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TTI #9

This booklet la the last in a series of nine booklets which

constitute the Nofstra University Teacher Training Institute

(TTI) packet. The Institute vas a National Science Foundation

supported three-year program for exemplary secondary school

mathematics teachers. Its purpose vas to broaden and update the

backgrounds its participants vith courses and special events and

to train and support them in preparing and delivering

dissemination activities among their peers so that the

Institute's effects would be multiplied.

This packet of booklets describes the goals, development,

structure, content, successes and failures of the Institute. We

expect it to be of interest and use to mathematics educators

preparing their ovn teacher training programs and to teachers

and students of mathematics exploring the many content areas

described.

"The Computer as an Experimental Tool in Teaching

Mathematics" vas a basic course offered as part of TTI's cycle

of courses. This booklet describes the content and approach of

this course - matrematics is taught in a vay analagous to how

science is generally taught. Using the personal computer as an

experimental tool in a mathematics laboratory provides the

student with an opportunity to get involved in the discovery

process: to make conjectures, to test them, to see the results

and thus be able to adjust the conjectures being tested. A list

of course topics is presented and several are described more

3



fullyi Iterated Quadratic Mem Fraotals, Momentum in Baseball,

and Sorting with the Computer.
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Science in high school and college is generally taught with the aid of

laboratodes. Laboratories provide the student with a chance to get involved in the

discovery process: to make conjectures, to test them, and to see the results of this

process. The advent of personal computers with graphics has made it possible to use

the computer as a similar experimental tool in a mathematics laboratory. This paper

describes the authors' collective experience in using the computer as an experimental

tool in such a laboratory.

This paper is an expanded version of a talk by one of the authors (HMH) at the

December 1987 meeting of the National Council of Teachers of Mathematics. The

paper reflects the experience of HMH in teaching an experimental course to selected

high school teachers in a National Science Foundation Sponsored Teacher Training

Institute at Hofstra University, as well as the experience of JB and RS in applying the

techniques of that course in the high schools. We have not sought to provide a text on

education, but rather to share some of our experiences.

We thank Marie Hermann and Helene Morris for preparing this manuscript.

Contents.,

1. Overview

2. Iterated quadratic maps (HMH)

3, More on fractals (RS)

4. Is there momentum in baseball (HMH and 1987 class)

5. Sorting with the computer (JB)

6
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1. OverviQw

This set of notes is based on 1987 and 1988 class in the NSF-sponsored

Teacher Training Institute at Hofstra University. The 1987 class met for a total of 30

hours (twelve 2-1/2 hour classes); the 1988 class for 9 such sessions. The audience

consisted of superior, well-motivated high school teachers, who had a prior course in

Pascal. Many had no recent experience with calculus. Many possible courses can be

designed around these topics, which provide enough material and references for a

one-year sequence.

The goal of the class was to develop the use of the computer (in high school

and calculus level mathematics) as an experimental tool in discovering mathematical

ideas. The course emphasized experimental mathematics, in analogy with typical

physics and chemistry classes. Thus we seek to use the "discovery method" in a
variety of "advanced" topics accessable to high school students. Specific topics were
chosen to demonstrate numerical and graphical techniques. The topics were chosen
on the basis of mathematics level required, accessibility to the discovery method, and

my personal interests, as well as to provide a useful and diverse experience for the

audience. No specific attempt was made to cover the Advanced Placement syllabus or
other syllabi, although the topic on sorting was added to the course at student request.
A typical one-semester course would cover 4-6 topics. The topics are:

1. A model for population dynamics.

A simple model for population dynamics: the discrete time logistic model. Construction of the
model. Method of computer simulation. Chaotic dynamics - determinism versus randomness.

2. Random numbers.

Linear congruence random number generator. What is a random number? Use of computer
graphics. The birthday problem and its consequences. Probability and baseball - see Section 4.
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3. Fractals I.

Seff-similarity. Regular fractals and recursion. See Section 3.

4. Fractalsll

Fractals constructed by iterating quadratic maps. The Mandelbrot set and Julia set. Programming

for time efficiency. See Section 2.

5. Numerical integration.

From a classical Greek formula for volume to Simpson's rule. Project on error analysis.

6. Nur. , :al differentiation.

Computer evaluation of limits, choosing the denominator appropriately. Project on error analysis.

7. Hooke's law and the vibrating spring.

Derivation of sinusoidal motion from elementary principles.

8. Matrix models (age structured populations).

Leslie matrices. Eigenvalues, eigenvectors, and convergence. Numerical computation of

dominant eigenvalues.

9. Sorting.

See Section 5.

We now illustrate several of the above topics.
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Iterated quadratic maps

The study of iterated quadratic maps is a nice demonstration of the use of

computer graphics to uncover beautiful and interesting phenomena in mathematics.

We begin by considering the process of iteration. Let f be a function from the

real numbers to the real numbers. One may choose a real number xo, and form the

sequence

xo, xl = f (xo ), x2 =f (xi ), x3 = f (x2 ), ... .

(Many students have seen the iteration process in the computation of compound

interest. Here the amount of money in an account at the end of each period is obtained

by multiplying the amount at the end of the previous period by the quantity (1 + the

interest rate per period). Thus compound interest involves iterating the function

f(x)=(1+r)x

where r denotes the interest rate and x the amount of money.) We are concerned

with properties of the sequence of points obtained by iterating the map f . Among the

simplest questions one can ask is whether the sequence xo , xi , x2, ... is bounded or

not.

We also make this question simpler by first considering only linear maps:

f(x)= ax + b.

In this case, it is not hard to see that the sequence of points obtained by iteration is
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boundod if la I < 1, and in general unbounded if Ia I > 1. If b = 0, then f takes the

simpler form f(x) = ax , and an easy calculation yields

xn = anx0.

The convergence properties of the sequence of points { xn } follow easily. (In the

example of compound interest above, a = 1 + r .) In the case where b is not

necessarily equal to 0,

Xn = a nx 0 + an -lb + an 213 + an -3b + ... +

= anx0 + (1-an)b / (1-a),

summing a geometric series. The convergence properties of the sequence of points

{ xn } follow easily. We leave details and a more precise discussion to the reader.

b

We now consider the case of quadratic maps:

f(x) = ax 2 + bx + c .

The answer is now more interesting, even in seemingly trivial cases such as f(x) = x 2 .

Here the sequence of points obtained by iteration is bounded provided the first point

x 0 satisfies IxoIs 1, and unbounded provided that the first point x o satisfies

I x 0 I > 1. The most frequently studied case is

f(x)=. x 2 + c .

1 0
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Here the results depend upon both the starting point x a and the parameter c

in a complex way.

We now consider iterating the equation

f(z)= z2 + c

for complex z (and possibly complex c).

(2.1)

(We recall here that a complex number is a number of the form a+ bi , where

i denotes 4-1. Complex numbers are added as if they were binomials with i as a

variable; for example, (a + bi) + (C+ di) = (a+ b) + (c+ d)i . Similarly, complex

numbers are multiplied as if they were binomials with i as a variable, except that i 2

is replaced by -1 ; for example, (a+ bi).(c+ di) = (ac- bd) + (ad + bc)i. Complex

numbers may be represented as points in the plane, with the complex number a+ bi
plotted as the point (a,b). The length of a complex number is then given by the

Pythagorean theorem: I a+ bi I = (e 2 + b 2 )112.)

As above, for the results of iterating (2.1) for c = 0 are easy to see: if I z I< 1

then the iterates approach 0; if I z I= 1, then the iterates all have absolute value 1,

and if I z I> 1 then the iterates approsch 00. The question is how do we study

equation (2.1) if c is not zero. It is here that computers come to the rescue.

eg,

First, to a computer a compiex number is just a pair of real numbers or a vector,

z =x + iy corresponds to (x,y).

If we suppose that c is real, we may write the results of applying f to z = x + iy as

11
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xnew = .7(2 1/2 +0,

Ynew = 2xy.

Therefore one can just write a brief computer program to study the iteration, for

example:

program iterate;

ICQDX

a. 1 ti
1 1 If

1 II

V '1 cAgglithat

. I. I . IS frividsdilau

uses

var

begin

crt;

x,y,xnew,ynew,c : real;

i,imax : integer;

writclu('flow many iterates ?');

readln(imax);

writeln('What are the coordinates of the starting point, zO ?);

readln(x,y);

for i = 1 to imax do

begin

xnew := x*x y*y + c;

ynew := 2xy;

x := xnew;
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end;

end.

y := ynew;

writeln(i,",x,",y);

Perhaps one can tell whether the sequence of points generated by this program

approaches ce or not. However, since we cannot compute the entire sequence of

iterates, it would be nice to have a criterion for testing whether the sequence of points

generated by this program approaches 03. Tho following lemma provides such a

criterion.

2.2. Lemma. Suppose Ic I < 1 and lz I a 2. Then I z2+ cW zl + 1.

Proof. Iz2+ cl I z2 I- I cI (by the triangle inequality)

a I z2 I - 1

a 21 zI - 1

=IzI+(IzI-1)
IzI4.1

as required.//

(since I c I < 1)

(since IzIa 2)

(since I z I 2),

Lemma 2.2 implies that once the length of any iterate zn exceeds 2, then

subsequent iterates march off to oe: Izn +k I a 2 + k. The following figure illustrates the

inequalities in the Lemma 2.2.
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We now combine Lemma 2.2 with computer graphics to draw a picture of which points

approach 09 The program is written in Turbo Pascal 5 for the IBM PC using Hercules

compatible color graphics, and is easily modified for other languages and computers.

program mandel;

0 I h H . sl t tin All h TV x e

ma a. f rn n-refi 1 Ire V I tha

I I

uses

crt, graph;

var

i,j: integer; (screen coordinates )

k: integer; (counter)

col: word; (color)

x,y: real; ("math" coordinates)

xn: real; (nxew; the variable ynew is not needed in this

program)

z: real; (square of length of (x,y));

c: real; (constant in quadratic map)

begin

readln(c); (c must satisfy -1 < c < 1; the r .der may add a

check on c if required)

15
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initgraph(0,0,"); (Turbo 5 comand for hercules color graphics on

IBM PC, modify as appropriate)

for i := 0 to 319 do

for j := 0 to 199 do (loop over 320 x 200 graphics screen)

begin

x := (i-160)/128.0;

y := (100-j)/64.0; (x and y scale factors, adjust as

appropriate, note the use of "100-j" in order to make

the y-axis point up as usual, the action usually takes

place within -1 < x < 1 and -1 < y < 1)

k := 0; (initialize counter)

z := x*x + y*y; (initialize length squared)

while ((k < 10) and (z < 4.0)) do

(the "k < 10" criterion prevents infinite loops and

might be adjusted by the reader. The "z < 4" criterion

detects points for which we know that future iterates

will approach infinity; see Lemma 2.2, above. Some

points take more than10 interations to escape the

disk "z < 4".)

begin

(first replace x + iy by (x+iy) squared + c)

xn := x*x - y*y + c; (real part)

y := 2*x*y; (imaginary part)

x := xn;
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z := x*x + y*y; (compute length)

k := k+1; (iterate counter)

end;

if k := 10 then (point did not escape)

col := 0

else

col := k - 3*(k div 3) + 1; (point did escape;

color := k mod 3 + 1

indicates time until

escape. Other formulas

might be used.)

putpixel(i,j,col);

end; (loop through points)

end. (program)

We now illustrate the results of several runs of this program.

page 14: run with c = 0.56.

gage_15: run with c = 0.56, but with " k < 10" replaced by " k < 20",

"if k = 10" replaced by "if k = 20", and blown up by 200 %.



Hastings, Bernstein, and Silverstone

II'

I i .

1

i

1 1

41

. .
IIII NH

Ito

.fillMinbi-

nIN

October 19, 1989 14

1 s

BEST COPY AVAILABLE

Me

I I

II I

I.

I.



Hastings, Bernstein, and Silverstone

II I

Ii

111111 11111,11

i1101 Ill

11

11111111111."

m

it I

October 19, 1989 1 5

BEST COPY AVAILABLE

9



Hastings, Bernstein, and Silverstone 1 6

We make several observations and suggest several exercises.

(1) If c is real, as in the program, the resulting picture is symmetrical about

both the x and y axes. We leave the proof as an exercise, but give a few hints. First,

replace z by -z, and observes that z 2 + c = (-z) 2 + c. Thus the fates of the points z

and -z are the same. This yields symmetry about the origin. For symmetry about the

y-axis, replace y by -y, and compute the length of z 2 + c = (x +iy )2 + c and (x -iy )2 + c.

Then show symmetry about the x-axis, using geometry.

(2) What happens if c is not real ?

(3) The figures drawn by the program mandel above appear self-similar in
that that each blob corresponds to two smaller blobs, of roughly similar shapes. The
term "self-similar' will be defined in Section 3, below. Here is a sketched explanation
of why the figures are self similar. Suppose that a given blob consists of points which
leave the circle Iz I < 2 in k iterations. Then there are points which map to this blob in
one iteration, and thus leave the circle lz I < 2 in k +1 iterations. Since the map f (z )
= z 2 + c is usually two to one, there will be two blobs which leave the circle Iz I < 2 in

k +1 iterations. See the following figure.

leave in
k + 1 iters. leave in k iterations

leave in k + 1
iterations

2 0
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For self-similarity, W9 invoke the fact that f has a derivative f' (z ) = 2z. Thus f

rotates and stretches small vectors Az by a locally constant amount:

f (z + Az ) = f (z) + 2z . Az + (small error).

Multiplication by 2z multiplies lengths by I 2z I and rotates vectors through an angle

arg (z) with cos (arg (z)) = x and sin (arg (z)) = y where z = x + yi . We refer the
reader to any introductory text on complex variables. This implies that blobs are

stretched and rotated by locally constant amounts.

We encourage the reader to experiment further. For further reading we suggest
the following.

flefersice

Mandelbrot, B.B. 1977, 1982. Fractais: form, chance and dimension, The
fractal geometry of nature, Freeman, San Francisco.

Pietgen, H.O., and P.M. Richter, 1986. The beauty of fractais: images of
complex dynamical systems, Springer- Verlag, New York and Berlin.

Remarks. We began with some simple questions. We first observed that the
computer could be used to conduct experiments in order to try to answer those
questions. We then saw that one could prove a useful rule (the lemma above) in order
to use the computer to answer questions about the properties of certain sequences.
This combines inductive reasoning from the experiments with deductive reasoning
used in mathematical proofs. Many mathematicians are familiar with this combination
of techniques, yet current curricula provide little useful experience for the student.
Finally, we used computer graphics (combining algebra and geometry) to illustrate the

21.
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answers to a mathematical question. The study of the properties of the answers leads
a to a new field, the field of fractals, which is explored further in the next chapter.



..

ANIL

3 . MORE ON FRACTALS

s* 44. oS114. tk,tr 1111Vss .seib
% mak.' .

. froia.tsttl
..".10.+.*."" i Joie of. 11,..5 .7.1, .

ski %,:01

5"-

ISMINVI114
4581Soosess

finewesia

014101Crit.
...amasser

astmort
IR 1 written*

area Nock
SuAtth 11.1.

Ms

'NEP

Mo.

'
A.

p-oeddvc 7.ga it.

GrEadaie 7 icz).-

Robert
Silverstone lk

Great Neck fr
th H.S..

a a. 5

sss

.0*VI"
4/t.

I

few ;
;.11ei.1:4:wiek ANL

. .ttf%
44.4

.

sou

Le ;it!
v. .**,0.

-x P.' e...
'"BEST COPY AVAIL BLE'

.2 3



FRACTAL 6EONETRY

AND ITS APPLICATIONS

IN THE MATH CLASS

Fractal Geometry is one of the fastest qrowing mathematical disciplines.

The term "fractal" was coined by B. Mandelbrot of I.B.M, in the
1970's to describe the geometry of chaos. There are many ways to describt
what a fractal is. Some of these descriptions are:

a) A fractal is a figure that has a FRACTIONAL dimension.
A line hasdimension 1

A square has dimension 2
A cube has dimension 3
A fractal can have dimension 1.2345---

b) A fractal is a process of becoming rather than being

c) A fractal can be a self-similar object.
This mee,ns that at any level of magnification, any p -t of a fractal
can look exactly like the initial view. Self-similarity is related
to the process of RECURSION

d) An object of great complexity.

e) A geometry that accurately describes the real world
( or any other world )

In this session, we will examine the following ideas:

a) Randomness and chaos... The CHAOS GAME

b) Self-similarity The KOCH SNOWFLAKE and its cousins

c) Dimension, both topological and fractal

d) Applications of these ideas in the Math curriculum

e) Computer generation of these shapes

THE CHAOS SANE

Start with the vertices of a triangle, say XI, Xm and X.
Let P be wax point in the plane. The CHAOS GAME is played as
follows:

X3

a) Choose any one of the three vertices at random, say X.

b) Mark the MIDPOINT of the segment rriti. call this point P.

c) Go back to step (a)

Question: WHAT is the resulting object, and what are its properties

WHY does the object appear as it does?

0 4
4, "t

Fractal ( -2- ) geonetry



The figure produced by the CHAOS GAME is shown
at the right. Although the object was formed
by a random process, it appears to have a
definite form and structure.

Observations: 4!.../Nk

a ) The object has the property of being SELF-SIMILAR If you examine
any of the sub-triangles, you will notice that they are IDENTICAL
to the original, except for SCALE

This property of self-similarity defines the figure as a FRACTAL

b) We can calculate the area of the objPct.

A - A/4 - A(3/16) - A(9/64) - - A(1/4)(3/4)fl - ---

where A is the area of the entire triangle

c) This concept leads to further exploration:

i) What happens if we went 1/3 the way from the vertex?

ii) What happens if we went 1/3 the way from P ?

iii) What if a square, or any other polygon were ured instead of
the triangle?

The figure formed is called the SIERPINSKI TRIANGLE. Cousins of the
triangle are the SIERPINSKI CARPET, pictured belowleft, and the
MENGER SPONGE, pictured below right.

By changing the initial conditions, but by using the same process,
more realistic images, such as the fern, pictured below, can be generated.

A simple BASIC program to generate the Sierpinski triangle is:

Program is in ^PPLESOFT.. Adjust graphics for your own computer )

10 X(1) = : Y(1) = : X(2) = : Y(2) = : X(3) = : Y(3) =
( Choose your own coordinates for the triangle's vertices )

20 XP.= : YP = : REM hoose your own starting point (XP,VP)
30 HGR : HCOLOR = 7
40 R = INT(3 * RND(1) + 1 )

50 XP = ( X(R) + XP ) / 2 : VP = ( Y(R) + YP ) / 2
60 HELOT XPOT
70 GOTO 40 or;

Fractal C 444- ) geonetry



THE KOCH SHOMFLAKE

The KOCH SNOWFLAKE is one of a class of fractals in which a straight
line segment is replaced with a polygonal line, called a qenerator.

The SNOWLINE is constructed in the following manner:

a) Begin with a line segment

b) Divide the segment into 3 equal
parts, and replace the middle
third with two line segments,

d)

repeat (b) on each of the
resulting line segments.

go to (C.)

We observe that at each stage, the length of line segment increases by a
factor of 4/3 p hence at stage n, the length of the curve" is

L, = L*(4/3)"

where L is the length of the initial line segment.

Clearly, we can see that LIM L, = 00
n -> 00

in a finite span.

, hence is an unbounded length

To do this program in BASIC is quite complex, because to do it efficiently
requires RECURSION, or the ability of a subroutine (procedure , function)
to call itself up. Below are two programs to draw the Koch line and
the snowflake:

LOGO

TO KOCH :LENGTH :LEVEL
IF :LEVEL = 0 EFORWARD :LENGTH STOP]
KOCH :LENGTH/3 :LEVEL-1
LEFT 60
KOCH :LENGTH/3 :LEVEL-1
RIGHT 120
KOCH :LENGTH/3 :LEVEL-1
LEFT 60
1,OCH :LENGTH/3 :LEVEL-1

END

PASCAL

PROCEDURE KOCH(D:REAL;L:INTEGER)
BEGIN

IF L = 0 THEN MOVE(D)
ELSE

BEGIN
KOCH(D/3,L-1) ;TURN(60);
KOCH(D/3,L-1) ;TURN(-120);
KOCH(D/3,L-1);TURN(60);
KOCH(D/3,L-1)

END
END;



The Koch Line hats some interesting properties:

a)
b)

For any initial span, the "length" of the curve is infinite
Although th ,i. curve is continuous, at no point is there a derivative
( an example of where continuity is not sufficient for the existenc
of a derivative.)

The koch line can be expanded to the KOCH SNOWFLAKE by:

LOGO PASCAL

TO SNOWFLAKE :LENGTH :LEVEL FOR I := 1 TO 3 DO
REPEAT 3 [KOCH :LEVEL :LENGTH RIGHT 120] BEGIN

END KOCH(LENGTH,LEVEL);
TURN(-120)

END;

The first five stages of the SNOWFLAKE are shown below:

Can we prove that the area is bounded, without actual computation?
Can the "actual" area of the snowflake be calculated?
Here we have an example of an infinite perimeter bounding a finite area.

FractAls are used to model the real world. One application of the snowflak
is in the representation of islands and clouds. The coastlines of islands
and the bovidries of clouds can be thought of as random. By introducing
rnadom lengths and angles into.the generator, we can simulate these natura:
structures.

Random KOCH ISLAND

0,
Fractal ( -4-4,)g geometry



DIMENSION

It is our normal understanding that the "dimension" of an object is an

integer. We know this because we asssociate dimension with direction.
We say that a line is 1 -dim because we can travel in essentially one
direction, forwards (or backwards). A plare is 2-dim because we can walk
not only forwards ( & backwards) but up and down. We have a sense that
dimension is related to the "amount of space that is taken up". This
notion of dimension is called the TOPOLOGICAL definition of dimension.

We can see how dimension is developed by the following considerations:

a) consider the line of length 1

Suppose that we triple the length. Now we can see that
three of the original segments will cover the new length.

We can write 31 = 3, where the power, 1 , is the dimension.

b) If we consider a unit square, and triple the dimensions,
it requires 9 of the original squares to cover the new one.

We can write 32 = 9, where the power, 2 , is the dimension.

c) If we consider a unit cube, and triple the dimensions,
it requires 27 of the original cubes to "fill" the new one..

We can write 33 = 27, where the power, 3 , is the dimension.

These examples lead to a relationship between the number of self-similar
parts N generated and the scaling factor (R). It is:

Reurnri1°^ = N nr Ro = N or D = lo (N)/lo (R)

Unit line

Unit square

Unit cube 3

9

'27

1

2

3

31

32

33

=

=

=

9

27

and these conform to our usual sense of dimension.

Applying this relationship to our two "strange" objects, the gasket and tht
snowflake, we see:

TRIANGLE If we think of the lower left as the "unit" triangle,
the triangle's sides are twice as large, and there are
three triangles generated. Hence

= 2 N = 3 Log(3)/log(2) = 1.5849

SNOWFLAKE Each length is divided into C equal sections, and 4 segments
replace the original 3, hence

F: = 3 N = 4 Log(4)/Log(3) = 1.2618---

These strange objects have fractional dimensions. A question that arises
is: "What is a meaning of a fractional dimension?"

4.
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The CARPET's dimension can be alculated by by observing that
the original square is reduced by a factor of 3, and 8 squares are

generated:

F: = 3 N = 8 log(8)/log(3) =

THE CANTOR SET

One of the earliest fractals developed was the CANTOR SET. It is derived by

Start with a line segment
Divide into 3 equal parts, and
remove the middle third

on each of the resulting segments,
repeat part (b)

1,me MIN, OEM MIPM

ONO 01 41M IIMMI

FRACTAL GENERATION USING TRANSFORMATIONS OF THE PLANE

,11

The regular fractals discussed so far can be generated by considering
the movements of points in the plane ( or space ) by means of

AFFINE TRANSFORMATIONS

An AFFINE TRANSFORMATION is a LINEAR TRANSFORMATION followed by some
TRANSLATION or SHIFT. LINEAR FUNCTIONS consist of such movements as

REFLECTION EXPANSION DILATION ROTATION SHEARING

Suppose that T is a lineav f_inction of the plane to itself, and suppose
that the point (x,y) is mapped, under T, to the point (x,,y0).
We can then write:

(x,y)T = (x,,y,)

Wly,) is called the IMAGE of (x,y) under T

This means that ti.ere are real numbers a, b, c and d, where

--rr a'.4 oe, to )

(141)

x' = ax + by

y' = cx + dy

This system of linear equations can be written as a MATRIX equation

(x0,y,) = (x,y)T = (x,y)*

An AFFINE TRANSFORMATION, A, can we written

(a

(x,y)A = (x,y)T + (r,$)

where (r,$) is a trarslation, or shift r units Horizontally and s units
vertically.

Fr ( -62 9 geometry
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Returning to the SERIPINSKI TRIANGLE:

Our goal is to see where points Q0 under affine transformations.

For the TRIANGLE, we mill need to consider THREE transformations

AI The image of (x,y) will be in the LOWER-LEFT triangle.

Am The image of (X,y) will be in t!---t LOWER-RIGHT triangle

Am : The image of (x,y) will be in the TOP triangle.

A3-" AL
WNW,.

.11111111111111.

This gives the following set of affine transformations:

For AI (0,0)A1 = (0,0)

(1,0)A1 = (1/2,0)

(h,k)A1 = (h/2,k/2)

For Aa

For

Resulting in:

(0,0)A2 = (h/2,k/2)

(1,0)A2 = ((h+1)/2,k/2)

(h,k)A2 = (h,k)

(
Resulting in: (x,y)A1 =

0 1/2

(0,0)A2 = (1/2,0)

(1,0)A2 = (1,0)

(h,k)A2 = ((h+1)/2,k/2)

(x,y)A2 =

1/2 0

\,. 16%. % Ili) k1

(010

( h, k)

( 0)

/
..

... .... ..

.

1/2 0

0 1/2.

Resulting in: (x,y)A2 = (x,y)*

(f. 0

+ (1/2,0)

(h,k)

tbakl 464.(h414)
a .

11

(h/2,k/2)
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SOME APPLICATIONS OF FRACTALS

Fractal analysis is being used in studying almost all natural phenomenon.
One example is in Motion pictures. The STAR TREK AND STAR WARS worlds
were generated by fractal programming of computers. Below is a "simple"
example of a randomly-generated landscape.

4 84LLERY OF FRACTALA

a) From the chaos game, if the point is chosen a distance 1/3 to the
vertex instead of the 1/2, the result is:

AA A

AA AA

A AAA AA

b) The world-famous BIFRUCATION graph

c) The grand-daddy of all fractals, the. MANDELBROT SET

31
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A SET OF PROBLEMS FOR YOU TO TRY

1. Start with a square and replace each side

of the square with the generator

INNImmo,

Let P = initial perimeter and A = initial area.

a) Letting SQ(0) pe the initial square, draw SO(1) and SO(2)

b) Find the dimension of this fractal ( Mop) )

c) Find the area A(n) of SQ(n) and hence AF = Lim A(n)
n->

d) Find the perimeter P(n) of SQ(n) , and PF = Lim P(n)
n-> 419

e) Write a program to produce the this fractal.

This fractal is known as the KOCH ISLAND

Give a geometric argument to show that the area of the SNOWFLAKE
is bounded by the hexagon that circumscribes it at level 1.

Refer to the CANTOR SET, page 6,

a) Calculate its dimension

b) alculate its length

4. Start with a square and form the fractal by replacing each of the

sides with the generator

a) Draw level 1 and level 2 of this fractal.

b) What is the dimension of this fractal?

5. Do the same as problem 3 with the generator

3 2
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6. Refer to the SIERPINSKI CARPET on page 2

Let M(0) be the complete square at level 0,
M(1) be the square, at level 1, with the central square

removed,
M(2) be at level 2, where the 8 additional squares are

removed.

a) What is the dimension of this fractal?

b) At stage n
i) S(n) = number of squares removed. What is S(n)?

What is the area of each of these squares ?
iii) What is the total area, TA(n), removed

c) What is the area of this fractal ?

7. Refer the the MENGER Sponge on page 2.

a) Find the fractal dimension of the sponge

b) Calculate the surface area of this fractal.

Calculate the volume of this fractal.

8. Consider the following construction ( drawn in 3-D perspective)

level 0 Level 1 level 2

a) What is the dimension of this fractal

b) What is the surface area of this fractal?

c) What is the volume of this fractal?

d) What is the height of this fractal?

e) What is the relation between this fractal and the MENGER
SPONGE?

9. a) Derive the affine transformations for the CARPET

b) Derive the affine transformations for the SPONGE

33
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SOLUTION SUGGESTIONS

1. a) SO(1) is b) D = Log(8)/loq(4) = 1.5
c) A(n) = A for every A.
d) P(n) = 2"*P --> 00
e) see next page (after # 9

4.

Just prove that at each stage the triangles added in are within th
line joining the furthest endpoints of the two adjacent sides:

a) D = Loq(2)/Loq(3) 1r, .63 b) 0

Level 1:

Dim = log (8) /loq (3) Au, 1.89

Level 1:

Dim = log(9)/Log(3) = 2
( Is this a fractal???) 414

1

6. a) D = log(8)/log(3)
b) i) S(n) = 8" ii) (1/9")*A iii) TA(n) = (8/9)"*A
c) 0 ( consider the geometric series described by part (b)

7. a) Log(20)/log(3)fr, 2.7268
b) At each stage, each sub-cube's surface area is increased by

a factor of 2
c) 0... relate to CARPET

8. a) log(13)/loq(3)t 2.334
b) At stage n, the surface-area is (13/9)" of the initial square

hence is infinite.

c) At stage n, the volume is increased by (13/27)01/27
(assume there is is an initial cube of volume 1)

Volume = 1/14 of the initial surrounding cube

d) Height is (1/3) 4- (1/9) + (1/27) = 1/2

34
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9. a) Requires B affine transformations

b) Requires 20 affine transformations.

(1,9%* ow)a *(i)

Note the geometric "similarities" between the following fractals.
Do you suppose that there may be some relationhip between them?

le) LOGO program

TO ISLAND :LENGTH :LEVEL
IF :LEVEL = 0 FD :LENGTH STOP
ISLAND :LENGTH/4 :LEVEL-1
LEFT 90
ISLAND :LENGTH/4 :LEVEL-1
RIGHT 90
ISLAND :LENGTH/4 :LEVEL-1
ISLAND :LENGTH/4 :LEVEL-1
LEFT 90
ISLAND :LENGTH/4 :LEVEL-1
LEFT 90
ISLAND :LENGTH/4 :LEVEL-1
RIGHT 90
ISLAND tLENGTH/4 :LEVEL-1

END

/7/g7

TO KOCHISLAND :LENGTH :LEVEL
REPEAT 4 C ISLAND :LENGTH :LEVEL RIGHT 90

END

35
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ADDENDUM

rhe plems are examples of how the idea of SELF-SIMILARITY
can be used to ,mplify the solution.

1. LONTTNUED FRAC )NS

Let ( = 1 + 1

1 + 1

1 + 1

1

The self-similarity in this problem is quite evident. We can
re-write this expression as:

X = 1 +

which results in the quadratic equAtion x X 1 = 0

henLe X =

This is a problem that was given to me by a student:
. )

Evaluate

Ln(X
Ln(X

Ln(X

Let thi: ereion he rs:presented hy Y, then clearly, we can write

Y = Ln(Xv,

Y = Y-LnkX)

1 = Ln(X)

e = X

3S
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1 ; 1".t) ilo: !-Jv !). 1 I-I c- '

r,,Acr, NH.

(\rJ U, Ln turn, roll a air lie. A rolls first. ",:.e first persol

-oll A "6" wiHs. What is the probability, a, that A wiry.?

The tree bel,w shows the progress of the game for the firit 5

mos

Clearly, a

a
POW

a moss

(1/6) + (25/36)(1/6) + (25/36)2(1/6) +

We can use the idea of SELF--SIMILARITY by observing that the
tree can be re-written to lo.A like

Cie The 4..4 a .4154.04.64 hem, hsobeca 4.: p/4116 b.

giving the equation
4 *sons

a = (1/6) + (25/36)a a = 6/11

4. The classic GAMBLER'S RUIN PROBLEM

A and B play a game. A starts with $3 and B starts With $2. The
game is as follows:

Each, in turn, flips a fair coin. If the tosser gets a HEAD,
then he receives $1 from the other oerson; otherwise he gives
$1 to the other person.

What is the probability that the first person wins'!?

Tn the solution, a tree will again be used. Let (a,b) represent
how mur_h money each nas a each stge of the game. A tree, for the
first 5 tosses is shown below:

C%1)

Cy) age0

which gives the infinite series

a = (1/4) + 2(1/16) + 5(1/64) + 13(1/256) + ---

which is not an easy series to evaluatP.

3
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.e Lht,

ciiq vhe ,t.Jte 3,, tv_:! lng

which gives the infinite series:

a = (1/4) + (1/4)a + (1/4)a + (1/16)a + (1/64)a + --

= (1/4) (1/4)a + (1/3)a (Sum the infinite geometric series)

Hence a = 3/5

We can reduce the tree still further by making the observation that
the state (2,3) is the same as the state (3,2), except that it
represent3 the probability of B winning ( b = 1 - a )

This now yives the equation a = (1/4) + (1/4)a + (1/2)(1-a)

The clJAss of problems where we can Itse the techniques of SELF-SIMIL4RITY
is large and varied. This method of solution introduces the student to
another way of viewing phenomena as a process, and in a fractal way.
This method can also help to introduce the student to the ideas and
techniques of RECURSION and and to reinforce the tool of INDUCTION.

4
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I I
coll:on of AFFINE TRANSFORMATIONS 1-1a; you can

in construction yo,ir fracta1s.

Ltiq be the given point, a!7d (x',y') = (x,y)A

SCALING

ROTATION

REFLECTION

a) X-axis

SHEAR

...(31,43)

1

A

CP;t1)

. C11.11

A =

'AM

A

It

la 0

tO b

cos(a) sin(a)

-sin(a) cos(a)

-1
.

"".10y0
b) Y-axis A

a) X-dicrction

b) Y-direction

TRANSLATION (note: write (x,y) as (x,y, 1) )

1 0
A =

a 1

A
0 1

0
A = 0 1 0

h 1

(1%10

41
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4 . Is there momentum in baseball?

Harold M. Hasttngs
and

The 1987 TTI Class*

Department of Mathematics
Hofstra University
Hempstead , NY 11550

Sportswriters often discuss "momentum" . We sought to

determine whether there is momentum in baseball , in one

special case , the 1986 Mets , using elementary probability..

The results are interesting and the problem and techniques

interested our class (outstanding high school teachers

participating in a National Science Foundation sponsored

Teacher Training Institute ) and should interest many others .

The calculations may stimulate additional investigation into

ordinary events using elementary probability..

The 1986 Mets season** may be summarized as follows ,

where Wn denotes a string of n Wins , and Ln a string of n
losses

W 2, L 3, W 11, L I, W 6, L 1, W 1, L 2, W 1, L 2, W 3, L 2,

W 6, L 2, W 1, L 1, W 2, L 1, W 3, L 1, W 7, L 2, W 1, L 1,

W It L 2, W 8, L 1, W 1, L 3, W 5, L 3, W 3, L 2, W 3, L 2,

W 3, L 2, W 3, L 1, W 3, L 2, W I, L 41 W 6, L 1, W 5, L 1,

W I, L 1, W 4, L e, W 1, L 4, W 3, L 1, W I, L W 2, L 1,

W 4, L 1, W 5 (108 wins in 162 games).

We shall say define momentum as the tendency for wins to

follow wins . This allows the questions about momentum to be

phrased mathematically as follows :

4 2



) If the Mets won the last game , what is t.he probability

that they win the present game?

2 ) If the Mets won the last n games ( for a fixed n ) , what is

the probability that they win the present game?

3 ) Are there any statistically significant differences?

We shall use test the null hypothesis that there is no

momentum , in which case the results of successive games are

independent . More precisely, , we consider the Bernoulli trials

( see [ 1) ) or any elementary statistics textbook ) model that

the 1987 Mets season consisted of 162 independent games , with

a probability p of winning each game of 108/162 or . 667 .

For n independent Bernouilli trials , each with a

probability p of success and q =1 -p of failure , and np and

nq 25 , the expected results are essentially normal with

mean np and variance npq [ 1 ) .

There were n =107 games played following wins ( the Metz

won the last game ) . Of these , the Nets won 76 , this gives a

conditional probability for a win following a win of

p win previous win ) = 76/107 = . 710 .

However,, the null hypothesis gives an expected number of wins

of
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with a standard deviation of

fnpq = 4167-T-78-6M:3-3-3 4 88

games The number of excess wins , 4 7 , is less than one

standard deviation , and thus not statistically significant

The:7e calculations were repeated for the case of 2 or 3

previous consecutive wins , with the following results

Number
of pre-
vious
wins

2
3

Wins
(trials )

75
53

Actual results

(successes )

54
35

Prob . of
win

. 720

. 660

Null hypothesis
Expected Standard
wins deviation
np fnpq

50
35 3

4 08
3 43

In neither case is the difference between = the null hypothesis

and the actual results statistically significant

We invite the reader to continue with larger n , as we

did , and see what happens . (We found no statistically

significan "momentum" with our definition . ) We note that

had we found momentum from one game to the next , we would

have considered a Markov chain model (see , for example )

which estimates the probability of winning each game from the

results of the immediately previous game We also invite

other definitions of momentum
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SORTING WITH THE COMPUTER. Joyce Bernstein

tri4y..:Idu,:tio to OcJe.t

7777-

q":) Dernstein, v7:3a
:w:ct pYo44d4s a.

nice bridc. h4-:two matheticz. It hecifie Hecessary
to utiderstand what graphs of certain functions look like far removed
from,:the oriclin. Recursion, used in the most effecient sort, is a
close coutin of induction

When choosing a sort, there are three main considerations:
Programming time - for small arrays or files, use a simple sort.

ii: Execution .tme - measure of effeciency, a function of number of
comparisons and data movements.

Miqoory reguirments - usually sacvificed in a trade-off for
c-fiency.

cyr

usinq stt t;) some
fw171tion g(N), Gf N, th.; j of he .ort. "Big 0" nottiGo,
C(;:j04), pce:.portional g(N).

k:
For all of the sorts we will consider, which require both comparisons
and data foovcAvients, g(N) is tlfither n2 or niog:vn. T1 ,z,tructive
to graph n2 and nlogmn, especially as n gets large.

T. Exchange sorts: Exchange sorts move data int place, Li.y position,
one at a time.

/1.1,411)1e 52.2rt, one of Ihe easiest sorts to program, brings the
smallest item to he front of the list in a manner which resembles
"bubbling".
The algorithm does the ftllowing:

Compre items in pairs from the top of the lint to the bottom,
exchanging them if the front item in larger than the.
(n-1 comparisons).
ii Repeat the process another n-2 times. The jth iteration makes
n-j comparisons. We can sum the comparisons, n(n-1)/2, and assume
that swaps occur about half the time, or n(n-1)/4.

In(n-0/41 = (1/4)1n2-n: < (1/4)1n21 = 0(n2)
Bubblesort is obviously an 0(n2) sort.

46
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Th.e_93,ticic,sor,t, invented by C.A.R. Hoare in 1962, moves one record at a
time into its final position. However, in the process, which is

ur:::;iver r are moved to a posAtion closer to their
final n)::s. The algorithm invlvez, a partioning of the array into 24

c'i th,4. In the first pas, a Aement is
7 enk: f rirL this

po,jtiori, all v',11.g.ms tan it are
Gf cAlc; all .t:.1;c :hind it. lgoci;:h calls

its.Af, choosing a p-,vot froif. each "half" or the list, and the simpler
problt,Au of sorting two smaller arrays is set up. The comparii.i,00 4akos
place as follows4 (assume the first pivot is item 1. When would you
want to make a different choice?). Assign two 'ariabies i&j, with i
initially 2 and initially N. Compare element i to the pivot. If it
is smaller, increase i by 1. Stop when you get to an element greater
than the pivot. Do the reverse with item j. Keep decreasing by I
until you get to an item less than the pivot. Exchange items i and j.

The quicksort if; a po4.:.:.ful 0(nlog,n) sort. Only nocesssyry moves are
mcr,'

pointer in,41d of data.

II. Insertion sorts: Each successive item is moved into an already
sorted list.

LiDw.iunect.ipp mimmicks the way many of us arrange playing cards in
our hand when we pick them up one at a time. Pick up any card. Pick
up the second card and put it in order. Pick up the third card and
put it in order, etc. The algorithm inserts the new element j by
first comparing it to element j - I, which is already sorted, then to
element j 2, etc, moving each of these elements up one place until
it finds an eiement smallee. than it. 79-- .,1,-.ifient is placed in its
proper place. Notice the special condition which takes place when the
element to be icrterl .N.'4 the smallest element on the to the
time ...)r this in,5ertion. The while loop is bypassed, so that the
comparisorl a7c11ce71 > t:emp i.- not read wNhen O.

In order t..S inse.rt i F:.'..errif approximately (..)-1)/2 collipari....iowa and
data movements are required. Summing over the n elements in the
array, we see that linear insertion is an 0(n°) sort. It is a very
effecient sort when the data is already almost in order.

asicy inqentieln is a simple, effecient sort. Each new element is
inserted into the previously sorted partial list by using a binary
search to locate the place of insertion. As with all "divide and
conquer" strategies, binary insertion is an a(n1og2n) sort.

BEST
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I.

4

gb211port iq a powerful ins4rtion sort. Studios of N randomly
arrancied data iteme -1,4 e:o4ents, on the average, travel a
distance of N/3 places to sorted positions. In 1959, Donald
Shell used this fact in his eort algorithm, which initially moves data
over larcio distances, apiefeimately equal to N/3. This method has the
tenderwy, on the average, af moving elements closer to their final
location very early in the sort process.

Shell partitioned the list to be sorted into k "chains", each
approximately 1/3 the size of the total list. Each.chain was "sorted"
usihq iLdA c.change (hubbl.' The algorithm shown here, somewhat
improved, uses a linear insertion for each chain. The first chain
consists of elements 1, k+1, 210-1, etc. The second chain consists of
elements 2, to.2, 2k+2, etc., and the jth chain (j<=k) consists of
elements , jF2k, iAc. Thus, in the initial set of passes,
elements are separated by a distance of k. K is then decremented to
approims:Aely k/0 z,ild the eroes.:; is repeated. When k is one, the
list should be nearly lerted, 'lad a final linear insertion sort of the
entir it orxiirs. at the end iT. faster than a binary
sort beLaeee, although binary methoJe are better for randomly sorted
large a lincar nort ie faster if the number of comparisons is
small or if the list is almost in order (see note).

There are various verslions of Lhis sort, each using different rules
for partitioning the list. A less effecient algorithm uses N/2, N/4,
etc. The one. shown .here is better than this version. Another
version of the Shell sort uses decrements of ...,2P-1,
...,31,15,7,3,1. The number of omparisionA and moves is relatively
low. Notc that pach p r eceessive decrements is relatively
prime.

note: rt is int.,f.restrig noti, that for small n, an 0(n14) sort is
often more effecienct than an 0(nlog2n) sort because their simplicity
requires little ovo-' ALopL ccmparions and passes, making the
constant of proportionality relatively small.

Dr omey, F.tB. ElcAt...1:12.3.711 ,It3y (;:5.-110Iter., Pr ent c e-Ha; ;
I nt er nat onal , Englewood CI f fs, New Jersey, 19S2. pp. 209-226.Rhoads Samuel E. AglyAncirtil ag.trutot f',:gmatit eatjlagaset, Add i -Weal ey Publishing Company, inc., Menlo Park, California, 1986.pp. 134-107, 159-160.
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Proqram Sorts(input.outout);
(Joyce Bernitein1
(Feb. 2P, FMB)
tProdram whirh demostrates an improved hnhhlesort. quicksort.
Cinqortion sort binary insertion sos t. i4nd shellsortl
(copy for edurational use only}
comb
maxnum = 2000;

type
list = array El..maxnum3 of integer;

var
n, (size of array)
choiceeinteger; (menu selection}
a,belist; (unsorted and sorted lishgl

f****************procedure makelist********************************1
procedure makelish(var aelist; 11:integer);
Ceenorates an array of size n of random numbers greater than of
(zero and less than 10001
var

iginteger;
begin
for i u= 1 to n do

aCi3 := random(1000);
end;
(******************procedure showljst********************************1
procedure showlist(a:iist;n:integer);
(displays array in rows of 10 elements}
var

I:integer;
begin
for i := 1 to n do
begin
write(ari3:4,");
if i mod 10 = 0 then writeln;

ende
writeln;

end;
(******************orocedure insertion*******************************)
procedure insertion(var aelist;nrinteger);
var

Clist index for move once place is found}
j, (index for array item begin placed)
place, (eventually, index of first item smaller than item to insert}
tempe integer; (value of item being inserted)
found: boolean; (flag for location of insertion spotl

begin
for j := 2 to n do

begin
temp nm: atj1; (first j - 1 elements already sorted)
place := -1;
found := false;
while (place ) 0 ) and not found do
if atplace3 > temp

then place := place - 1
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else found := true;
for i := 1 - 1 dcwnto place + 1 do

811 11 :. aril;
arplace + 11 t= temp

end
end;

(******************procedure binaryinsertion*************************)
procedure binaryinsertion(var allist; n:intecier);
var

io (list index for move once place is found)
J, (index of item being inserted)
top,bottom,middle (section boundaries and center)
tempt integer;

begin
for i n= P to n do

begin
temp := aril;
top
bottom :=
repeat
aliddle := (top + bottom) div
if aCmiddle1 <= temp
then top := middle
else bottom := middle'

ur4i1 top + 1 = bottpm;
for i := j downto bottom do
aCi + 11 := aCi1;
aEbottom1 := temp

end
end;

C******************procedure shellsort*******************************)
procedure shellsort(var a:list; n:integer);
var

iN (index used for mass shifting of chain items
io (some multiple of kN plus m index of item beinn insPrted)

(becomes approx 1/8 size of arraym size of first increment)
My (loop marker for each of the k chains)
placeo (index if item in chain smaller than insertion spot)
temp : integer; (item being inserted)
found: boolean;
begin
k := 1;

while (3*k +1) < (n div 3) do
k 1= 3*k +1; (sets size of increment based on n1

repeat
for m := 1 to k do (for each of the k chains)

begin

while j <= n do

begin
temp := aCj3; element to be sorted)
i i k;
found := false;
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whi]e not found and ti > 0) dn
if aril > temp

then 1 1.= j -
else fnund := true;

place := I + k; (where item is being inerted-;.
i

while i .= place do
begin (move rest of chain down)

aEi +143 := an];
i :=

end;
aEplace3 := temp;

:= j + k;
end (while).

end; fforl
k e= (k - 1) div 3 next increment size}
until 1

Pod;

(******************procedure wicksort*******************************)
procedure quicksort(var a:list; nlinteger);
procedure partition(r,s:intecier;var integer);
var

: integer;
temp: integer;

begin
f := r + 1; (index one past pivot)

:= s; (last index in swap range)
repeat
while (at:II <= aEr)) and (i < s) do (find an element to swap)

: i + 1;
while (aEi3 >= arr3) and (j r) do r T 7' :1 IP)

:= ." 1;

if i <3
then
begin (swap)

temp := aril;
ati)
aEjl := temp

end;
until i >=, j; (Swap finished for this pivot)
temp := ex];
earl := aCj3;
aCj, := temp; (puts pivot in place) (j returned to calling program)

end;
procedure sort(mon:integer);
(recursive procedure which redivides the sort field)
var

: integer;
temp e integer;

begin
if n m > 1 (provides the halting case)

then
begin

partition (m0n,j); (receives the next dividing point, 3)



4

sort(fi,i - 1)3
sort(i i n);

end
else if (n - m = 1) and (,,Atml arn1)

then
begin tdo a final swap)

temp := atm];
aCm1 := ern];
aCni := temp;

end
end;
begin

sort(lpn)
end;
(* * * * * * * * procedure bubble* * * * * * * * * * * * * * * * *
procedure butiblesort(var aslist3ntinteger);
vmr

if (index of items being compared}
j, (loop variable limit}
lastsw3tchm flag for order in the datal
temp : (swap templ integer;

begin
:= n 1;

repeat
lastswitch := 1;
tor I := 1 to !I do

if aci3 a Ei
then
begin (swap)

temp := ati3;
an] := aN .4- 11;
ati - 13 := temp;
lastswitch := i;

end;
j := lastswitch 1; (end of unsorted data)
until lastswitch = 1

end;

(* * * * * * * * *procedure selection* * * * * * * * * * * * * * * 1
procedure selection(var aslist;n:inteper);
var

iajps9k:integer;
begin
for j := 1 to n - 1 do
(generates aCj) thru atn
begin

k s=
(k carrirs smallest element in decreasing block)
s := al:j3;
for i := 1 to n do

4 begin
if ari3 < s then

begin
s := aril;
k :=

end;
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end;

afil := ar41;
arkl s

end !

end;
r* * * * * * * * * procedure heap* * * * * * * * * * * * * * * * * 1

Procedure heap(var atlist;nvinteger);
var

ip (indexl
x:integer; (temp for array element)

procedure fixheap(var a:list;topybottom:integer);
(assumes items top 1 to boi:tom ar6 a heap)
(returns items top to bottom in a heap)
var

(index)
x:integer; ftemp for aray element)

begin
i 2 * top;
if i <= bottom then
begin

if i < bottom then if aril <ari 13 then i := i +1;(largest child)
if artopl < aril then
begin

x := artopl;
artopi
aril := x; 'fheap is good except at il
fixheap(api,bottom)

end;
end;

end;

begin(heap)
for i := n div 2 downto 1 do fixheap(a5ipn);
for i := n downto 2 do
begin

x := aril;
arll:= aril;
aril :=.x!
fixheap(aplpi-1)

end!
end;

* * * * * * * Main Program* * * * * * * * * * * * * * * I
begin
choice := 01
Writeln('This program sorts any number of items from 2 to '9maxnum);

* Writeln('Enter the number to be sorted');
readln(n);
makelist(a*n);
showlist(apn);
while choice <> e do
begin



repeAt
Writeln('Ple.lsca r.hoose a sort');
writeln/' 1: httbblillsort(imovoved) 'l;
writoelny R3

writeln(' 3:
w.iteln( 4:
writeln(' 5:
writeln(' 6:

4 writeln(' 7:

writeln(' 8:
readln(choice);

until (Choice >0) and (choice < 9);
case choice of

i: begin
b :=
bubbIesnrt(b,n);
showlis,[;(h,n);

c;?nd;

2: begin
b := a;
guicksort(b,n):
showlist(b,n);

end;
3: begin

b.:= a;
insertion(h,n);
showlist(b,n);

end;
4: begin

b := a;
binaryinsertion(b,n);
showlist(b,n);

end;
5: begin

b := a;
sh:Pllsort(b,n);
showlist(b,n)

end;
6: begin

b :m a;
select1on(bon)11
showlist(bon);

end;
7: begin

b := a;
heap(b9n);
showlist(b.n);

end;

quicksort');
linear inqortion');
binary insertion');
Shell');
selection');
heap');
end');

end;
A end;

end .
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