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TTI #9

This booklet is the last in a series of nine booklets vhich
constitute the Hofstra University Teacher Training Institute
(TTI) packet. The Institute vas a National Science Foundation
supported three-year prograx for exemplary secondary school
mathematics teachers. Its purpose vas to broaden and update the
backgrounds its participants vith courses and special events and
to train and support them in preparing and delivering
dissemination activities among their peers so that the

Institute's effects vould be multiplied.

This packet nf booklets describes the goals, development,
structure, content, successes and failures of the Institute. We
expect it to be of interest and use to mathematics educators
preparing their ovn teacher training programs and to teachers
and students of mathematics exploring the many content areas

described.

“The Computer as an Experimental Tool in Teaching
Mathematics" vas a basic course offered as part of TTI's cycle
of courses. This booklet describes the content and approach of
this course - matlematics is taught in a vay analagous to hov
science is generally taught. Using the personal computer as an
experimental tool in a mathematics laboratory provides the
student vith an opportunity to get involved in the discovery
process: to make conJéctures, to test them, to sse the results

and thus be able to adjust the conjectures being tested. A list

of course topics is proaengod and several are described more

3



fully: Tturated Quadratio Napa, Fractalm, Nomentum in Baaeball,

and Sorting vith the Computer.
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The computer as an experimental tool in teaching mathematics

Harold M. Hastings!
Joyce Bernstein1
and
Robert Silverstone'!

Department of Mathematics
Hofstra University
Hempstead, NY 11550

1 Partially supported by NSF Grant 8550088,

This is booklet number 9 in the series of publications by the Hofstra University Teacher
Training Institute.

Copyright (C) 1989 Harold M. Hastings: Joyce Bernstein and Robert Silverstone. All
rights reserved except that copies may be made for non-profit educational purposes
provided that this copyright notice appears on all such copies.
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Hastings, Bernstein, and Silverstone 2

Science in high school and college is generally taught with the aid of
laboratories. Laboratories provide the student with a chance to get involved in the
discovery process: to make conjectures, to test them, and to see the results of this
process. The advent of parsonal computers with graphics has made it possible to use
the computer as a similar experimental tool in a mathematics laboratory. This paper
describes the authors’ collective experience in using the computer as an experimental
tool in such a laboratory.

This paper is an expanded version of a talk by one of the authors (HMH) at the
December 1987 meeting of the National Council of Teachers of Mathematics. The
paper reflects the experience of HMH in teaching an experimental course to selected
high school teachers in a National Science Foundation Sponsored Teacher Training
Institute at Hofstra University, as well as the experience of JB and RS in applying the
techniques of that course in the high schools. We have not sought to provide a text on
education, but rather to share some of our experiences.

We thank Marie Hermann and Helene Morris for preparing this manuscript.

Contents.

1. Overview

2. lterated quadratic maps (HMH)

3. More on fractals (RS)

4. Is there momentum in baseball (HMH and 1987 class)
5. Sorting with the computer (JB)

ERIC

Full Tt Provided by ERIC.



Hastings, Bernstein, and Silverstone 3

erview

This set of notes is based on 1987 and 1988 class in the NSF-sponsored
Teacher Training Institute at Hofstra University. The 1987 class met for a total of 30
hours (twelve 2-1/2 hour classes); the 1988 class for 9 such sessions. The audience
consisted of superior, well-motivated high school teachers, who had a prior course in
Pascal. Many had no recent experience with calculus. Many possible courses can be
designed around these topics, which provide enough material and references for a
one-year sequence.

The goal of the class was to develop the use of the computer (in high school
and calculus level mathematics) as an experimental tool in discovering mathematical
ideas. The course emphasized experimental mathematics, in analogy with typical
physics and chemistry classes. Thus we seek to use the "discovery method" in a
variety of "advanced" topics accessable to high school students. Specific topics were
chosen to demonstrate numerical and graphical techniques. The topics were chosen
on the basis of mathematics level required, accessibility to the discovery method, and
my personal interests, as well as to provide a useful and diverse experience for the
audience. No specific attempt was made to cover the Advanced Placement syllabus or
other syllabi, although the topic on sorting was added to the course at student request.
A typical one-semester course would cover 4-6 topics. The topics are:

1. A model for population dynamics.

A simple model for population dynamics: the discrete time logistic model. Construction of the
model. Method of computer simulation. Chaotic dynamics - determinism versus randomness.

2. Random numbers.

Linear congruence random number generator. What is a random number? Use of computer
graphics. The birthday problem and its consequences. Probability and baseball - see Section 4.

ERIC
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Hastings, Bernstein, and Silverstone 4

3. Fractals |.
Self-similarity. Regular fractals and recursion. See Section 3.
4. Fractals Il

Fractals constructed by iterating quadratic maps. The Mandelbrot set and Julia set. Programming
for time efficiency. See Section 2.

5. Numerical integration.
From a classical Greek formula for volume to Simpson's rule. Project on error analysis.
6. Nur-..zal differentiation.
Comp'uter evaluation of limits, choosing the denominator appropriately. Project on error analysis.
7. Hooke's law and the vibrating spring.
Derivation of sinusoidal motion from elementary principles.
8. Matrix models (age structured populations).

Leslie matrices. Eigenvalues, eigenvectors, and convergence. Numerical computation of
dominant eigenvalues.

9. Sorting.

See Section 5.

We now illustrate several of the above topics.
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2. lterated quadratic maps
The study of iterated quadratic maps is a nice demonstration of the use of

computer graphics to uncover beautiful and interesting phenomena in mathematics.

We begin by considering the process of iteration. Let f be a function from the
real numbers to the real numbers. One may choose a real number xg , and form the

sequence

X0, X1 =f(xg), x2=f(x1),x3=f(x2),....

(Many students have seen the iteration process in the computation of compound
interest. Here the amount of money in an account at the end of each period is obtained
by multiplying the amount at the end of the previous period by the quantity (1 +the
interest rate per period). Thus compound interest involves iterating the function

F()=(1+r)x

whery r denotes the interest rate and x the amount of money.) We are concerned
with properties of the sequence of points obtained by iterating the map f. Among the
simplest questions one can ask is whether the sequence X0.X1,Xx2,.. isbounded or

not.
We also make this question simpler hy first considering only linear maps:
fix)=ax+b.

In this case, it is not hard to see that the sequence of points obtained by iteration is

©
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Hastings, Bernstein, and Silverstone 6

bounded if |a | < 1, and in general unboundedif |a |>1. If b = 0, then f takesthe
simpler form f(x) = ax, and an easy calculation yislds

xn = alx,.

The convergence properties of the sequence of pcints { x, } follow easily. (In the

example of compound interest above, a =1+r.) Inthecase where b is not
necessarily equal to 0,
Xn =aMlxg+an-1b+an-2p+an-3p+ .. +b
=allxg+ (1-af)b/ (1-a),

summing a geometric series. The convergence properties of the sequence of points
{ xn } follow easily. We leave details and a more precise discussion to the reader.

We now consider the case of quadratic maps:
fix)=ax2+bx +c.
The answer is now more interesting, even in seemingly trivial cases such as fix)=x2.

Here the sequence of points obtained by iteration is bounded provided the first point
x o satisfies | x| <1, and unbounded provided that the first point x o satisfies

| xg | > 1. The most frequently studied case is

fix)=x2 +c.

ERIC 10
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Hastings, Bernstein, and Silverstone 7

Here the results depend upon both the starting point x g and the parameter ¢

in a complex way.

We now consider iterating the equation

Hz2)=22 + ¢ (2.1)
for complex z (and possibly complex ¢).

(We recall here that a complex number is a number of the form a+ bi, where

i denotes V-1. Complex numbers are added as if they were binomials with i as a
variable; for example, (a+ bi) + jc+ di) = {a+ b)+ (c+ d)i. Similarly, complex
-numbers are multiplied as if they were binomials with i as a variable, except that j2

is replaced by -1 ; for example, (a+ bi)-(c+di) = (ac-bd) + (ad + bo)i. Complex
numbers may be represented as points in the plane, with the complex number a+ bi
plotted as the point (a,b). The length of a complex number is then given by the
Pythagoreantheorem: |a+ bi | = (22 + p2 IR

As above, for the resulis of iterating (2.1) for ¢ = 0 are easy to see: if |z] <1
then the iterates approach 0;if | z | = 1, then the iterates all have absolute value 1,
andif| z | > 1 then the iterates approach . The question is how do we study

equation (2.1) if ¢ is not zero. It is here that computers come to the rescue.

First, to a computer a compiex number is just a pair of real numbers or a vector,
eg,

Z =X + [y correspondsto (x,y ).
If we suppose that ¢ is real, we may write the resuits of applying f to z =x +jy as

ERIC 11
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Hastings, Bernstein, and Silverstone

Xnew = X2 - y2 +c,

Ynew = 2xy.

Therefore one can just write a brief computer program to study the iteration, for
axample:

program iterate;
{Copyright (C) Harold M. Hastings. All rights reserveq except that
copy of this copyright notice appears ou ali such copies.}

uses
crt;

var
X,y,Xnew,ynew,c : real;
i,imax : integer;

begin

writcle{'How many iterates ?');
readln(imax);
writeln('What are the coordinates of the starting point, z0 ?);
readin(x,y);
fori=1toimax do
begin
Xnew = x*x - y*y +c;
ynew := 2xy;

X .= Xnew,

ERIC
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Hastings, Bernstein, and Silverstone 9

y = ynew;
writeln(i, ',x," ',y);
end;

end.

Perhaps one can tell whether the sequence of points generated by this program
approaches « or not. However, since we cannot compute the entire sequence of
iterates, it would be nice to have a criterion for testing whether the sequence of points
generated by this program approaches «. The following lemma provides such a
criterion.

2.2. Lemma. Suppose |c|<1and|z|22. Then |z2+c|2]|z|+1.

Proof. |z2+c¢|2]|z2|-|c| (by the triangle inequality)

2|z2|-1 (since | c|<1)
22| z|-1 (since | z|22)
=lz|+(z|-1)

2| z|+1 (since | z|22),

as required.//

Lemma 2.2 implies that once the length of any iterate Zn exceeds 2, then

subsequent iterates march off to «o: |25 .k | 2 2 + k. The following figure illustrates the

inequalities in the Lemma 2.2,

13
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/!
z"luzs\=v, i
fz*l=v*}
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We now combine Lemma 2.2 with computer graphics to draw a picture of which points
appioach . The program is written in Turbo Pascal 5 for the IBM PC using Hercules
compatible color graphics, and is easily modified for other languages and computers.

program mandel,;

righ H M tings. All rights reserved except th

ies m made for non-profit educational rovided tha
i yright noti 1 i
uses
crt, graph;

var

i,j: integer; {screen coordinates )

k: integer; {counter)

col: word; {color}

X,y: real; {"math" coordinates)

xn: real; {nxew; the variable ynew is not needed in this

program)

z: real; {square of length of (x,y)};

c:  real; {constant in quadratic map)
begin

readin(c); {c must satisfy -1 <c< 1;ther der may add a
check on c if required)
15
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Hastings, Bernstein, and Silverstone

initgraph(0,0,'');  {Turbo 5 comand for hercules color graphics on

IBM PC, modify as appropriate)

fori:=0t0319do
for j:=0t0 199do ({loop over 320 x 200 graphics screen)
begin

x := (1-160)/128.0;

y :=(100-)/64.0; {x and y scale factors, adjust as
appropriate, note the use of "100-j" in order to make
the y-axis point up as usual, the action usually takes
place within -1<x<land-1<y<1)

k:=0; {initialize counter)

z:=X#x + y«y; {initialize length squared)

while ((k < 10)and (z < 4.0)) do

{the "k < 10" criterion prevents infinite loops and
might be adjusted by the reader. The "z < 4" criterion
detects points for which we know that future iterates
will approach infinity; see Lemma 2.2, above. Some
points take more than10 interations to escape the
disk "z<4".}

begin

{first replace x + iy by (x+iy) squared + c)

Xn = X«X -yxy+¢; {real part)
Y = 2xXxY, {imaginary part)

X .= Xn;

. 16
ERIC
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Hastings, Bernstein, and Silverstone

Z = X%X + YxY; {compute length)

k :=k+1; {iterate counter)
end;
ifk := 10 then {point did not escape)
col :=0
else

col :=k -3x(kdiv3)+1; {pointdid escape;

color :=k mod 3 + 1
indicates time until
escape. Other formulas
might be used.)
putpixel(i,j,col);
end; {loop through points)

end. {program}

13

We now illustrate the results of several runs of this program.

page 14: runwith ¢ =0.56.

page 13: runwith ¢ =0.56, butwith" k < 10" replaced by "k <20"
"it k = 10" replaced by "if k = 20", and blown up by 200 %.

Q 17
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Hastings, Bernstein, and Silverstone 16

We make several observations and suggest several exercises.

(1) if c is real, as in the program, the resulting picture is symmetrical about
both the x and y axes. We leave the proof as an exercise, but give a few hints. First,
replace z by -z, and observesthat 22+ ¢=(-z)2+¢. Thus the fates of the points z
and -z are the same. This yields symmetry about the origin. For symmetry about the -
y-axis, replace y by -y, and compute the length of 22+ ¢ = (x +iy )2+cand (x-iy)2+c.
Then show symmetry about the x-axis, using geometry.

(2) What happensif ¢ is not real ?

(3) The figures drawn by the program mande! above appear self-similar in
that that each blob corresponds to two smaller blobs, of roughly similar shapes. The
term “self-similar” will be defined in Section 3, below. Here is a sketched explanation
of why the figures are self similar. Suppose that a given blob consists of points which
leave the circle |z| <2in k iterations. Then there are points which map to this blob in
one iteration, and thus leave the circle |z| <2in k+1 iterations. Since the map f (z)

=22+ ¢ is usually two to one, there will be two blobs which leave the clrcle |Z] <2in
k +1 iterations. See the following figure.

/M
leave in
k + 1 iters.

o

leave in k + 1
iterations

EKC
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Hastings, Bernstein, and Silverstone 17

For self-similarity, we invoke the fact that f has a derivative f'(z) = 2z. Thus f
rotates and stretches small vectors Az by a locally constant amount:

f(z+Az)=f(z)+22-Az +(small error).

Multiplication by 2z multiplies lengths by | 2z | and rotates vectors through an angle
arg(z) with cos(arg(z))=x and sin(arg(z))=y where z =x + yi. We refer the
readerto any introductory text on complex variables. This implies that blobs are
stretched and rotated by locally constant amounts.

We encourage the reader to experiment further. For further reading we suggest
the following.

R nce

Mandelbrot, B.B. 1977, 1982. Fractals: form, chance and dimension, The
fractal geometry of nature, Freeman, San Francisco.

Pietgen, H.O., and P.H. Richter, 1986. The beauty of fractals: images of
complex dynamical systems, Springer- Verlag, New York and Berlin.

Bemarks, We began with some simple questions. We first observed that the
computer could be used to conduct experiments in order to try to answer those
questions. We then saw that one could prove a useful rule (the lemma abovs) in order
to use the computer to answer questions about the propetties of certain sequences.
This combines inductive reasoning from the experiments with deductive reasoning
used in mathematical proofs. Many mathematicians are familiar with this combination
of techniques, yet current curricula provide little useful experience for the student.
Finally, we used computer graphics (combining algebra and geometry) to illustrate the

ERIC 21
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Hastings, Bernstein, and Silverstone 18

answers to a mathematical question. The study of the properties of the answers leads
a to a new field, the field of fractals, which is explored further in the next chapter.

2%
o
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FRACTAL GEOMETRY
AND ITS APPLICATIONS

IN THE MATH CLASS

Fractal Geometry is one of the fastest growing mathematical disciplines.
The term "fractal" was coined by B. Mandelbrot of I.B.M, in the

1370's  to describe the geometry of chaos. There are many ways to describe
what a fractal is. Some of these descriptions are:

al A fractal is a figure that has a FRACTIONAL dimension.

A line has-dimension 1
A square has dimension 2
A cube has dimension 3
A fractal can have dimension 1,2345---
b A fractal is a process of becoming rather than being

c) A fractal can be a gelf-similar object.
This means that at any level of magnification, any g -t of a fractal
zan look exactly like the initial view., Self-similarity is related
to the process of RECURSION

d> An ob ject of great complexity.

&) A geometry that accurately describes the real world
¢ or any other world )

In this session, we will examine the following ideas:
al Fandomness and chaos... The CHADOS GAME

b) Self-similarity ........The KOCH_ SNOWFLAKE and its cousins

c) Dimension, both topological and fractal
d) Applications of these ideas in the Math curriculum
&) Computer generation of these shapes

THE 0S 6AM

Xy
Start with the vertices of a triangle, say Xi, X2 and Xa. ¢
Let P be any point in the plane. The CHADS GAME is played as
follows: ; °
‘ X2
al Choose any one of the three vertices at random, say Xi.
. b Mark the MIDPOINT of the segment P Xi. call this point P,
) G back to step (a)
Questicn: WHAT is the resulting cbject, and what are its properties

WHY does the obje:t appear as it does?

24
- )

Fractal ¢ -1 geometry



The figure produced by the LHAOS 5S3AME is shown X y
at the right. Although the object was formed A{fQEQQNé,

by a random process, it appears to have a
’u‘% ) AA‘ 4
o= “m ;
.z«.-_‘g:.. S WL WS N

definite form and structure.
al The ob.ject has the property of being SELF-SIMILAR If you axamine
any of the sub-triangles, you will notice that they are IDENTICAL
to the original, except for SCALE

Observations: K

This property of gself-similarity defines the figure as a FRACTAL
b We can calculate the area of the cbject.
A~ A/4 = A(3/16) - ACI/E4) = <+« = A(L1/4)(3/4)" = «--
where A is the area of the entire triangle
) This concept leads to further exploration:
i) What happens if we went 1/3 the way from the vertex?
ii) What happens if we went 1/3 the way from P ?

iii) What if a square, or any other polygon were ured instead of
the triangle?

The figure formed is called the SIERPINSKI TRIANGLE. Cousins of the
triangle are the SIERPINSKI CARPET, pictured below’'left, and the
MENGER SPONGE, pictured below right.

By changing the initial conditions, but by using the same process,
more realistic images, such as the fern, pictured below, can be generated.

A simple BASIC program to generate the Sierpinski triangle is:

Program is in AFPLESOFT.. Adjust graphics for your own computer )

( Choose your cwn coordinates for the triangle’s vertices )
20 XP.= __ ¢ YF — : REM «chonse your own starting point (XP,YP)
30 HER : HCOLOR 7
40 R = INT(2 % FENDc1) + 1
)

10 X(1) = : YO1) = : X(2) = : Y(2) = $ X(3) = __ o Y(3) = _

)
/2t YP = (YR +YP) /2

S0 XF = ( X(R)Y + XP
&0 HPLOT XF, YP
70 G0TO 40 0O

Fractal ¢ 2L ) geometry



THE KOCH SNOWFLAKE

The KOCH SNOWFLAKE is one of a class of fractals in which a straight
line segment is replaced with a polygonal line, called a nenerator,

The SNOWLINE is constructed in the following manner:

al Begin with a line segment

b Divide the segment into 2 equal
parts, and replace the middle
third with two line segments,

iz repeat (b)) on each of the
resulting line segments.

d) an to ()

We cbserve that at each stage, the length of line segment increases by a
factor of 4/3 , hence at stage n, the length of the "curve" is

b = L%(4/32)n
where L is the length of the initial line segment.

Clearly, we can see that LIM L., = @@ , hence is an unbounded length
n => oo

in a finite span.

To do this program in BASIC is quite complex, because to do it efficiently
requires RECURSION, or the ability of a subroutine (procedure , function)

to call itself up. Pelow are two programs to draw the Koch line and
the snowflake:

LOGO FASCAL
TO KOCH :LENSGTH :LEVEL PROCEDURE KOCH(D:REAL;L: INTEGER)
IF :LEVEL = O CFORWARD :LENGTH STOP1] BEGIN
KOCH :LENGTH/3 :LEVEL-1 IF L = O THEN MOVE(D)
LEFT &0 ELSE
KOCH :LENSTH/3 :LEVEL-1 BEGIN
RIGHT 120 KOCH(D/3,L-1); TURNCEO) ;
KOCH :LENS3TH/2 :LEVEL-1 KOCH(D/3,L-1) ; TURN(=-120);
LEFT &0 KOZH(D/3,L-1)3 TURNCED) ;
K.OCH :LENSTH/3 :LEVEL-1 KOCH(D/2,L-~1)
END END
END;
'a¥ el
Fractal ¢ - -Eb geometry



The Koch Line has some interesting properties:

al For any initial span, the "length" of the curve is infinite
by Although the curve is continuous, at no point is there a derivative
( an example of where continuity is not sufficient for the existens
of a derivative.)

The koch lire can be expanded to the KOZH SNOWFLAKE by:

L0530 PASCAL
TO SNOWFLAKE :LENSTH :LEVEL FOR I := 1 TO 3 DO
FEFEAT 3 [KOCH :LEVEL :LENSTH RIGHT 1201 BEGIN
END KOCH(LENGTH,LEVEL)
TURN(~120)
END;

The first five stages of the SNOWFLAKE are shown below:

N\

s T
\‘\ // i\ /‘i‘ éﬂ\[(\g ;Lé %

Can we prove that the area is bounded, without actual computation?
Can the "actual" area of the snowflake be calculated?

Here we have an example of an infinite perimeter bounding a finite area.

Fractals are used to model the real world. One application of the snowflak
is in the representation of islands and clouds. The coastlines of islands
and the bouvvdries of clouds -an be thought of as random. By introducing

rnadom lengths and angles into the generator, we can simulate these natura:
structures.

Random KOCH ISLAND

o
Fractal (¢ <4-%)0 geometry



DIMENS ION

It is our normal understanding that the "dimension" of an object is an
integer. We know this because we asssociate dimension with direction.

We say that a line is | _~dim because we can travel in essentially one
direction, forwards (or backwards). A plane is Z-dim because we can walk
not only forwards ¢ % backwards) but up and down. We have a sense that
dimension is related to the "amount of space that is taken up". This
notion of dimension is called the TOPOLOGICAL definition of dimension.

We can see how dimension is developed by the following consideraticns:

al consider the line of length 1

Suppose that we triple the length. Now we can see that
three of the original segments will cover the new length.

We can write 3 = 3, where the power, 1 , is the dimension.

b) If we consider a unit square, and triple the dimensions,
it requires 3 of the original squares to cover the new one.

We can write 32 =9, where the power, 2 , is the dimension.

) If we consider a unit cube, and triple the dimensions,
it requires 27 of the original cubes to "fill" the new one.

We can write 3@ = 27, where the power, 3, is the dimension.

These examples lead to a relationship between the number of self-similar
parts N generated and the scaling factor (R). It is:

Retmension = N or RP. = N or D = log(N)/l1og(R)

R N D
Unit line é 3 1 2+ = 3
Unit square c 2 2 3¢ = 9
Unit cube 3 27 3 3® = 27

and these conform to our usual sense of dimension.

Applying this relationship to our two "strange" objects, the gasket and the
snowflake, we see:

TRIANGLE If we think of the lower left as the "unit" triangle,
the triangle’s sides are twice as large, and there are
three triangles generated. Hence

Fo=2 N=23C Log(3)/1log(2) = 1,.5843---

SNOWFLAKE Each length is divided inton T equal sections, and 4 segments
replace the ocriginal 3, hence

r =23 N =4 Log¢4)/Log(3) = 1.2618---

These strange objects have fractional dimensions. A question that arises
is: "What is a meaning of a fractional dimension?"

<8
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The CARFET's dimensicon can be calculated by by observing that
the original square is reduced By a factor of &, and 8 squares are
generated:

B =3 N =8 12g¢8)>/12g¢3) = 1.83---

THE CANTOR SE

Ohe of the earliest fractals developed was the CANTOR SET. It is derived by

aj Start with a line segment = =—=——=—-———-=—-—-—osoosomoosomes
b) Divide intc 3 equal parts, and = -=—————=——=  mTTmsoess
remove the middle third -—= == - -

=) on each of the resulting segments,
repeat part (b)

EFRACT GENERAT ION ING TRANSFORMATION F_THE PLANE

The regular fractals discussed so far can be generated by considering
the movements of points in the plane ¢ or space ) by means of

AFFINE TRANSFORMATIONS

Ah AFFINE TRANSFORMATION is a LINEAR TRANSFORMATION followed by some
TRANSLATION or SHIFT. LINEAR FUNCTIONS consist of such movements as

REFLECTION EXPANSION DILATION ROTATION SHEARING

Suppose that T is a linea” {inction of the plane to itself, and suppose
that the point (x,y) is mapped, under T, to the point (x',y’).

We zan then write:
Pt
(X, y)T = (x",y")

. (x,y)
(%',y") is called the IMAGE of (x,y) under T

This means that there are real numbers a, b, ¢c and d, where
%' = ax + by
y' = ¢x + dy

This system of linear equations can be written as a MATRIX equation

a c
(x?,y") = (u,ydT = (x,y)X
b d

An AFFINE TRANSFORMATION, A, cah ve written

(v, Y A = (x%,y)T + (r,s)

where (r,s) is a trarslation, or shift r units Horizontally and s units
vertically.
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Returning to the SERIFINSEI TRIANGLE:

Our gmal is to see where points go under affine transformations.

Far the TRIANGLE, we will need to consider THREE transformations
Ay The image of (x,y) will be in the LOWER-LEFT triangle.
Az The image of (x,y) will be in t-: LOWER-RIGHT triangle

Aa 3 The image of (%,y) will be in the TOP triangle.

This giQes the following set of affine transformations:

For A : (0,00As = (0,0 (h.K)
(1,00A, = (1/2,0) /\ (35 ™
(hyk)As = Ch/2,k/2) A ....... S
{o,0) (0) (00) (3.0)
1/2 0
Resulting in: (x,y)Ay = (x,y)X
o 1/2
For Aa : €0,00A2 = (1/2,0) (hak) "
..1 .1‘.. w
(1,0MAz = (1,0) / \ ;?’é)
th,k)A2 = (Ch+1)/2,k/2) A
(1,0) 1,9)

1/2 0
FResulting in: (x,y)Aa = (x,y)¥ + (1/72,0)

0 1/2
For As : (0,0 Am = (h/2,k/2) Ch. k) (k.
(1,0)Aa = ((h+1)/2,k/2) (b.t) A("{'o%’z
(h'k)Aﬂ = (h,"‘:) -.o..o..o.nu .oo‘
(0,0) (h,0)
1/2 0]
Resulting in: (x,ylAz = (xX,y)% + (h/2,k/2)
0 i/2

1Y
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SOME APPLICATIONS OF FRACTALS

Fractal analysis is being used in studying almost all natural phenomenon.

Ohe example is in Motion pictures. The STAR _TREE AND STAR _WARS worlds

were generated by fractal programming of computers. Below is a "simple"
- example of a randomly-generated landscape.

A_GALLERY OF FRACTALS

a) From the chaos game, if the point is chosen a distance 1/3 to the
vertex instead of the 1/2, the result is:

b The world-famous BIFRUCATION graph

iz The grand-daddy of all fractals, the MANDELBROT SET

Fractal ¢ -8- ;‘3 19¢o.etry B[ST m" AVA“.AB[E




A SET OF PROBLEMS FOR yYOU TO TRY

Start with a square and replace each side

of the square with the generator —D .

Let F = initial perimeter and A = initial area.

a) Letting SEC0) pe the initial square, draw S@(1) and SQ(2)
b) Find the dimension of this fractal ( SQ(ee) )

=) Find the area A(n) of SQC(n) and hence AF = Lim‘:(n)

d) Find the perimeter P(n) of SRCn) , and PF = C;; P(nd

) Write a program to produce the this frau:t:a\l.nm>‘°

This fractal is known as the KOCH ISLAND

HGive a geometric argument to show that the area of the SNOWFLAKE
is bounded by the hexagon that circumscribes it at level 1.

Refer to the CANTOR SET, page €,
a) Calculate its dimension

b) <calculate its length

Start with a square and form the fractal by replacing each of the

sides with the generator

a) Draw level | and level 2 of this fractal.

b) What is the dimension of this fractal?

Do the same as problem 2 with the generator

32
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€. Refer to the SIERPINSKI CARPET on page 2
Let MCO) be the compiete square at level 0O,
M(l) be the square, at level 1, with the central square
removed,
M(Z) be at level &, where the B additiconal squares are
removed.
a) What is the dimension of this fractal?

b) At stage n

i) S(nh) = number of squares removed. What is S(n)?
ii) What is the area of each of these squares ?
iii) What is the total area, TA(n), removed

) What is the area of this fractal ?

7. Fefer the the MENGER Sponge on page 2.
a) Find the fractal dimension of the sponge
b) Calculate the surface area of this fractal.

) Zalculate the volume of this fractal.

8. Consider the following construction (¢ drawn in 3-D perspective)

level 0O Level 1 level 2

s
)

a) What is the dimension of this fractal

b) What is the surface area of this fractal?
c) What is the volume of this fractal?

d) What is the height of this fractal?

e¢) What is the relation between this fractal and the MENGER
SPONGE*?

. . a) Derive the affine transformations for the CARPET

b)» Derive the affine transformations for the SPONGE

33
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SOLUTION SUGGESTIONS

1. ay) s@l) ig . b D = Log(8)/1ag(4) = 1.5
) An) = A for every A.
d) Fin) = SNEP --> o®
@) see next page (after # 9
2. Just prove that at each stage the triangles added in are within th

line joining the furthest endpoints of the two adjacent sides:

P
A
3. a) D = Log(2)/Log(3) o .63 b ©
4. Level 1:
Dim = log8)2/12g(3) & 1.893
S Level 1: I
Dim = 1log(9)/Log(3) = 2
( Is this a fractal??™?)
6. a) D = 10g(B)/10gt3)
b i) 8Sdn)y = Bg» ii)  (1/79")%A iii) TAn) = (8/9)"%A
c) 0 ( consider the geometric series described by part (b)
7. a) Log(201/1:3(3) % 2.7268
b)Y At each stage, ea:ch sub-cube’s surface area is increased by
a factor of 2
2) O... relate to CARPET
8. a) 1ogd13)/10g(3) g 2.334

b) At stage n, the surface-area is (13/9)» of the initial square
hence is infinite.

c) At stage n, the volume is increased by (13/27)n/27
(assume there is is an initial cube of volume 1)

Volume = 1/14 of the initial surrounding cube

d) Height iz (1/3) 4+ (1/3) + (1/27) + -« = {/2

34
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F. a) FRequires 8 affine transformations

/"””—7;__—__-;

AN . ; van(d )bt
I X b cx9) Ag® A9 ( o 4 |
N T |

b)Y Requires 20 affine transformations.

Note the geometric "similarities" between the following fractals.
Do you suppose that there may be some relationhip between them?

— ‘-J-l-- 'Y llll >

1e) LOE0 program

TO ISLAND :LENSTH :LEVEL
IF :LEVEL = 0 FD :LENGTH STOP
ISLAND :LENGTH/4 :LEVEL-1
LEFT 90
ISLAND :LENGTH/4 :LEVEL~1
RIGHT 30
ISLAND :LENGTH/4 :LEVEL-1
ISLAND :LENSTH/4 :LEVEL-1
LEFT 90 |
ISLAND :LENGTH/4 :LEVEL-1
LEFT 90
ISLAND :LENGTH/4 :LEVEL-1
RIGHT 90
ISLAND :LENGTH/4 :LEVEL-1

END KOCHISLAND €0 2

TO KOCHISLAND :LENGTH :LEVEL

REPEAT 4 [ ISLAND :LENGTH :LEVEL RIGHT 90 1]
END

35
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The

ADDENDUM

I

folloving prablems are exarnles of how the 1dea of SELF-SIMILARITY

can be used to simplafy the soliution,

1.

CONTINUED FRAC NS

Let < =1 + 1

The self-similarity 1n this problem 1s quite evident. We can
re-write this expression as:

X =1 + 1
X
which results in the yuadratic equation %= - X - 1 = Q
hence X = 1+ /5

This is a problem that was given to me Ly a student:
. )

LnCX

Lncx
Evaluate Ln(X

Let thni- evgression he rzpresented ny Y, then clearly, we can write

Y = Ln(XY)
Y = Y-LntX)
1 = LnCX)

e = X
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E oore A addeay Faotere, TiIHL
e N oare B, o1n turn, rall a fair Jie. A rolls first. e first persa
tooall o a "e" wins, What 1% the probability, a, that A wins?
. The tree below shows the progress of the game for the first O rolls,

8 wins

A wing

Clearly, a = (1/6) + (25/361(1/6) + (25/36)1=(1/6: + --°

We can use the idea of SELF-SIMILAFITY by =bserving that the
tree can be re-written to look like

r I %~ The dree saif-simlas hew, hoawece hes preb O
‘ p’

a
relly
A L IT71Y
aiving the equation a = (1/€6) + (25/26%a --» a = 6/11

4, The classic GAMEBLER'S RUIN PROELEM

A and B play a game. A starts with %3 and B starts with $2. The

agame is as follows:
Each, in turn, flips a fair coin. If the tosser gets a HEAD,
then he receives %1 from the ather nerscon; otherwise he gives
%1 trm the other person.

What 15 th= prubaoility that the first perscn wins®

Tn the solution, a tree will again be used. Let <a,b) represent
how much maney @ach has as each stage of the game. A tree, for the
first 9 tosses is shown below:

€32)

(l'_”
(

(o,5)

which gives the infinite series
a = (1/4) + 201/16) + SC1/64) + 13¢1/256) + ---

which 1s not an sasy series to evaluate.
(
39
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®

which gives the infinite series:

a C(1/4) + 1/4)a + (1/4%a + (1/16)Ya + (1/E4)a + <+ -

[t

C1/4) + 1/4ra + €1/37a (Sum the infinite geometric series)

&1}

Hence a = 3/

We can reduce the tree still further by making the observation that
the state (2,3) i3 the zame as the state (3,2), except that it
represents the probability of B winning (b =1 - a)

A
o

¢t

This now wuives the equation a = (1/4) + (1/4%a + (1/2)(1-a)

The class of problems where we can nse the techniques of SELF-SIMILARITY
iz large and varied. This method of solution introduces the student to
ansther way of viewing phenomena as a process, and in a fractal way.
This method car also help to introduce the student to the ideas and
techniques of RECURSION and and to reinforce the tool of INDUCTION.
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Irx

Soellowanig e o0 callecrion of AFFINE 7TRANSFORMATIONS

in constructian your tolf-similiar fractals.

Lt ., be the given poant, a~d (x',y') = (x,y)&
SCAL ING (“"‘J) A =
(R ,//”’ ')
’ﬁ .,‘(l;g')
ROTATION A =
o
' \'“u*(hﬁ)
—%
cx,9)
REFLECTION e 070
ay X-axis N - A =
v »
o C1,9) = (XY')
Ly
R
o | e
by Y-axis A =
SHEAR
ar RA-divecticon — / 7 A =
by Y-direction P A =

TRANSLATION (nate: write (x,yr as (x,y,1) )

| A=
/ th.l:_)-
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4, Is there momentum in baseball?

Harold M. Hastings
and

The 1987 TTI Classx

Department of Mathematics

Hofstra University

Hempstead, NY 11550

Sportswriters often discuss "momentum"”. We sought to

determine whether there is momentum in baseball, in one
special case, the 1986 Mets, using elementary probability.
The results are interesting and the probiem and techniques
interested our class (outstanding high school teachers
participating in a National Science Foundation sponsored
Teacher Training Institute) and should interest many others.

The calculations may stimulate additional investigation into

ordinary events using elementary probability.

The 1986 Mets seasonxx may be summarized as follows,

where Wn denotes a string of n wins, and Ln a string of n

losses:

we, L3, wii, L1,We6,L1{,WI1, L2, W1, L2, w3, L
wWé6, L2, W {1, L1, We, L1, W3 L1, W7, L2, WI1,L
Wi, L2, W 8, L1, W1, L3, W5 L3, W3 L2, VW3, L
w3, L2, w 3,L{,wW3, L2, W14, L4, W6,L 1, W5, L
Wi, L1, W 4, L ¢,WI1, L4, W3, L1, W1, L3, W, L
W4, L 1, W 5 1108 wins in 162 games).

2,
1,

ey

i,

We shall say define momentum as the tendency for wins to

follow wins. This allows the questions about momentum to be

phrased mathematically as follows:
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1) If the Mets won the last game, what is the probability

that they \{rin the present game?

2) If the Mets won the last n games (for a fixed n), what is

the probability that they win the Present game?

3) Are there any statistically significant differences?

We shall use test the null hypothesis that there 1is no
momentum, in which case the results of successive games are
independent. More precisely, we consider the Bernoulli trials
(see [1]) or any elementary statistics textbook) model that
the 1987 Mets season consisted of 162 independent games, with

a probability p of winning each game of 108/162 or .667.

For n independent Bernouilli trials, each with a
probability p of success and gqg:=1-p of failure, and np and
ngqg ! 25, the expected results are essentially normal with

mean np and variance npq [1].

There were n:=107 games played following wins (the Mets
won the last game). Of these, the Mets won 76, this gives a

conditional probability for a win following a win of

plwin,previous win) = 76/107 = .T10,

However, the null hypothesis gives an expected number of wins

of
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np = 107 x .667 = 71.3,

with a standard deviation of

3 = 4088

1]

[y
™
E)]

inpq

games. The number of excess wins, 4,7, is less than one

standard deviation, and thus not statistically significant.

Thece calculations were repeated for the case of 2 or 3

previous consecutive wins, with the following results.

Number Actual results Null hypothesis
of pre- Expected Standard
vious wins Prod. of wins deviation
wins (trials) (successes) |win np Inpq
2 75 54 . 720 50 4,08
3 53 35 660 3%5.3 3.43

In neither case is the difference between: the null hypothesis

and the actual results statistically significant.

We invite the reader to continue with larger n, as we
did, and see what happens. (We found no statistically
significan "momentum" with our definition.) We note that
had we found momentum from one game to the next, we would
have considered a Markov chain model (see, for example [1])
which estimates the probability of winning each game from the
results of the immediately previous game. We also invite

other definitions of momentum.
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3. SORTING WITH THE COMPUTER. Joyoe Bernstein

Tabvodustion o Soets
Cnmwrd ot 00 Joce Decnglbein, 10028

Tearhivg st alga WShms 19 a0 sompat ey stience class grovides a.
plve bridoc Bebtweern o ogeamming  od mathenatics.  IL heoomes D eREAr y
to understand what graphs of certain functions look like far removed
from the oriaoin.,  Recursion, used in the most effecient sort, is a
close cousin of induction

When choosing a sort, there are three main considerations:
is Frogramming time - for small arrays or flles, use a simple sort.
tis  Exenution time - measure of effeciency, a function of number of
conparisons and data movements.
iiie Memovy vequivements ~ uwsually sacvificed in & trade-off for

DeLter efisoiamiy.

CET o lienaly Menwes o brgres bant oo She nmbers of Tilew Lo Lo soarted
Gebs Laovges We measure offeniency using a Tioth o poTasaen B Ldiiae B some
fuimbaon gy, of Ny the sice of the covt. "Eag 07 matation,

Clguidyyy means peoporbional So g oD,

FOND = OogiMI) sl 20 RONG T o kg
For all of the sorts we will consider, which require both comparisons
ancl data wmovenents, g(N) iz wither n® or niogen. T Cebructbive
to graph n® and nlogan, especially as n gebs large.

*
I. Exchange sorts:  Exchange sorbs move data inte place, by position,
ané at a time.

smallest item to the fraont of the list in a manner which resembles
"bubbling".
The algorithm does the followings
i Compare items in paivs from the top of the list to the Dot tom,
exchanging them 17 the front item s larger than the bacl ilew.
Ch-1 comparisons). :
iis Repeat the process another n-2 times. The jth iteration makes
h~J comparisons. We can sum the comparilsons, nin-13/72, and assumne
that swaps oocur about half the time, or nin-1)/4,

inln=13/41 = (1/4) {n®—-ni £ (1/411n®! = O(n=)
Bubblesort 1s cbviously an OCh2) gort.

The Bubble Sort, one of Lhe sasiest sorts to program, brings the




D - . T .
* it

The Quickanrt, invented by C,AR. Moare {in 1962, moves one vecord at a
time into 1ts final position. However, in the process, which is

revursive, the obther records are moved to a position closer to btheir
final oneue The alagorithe dinvolvaes a parbtioning of the arvay into 29
e Shoania ol Shee R0 cal il e the fivrst pasny & pivet zlement is
celolhol Tuws all st rende L e srn o Lhee Tirel pelsy this
elemznt Lo v bbs fUoal posibion, all wlwroeabs sealler Lhan Lt are
Shivwdd o Sy anet Al shche Tovaer ace Laolvien? dte Thie algord Uhe calla

Pbsel fy whoosing & pavalb frown each "hal " of the list, and Yhe wimpler
problem of sorting two smaller arvays is seld Woe  The conparisuet Lakes
place as follows:  (assume the first pivobt is item 1. When would youw
want to make a different cholce™ . Acsign two ariables, i%j, with i
initially @ and j initially N. Compare element i to the plvobt. If it
is smaller, increase i by 1. Btop when you get to an element greater
than the pivet. Do the reverse with item j. FKeep decreasing j by 1
until yow get too an item less than the pivot. Ezchange itens 1 and j.

The guicksort L5 a power ful O00nlogen? sorl. Only necessary moves are
. o

Wty e A ! | -y

s

BRPPE I P TR : T T o T . . e
T N R O A N R AN TV haw 2] DR A R YT N BRSPS R IV T Y | [

powaer ful b maviog puintors dnsead of data.

ITe Inzertion sorts:  Fach successive item is moved into an already
garted list.

Linear inserticom mimmicks the way many of us arrange plaving cards in
wdr hand when we pick bthem up one at a btime. Mlck up any card, 1ok
ap the second card and put it in order.  Fick up the third cerd and
put it in order, eftc. The algorithm inserts the new element j hy
fivald comparing it bo elenent j - 1, which is already sovted, then to

element ) -~ 2, ebs, moving each of these elemends up one place unitil
it finds an element smallers than it. TV doement ds placed in its

proper place. Notice Lhe special condition which takes place when Hhe
element to be incevted (e the smallest element on Lhe Tist, up bo She
Eime 37 bthig insertion.s The while loop is bypassed, s thal bthe
cuapEaEr Lo alnlaceld o otenp Lo ot read when place =

$h
W

In arder Lo ingert the jlh item, acpprosimately (j=13/70 compac Csons ana
data movemsnte are regquired. Summing over the n elements in the
arrvay, we see that linear insertion is an 0(n®) gort. It is a very
effecient sort when the data is already almost in order.

Bingry insertion ie a simple, effecient sort. Fach new element is
inserted into the previously sorted partial list by using a binary
search to locate the place of insertion. As with all "divide and
conguer” strategies, binary insertion is an 0C(nlogan) sort.
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Bhellsort is a powerful inssrtion sort. Studies of N randomly
arvancged data items Jlaw Lhet lements, on the average, travel a
distance of N/3 places to {iaal, sorted positions. In 1999, Donald
Shell used this fack in khig cort algorithm, which initially moves data
aver large distances, approsimately equal to N/3.  This mebthod has the
tenderivy, an the average, of woving elements closer to their final
location very early in bthe sort process.

HBhell partitioned the list to be sorted into k "ochains", each
approximately 1/3 the asize of the total list. Each chain was "sorted"
wslng an cxchancge Chubb? -° o The algurithm shown here, sonewhat
improved, uses a linear insertion for each chain. The first chain
consists of elements 1, k+1, 2k+1l, etc. The gecond chain consists of
elements 2, hk+2, 2k+2, atc., and the jth chain (jo=k) consigts of
el emerts 5, J+k, j+2k, ole, Thus, in the initial set of passes,
elements are separated by a distance of k. ¥ is then decremented bo
approsinctely /D aind the privess is repeated. When & is one, the
ligt should be nearly sartel, and a final linear insertion sort of the
entirve Jiob onoors. & linesr aovt at the end ig faster than a binary
sort Decanss, alLhoogh binary mathods are betber for randomly sorted
large tici.y a lincar novt oo faster 4f the number of comparisons is
amall o 17 bthe list iz almost in order (see notel.

There are various versions of bhis sort, each using different rules
for partitioning the list. A less effecient algorithm uses N/2, N/4,
etue  The one shown dhere is better than this version. Anot her
vergion of the Shell sort uses decrements of ...,20-1,
veay31,10,7,3,1. The number of comparisionsg and moves is relatively
lowe  MNobe that each paiv of coccessive decrements is relatively

BV Lme . .

noter  TL is interesting to note that for small n, an 0 st is
aften more effecienct than an D(nlogen) sort because their simplicity
veguires little mve! acepl coemparicons and passes, making the
constant of proportionality relatively small.,

D"' ':III'IH:.“)/, F..u '.?lu y l"'l...'w T'..' F;-'IVQ-" If F{" L i
: _ MBS e LY By Lrmputer, Prentice-Mags
Infurnational, Engl ewaod C1iffs, New Jers;y, 1382, ppf’2ﬁ9-226
Eh""ac.' By wanuel E., Advanced Placement Domputer “Brience, Addison -
ﬁﬁsl«qu?Elis?igglgﬁmpany, hee, Menlo Park, Eal?fnrnia, 1986
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Prooream Sorts(inpubyontput)y

{Jayvca Bernskein?

{Feh., &, 19083

{(Frooram which demostrates an improved hobblesorts oguicksorts Tinesd
{ingortiom scorty binary ingertion sorts and shellsort?

{evapy for educraticonal use onlyd

coansb
maxrmum = 20003

type
ligt = array [1..mamum) of integers

var
My : {sgize of avvrayl}
choicesinteqgers {menu selection?
asbaligts funsorted and sovted 1Tisks)

L HEXERBR LR HRRERRROTOCERAUCE MAKE D 1 B8RRI TR K 30K H I35 0635 0 3 )
procedore makelisb{var a1ligti nsinteqer- )y
{genrrates an array of s12e n of random numbers greater than o wopial
{zera and less than 10003 :
VA '
1sinteners
hegin
for 1 2= 1 tooon do
alfil 2= vandom{1000) 3
a3
{HRBENEEEERECRREREERRDTOCBONTE SHOWL LG EHEE R ERE R 6B HE9 B HH 6% B R F 8RN RRR )
procedure showlist(aslistinsinteger)?
{digplays array in rows of 10 elesents)
var
irinteqers
begin
for 1 s= 1 to n do
beagin '
writel(alilsd,® *)4
if 1 mod 10 = O then writelns
end §
writelnt
end s
{HREEEFREXERLERRFXERDTOCEAUIE LIS T 1 ONVHE B KRR 032 2 K 3 6 2 256 2625 90 26 K 6 )
procedure insertion(var aslistinsinteger)s

var
ia {ligt index for move once place is found?
is {index for array item beqin placed?
place, {eventually, index of first item smaller than item to insert?
tamp s integers {value of item being inserted)
found: boolean? {flag for loceation of inserticon spotl
beain
for § 1= B ta n do
begin _

temp 8= &l 373 tfirst 3 -~ 1 elements already sorted?
place = § -14
found 1= falues
while (place > © ) and net found do
if alplaced » temp
thew place = place ~ 1
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@lae  fousd 1= brues

far 1 s= 4 - 1 deownto place + 1 de
ali + 17 3= alily

alplace + 171 1= tLeap

. et
e@nd
{ERERERRERREFXRERXXDTOCBAdUre BIiNarvinsarbion®Semrl fEEfEE e g e e E i e e e6e )
) procedure binaryinsertion{(var aslisti nrinteger):
var
1 {list index for move once place iz found?
is {index of item being inserted?
toapsbottomsmiddle., fsection boundaries and center?
tempr  inteqer
becdn
fenr 3 2= 2@ toon do
brecyin
Bemp 2= oal 373
bap = Of
boattom 1= 34
repeat
middle 2= (top + bottom) div 23
if almiddlel <= temp
then top 1= middle
else bottom s= middle”’
wreil top + 1 = boattoms
for 1 1= j -« 1 downte bottom do
all + 11 2= 50113
albottoml 2= temp
el
@i
(HEHREREREERREERERRDTOCRAUTER G L 1G0T G AR HA I NN A Ao 6 3606 300 560 36 36 26 o Ko B S )
procedure shellsort(var ailists n:inteqger)s
var
1w {index uged fer mass shifting of chain items?
i {some multiple of ke plug m —=~ index of item beinn inserted)
by {hecomes approx 1/3 size of arrays size of fivsek increment?
My {locp marker for each of the k chains)
places {index if item in chain smaller than insertion spatl
temp ¢ inteqer} {item being inserted)}
found:s bonleans
beain
b os= 13
while (3%k +1) < (1 div 3) do
k2= 3%k +13 {sets size of increment based on nd
repeat
for m 1= § to k do {for each of the k chains?}
begin
} = bk o+ m
' while § 4= n do
begin
&

temp = aljl: .element to be sorted)
Yy os= 3 o~ kg
found 2= falgel

sy



whitle not foaud and (1 » 0) do
if alil » temp
Ehemn 1 8= 1 -}
elewe foond 2= Lrued
place 1= 1 + ki {where 1lem is bei1ng irnserbeds
i o= 3 -~ ki
while 1 *= place do
beain {move rest of chain downl
ali +kl o= alils
i os= 3 « k3
end s
alplacel = temp}
joes= i 4+ ke
ernd {whilel
endi {(ford

bog= (kb - 1) div A fnext incremsnt si1zed
tinbr b 4 7
el

{#%RFFXEEBEREEREFEEpOCEdUre QUICKESO EREREREREREFEEERERE SR RERREFREER® )
procedureg quicksort{var aslists nrinteqer)!
procedure partitiondrsssintegerivar j @ integer)s
VAr
1 ¢ integers
temp: inteaers

hegin
{ 2= r + 13 {index one past pivotd
jos= 5l {last index in swap rangel
repesat

while (&0i] <= alrl) and (1 < 8) do {find an element to swapl

3 o= 3 o+ 14

while (&Ll >= alvl) and (j > ) deo { *° proae rer Y
joe= 3 - 13
if 3 <3
then ‘
bexiin {swapl
temp 3= alily
atil 3= aljls
alyl == temp
ends}
until 1 >= 33 {S8wap finished for this pivot?

temp 2= alrls
alrl 2= alfjl:
aljil 2= temp:
end§
procedure sortimans integer)
{recirsive procedure which redivides the sort field?
var
j ¢ integers
temp ¢ integers

tputs pivet in place) {§) returned to calling program?

begin
ifn-m?>»1 {provides the halting case?
then
begin

partition (meny )8 {receives the next dividing point, 33
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TORE RSESRESRTEOSETE,

ecrtim, i — 14
goarkdy r 1,0 g
el
@lge iT (N -~ m = 1) and (alml > a1
then
beagin {do a final swap?
temp = almls
atml = alnls
alnl 1= temps
end
end?
hagin
sortil . m)
end §
T % % % % % % % procedure bubble® 2 % % % * % * % % F % % ¥ % % # 1
procedire bubblesorti{var aslistintinteqer);

varr
1 Cindex of items being companerdd
I {loaop variable limit}
lagstawitehy {Flao for order in the datal
tamp 8 {gwap templ} integer’ '
becin
Ps=nn - 13
repeat
lastaswitch = 13
for i 2= 1 fto 3 do
if alfil » a £i + 1)
then
begin {swap )
temp 2= alily
alil s= ali + 1713
ali + 11 = temp:
lagstewitah g== ig
&l s .
i = lastswitch ~ 18 {end of unsorted datal
tntil lastswiteh = |
Cendy

Y

(% % % % % & % % ¥procedure selection® # % % % % % ¥ % % % & % ¥ % % 7
proacedure selection(var arlistinsinteger)s

var
fsjsssktintegers
beqin

feor § 2= 1 ton - 1 do
{generates al il thru alnl)
begin
boe= 33
{k carrirs smallest element in decreasing block
g = alils
for 1 s= j + 1 to n do

‘ begin
if alil < 8 then
begin
b g = alils
ke 2= i3
nd §
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endi

g g al 4733

al 31 3= alkls

alkl 1= g

endi
el §
{% % % % % % % % % procedure heapk % % % % % % % ¥ % % % % # % % % % 3
Procedure heap(var atlistin:inteqer)s

var
{index?}
Hiintegers {temp for array element)

procedure fivheapivar a:listitopshottominteaer)
{agaumes items btop + 1 to bortom are a heap?
{returns 1tems top ta bottom in & heap?
vanr
ia {indexl
Mo integers {tonp for arvay element?
heri n
1 3= 2 % toap?
if 1 <= bottom then
hegin
1f 1 < bottom then if alil <ali + 11 then 1 = 1 +13{largest child?
if altopl < atil) then
beain
¥ 2= altopls
altopl = alils

alil s= fheap is good except at il
firheap({arisbottom)
eared 3
end §
end $

beqgin{heap?
for i 1= n div 2 downte 1 do fisheaplasi )i
foar 1 1= n downto 2 do
begin
¥ os= al1l}
al1le= alfils
alil 2= x3
fixheap(aslsi~-1)
end s
end §
9 % % % % % % % % Maln Froagramé % % % % % % % % % % % % % £ % % & % )
begin
chaice s= Of
Writeln(*'Thie program sorts any number of items from 2 to Pamaxrum) g
* UWriteln(’Enter the number to be sarted®)s
raeadinin)g
makelist{a.n) g
¢ showligt(awn)s
while choice <> 8 do
begin

D3




repeat
WratelnCPlease choose a sort, ")

writein(® 1: hebblescrldinproved) ") 3

writeln(® 31 quicksart?®)
writeln(® 31 JTinear insertiaon’)s
K writeln(’ 4@ binary insertion’);
writeln(' % Shell ™)
writeln(® &3 saselection®)s
. writeln(® 7: heap’)s
writeln(® B8: end®)s
readin{choice) i
wtil (choice *>0) and (choice < 9)3§
case cheice of
12 benin
b = ai
hubiblesm-t (b)) §
showlieblign)s
eariel §
2s beain
b 2= ai
gquicksortiby,n s
showlist(byw)g
gand §
31 begin
by 2= aj
irsertio;itbhan) g
showlisti{b.n)}
@nd §
4s  begin
b = ai
binarvinsertion{b.n)}
ghowlist(b.a) s
ends
%1 begin
Ir 2= ay
gshzllasort{(b,n)}
showliast{bn)
e §
br  beagin
b 2= aj
selection{bain)}
showlist{(bm)}
end s
7:  heqgin
b s= af
heap{b.n)}
showlist(beyn)}
end 8
e
s erd}
end.




