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9tAtRERTA_PLAbg_E/2)21tM

The benefits of using Item Response Theory (IRT) to develop,

score and evaluate tests have been widely espoused. Proponents of

IRT claim that it has several advantages over classical test theory

(e.g., Hambleton, 1989). Perhaps the greatest advantage of IRT is

the claim that the person and item parameters obtained using IRT

are sample independent. This claim states t at IRT parameters are

independent of the particular sample of items and/or examinees

chosen. Thus, item parameters obtained from one group of examinees

should remain stable across other groups of examinees, and person

parameter estimates should remain stable (invariant) across other

groups of test items'.

A problem with IRT is that a large number of examinees are

often required to obtain stable item parameters (Hambleton, 1989;

Hulin, Lissak, & Drasgow, 1982; Thissen & Wainer, 1982); however,

in many testing situations, tests are administered to relatively

small numbers of examinees. Thus, the sample size requirements of

IRT often preclude its use in small-sample testing applications.

The purpose of this paper is to discover if IRT can be useful to

the small-scale testing practitioner. Because these practitioners

often use classical item parameters (i.e., p-values, biserials),

the stability of the IRT item parameters will be evaluated with

respect to the classical parameters obtained from the same data

set.

'This claim assumes that the different groups of examinees are

not widely different in terms of the attribute being measured and
that the groups of items are selected from tne same item pool.
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previous Studies otatm_ParAmgtgr_gtgtility

Previous research has indicated that the minimum number of

examinees recommended for accurate item parameter estimation varies

widely according to the specific testing situation and the

particular IRT model chosen (Barnes & Wise, 1991; Wainer &Mislevy,

1990).. In general, longer tests and more complex (general) IRT

models require larger sample sizes. Lord and Novick (1968),

Hambleton (1989), and Thissen and Steinberg (1986) provide

technical descriptions of current IRT models. Rules of thumb for

the minimum number of examinees required for accurate parameter

estimation range from 200 for the one-parameter model (Wright &

Stone, 1979), to 500 (Hulin, et al., 1982) or 1,000 (Ree & Jensen,

1980) for the two-parameter model, to 1,000 (Lord, 1968) or 10,000

(Thissen & Wainer, 1982) for the three-parameter model. Hambleton

(1989) pointed out that these rules of thumb are not absolute and

acknowledged the need for further research in this area.

Barnes and Wise (1991) examined the effectiveness of a

modified one-parameter model for estimating ability and item

parameters from small samples. Their monte-carlo simulation study

showed that incorporating a constant non-zero lower asymptote

(guessing parameter) into the one-parameter model resulted in more

accurate parameter estimation from small samples than did the

traditional one-parameter or three-parameter models. Their results

indicated that the modified one-parameter model allowed for

accurate estimation of the item difficulty parameters from as

little as 50 (simulated) examinees on a 25-item test. However,



IRT and Small Samples 3

their results using the three-parameter model indicated that

accurate estimation of the item discrimination and pseudo-guessing

parameters could not be obtained from a sample size as large as 200

examinees.

The previous research investigating the effect of sample size

on IRT parameter estimation has been performed, for the most part,

on simulated data. These studies are significant in that they have

demonstrated that recovery of known item parameters from small

samples is problematic. However, because real test data were not

used, it is not known whether the simulated data accurately

reflected the characteristics of small sample data encountered in

practice. Furthermore, the results of these studies offer little

guidance for test developers who must continue to practice in

small-sample settings, regardless of the psychometric accuracy of

their item analyses.

A recent study by Stone and Lane (1991) used real test data to

investigate the stability of item parameter estimates over time.

Using general and restricted forms of the two-parameter model, the

authors found that the IRT item parameter estimates l'emained

relatively stable over a one-year time period. Though their

investigation did not explore item parameter invariance with

respect to sample size (their analyses were based on groups of more

than 2,700 examinees), it did demonstrate the utility of using

restrictive IRT modeling to evaluate item parameter invariance.

The use of restrictive IRT modeling has also 1.,een used

successfully to investigate differential item functioning (e.g.,
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Thissen, Steinberg, & Gerrard, 1986; Thissen, Steinberg, & Wainer,

1988; in press), and differential testlet functioning Wainer,

Sireci, & Thissen, 1991). As with the Stone, et al. (1991) study,

the common theme in these studies is the comparison of models where

the item parameters are constrained to be equal among groups

(restricted models) to models where the item parameters are

estimated separately for each group (unrestricted or general

models). The two (or miare) competing models are compared

statistically to determine whether separate estimation of the item

parameters for each group (unrestricted model) adds substantially

to the fit of the data. If the unrestricted model prevails, the

item parameters are not equal for all groups, and item parameter

invariance is not exhibited.

Methodology of the Current ptudy

The present study borrows the IRT model-based procedure used

in the Stone et al. (1991), litaner, et al. (1991), and etc.,

studies to evaluate the stability of item parameters estimated from

a real-life, small-sample testing application. This model-based

testing procedure involved obtaining a common set of items

administered to three small-sample groups of examinees over a

three-year period (sample sizes of 173, 106, and 149,

respectively), and estimating the item parameters with both

restricted and unrestricted IRT models. The restricted IRT models

reflected item parameter stability, where item parameters were

constrained to be equal across samples. The unrestricted models

reflected item parameter instability and required estimating the

6
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item parameters separately for each group. Thus, the unrestricted

models required the estimation of many more parlmeters than the

restricted models.

Evaluating model fit using -21oglikelihoods

All IRT analyses reported here were conducted using the

MULTILOG (Version 6.0) IRT software program (Thissen, 1990).

MULTILOG is a very general IRT program that fits a variety of IRT

models to test data based upon the principal of marginal maximum

likelihood (Bock & Aitken, 1981). One index provided by MULTILOG

is "negative twice the loglikelihood" (-21oglikelihood) which

describes the data's fit to the model (the likelihood of obtaining

the data given the model). The -21oglikelihood stntistic is the

index used to compare competing (i.e., hierarchical) IRT models.

Because the difference between the -21oglikelihoods of two

hierarchical models is distributed as ct&-square, this difference

statistic can be evaluated for significance (with degrees of

freedom equal to the difference in the number of free parameters

estimated in each model). If the additional parameters in the more

general (unrestricted) model adds substantially to the data-model

fit, then the chi-square difference test will yield a significant

value. However, if the chi-square value is not significant, then

the more parsimonious (i.e, restricted) model should be accepted.

In this study, acceptance of the more restrictive models

(insignificant chi-square values) will constitute acceptance of

item parameter stability. Acceptance of the unrestricted models

will constitute item parameter instability.
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IRT Models Tested

Because of the small sample sizes used in this study, it was

predicted that only the one and two-parameter models would be

appropriate for these analyses. However, for the sake of

completeness, the performance of the three-parameter model was also

evaluated. The equations for the one, two, and three-parameter

logistic models are provided in equations 1, 2, and 3,

respectively:

P(8)-
1

1+exp[-i(8-b)]

1
P(8)-

1 +exp [ -a (8-b)

p(0)_ c+(1-c)
1 +exp ( -a (8-b) ]

where P(0) is the probability of choosing the correct answer as a

function of ability 0; b is the item's difficulty (expressed in the

same metric as ability), a is proportional to the slope of the item

characteristic curve (ICC) at its steepest point, and c is the

lower asymptote of the ICC. The item parameters a, be and c are

commonly referred to as the discrimination parameter, difficulty

parameter, and guessing parameter, respectively (8 is constant

across items and represents the constant discrimination value in

the one-parameter model). More detailed descriptions of these, and

other, IRT models can be found in Lord and Novick (1968), Hambleton

(1989), and Thissen and Steinberg (1986). The restricted IRT

models used in this study involve constraining the a, be and c
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parameters for to be equal for identical items taken by the three

different groups.

Instrument

The test analyzed in this study is a national certification

examination administered to qualified Certified Public Accountants

(CPAs) who desire certification in personal financial planning.

This examination consists of 100 multiple-choice items dnd one or

more essays. The essay portions of the examination were not

included in this analysis2. The examination is administered to

roughly 150 candidates per year. A subset of 28 items was selected

for analysis because these items were reused on three consecutive

administrations. Sireci (1991) demonstrated that the ability level

of the candidate population over this three-year period was

virtually equivalent.

Procedure

The data from three administrations of the examination were

combined for the 28-item subset providing a sample size of 428

examinees (106 in 1990, 149 in 1989, and 173 in 1988). This

aggregation of data from the three administrations allowed for a

larger sample size from which more accurate item parameters could

be estimated. The item parameters estimated from the aggregated

group were taken to represent the "true" item parameters to which

2The decision to omit the essay portion of the examination was

based on practical reasons, not because of an inability to model

the data. An attractive feature of the MULTILOG program is that it

allows for mixed-model runs where both dichotomous and categorical
items can be analyzed simultaneously. The essays were omitted from

analysis because different essays were used in each year of

administration.

9
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the sample item parameters would be compared. Descriptive

statistics for the 28-item subset for the aggregate group and the

three samples are provided in Table 1.

Table 1: Descriptive Statistics for 28-Item Subtest
IMINP50-"" -.111911111M22MV°

Aggregate 1990 1989 1988

N 428 106 149 173

KR20 .47 .51 -49 .41

P .73 .74 .75 .71

X 20.44 20.72 21 00 19.88

rb .37 .39. .38. .35

Kgy: P = Average item difficulty
X = Average score on 28 items
rb= Average biserial correlation among 28 item subset
* This average based on only 27 items due to a p-value
of 1.0 for item 25 in these groups.

e

Initially, a classical reliability analysis was performed on

the aggregate group (AGG) and the three samples using the SPSS-X

procedure RELIABILITY. This analysis was performed to obtain the

p-values (proportion of examinees getting each item correct) for

each item and a KR20 (internal consistency reliability estimates)

value for each group. Because procedure RELIABILITY does not

compute biserial correlations, the PRELIS computer program

(Joreskog & Sorbom, 1988b) was used to compute the biserial

correlation of each item with the total 28-item score.

Following the classical item analyses, traditional one, two,

1 0
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and three-parameter IRT analyses were performed on the aggregate

and sample groups. The -21oglikelihoods of the aggregate models

were compared to see which general model best fit the aggregated

data. The item parameter estimates obtained from the aggregated

group served as the referent parameters to which the parameters

obtained from the sample group analyses were compared.

The next stage of analysis involved incorporating the group

membership into the IRT modeling. The data was restructured so

that each group represented 28 items on a 84-item test (3 X 28=84).

Therefore, the restricted modeling involved constraining the item

parameters (a, b, and/or c) for items 1 through 28 to be equal to

the item parameters for items 29 through 56, and items 57 through

84. The unrestricted modeling involved computing the item

parameters by treating the data as comprising a single, 84-item

test (each group having missing data on 56 of the 84 items). The

unrestricted modeling allowed for separate calibration of the item

parameters for each group simultaneously, while the restricted

modeling constrained the parameters to be equal for each group.

Results: atage_1:

The p-values and biserials obtained in the classical item

analysis indicated that the majority of the items were easy

(average p-values ranged from .71 to .75 for each voup) and that

there was wide variation among the biserial values. The values of

these indices are presented in Table 2. The correlations among the

p-values and biserials between the aggregate and sample groups are

11
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presented in Table 3. The high correlations among the p-values in

Table 3(1) indicate that the p-value index of item difficulty is

stable with respect to the three sample groups. Thus, the

classical item difficulty parameter was not adversely affected by

the relatively small sample sizes. The correlations among the

biserial values (Table 3(b)) are much lower than the p-value

correlations; especially those correlations among the sample

groups. This finding indicates that the biserial index is more

sensitive to sample size than is the difficulty index.

Table 2: P-Values and Biserials for 28-Item Subtest
(Decimals Omitted)

Item
AGG

k
1990

P
1989
E

1988
P

1 96 41 98 52 97 56 94 24

2 86 33 84 41 89 31 86 26

3 81 42 81 52 79 46 82 35

4 82 31 S2 11 87 35 73 28

5 83 28 75 06 91 35 82 36

6 83 23 83 24 85 17 80 25

7 75 45 75 57 71 43 77 43

8 68 24 62 22 67 38 73 18

9 89 43 91 43 91 33 86 47

10 39 39 42 50 46 32 32 32

11 17 33 19 27 13 32 19 41

12 56 29 59 31 52 26 56 32

13 77 34 77 45 75 28 79 35

14 83 41 79 37 86 28 83 55

15 79 20 73 29 83 18 78 13

16 45 28 43 14 45 39 46 28

17 58 41 30 56 58 51 64 28

18 69 61 83 64 67 63 62 58

19 87 39 84 50 88 40 88 30

20 96 66 94 57 97 77 95 57

21 68 44 89 47 87 54 38 33

22 86 35 83 32 87 30 88 43

23 51 40 54 56 56 31 44 33

24 60 34 58 45 66 37 55 20

25 99 36 99 -- 99 -- 98 31

26 65 36 63 19 69 46 62 36

27 91 39 95 28 89 39 89 43

28 78 44 82 54 77 31 76 51

12
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Table 3: Correlations Among the Classical Item Indices

(b) Biserials

AGG
AGG

1990

1989

1988 .75"

1990 1989

Average ral .57

Significant at p<.01
" Significant at p<.003.

IRKAMkIME

Assessment of Fit. The one, two and three-parameter models

were fit to the aggregated group to determine the most appropriate

model for the data. The chi-square difference testing of the -

21oglikelihoods indicated that the two-parameter model exhibited

the best fit (see Table 4)3. This finding is not surprising given

3The extremely high probability value obtained for the 2PL
versus 3PL test is most likely due to two factors: the 2PL being

the best maximum likelihood estimate for the 3PL solution, and the
influence of the prior value of .25 set on the lower asymptotes for

the 3PL analysis. This finding follows for all subsequent 2PL-3PL

comparisons.
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the low level of difficulty of the items (eliminating the need for

a lower asymptote) and the wide variation in item discrimination

(indicating the need for a discrimination parameter) discovered in

the classical item analysis,

Table 4: Results of Fit Tests for the 1,2, & 3-P Models

MPLII1 -21oglike.
i Free
Parameters

Difference
Chi-Square

3PL 6433 84

2PL 6447 56
1

28 .983

1PL 6527 29 80 27 < 001

Assessment of item yarameter stability. Though the two-

parameter model exhibited the best fit, the model-based testing

procedure was used to evaluate the stability of the item parameters

in all three logistic models. Table 5 presents the results for the

one-parameter model. The difference chi-square test was

significant, indicating that separate estimation of the item

parameters for each group provided better fit than did the model

where the (in this case b) parameters were constrained to be equal

among the three groups. Though the model testing procedure

indicated instability among the item parameters in the one-

parameter model, the correlations among the b parameters for the

aggregate group and the three samples were very high. In fact,

these correlations were highly similar to the correlations among

the p-values in the classical analysis.

The model testing procedure for the two-parameter model also

14
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indicated instability of the item parameters. A significant chi-

square value was obtained in comparing the restricted and

unrestricted models, indicating that estimation of the item

Table 5: Results from the One-PL Analyses

Model
Free

-21oglike. Parameters

<.001

1990 1988

1990

1989

1988

,IM1.111,

Average rbi tg-- .93

"Significant at p <.001

parameters separately for each group provided a better fit than did

the model constraining the item parameters to be equal among the

groups. The correlations among the difficulty ( lod parameters and

the discrimination (ad parameters also exhibited instability. In

fact, the correlations among the difficulty parameters obtained

using the two-parameter model were far lower than those obtained

using the one-parameter model. This latter finding could be due to

a confounding effect of the estimation of the discrimination

parameters on the estimation of the difficulty parameters. Table
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6 presents the results from the two-parameter analysis.

The model-testing procedure for the three-parameter model also

indicated instability among the item parameters. The results of

this test are presented in Table 7. Because of the low item

parameter correlations in the two-parameter model, and given the

poor fit of the restricted three-parameter model, the correlations

among the three-parameter estimates were not calculated.

Table 6: Results of the 2-Parameter Analyses

Free Difference
Parameters Chi-Square

58

AGG 1990 1989 1966

1990

1989

198

4'*:

. 68'

sa" .08 Me.

29

AGG 1990 1989

Nor MO NO.

Signif icant at p. 01
Significant at p<.001
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Table 7: Results of the 3-Parameter Analysis
Niommilm-

i Pres Difference
Model -2loglike. Eargiggtera Chi-Square

3 Groups 6113

277 168 <.001

.4111INV

The results of the preceding analyses suggest that IRT is not

useful to the small-sample test practitioner because the obtained

item parameters did not exhibit stability. There are two

conclusions that can be reached at this point: (1) the IRT models

are inappropriate in this case because of the small numbers of

examinees tested in the sample groups, or (2) the IRT models are

inappropriate because the 28-item subtest does not meet the

assumptions underlying the IRT models4. Because the assumptions

underlying the IRT model were not evaluated, the power of IRT

modeling has not been given a fair trial, and so the second

conclusion cannot be ruled out. Therefore, using 20/20 hindsight,

we will now move to investigate the second plausible conclusion.

4A third plausible explanation for the results is that item-
order differences between the three samples affected the parameter

estimation (Zwick, 1991). The item ordering was virtually
identical between 1989 and 1990, but different for 1988. To

investigate this rival hypothesis, "two-group" analyses were run

where the 1989 and 1990 data were combined and fit in a two-group
parameter estima' ion model. The parameter estirltes in these
analyses were also unstable, and so the results are not reported

here.

17
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Dorans (1985) and Hambleton (1989), among others, have

explained that the fundamental assumption underlying IRT is that

the latent variable underlying the test items is unidimensional.

These researchers have demonstrated that the other assumptions of

IRT (i.e., local independence) will follow consequentially if the

unidimensionality assumption is met. In order to evaluate whether

the 28-item subtest is unidimensional, a one-factor confirmatory

factor analysis model was fit to the data. This analysis was

conducted using LISREL-7 (Joreskog & Sorbom, 1988a) to fit the

unidimensional model to the matrix of test item intercorrelations.

Because all 28 items represented dichotomous variables, tetrachoric

correlations were calculated for the matrix of item

intercorrelations.

The results of the LISREL analysis indicated that the 28 items

were not measuring one, underlying general factor. The one-factor

model yielded a very low coefficient of determination (variance

accounted for) of .186/ a relatively large value for the root mean

square residual error (RMSE) of .125, and extremely high standard

errors in the lambda-X matrix (ranging from .372 to .411). Again

using 20/20 hindsight, this finding is not surprising, because

snlection of the 28-items was not made with respect to the item

content specifications. Rather, the 28 items were chosen because

they were the only items common among all three samples of

examinees. Thus, the preceding analyses have failed to demonstrate

whether IRT can be used in small-sample testing situations when the

is
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data fit the model.

To redress this problem, six items were deleted from the 28-

item subtest. These six items were deleted based on their content

characteristics and poor biserial correlations with the total

subtest score. Four of the deleted items (items 4, 5, 6, and 8)

belonged to a content area of the test that exhibited poor internal

consistency reliability (Sireci, 1991), another item was deleted

because of its p-value of 1.0 in two of the sample groups (item

25), and the sixth item (item 15) was deleted because it was the

only item representing a particular content area of the test and it

had consistently poor discrimination parameter estimates in the two

and three-parameter models. Table 8 presents some descriptive

statistics for the 22-item subtest.

Table 8: Descriptive Statistics for 22-Item Subtest
t

Aggregate 1990 1989 1988

428

.49
(.55)

106 149 173

.57 .49 .44

(.63) (.55) (.50)

.72 .72 .68

15.80 15.80

= Average item difficulty
= Average sccre on 22 items

KR20 estimates in parentheses are adjusted using the
Spearman-Brown formula to correspond to a 28-item
test (for comparison with Table 1).

A one-factor confirmatory factor analysis was performed on the

"new" 22-item subtest (i.e., on the 22-item matrix of tetrachoric

19
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correlations). The results of this analysis indicated that the 22

items were measuring a general, underlying latent variable. The

coefficient of determination for this one-factor model was .572,

the RMSE dropped to .105, the standard errors in the lambda-X

matrix ranged from .090 to .091, and the LISREL goodness-of-fit

indices were .93 (unadjusted) and .92 (adjusted). Though a lower

RMSE and higher coefficient of determination would be desirable,

these results were accepted as evidence 4ndicating a unidimensional

underlying latent variable. Therefore, a second series of IRT

analyses (Stage 2) were performed on the data to examine the

stability of the IRT item parameters using the 22-item subtest.

Results: Stage 2

The one, two, and three-parameter models were fit to the

aggregated data set for the 22 items, and again the two-parameter

model exhibited the best fit. The results of this test are

presented in Table 9. Subsequently, the restricted and

unrestricted analyses were performed for each of the three IRT

models. These results were similar to those obtained from analysis

of the 28-item subtest. The one-parameter analysis did not exhibit

Table 9: Fit Tests for the 1 2, & 3-P Models -- 22 Item Test

Freèr Difference
Parameters Chi-Square
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item parameter stability (a chi-square difference statistic of 624

with 44 degrees of freedom was obtained in comparing the restricted

and unrestricted models). Similarly, the two-parameter model did

not exhibit stability when comparing the restricted and

unrestricted models. However, because the two-parameter model

exhibited the best fit to the data, and because of the potentially

confounding effects of simultaneously restricting the

discrimination and difficulty parameters, further analyses were

conducted to determine the appropriateness of the two-parameter

model for the 22-item data set.

Two other restricted models were used to evaluate the

effectiveness of the two-parameter model: one model restricted

only the discrimination parameters (ass) while keeping the

difficulty parameters (bp) unrestricted, the other model restricted

the difficulty parameters while keeping the discrimination

parameters unrestricted. These two additional models can not

assess the ability of the two-parameter modn1 to provide stable

difficulty and discrimination parameters; however, they can be used

to assess the ability of the two-parameter model to provide stable

difficulty or discrimination parameters, when controlling for the

unstable effects of the other parameter.

The results of the two-parameter analysis are presented in

Table 10. As mentioned previously, the most restricted model

(where the ass and bjs were constrained to be equal for the three

groups) did not exhibit superior fit over the more general

(unrestricted) model. Similarly, the model where only the. s were
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restricted did not exhibit improved fit. However, the model

constraining only the harder-to-estimate discrimination parameters

did nearly exhibit superior fit (p value for chi-square of 64 with

44 df = .023). These results suggest that the estimation of the

discrimination parameters did indeed have an adverse effect on

estimation of the difficulty parameters. Furthermore, these

results suggest that although the two-parameter model was not

appropriate for stable estimation of the discrimination parameters,

it may be appropriate for stable estimation of the difficulty

parameters.

To further evaluate the stability difficulty parameters

obtained in the two-parameter, aj-restricted model, the

correlations among the difficulty parameters for the aggregate and

sample groups were obtained (these results are also presented in

Table 10). The correlatioLd for the discrimination parameters are

not reported, because they are spuriously inflated due to the

restrictions placed upon them. An inspection of Table 10

illustrates that the correlations for the item difficulty

parameters, though high, are still less than those obtained using

classical p-values, or the one-parameter bfi during the Stage 1

analyses.

22
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Results of 2-Parameter Analyses -- 22-Item Test

# Free Difference
Model -21og1ike. Parameters chi=gagarg

3 Groups 3993 134

AGG 4213 46
(both aft; and
bliss constrained)

Sle

.24

220 88 < 001

64 023

87 44 <.001

The results of the restricted and unrestricted three-parameter

analysis on the 22-item subset is presented in Table 11. Not

surprisingly, these results indicate that item parameter stability

was not obtained using the three-parameter model where all three

parameters were constrained to be equal among the groups. Similar

to the two-parameter analyses, a semi-restricted model, where

constraints were imposed on the ajs and cis only, provided a better

fit to the data than the unrestricted model.
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Table 11: Results of 3-Parameter Analysis -- 22-Item Test

=22c:tglike.
f Free
Parameters

3 Groups 3996 200

AGG 423.7

(ars, bjs, and
ap constrained)

ais and cis
only 4047 112 51
constrained)

Difference
i_73splarg

68 223. 132 <.001

MIL

Discussion

So where has our rather lengthy investigation of IRT in small-

sample testing led us? Can we conclude that IRT is applicable in

small-sample testing applications? The results of this study do

not provide an unequivocal answer. However, the results do provide

hope that IRT can be used with small-samples in some testing

situations.

The results reported here are largely consistent with previous

research investigating the effectiveness of IRT models on small

data sets. The results suggested that stable item difficulty

parameters can be obtained from small sample sizes using the one-

parameter or modified two-parameter model when the data fit the MT

model (i.e., are unidimensional). However, there is no incentive

for the small-sample test practitioner to use these models for item

difficulty estimation, because the easier-to-understand p-values

are just as good.

The results are also consistent with previous research
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investigating the stability of item discrimination parameters from

small data sets. The IRT and classical analyses performed here

could not successfully provide stable item discrimination

parameters. Thus, for accurate estimation of an item's

discrimination larger numbers of candidates are certainly needed.

After all, when small numbers of examinees are tested, it only

takes a few smart examinees to get an easy item wrong, or a few

not-so-smart examinees to get a hard item correct, for the

discrimination parameter to become aberrant. Only through the law

of large numbers will such aberrancies wash out.

The preceding paragraphs may lead one to conclude that IRT is

not applicable for small samples. There are two factors that argue

against this point. The first is that item response data can be

aggregated from several small-sample test administrations until a

larger, more suitable, sample size is obtained. In the analyses

reported here, there was a wide amount of variation among the item

discrimination parameters estimated in any given year. However,

the discrimination parameters obtained from the aggregated sample

of 428 examinees should be relatively stable. Thus, aggregation of

data from several small-sample test administrations offers promise

for those small-sample test administrators who wish to use IRT.

Second, through the use of restrictive IRT modeling, the small-

sample testing practitioner cr: alternately free and fix specific

item parameters to obtain the L.Jst stable parameter estimates given

the particular constraints of her/his situation. For example, if

there are several items within a test that have been used several



IRT and Small Samples 24

times previously, the aggregated data, for these items only, could

be used in an item analysis focusing on the entire test. The item

parameters for the newer items could be constrained to fit a more

restrictive (e.g., one-parameter) model, while the parameters for

the "larger-n" items could remain unrestricted. The restricted

models investigated in this study, are perhaps only the tip of the

iceberg for application in small-sample test administrations.

Thus, restrictive IRT modeling, where restrictions are placed on

the parameters for individual items, also offers promise to the

small-sample test practitioner.

The present study was limited in two major respects. First,

the test data used in this study, though realistic, probably

represent the worst test data that could be modeled with IRT. The

test used here was a heterogeneous test administered to a highly

homogeneous population of examinees. The heterogeneity of the test

content (there are 7 content areas represented by the items)

directly impeded the unidimensionality of the instrument. The

homogeneity of the examinee population negatively affected the

calibration of the item parameters. The examinees can be

considered highly homogeneous because, first, they are all CPAs,

and second, they all practice within a small area of public

accounting (personal financial planning). .The low variation among

the p-values is further evidence of the homogeneity of this group.

Therefore, d better investigation of the utility of IRT in small-

sample situations might be in a classroom setting, where school

teachers can aggregate data over several small classrooms, or over
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several years of students (c.f., Nitko, 1983).

The second limitation of this study is that only the effects

of sample size on item, parameter invariance was investigated. This

study did not address the estimation of person parameters (i.e.,

ability estimation). Future research should explore the utility of

restrictive IRT models for investigating the stability of IRT

ability estimation using small samples.

In conclusion, I will return to the original research question

"Is IRT useful for the small-sample test practitioner?" The

results of this study suggest that IRT does offer some promise for

these practitioners, but they certainly have their work cut out for

them.
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