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ABSTRACT

It is argued that given the importance and the increased use of

multivariate techniques such as factor analysis and canonical correlation,

students need to be made aware of multivariate methods and the appropriate

ways in which they can be applied. As a general linear moCel that subsumes

all other parametric methods, canonical correlation analysis provides a

natural framework for instruction involving all the various parametric

procedures (e.g., ANOVA, ANCOVA). Furthermore, when canonical

correlation analysis is used as an instructional tool, students gain an

understanding of how all parametric procedures are special cases of canonical

correlation analysis, that all parametric procedures involve the application of

weights to derive synthetic scores, and that all parametric procedures are

correlational, thus yielding a measure of effect important to the interpretation

of one's results. A small heuristic data set is employed to demonstrate how

canonical correlation analysis can be used as an instructional device in

teaching both univariate and multivariate parametric methods.
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Canonical Correlation Analysis:

An Instructional Tool for All Parametric Statistical Procedures

Traditionally, graduate level courses in research methodology have

focused primarily on univariate procedures. As research by Willson (1982)

indicates, until the 1970's textbooks in the field emphasized analysis of

variance (ANOVA) methods. Following Cohen's (1968) seminal article on

linear regression as a general linear model, textbooks, such as Kerlinger and

Pedhazur's (1973) text, stressed the application of regression techniques. This

also led to extensive application of regression analyses, as reported by Willson

(1980) in a review of a decade of research. More recently, researchers have

noted an increase in the application of multivariate techniques, such as factor

analysis and canonical correlation analysis (Goodwin & Goodwin, 1985;

Thompson, 1989a). While these techniques have existed for some time, this

slow trend towards an increase in the use of multivariate procedures can be

attributed to the incorporation of such methods into major statistical

computer packages (Krus, Reynolds, & Krus, 1976), which removed associated

problems of mathematical complexity involved in calculation by hand.

Many have stressed the importance of multivariate techniques and

their advantages over traditional univariate methods (Campo, 1990; Fish,

1988; Kerlinger, 1986). The strongest argument in favor of multivariate

techniques has been summarized by LaGaccia (1991) as follows:

Researchers who believe that most outcomes are multiply

caused, and that most interventions have multiple outcomes,

simply must use multivariate analyses, or risk the seriously

incorrect interpretations that can directly result from the failure
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to use analytic methods that honor a view of reality presuming

that reality is complex (p.153).

Given the importance and the increased use of such techniques, students

need to be made aware of multivariate methods and the appropriate ways in

which they can be applied. As Kerlinger (1986) states, "one cannot conceive of

modern behavioral research without also recognizing the necessity for

students of research to study these admittedly difficult yet indispensable

approaches to research problems" (p. ix).

Multivariate methods do involve complex, restrictive mathematical

manipulations. The mathematical training required to implement these

procedures by hand, however, is typically beyond the scope of most graduate

programs within the behavioral sciences. Therefore, if students are to acquire

a basic conceptual understanding of multivariate methods, a heuristic

framework that does not require an extensive mathematical background is

essential. Such a framework is inherent in the multivariate procedure

referred to as canonical correlation analysis.

Researchers have for some time recognized that canonical correlation

analysis, not regression analysis, is the most general linear model that

subsumes all other parametric procedures (Baggaley, 1981; Fornell, 1978;

Knapp, 1978). As such, it provides a natural instructional tool for all

parametric methods, both univariate and multivariate. Knapp (1978) and

others (Campo, 1990; Thompson, 1985) have detailed how canonical

correlation analysis will produce the same results as other parametric

methods. The purpose of the present paper is to demonstrate in concrete,

mathematically simple terms, how canonical correlation analysis can be

employed as an instructional device for teaching research methodology. This

discussion will include a brief review of the basics of canonical correlation
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analysis, its value as an instructional tool, and its advantages over other

statistical procedures.

The Basics of Canonical Correlation Analysis

In general, canonical correlation analysis is a method for investigating

the relationship between two sets of variables, a set of dependent variables

and a set of independent variables, where each set contains two or more

variables (Thompson, 1984). Simply put, it involves the calculation of a set of

weights for each group of variables which, when applied, yields a linear

composite, or synthetic score, for each set. These weights are derived such

that the bivariate correlation between the pairs of composite scores is

maximized. This bivariate correlation is the canonical correlation, Re, which

can be squared to obtain an estimate of the variance shared by the composite

scores. If the first set of variables contains p variables am" the second set has q

variables, where q is less than or equal to p, then a total of q-1 linear

combinations are possible, and that each set of composite scores will be

perfectly uncorrelated with all previously derived composites (Cooley &

Lohnes, 1971; Stevens, 1986; Thompson, 1984). For a more detailed discussion

of canonical correlation analysis and its interpretation, the reader is referred

to Thompson's (1984) treatment of the method.

Instructional Value of Canonical Correlation Analysis

Thompson (1984) describes to canonical correlation analysis using the

framework of the very familiar bivariate technique as the resulting canonical

correlation is the bivariate c=elation coefficient. This approach to canonical

correlation analysis is attractive instructionally "because most students feel

comfortable working with bivariate correlation coefficients" (Thompson,
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1987, p.3). Furthermore, it aids students in gaining "important insights

regarding the relatedness of all paiametric methods" (Campo, 1990, p.9).

Campo (1990) discusses three such "insights" that contribute to the value of

canonical correlation analysis as an instructional tool. First, since canonical

correlation analysis subsumes all other parametric methods, all such methods

can be considered special cases of canonical correlation analysis. As such,

canonical correlation analysis can be applied to perform any parametric

analysis. The obverse is not true, however; that is, canonical correlation

analysis can not be performed using less sophisticated methods (Campo,
1990).

Use of canonical correlation analysis as a heuristic framework also

enables the student to see how all parametric methods apply weights to create

synthetic scores. Furthermore, it is these synthetic scores that is the focus of

all analyses (Campo, 1990; Thompson, 1987).

Finally, a bivariate approach to canonical correlation analysis
demonstrates that all parametric methods are correlational and, as such, yield

a measure of effect size analogous to r2. Thompson (1989b) emphasizes the

importance of interpreting effect size estimates with all analyses in order to
gain an understanding of the importance of one's results.

Canonical Correlation Analysis as a Heuristic Framework

Before examining how canonical correlation analysis yields the same
results as other parametric procedures, a comment concerning some of the
various statistics reported by the different methods is in order. Students are
familiar with the F statistic reported by most univariate procedures, and in
particular, in ANOVA techniques. They are not, however, as familiar with
the various test statistics that are reported with many multivariate
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procedures. In canonical correlation analysis, a particular test statistic of

interest, other than the canonical correlation Rc, is Wilk's lambda. As Glass

and Stanley (1970) have pointed out, all test statistics, such as Z, chi-square

and F, are related. Although the relationship between F and Wilk's Lambda

is not a direct one, Rao (1952) has provided a formula for converting the

lambda resulting from a canonical correlation analysis to a value whose

distribution approximates the F distribution. When either p or q is less than

or equal to two, which is the case when canonical correlation analysis is

applied in place of many univariate procedures, this conversion is exact

(Knapp, 1978) and simplifies to (Cnoley & Lohnes, 1971; Thompson, 1985):

F = 1 - df error
lamda df effect

Presented in Table 1 is a small heuristic data set employed to

demonstrate how canohical correlation analysis produces the same results as

other univariate and multivariate methods. The data set contains two

continuous dependent variables, Y and X, and two independent variables, a

discrete variable, A, which might represent experimental groupings or

categories, and a continuous variable, B. The discrete variable B' is a

dichotomization of the variable B, created by collapsing B in a manner similar

to how researchers often treat aptitude variables when investigating an

aptitude-treatment interaction effect through an ANOVA design. Note that

both sets contain two variables, the minimum requirement for performing a

true canonical correlation analysis.

As many researchers have noted, in order to apply canonical

correlation analysis in place of some parametric methods, specifically various
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ANOVA techniques, some form of contrast coding must be employed

(Campo, 1990; Knapp, 1978; Thompson, 1985). A review of the various

methods of contrast coding is beyond the scope of this discussion; the

interested reader is referred to Pedhazur (1982), who provides an excellent

elaboration of such coding techniques. For the present discussion, included

with the data set in Table 1 is the contrast coding for both of the independent

variables A and B'. Appendix A contains the SAS program statements to

perform all of the analyses discussed below. The statements for creating the

contrast coding are included.
IM,==111MINNOIMMIIII

Insert Table 1 about here.

IMONMNPINNONKMM.1.11MININMIMIIHM0141111111

Table 2 compares the Pearson product moment correlation between X

and B to the canonical correlation analysis between the same variables. As

noted previously, Rc is the bivariate correlation coefficient between the two

composite ecores derived through canonical correlation analysis. Since

multiplicative constants applied to variables have no impact whatsoever on

correlations between the variables, the r between the variables is also the

canonical Rc between the variables after weighting by the canonical

coefficients to transform the observed variables into latent composite scores.

In this case, each set contains only one variable, that is, p=q=1. Thus, the two

sets of variables cannot be reduced any further and the canonical correlation

Rc is equivalent to the bivariate correlation r. Note that while Rc can never

be negative, the magnitude between Rc and r will always be the same.
olmeMornoNmoresMoNMMI.O110111.111.40101.1111.1

Insert Table 2 about here.

=1.40.111.114110
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Table 3 demonstrates how canonical correlation analysis and t-test

analysis yield the same results. A t-test analysis was performed for the

dependent variable Y with the independent variable B'. Recall that the

squared value a t statistic with n degrees of freedom is equivalent to an F

statistic with 1 and n degrees of freedom (Glass & Stanley, 1970). Thus, using

Rao's conversion to calculate F, it is evident that the two procedures are

equivalent.
rMaMMENme11114001NENIMOINENIOMO

Insert Table 3 about here.

WINAMMOINSOMM1

The conventional ANOVA summary table for a 2 X 2 factorial analysis

on the dependent variable Y and the factors A and B' is presented in Table 4.

To conduct a two factor ANOVA through canonical correlation analysis, four

separate canonical correlation analyses are required. The first analysis

includes all of the contrast variables, Al, A2, Bl, A1B2, A2B2, representing

both factors and their interaction (i.e., all possible effects). Each of the

remaining three analyses excludes the specific contrast variables associated

with a specific effect. The resulting lambda's from these analyses are

contained in table 5.
1=011NMMIMMMIMOPMOMINO.=M1111MMAIMINO.IIMMMIMMO.M.M

Insert Tabies 4 and 5 about here.

111111141110014.00.11111=w1DMINIIPM1.11110411110.11=114040111404.!11

As Thompson (1985) notes, Wilk's lambda is analogous to the sums of

squares (SOS) within or error in conventional oneway ANOVA, that is,
lambda = 1 - (SOSBetween/SOSTotal) or (SOSError /SOSTotal). Both are

estimates of effect, but, whereas SOS gets larger as an effect increases, lambda

gets smaller.

0 9



As a measure of effect, lamda estimates the effect of all those variables

included in its calculation. The effect of a particular variable, as measured by

lambda, can be determined by partitioning out the effect of the other variables

from the overall lambda, which measures the effect of all the variables. The

calculations yielding the individual lambda's for each effect are presented in

Table 6. The individual lambda's may then be converted into F statistics by

applying Rao's (1952) conversion as they are in Table 7. Comparison of the

values in Tables 4 and 7 demonstrates that factorial ANOVA and CCA yield

equivalent F statistics.
NI= evono laDar 7.0.1

Insert Tables 6 and 7 about here.

IMMIIMONINSMI1M
It is also of note that 1 - lambda, where the lambda of interest is the

multivariate lambda of the full model, is equal to the squared canonical

correlation coefficient 11.c for the full model (Thompson, 1988). For this

example, 1 - 0.05755 = 0.94245, which is equal to Rc for the canonical

correlation analysis and eta2 for the factorial ANOVA, providing further

evidence that canonical correlation does subsume ANOVA.

An explanation of how canonical correlation also subsumes factorial

MANOVA follows directly from the example on factorial ANOVA. The

results of a factorial MANOVA for the dependent variables X and Y with the

variables A and B' and the corresponding canonical correlation analysis are

presented in Tables 8 through 10. As Thompson (1985) notes, the

calculation's are simplified since MANOVA results are reported in the form

of lambda's.
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Insert Tables 8, 9 and 10 about here.

tom 11.11.111.1 7/,1111.60

Results of a multiple linear regression analysis of X and B on Y and the

corresponding canonical correlati,..i analysis is presented in Table 11. Note

that in multiple regression, the multiple R squared is the squared correlation

coefficient between the predictor score, Y, and the composite score, That.

Thus, it follows logically that the multiple R squared of multiple regression is

equivalent to the squared canonical coefficient resulting from canonical

correlation analysis. Furthermore, although it is not so readily apparent, the

regression beta weights are related to the function coefficients generated

through canonical correlation analysis. Thompson and Borrello (1985)

provide a dCailed discussion of how the two sets of coefficients are equated

through a variance adjustment applying either Rc or R. Table 12

demonstrates this relationship for the current example.

Insert Tables 11 and 12 about here.=m0.
The relationship between canonical correlation analysis and

discriminant analysis has been previously demonstrated by Tatsuoka (1989)

and others (Dualieman, 1984; Xitao, 1992). The objective of discriminant

analysis is the prediction of group membership on the basis of some set of

scores. For this example, Table 13 presents the results of a discriminant

analysis with the variables X and Y to predict membership for the variable A.

Also included in Table 13 is the results of a canonical correlation analysis for

X and Y with the contrast variables Al and A2 representing the levels of A.

1 2 1 1



Insert Table 13 about here.

M11111MINIMEmmominomeolltaimi

Again, the results are equivalent, except for the function coefficients.

Equivalence of the function coefficients can be demonstrated by setting the

largest coefficient to one (Tatsuoka, 1989), as is shown in Table 13. Although

this method clearly demonstrates that the two sets of coefficients have the

same ratio, the relationship between them is not clear. A more explicit

description of the relationship be',ween the two sets of variables has been

provided by Xitao (1992). Similar to the comparison between multiple

regression and canonical correlation analysis, the relationship between the

resulting two sets of function coefficients can be demonstrated through a

variance adjustment involving the pooled within-group covariance matrix

(Xitao, 1992). Basically, the relationship between the two sets of function

coefficients is:

al) =
ac

Jac' spooled ac

where ar, is the vector of function coeffidents from the discriminant analysis,

ac is the vector of function coefficients from the canonical correlation

analysis, and s is the pooled within-group covariance matrix of thepooled

original predictor variables (Xitao, 1992). For this example, correspondence

between the two sets of function coefficients for the first function is presented

in Table 14. .1
Insert Table 14 about here.

womsma..8W==
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A concrete example of how canonical correlation analysis subsumes

factor analysis, specifically the principal components method, has not been

Included as a part of this discussion. However, some general comments

cc;.cerning this issue can be made. First, it should be noted that both

canonical correlation analysis and principal components are variable

reduction techniques (Stevens, 1986). Both methods reduce a set of variables

into a set of synthetic scores which contains all or most of the variance of the

original variables. Whereas in or onical correlation analysis, the objective is

to derive a set of scores such that the correlation between the two sets of

variables is maximized, in principal components the objective is to maximize

the correlation within a single set of variables (Campo, 1990). Thus, principal

components analysis may be thought of as the case where there is only one set

of variables instead of two.

Advantages of Canonical Correlation Analysis

Believing that most of the phenomenon that is of interest in the

behavioral sciences have multiple causes and outcomes, researchers typically

measure several different but related variables. Having been trained to apply

traditional univariate methods, researchers will often conduct multiple tests

within a single study. There are several problems with multiple univariate

tests, however, that can be avoided through the application of multivariate

procedures, including canonical correlation analysis.

First, the use of multiple univariate tests disregards the variance that is

shared between the multiple dependent and multiple independent variables

that exists in reality (Thompson, 1984). Furthermore, ANOVA techniques

discard even more variance by requiring that all independent variables be

scaled at the nominal level of measurement. As a result, the reality the

1 3
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researcher wishes to generalize to is distorted. Canonical correlation analysis,

however, allows for variables of any level of measurement and was designed

to examine multiple variables simultaneously (Thompson, 1984). Thus, the

reality the researcher has strived to represent by collecting multiple measures

is preserved.

The second problem with multiple univariate tests concerns the

probability of committing a Type I error. As the number of hypotheses

within a study increases, the experimentwise error rate, that is, the

probability that one or more Type I errors in a study as a whole has occurred,

inflates (Thompson, 1988). This problem can be alleviated through the

application of multivariate techniques such as canonical correlation analysis

where fewer hypotheses or a single hypothesis is tested. And finally, as both

Fish (1988) and Thompson (1986) have demonstrated, by employing several

univariate tests one may fail to find statistically significant results that are

present when a multivariate test is employed.

Summary

Given the multivariate nature of reality, it is imperative for students of

research in the behavioral sciences to become familiar with the various

multivariate statistical procedures that are readily available through the use

of computers. Although such techniques are mathematically complicated,

the use of canonical correlation analysis as a heuristic framework enables

students to gain a deeper conceptual understanding of all parametric

methods, both univariate and multivariate. Canonical correlation analysis

(Thompson, 1991) employed as an instructional tool demonstrates (a) how all

parametric procedures are special cases of canonical L:relation analysis, (b)

that all parametric procedures involve the application of weights to derive

1 5
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synthetic scores, and (c) that all parametric procedures are correlational, thus

yielding a measure of effect important to the interpretation of one's results.

Furthermore, the application of multivariate techniques such as canonical

correlation analysis can overcome serious problems associated with the use of

multiple univariate tests. This is not to imply that all analyses should be

carried out through canonical correlation analysis, but that students should be

made aware of the various procedures that are available such that they are

able to apply the appropriate method in their own research and provide a

more accurate representation of a complex reality.
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Table 1

"1111,

Hypothetical Data Set with Contrast Codin for Heuristic Demonstration
Y X A B B' Al A2 51 AlB1 A2B1

5 28 1 1 1 1 -1 1 1 -1
3 27 1 2 1 1 -1 1 1 -14 26 1 4 1 1 -1 1 1 -1
6 25 1 6 2 1 -1 -1 -1 17 26 1 7 2 1 -1 -1 -1 1
8 24 1 9 2 -1 -1 -1 1
6 25 2 1 1 -1 -1 1 -1 -1
5 23 2 2 1 -1 -1 1 -1 -17 26 2 3 1 -1 -1 1 -1 -112 24 2 6 2 -1 -1 -1 1 1
11 23 2 7 2 -1 -1 -1 1 1
10 22 2 8 2 -1 -1 -1 1 1
10 22 3 2 1 0 2 1 0 29 21 3 4 1 0 2 1 0 28 22 3 4 1 0 2 1 0 213 21 3 6 2 0 2 -1 0 -214 20 3 7 2 0 2 -1 0 -215 20 3 8 2 0 2 -1 0 -2

2111111111910

Table 2

Pearson Product Moment Correlation throu:h CCA (X with B)

CCA

Squared 0.20206

Pearson Correlation

Rc 0.44951
-0.44951lambda 0.79794

4.052
df 1/16

0.0613 0.0613

21 2 0



Table 3

1-test Anal sis throu.h CCA [Y b B' (1 2)]

CCA t-test Analysis

Squared Itc 0.63661 Mean of group 1 6.33
Rc 0.40528 Sd 2.3452
lambda 0.59472 Mean of group 2 10.67

Sd 3.1623
-3.3020

10.9032 t2 10.9032
df 1/16 df 16

0.0045 0.0045

Table 4

Factorial ANOVA EY by A (1,3), B' (1.2)1

Source SOS df MS Fcalc

A 108.00 2 54.00 54.00
B ' 84.50 1 84.50 84.50

AB' 4.00 2 2.00 2.00
Error 12.00 12 1.00
Total 208.00 17

eta2 =196.5/208.5 = 0.94245

2 1



Table 5

Canonical Analysis of Four Models

Model Predictors of Y Lambda

Al A2 Bl A1B1 A2B1 0.05775
2 Bl AlB1 A2B1 0.57554
3 Al A2 AlB1 A2B1 0.46283

Al A2 Bl 0.07674

Table 6

Conversion to ANOVA Lambda's

Source Models Calculation Lambda

A 1/2 0.05755/0.57554 0.09999
B' 1/3 0.05755/0.46283 0.12434

AB' 1/4 0.05755/0.07674 0.74993

Table 7

Conversion of Lambda's to ANOVA F's

Source [(1 lambda)/lambda]*[df error/df effect] = Fcalc

A [(1 - 0.09999)/0.09999] * [12/2] = 54.00
B ' [(1 - 0.12434)/0.12434] * [12/1] = 84.50

AB' [(1 - 0.74993)/0.74993] * [12/2] = 2.00

lk-2 = 1 - lambda = 1 - 0.05775 = 0.94245 = eta2

3 2 2



II=

1Cr.
Table 8

Factorial MANOVA [Y, X with A (1,3), B' (1,2)1

Source Lambda Fcalc df P

A 0.04133 21.56 4/22 0.0001
B ' 0.08247 61.19 2/11 0.0001

AB' 0.74275 0.88 4/22 0.49

SOO/

Table 9

Canonical Anal sis of Four Models

Model Predictors of Y and X Lambda

1 A1 A2 B1 A1B1 A2B1
2 B1 A1B1 A2B1
3 Al A2 A1B1 A2B1
4 Al A2 B1

0.01802
0.43614
0.21854
0.02427

Table 10

Conversion to MANOVA Lambda's

Source Models Calculation Lambda

A 1/2 0.01802/0.43614 0.04132
B ' 1/3 0.01802/0.21854 0.08246

AB' 1/4 0.01802/0.02427 0.74248
411:11=113=11==111111=1
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Table 11

Multi le Re ession throu h CCA [Y with X and B]

CCA

Squared Rc
Rc
lambda

df

0.73638
0.85813
0.26362
20.95
2/15
0.0001

Regression Analysis

Squared R 0.7364
0.85813

df
20.95
2/15
0.0001

MI111MW

Table 12

Function Coefficient and Beta Weight Conversions

Function Beta Function
Predictor Coefficient * Rc (or R) = Weight / Rc (or R) = Coefficient

X -0.7852 * 0.85813 = -0.67384/0.85813 = -0.7852
0.3598 * 0.85813 = 0.38071/0.85813 = 0.3598
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Table 13

CCA

Discriminant Analysis through CCA [A with X and Y]

Discriminant Analysis

Squared Rc 0.75284
Rc 0.86766 Rc 0.86766
lan,ixla 0.24494
F 7.1438 F 7.1438
df 4/28 df 4/28

P 0.0004 p 0.0004

Raw Function Coefficients

CCA: Function I Discriminant: Function I

X 0.39696 ---> 0.39696/0.39696 = 1 X 0.75003 ---> 0.75003/0.75003 = 1
Y -0.0125 ----> -0.0125/0.39696 = -0.03148 Y -0.02361 --->-0.02361/ 0.75003 = -0.03148

Table 14

Relationship Between Canonical and Discriminant Function Coefficients

_
spooled 41.6556 -1.8333

1-.1.8333 6.70

Vac' Spoole,d ac = [0.39696

ac

Vac' Spooled ac

1
_

0.52956

-0.01250] 1.6556 -1.8331 = 0.52956[0.39691
-1.8333 6.70 0.01250

MEM

0.39696 0.7500i
_ -

ac,
-0.0125 -0.02361



Appendix A

DATA Dl; LNFILE CAN;
INPUTYXAB;
IF A = 1 THEN A 1 = 1;
ELSE IF A = 2 THEN Al = -1;
ELSE IF A = 3 THEN Al = 0;
IFA=1ORA=2THENA2=-1;
ELSE IF A = 3 THEN A2 = 2;

IFB<5THENBB=1;
ELSE IF B > 5 THEN BB = 2;

IF BB = 1 THEN B1 = 1;
ELSE IF BB = 2 THEN B1 = -1;

A 1B1 = A 1*Bl;
A2B 1 = A2*B1;
PROC SORT;

BY A B BB;
PROC PRINT;

VAR YX AB BB Al A2 B1 A1B1 A2B1;
TITLE 'RAW DATA SET WITH CONTRAST CODING%

PROC CORR;
VAR X B;
TITLE 'CORRELATION OF PREDICTOR AND CRITERION VARIABLE%

PROC CANCORR SIMPLE CORR;
VAR X;
WITH B;
TITLE 'CCA SUBSUMES PEARSON CORRELATION;

PROC TIEST;
CLASS BB;
VAR Y;
TITLE 'T TEST FOR DEP VAR Y AND INDEP VAR B';

PROC CANCORR SIMPLE CORR;
VAR Y;
WITH Bl;
TITLE 'CCA SUBSUMES T TEST: INDEP VAR CONTRAST CODING%

PROC ANOVA;
CLASS A BB;
MODEL Y=A BB A*BB;
TITLE 'ANOVA WITH DEP VAR Y AND INDEP VARS A AND B';

Note: BB refers to the contrast variable B' in the text as B' is not a valid
variable name in SAS.
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PROC CANCORR SIMPLE CORR;
VAR Y;
WITH Al A2 B1 AlB1 A2B1;

TITLE 'CCA SUBSUMES FACTORIAL ANOVA';
PROC CANCORR SIMPLE CORR;

VAR Y;
WITH B1 A 1B 1 A2B1;

TITLE 'CCA SUBSUMES FACTORIAL ANOVA';
PROC CANCORR SIMPLE CORR;

VAR Y;
WITH Al A2 A 1B1 A2B1;

TITLE 'CCA SUP SUMES FACTORIAL ANOVA';
PROC CANCORR SIMPLE CORR;

VAR Y;
WITH Al A2 B 1;
TITLE 'CCA SUBSUMES FACTORIAL ANOVA';

PROC CANCORR SIMPLE CORR;
VAR Y;
WITH X B;
TITLE 'CCA SUBSUMES MULTIPLE REGRESSION%

PROC ANOVA;
CLASS A BB;
MODEL Y X=A BB A*BB;
MANOVA H=_ALLJSUMMARY;
TITLE 'FACTORIAL MANOVA';

PROC CANCORR SIMPLE CORR;
VAR Y X;
WITH Al A2 B1 A 1B1 A2B1;

TITLE 'CCA SUBSUMES FACTORIAL MANOVA';
PROC CANCORR SIMPLE CORR;
VAR Y X;
WITH B1 A 1 B1 A2B 1;

TITLE 'CCA SUBSUMES FACTORIAL MANOVA';
PROC CANCORR SINPLE CORR;
VAR Y X;
WITH Al A2 A 1B1 A2B1;

TITLE 'CCA SUBSUMES FACTORIAL MANOVA';
PROC CANCORR SIMPLE CORR;
VAR Y X;
WITH Al A2 B 1;
TITLE 'CCA SUBSUMES FACTORIAL MANOVA';

,Th
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PROCREG;
MODEL Y=X B/STB;
TITLE 'MULTIPLE REGRESSION OF X AND B ON Y';

PROC DISCRIM SIMPLE WCOV WCORR PCOV PCORR;
VAR X Y;
CLASS A;
TITLE 'DISCRIMINANT ANALYSIS';

PROC CANDISC ALL;
VAR X Y;
CLASS A;

PROC CANCORR SIMPLE CORR;
VAR Al A2;
WITH X Y;
TITLE 'CCA SUBSUMES DISCRIMINANT ANALYSIS';
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