
DOCUMENT RESUME

ED 334 069 SE 052 148

AUTHOR McArthur, David; Stasz, Cathleen
TITLE An Intelligent Tutor for Basic Algebra.
INSTITUTION Rand Corp., Santa Monica, Calif.
SPONS AGENCY National Science Foundation, Washington, D.C.

Directorate for Science and Engineering Education.
REPORT NO ISBN-0-8330-1063-8; R-3811-NSF
PUB DATE Aug 90
CONTRACT MDR-8470342; MD1-8751515
NOTE 71P.; For a preliminary paper on this subject, see ED

300 245.
PUB TYPE Reports - Descriptive (141) -- Test/Evaluation

Instruments (160)

EDRS PRICE MF01 Plus Postage. PC Not Available from EDRS.
DESCRIPTORS *Algebra; *Computer Assisted Instruction; Computer

Software Development; Computer Software Evaluation;
Educ tional Media; Educational Technology; High
Schools; *Individualized Instruction; Learning
Strategies; Mathematics Education; *Mathematics
Instruction; *Progremed Instructional Mater:Leas;
*Programed Tutoring; Secondary School Mathematics;
Teaching Macnines; Teaching Methods

IDENTIFIERS *Tutor (Computer Program)

ABSTRACT
The stated goal of Individual Computer-Assisted

Instruction (ICAT' research is the development of computer software
that combines much of the subject matter being studied, any
particular student's learning schema, and the pedagogical knowledge
of human tutors into a powerful one-to-one learning environment. This
report describes the initial steps in the research to design an
intelligent tutor for basic algebra. Early observations indicated
that one specific tutor version would be too limited, hence emphasis
was focused on development of a gencrlc tutor from which many tutor
versions could be forged. This report documents the rationale
redirecting the overall research effort, the development of the
generic tutor, the development of tutor versions from that generic
model, and the efforts to evaluate those various tutor versions. The
followipg are included: (1) an intrsduction with research goals and
report organization; (2) a rationale for development of a core tutor
and an outline .)f its components; (3) the physical specifications of
the core tutor and desic!il specifications of three tutor versions--the
passive tutor, the multiple-representations tutor, and the
goal-commanth, tutor; (4) an empirical evaluation and subsequent
analysis of the passive tutor and its uses; (5) the conclusions drawn
from this stage of ICAI research with prospects for future
direction9; (6) the student attitude/background survey and the
mathematics achievement test used in the assessment procedure; and
(7) 37 references. (JJK)

**********P*P******************************************************1:***

Reproductions supplied by EDRS are the best that can be made
from the original document.

***********************************************************************



An Intelligent TOOT tor esaiic Algebra

StaszDavid McPsthur, Cathleen

BES1 nil

U S
DEPARTMENT OF

EDUCATION
othce

Ed.:V.0MP Rea*arce and
teoroortentwoEDUCATIONAL

RESOURCES
INFORMATIONCENTER tER1C)\Nr ?Ns 60Cument has been
reprod,Ked asrecer-ed from the cyemOn

oqiihashonorvnetengr my*, changes have neer made to wnplovefeoroduc von quittd
Pants r.e o op.norm

stated sn thss deC vment do nel
neceSSardy asoresen. otitcattOE Pt posdton
of globe,'

"PERMISSION TO
REPRODUCE THIS

MATERIAL IN
MICROFICHE

ONLY
HAS BEEN

GRANTED SY

Janet Valadez

TO THE
EDUCATIONAL

RESOURCESINFORMATION
CENTER

(ERIC).-
Or

'1.



The work described in this report was supported by the National Science
Foundation under Grant MDR-8751515.

ISBN: 0-8330-1063-8

The RAND Publication Series: The Report is the principal publication doc-
umenting .nd transmitting RAND's major research findings and final research
results. The RAND Note reports other outputs of sponsored research for
general distribution. Publications of The RAND Corporation do not neces-
sarily reflect the opinions or policies of the sponsors of RAND ,esearch.

Published by The RAND Corporation
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90406-2138

3



R-3811-NSF

An Intelligent Tutor for Basic Algebra

David McArthur, Cathleen Stasz

August 1990

Supported by the
National Science Foundation

RAN D



PREFACE

This report describes research completed under National Science Foundation (NSF)
Grant MDR-8470342 (Science and Engineering Directorate, Applications of Advanced Tech-
nologies Program) from September 1985 to February 1988. The goal of this research was to
design, implement, and test an intelligent tutor for basic algebra. This repurt is the culmina-
tion of all the research accomplished under the original grant; segments of that research and
follow-on work have been documented in previous RAND publications: D. McArthur, C. M.
Stasz, and J. V. Hotta, Learning Problem-Solving Skills in Algebra, N-2595-NSF, May 1987; D.
McArthur, C. D. Burdorf, T. H. Orrnseth, A. Robyn, and C. M. Stasz, Multiple Representations
of Mathematical Reasoning, N-2758-NSF/RC, May 1988; D. McArthur, C. M. Stasz, J. V.
Hotta, O. J. Peter, and C. D. Burdorf, Skill-Oriented Task Sequencing in an Intelligent Tutor
for Basic Algebra, N-2966-NSF, June 1989; and D. McArthur, M. W. Lewis, T. H. Ormseth, A.
Robyn, C. M. Stasz, and D. A. Voreck, Algebraic Thinking Tools: Supports for Modeling Situa-
tions and Solving Problems in Kids' Worlds, N-2974-NSF, July 1989.

In addition to describing and explaining the specific software the authors developed, the
report touches on broad issues of pedagogy, types of learning, urriculum concerns, and evalua-
tive tools. Thus, this report's findings should interest not only developers and users of
computer-based educational tools but also the educational community at large and mathemat-
ics instructors in particular.

Although the authors are reporting the final results of a now-completed grant, they are
also discussing work in progress, for much research still needs to be done in this rich and rela-
tively unexplored field. This new work is being funded by a follow-on NSF grant (MDR-
8751515) and by a related NSF grant (MDR-8751104).

ih



SUMMARY

This report describes research to develop an intelligent tutor for basic algebra. Our initial
objective was to develop a one-to-one computer tutor that would help students understand
algebra; we completed developing such a tutor for solving linear equations in the early stages of
this study. However, our observations while developing that version led us to realize that any
one tutor was too limited, both for our purposes and for those of the students. Therefore, we
shifted our emphasis and focused on developing a generic tutor from which many tutor ver-
sions could be constructed. This report documents the rationale for redirecting the research
effort, the development of the generic tutor, the development of tutor versions from that gen-
eric model, and our efforts to evaluate the tutor versions.

LIMITATIONS OF A SINGLE TUTOR

In developing and testing our initial computer-based tutor, we became aware of two major
limitations of a single tutor. First, we discovered that a single tutor must focus on particular
mathematical skills, and that different skills might best be acquired using different tutoring
tools. Our initial tutor, for instance, focused on goal-directed reasoning skills and self-
diagnosis skills. We concluded that a single tutor might be inadequate for electively teaching
the range of skills essential for true mathematical competence.

Second, a single tutor must incorporate a general set of geidelines the tutor uses in a
tutoring session; that is, the designer must select a pedagogical policy about whether, how, and
when the tutor will intrude into the student's problem-solving to correct mistakes, provide
directions, and so forth. In the case of our initial tutor, we employed a "passive" policy, mean-
ing that the tutor did not intervene unless the student requested help. The problem was that
numerous pedagogical policies existed, but no data in the research literature demonstrated that
one was superior to another. Because no one proven pedagogical way to tutor algebra existed,
we decided to shift our focus from a single tutor tied to one pedagogk 1 policy to a range of
approaches to tutoring. Central to our study, therefore, was a decision to separate policy from
mechanism.

DEVELOPING A CORE TUTOR

Our options were to develop one tutor and continue to develop software for that tutor
over the years or to develop a core tutor from which other, substantially different versions
could be created. For the reasons above, we chose to develop a core tutor that would permit
various teaching approac?.es.

The coee tutor is simply a collection of modules and toolsa generic frameworkthat
can be used to construct tutor versions. One component of the core tutor embeds algebra
knowledge and skills to help the student at each step in problem solving. A second part
embeds intertask skills for proceeding from one problem to another in a session. The algebra
expert component becomes part of each tutor version; it is simply plugged in. The version
designer selects other capabilities. No single pedagogical module ia built into the core; instead,
the designer defines rules for several knowledge sonrces that collectively define pedagogical
skill. From the core, then, a designer can select the capabilities he or she wishes for teaching a
specific skill in a specific way.

6



vi

The core tutor resolves the two problems we encountered in a single tutor. First, one or
more tutor versions can be created specifically to emphasize the teaching of lower-level skills, if
those are a curriculum's priority; others can be created to emphasize tegher-level mathematical
reasoning. By employing specialized tools, students can be taught multiple skills. Second,
each tutor version constructed from the core tutor can have a different pedagogical policy. One
can be highly intrusive (teacher controlled), another can be highly passive (student controlled),
and another can combine the control (mixed initiative). In short, the core allows great varia-
bility and flexibility. By developing a wide range of versions from the core tutor, we are then
able to test those versions to determine how well they achieve prescribed goals.

TUTOR VERSIONS

Although computer-based tutors can be designed to focus on mastering lower-level
mathematical skills such as axioms and procedural rules, the tutor versions we created from
the core tutor focused on higher-level mathematical reasoning. This procedure was in keep' ng
with our belief that students could master lower-level skills and yet achieve only a limited
understanding of other, perhaps more essential, skills. We wanted to create tutoring tools that
would help students acquire such cognitive skills as heuristics, debugging, strategic planning,
and problem solving.

All three of our tutor versions emphasized these higher-level skills, but we used a dif-
ferent pedagogical policy in each version. The first was the passive version, which we
developed before the core tutor. It required students to perform all algebra symbol manipula-
tion. The second was a multiple-representations version, which used two distinct representa-
tional systems to help students understand algebraic reasoning (traditional algebraic symbols
and primitive objects, for example). This version intermixed aymbol-manipulation reasoning
and reasoning in an alternate representation. The third version was a goal-commands tutor
that permitted students to solve algebraic problems using a set of commands. By automating
lower-level manipulations, the tutor freed students from the details of symbol manipulation
and helped them learn higher-level skills. In each version, the tutor appeared as a collection of
menus and windows for the student.

From these versions, we derived nine basic principles we advocate embodying in the
design of intelligent computer-assisted instruction (ICAI) systems:

1. Tutoring systems should be designed around expert systems that can be inspected.
2. Computer-basea learning tools should be designed to support the specific cognitive

processes involved in learning those skills through practice.
3. The student's reasoning should be externalized as much as possible.
4. Representations of mathematics within tutors do not have to be the traditional nota-

tion; other representations can sometimes facilitate certain skills more easily than
can the traditional representation.

5. When multiple representations are used in a tutor, they should be connected
dynamicallythat is, so that a change in one representation results in a change in
another.

6. Students should be allowed to focus on selected aspects of reasoning with multiple
representations.

7. Teaching environments should permit novel sequencing of skills in mathematical cur-
ricula.



8. Students should be permitted to learn different knowledge levels of complex cogn;tive
skills independently.

9. Environments for constructive learning must be provided.

EVALUATION

To date, our emphical evaluations of the versions have been only preliminary. Although
one purpose for conducting these early tests was to determine whether the software was educa-
tionally effective, the main purpose was to guide us in redesigning the versions of the tutor.
The evaluation indicated both success and failure: Student learning was low, but the evalua-
tion informed the redesign of subsequent versions and resulted in our developing important
data-gathering instruments and procedures.

One problem we encountered when trying to evaluate the passive tutor's effectiveness was
that current standardized tests did not measure acquisi!ion of the skills we were emphasizing.
We therefore relied very little on standardized tests of mathematics achievement to assess our
softwe.re, We have devoted considerable effort to designing new assessment tools that will
evaluate the utility of software with multiple and ill-defined benefits. Our strategy has been to
develop several kinds of measurement tools (achievement tests, attitude questionnaires, class-
room observations, and student scripts), each focusing on a different skill, and we use the com-
bined results for evaluation. We consider the development of the tools as important as the test
results.

To test the passive tutor, we used it in five first-year algebra classes at Santa Monica
High School in California. Testing intelligent tutors in the classroom instead of (as usually
happens) developing them in the void of a laboratory is essential. Collecting and reporting stu-
dent data, in fact, is one important asset of the study.

Achievement results based on students' pretest and posttest scores indicated that students
showed a statistically significant change in achievement, but the change was of little practical
significance. The evaluation further showed that students who did well on the pretest and con-
sidered algebra an easy discipline did well on the posttest, but students whose algebra skills
were initially low showed little improvement. Perhaps the biggest disappointment was that the
tutor failed to improve the students' model of math.

Student evaluations revealed several limitations of the tutor as a learning tool, including
insufficient explanations of why the student had made an error, a.,kward wording of hints and
explanations, and the tutor's passivity (that is, the student had to request assistance from the
tutor). Keeping in mind these observations, we have implemented a variety of changes and
additions to the software, including simplifying the interface, providing more detailed feedback,
and making the tutor more intrusive when students commit errors. Nevertheless, these
changes do not help the deficiencies in students' models of math.

Despite the unimpressive results in students' learning, the study was informative and con-
structive and will allow us to improve the capabilities of subsequent tutors and to measure
their effectiveness more accurately. Much research remains to be done in the field before sig-
nificant gains will accrue; therefore, to expect immediate gains from research is to judge
prematurely the potential ICAI offers.



viii

FUTURE DIRECTIONS

The ultimate goal of ICAI research is to develop computer programs that embed much of
the subject matter, student diagnosis, and pedagogical knowledge of human tutors, permitting
construction of powerful one-to-one computer learning environments. The research outlined
here is only one step toward that ultimate goal. Our future work will attempt to enhance our
lesson control module and add to the core's repertoire of techniques for aiding students at par-
ticular steps in a task.

To reach the ultimate ICAI goal, research must be undertaken on how to improve the
pedagogical expertise of ICAI systems, whether new forms cf le.,rning might be more appropri-
ate for computer-assisted instruction, what skills are impor ant to acquir-, whether the
mathematics curriculum should be altered, and how to evaluate ICA' systems. These issues
will require the combined efforts of various professionals, including cognitive psychologists,
mathematics educators, professional mathematicians, and researchers in MAL



ACKNOWLEDGMENTS

The work reported here would not have been possible without the cooperation and
enthusiasm of the students, teachers, and administrators at the Santa Monica High School. In
particular, we thank Gretchen Davis and Edward Winkenhower of the Mathematics Depart-
ment for sharing their teaching expertise and allowing us to work in their classrooms.

Andrew Molnar, our project monitor at the National Science Foundation, has been stead-
fast in his support of this work and other innovative research on advanced technologies for
education. We thank him for his continual encouragement and for expanding our research
vision.

Several current and former RAND colleagues made important contributions to this
research effort. James Hodges provided statistical consulting and Tor Ormseth assisted with
data analysis. Abby Robyn, Matthew Lewis, and Tor Ormseth, project staff members, contri-
buted to the ideas and work reported here. John Hotta and Orli Peter, former RAND staff,
provided research assistance. D. Robert Worley, John D. Winkler, and Daniel Koretz provided
thorough and thoughtful technical reviews, which much improved this report. Joyce Gray
assisted in preparing the manuscript for publication. Robert M. Brown ably applied his com-
munication and writing skills in helping us produce this final document.

ix 1 0



CONTENTS

PREFACE

SUMMARY

ACKN OW LEDGMENTS ix

FIGURES AND TABLES xiii

Section
I. INTRODUCTION 1

Research Goals 1

Organization of the Report 3

II. THE CORE TUTOR 4
Rationale for the Core Tutor 4
The Core Tutor's Components 5

III. TUTOR VERSIONS 10
Physical Specifications 10
The Passive Tutor 10
The Multiple-Representations Tutor 16
The Goal-Commands Tutor 19

IV. EVALUATION AND ANALYSIS OF THE PASSIVE TUTOR AND
ITS USES 24

Multiple Methods for Assessment 25
Preliminary Analysis of Student Outcomes 27
Student Evaluation of the Tutor 34
The Tutor's Limitations 35
Changes to the Current Tutor 37
Additions to the Tutor

V. CONCLUSIONS AND FUTURE DIRECTIONS 39
Overcoming Competence Limitations 39
Investigating New Forms of Learning 39
Focus Changes 40
Integration and Evaluation 41

Appendix: BACKGROUND QUESTIONNAIRE AND ACHIEVEMENT TEST 43

REFERENCES 57

xi

1 1



FIGURES

1. The core tutor's components 6
2. The algebra tutor interface 11
3. Student using the Go Back option 12
4. Tutor explains a step for the student 14
5. Student receives a hint from the tutor 15
6. The multiple-representations tutor 17
7. Response to an incorrect step in the multiple-representations tutor 18
8. The goal-commands tutor using lower-level commands 20
9. The goal-commands tutor using higher-level commands 21

TABLES

1. Types of knowledge comprising algebra competence 3
2. Sample problems from the algebra achievement test 26
3. Mean achievement test scores for all groups 29
4. Item statistics for the achievement test 30
5. Selected correlations between student characteristics (at posttest)

and posttest and change scores 31
6. Regression results for the posttest score 33
7. Regression results for the change score 34
8. Student evaluations of the tutor help options 35

1 2



I. INTRODUCTION

RESEARCH GOALS

It has long been recognized that most computer-assisted instruction (CAI) programs are
generally less effective than human teachers (Bloom, 1984). The , el of our research has been
to enhance the performance of CAI by applying techniques from artificial intelligence and cog
nitive science to the field of CAI. The aim of intelligent CAI (ICAI) programs is to help bring
the skill level of educatieAal software closer to that of human tutors, thereby potentially
triggering a revolution in education. We enviCiln a future in which ee ch student ha ,:. his or her
own intelligent tutoring system, permitting students to learn subjects at a pace that suits their
skills and in a style that adapts to their learning preferences. At present, such an environment
is widely available only through one-to-one tutoring by humans. Although this one-to-one
tutoring has shown impressive educational benefits (for example, Bloom, 1984), it is pr hibi-
tively expensive and usually available for only a few hours a week. The aim ICAI systems is
to make such learning envronments inexpensive and unlimited.

Our discussion of research goals falls into three categories: first, the kind of approach to
learning we wanted to implement in our software; second, the topics or subject matter wr
wanted students to learn using the software; third, the kinds of mathematical reasoning skills
we hoped to support.

Target Learning Environment

At the most general level, our goal throughout the project has been to develop a
computer-based learning environment for algebra that closely approximates a one-to-one learn-
ing experience with s human tutor. At thic time, one-on-one tutoring appears to be the only
teaching technique that reliably yields "two-sigma" improvements in student performance.

We can easily find reasons why one-to-ons tutoring is so successful. Human tutors pos-
sess several kinds of expertise that allow them to provide detailed explanations of concepts and
to personalize the learning experience to the student's needs:

Knowledge of the subject. Tutors are expert problem solvers in their field.
Knowledge of the student. Tutors understand which concepts are most difficult for stu-
dents Eine are able to detect and help remedy student misconceptions.
Knowledge of teaching. Tutors know pedagogical techniques that make difficult con-
cepts easier for the student to understand. These techniques also determine what
information to provide and when, thus expediting learning.

Our aim has been to use techniques from artificial intelligence and cognitive science to incor-
porste these kinds of expertise into an intelligent computer-based tutor for basic algebra.

Target Topics in Algebra

We initially chose to explore the learning of symbol manipulation skills required to solve
linear equations and inequalities. We began with these topics for several reasons. First, solv-
ing linear equations is an enduring part of most curricula in basic algebra. Although many
recent suggestions for curriculum reform (for example, Fey, 1984) propose eliminating various

1 3



2

familiar topics (factoring, for instance), linear equation solving remains a mainstay. Second,
solving linear equations is a tractable topic, in addition to being an important one. Implement-
ing the expertise for well-defined skills (such as sy&)ol manipulation) is within artificial
intelligence's state of the art; implementing the knowledge involved in less well-defined sub-
jects is not. Third, we wanted to focus (at least for the presznt) more on issues of intelligent
tutoring than on issues of curriculum reform. Some colleagues have wondered whether
developing software for novel topics in mathematics, rather than for familiar aspects of symbol
manipulation, might not be more educationally valuable. Many educators would agree that
hand-held calculators have made arithm3tic less important for saidents to learn. By analogy,
because symbol manipulation can be performed by machines, isn't it also a devalued skill?

C'early reforming the algebra curriculum is an important task. However, developing com-
putational principles of intelligent tutoring systems is important in its own right. Because the
ccnlipetence of current ICAI systems falls far below that of human tutors, implementing a new
curriculum using state-of-the-art ICAI techniques would not produce revolutionary educational
software. Both the goals of curriculum reform and of developing i better computational theory
of tutoring must be accomplished before we can expect to see substantial 'improvements in edu-
cational software.

Our approach has been to use basic symbolic algebra as a realistic test subject for
developing generalizable tools and ideas concerning ICAI. The lessons we have learned in this
area will likely extend to other areas of mathematicsincluding whatever new topics appear in
the curriculum over the next few years. In addition, our study of tutoring in basic algebra has
led us to a better appreciation of which computer-based tools might be part of a new high
school curriculum for mathematics. We are now beginning to pursue these ideas.

Target Levels of Mathematical Reasoniug

Basic algebra can offer a surprisingly rich set of skills for the student to learn. Although
most traditional algebra curricula focus on teaching facts and procedural rules, these comprise
only a subset of the different levels of skill or knowledge involved in algebra competence.
Table 1 shows a more complete list of the kinds of skills that can be acquired, even in the con-
text of learning to solve simple linear equations (see also Schoenfeld, 1985; Collins and Brown,
1987). Our own classroom observations, along with the analyses of others (for example,
Schoenfeld, 1985), indicate that a student who has mastered the lower-level skills in Table 1
(for instance, algebra axioms) may have little understanding of the other skills essential to
algebra competence (broadly defined). In this project, we have focused on developing
computer-based tools that help students learn the higher-level mathematical reasoning skills of
Table 1 and have focused less on the lower-level ones.

In our view, curriculum reform for mathematics has at least two dimensions. On the one
hand, the curriculum content should change in response to the changing nature of mathemat-
ics, its real-world applications, and the newly available computer tools for automating
mathematics. On the other hand, along with others (for example, Schoenfeld, 1987; Pea, 1987),
we believe that a change in emphasis is also necessary. Many schools emphasize a "cookbook"
approach to mathematics education, which stresses the learning of rote algorithms and largely
ignores the heuristic- and strategic-level reasoning that Ere crucial aspects of mathematical
thinking. Our tutor versions have focused on this dimension of curi.e...Alum reform.



3

Table I

TYPES OF KNOWLEDGE COMPRISING ALGEBRA COMPETENCE

Knowledge Type Description and Example

Facts or axioms

Procedural rules

Local heuristics

Metacognitive
skills

Problem-find:ng
skills

The axiomatic truths of algebrakr example, the distributive rule, usually stated Ix% + c,1
ab + at.

Algorithms, usually comprising a fixed sequence of stops, that are guaranteed to pro4uce the
desired result when applied in the correct contextfor example, the FOIL method of expanding
binomials (multiply the first dements of each pair in the binomial, the outside elements of each
pair, the inside elements, then finally muitiply the last elements; add all tht. multiplications).

Rules that indicate the conditions under which a given goal or transformation might be reason-
able. Local heuristics are not algorithms, because they usually suggest operations that don't com-
pletely solve a problem, and the operations, although locally reasonable, might not lead to an
overall optimal solution. An example is the informal rule, taught to students, to "6.1ways remove

otheses first when solving an equation."

General skills concerning the control of inferencing when problem solvingfor exa iple, self-
monitoring skills, debugging ability, knowledge of techniq..es such as decomposing complex goals
into more manageable ones.

General skills concerning the ability both to find situations in the world in which known
mathematical tools might be useful and to develop formal mathematical models of situations
using those toolsfor example, seeing that two properties of objects (such as size and age) are
related and then developing equations that formalize the relationships between the two variables.

ORGANIZATION OF THE REPORT

The report is organized from the development of the softwane to its evaluation. Section
II describes our "core" tutor, comprising both a generic framework for viewing ICAI systems
and a set of tools and components we used to constr.:,:..t our specific tutor versions. Section III
discusses several tutor versions we created using the core components and tools. In Sec. IV, we
discuss our empirical evaluation of the "passive" version of the tutor and some limitations of
our current tutoring tools for algebra. In addition to presenting the results themselves, we also
describe the methods we developed to obtain our data. Finally, See, V discusses our plans for
future research. We attempt here to generalize beyond our own software, describing several
ways in which ICAI systems might be improved.

Because this report attempts to survey all facets of the research we have accomplished, it
necessarily treats some topics briefly. The reader who wishes more detail may consult the
papers cited in various sections.



II. THE CORE TUTOR

Our original plan was to implement a single tutoring system for all of basic algebra;
proceeding on this assumption, we developed an initial tutor (see McArthur, Stasz, and Hotta,
1987). However, we subsequently changed our basic approach for developing IC AI programs;
instead of developing a single tutor that would undergo incremental changes, we decided to
develop a core that could be used to create several substantially different tutor versions.

RATIONALE FOR THE CORE TUTOR

Several considerations caused us to redirect the focus of our research. First, we quickly
realized that no one "right" way to tutor algebra existed. Hence, rather than examining one
approach in detail, we felt that developing :;oftware that permitted the implementation and
testing of various peiagogical approaches woL Id be more appropriate. For example, we could
consider highly intrusive tutors (teacher controlled), ones where the student made most of the
decisions (student controlled), and ones thst cenibined both (mixed initiative). Second, we
believed that different skills would best be served by different kinds of tutoring tools. Table 1
shows how learning even basic algebra demands that the students learn a variety of skills.
Instead of attempting to provide a single computer-based (or even non-comuuter-based)
environment that attempts to tutor all such skills, we decided that implementing specialized
tools, each designed to help the student learn one or two component skills, would be more prof-
itable. Third, we came to believe that multiple views or representations of con,:epts and topics
were crucial to learning. Consequently, we developed several tutoring versions that presented
varied views of algebra and algebraic reasoning to the student.

To facilitate the construction of multiple versions of the tutor, we constructed the core
tutor, though it is not actually a tutor version at all. Rather, it is a collection of modules and
tools to help us build new tutoring versions, In addition to affording tne benefits listed above,
the core tutor also saves time in creating tutor versions. For instance, the first version (which
was created before the core tutor) took approximately a year to build, but subsequent versions
using the core tools have taken from two days to two months.

Although specific tutors can also be constructed from "tutoring shells" (see, for example,
Sleeman, 1987), the core tutor is substantially different from tutoring shells in the way it facili-
tates the construction of tutor versions. Generally, tutoring shells make constructing a tutor
easy by drastically reducing the number of options available to the designer. This typically
limits tutorial policies to ones that equate tutoring with local interventions triggered by local
problemsa kind of fire-fighting model of pedagogy.

The modules and tools that co.aprise the core tutor impose fewer restrictions on the
designer. For example, the programmer is free to specify a tutorial strategy that involves more
than just how to deal with student errors. On the other hand, the core tutor also imposes more
respensibilities on the programmer. This trade-off strikes the right balance given the state ef
the art of ICAI. To exaggerate only slightly, many tutoring shells give the impression that the
main research problems of ICAI concerned with understanding human didactics and pedagogi-
cal skills have been solved. The primary remaining problem is technical: to provide a means
of communicating the domain-specific performance and pedagogical rules to the machine as

4
1 6



5

efficiently as possible. However, many fundamental questions regarding the cognitive skills of
teaching remain unanswered (in Sec. V, we discuss some of these issues in greater detail).
Accordingly, our core tutoring tools provide relatively weak constraints on the representation
and content of tutors.

THE CORE TUTOR'S COMPONENTS

The core tutor consists of modules and tools to help build each of the main parts of a
tutor version. To convey the core tutor's components, Fig. 1 provides an overall model of our
view of a generic intelligent tutoring system. The model includes three kinds of components.
Active memory components encode data structure, that the tutor computes during a tutoring
session. Often this information is transitory; for example, the current student performance
changes from task to task. However, we emphasize that this information is not necessarily
short term in nature; aspects of the student model may endure across several tutoring sessions.
The components of our model labeled expertise perform the computations and inferences that
result in active memory structures. In order to make intelligent computhtions, expertise
exploits various kinds of knowledge sources. Knowledge sources encode general kinds of infms
mation about students, teaching, and subject matter. This information is distinct from data
represented in active memory about specific students, teaching situations, and tasks.
Knowledge sources are often referred to as long-term memory because their contents change
little over time.

Although the model in Fig. 1 appears complex, its organizing principles are actually quite
simple. Broadly, the tutor reasons at two levels. At the local or tactical level, the tutor decides
how to respond to the student's most recent responses (for example, algebraic transformation
or a request for help), and at the strategic level the tutor plans the tasks or problems to give to
the student throughout the session.

Memory, expertise, and knowledge that contribute to local or tactical decisions appear in
the left half of Fig. 1; strategic modules appear on the right. The tutor's sbility to reason
about the current task (generating an "ideal" solution) allows it to provide several types of rich
feedback on students' solutions. Tactical response rules are used to decide which type of local
feedback to choose at any time. To tailor the local feedback appropriately, knowledge of the
student's performance and inferences about the student's state of knowledge (the student
model) are also important. In addition, the student model is essential for updating the set of
skills that are the global (strategic) topics of tutoring during a session. The skill network
encodes all the skills or concepts that might become topics of tutoring, as well as the strategic
rules that dictate how to move between topic skills. Lesson updating uses both this knowledge
and knowledge of the student's current conceptual strengths and weaknesses (in the lesson
skills and student model) to reason about new topics for tutoring. The final link in the tutor's
strategic reasoning involves generating new tasks that will elicit the skills that are the current
topics for tutoring. The following subsections document in more detail the roles of various
components involved in tactical and strategic reasoning.

When constructing a version of the tutor, the programmer needs to specify the "rules" (or
other representations of knowledge) that comprise the various knowledge sources in the generk
system. The reasoning processes comprising the expertise modules are given, and the working
memory modules are constructed by student and tutor behavior during a session. The core
tutor facilitates the definition of knowledge sources in process in several ways. First, some
knowledge sources cone built in, (In Fig. 1, these sources have solid borders.) For these, the



Active memory:

Expert
performance

Tutor's reasoning
structures for
current task

Local tutorial
response

Tutor's response
to student's most

recent actions

Expertise:

Knowledge
sources:

Student
performance

Student's overt
performance on
the current task

Student model

Inferences about
student's state
of knowledge

i it
Expert Tactic Student

reasoning selection inferencing

Computation of Selection of response Maintaining student
expert's reasoning to last student model

Lesson skills

Current set of
skills to embody

In next task

Next tasl.

Embedding
selected skills

tor current task act

Lesson Task
updating generation

Maintaining current Using selected
set of skills skills to make

to teach new task

r 7
Algebra rules Tactical response

rules
Buagy skills Skill network Strategic rules

Knowledge of Knowledge of tactics Knowledge of buggy Knowledge of logical Knowledge of rules
algebra problem- tor responding to variants of and pedagogical tor transforming

solving skills local student action algebra skills relations among skills current skill set

1

NOTE: Knowledge sources with a solid border am provided by the tutor as a built-in part. A heavy dashed line indicates that the tutor provides
tools that simplify the definition of rules in that knowledge source. A lightly dashed line indicates a built-in knowledge source that is currently
only in skeletal form.

Fig. 1The core tutor's components

cf)



7

programmer of a new version need do nothing. Second, for other knowledge sources, we pro-
vide tools to facilitate the definition of the appropriate rules. (In Fig. 1, these sources have
heavy dashed borders.) In the following sections, we discuss the various built-in parts and
tools.

The Algebra Expert

The algebra expert is an artificial intelligence-based program that encodes the algebra
knowledge common to all versions of the tutor. It is an algebra "expert system," comprising a
knowledge base of rules (algebra rules) and an inference engine (expert reasoning) that applies
the rules to a given algebra problem, generating reasoning structures (expert performance). The
reasoning generated by the algebra expert has several features. First, the reasoning paths are
natural in the sense that the sequence of reasoning steps generated by the system in solving a
problem is always comprehensible to students and in many cases is similar to their steps.
Second, the system generates multiple reasoning paths in the sense that it usually producea
several different plausible solutions to a given problem. McArthur (1987) describes the algebra
expert in more detail.

Programs whose reasoning and final answers are comprehensible to humans are often
termed inspectable (McArthur, Stasz, and Hotta, 1987). From an educational standpoint,
inspectable systems have several advantages over black-box systems, whose reasoning processes
are generally incomprehensible. The uses to which we have put our algebra expert amply
demonstrate these advantages:

It models expert reasoning. It provides the sWdent with ideal reasoning paths for solv-
ing a problem, annotated with a discussion of the goals and operations that justify
each step in the algebraic symbol manipulation for the problem (see Sec. III for exam-
ples).
It explains expert reasoning. It provides natural language explanations of the goals
underlying reasoning steps in a solution.
It articulates different levels of knowledge. The algebra expert's knowledge is organized
by different knowledge levels (Newell, 1982). The knowledge levels used to solve
linear equations, for example, include plans, which encode the high-level policies about
how to approach a problem; strategic rules, which decide what kind of algebraic
transformation to apply at any point in problem solving; and axioms, which encode the
algebra-specific rules for how to implement a transformation. In short, the algebra
expert can reason separately about higher-level problem-solving decisions and lower-
level alge,rs-specific decisions. In general, this permits us to tutor these different lev-
els of maLiematical thinking in isolation, as subsequent sections on specific tutor ver-
sions will demonstrate.
It provides hints and remedial assistance. When the student needs help or makes a
reasoning error in solving a problem, the algebra expert can access the appropriate lev-
els of knowledge to describe what kind of transformation to choose next and why to
select it.

Pedagogical Tools

Unlike the algebra expert component, which is simply "plugged in" and becomes part of
each tutor, the core tutor's pedagogical capabilities are not built in. No single pedagogical
component exists that the version designer can simply plug in to make decisions about when to



8

show ideal solution lines, explanations, hints, or remedial help. We have not defined a
pedagogical module because there is rw single good policy for tutoring, or even a small set of good
policies. Instead, we provide tools that permit the designer to define rules for several
knowledge sources; these tools collectively define pedagogical skill in our overall model. In
essence, we have separated the pedagogical policy from the mechanism in order to allow a
designer to define whatever yolicy he or she prefers in a particular tutor version. The tools
included in the core tutor are divided into those that help define rules for local tactical
responsesstructuring tutoring sessions at an intratask leveland those that help define stra-
tegic rulesorganizing sessions at the intertask level.

Intratask Pedagogical Tools. Intratask tutoring skills are responsible for controlling
the dialogue with the student as he or she solves a single problem or a single step within a
problem. The overall goal of intratask tutoring expertise is to use a relatively rich set of
current conditions (student performance information and diagnostic inferences in the student
model) as a basis for computing a specific tactic (tactic selection) to instantiate. When instan-
tiated, a tactic generates a tutor responsefor example, a hint, error description, or explana-
tion (local tutorial response). These decisions are tactical in the sense that they are computed
opportunistically, as a function of changing conditions, rather than as part of an enduring
tutorial plan.

The current core tutor provides a simple language for creating tactical response rules that
define an intratask tutorial policy. The core tutor has no "default" policy. The designer is
responsible for writing a set of rules that covers all student responses and stipulates a tutorial
action for each type. The following two rules are translations of ones that implement two dis-
tinct tutorial policies.

1. If the student has just finished typing in a new step, display the step in the display
window.

2. If the student has just finished typing in a new step, determine the validity of the
step. If the student's step is invalid, say it's incorrect and describe the kind of error.

Although these rules are simple, they show how radically different intratask policies can
be. The first rule was part of a completely passive policy in which students were never given
unsolicited advice. The second rule was part of a completely autocratic policy in which the
tutor, not the student, controlled the initiative.

Intertask Pedagogical Tools. Intertask tutoring skills decide how tasks or problems
should be sequenced. In general, although ICAI programs possess considerable expertise in
dealing with local student difficulties within a problem, they have little ability to organize a
lesson or a sequence of problems (see Ohlsson, 1986). Elsewhere (McArthur et al., 1988) we
review in detail the planning limitations of ICAI systems. The main challenge in implement-
ing intelligent intertask tutorial control involves reconciling the need for lesson plans, which
impart structure to a session, with the need to respond opportunistically to each student's diffi-
culties as they arise. This question needs extensive research; our work in this area should be
regarded only as a first step.

Our main effort concerning intertask tutoring has been to develop a lesson control
module for algebraic equalities and inequalities. Lesson control is the ability to generate an
intelligent sequence of tasks for the student. The overall flow of our model of lesson control
appears in the modules on the right side of Fig. 1. We assume tutors begin with a set of com-
ponent skills necessary to solve problems in the chosen domain (the skill network module of
Fig. 1). At any given time, some subset of all skills is assumed to be the current topic of tutor-
ing (lesson skills). Tasks are generated that will tap those skills (task generation). Depending



9

on the student's performance on the task and on inferences about student performance main-
tained in a student model (student performance and student model components), the tutor will
first update the target set of component skills (lesson updating) and possibly make new infer-
ences about the student's state of knowledge (student inferencing). The cycle repeats as the
tutor generates a new task. If the current skill set is appropriate for-the student, lesson tasks
will not be too difficult or too easy. Given that questions are generated using an incrementally
modified skill set, the task sequence should be coherent as a whole while still being responsive
to student performance.

Our current implementation of lesson control includes representations of a simple student
inferencing component and complete lesson updating and task generation capabilities for basic
algebra. The skill network is relatively complete (for basic linear algebra) and can be extended
in a simple fashion to new concepts outside of linear equation solving. (In one day, for exam-
ple, we added a network for inequalities using a simple language for representing new skills.)
However, the strategic rules knowledge source exists largely in skeletal form. Instead of sup-
plying a complete set of rules, we have built a simple language in which designers can readily
construct differing lesson control policies in this knowledge source.

We have implemented several preliminary policies to test the lesson control language.
The strategic rules for the current lesson control structure can each be thought of as functions
that map current skill-state information and student performance information onto a new
skill-set state. Two skill-set constructs are referenced: the most recent skill set used to gen-
erate a question (Sk) and the lesson stack (LS). The lesson stack stores skill sets and permits
the tutor to suspend one tutorial goal (for example, a skill set), interpolate another goal (for
example, focus on a new skill set), and then resume the original goal.

The following are rough English translations of some rules used in the current control
structure.

If the student's score on the past six questions totals < 350 and they are all from the
same skill set, push Sk on the lesson stack and set Sk to be a simpler skill set.
If the student's score on the past four questions totals 370 and they are all from the
same skill set and the LS isn't empty, pop the LS and set it as Sk.
If the student's score on the past four questions totals 370 and they are all from the
same skill set and the LS is empty, select a more complex skill set.

The rules are doubtless too simple to yield intelligent lesson control in all cases. For exam-
ple, all student modeling information has been collapsed into numerical scores. However,
although many current rules are questionable, tbcy have an important value as tools for construct-
ing alternate pedagogical policies. Different rule sets can easily be constructed, encoding a variety
of different theoretical approaches. Because little research describing the important features of
intelligent sequencing has occurred, our framework can provide a useful way of empirically testing
alternate ideas about sequencing.



III. TUTOR VERSIONS

In the following subsections, we describe several tutoring versions or tools we have imple-
mented over the past two years. In addition to describing how each version operates, we
attempt to illuminate the underlying justification, or abstract tutoring principles, that have
guided the version's design. In many ways, these principles are as important as the tutor ver-
sions themselves. The particular tutors we have developed will be superseded, or radically
changed, in the coming years. We hope their underlying principles will endure.

PHYSICAL SPECIFICATIONS

The initial version of our tutor was implemented in a computer language called Zeta lisp
on a Symbolics 3600. Preliminary "lab" tests of the software were conducted on this version at
The RAND Corporation using students from Santa Monica High School in Santa Monica, Cal-
ifornia. Subsequent versions of the tutor have been implemented in Franz Lisp (another
dialect of the Lisp language) on Sun Microsystems workstations. These run in both a lab and
school setting. The lab setting continues to use paid student volunteers from the local high
school. In February 1987, six Sun 3/50 workstations were installed in the local high school.
Except for summer vacation, the machines have been in continuous use in several different
first-year algebra classes. Over the next several years, we plan to continue developing and test-
ing the software, both in the lab and school settings.

THE PASSIVE TUTOR

The first tutor version we created was passive, meaning that all initiative was under the
student's control. In this section, we discuss the rationale for this version and then its imple-
mentation. We go into considerable detail because subsequent versions share many features of
this initial version. (Additional information on the passive tutor version appears in McArthur,
Stasz, and Hotta, 1987.)

The Passive Tutor's Tutorial Goals

We had several goals in developing our first version of the tutor. First, we wanted to
complete an initial implementation of each component of an ICAI system (see Fig. 1). Second,
we decided to construct a tactically passive tutor, largely because we found no principled rea-
son to prefer a different kind of local tutorial policy.1 Third, we wanted to structure the tutor-
ing environment to permit students to focus on select higher-level problem-solving skills (see
Table 1). In this version, we focused in particular on two kinds of problem-solving skins not
found in typical curricula: debugging and self-diagnosis skills, and goal-directed reasoning
skills.

Most ICAI systems embed a more active local tutoring policy in the sense that the tutor takes the initiative in
deciding when to give the student advice. No principled reason exists for adopting either kind of policy because few
empirical data exist on the kinds of techniques used by good human tutors. We have recently begun to develop a cog-
nitive model of human tutoring skills (McArthur and Stasz, 1987; Shave Ison et al., 1989; and McArthur, Stamm, and
Zmuidzinas, in press'fr.

10

22



II

Debugging and self-diagnosis skills refer to the abilities of good students to learn from
their errorsto track down the error's location and determine how to find the knowledge that
will remedy the error. Our own research shows that students' debugging skills are almost
nonexistent in algebra. The problem-solving skills involved in debugging are critical: They
can make the difference between students who merely pi !ice when doing homework ques-
tions and those who learn from practice.

Goal-directed reasoning skills enable the student to break down problems into subprob-
lems recursively until a piece of axiom-level knowledge can be selected to satisfy a particular
goal. These contrast with cookbook procedures commonly taught in the classroom. Such pro-
cedures give the impression that algebra problem solving always involves a fixed set of steps.
The goal-directed reasoning skills we refer to are true problem-solving techniques that selec-
tively search for patterns in questions that suggest certain goals or approaches.

Implementation of the Passive Tutor

The student sees the tutor as a collection of windows and menus, as Fig. 2 shows. The
large window in the upper right is the "display" window, where the student's reasoning is
recorded and queried. Problem solving is represented here as a reasoning tree. Each branch in
the tree represents an alternative solution or line of attack on the problem. A tree representa-
tion allows easy comparison of different solutions, both the student's and the tutor's. The
boxed equation represents the student's current focus of attention in problem solving. To the
left of the display window are several menus, comprising a set of options that permit users to
manage their reasoning and allow the tutor to assist students in reasoning in various ways.

3y+9 -2y+7

7

7 3y+2y 7+-9

Sy -2

hmfror Oa!

Step CI

[lea:rit $teN

Explion Seep

Next Next See0

De 1.0.t Step

f) See, Step

Fig. 2The algebra tutor interface

BEST COPY AVAILABLE



12

Below the display window, on the right, is the "comment" window, where the tutor sends
textual feedback to the student. To the left is the "work" window, where the student creates
each new line in his or her solution. New lines or reasming steps can be created either by typ-
ing equations using the keyboard or by writing them on an electronic tablet that recognizes the
strokes as characters and passes them to the tutor, where they are interpreted as mathematical
expressions.2 When the student has finished inputting a line, the tutor places the new expres-
sion in the display window.

Support for Learning Debugging Skills. The first way the tutor facilitates the learn-
ing of debugging skills is by encouraging mistakes and not penalizing them. If the student
determines that the current solution line is not correct, or just wants to investigate a new line
of attack on the problem, he or she can easily try alternatives. To determine whether the
answer is correct, the student uses Answer Ok? to find out if the solution is acceptable. Next,
the student can select the menu item Go Back. The tutor will ther It which solution expres-
sion in the display window the student now wants to be the problem focus. The student
responds by using a mouse to point to any expression in the reasoning tree and selects it by
clicking one mouse button. For example, in Fig. 3, having been told that the answer (y 32/3)
is wrong, the student has just clicked on Go Back and then selected the equation -6y + -15
-17 + -9y. The tutor then moves the box that indicates the current focus of attention to this
equation or node.

71 )1' tl t I .1 1 tt

Scroll RIpt

StrO) 1,401

Scroll Darn

Itroll 0

+15 +- 9 y

-by 4 9i = 32

3 y 32

32

3

Fig. 3Student using the Go Back option

'We are using a Penpad, a product of Pencept, Inc., for input of handwritten characters, and initial results look
encouraging. The Penpad recognizes approximately 95 percent of characters and places only a few constraints on stu-
dents' penmanship.

BEST COPY AVAILABLE
, P

4... t

24

441
A



13

The Go Back option provides a way for the student to try out problem-solving strategies
efficiently. The traditional pencil-and-paper medium does not encourage this exploration and
learning because it exacts a high cost for trying multiple solution lines. To try a new line, stu-
dents must erase the old one, which they are reluctant to do because the procesP is slow and
because they may forget the old line if they wish to return to it.

Debugging is a multifaceted skill; merely encouraging students to make and explore errors
will not make them skilled at debugging. In addition, students need to learn how to isolate a
bug and fix it. Isolating an error may be problematic because the tutor's problem-solving
environment encourages students to try out many reasoning steps. To learn from their mis-
takes, students may have to wade through these steps to find the one step that hides a !miscon-
ception. In the case of Fig. 3, for example, how does the student know which step is the
culprit? Several menu item options will help simplify the search. First, the Step Ok? item
allows the student to ask the tutor if any step in the reasoning tree constitutes an appropriate
mathematical transformation in the current context. The student selects Step Ok? and then
points to any step in the reasoning tree.

When the student has selected a reasoning step, the algebra expert system then says
whether the step from the previous node to the selected one is acceptable. In critiquing the
student's step, the tutor makes a distinction between steps that are mathematically invalid and
steps that are inappropriate. Inappropriate steps are logically valid but would not be chosen by
the algebra expert because they do not move the student closer to a solution. Thus, using Step
Ok? the student not only succeeds in isolating a faulty reasoning step but also obtains a charac-
terization of the misconception underlying the error. h.:. alid steps imply errors in knowledge
of algebra transformation rules; inappropriate steps imply errors in goal-directed reasoning
methods. Having successfully used Step Ok? to isolate an error, the student is now in a posi-
tion to execute Go Back, as in Fig. 3.

Support for Learning Goal-Directed Reasoning Skills. The supports we provide for
helping the student understand that solving algebra problems can be a goal-directed reasoning
process, as opposed to a cookbook procedure, are divided into two classes. First, we enable the
student to observe the tutor's own exemplary reasoning processes in considerable detail.
Second, we provide aids for the student's problem solving in the form of hints that reveal the
goal structure of algebraic problem solving. We describe these tools in turn.

Several menu items allow students to "open up" the tutor's reasoning process to a depth
and detail that students tailor to their cognitive needs. If, in viewing the expert's reasoning,
the student does not understand how the expert went from one expression tn thA nt-...xt, he or
she can use Elaborate Step to see more detailed intermediate steps that may illuminate the
expert's reasoning. Although the Elaborate Step option allows the student to view selectively
more of the reasoning substeps that comprised a larger step, the option Explain Step provides
more textual justifications of how and why those steps were taken.3 The tutor's explanation
capability is particularly powerful because it can exploit its hierarchical reasoning structures to
create multileveled explanations.

At the start of Fig. 4, for example, the student se)ects the Explain Step menu item and
then points to the indicated step. The tutor begins by bringing up an explanation window (on
the right) and, below it, an explanation menu. In the explanation window, the tutor prints the
basic explanation describing the generation of the step. Each explanation placed in the win-

3The original explanation facility in the tutor was programmed by Mike Pazzani. a graduate student at UCLA.



14

501111 Ripe

krill Left
Wel) Mom

Scroll up

-7+-5y -y

-syi a -y

-y+5y

My pet tO:

NAL Z. L I;
lust_ -Auest touthar.

1 Inconollina4 gaol 7.13 yensyve y mi,p4., goo,

(-ily+50+7

12 +5 )y+7

12 N 4 y+7

5 4 y

Ottnct t004tftnr nIl to,04 ,11 7-ySy that cOntilin y.

Iva CONeittd 0401 tontot only y, y, nf y soltintlat

Al Otter tette.

t , 4K1,enett gest 2.1 Pp schleomq e.ovele.

GOAL 2,1,11
itst_q__f_y_ona Si lifffthe,

rosee,t,...t. fib all OccuraOtos ot y tont no not triMMy

t_l_CINfthIttet.

the 4,etrvloot,le role to sect I en* 1 en* oult,ety the

'soil OM ,.

coil. 2.5,4:

nonlo$10 preinlana contotnlq Jo$t ftuninnrip, replOcIng

144 ytth 1,4,14 ftweito-O,

1 iNcosot,ithee foil ?.1.? Oy enlavIng Gno nutimml:

0041.
iszepc:10t,cent Up, .11 In KtirtIncil Pt 1.

'4hp lost .0. Wel

IMP

Fig. 4Tutor explains a step for the student

dow is boxed and prefixed by a goal number. Goal numbers explicitly show ho p. goals are con-
nected in a hierarchy of subgoals and supergoals. Once a basic explanation is displayed, the
at k. lent has an opportunity to deepen the explanation and tailor it to his or her own needs
using the menu items How Goal and Why Goal. The student first selects one of these items
and then clicks on a goal in the exPlanation window by placing the mouse in the box describ-
ing a goal. A new goal description is then placed in the explanation window; its goal number
reflects its subgoal/supergoal relationship with the goal just selected.

The reasoning structur:, so useful in generv.0 xplanations for the student have vari-
ous other important tutorial uses. One of the most important uses concerns hints. When stu-
dents are stuck at a given point in solving a problem, we generatk. hints to try to get them back
on track. Using the reasoning structures that the tutor produces when answering a question,
we can generate hints at many levels. For example, Fig. 5 shows the hints we can now gen-
erate for the simple equation 5w + 8 9, from the most general to the most specific. The stu-
dent controls the specificity of hints generated by selecting More Detailed itiru as needed.

Principles Derived from the Passive Tutor

By way of summary, we list below some important principles we feel are embodied in the
passive tutor. These principles are sufficiently general to inform the design of other ICAI sys-
tems (including other versions of our tutor), as well as of non-computer-based tutoring tools.

2 6



Scroll Ittsgt

Wei Ltt

terell Soso

Strott

ggIt

friss !vet

Rt. ProlOse

CA gut

15

511;44 . 9

fry oloptlfty Di, olloolny yofteriet gt
gelato a stngte occursoce of s vir,sols try sstttng tt oat

OndItICAO 6154 oulttplICOlIonO fel OIktn, I etlefi ly

If

try eopttng .55 fottorloy :semo-st pos

AL 11;
t-

Cm,asts Ins vsr,sats Ds stitstt Is wrong I Mr* SA WI

ItIOn OTIft It tO tn0 Ott*, SIM Of fniF #2USfIOn.

OaeffIng D55 001I00,40 fpectfIC gost:

1,1;
by ItslIf Op g In 5o.5 to tho OW tits*

tog OOVOLIOn.

eryIPOINIfIniltnefatIonsrstyportfletamt;

COM. 1,1,1;
t:: both sea* Of In* Quat,on. c4Ince11!ft; ouLin

attExammu..1.9DiatmLutu___

SurrS. not sore ntots fOr IWO stsg.

Fig. 5Student receives a hint from the tutor

Wet*

1. Design intelligent tutoring systems around inspectable expert systems. This lesson is
not new with us (see, for example, Brown, Burton, and deKleer, 1982), but our
experience underscores it. In reviewing other ICAI systems, we have found no excep-
tion it, the rule that most of the potential educational value of a system derives from
its ability to generate reasoning pathd that are comprehensible to students. This
ability provides the basis for several tutoring skills of general value, including model-
ing (showing the "ideal" reasoning paths), explaining (interactively justifying reason-
ing paths), and coaching (providing hints or descriptions of the kinds of reasoning the
student should consider).

2. Design computer-based lea ming tools that support the specific cognitive processes
involved in learning chosen skills through practice. Any learning tool will be more
effective if it is based on an analysis of the specific cognitive skills students must
execute in accomplishing the desired goal and if facets of the tool are specifically
designed to support the component skills. For exemple, debugging has several com-
ponents, including the execution of (faulty) reasoning steps, review of the steps,
localization of erroneous steps, and fixing of the error. Consequently, to assist stu-
dents in learnirc, debugging skills, our tutor includes facets that both delimit and
facilitate each of these activities.

3. Reify or externalize reasoning. In se 'eral ways, the tutor attempts to externalize the
student's reasoning as much as possible. For example, several different student and
tutor reasoning paths can coexist, showing different approaches to a problem. The

2 7



16

tutor also externalizes its reasoning by providing hierarchical explanations of its goal
structure. Such reification reduces student memory load, permitting the student to
concentrate on problem solving rather than on retention and rehearsal; it also
emphasizes the process of problem solving as opposed to the product (Brown, 1984).
Students can learn more by studying the process of faulty reasoning than by studying
just its results, because the cognitive process of reasoning is what must be "repaired"
if one is to learn from practice. Tools that permit reasoning to be ref cded and
"played back" (Collins and Brown, 1987) can greatly facilitate the process of learning
from errors.

THE MULTIPLE-REPRESENTATIONS TUTOR

Using the passive version of the tutor, students are confined to solving problems by
manipulating algebraic symbols in the traditional notation.4 In this subsection, we describe a
version of the tutor that permits students to solve problems in two distinct representational
systems and to see the connection between the two.

Tutorial Goals of the Multiple-Representations Tutor

Several goals guided us in developing a tutor version that used multiple representations of
algebra and algebraic reasoning. First, we wanted to test the tools of our core tutor. Would
they facilitate the construction of a new version of the tutor? Second, we wantee to explore
the possible leverage of combining an intelligent tutor with the idea of multiple representations
of algebraic reasoning. Several researchers (for example, Dienes, 1960; Kaput et aL, 1986;
Kaput, 1986; and Lesh, Behr, and Post, 1987) have described alternate representations of
mathematics and conjectured about their educational benefits. However, no one has yet imple-
menud an environment in which it is possible for both the system and tutor to reason in dif-
ferent representations, not just the student.

Implementation of the Multiple-Representations Tutor

Figure 6 shows the interface for the multiple-representations version of the tutor. In this
version, students are given a problem to solvehere, 4(x + 1) + 2(x + 1) -6but instead of
solving it by typing in successive algebraic transformations, they manipulate an analogous
boxes and-weights representation. The boxes-and-weights representation is shown in the left
window, and corresponding equational representations are shown in the right window.

The primitive objects in the concrete model are weights, boxes, and a balance scale. A
positive unit weight is a mass of single unit size (according to some arbitrary linear scale). All
unit weights ar identical. Each pothive unit weight is designated by +. A positive unit weight
denotes the numeral 1 or +1. A negative unit weight is a mass of single unit size whose weight
is the inverse of a positive unit weight on our arbitrary linear scale. Intuitively, a negative
weight is "lighter than air"; when combined with a positive unit weight, it would yield a com-
pound with exactly 0 weight. Each negative unit weight is designated by -. A negative unit
weight denotes the numeral -1.

'We use the phrases "the traditions. notation" or "the traditional representation" to refer to the way mathematics
is expressed in mathematics textbooks and, more generally, to describe the idea that doing mathematics is equivalent
to manipulating expressions stated in this syntax.



;7

Fig. 6The multiple-representations tutor

A black box is a weightless container with a fixed number of weights, K. For any given
problem, a black box either contains all positive weights or all negative weights. We refer to
this as the black box's valence. A white box is a weightless container that must contain the
same number of unit weights as a black box. For any given problem, a white Twx must have a
valence opposite that of a black box. If a black box contains only positive unit weights, a
white box must contain negative unit weights. A black box denotes a variable (for example, x).

When a student is given a problem, the initial configuration of boxes and weights is "bal-
anced," indicating a true algebraic statement. The student's goal is to deduce the number of
unit weights in a black box--that is, a black box's valence. Students must arrive at their
answers by transforming the given problem configuration into a final configuration in which
one black box is on one side of the balance and only unit we;dits are on the other side.

Configurations are transformed using a mouse and menu that enable students to add and
delete boxes or weights from either side. When students think they have made a balance-
preserving transformation, they click the menu item Step Finished. The tutor underlying the
interface will the.: translate the configuration of boxes and weigh,s to an equational represen-
tation and display the equation on the window on the right, determine whether the manipula-
tion represents a valid deduction, give textual feedback about the step's validity in the lower
right window, and graphically unbalance the configuration if the step is invalid. Figure 7
shows the tutor's response to an invalid student transformation. (A more detailed account of
the multiple-representations version of the tutor appears in McArthur et al., 1988.)

Students can play several different roles in this learning environment. In the version
shown in the figures, the student manipulates the concrete boxes-and-weights representation



18

raw' Svii ) 0

,(10tIon

:As; r int fiNKI

nip.* r

Fig. 7Response to an incorroa, step in the
multiple-representations tutor

and observes the effect on the corresponding equations. In another version, the student effects
the equation transformations, and boxes-and-weights manipulations occur automatically. In a
third version, the student merely watches as the tutor solves the problem in both representa-
tions.

Principles Derived from the Multiple-Representations Tutor

The boxes-and-weights notation has certain limitations in its expressive capacity. It is
applicable only to a well-defined subset of basic algebra equation solving and therefore cannot
be thought of as a possible replacement for the traditional representation for algebra. However,
viewed as one of several representational systems in a heterogeneous package, it has qeveral
potential pedagogical advantages. Most important, it is a concrete representation. Symbols in
the language, and combinations of symbols, have natural interpretations in terms of physical
objects and forces with which the student is already familiar. The students can use their exist-
ing intuitions about weights and balances to guide their interpretations of given configurations.
In addition, the same physical intuitions can guide students in the process of problem solution.
To assess the validity of a step, students can appeal to their understanding of how balance
changes with the addition, deletion, or rearranging of weights. For example, it should be obvi-
ous to the student that any manipulation that simply rearranges the objects on a single side of
the balance will not cause it to become unbalanced. Corresponding transformations of equa-
tions (for example, the distributive law of multiplication over addition) are not at all obvious to
many students.

3 0



19

To summarize this version, we list below several points that are general principles con-
cerning the use of multiple representations in tutorial environments:

1. Use representations with diverse properties. The traditional notation of mathematics
is so dominant that we often regard it as synonymous with mathematics. But just as
many possible computer languages for representing algorithms exist, many represen-
tations of mathematics can exist. How do we decide which alternative representa-
tions to explore? Our principle has been to look for representations that complement
the traditional one. Of interest will be notations that are strong where the tradi-
tional notation is weak, from the student's point of view. The alternative notations
need not be able to accomplish easily some things the traditional representation facil-
itates. From this point of view, the boxes-and-weights notation is strong in its con-
creteness and conneetion to physical intuition. Elsewhere (McArthur et al., 1988) we
describe these properties in more detail and from a more theoretical perspective.

2. Connect multiple representations dynamically. We believe that using multiple
representations to facilitate the process of mathematical reasoning, not just the
comprehension of mathematical expressions, is important. In the sense of Lesh,
Behr, and Post (1987) and Dienes (1960), the representation should be dynamic. It
should not be merely another way of stating static algebraic equations; it must be an
alternative way of reasoning mathematically. Students should be able not only to
translate structures of one representation into structures in the other one, but also to
transform structures within either representation to arive at solutionsand possibly
to help them understand reasoning in the other representation. In addition, the
tutoring environment should be able to perform both translation and transformation,
as well as to facilitate these operations by the student. For example, the multiple-
representations version can both reason within the boxes-and-weights notation and
translate to and from either notation.

3. Allow the student to focus on selected aspects of reasoning with multiple representa-
tions. Even in an environment as simple as our multiple-representations tutor, the
student can engage in many different cognitive activities. The student can effect
transformations in either notation, translate one notation to another, or watch the
tutor translate or transform. Providing all these activities and structuring students'
experience so that they are able to focus on each of these activities separately is
important. The different variants of the multiple-representations tutor accomplish
this goal.

THE GOAL-COMMANDS TUTOR

The passive version of the tutor required students to effect all algebra symbol manipula-
tion. In the multiple-representations version, symbol-manipulation reasoLing can be inter-
mixed with reasoning in an alternative representation. In contrast, the goal-commands version
of the tutor permits students to solve algebra problems using a set of commands, freeing them
from the details of symbol manipulation.

Tutorial Goals of the Goal-Commands Tutor

We constructed the goal-commands tutor for two reasons. First, as with the passive
tutor, we wanted to provide a tool that would help students learn higher-level problem-solving

111. -;41-. : 7 I 4.4

0 4
a c,

31

<4. <

t-
C



20

skills (see Table 1). In contrast to our technique with the passive tutor, our technique here
was to focus on higher-level skills by providing an environment in which all lower-level manip-
ulations were automated. Second, we were interested in whether students, freed of the "cleri-
cal" duties of symbol manipulation, could speed through the learning of linear equations faster
than they usually could in the classroom, or if they would progress further than the first-year
algebra curriculum typically permitted.

Implementation of the Goal-Commands Tutor

Figure 8 shows one variant of the goal-commands tutor. In this version, students solve
typical problems, hut instead of manipulating equations or boxes, they issue commands that
the tutor uses as instructions to effect the actual algebraic symbo) manipulation. For example,
in Fig. 8, the student has issued commands to add +2x to both sides, simplify, subtract 8 from
both sides, and divide both sides by 5. Commands are recorded in the command window at the
right. Commands done by the tutor (for example, in response to a succession of Help Next
Step requests) are shown in inverse video. As in other versions of the tutor, the student is fme

1, 1.t" -0.1), I,

t

1

. 1

eittrtmo

ColtOct . .

1,1.114

Divide Dotn lodes 0).
**Moly Octh woos by 7
/WO 7 10 both os
Subtroct I fru* Coln sines
k.psna OP / oin t0.0 O1stributty0 rOtO

Col topct 10,001 torb* o4to9 tOtt OtatriPuttu* COO
000, tOr*$ tO 0 Vs Itp- 4.

2. 5.5 9.3..1. 2. 5.2.

Scroll Ittpht
Scroll Loft
kroIl DOMP

2. 3. .1 13 P 8 S. S 8

-b. 4 1..1 1.3

my moor Pt?
Mole OW Stip

1

- :7 13
c- $

5 tetrotov)
(.1

logtn
Iron Input

no.. box

.movort 8ruble*
StutIont Prob/eo
rosier Probloo

Pr 1

Fig. 8The goal-commands tutor using lower-level commands

BEST COPY AVAILABLE

32



21

to explore alternative lines of reasoning. When the student moves from one line to another,
the tutor simply restores the commands that generated the new line to the command window.
In Fig. 8, for example, the commands in the command window are those that generated the
current (right) path in the display window. If the student used Move Box to change the
current focus back to the left path, the command window would be updated to show the com-
mands that generated that line.

We have implemented several variants of the commands tool, each offering the students
different levels of commands or imposing different tasks on them. Figure 9, for example,
shows a variant with a different command set. Here students ehoose from a much higher-level
set of options. The commands in this version do not descebe the desired symbolic transforma-
tion of the current expression, but rather mention the strategic goal the student wants achieved
by the next step. The tutor takes the responsibility of interpreting this goal in terms of a
lower-level symbolic transformation. Permitting students to focus on very high-level decision-
making, while ignoring the details of symbol manipulation, results in some exciting learning
possibilities for students. For example, we have seen some students speed through the whole
first-year algebra curriculum for linear equations ui a matter of hours, rapidly acquiring a gen-
eral feeling for the kinds of skills they need, while leaving the practice of detailed symbol
manipulation skills until later.

motet* Set a thee aresesseir ef variable to stens ley Itself
rove ttrot oceurertgee of the rarteSte to the ewe mem of the *vette('
mem" ReeIve the vertelote free parehtnethe
collect Coltect oeverin ornurefuee of the rye-rale IMO ow

1 r r

Well mot
Stroll Left
Wort Dove

la!

/151 MOW MO
Rep Sent Step

LOW.
tree* !Nut

hews Sou

luteevers prattles
Stuerrt Problem
twee Prairie*

gu >131i.2

CIINOITIONS Thor* or* tureeI instance* of to* wettable, U. en
one OH Of luS1.61.
WSW. Its seat mu te co`tert the yerteeteo into one Instance
SPERATXON To *chin." ay oe T mood tut etstrtouttro rule to
transfer* 'wee totO I Se)v.

Fig. 9--The goal-commands tutor using higher-level commands

BEST COPY MAKABLE a 3



22

We are currently expanding the goal-commands tutor in several ways. First, we will per-
mit students to name sequences of commands, put them into their library of commands, and
reuse them at a later date. This will be useful when the student observes that a set of goals
usually follows one after another. By defining new commands, students essentially construct
their own highly simplified algebra problem-solving programs. Once the programs are con-
structed, students can test and refine such routines by executing the new command on dif-
ferent problems to observe its effects. Moreover, because different programs are permanently
stored, students will be able to share their results with other students.

Second, in addition to saving sequences of generic commands as algebra programs, we
propose permitting students to save the sequences of instantiated commands they issue in solv-
ing a particular problem. These problem-solving traces may have many uses. For example, the
student (or another student) may invoke them at a later time to see an abstracted replay (Col-
lins, Brown, and Newman, 1989) of how the problem was solved. Such abstracted replays may
be much more tutorially effective than simply seeing the concrete symbol manipulations used
in solving a problem.

Third, we propose varying the environment's tutorial intent by manipulating the availa-
bility of the math commands. For example, higher-level commands may be suppressed if we
want the student to develop his own explicit command set. As another example, the student
and tutor could reverse roles, with the tutor specifying the high-level commands while the stu-
dent does the implied .symbol manipulation. A variety of different policies for sharing the
problem solving between student and computer will be available.

Principles Derived from the Goal-Commands Tutor

The goal-commands tutor and its extensions exemplify several important tutoring princi-
pies:

1. Design teaching environments that permit novel sequencing of skills in mathematics
curricula. Algebra is typically taught bottomup. Students are usually first taught
basic properties (axioms), such as the distributive rule (or multiplication over addi-
tion), then simple procedures for applying such laws, then (possibly) local heuristics
for problem solving. A -much more top-down approach can be considered using the
goal-commands tool, because the tutor shares problem solving with the student. For
example, students can first acquire an overall understanding of equation solving by
watching the tutor solve problems and by solving eq.? 4.tions themselves using only
very high-level commands. The potential advantages of a more top-down approach
to teaching cognitive skills are apparent in many contexts. Fey (1984) has suggested
that a similar reordering might be possible in a curriculum organized around the
notion of a function. Collins, Brown, and Newman (1989) note that sequencing more
general tasks before specific ones might be a general principle of "cognitive appren-
ticeship."

2. Permit different knowledge levels of complex cognitive skills to be learned indepen-
dently. Because the goal-commands tool can allow students to play different roles,
students can learn different levels of knowledgeunderstanding algebra facts con-
cerning symbol manipulation and heuristics for applying themindependently of one
another. Although students eventually need to practice both skills in combination,
for the student to practice each component skill separately when initially learning
algebra might be advantageous. This technique can be implemented in a particularly

4,.4 L: 9

3 4

4110



23

powerful way in ICAI systems. In general, although learning skills in isolation can be
locally effective, doing so may lead to global incompetencethe student may not be
able to put together the well-learned pieces to solve complex, multistep problems.
Intelligent tutoring systems can be configured to provide all the virtues of learning in
isolation while avoiding the vices. As the goal-commands tutor illustrates, although
the student focuses on practicing one knowledge level at a time, he or she does so
situated in a problem-solving context (Collins, Brown, and Newman, 1989). When a
student makes a decision at a given level, the tutor adopts all additional decisionmak-
ing roles necessary to implement a solution. Thus, the stIdent both focuses on a
specific knowledge level in isolation and sees how it fits together with other levels.

3. Provide environments for constructive learning. Maly ICAI programs use their intel-
ligence to take much initiative away from the student, presumably on the assumption
that an intelligent tutor is in a better position than the student to know what to do
and when to do it. Balancing the development of computer-dominant tutors with the
investigation of tools that promote student-controlled constructive learning is impor-
tant. The extensions of the goal-commands tutor give simple examples of such tools.
Ideally, we envision an environment in which the student can begin with no previous
instruction on the solution of linear equations and build his or her own commands
that are adequate to solving a wide range of problems. A key challenge in developing
such tools will be designing aids that constrain the student's constructive exploration
to a manageable scale. In our tutor, two components provide this assistance. First,
the base commands w;th which the student would begin exploration (for example,
doing the same operation to both sides of an equation, distributing) constrain the
students to consider a subspace of reasonable, mathematically valid operations.
Second, lesson control (see Fig. 1) can sequence questions from simpler to more diffi-
cult, so the student is essentially exploring a space whose size and complexity
increase as his or her ability to explore it does. These are just simple examples of an
idea we believe is of general importance in the development of novel ICAI systems:
providing computer-based guides for managing studers' explorations of learning
spaces.

.3 5



IV. EVALUATION AND ANALYSIS OF THE
PASSIVE TUTOR AND ITS USES

In this section, we discuss our overall approach to evaluating the algebra tutor versions
and our findings about the passive tutor's effectiveness. Specifically, we discuss the assessment
instruments and procetTures we have devised to date, present some preliminary outcomes from
our first attempt to use the tutor in a school setting, describe students' evaluations of the
tutor, and assess the passive tutor's limitations (which we later modified).

The evaluator seeking to determine student outcomes from ICAI systems has a wide
range of alternative designs from which to choose (for example, Cook and Campbell, 1979).
Which choice is best depends on several factors, such as the types of decisions (and decision-
makers) on which the evaluation focuses, and the feasibility of implementing the design (Sha-
velson et al., 1986).

Generally speaking, two questions are raised in most evaluations: How much do students
gain in knowledge, skills, and attitudes from the instructional intervention? Is what they learn
the same as what students learn in traditional courses that are intended to teach the same sub-
ject matter (Shavelson et al., 1986)? As developers of an ICAI system, we weigh the question
of knowledge gain as being more important than the question of equivalence of outcomes. This
focus seems appropriate for this early stage of our research. Because we develop our software
incrementally in a design-and-test cycle, our preliminary testing's first goal is to inform the
(re)design of versions of the tutor.

Second, this preliminary evaluation is aimed at developing student outcome measures to
be used in later phases of the project. As we debug or fix problems in each version of the
tutor, we eventually reach a steady statea version that operates as it was intended, that is
comprehensible to students, and that embodies the intended instructional goals. At that point,
we would also be interested in the second evaluation question. Measures developed and, in a
sense, piloted in this early phase of the project can be tried and revised in parallel with system
development. This process is also important because of the nature of our instructional
software. Our emphasis is on teaching higher-level problem-solving skills rather than on rote
symbol manipulation. Because standardized mathematics tests in wide use in schools focus on
measuring the latter, we need to develop our own tests of higher-order skills.

In addition to questions about student outcomes, we are interested in the issue of imple-
mentation: What does it take to implement ICAI in schools? Our own and others' research on
implementing instructional programs or new technologies indicates that the implementation
process can strongly influence a program's success or failure (see, for example, Shavelson et al.,
1986; Newman, 1989). Thus, we seek to understand both the implementation opportunities
and the barriers present in the school setting.

In sum, the evaluation for the first implementation of the algebra altar is more formative
than summative. The aim is to pilot test one prototype system and our data-gathering instru-
ments and procedures. The data from this study are useful for planning subsequent evalua-
tions, making needed changes in the tutoring system, and learning more about how an intelli-
gent tutoring system can best be used in typical mathematics classrooms.

24 3 G



25

MULTIPLE METHODS FOR ASSESSMENT

We developed various evaluation procedures and methods. First, we designed algebra
achievement tests and attitude and background questionnaires to be administered before and
after students used the tutor in the classroom. In addition, we conducted systematic observa-
tions of the tutor as it was used in the classroom. Finally, we gathered student-tutor interac-
tion data and are developing tools for analyzing these data to assess student outcomes further.
We discuss each of these measures and methods below. Like the software, all these measures
are in early stages of development and will likely change as the project continues.

Achievement Tests

We designed our achievement tests to tap several kinds of skills, from "traditional"
problemsfor example, solve for x: 7(x + 9x + 4) 12to higher-order problem-solving skills.
The latter include mathematical skills identified as important in the literature (for example,
flexibility and reversibility; see Rachlin, Matsumoto, and Wass, 1985) and two kinds of
problem-solving skills supported by the passive tutor environment: debugging and self-
diagnosis skills, and goal-directed reasoning skills. Such higher-order skills are not typically
included in most basic algebra curricula. To develop an item pool, we examined several stan-
dardized mathematics tests (for example, the Orleans-Hanna test), teacher-made tests, and
tests developed by other researchers studying mathematics (for example, Rachlin, Matsumoto,
and Wasa, 1985). In consultation with two algebra teachers working with the project, we con-
structed a 19-item test that included traditional and higher-order questions and also
represented linear equations, inequalities, and simultaneous equations across these types.
Interestingly, the teachers were very pessimistic about their students' ability to answer any
nontraditional questions; more generally, they had low expectations for student achievement.
Table 2 shows examples of problems for tapping higher-order skills; the complete test appears
in the appendix.

Attitude Questionnaire

The attitude and background questionnaire (see appendix) included items on basic stu-
dent characteristics (for example, age, sex, grade in school), previous experience with algebra,
expected grade, interest in learning algebra, and assessments about how difficult the student
thought learning algebra would be. S'x questions assessed the students' previous experience
using computers. Previous experience is important for at least two reasons. First, if students
have little experience, their performance may be confounded by the initial demands of learning
to use the tutor or by the fears that may arise from inexperience with computers. Both can
adversely affect learning. Second, if students have little experience, outcomes may be biased
by a novelty effect (Clark, 1985). In this case, novelty itself can enhance learning, but this
positive effect can diminish over time.

In addition to learning about students' experience, we are interested in students' opinions
about learning with computers. We asked six questions, adapted from an earlier study of
telecourse instruction (Shavelson et al., 1986), to assess initial student attitudes and an::
changes after using the algebra tutor. Finally, the postcourse questionnaire included items to
assess students' reaction to the tutor in general, as well as their reactions to specific features of
the software. These responses might suggest importnnt areas for software redesign.



26

Table 2

SAMPLE PROBLEMS FROM THE ALGEBRA ACHIEVEMENT TEST

Type

Debugging

Problem

Reversibility

Flexibility

Hector made an error when he solved this problem for x. See if you
can find the error and put a circle around it. Then try to solve the
problem correctly.

x + 4 + 4 - 10 4

x + 8 - 6
2

We will give you the answer to a problem and ask you to write an
equation. Write an equation in which the answer is x 2. The equa.
tion should have at least one set of parentheses.

Try to solve each problem below, Then, if you can, try to solve the
problem in a different way and mark the method that you like the
best.

Solve for x: - 2 5x 8

Classroom Observation

To gather data about tutor implementation and to aid students working with the tutor, at
least one project member was present in the classroom when the tutor was in use. Project
members filed daily reports on their classroom observations, dividing observations into several
categories: software bugs (an outright tutor error), software weaknesses (the software did not
"break," but did not appear to support student learning when it had an opportunity to do so),
software strengths (tutor appeared 'to support student learning successfully), and student use
patterns ("bugs" in students' knowledge of algebra, nonoptimal sequences of operations, and so
on). These observations help us determine whether the software was operating as we intended
and assess the tutor's value in promoting specific problem-solving skills.

In addition, our presence allowed us to observe how the teachers conducted their lessons,
managed their classes, and integrated the use of the tutor into everyday instructional activities.
Our previous work indicated that even well-designed computer-based instruction can fail if
teachers do not integrate it with their regular, ongoing instructional plans. Integration proves
difficult even for exemplary teachers experienced in using computers for instruction (Shavelson
et al., 1986). In addition, a new technology and the organization into which it is placed tend to
adapt to each other. For example, new uses for a technology are identified that were not
envisioned in the original design (Bikson and Eveland, 1986). Thus, initial pedagogical goals
of computer software can change in the hands of students and teachers (Newman, 1989).
Because few ICAI systems have ever been used in regular school settings, we have little infor-
mation on how they should best be used and whether their uses might differ from other types
of computer-assisted instruction. Observations provided data from which to speculate about
these important issues.



27

Student Scripts

The tutor records each action the student takes in solving every problem with the tutor.
The actions are time-stamped, yielding a very detailed script of all student decisions. These
scripts have been saved to files, and we have now begun to develop methods to manage and
analyze them. In addition to performing standard statistical analyses (for example, average
time to work a problem), we also plan to subject these data to various nonstandard techniques.
In particular, we are experimenting with the use of INGRES, a database management system
normally used to query commercial data. This system represents a potentially valuable tool for
our purposes because, unlike statistical packages, it permits us to analyze temporal patterns in
students' decisionmaking.

PRELIMINARY ANALYSIS OF STUDENT OUTCOMES

Below, we present data gathered from our initial fielding of the passive version of the
algebra tutor (as described in Sec. III) at a local high school. Our analysis focuses on results
obtained from the achievement test, attitude questionnaire, and classroom observations.
Because we are still experimenting with the methods for collecting and analyzing student
scripts, we do not report here tutor-recorded data.

In addition, because this pilot study did not include a comparison group of students who
did not use the tutor, this design does not provide direct evidence of the tutor's teaching effec-
tiveness. As we discussed above, we did not intend to conduct a traditional summative evalua-
tion of student learning with this first prototype version of the tutor. However, our study
design does permit us to assess some statistical and theoretical properties of our achievement
test, to examine the relationship between achievement and various student characteristics, to
observe how the tutor was used in the classroom, and to suggest ways for improving the
software. This initial study did not systematically address the broader issue of how ICAI can
best be implemented in school settings. Tutor implementation is the subject of a subsequent
paper (Robyn et al., 1989).

Study Sample

We installed six Sun Microsystems workstations in two classrooms at a local high school.
Five first-year algebra classes, taught by two teachers, used the tutor for most of a semester.
These teachers volunteered to participate in the study and were paid an honorarium for their
participation. In addition to allowing the tutor and researchers to occupy their classrooms, the
teachers had input with regard to the curriculum topics covered by the tutor, the achievement
tests, the classroom implementation procedures, and so on.

Parental consent forms were sent home with students to obtain permission to participate
in the study. Some 140 students of average or below-average algebra skill participated.
Approximately 14 percent of these students were taking the course for the second time. Many
students were upperclassmen who had elected to postpone fulfilling their algebra requirement
for as long as possible. For these students, this first-year algebra class was the most advanced
mathematics course they would take in high school. The teachers considered the students in
these five classes to be at the lower end of the distribution of mathematical ability as compared
to students in general. Thus, the tutor was used by a group of students with a clear need for
the added instructional benefits it was intended to provide.



28

Training and Procedures

Project staff members gave an overview of the tutor and its use to each class, trained each
student individually, and provided assistance whenever the computers were in use. Student
instructional manuals were also made available to the students, either at home or in the class-
room. Questionnaire responses indicate, however, that the manuals were not in wide use: only
11 percent of the students .-eported having read them.

Students used the tutor during regular class times, but total available class time and indi-
vidual student use varied considerably. Time constraints were dictated largely by the needs of
the teacher and his or her regular teaching plans. Typically, the teacher's major activity was
lecturing (both reviewing and presenting new material), followed by seat work. Students were
permitted to use the tutor only during seat-work time. Length of lecture time or time devoted
to other activities (for example, calling the roll, managing the class) varied greatly, thus affect-
ing the amount of time remaining for tutor activity. In one teacher's class, for example, tutor
activity averaged only some ten minutes per class. In addition, lack of machines, relative to
the number of students in the classroom, reduced time with the tutor: Approximately 25 stu-
dents had to share three computers. Although students often worked together, there were nei-
ther enough machines to go around nor enough classroom time to use them very effectively.

Students completed the achievement test and attitude/background questionnaire
described above at the beginning and end of the semester. Project staff members filed class
reports daily. Both precourse and postcourse measures were completed by 80 students.

Differences between Student Groups

Our first task was to determine if the 80 students who completed both premeasures and
postmeasures differed from those who completed only one of the two tests. Students were lost
because of absenteeism, late entry into the class (for the pretest), or dropping out of the class
(for 1.he posttest). If the groups do not differ, we can have some basis for using change scores
(posttest minus pretest score) for the 80 students completing both tests to estimate learning for
all the students.

To assess possible group differences, we first compared two sets of achievement scores:
pretest scores for students completing just the pretest with students completing both tests, and
posttest scores for students completing just the posttest with students completing both tests.
In each case, normal probability plots produced shapes that were indistinguishable for the two
groups being compared, indicating that the students who took only one test did not differ from
those who took both. Mean test score comparisons for the separate groups also showed no sig-
nificant differences (see Table 3).

We also compared students taking both tests with other students on demographic charac-
teristics (sex, age, grade in school), attitudes about algebra, previous mathematics grades and
algebra courses, attitudes about learning with computers, and experience with computers.
Again, we found no differences between the groups. Groups were different, however, with
respect to whether learning graph equations helped them: Of students taking both tests, 46
percent felt the computer helped "a good bit" or "a great deal," while only 1.9 percent of other
students felt ihe same way (chi square 7.86, p < .05).

By and large, then, these analyses suggest that the student groups were quite similar.
Because changes in student leaning and attitudes are of primary concern, we examine them
below for the subset of 80 students who completed both pretests and posttests.

4 0



29

Table 3

MEAN ACHIEVEMENT TEST SCORES FOR ALL GROUPS

Tests Students Took N Pretest Posttest

Roth tests 80 4.71 (2.64) 5.71 (3.04)

Pretest only 34 4.67 (2.71) (a)

Posttest only 33 (a) 5.46 (2.57)

NOTES: N sample size. Means appear first, with stan-
dard deviations in parentheses.

5Nct applicable.

Student Characteristics and Attitudes

At pretest, all students ranged from 14 to 18 years of age (average 15.8) and were in the
10th, 11th, and 12th grades (51.25 percent, 40 percent, and 8.75 percent, respectively). The
sample was 54 percent male. The composition of students differed somewhat for the two
teachers. One teacher had more boys and 10th graders, while the othLr had more girls and
11th and 12th graders. Approximately half the students received a grade of B or higher in
their last mathematics course, and some three-fourths expected these grades in the current
course. Although students significantly reduced expectations at posttest (only 55 percent
expected an A or B). in actuality more than three-fourths obtained a grade of C or less. This
suggests that these students' estimates of their algebra skills are highly inflated and that such
estimates may be poor indicators of actual performance. Perhaps corresponding to these
course grades, students' interest in algebra and feelings about algebra (as rated on four-point
scales) sigi.:ficantly decreased over the course of the semester.

Overall, these students had extensive and varied previous experience with computers: 52
percent had taken a course about computers oi computer' programming, half had used comput-
ers in other classes, and approximately two-thirds (65.8 percent) had used them outside of
school. Computer uses included doing homework (25 percent), programming (43 percent), and
playing games (95 percent). Some 85 percent thought they would like learning algebra on a
computer.

We asked students a series of six attitude questions about computers and learning with
computersquestions derived from our previous work in evaluating telecourses (Shavelson et
al., 1986). They rated on a six-point scale (1 = strongly disagree, 6 = strongly agree) state-
ments such as: "I believe many algebra courses could be improved by the se of computers" or
"Computers are poor substitutes for algebrs 'eachers." Although on average students held
positive attitudes toward learning with computers, these positive attitudes consistently declined
from pretest to posttest for each item (over all items, F 7.67, r < .0001). We observed the
same decline in attitudes in our telecourse evaluation. These changes may reflect similar
declines in liking algebra, ia having an interest in algebra, and in course grades. Except where
noted, rif; significant differences existed in the characteristics and attitudes of students across
the five classes or two teachers.

Student Learning

Analysis of data from the 80 students who took the achievement rest before and after the
course indicates that the test was very difficult. Although the difference was statistically

41



30

significant, students' average score increased from only 4.71 to 5.71, out of a possible score of
19 (F 5.13, p < .0001). Analysis of variance tests revealed no significant differences between
classes or teachers.

Item statistics for the achievement tests appear in Table 4. Item difficulty-the propor-
tion of examinees who got that item cormt-ranged from 0 (no one found the correct answer)
to .9.

The data in Table 4 support the notion that items are arrayed along a difficulty contin-
uum, from linear equations to inequalities to simultaneous equations. An examination of the
set c debugging (1-3) and flexibility (10-13) items shows student performance following this
progression. This did not appear to be the case with the word problems, however, since the
simple linear case proved more difficult than the others. We see a similar progression in the
two sets of items: 4 and 6, and 5 and 7. Within linear equations, the item with single
parentheses (item 4) was easier than that with embedded parentheses (item 6). The simple
inequality (item 5) was a little easier than the inequality with parentheses (item 7), particularly
at posttest. Also interesting is the sharp increase in performance from pretest to posttest in
items 3 and 13. Although these items were still difficult for most students at posttest, clearly
some proportion of students had mastered simultaneous equations, which were taught during
the semester.

The word problems (with the exception of item 15) and the reversibility problems also
proved very difficult for these students. Word problems or simple story problems are
notoriously difficult for students, as indicated by previous research and data from national sur-
veys of mathematical problem solving (for example, Carpenter et al., 1980). None of these stu-
dents correctly answered two of the reversibility items (18 and 19) on either test, although the

Table -k

ITEM STATISTICS FOR THE ACHIEVEMENT TEST

Item Problem Type

Difficult? Discriminabilityb

Pretest Posttest Pretest Posttest

1 Debugging, linear .80 .92 .29 .41
2 Debugging, inequality .39 .44 .61 .61
3 Debugging, simultaneous .01 .16 .10 .31
4 Linear, single parentheses .36 .51 .43 .39
5 Simple inequality .26 .32 .66 .51
6 Linear, embedded parent 1eses .25 .31 .30 .44
7 Inequality, parentheses .24 .24 .57 .53
8 Simultaneous, easier .02 .10 .17 .35
9 Simultaneous, harder .01 .02 .10 .25

10 Flexibility, linear .60 .65 .60 .61
11 Flexibility, linear w/paren. .42 .50 .37 .44
12 Flexibility, inequality .25 .19 .56 .53
13 Flexibility, simultaneous .04 .25 .25 .46
14 Word, linear .09 .10 .23 .34
15 Word, inequality .49 .56 .29 .43
16 Word, simultaneous .26 .20 .20 .31
17 Reversibility. linear .21 .22 .52 .41
18 Reversibility. inequality .00 .00 .36 .24
19 Reversibility. simultaneous .00 .00 -.06 .21

:Proportion of students who got the item correct.
-Point-biserial correlation between item and total teat aeon.



31

number of students who attempted to solve them doubled from pretest to posttest (for item 18,
17-41 percent attempted them; for item 1, 12-21 percent attempted them).

In sum, although students showed a statistically significant improvement in schievement,
the increase was of little practical significance. Clearly these students not only had little alge-
bra skill when they began, but by the end of the semester could only complete approximately
one-fourth of the test items correctly. Note that students apparently did more poorly overall
on the more "traditional" items (4-16) than on some of the nontraditional debugging and flexi-
bility items. Th results are encouraging for future test development, because only nontradi-
tional items can measure the kinds of skill acquisition we hope the tutor can impart.

Correiates of Achievement

Correlations between selected student characteristics (ability, computer experience) and
the algebra achievement posttest and change E -1`1-e appear in Table 5. A correlational analysis
informs us of which factors are associated with end-of-course algebra achievement. Measures
of initial "ability," including a student's pretest score, final grade in his or her previous math
course, final grade in the current course, and estimates of algebra difficulty were all signifi-
cantly correlated with posttest performance. Although 11 of the 80 students completing both
tests had taken algebra before, previous experience was not related to posttest performance. Of
all these characteristics, only the pretest score was significantly correlated with change in
achievement: Students scoring higher at pretest had smaller change scores. These students,
perhaps, were already "pushing their limit" of algebra learning. Previous computer eramience
was consistently (but weakly) correlated with lower posttest performance.

Table 5

SELECTED CORRELATIONS BETWEEN STUDENT CHARACTERISTICS
(AT POSTTEST) AND POSTTEST AND CHANGE SCOREE

Characteristics

Posttest Change Score

Pretest 80 .62a 80 ii-.30
Grade last math course 76 b 76 .04
Taken algebra before 80 .19 80 .10
Final grade 8.0 .46s 80 .14
Estimate: difficulty

of algebra 80 .28
b

Experience with computers:
Taken course 8t. -.16 80 -.22
Used at home 79 -.19 79 -.04
Used for homework 79 -.19 79 -.06
Played games 80 -.18 80 -.05
Programming 79 b-.27 79 -.02
Literacy 79 - b 80 -.16

NOTES: Literacy is a composite score created by summing over the experi
ence items. N - number of subjects; r - correlation coefficient.

ap .01.
p .05.



32

Student attitudes toward computers (.1.,nd learning algebra with computers (summarized as
a single "opinion" score by first reversing negatively worded item responses in a positive direc-
tion, then adding responses to the six items) were significantly correlated with their experi-
ences in using the tutor. For example, they found the tutor more enjoyable to use (r .60),
felt the tutor helped them to solve algebra problems and to graph equations (r .56 and .40,
respectively), found the tutor easy to learn to use (r .38), and would use computer tutors
again (r .45). This suggests that students who were positively disposed toward learning with
computers tended to enjoy their experience with the algebra tutor. However, students' positive
attitudes and experiences with the tutor were negatively (although not significantly) related to
test performance. Positive attitudes toward learning with computers, experiences with this
algebra tutor, and previous computer experience appear unrelated to actual achievement in
algebra. Perhaps this "nonfinding" is not a general cause for concern. If students with less
computer experience or negative attitudes did poorly, we would need to worry about how to
make the tutor more motivationally appealing or how to help students overcome negative feel-
ings about the technology. On the other hand, student comfort with the technology, though
perhaps necessary for learning, does not ensure that the technology will be effeetive as an
instructional tool.

A final interesting pattern appeared with regard to feelings about algebra and perfor-
mance. At pretest, girls had significantly lower expectations about their grades (r - .24) and
disliked algebra (r .25) more than boys. At posttest, girls still judged algebra to be more
difficult than did boys (r .28). However, gender was basically up. elated to pretest, posttest,
or change scores (r .07, .03, and .11, respectively). Because these correlations suggest a
possible interaction between gender, feelings about algebra, and performance, we conducted
several analyses of variance tests to explore these patterns further. However, none showed any
significant main effects (gender, algebra interest, feelings about algebra, difficuly of algebra) or
interaction effects with respect to change or posttest scores.

Explaining Differences in Achievement

We used multiple regression to test the independent effects of student characteristics and
prior ability. Using posttest and change scores as dependent variables, we specified models
based on relationships revealed in the correlational analyses, as well as differences found in
student characteristics and attitudes, or other variables that potentially affect learning out-
comes (for example, grade in last math course). As a step toward developing these models, we
performed several selected analysis of variance tests. These tests served two purposes. First,
they identified any interaction effects that should be included in the regession model. For
example, differences in gender and grade distribution between teachers and differences in
gender and attitudes about algebra suggested possible interactions between teachers, gender,
and attitudes. Significant interactions, or those where the mean square is larger than the
mean square for the main effect, are clear candidates for inclusion in the models. Second,
these tests were useful as a complement to the regression analysis, which can obscure interest-
ing underlying patterns among variables. Because this study is formative and exploratory, we
are also interested in uncovering diese patterns. That said, these tests did not reveal any sig-
nificant main effects or interactions. Several interaction terms, however, had mean squares
large enough to be interesting. We include these in the models below.

The multiple regression equation predicting the posttest score appears in Table 6. This
model explains a significant though modest portion of the variance in posttest score. Most



33

Table 6

REGRESSION RESULTS FOR THE POSTTEST SCORE

Variable

Constant 1.03 .38
Pretest score .70 5.594
Teacher .36 .11
Gender 1.40 1.07
Interest in algebra -.16 -.18
Feelings about algebra 1.02 .96
Easiness of algebra 1.92 192b

Grade 1 .51 .20
Grade 2 -.80 -.31
Teacher/gender interaction -1.11 -.87
Teacher/grade 1 interaction -1.10 -.38
Teacher/grade 2 interaction 1.64 .57
Teacher/feelings interiction .21 .89
Teacher/easiness interaction -2.10 .12
Gender/easiness interaction -1.79 .17
Gender/feelings interaction -.68 .65

NOTES: Adjusted R-square - .36; F 3.9E0; N 80.
With the exception of pretest score, most predictor vari-
ables are dummy variables, with the absence of the variable
as referents.

ap .0001.
p < .06.

predictive is the pretest score: Students scoring higher on the pretest also score higher on the
posttest. Students who feel algebra is "easy" also receive.higher posttest scores, although this
effect only approaches significance. None of the other factors in the model predict end-of-
course algebra achievement.

Using the same model, we sought to determine the relative importance of the same fac-
tors on students' change score. Results of this model (see Table 7) were nearly identical with
that reported above. Simply stated, the first model says that posttest score is composed of a
constant plus .70 times the pretest score, plus other factors. The secind says that change score
is composed of a constant minus .29 times the pretest score, plus other factors. Together they
say that students scoring high on the pretest score higher on the posttest, but that students
with higher algebra knowledge to begin with did not increase their score as much relative to
students with less knowledge. The second model explains little of the variation in change
score.

The preliminary data reported here tell us little about the relationship between student
characteristics, overall achievement, and the nuances of learning algebra with an intelligent
tutoring system. For example, we hhve not yet determined how these variables relate to time
using the computer, time to solve different types of problems, frequency of use of the different
tutor options, and the students' success or failure on individual component skills that comprise
each problem the student atWmpted. Methods for automatically gathering these and other
data were in development in the first year of the tutor implementation; the data gathered were
not complete enough to conduct finer-grained analyses that might shed some light on these and
other questions. These methods will be in place for future implementations and thus increase



34

our ability to understand how the tutor promotes student learning. In addition, future evalua-
tion designs will include appropriate comparison groups in order to examine the tutor's teach-
ing effectiveness.

STUDENT EVALUATION OF THE TUTOR

At posttest, 98 percent of the students taking the test (from a sample of 119 students)
reported having used the tutor. Two-thirds of them reported enjoying the tutor "a good bit" or
"a great deal." Some 85 percent thought the tutor fairly or very easy to learn to use. Students
were less enthusiastic, however, in their assessment of whether it helped them learn to solve
algebra problems or graph equations: Approximately 35 percent thought it helped "a good bit"
or "a great deal." Only 22 percent thought the tutor useful for "learning about computers."
Despite the somewhat disappointing assessment of the tutor's usefulness for learning, 60 per-
cent said they would use computer tutors again if given the opportunity. Given the global
nature of this assessment, determining the precise source of the students' disappointment with
the tutor's teaching capabilities is difficult. It might result from specific aspects of the tutor or
from the students' overall class experiences during the semester.

Looking at average student ratings of specific tutor options in Table 8, wz see that stu-
dents found some options more useful than others. Options that provided precise feedback on
the correctness of a step or answer were judged most helpful. Judged least helpful was the
option that allowed the student to obtain the tutor's solution for any step in the reasoning tree.
A student might choose this option, for example, if he or she could not figure out an error in a
step and wanted to see the tutor's solution. Elaborate Step also received a lower rating; this
option shows the tutor's more detailed reasoning from one step to another. These results sug-
gest that students want immediate, specific feedback. This desire is understandable since

Table 7

REGRESSION RESULTS FOR THE CHANGE SCORE

Variable

Constant .53 .19
Pretest -.29 -2.35a
Teacher .36 -.11
Gender 1.39 1.07
Interest in algebra -.16 -.18
Feelings about algebra 1.01 .96
Easiness of algebra 1.92 1.92

Grade 1 .51 .20

Grade 2 -.81 -.30
Teacher/gender interaction -1.11 -.87
Teacher/grade 1 interac:ion -1.10 -.38
Teacher/grade 2 interaction 1.64 .37

Teacher/feelings interaction .21 .14

Teacher/easiness interaction -2.11 -1.56
Gender/easiness interaction -1.79 -1.40
Gender/feelings interaction -.68 -.46

NOTES: Adjusted R-square - .05; F 1.30; N 80.
Predictor variables are dummy variables, with the
absence of the variable as referents.

ap < .02.



Table 8

STUDENT EVALUATIONS OF THE TUTOR HELP OPTIONS

Percentage Reporting
That the Tutor Helped

Number -a Good Bit" or Average
Option Using "a Great Deal" Rating

Answer Ok? 111 76.57 3.09
Step Ok? 109 75.23 3.10
Hint Next Step 96 59.37 2.68
Elaborate Step 81 50.62 2.59
Explain Step 95 64.21 2.87
Do Next Step 88 65.91 2.92
Do Some Step 71 46.49 2.55

NOTE: Rating based
("helped a great deal").

on a scale from 1 ("no help") to 4

35

students rarely get such feedback of their problem solving in the classroom or when doing
homework. Students commented that they liked the Step Ok? option in particular because it
allowed them to check their work as they went along. Students often experience frustration
when they work through a problem in class and discover that their answer is wrong. The Step
Ok? option permits them to detect an error right away and to try to recover.

Our classroom observations suggest that students may find less usefulness in tutor-
generated elaborations of explanations because they do not know how to use that information
to aid in their problem solving. Collins and Brown (1987) posit that intelligent tutoring sys-
tems can become a powerful tool for learning through reflection. We adopted this principle in
the design of the passive tutor because students can compare the details and structure of their
own performance with that of the expert system, thereby discovering elements that need
improving. Our data suggest, however, that expert help may be at a student's disposal, but this
availability does not guarantee that he or she can or will make use of it. Rather, students may
require explicit training to use the tutor as a tool for learning through reflection. Designing
and providing such training should be a goal of our future research.

THE TUTOR'S LIMITATIONS

To determine why the tutor did not more significantly improve students' algebra perfor-
mance, we analyzed our recorded classroom obse Nations and found that two main problems
apparently foiled students' effective use of the tutor. The first was the tutor's limitation as an
aid for learning specific pieces of knowledge needed to solve symbolic algebra problems. The
second problem was the tutor's inability to improve the students' model of math.

The Tutor's Limitations as a Learning Tool

Many of our observations suggest that the passive tutor is a less effective learning tool for
students who are weak in algebra than for those who already have an intermediate knowledge.
Students who had achieved a relatively high level of competence in target skills before
encountering the tutor were able to recover from their slips using the tutor's highly specific
error feedback and to correct minor misconceptions by exploiting tutor explanations. However,



36

the tutor's coaching appeared to be insufficient in helping students who had not achieved a
high degree of competence on the necessary algebra skills before using the tutor.

The reasons for the tutor's shallowness as a learning tool appear to include its

Lack of error explanations. The tutor did not explain why the student made a mistake;
he or she had to infer the reason. Instead, the tutor provided hints about what to do
or explained examples of what the expert would do. Even these aids, however, were
not invoked automatically and had their own imperfections.
Awkward wording of hints and explanationn. To help students infer the correct skill
when theirs was inadequate, the tutor pnvided hints and explained ways of allowing
the student to "get inside" the expert's head. Although this procedure may have
worked to a limited extent, its effect was blunted by the unclear wording of many hint?
and explanations.
Lack of interactivity at the microscopic level of reasoning. Although the tutor provides
much richer feedback than most CAI programs, it cannot yet provide the support that
teachers can in coaching students through very difficult reasoning steps. Our tutor
waits for students to make an algebraic transformation and then comments on it. A
good teacher can often help break out the separate reasoning steps before a visible
transformation is done; this type of help may be necessary when students' understand-
ing of problem-solving skills is formative.
Passivity. In the initial version of the tutor, the s.udent had to request assistance.
Perhaps when students are focusing on acquiring new math skills they should not also
have to focus on metacognitive skills necessary to control the tutorial interaction!

The Tutor's Failure to Improve the Students' Model of Math

Our observations also suggest that in addition to having deficiencies in specific knowledge
of algebra concepts, the students also had a deficient overall model of algebra. Students tended
to have basically a cookbook model of math. They believed, for example, that if a problem
could not be solved by using one of the known ruled, it could not be solved at all; they viewed
one procedure or axiom as being unrelated to others they had learned; and they believed that
the problems they solved with procedural rules had nothing to do with problems in the real
world. Unfortunately, our current tutor version does nothing to impart a more comprehensive
model.

The ultimate goal of an algebra tutor should be to demonstrate to students that symbol
manipulation is part of a deductive system and, along with the whole deductive system, can be
regarded as a tool for representing models of natural situations and making (formalized) infer-
ences about such situations. If students were to realize that symbolic reasoning is done in a
deductive system, they would unden,tand that the theorems they learn are logically connected;
this understanding, in turn, would allow them to reason better about symbol manipulation
techniques. For example, they could verify answers to questions by checking the logical con-
sistency of the answer or by using another deductive method.

In addition to our current tutor doing little to replace the cookbook model students now
possess, the software in use at present largely reinforces the current curriculum's weaknesses.

lather possible explanations are noncognitive in nature, such as the difficulty in operating the computer interface
or motivational problems. However, we found little evidence for the first; students could easily manipulate the inter-
face within a few minutes of instruction. We have anecdotal evidence that motivation may have been a problem. Of
course, low motivation is likely tied to the cognitive deficiencies we mentioned above.

4 8



37

It helps students efficiently practice techniques for algebraic symbol manipulation without get-
ting them to see what the techniques mean, where they come from, or how they relate to mak-
ing inferences about real-world problems.

Several aspects of the software are at fault:

The lesson control facility permits the student to solve the same kinds of symbol
manipulation problem indefinitely, so the student never comes to terms with the prob-
lem of when to use which technique or procedural rule.
The tutor sticks largely to one technique for solving a problem instead of showing
alternate methods.
Although the tutor provides feedback about the student's symbolic reasoning in solving
a problem, it does not assist in understanding the justification behind a reasoning
technique or procedural rule the student might use. Nor does it help the student to
break down the rule deductively ard discover its soundness or to see its relationship to
other rules.
The tutor provides no semantic basis for algebraic symbol manipulation. It poses
purely symbolic problems, expects symbolically reasoned answers, and never uses
natural situations as the basis for symbolic problems.

CHANGES TO THE CURRENT TUTOR

Based on our analysis of the preceding problems, we implemented various changes and
additions to the tutoring software. In this section, we present changes intended to make the
tutor a more effective learning tool for lower-performing students; the following section then
discusses the issue of improving students' model of algebra.

The individual changes we implemented attempt to improve the tutor by:

Making the interface easier to deal with. The assumption here is that many novice stu-
dents did not learn rapidly with the tutor because they spent too much effort strug-
gling with the interface.
Providing more comprehensible and detailed feedback when the student makes a mistake
or requests assistance. The assumption is that students may have failed to progress
because they did not receive enough information at the right time to overcome their
misconceptions.
Taking the initiative out of the students' hands (when necessaiy) to allow them to focus
on learning one concept or accomplishing one task. The assumption behind this point is
that a passive tutor, by requiring students to do everything themselves, places too
many cognitive demands on the students at one time. Consequently, novice students
may be trying to learn too many other skills that detract from learning algebra.

An example of a specific change we effected in later versions of the tutor was to automate
purely arithmetic steps because students make many arithmetic errors, which take time to
correct and contribute nothing to the learning of algebra skills. Such automation should be a
reasoned tutorial decision, however, aR.1 should not be done on an unlimited basis. Likewise,
we automated simple nonarithmetic steps because we discovered that students spend consider-
able time doing necessary but superficial steps. Another change was to allow students to gen-
erate their own questions. The rationale for this change was that it permits greater student
involvement and allows students to focus on a particular issue. This may also increase

4 9



38

students' motivation to use the tutor since they ..:an enter and solve their homework problems.
A fourth example of a change was improving t'ae problem solver so that its reasoning was more
intelligible. Previously, for instance, it could not demonstrate how or when to divide both sides
by a value.

In addition to these changes, we also made numerous interface changes, which are modifi-
cations in the way the student and tutor interact to exchange information. These changes
were to the menus, display, text, input, and recording of student data. Many of these changes
are minor in nature, as demonstrated by the following illustrative examples. One menu change
was to eliminate the Quit option because students can abuse this choice and can effect quitting
in other ways. Another menu change was to add Explain Your Last Step because students
want to see an explanation of the tutor's step right after it has been done. An example of a
ch, ze in the text was making the explanation and hint text clearer and shorter. And an
example of a change to the input was making it easier to correct a typo in the work space; this
allowed students to do transformations faster and to learn more efficiently.

ADDITIONS TO THE TUTOR

Changes to the tutor that maintain its current purpose will not be able to address the
second general major shortcoming: deficiencies in students' models of math. The current tutor
is clearly limited to helping students acquire skills at solving symbolic algebra problems, and
the changes outlined above are aimed at improving it as a tool for teaching such formal reason-
ing. Nevertheless, we have made one addition that should contribute to a better understanding
of algebra's deductive nature: permitting a controlled discovery of procedural rules. In other
words, instead of giving students a procedure to follow, the tutor makes them synthesize it.
For example, to construct a procedural rule for solving equations of the form ax b c, the
student would need to discover a series of operations (subtract, simplify, divide by a, simplify)
t't would transform the equation to one of the form x = d. That way, students will see how
the techniques they use to solve problems arise and how they are connected to other things
they have learned. Another valuable idea we have not implemented is having menu options
that allow the student to ask the tutor to explain a reasoning step instead of a procedure.

Neither the additions suggested above nor the changes outlined earlier situate algebra in
the real world or establish it as a tool for representing natural situations and making infer-
ences. A demonstration that algebraic statements can represent formal models of natural
situations and that deductive reasoning has use in making important real-worId decisions will
mean mapping the formal symbolism of algebra onto real situations. In short, we must provide
an intuitive semantics for algebra.



V. CONCLUSIONS AND FUTURE DIRECTIONS

We conclude this report with our view of where we believe ICAI should and should not
direct its future efforts. The view here is selective, for we do not attempt to enumerate all
promising future directions. Moreover, our view may not be shared by all researchers in the
field. It is rooted in our central goal of developing computer environmentsrelatively passive
tools, as well as more active tutorsto support students' learning of higher-level mathematical
problem-solving skills.

OVERCOMING COMPETENCE LIMITATIONS

Great strides have been made and are being made in intelligent computer-assisted
instruction. Many systems embed relatively complete representations of subject matter
knowledge (for example, Brown, Burton, and deKleer, 1982; Clancey, 1979, 1983) or have well-
developed skills for student diagnosis (for example, Sleeman and Smith, 1981). However, ICAI
systems still fall short of human tutoring skills, and unless these shortcomings are rectified,
ICAI systems will not achieve the two-sigma improvements in ncriormance attributed to
human tutors (Bloom, 1984). The main a.ve in which ICAI systems are inadequate, as
Ohlsson (1986) points out, is pedagogical expertise: Their knowledge of teaching per se is gen-
erally very limited, at both the tactical and strategic levels. Tactical knowledge refers to tutor-
ing skills that are local in scope (for example, a decision to interrupt a student at a particular
step while solving a single task), while strategic knowledge refers to more global understanding
(for example, a decision to pose a certain sequence of tasks to a student).

In our future research, we will attempt to improve the tactical capabilities of our tutor by
adding to its repertoire of techniques for dealing with local student difficulties. Enhancements
to our lesson-updating module (see Sec. II) will provide strategic improvements. However,
improving the pedagogical expertise of ICAI systems is a challenging and complex task. To
approach human effectiveness, ICAI systems must represent much of the pedagogical
knowledge that human tutors possess. Although cognitive psychology provides us with rela-
tively well-defined information-processing models of domain expertise and diagnostic expertise,
no corresponding literature on information-processing models of pedagogical expertise exists
(for a review of some limitations of educational research in this regard, see McArthur, Stasz,
and Zmuidzinas, in press; and Shavelson et al., 1989). Consequently, the implementation of
sophisticated pedagogical expertise in ICAI tutors will likely be a slow process. The process
will necessarily involve the cooperative effort of cognitive psychologists, who will carefully
analyze the performance of expert tutors, and ICAI researchers, who will then formalize, imple-
ment, and perform computational experiments on the resulting information-processing models.

INVESTIGATING NEW FORMS OF LEARNING

Formalizing human pedagogical expertise is an important future direction for ICAI. We
have begun our own research in this area, funded by National Science Foundation Grant
MDR-8751104; for more details, see McArthur and Stasz (1987), and McArthur, Stasz, and
Zmuidzinas (in press). However, we recognize that ours is not the only approach to developing

39

51



40

effective ICAI programs and may not be the most cost-effective method. Along with many
ICAI researchers, we have hitherto taken one-to-one human tutoringin which one student
and one tutor work a series of problemsas the form of learning most desirable to automate.
But we now wish to consider the possibility that instead of (or, in addition to) trying to opti-
mize ICAI performance within this paradigm, considering other paradigms might be advanta-

geous.
One-to-one tutoring is a powerful method for transmitting information between humans

because it exploits many communications media, conventions, and devices people share because
of their physical structure, learning, and culture. Among other things, it relies on gesture,
natural language, informal sketches, and mutually understood conventions for communication.
Many of these features are not now shared by computers (for instance, natural language) and
perhaps never will be (for example, gesture, meaningful understanding of communication con-
ventions arising from real-world commerce). Thus, although one-to-one tutoring may be a
naturally powerful form of learning between humans, it may not be as effective between

machines and humans.
The foregoing argument leads to an important conjecture about future directions for ICAI

research: In addition to enhancing the computer's ability to engage in traditional forms of
learning, we should seek new forms of learningones that take better advantage of ICAI's

potential strengths as a communicator of knowledge. Several research groups have begun such
investigationsmost notably, Collins, Brown, and Newman (1989), who have considered
importing an apprenticeship style of learning into a cognitive and computer-based context. In

addition, exploratory learning environments such as STEAMER (Ho Ilan, Hutchins, and
Weitzman, 1984) and QUEST (White and Frederiksen, 1987) are beginning to define a new
form of learning with computers that exploits some natural strengths of machines (for
instance, the ability to simulate processes and present multileveled graphical representations of
complex systems). The extensions to the goal-commands version of our tutor and the princi-
ples we offer in Sec. III also fall into this category.

FOCUS CHANGES

The possibility of developing fundamentally new forms of learning with computers sug-
gests that they may radically alter the way we learn. In addition, it is important to consider
tha. they may radically alter what v learn. As we noted in Sec. I, because computers can now
automate much algebraic symbol manipulation, such skills are now less important for students
to learn. To convert this insight into concrete ideas about the content of new computer-based
mathematics courses requires careful consideration of three questions:

Which mathematical skills are easily and effectively automated?
Which other skills are important for students to acquire?
For which of these other skills can effective computer-based learning environments be

designed?

As with the analysis of pedagogical skills, these questions must be answered by a cooperative
enterprise involving mathematics educators, professional mathematicians, and researchers in

1CM.
Our work has only scratched the surface of this problem. We are now concentrating on

developing tutors and tools to help students learn higher-level mathematical problem-solving

skills, but many other important aspects of mathematical thinking are untouched in ICAI.



41

One topic that can be learned particularly effectively with computers is mathematical model-
ing. Developing computer-based tools to support this topic is a main part of our follow-on
research (funded under NSF Grant MDR-8751M5). Mathematical modeling is a multifaceted
skill. Students must learn how to gather data about some real-world process or situation, for-
mulate and test mathematical models that fit the data, and use the models to make inferences
and decisions about the real world. Our approach to learning such skills is to provide students
with "microworlds" that can faithfully simulate real-world processes. We plan to supplement
such microworlds with tools that enable students to gather and represent data (for example,
tables of values, Cartesian graphs) and to record and then test equational models (for instance,
automated symbol manipulation).

Implementing this new form of learning with computers has several potential advantages.
In addition to focusing on nontraditional components of algebra competence, it places algebra
in a natural context of use. This contrasts with many classroom environments in which sym-
bol manipulation is taught as a stand-alone skill, without regard for its application to real-
world problems (see Fey, 1984). Also, microworlds can represent a departure from the tradi-
tional drill-and-practice style of learning. Instead of working on a series of small, disconnected
problems, students have an opportunity to exercise a variety of different skills as they work for
an extended periol of time on a set of meani..gfully connected tasks.

INTEGRATION AND EVALUATION

When we first began this project, we envisioned developing an intelligent tutor for algebra
that might change how algebra was taught. As the previous sections have illustrated, our
expectations have slowly shifted: We now hope to affect both what is taught and the style of
teaching. This shift has forced us to face a new collection of issues concerning the integration
of software into a classroom setting and its evaluation in that setting. The preliminary
analysis of our initial successes and failures in the classroom (Robyn et al., 1989) has rein-
forced the finding that new learning tools can he ineffective when placed in a context whose
pedagogical goals are not consistent with the ones impacit in the tools.

We raise these issues here not because we have found a solution but because they are gen-
eral problems that will be faced hy any project attempting to import advanced technology into
the classroom. In Ser. IV, we described some novel tools we are designing to help us evaluate
our various tutoring versions and tools. However, the problems of integration and evaluation
are sufficiently complex hat they deserve to be researched as projects of their own rather than
as adjuncts to the development of an ICAI system.' Recalling our previous recommendations,
this suggests that an ideal research environment for developing effective ICAI systems would
encompass several distinct but mutually reinforcing efforts:

Development of information-processing models of the pedagogical skills in one-to-one
tutoring, as well as models of other forms of instruction.
Examination of alternative forms of learning using computers.
Computer implementation of ICAI tutors and tools embodying models of human
pedagogical skills and alternative forms of learning.

'In this connection, we have recently designed and pilot tested a "minicourse" based in part on the results of our
initial study (Sec. IV). This course integrates our computer software into a complete curriculum for learning linear
equations. A report on this study is under way.

t ) 3



42

Design and testing of curricula and courses that integrate new ICAI systems with com-
plementary noncomputer activities for students and teachers.
Development of new measures for evaluating student performance in the courses and
curricula.



Appendix

BACKGROUND QUESTIONNAIRE AND ACHIEVEMENT TEST

RAND
detletift/C-
A:gebra Tutor Project

RAND ALGEBRA TUTOR PROJECT:
DIAGNOSTIC TEST

CONGRATULATIONS! Your class has been selected as one of five SAMOHI Algebra I

classes to participate in a special project. A research warn from The RAND Corporation wants
you to work with them in the development of an intelligent computer tutor for algebra.

Very few students have the opportunity to use intelligent computers to help them learn alge-
bra. SAMORI will be one of the first schools in the country to have such sophisticated comput-
ers in their classrooms. The RAND research team is very excited about this project, but to be
successful, we need your help. We hope that you will cooperate with us, and that you will be
interdsted and enthusiastic about the project.

We'd like you to take this Diagnostic Test today. The first part is a questionnaire that asks
about your background and your opinions about algebra and learning with computers. The second
part is a test that will give us an idea about how much algebra you know already. If you have
any questions while working on the test, please raise your hand.

THANKS FOR YOUR HELP!

43

55



44

RAND

Algebra Tutor Project

STUDENT I.D.

Student Questionnaire

DIRECTIONS: Please fdl in the parentheses next to each question with
the appropriate number. Select only ONE answer to each
question; please answer all questions.

1. What is your sex? ( )

(1) Male
(2) Female

2. How old were you on your last birthday?

3. What grade are you in?

(1) lOth grade
(2) 1 1th grade
(3) 12th grade

4. What was your final grade in your last MATH course? ( )

(I) I withdrew from my last math course.
(2) F
(3) D
(4) C
(5) B
(6) A

5. What grade do you think you'll get in this course? ( )

(1) F
(2) D
(3) C
(4) B
(5) A

6. Have you completed Algebra 1 before? ( )

(1) no
(2) Yes

56



RAND

Algebra Tutor Project

7. How interested are you in learning Algebra 1?

(1) No interest
(2) Little interest
(3) Some interest
(4) Great interest

8. How do you feel about Algebra?

I dislike it
(2) I mildly dislike it
(3) I mildly like it
(4) 1 like it

9. How difficult is Algebra for you?

(1) Easy
(2) Hard
(3) Uncertain
(4) 1 have not worked on Algebra

10. Have you ever taken a course about computers or computer
programming?

(1) no
(2) yes

11. Have you ever used computers in other classes?
(for example, in English, Math, or history class?)

(1) no
(2) yes

12. Have you ever used computers outside of school?
(for example. at home, at a friend's house, at camp?)

(1) no
(2) yes

13. Have you ever used a computer to do your homework?

(1) no
(2) yes

5 7

(

45



46

RAND
."(detzet
Algebra Tutor Project

14. Have you ever played computer games? ( )

(1) no
(2) yes

15. Have you ever programmed a computer? ( )

(1) no
(2) yes

16. Do you think you'll like learning Algebra on a computer?

(1) no
(2) yes

)

Please indicate the degree to which you agree with the follnwing statements about computers.
There are no wrong or right answers, we just want your opinion.

17. 1 believe many algebra courses could be improved by the use of
computers.

(1) Strongly disagree
(2) Disagree
(3) Slightly disagree
(4) Slightly agree
(5) Agree
(6) Strongly agree

18. Using computers to teach algebra is a bad idea.

(1) Strongly disagree
(2) Disagree
(3) Slightly disagree
(4) Slightly agree
(5) Agree
(6) Strongly agree

*i Computers can do a lot more teaching than most people realize.

(1) Stivngly disagree
(2) Disagree
(3) Slightly disagree
(4) Slightly agree
(5) Agree
(6) Strongly agree

5s



47

RAND

Algebra Tutor Project

20. It is a waste of time to try to learn using computets.

(1) Strongly disagree
(2) Disagree
(3) Slightly disagree
(4) Slightly agree
(5) Agree
(6) Strongly agree

1

21. Computers can show students what's important to be learned.

(1) Strongly disagree
(2) Disagree
(3) Slightly disagree
(4) Slightly agree
(5) Agree
(6) Strongly agree

22. Computers are poor substitutes for algebra teachers.

(1) Strongly disagree
(2) Disagree
(3) Slightly disagree
(4) Slightly agree
(5) Agree
(6) Strongly agree

THANKS FOR YOUR HELP! PLEASE CHECK TO MAKE SURE
THAT YOUR STUDENT I.D. NUMBER IS ON THE FIRST PAGE.



48

RAND

Algebra Tutor Project

Achievement Test

DIRECTIONS: The purpose of this test is to find out how much iou know about algebra.
Some of these problems are difficult. No one expects you to know all the answers. It ,ou
cannot solve a problem, don't be discouraged, just go to the next problem. Please try to
solve all the problems and show all your work.

1. Hector made an error when he solved this problem for x. See If you can find the error and
put a circle around it. Then try to solve the problem correctly.

2. Jane did not solve this problem correctly. Try to find the error and put a circle around it.
Then try to solve the problem correctly.

5 < -3x - 7

5 + 7 < -3x 7 + 7

12 < -3x

12i-3 < -3xJ-3

-4 < x



49

RAND
../tdetoltZZ-
Algebra Tutor Project

IF YOU CANNOT SOLVE A PROBLEM, JUST GO TO THE NEXT QUESTION.

3. Hyon and Jim worked on this problem together. but they made an error. See if you can find
and circle their error. Then solve the problem correctly.

Solve the following equations for x: 2x + y = 4
x + y = 2

2x + y = 4
x + y = 2

2x + y = 4
y = x + 2

2x + (x + 2) = 4

3x + 2 = 4

3x + 2 - 2 = 4 - 2

3x = 2

x = 2/3



50

RAND

Algebra Tutor Project

IF YOU CANNOT SOLVE A PROBLEM, JUST GO TO THE NEXT QUESTION.

4 5 Directions: Solve each problem for x.

4. Solve for x:

7(x + 9x + 4) = 12

S. Solve for x:

-7x < 70



51

RAND
dr(xcif-crt.
Algebra Tutor Project

IF YOU CANNOT SOLvE A PROBLEV, JUST GO TO THE NEXT QUESTION.

6 7 Directions: Solve each problem for x.

6. Solve for x:

3k + 4(2x + 2)] = 10

7. Solve for x:

-4(x + 1) < 4(3 + I)



52

RAND

Algebra Tutor Project

IF YOU CANNOT SOLVE A PROBLEM, JUST GO TO THE NEXT QUESTION.

8 - 9 Directions: Solve each problem for x and y.

8. Solve for x and y:

-7x + y = 3

5x - 4y = -I

9. Solve for x and y:

-7x + 3y = 3

5x - 4y = -1



53

RAND

Algebra Tutor Project

IF YOU CANNOT SOLVE A PROBLEM, JUST GO TO THE NEXT QUESTION.

10 - 11 Directions: Try to solve each problem below. Then, if you can, try to solve toe
problem in a different way and mark the method that you like the best.

For example, you could sohe x+4 = 2x+2 one way:

Example Explanation

x+4 = 2x+2
4 = x+2
2 = x

or another way:

x+4 = 2x+2
x+2 = 2x

2 = x

You add -x to both sides of the equation
Then you add -2 to both sides of the equation

You add -2 to both sides of the equation
Then you add -x to both sides of the equation

1 like the second way best.

10. Solve for x:

7x - 2 = 5x - 8

11. Solve for x:

4(x + 1) - 2(x + 1) = 6



54

RAND

Algebra Tutor ProjeCt

IF YOU CANNOT SOLVE A PROBLEM, JUST GO TO THE NEXT QUESTION.

12 - 13 Directions: Try to solve each problem below. Then, if you can, try to solve the
problem in a different way and mark the method that you like the best.

For example, you could solve x+4 = 2x+2 one way:

Example Explanation

x+4 = 2x+2
4 = x+2
2 = x

or another way:

x+4 = lx+2
x+2 = 2x

2 = x

You add -x to both sides of the equation
Then you add -2 to both sides of the equation

You add -2 to both sides of the equation
Then you add -x to both sides of the equation

I like tbe second way best.

12. Sol% e for x:

-3x > -9(3 + 5)

13. Solve for x and y: + y = 2

x - y = 6



55

RAND
'to/to/tr(
Algebra Tutor Project

IF YOU CANNOT SOLVE A PROBLEM, JUST GO TO THE NEXT QUESTION.

14 - 16 Directions: Here are some word problems. Write each problem as an equation and
then solve the equation.

14. If the width of a rectangle is 3 inches less than its length, and the perimeter of the rectan-
gle is 94 inches, what is the length of the rectangle in inches?

15. You are taking a history course. There will be 4 tests. You have scorts of 89. 92, and 95
on the first three. You must make a total of 360 to get an A. What scores on the last test will
give you an A?

16. A telephone coin box contains coins. The box contains only nickels and dimes, and the
total value of the coins is 95 cents. Find out how many coins are nickels and how many are
dimes.



56

RAND

Algebra Tutor Project

IF YOU CANNOT SOLVE A PROBLEM, JUST GO TO THE NEXT QUESTION.

17 - 19 Directions: We will give you the answer to a problem and ask you to write an
equation.

For example, write an equation in which the answer is x = 3. The equation should have at
least five appearances of x:

Example Explanation

x = 3
x + 2x = 3 + 2x

x + 2x - 9, = 3 + Zx - 9x
Add 2x to both sides
Add -9x to both sides

17. Write an equation in which the answer is x = 2. The equation should have at least one set
of parentheses.

18. Write an inequality in which the answer is x < 0. The inequality should have at least two
negative coefficients

19. Write a system of equations in which the answers are x = 4 and y = 6.



REFERENCES

Bikson, T. K., and J. D. Eve land, New Office Technology: Planning for People, Work in Amer-
ica Institute, Inc., 1986.

Bloom, B. S., "The 2 Sigma Problem: The Search for Methods of Group Instruction as Effec-
tive as One-to-One Tutoring," Educational Researcher, Vol. 13, No. 6, June/July 1984.

Brown, J. S., "Process versus Producta Perspective on Tools for Communal and Informal
Electronic Learning," in Eduvition and the Electronic Age, proceedings of a conference
sponsored by the Educational Broadcasting Company, Bc. ston, Mass., 1984.

Brown, J. S., R. R. Burton, and J. deKleer, "Pedagogical, Natural Language and Knowledge
Engineering and Pedagogical Techniques in SOPHIE I, II, and III," in D. H. Sleeman
and J. S. Brown (eds.), Intelligent Tutoring Systems, Academic Press, New York, 1982.

Carpenter, T. P., M. K. Corbitt, H. S. Kepner, M. M. Lindquist, and R. E. Reys, "Stents'
Affective Responses to Mathematics: Secondary School Results from National Assess-
ment," Mathematics Teacher, October 1980, pp. 531-539.

Clancey, W. J., "Tutoring Rules for Guiding a Case Method Dialogue," International Journal of
Man-Machine Studies, Vol. 11,1979, pp. 25-49.
, "GUIDON," Journal of Computer-Based Instruction, Vol. 10,1983, pp. 215-251.

Clark, R. E., "Confounding in Educational Computing Research," Journal of Educational Com-
puting Research, Vol. 1, No. 2,1985, pp. 137-148.

Collins, A., and J. S. Brown, "The Computer as a Tool for Learning through Reflection," in
H. Mandl and A. Lesgold (eds.), Learning Issues for Intelligent Tutoring Systems,
Springer, New York, 1987.

Collins, A., J. S. Brown, and S. E. Newman, "Cognitive Apprenticeship: Teaching the Craft of
Reading, Writing, and Mathematics," in L. B. Resnick (ed.), Knowing, Learning, and
Instruction: Essays in Honor of Robert Glaser, Lawrence Erlbaum, Hillsdale, N.J., 198i.

Cook, T. D., and D. T. Campbell, Quasi-Experimentation: Design and Analysis Issues for Field
Settings, Rand-McNally College Publishing Company, Chicago, Ill., 1979.

Dienes, Z., Building Up Mathematics, 4th ed., Hutchinson Educational Ltd., London, 1960.
Fey, J. T., Computing and Mathematics: The Impact on Secondary School Curricula, report on

the National Council of Teachers of Mathematics Conference, Washington, D.C., 1934.
Hollan, J. D., E. L. Hutchins, and L. Weitzman, "STEAMER: An Interactive Inspectable

Simulation-Based Training System," AI Magazine, Vol. 5, No. 2,1984, pp. 15-27.
Kaput, J., "Towards a Theory of Symbol Use in Mathematics," in C. Janvier (ed.), Problems of

Representation in the Teaching nnd Learning of Mathematics, Lawrence Erlbaum, Hills-
dale, N.J., 1986.

Kaput, J., C. Luke, J. Poholsky, and A. Sayer, The Role of Representations in Reasoning with
Intensive Quantities: Preliminary Analyses, Educational Technology Center Technical
Report, Cambridge, Mass., September 1986.

Lesh, R., M. Behr, and T. Post, "Representations and Translations among Representations in
Mathematics Learning and Problem Solving," in C. Janvier (ed.), Problems of Representa-
tion in the Teaching and Learning of Mathematics, Lawrence Eribaum, Hillsdale, N.J.,
1987.

McArthur, D., "Developing Computer Tools to Support Performing and Learning Complex
Cognitive Skills," in K. Pedzek, D. Berger, and B. Bankes (eds.), Applications of Cognitive

57

69



58

Psychology: Computing and Education, Lawrence Erlbaum, Hillsdale, N.J., 1987. (Also
published by The RAND Corporation, N-2980-NSF, 1989.)

McArthur, D., C. Burdorf, T. Ormseth, A. Robyn, and C. Stasi, "Multiple Representations of
Mathematical Reasoning," Proceedings of the International Conference on Intelligent
Tutoring Systems, Montreal, June 1988. (Also published by The RANI) Corporation,
N-2758-NSF/RC, 1988.)

McArthur, D., M. W. Lewis, T. H. Ormseth, A. Robyn, C. M. Stasz, and D. A. Voreck, A4e-
braic Thinking Tools: Supports for Modeling Situations and Solving Problems in Kids'
Worlds, The RAND Corporation, N-2974-NSF, July 1989.

McArthur, D., and C. Stasz, "Tutoring Techniques in Algebra," presented at the American
Education Research Association annual conference, Washington, D.C., April 1987.

McArthur, D., C. Stasz, and J. Hotta, "Learning Problem-Solving Skills in Algebra," The Jour-
nal of Educational Technology Systems, Vol. 15, No. 3, pp. 303-324. (Also published by
The RAND Corporation, N-2595-NSF, 1987.)

McArthur, D., C. Stasz, J. Hotta, 0. Peter, and C. Burdorf, "Skill-Oriented Task Sequencing in
an Intelligent Tutor for Basic Algebra," Instructional Science, Vol. 17, 1988, pp. 281-307.
(Also published by The RAND Corporation, N-2966-NSF, 1989.)

McArthur, D., C. Stasz, and M. Zmuidzinas, "Tutoring Techniques in Algebra," Cognition and
Instruction, in press.

Newell, A., "The Knowledge Level," Artificial Intelligence, Vol. 18, No. 1, 1982, pp. 87-127.
Newman, D., Formative Experiments on Technologies That Change the Organization of Instruc-

tion, paper presented at the annual meeting of the American Educational Research Asso-
ciation, Chicago, Ill., 1989.

Ohisson, S., "Some Prine;ples of Intelligent Tutoring," Instructional Science, Vol. 14, 1986, pp.
293-326.

Pea, R., "Cognitive Technologies for Mathematics Education," in A. H. Schoenfeld (ed.), Cog-
nitive Science and Mathematics Education, Lawrence Erlbaum, Hillsdale, N.J., 1987.

Hach lin, S. L., A. Matsumoto, and L. Wasa, "Teaching Problem Solving within the Algebra
Curriculum," paper presented at the annual meeting of the American Educational
Research Association, Chicago, Ill., 1985.

Robyn, A., C. Stasz, T. Ormseth, and D. McArthur, "Implementing Computer-Assisted Instruc-
tion in First-Year Algebra Classes," paper presented at the annual meeting of the Ameri-
can Education Research Association, San Francisco, Calif., April 1989.

Schoenfeld, A. H., "Students' Beliefs about Mathematics and Their Effects on Mathematical
Performance: A Questionnaire Analysis," paper presented at the American Educational
Research Association annual conference, Chicago, III., 1985.
, "What's All the Fuss about Metacognition?" in A. H. Schoenfeld (ed.), Cognitive Science
and Mathematics Education, Lawrence Erlbaum, Hillsdale, N.J., 1987.

Shavelson, R. J., C. Stasz, S. Schlossman, N. Webb, J. Y. Hotta, and S. Goldstein, Evaluating
Student Outcomes from Telecourse Instruction: A Feasibility Study, The RAND Corpora-
tion, R-3422-CPB, 1986.

Shavelson, R. J., N. Webb, C. Stasz, and D. McArthur, "Teaching Mathematical Problem Solv-
ing: Insights from Teachers and Tutors," in R. Chambers and E. Silver (eds.), Teaching
and Assessing Mathematical Problem Solving: A Research Agenda, Lawrence Erlbaum,
Hillsdale, N.J., 1989.

Sleeman, D. H., "PIXIE: A Shell for Developing Intelligent Tutoring Systems," in R. Lawler
and M. Yazdani (eds.), Artificial Intelligence and Education: Learning Environments and
Intelligent Tutoring Systems, Able:, Norwood, N.J., 1987.

7 0



59

Sleeman, D. H., and M. J. Smith, "Modeling Students' Problem Solving," Artiicial Intelligence,
Vol. 16, 1981, pp. 171-188.

White, B. Y., and J. R. Frederiksen, "Qualitative Models and Intelligent Learning Environ-
ments," in R. Lawler and M. Yazdani (eds.), Artifkial Intelligence and Education: Learn-
ing Environments and Intelligent Tutoring Systems, Ablex, Norwood, N.J., 1987.


