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ABSTRACT

Cross-validation is an invariance technique that utilizes two

subsets of the

coefficients.

data subset to

correlated to

data sample to derive discriminant function

The two sets of coefficients are then used with each

derive discriminant function scores. The scores are

assess the stability of the discriminant function

coefficients across samples. One advantage of crc-;s-valjdation is

ease of calculation and adaptability to other statistical

procedures. A weakness is that the sample size must be large for

division of data into data subsets to be meaningful.
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Statistics are collected primarily from samples of populations

in order to make predictions or to construct theories regarding the

population as a whole. Repeating the study over many samples is

the best way to increase the generalizability of the findings to

the larger population. But, realistically, repeated studies are

often impractical or impossible. However, there are statistical

techniques designed to assess whether sample results will

generalize.

Invariance techniques such as cross-validation are economical

methods that address this question of generalizability.

Unfortunately, these techniques are not utilized in many

statistical analyses. When this source of valuable information

goes untapped, the researcher runs a greater risk of unknowingly

overinterpreting nonreplicable results. There are three

statistical results that are commonly assessed in published

research reports. However much these results contribute to

interpretation, none of them produce information about external

validity.

The statistical test most often included in research is the

test of statistical significance. All too often, a test of

statistical significance is the end of a statistical analysis.

However, a binary test of the null hypothesis does not test the

generalizability of the results. A statistical significance test

does not yield an estimated probability that the results will be

repeated with other samples, as erroneously believed by some

(Carver, 1978). The primary feature that determines statistical

significance is tile size of the sample used in the study (Thompson,
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1989) . Stability of the underlying constructs that produce the

findings is not addressed by tests of statistical significance.

Too often the most meaningful implication of the research may not

be addressed due to the overreliance on statistical significance

testing (Fish, 1986b).

Thompson (1989) suggests that other results be examined in

addition to statistical significance to gain some insight regarding

result interpretation. Evaluation of effect sizes may produce

information regarding result importance. Lalge effect sizes, in

spite of a lack of statistical significance, suggest further study,

whereas small effect sizes with statistical significance may not

trigger such interest. However, reproducibility of the effect size

in other samples can not be predicted by evaluating the effect size

in one sample.

Another aspect of a statistical analysis to be evaluated are

the derived statistical coefficients or weights (e.g., beta weights

or discriminant function coefficients)
. The absolute size of these

coefficients is indicative of the predictive power of the

individual independent variables. For instance, in discriminant

analysis, evaluation of the discriminant function coefficients

suggests to the researcher which variables are the most important

predictors of the dependent variable. However, large weights are

not necessarily stable across multiple samples. Information about

the stability is crucial if the results of a discriminant analysis

are to be accurately generalized tc; other samples. Testing the

stability of these coefficients is the objective of invariance
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procedures. Invariance procedures are an "attempt to determine how

stable the statistical results are likely to be across different

samples" (Fish, 1986a) and should be included in every analysis.

Cross-validation is one invariance procedure that can be used

with several statistical techniques. It is one of several "hold-

out" procedures which involves using one part of the data sample to

generate function coefficients or weights to be used on the other

part of the sample. In a cross-validation procedure, discussed in

Cooil et al. (1987), the data sample is split, function

coefficients are derived for each part of the split sample, the

function coefficients for each subsample are applied to the

opposite subsample, then the results are correlated across

subsamples. The closer the sets of results are to each other, the

greater is the stability of the coefficient3 across samples.

Cross-validation has the advantage of simplicity and

versatility. The technique can be applied to any parametric

procedure, such as regression analysis, discriminant analysis,

canonical correlation analysis, and the various analyses of

variance (Fish, 1986a; Sandler, 1987; Thompson, 1989) . The

procedure many be used repeatedly, but double cross-validation,

described here, is considered adequate for most predictive studies

(Kerlinger & Pedhazur, 1973) . Cross-validation is limited in that

the original sample must be large enough so that the size of the

subsamples is adequate for the number of variables.

A concrete example will be used to demonstrate a double cross-

validation invariance procedure in a discriminant analysis. The
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data set consists of 64 subjects with two continuous predictor

variables "x" and "y" and one criterion variable, "Group," with

four levels. The heuristic cross-validation illustrated here is

performed on only the first discriminant function, however, it may

be profitable to continue the cross-validation on the next

functions if they are important to the research. The cross-

validation procedure is the same for each function. The SPSS-X

statistical package was used to conduct the empirical invariance

analysis for these data on the first discriminant furotion (see

Appendix for commands).

INSERT TABLE I ABOUT liERE

Steps for a Cross-Validation in Discriminant Analysis

I. The original sample of 64 subjects was randomly split into

two invariance subsamples by using random numbers "cxsam".

Preferably, the two subsamples are of somewhat unequal size to

counter the objection that a satisfactory measure of invariance is

dependent on a particular sample size (Fish, 1986b) . The split for

the samp.le data was n=30 for subsample 1 and n=34 for subsample 2.

The split sample size was sufficient for a meaningful cross-

validation, given the number of predictor variables.

2. A discriminant analysis was computed on the original

sample and on each subsample in three separate operations. The

three sets of generated discriminant function coefficients and
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discriminant function scores were saved.

3. For the purpose of illustration, the raw data within each

of the two subsamples, were separately transformed not into z-

scores which utilize the subsample standard deviations, but into

standardized scores that utilize the square root of the pooled

within-group variances of each subsample. These values are used to

define the separation between the groups in a particular direction

as the distance between the means of the groups standardized for

the within-group variance (Hand, 1981), and are also used in cross-

validation. In this example these discriminant standardized scores

are denoted "dSxu" and "dSyu" for xi and yi values from subsample

1 and "dSx21" and "dSy21" for xi and yi from subsample 2. The

calculated pooled within-group variances can be obtained from the

discriminant procedure for each subsample. For subsample 1, the

pooled within-group variance for xl was 4.006410 and for yl was

3.00000; for subsample 2 x2 was 4.606389 and y2 was 4.213333. The

procedure for calculation of discriminant standardized scores for

each case xi and yi in each subsample is as follows:

dSx" = (x"-xin. )/(pooled within-group variance xl) 1/2

dS1'11 (1'11ylmean) / (pooled within-group variance y01"

dSx12 = (x12-x2men) / (pooled within-group variane:e x2)1"

dSy12 = (1'12y2mlan) (pooled within-group variance y2)1"

4. Obtain the standardized discriminant function coefficients

for x and y from the discriminant function analysis on subsample 1



performed in Step 2 above. The standardized discriminant function

score for the first function for subsample 1 for xl "DFCx1" was

1.38185 and for yl "DFC1/1" was -1.22482. These standardized

function coefficients are used with the standardized scores from

subsample 1, "dSxn" and "dSyn" to compute actual discriminant

function scores for each case i and these same standardized

discriminant function coefficients are used with the standardized

scores from subsample 2, "dSxa" and "dSya," to compute "crossed"

discriminant function scores for each case i in subsample 2.

Repeat the process using standardized discriminant function

coefficients from subsample 2, x2 "DFCx2" was 1.71359 and y2 "DFCy2"

was -1.29555, to compute another set of actual and crossed

discriminant function scores. You will have two sets of actual

discriminant function scores and two sets of crossed discriminant

function scores. An actual discriminant function score for case i

of subsample 1 is computed using standardized discriminant function

coefficients (DFC) derived from subsample 1:

discriminant function score111 = (dSxn x DFC,a) + (dSyn x DFC1,1)

An example of the procedures to produce a crossed discriminant

function scores using subsample 1 with subsample 2 discriminant

function coefficients:

discriminant function score112 = (dSxn x DFC") + x DFCy2)

6
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5. The four sets of scores are then correlated in a Pearson

correlation matrix. The SPSS-X procedure CORRELATIONS will produce

the matrix (See Appendix A) . There would normally be four sets of

scores to correlate, two sets of crossed and two sets of actual

scores. However, for illustration, computer generated scores will

also be included. The sets of scores are: (a) subsample 1 cases

(i) using subsample 1 discriminant function coefficients

(discriminant function scorein) labelled "dS1C1"; (b) subsample 1

cases (i) with subsample 2 discriminant function coefficients

(discriminant function scorem) labelled "dS1C2"; (c) subsample 2

cases (i) using subsample 2 discriminant function coefficients

(discriminant function score 122) labelled "dS2C2"; (d) subsample 2

cases using subsample 1 discriminant function coefficients

(discriminant function score in) labelled "dS2C1"; (e) original

data with discriminant function scores generated from all the cases

with discriminant function coefficients derived from all the cases

(discriminant function scoren.) labelled "DSCORE1"; (f) the

computer generated discriminant function scores generated from

cases in subsample 1 with subsample 1 coefficients computed in step

2 labelled "DSCORE11"; (g) the computer generated discriminant

function scores generated from cases in subsample 2 with subsample

2 coefficients computed in step 2 labelled "DSCORE21."

INSERT TABLE 2 ABOUT HERE

Of particular note are the scores partially hand computed for



subsample 1 using subsample 1 coefficients and subsample 2 using

subsample 2 coefficients versus the computer generated scores for

subsamples 1 and 2. This comparison illustrates how the

discriminant function scores are calculated. The actual computer

generated scores and the hand computed scores should be very close

and the correlation 1.00.

6. To assess the invariance, the correlations between the

actual scores and the crossed scores are examined. Each

correlation coefficient is squared for comparison. In our example

the correlation coefficient between the actual scores and crossed

scores from subsample 1

scoresu), r=.9882 (r2 =

correlation. This would

stable across samples.

(discriminant scoresn and discriminant

.9765392) reflects a very high degree of

suggest the discriminant scores are very

For a double cross-validation the actual

and crossed scores from subsample 2 are correlated (discriminant

scoresn and discriminant

=.9525572) also reflects

second cross-validation

scoresn). The correlation r = .9811, (r2

a very high degree of correlation. This

reinforces the indication of the first

correlation that the coefficients are very stable. Thompson (1981)

terms estimates such as these "invariance coefficients," since they

evaluate the replicability or the invariance of results.

Summary

Invariance is an underutilized technique and its application

is not standardized. The methods can be left to the creativity of

the researcher keeping in mind the characteristics and goals of the

study. The researcher must use judgement in determining the amount

8
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of change in the invariance coefficients that is acceptable.

The cross-validation invariance procedure in this example

concerned the stability of the discriminant function coefficients

which indicate the relative contribution of each variable to each

function. Such an invariance procedure might be performed in an

attempt to find out if particular variables are stable con'cributors

to the analysis. In this example, the discriminant functions were

very similar and the scores were also highly correlated. This

suggests that for other samples, the coefficients would be similar,

that external validity has been established. However, one

important point to be made is that co evaluate the stability of

discriminant function coefficients, the discriminant function

scores themselves must be examined. The discriminant function

coefficients may look different but render similar synthetic score.

and hence be stable predictors. An invariance procedure, such as

cross-validation, by empirically examining the discriminant

function scores can reveal important insights regarding the

stability of results.

9
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Case Group X Y

TABLE 1

Hypothetical Data Set

Cxsam* Case Group X Y Cxsam*
1 1 4 2 2 49 4 1 7 1

2 1 5 3 2 50 4 1 2 1

3 1 4 4 2 51 4 1 1 2

4 1 4 5 2 52 4 2 2 2

5 1 3 4 1 53 4 2 3 1

6 1 6 5 2 54 4 2 3 1

7 1 5 6 2 55 4 2 3 1

8 1 7 5 2 56 4 3 3 1

9 1 6 6 1 57 4 3 4 2

10 1 8 6 2 58 4 4 5 1

11 1 7 6 2 59 4 4 4 1

12 1 9 7 2 60 4 4 5 1

13 1 8 7 1 61 4 4 6 1

14 1 8 8 2 62 4 5 6 1

15 1 9 9 1 63 4 5 7 1

16 1 9 9 2 64 4 5 7 2

17 2 1 2 2

18 2 3 3 2 * Cxsam is a random number used
19 2 3 5 1 to split the data sample and
20 2 3 5 1 was not used in the analysis.
21 2 2 5 2

22 2 4 6 1

23 2 4 5 2

24 2 5 6 2

25 2 6 6 2

26 2 6 6 2

27 2 6 7 2

28 2 7 7 2

29 2 7 7 1

30 n
L 8 9 1

31 2 8 9 1

32 2 9 9 2

33 3 4 1 2

34 3 4 2 1

35 3 3 2 1

36 3 2 4 2

37 3 5 3 2

38 3 7 4 1

39 3 4 5 1

40 3 5 4 2

41 3 7 5 1

42 3 9 5 1

43 3 6 5 1

44 3 5 6 2

45 3 7 6 2

46 3 9 7 2

47 3 8 6 1

48 3 8 5 2

12
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TABLE 2

Invariance Statistics

DS1C2 DS2C2 DS2C1 DSCORE1 DSCORF21 DSCORE11

DS1C1 1.000 .9882 ( 0 ) ( 0 ) .9788 ( 0 ) 1.0000

DS1C2 .9882 1.(00 ( 0 ) ( 0 ) .9788 ( 0 ) .9882

DS2C2 ( 0 ) ( 0 ) 1.000 .9812 .9989 1.000 ( 0 )

DS2C1 ( 0 ) ( 0 ) .9812 1.000 .9892 .9812 ( 0 )

DSCORE1 .9788 .9986 .9989 .9892 1.000 .9989 .9788

DSCORE11 1.000 .9882 ( 0 ) ( 0 ) .9788 ( 0 ) 1.000

DSCORE21 ( 0 ) ( 0 ) 1.000 .9812 .9989 1.000 ( 0 )

13
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APPENDIX

Exam le SPSS-X Commands' for Table 1 Data

TITLE "CROSS-VALIDATION IN DISCRIMINANT ANALYSIS"
FILE HANDLE DT/NAME=DT/CASE 1-2 GROUP 7 X 12 Y 17 CXSAM 22
LIST VARIABLES CASE GROUP X Y CXSAM
Subtitle "Computing Discriminant Standard Scores (dS1) for Samplel"
If (cxsam=1) dSx1=(x-4.83333)/(4.006410**.5)
If (cxsam=1) dSyl=(y-5.10000)/(3.000000**.5)
Subtitle "Computing Discrirninant Standard Scores (d52) for Sample2"
If (cxsam=2) dSx2=(x-5.32353)/(4.606389**.5)
If (cxsam=2) dSy2=(x--5.05882)/(4.213333**.5)
Subtitle "Computing 1st Discriminant Function Scores"
Subtitle "Sample 1 data with Discriminant Function Coefficient 1"
if (cxsam=1) fldS1c1=(1.38185*dSx1)+(-1.22482*dSyl)
Subtitle "Sample I data with Discriminant Function Coefficient 2"
if (cxsam=1) fldS1c2=(1.71359*dSx1)+(-1.29555*dSyl)
Subtitle "Sample 2 data with Discriminant Function Coefficient 2"
if (cxsam=2) fldS2c2=(1.71359*dSx2)+(-1.29555*dSy2)
Subtitle "Sample 2 data with Discriminant Function Coefficient 1"
if (cxsam=2) f1dS2c1=(1.38185*dSx2)+(-1.22482*dSy2)
SUBTITLE "DISCRIMINANT ANALYSIS USING ALL DATA"
DISCRIMINANT GROUPS=GROUP (1,4)/VARIABLES=X,Y/METHOD=DIRECT

/SAVE=SCORES=DSCORE
STATISTICS 1,2,3,
TEMPORARY
SUBTITLE "DISCRIMINANT ANALYSIS USING SPLIT DATA SAMPLE 1"
SELECT IF (CXSAM=1)
DISCRIMINANT GROUPS=GROUP(1,4)/VARIABLES=X,Y/METHOD=DIRECT

/SAVE=SCORES=DSCORE1
STATISTICS 1,2,3
TEMPORARY
SUBTITLE "DISCRIMINANT ANALYSIS USING SPLIT DATA SAMPLE 2"
SELECT IF (CXSAM=2)
DISCRIMINANT GROUPS=GROUP(1,4)/VARIABLES=X,Y/METHOD=DIRECT

/SAVE=SCORES=DSCORE2
STATISTICS 1,2,3
list variables

case,group,x,y,dscore1,dscore11,f1ds1c1,flds1c2,flds2c2,flds2c1,
dscore21

subtitle "invariance results"
correlations variables=dscorel,dscorell,fldslcl,fldslc2,flds2c2

f1ds2c1

* The analysis requires three runs. The first utilizes the cards
typed in all capitals and is conducted to derived the needed
pooled-within covariances which were added in the second run typed
in capitals with lower case. The third run in all lowercase is to
list the variables to check calculations and to correlate the
scores.


