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ABSTRACT

Cross-validation is an invariance technique that utilizes two
subsets of the data sample to derive discriminant function
coefficients. The two sets of coefficients are then used with each
data subset to derive discriminant function scores. The scores are
correlated to assess the stability of the discriminant function
coefficients across samples. One advantage of crcsis-~validation is
ease of calculation and adaptability to other statistical
procedures. A weakness 1is that the sample size must be large for

divisicn of data into data subsets to be meaningful.



Statistics are collected primarily from samples of populations
in order to make predictions or to construct theories regarding the
population as a whole. Repeating the study over many samples 1is
the best way to increase the generalizability of the findings to
the larger population. But, realistically, repeated studies are
often impractical or impossible. However, there are statistical
techniques designed to assess whether sample results will
generalize.

Invariance techniques such as cross-validation are economical
methods that address this question of generalizability.
Unfortunately, these techniques are not utilized in many
statistical analyses. When this source of valuable information
goes untapped, the researcher runs a greater risk of unknowingly
overinterpreting nonreplicable results. There are three
gtatistical results that are commonly assessed in published
research reports. However much these 1results contribute to
interpretation, none of them produce information about external
validity.

The statistical test most often included in research is the

test of statistical significance. All too often, a test of

statistical significance 1is the end of a statistical analysis.
However, a binary test of the null hypothesis does not test the
generalizability of the results. A statistical significance test
does not yield an estimated probability that the results will be
repeated with other samples, as erroneously believed by some
(Carver, 1978). The primary feature that determines statistical

significance is tie size of the sample used in the study (Thompson,



1989) . Stability of the underlying constructs that produce the
findings is not addressed by tests of statistical significance.
Too often the most meaningful implication of the research may not
be addressed due to the overreliance on statistical significance
testing (Fish, 1986b).

Thompson (1989) suggests that other results be examined in
addition to statistical significance to gain some insight regarding

result interpretation. Evaluation of effect sizes may produce

information regarding result importance. Large effect sizes, in
spite of a lack of statistical significance, suggest further study,
whereas small effect sizes with statistical significance may not
trigger such interest. However, reproducibility of the effect size
in other samples can not be predicted by evaluating the effect size
in one sample,

Another aspect of a statistical analysis to be evaluated are
the derived statistical coefficients or weights (e.g., beta weights
or discriminant function coefficients). The absolute size of these
coefficients 1is indicative of the predictive power of the
individual independent variables. For instance, in discriminant
analysis, evaluation of the discriminant function coefficients
suggests to the researcher which variables are the most important
predictors of the dependent variable. However, large weights are
not necessarily stable across multiple samples. Information about
the stability is crucial if the results of a discriminant analysis
are to be accurately generalized t. other samples., Testing the

stability of these coefficients is the objective of invariance
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procedures, Invariance procedures are an "attempt to determine how
stable the statistical results are likely to be across different
samples" (Fish, 1986a) and should be included in every analysis.

Cross-validation is one invariance procedure that can be used
with several statistical techniques. It is one of several "hold-
out” procedures which involves using one part of the data sample to
generate function coefficients or weights to ke used on the other
part of the sample. 1In & cross-validation procedure, discussed in
Cooil et al. (1987), the data sample 1is split, function
coefficients are derived for each part of the split sample, the
function coefficients for each subsample are applied to the
opposite subsample, then the results are correlated across
subsamples. The closer the sets of results are to each other, the
greater is the stability of the coefficient3 across samples.

Cross-validation has the advantage of simplicity and
versatility. The technique can be applied to any parametric
procedure, such as regression analysis, discriminant analysis,
canonical correlation analysis, and the various analyses of
variance (Fisn, 1986a; Sandler, 1987; Thompson, 1989). The
procedure many be used repeatedly, but double cross-validation,
described herz, is considered adequate for most predictive studies
(Kerlinger & Pedhazur, 1973). Cross-validation is limited in that
the original sazmple must be large enough so that the size of the
subsamples is adequate for the number of variables.

A concrete example will be used to demonstrate a double cross-

validation invariance procedure in a discriminant analysis. The
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data set consists of 64 subjects with two continuous predictor
variables "x" and "y" and one criterion variable, "Group," with
four levels. The heuristic cross-validation illustrated here is
performed on only the first discriminant function, however, it may
be profitable to continue the cross-validation on the next
functions if they are important to the research. The cross-
validation procedure is the same for each function. The SPSS-X
statistical package was used to conduct the empirical invariance
analysis for these data on the first discriminant furztion (see

Appendix for commands) .

INSERT TABLE 1 ABOUT unikRE

Steps for a Cross-Validation in Discriminant Analysis

1. The original sample of ¢4 subjects was randomly split into
two invariance subsamples by wusing random numbers "“cxsam".
Preferably, the two 3subsamples are of somewhat unequal size to
counter the objection that a satisfactory measure of invariance is
dependent on a particular sample size (Fish, 1986b). The split for
the sample data was n=30 for subsample 1 and n=34 for subsample 2,
The split sample size was sufficient for a meaningful cross-
validaticn, given the number of predictor variables.

2. A discriminant analysis was computed on the original
sample and on each subsample in three separate operations. The

three sets of generated discriminant function coefficients and



discriminant function scores were saved.

3. For the purpose of illustration, the raw data within each
of the two subsamples, were separately transformed not into z-
scores which utilize the subsample standard deviations, but into
standardized scores that utilize the square root of the pooled

within-group variances of each subsample. These values are used to

define the separation between the grcoups in a particular direction
as the distance between the means of the groups standardized for
the within-group variance (Hand, 1981), and are also used in cross-
validation. In this example these discriminant standardized scores
are denoted "dSx,;;" and "dSy," for x, and y, values from subsample
1 and "dSx," and "dSy," for x, and y, from subsample 2. The
calculated pooled within-group variances can be obtained from the
discriminant procedure for each subsample. For subsample 1, the
pooled within-group variance for x, was 4.006410 and for y, was
3.00000; for subsample 2 x, was 4.606389 and y, was 4.213333, The
procedure for calculation of discriminant standardized scores for

each case x; and y, in each subsample is as follows:

dSxy; = (Xy3~Ximean) / (POOled within-group variance x,)!/?
dSyYsy = (Y11~ Yimean) / (POOled within-group variance y,)!/?
dSXy, = (X;;~Xmean) / (POOled within-group varian<e x,)!/?

dSyy,

(Yi2=Y2mean) / (POOled within-group variance y,)/?

4, Obtain the standardized discriminant function coefficients

for x and y from the discriminant function analysis on subsample 1



performed in Step 2 above. The standardized discriminant function
score for the first function for subsample 1 for x; "DFCx," was
1.38185 and for y, "DFCy," was -1.22482. These standardized
function coefficients are used with the standardized scores from
subsample 1, "dSx,," and "dSy;," to compute actual discriminant
functinn scores for each case i and these same standardized
discriminant function coefficients are used with the standardized
scores from subsample 2, "dSx,," and "dSy,,," to compute "crossed"
discriminant function scores for each case 1 in subsample 2.
Repeat the process using standardized discriminant function
coefficients from subsample 2, x, "DFCx," was 1.71359 and y, "DFCy,"
was =-1.28555, to compute another set of actual and crossed
discriminant function scores. You will have two sets of actual
discriminant function scores and two sets of crossed discriminant
function scores. An actual discriminant function score fer case i
of subsample 1 is computed using standardized discriminant function

coefficients (DFC) derived from subsample 1:

discriminant function scorey; = (dSx,, x DFC,;) + (dSy; x DFC,)

An example of the procedures to produce a crossed discriminant
function scores using subsample 1 with subsample 2 discriminant

function coefficients:

discriminant function score,;, = (dSx,;; % DFC,;) + (dSy,; x DFC,,)



5. The four sets of scores are then correlated in a Pearson
correlation matrix. The SPSS-X procedure CORRELATIONS will produce
the matrix (See Appendix A). There would normally be four sets of
scores to correlate, two sets of crossed and two sets of actual
scores. However, for illustration, computer generated scores will
also be included. The sets of scores are: (a) subsample 1 cases
(1) using subsample 1 discriminant function coefficients
(discriminant function score,;;) labelled "dSiCl"; (b) subsample 1
cases (1) with subsample 2 discriminant function coefficients
(discriminant function score,;,) labzlled “dS1C2"; (c) subsample 2
cases (i) using subsample 2 discriminant function coefficients
(discriminant function score ,,,) labelled "dS2C2"; (d) subsample 2
cases using subsample 1 discriminant function <coefficients
(discriminant function score ;) labelled "dS2Cl"; (e) original
data with discriminant function scores generated from all the cases
with discriminant function coefficients derived from all the cases
(discriminant function score,;) labelled "DSCORE1l"; (f£) the
computer generated discriminant function scores generated from
cases in subsample 1 with subsample 1 coefficients computed in step
2 labelied "DSCOREll"; (g) the computer generated discriminant
function scores generated from cases in subsample 2 with subsample

2 coefficients computed in step 2 labelled "DSCORE21."

INSERT TABLE 2 ABOUT HERE

Of particular note are the scores partially hand computed for



subsample 1 using subsample 1 coefficients and subsample 2 using
subsample 2 coefficients versus the computer generated scores for
subsamples 1 and 2. This comparison illustrates how the
discriminant function scores are calculated. The actual computer
generated scores and the hand computed scores should be very close
and the correlation 1.00.

6. To assess the invariance, the correlations between the
actual scores and the crossed scores are examined. Each
correlation coefficient is squared for comparison. 1In our example
the correlation coefficient between the actual scores and crossed
scores from subsample 1 (discriminant scores,; and discriminant
scoresy,), r=.9882 (r’ = .9765392) reflects a very high degree of
correlation. This would suggest the discriminant scores are very
stable across samples. For a double cross-validation the actual
and crossed scores from subsample 2 are correlated (discriminant
scores,;; and discriminant scores,;). The correlation r = .9811, (r?
=.9525572) also reflects a very high degree of correlation. This
second cross-validation reinforces the indication of the first
correlation that the coefficients are very stable. Thompson (1981)
terms estimates such as these "invariance coefficients," since they
evaluate the replicability or the invariance of results.

summary

Invariance is an underutilized technique and its application
is not standardized. The methods can be left to the creativity of
the researcher keeping in mind the characteristics and goals of the

study. The researcher must use judgement in determining the amount
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of change in the invariance coefficients that is acceptable.

The cross-validation invariance procedure in this example
concerned the stability of the discriminant function coefficients
which indicate the relative contribution of each variable to each
function. Such an invariance procedure might be performed in an
attempt to find out if particular variables are stable conributors
to the analysis. In this example, the discriminant functions were
very similar and the scores were also highly correlated. This
suggests that for other samples, the coefficients would be similar,
that external wvalidity has been established. However, one
important point to be made is that to evaluate the stability of
discriminant function coefficients, the discriminant function
scores themselves must be examined. The discriminant function
coefficients may look different but render similar synthetic score-
and hence be stable predictors. BAn invariance procedure, such as
cross-validation, by empirically examining the discriminant
function scores can reveal important insights regarding the

stability of results,
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TABLE 1

Hypothetical Data Set
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TABLE 2

Invariance Statistics

DS1CL DSI1C2 DS2C2 DS2C1 DSCORE1 DSCORE21 DSCORE1L1l
DS1C1 1.000 .9882 (0) (0 ) .9788 ( 0) 1.0000
DS1C2 .9882 1.(00 (0) (0 ) .9788 ( 0) .9882
DS2C2 (0) (0) 1.000 .9812 .9989 1.000 ( 0
DS2C1 (0) (0) .9812 1.000 .9892 .9812 ( 0
DSCORE1 .9788 .9986 .9989 .9892 1.000 .9989 .9788
DSCORE11 1.000 .9882 (0) (0 ) .9788 ( 0) 1.000
DSCORE21 (0 ) (0 ) 1.000 .9812 .9989 1.000 ( 0)
13
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APPENDIX

Example SPSS-X Commands' for Table 1 Data

TITLE "CROSS-VALIDATION IN DISCRIMINANT ANALYSIS"

FILE HANDLE DT/NAME=DT/CASE 1-Z GROUP 7 X 12 Y 17 CXSAM 22

LIST VARIABLES CASE GROUP X Y CXSAM

Subtitle "Computing Discriminant Standard Scores (dSl) for Samplel"

If (cxsam=1l) dSx1=(x-4.83333)/(4.006410%**,5)

If (cxsam=1) dSyl=(y-5.10000)/(3.000000%*,5)

Subtitle "Computing Discriminant Standard Scores (dS2) for Sample2"

If (cxsam=2) dSx2=(x-5.32353)/(4.606389%*,5)

If (cxsam=2) dSy2=(x--5.05882)/(4.213333*%*,5)

Subtitle "Computing 1st Discriminant Function Scores"

Subtitle "Sample 1 data with Discriminant Function Coefficient 1"

if (cxsam=1) £1dS1lcl=(1.38185*dSx1)+(-1,22482*dSyl)

Subtitle "Sample 1 data with Discriminant Function Coefficient 2"

if (cxsam=1) £1dS1lc2=(1.71359*dSx1)+(-1.29555*dSyl)

Subtitle "Sample 2 data with Discriminant Function Coefficient 2"

if (cxsam=2) £1dS2c2=(1.71359*dSx2)+(-1.29555*dSy2)

Subtitle "Sample 2 data with Discriminant Function Coefficient 1"

if (cxsam=2) £1dS2cl1=(1.38185*dSx2) +(~1.22482*dSy2)

SUBTITLE "DISCRIMINANT ANALYSIS USING ALL DATA"

DISCRIMINANT GROUPS=GROUP (1,4)/VARIABLES=X,Y/METHOD=DIRECT
/ SAVE=SCORES=DSCORE

STATISTICS 1,2,3,

TEMPORARY

SUBTITLE "DISCRIMINANT ANALYSIS USING SPLIT DATA SAMPLE 1"

SELECT IF (CXSAM=1)

DISCRIMINANT GROUPS=GROUP (1,4) /VARIABLES=X, Y/METHOD=DIRECT
/SAVE=SCORES=DSCORE1

STATISTICS 1,2,3

TEMPORARY

SUBTITLE "DISCRIMINANT ANALYSIS USING SPLIT DATA SAMPLE 2"

SELECT IF (CXSAM=2)

DISCRIMINANT GROUPS=GROUP(1,4)/VARIABLES=X, Y/METHOD=DIRECT
/SAVE=SCORES=DSCORE?2

STATISTICS 1,2,3

list variables
case,group, x,y,dscorel,dscorell, fldslcl, fldslc2, f1ds2c2, flds2cl,
dscore2l

subtitle "invariance results"

correlations variables=dscorel,dscorell, fldslcl, fldslc2,flds2¢c2
flds2cl

* The analysis requires three runs. The first utilizes the cards
typed in all capitals and is conducted to derived the needed
pooled-within covariances which were added in the second run typed
in capitals with lower case. The third run in all lowercase is to
list the variables to check calculations and to correlate the
scores.
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