Insert Tables 4 and 5 about here.

As Thompson (1985) notes, Wilk's lambda is analogous to the sums of
squares (SOS) within or error in conventional oneway ANOVA, that is,
lambda = 1 - (SOSBetween/SOSTotal) or (SOSError/SOSTotal). Both are
estimates of effect, but, whereas SOS gets larger as an effect increases, lambda
gets smaller.

10 9
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As a measure of effect, lamda estimates the effect of all those variables
included in its calculation. The effect of a particular variable, as measured by
lambda, can be determined by partitioning out the effect of the other variables
from the overall lambda, which measures the effect of all the variables. The
calculations yielding the individual lambda's for each effect are presented in
Table 6. The individual lambda's may then be converted into F statistics by
applying Rao's (1952) conversion as they are in Table 7. Comparison of the
values in Tables 4 and 7 demonstrates that factorial ANOVA and CCA yield

equivalent F statistics.

Insert Tables 6 and 7 about here.

It is also of note that 1 - lambda, where the lambda of interest is the
multivariate lambda of the full model, is equal to the squared canonical
correlation coefficient R¢ for the full model (Thompson, 1988). For this
example, 1 - 0.05755 = 0.94245, which is equal to R¢ for the canonical
correlation analysis and eta? for the factorial ANOVA, providing further
evidence that canonical correlation does subsume ANOVA.

An explanation of how canonical correlation also subsumes factorial
MANOVA follows directly from the example on factorial ANOVA. The
results of a factorial MANOVA for the dependent variables X and Y with the
variables A and B' and the corresponding canonical correlation analysis are
presented in Tables 8 through 10. As Thompson (1985) notes, the
calculation's are simplified since MANOVA results are reported in the form

of lambda's.
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Insert Tables 8, 9 and 10 about here.

Results of a multiple linear resression analysis of X and B on Y and the
corresponding canonical correlati... analysis is presented in Table 11. Note
that in multiple regression, the multiple R squared is the squared correlation
coefficient between the predictor score, Y, and the composite score, Yhat.
Thus, it follows logically that the multiple R squared of multiple regression is
equivalent to the squared canonical coefficient resulting from canonical
correlation analysis. Furthermore, although it is not so readily apparent, the
regression beta weights are related to the function coefficients generated
through canonical correlation analysis. Thompson and Borrello (1985)
provide a de:ailed discussion of how the two sets of coefficients are equated
through a variance adjustment applying either R¢ or R. Table 12

demonstrates this relationship for the current example.

Insert Tables 11 and 12 about here.

The relationship between canonical correlation analysis and
discriminant analysis has been previously demonstrated by Tatsuoka (1989)
and others (Dunieman, 1984; Xitao, 1992). The objective of discriminant
analysis is the prediction of group membership on the basis of some set of
scores. For this example, Table 13 presents the results of a discriminant
analysis with the variables X and Y to predict membership for the variable A.
Also included in Table 13 is the results of a canonical correlation analysis for

X and Y with the contrast variables A1 and A2 representing the levels of A.
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Insert Table 13 about here.

Again, the results are equivalent, except for the function coefficients.
Equivalence of the function coefficients can be demonstrated by setting the
largest coefficient to one (Tatsuoka, 1989), as is shown in Table 13. Although
this method clearly demonstrates that the two sets of coefficients have the
same ratio, the relationship between them is not clear. A more explicit
description of the relationship be'ween the two sets of variables has been
provided by Xitzo (1992). Similar to the comparison between multiple
regression and canonical correlation analysis, the relationship between the
resulting two sets of function coefficients can be demonstrated through a
variance adjustment involving the pooled within-group covariance matrix
(Xitao, 1992). Basically, the relationship between the two sets of function

coefficients is:

ac
aD=

\/ ac Spooled 2C
where ap is the vector of function coefficients from the discriminant analysis,
ac is the vector of function coefficients from the canonical correlation
analysis, and spooleq is the pooled within-group covariance matrix of the
original predictor variables (Xitao, 1992). For this example, correspondence
between the two sets of function coefficients for the first furction is presented

in Table 14.

Insert Table 14 about here.

S randh
W
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A concrete example of how canonical correlation analysis subsumes
factor analysis, specifically the principal components method, has not been
included as a part of this discussion. However, some general comments
cc..cerning this issue can be made. First, it should be noted that both
canonical correlation analysis and principal components are variable
reduction techniques (Stevens, 1986). Both methods reduce a set of variables
into a set of synthetic scores which contains all or most of the variance of the
original variables. Whereas in canonical correlation analysis, the objective is
to derive a set of scores such that the correlation between the two sets of
variables is maximized, in principal components the objective is to maximize
the correlation within a single set of variables (Campo, 1990). Thus, principal
components analysis may be thought of as the case where there is only one set

of variables instead of two.

Advantages of Canonical Correlation Analysis

Believing that most of the phenomenon that is of interest in the
behavioral sciences have multiple causes and outcomes, researchers typically
measure several different but related variables. Having been trained to apply
traditional univariate methods, researchers will often conduct multiple tests
within a single study. There are several problems with multiple univariate
tests, however, that can be avoided through the application of multivariate
procedures, including canonical correlation analysis.

First, the use of multiple univariate tests disregards the variance that is
shared between the multiple dependent and multiple independent variables
that exists in reality (Thompson, 1984). Furthermore, ANOVA techniques
discard even more variance by requiring that all independent variables be

scaled at the nominal level of measurement. As a result, the reality the
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researcher wishes to generalize to is distorted. Canonical correlation analysis,
however, allows for variables of any level of measurement and was designed
to examine multiple variables simultaneously (Thompson, 1984). Thus, the
reality the researcher has strived to represent by collecting multiple measures
is preserved.

The second problem with multiple univariate tests concerns the
probability of committing a Type I error. As the number of hypotheses
within a study increases, the experimentwise error rate, that is, the
probability that one or more Type I errors in a study as a whole has occurred,
inflates (Thompson, 1988). This problem can be alleviated through the
application of multivariate techniques such as canonical correlation analysis
where fewer hypotheses or a single hypothesis is tested. And finally, as both
Fish (1988) and Thompson (1986) have demonstrated, by employing several
univariate tests one may fail to find statistically significant results that are

present when a multivariate test is employed.

Summary

Given the multivariate nature of reality, it is imperative for students of
research in the behavioral sciences to become familiar with the various
multivariate statistical procedures that are readily available through the use
of computers. Although such techniques are mathematically complicated,
the use of canonical correlation analysis as a heuristic framework enables
students to gain a deeper conceptual understanding of all parametric
methods, both univariate and multivariate. Canonical correlation analysis
(Thompson, 1991) employed as an instructional tool demonstrates (a) how all
parametric procedures are special cases of canonical w.:relation analysis, (b)

that all parametric procedures involve the application of weights to derive
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synthetic scores, and (c) that all parametric prdcedures are correlational, thus
yielding a measure of effect important to the interpretation of one's results.
Furthermore, the application of multivariate techniques such as canonical
correlation analysis can overcome serious problems associated with the use of
multiple univariate tests. This is not to imply that all analyses should be
carried out through canonical correlation analysis, but that students should be
made aware of the various procedures that are available such that they are
able to apply the appropriate method in their own research and provide a

more accurate representation of a complex reality.
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Table 1
Hypothetical Data Set with Contrast Coding for Heuristic Demonstration
Y X A B B' Al A2 Bl AIB1 A2BI

5 28 1 1 1 1 -1 1 1 -1
3 27 1 2 1 1 -1 1 1 -1
4 26 1 4 1 1 -1 1 1 -1
6 25 1 6 2 1 -1 -1 -1 1
7 26 1 7 2 1 -1 -1 -1 1
8 24 1 9 2 1 -1 -1 -1 1
6 25 2 1 1 -1 -1 1 -1 -1
5 23 2 2 1 -1 -1 1 -1 -1
7 26 2 3 1 -1 -1 1 -1 -1
12 24 2 6 2 -1 -1 -1 1 1
11 23 2 7 2 -1 -1 -1 1 1
10 22 2 8 2 -1 -1 -1 1 1
100 22 3 2 1 0 2 1 0 2
9 21 3 4 1 0 2 1 0 2
8 2 3 4 1 0 2 1 0 2
13 21 3 6 2 0 2 -1 0 -2
4 20 3 7 2 0 2 -1 0 -2
20 8 2 0 2 0

15 3 -1 -2

Table 2
Pearson Product Moment Correlation through CCA (X with B)
CCA Pearson Correlation
Squared R¢ 0.20206
Re 0.44951 r -0.44951
lambda 0.79794
F 4.052

df 1/16

00613
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Table 3
{-test Analysis through CCA [Y by B' (1,2)]
CCA t-test Analysis
Squared R¢ 0.63661 Mean of group 1 6.33
Re 0.40528 Sd 2.3452
lambda 0.59472 Mean of group 2 10.67
Sd 3.1623

t -3.3020
F 10.9032 t2 10.9032
df 1/16 df 16
P 0.0045 p 0.0045

Table 4

Factorial ANOVA [Y by A (1,3), B' (1.2)]

Source SOS df MS Fcalc
A 108.00 2 54.00 54.00
B' 84.50 1 84.50 84.50
AB' 4,00 2 2.00 2.00
Error 12.00 12 1.00
Total 208.00 17

eta2 =196.5/208.5 = 0.94245

o N2 21
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“
' Table 5
Canonical Analysis of Four Models

Model Predictors of Y Lambda
1 Al A2 B1 A1B1 A2Bt 0.05775
2 Bl A1B1 A2B1 0.57554
3 Al A2 A1B1 A2B1 0.46283
4 Al A2 B1 0.07674

|

Table 6
Conversion to ANOVA Lambda's

Source Models Calculation Lambda
A 1/2 0.05755/0.57554 0.09999
B' 1/3 0.05755/0.46283 0.12434

AB' 1/4 0.05755/0.07674 0.74993

Table 7
Cor.version of Lambda's to ANOVA F's
Source [1 - lambda)/lambda]+[df error/df effect] = Fcalc

A [(1-0.09999)/0.09999] » [12/2] = 54.00
B’ [(1-0.12434)/0.12434] + [12/1] = 84.50
AB' [(1-0.74993)/0.74993]) « [12/2] = 2.00

Re2=1-lambda =1 - 0.05775 = 0.94245 = eta2

Q 1?3 22
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Table 8
Factorial MANOVA [Y, X with A (1,3), B' (1,2)]
Source Lambda Fcalc df P
A 0.04133 21.56 4/2  0.0001
B' 0.08247 61.19 2/1 0.0001
AB' 0.74275 0.88 4/22 0.49

_“

Table 9
Canonical Analysis of Four Models
Model Predictors of Y and X Lambda
1 Al A2 Bl A1B1 A2B1 0.01802
2 B1 A1B1 A2B1 0.43614
3 Al A2 A1B1 A2B1 0.21854
4 Al A2 Bl 0.02427

M

Table 10

Conversion to MANOVA Lambda's

Source Models Calculation
A 1/2 0.01802/0.43614
B' 1/3 0.01802/0.21854
AB' 1/4 0.01802/0.02427
"4

Lambda

0.04132
0.08246
0.74248



“
Table 11

Multiple Regression through CCA [Y with X and B]

CCA Regression Analysis
Squared R¢ 0.73638 Squared R 0.7364
Re 0.85813 R 0.85813
lambda 0.26362
F 20.95 F 20.95
df 2/15 df 2/15

P 0.0001 p 0.0001

“
Table 12

Function Coefficient and Beta Weight Conversions

Function Beta Function
Predictor  Coefficient » R¢ (or R) = Weight / R¢ (or R) = Coefficient

X -0.7852 » 0.85813 = -0.67384/0.85813 = -0.7852
B 0.3598 + 0.85813 = 0.38071/0.85813 = 0.3598
2O
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“
' Table 13
Discriminant Analysis through CCA [A with X and Y]

CCA Discriminant Analysis
Squared R 0.75284
R¢ 0.86766 Re 0.86766
lan.vda 0.2449%4
F 7.1438 F 7.1438
df 4/28 df 4/28
p 0.0004 p 0.0004

Raw Function Coefficients

CCA: Function I Discriminant: Function [

X 0.39696 -—-> 0.39696/0.39696 = 1 X 0.75003 -—-> 0.75003/0.75003 = 1
Y -0.0125--->-0.0125/0.396% =-0.03148 Y -0.02361 -——>-0.02361/0.75003 = -0.03148

“
“
Table 14

Relationship Between Canonical and Discriminant Function Coefficients

Spooled =l-1 .6556 -1.8333
|:1 8333 6.70

V/ac' Spooted ac = [0.39696 .0.012501[ 1.6556 -1.8333J Lo.s%%} = 0.52956

-1.8333 670 |}0.01250
ac 1 1039696 |0.75003
= = = ap
v/2C Spootea Ac 0.52956 |-0.0125|  |-0.02361

_%
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Appendix A

DATA D1; INFILE CAN;
INPUTY X AB;
IFA=1THEN Al =1;
ELSE IF A =2 THEN Al = -1;
ELSE IF A =3 THEN Al =0;
IFA=10R A =2 THEN A2 = -1;
ELSE IF A =3 THEN A2 = 2;
IFB<5THENBB =1;
ELSEIFB > 5 THEN BB = 2;
IFBB=1THENBI =1;
ELSE IF BB = 2 THEN Bl = -1;
AlBl1 = A1*BI;
A2B1 = A2*BI;
PROC SORT;
BY ABBB;
PROC PRINT;
VARY X A B BB Al A2 Bl A1B1 A2BI;
TITLE 'RAW DATA SET WITH CONTRAST CODING":
PROCCORR;
VAR X B;
TITLE 'CORRELATION OF PREDICTOR AND CRITERION VARIABLE";
PROC CANCORR SIMPLE CORR;
VAR X;
WITH B;
TITLE 'CCA SUBSUMES PEARSON CORRELATION":
PROC TTEST;
CLASS BB;
VAR Y;
TITLE 'T TEST FOR DEP VAR Y AND INDEP VAR B"
PROC CANCORR SIMPLE CORR;
VAR Y;
WITH BI;
TITLE 'CCA SUBSUMES T TEST: INDEP VAR CONTRAST CODING';
PROC ANOVA;
CLASS A BB:
MODEL Y=A BB A*BB;
TITLE 'ANOVA WITH DEP VAR Y AND INDEP VARS A AND B';

Note: BB refers to the contrast variable B' in the text as B' is not a valid _
variable name in SAS.
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PROC CANCORR SIMPLE CORR;
VAR Y:
WITH Al A2 Bl A1B1 A2BI;
TITLE 'CCA SUBSUMES FACTORIAL ANOVA";
PROC CANCORR SIMPLE CORR;
VAR Y;
WITH Bl A1B1 A2BI;
TITLE 'CCA SUBSUMES FACTORIAL ANOVA";
PROC CANCORR SIMPLE CORR;
VAR Y;
WITH Al A2 A1B1 A2BI;
TITLE 'CCA SUPSUMES FACTORIAL ANOVA";
PROC CANCORR SIMPLE CORR;
VAR Y;
WITH Al A2 BI;
TITLE 'CCA SUBSUMES FACTORIAL ANOVA";
PROC CANCORR SIMPLE CORR;
VAR Y;
WITH X B;
TITLE 'CCA SUBSUMES MULTIPLE REGRESSION":
PROC ANOVA; '
CLASS A BB;
MODEL Y X=A BB A*BB;
MANOVA H=_ALL_/SUMMARY:
TITLE 'FACTORIAL MANOVA';
PROC CANCORR SIMPLE CORR;
VAR Y X;
WITH Al A2 Bl A1B1 A2BlI;
TITLE 'CCA SUBSUMES FACTORIAL MANOVA"
PROC CANCORR SIMPLE CORR;
VAR Y X;
WITH B1 A1B1 A2BI;
TITLE 'CCA SUBSUMES FACTORIAL MANOVA";
PROC CANCORR SIMPLE CORR;
VAR Y X:
WITH A1 A2 A1B1 A2RI:
TITLE 'CCA SUBSUMES FACTORIAL MANOVA';
PROC CANCORR SIMPLE CORR;
VAR Y X:
WITH Al A2 BI;
TITLE 'CCA SUBSUMES FACTORIAL MANOVA"

Q Y




PROCREG;
MODEL Y=X B/STB;
TITLE 'MULTIPLE REGRESSION OF X ANDBON Y";
PROC DISCRIM SIMPLE WCOV WCORR PCOV PCORR;
VARXY:;
CLASS A;
TITLE 'DISCRIMINANT ANALYSIS',;
PROC CANDISC ALL;
VARXY;
CLASS A;
PROC CANCORR SIMPLE CORR;
VAR Al A2;
WITHX Y;
TITLE 'CCA SUBSUMES DISCRIMINANT ANALYSIS":

2
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