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Abstract

We explored a logistic regression procedure for estimating item parameters in the Rasch

model and testing the hypothesis of item parameter invariance across several groups.

Rather than utilizing itcm responses directly, the procedure relies on "pseudo-paired

comparisons" (PC) statistics defined over all possible pairs of items. We describe methods of

computing the PC statistics in nonindependent and inviependent fashions. Simulation

results suggest that the procedure yields negligibly biased estimates of item difficulty

parameters even with small numbers of items. The simulation data were used to compare

the distribution of observed test statistics under the null hypothesis of invariant item

parameters across groups to the theorecical Student's t-distribution and the theoretical chi-

square distribution. An application to sixth grade mathematics achievement data is

presented.
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Parameter Invariance in the Rasch Model

Starting from assumptions of the Bradley-Terry-Luce (BTL) model (Bradley & Terry,

1952; Luce, 1959), NVGyire and Davison (in press) described a logistic regression procedure

for estimating stimulus scale values in true paired comparisons (PC) data. The procedure

also yields a chi-square test of the BTL model. Whcn paircd comparisons data are available

from two or more populations, the logistic regression approach can be extended to a test of

the hypothesis that the PC data conform to the BTL model with equal stimulus scale values

in all populations.

Andrich (1978), Chen and Davison (1991), Choppin (1968), and Rasch (1960) have

discussed a "pseudo"-paired comparisons statistic defined over pairs of dichotomously

scored test items. For item pair (j,k), the PC statistic is the conditik nal probability of

passing item j and not item k given that the subject passcs exactly one of the two items.

When the items conform to the Rasch model, the "pseudo-"paired comparisons data have the

form specified by the BTL model for true PC data. The stimulus scale values in the BTL

expression for the pseudo-PC statistic .1E5k will equal the Rasch model item difficulty

parameters. If the Rasch model holds with equal item difficulty parameters in two or more

populations, then the pseudo-PC matrix for each population will have the form specified by

the BTL model for :rue paired comparisons data, and the stimulus scale values will be equal

for all populations.

The PC statistics for item pairs are readily computed. Unlike true PC data, the PC

statistics as described by the above authors, are not independent. That is, for two pairs (j,k)

and (j,k'), thc responses to item j will be used in computing both the PC statistic for pair

(j,k) and pair (j,k') and hence thc estimates of PC statistics for these two pairs will not bc

independent.

In the rcscarch reported hcrc, we extended the McGuire and Davison (in prcss)

approach for true PC data to the analysis of pseudo-PC data for item pairs satisfying thc
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Rasch model. That is, wc investigated using a standard logistic regression analysis of

pseudo-PC statistics to estimate itcm difficulty parameters and to test the of tcn discussed

hypothesis of invariant item difficulty parameters across populations (Hambleton &

Swaminathan, 1985; Lord, 1980).

To evaluate thc effect of dependencies between PC statistics for item pairs, a small

simulation study was conducted. Thc effect of the dependencies on test statistics was

substantial. Consequently, pursuant to a suggestion by van den Wollenberg, Wierda, and

Jansen (1988), wc explored a method of computing PC statistics in an independent fashion.

When computed in an independent fashion, cach item response is used once and only once in

computing the PC statistics.

We begin by discussing the adaptation of the logistic regression approach to the

analysis of pseudo-PC data. This section describes computation of thc PC statistics in both

independent and nonindependent fashions. Then we report results of two small simulation

studies designed to evaluate the effect of dependencies when the null hypothesis is true;

that is, the item responses fit the Rasch model with equal item parameters in two

populations. In Study 1, PC statistics were computed in a nonindependent fashion, whereas

in Study 2 they were computed in an independent fashion. Finally, we report an

illustrative application to sixth grade mathcinatics items. A more extensive evaluation of

the logistic regression approach will be contained in Chen (in progress), including a

comparison of logistic regression results to those obtained by unconditional maximum

likelihood estimation.

The Log,istic Regression Analysis of Psgudo-PC Statistics

Let the discrete random variable avi take the value 1 when subject v answers item j

cor:ectly and take the value 0 otherwise. Then according to the Rasch model

3



idavj 1) exp(Ov - + exp(Ov - bj)] (I)

idavj 0) 1/[1 + exp(Ov - bj)],

where 411 is the ability parameter for subject v and bi is the difficulty parameter for item j.

ThgiairssLC2mnaritus jaatic jolt=

For items, the PC statistic is defined over the set of all possible item pairs. Our

development of the statistic closely follows earlier work (Andrich, 1978; Chen & Davison,

1991; Choppin, 1968; Rasch 1960) and is presented only f:Nr completeness.

Defined over item pairs, the PC statistic is a function of two joint probabilities, the

probability that the subject passes item j and fails item k and thc probability that the

subject fails item j and passes item k: idav. = I a = 0) and n(avi = 0, avk = 1). In terms ofvk

these two joint probabilities, the PC statistic is defined as

jk i(avj 1, avk = 0) (2)

0) + idavj = 0, avk = 1).av k =

In words, the PC statistic for item pair (j,k) is the probability that subject v passes item j

and fails item k given that the subject passes only one item of the pair.

From the assumption of local independence in the Rasch model, these two joint

probabilities have the following form:

n(avj = 1, avk = 0) = exp(Ov - b) (3)

[1 + exp(Ov bj)] [1 + exp(Ov - bk)]

n(avi = 0, avk = 1) = exp(Ov - bk)

[I + exp(Ov bj)] [I + exp(Ov bk)].

Inserting Equation 3 into the dcfinition in Equation 2 yields
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= exp(bk - b3)/(1 + exp(bk - (4)

Readers familiar with the Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952; Luce,

1959) will recognize that the probability IVA in Equation 4 stands in the same relationship to

item difficulties, bk and bj, as do the choice probabilities in the BTL model to the stimulus

scale values.

As can be seen from Equation 4, the PC statistic depends only on the item

difficulties, bk and bi, and is independent of the ability parameters. Consequently, a sample

estimate of Ir.*, say Rik, can be computed by counting the number of people who passed item

j but not k and dividing that count by the number who passed exactly one of the two items.

Table 1 shows the PC statistics from a fall (n = 178) and spring (n = 153) testing for

ten items from a sixth grade mathematics test developed by a large suburban school district.

Each data point shows the proportion of students who passed the row item among the

students who passed exactly one of the two items. For instance, the data point in row 2,

column 1 equals .039, because 4 of the fall subjects passed item 2 but not item I and 103

subjects passed either item 1 or item 2 but not both. Hence pjk = 4/103 = .039.

If the PC statistics arc computed as described above -- counting the number of

people who passed item j but not k and dividing by the number who passed exactly one of

the two items then the PC statistics will &a be independent. For item pairs (j,k) and

(j,k'), exactly the same responses to item j are used to computc sample estimates pjk and

To insure the independence of thc PC statistics, they need to be computed so that each data

point is uscd no more than once.

Let n b the total number of items on thc tcst and let t bc the number of itcms

correctly answered by a given subject. According to van den Wollenberg ct al. (1988), a

subjcct's data can be used to estimate a maximum of minft, (n-t)J PC statistics without using

any of the subjcas responses morc than Once. That is, min[t, (n-t)] equals thc maximum

5
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number of item pairs which can be formed in which the subject passed exactly one item of

the pair. The van den Wollenberg et al. result led us to the following approach for

estimating PC statistics.

If min[t, (n-t)] t, then we randomly paired each item answered correctly with one

and only one of the items answered incorrectly. If pair (j,k) were one of these random item

pairings for the current subject, then we would increase by I our count of the number of

people passing exactly one member of the item pair. If the person had passed j but not k,

we would also incrcment our count of people who passed j but not k. After repeating this

process for each subject, then for every item pair (j,k), we would divide our count of

subjects passing j but pot k by our count of people passing exactly onc of the two items. If

min[t, (n-t)] = (n-t), the process would proceed in the same fashion, except that (n-t) item

pairs were created by randomly matching an incorrectly answered item to a correctly

answered item. By following this process, one can use each subject's data to estimate as

many PC statistics as possible without using any response more than once.

The Logistic Regression Model

Since Rik + trkj 1, .1 items will define J(J - 1)/2 unique PC probabilities. Thus, we

tined to work only with the lower triangular elements of the PC matrix for which the

column is less than the row; i.e. k < j. Throughout the remainder of this section we shall

procee,.: as if the lower triangular elements of the PC matrix were independent.

The logit of the probabilities in Equation 4 can bc expressed as a linear function of

known predictor variables in a design matrix. The unknown regression weights on the

predictor variables are the item difficulties. In other words, the logits of the J(J - 1)/2 item

PC statistics define a system of J(J - 1)/2 equations which arc linear functions of elements

in a design matrix. Hence, given sample estimates of thc PC statistics, logistic regression

can be used to obtain maximum likelihood estimates of thc item difficulty parameters and
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to estimate the fit of the logistic regression model to the PC statistics. We begin by

developing the design matrix for a single population. Subsequently, we extend the PC

model and the design matrix to more than one population.

Thc Single Group Model. From the equality in Equation 4, it follows that the logit,

Lji ln[icik/(1 -Rik)] (bk bi). To uniquely determine the item difficulties, let's impose the

restriction that the sum of the item difficulties equals zero: Ejbj = 0. This restriction

implies that

b1 -E1.1b1. (5)

In developing subsequent expressions for the logit Lik, such as Equation 6, the subscripts j

and k will designate the two stimuli corresponding to the logit, and the subscript i (i =

will be used to designate stimuli in summations running over stimuli. Equation 5 suggests

that thc logits Ilk can be written in terms of difficulties for items 2,...,J as follows:

and

Ljk -2b - E14. .b1. when kj 1.

L. = bk - b. when k * 1.jk j

(6)

Thc design matrix will have J(J - 1)/2 rows, one for each unique PC statistic; and it

will have J - 1 columns, one column for items 2,...,J. Let the subscript i designate a column

of the design matrix, and let di refer to thc ith clement in the row corresponding to itcm

pair (j,k). Thcn the elements of the design matrix in the row corresponding to item pair

(j,k) arc sct equal to thc following values when k = 1:

7
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di is -1 for i 2,...,J and i * j,

di is -2 for i j .

When k 1, the elements of the design matrix in the row corresponding to itcm pair (j,k)

are set equal to the following values:

di 1 for i = k,

di -1 for i j, and

di is 0 otherwise.

(7a)

(7b)

With the elements of the design matrix defined as in Equations 7a and 7b, Equation

6 can be rewritten as

Uk = (8)

Table 2 shows the design matrix for all possible pairs of four items. For the first three

rows, k 1, and hence the elements in these three rows follow the pattern described in

Equation 7a. For thc last three rows, k * 1, and hence the elements in these three rows

follow the pattern described in Equation 7b.

Since thc logits have the linear form of Equation 8, the expression for the PC

statistic in Equation 4 is a logistic regression equation without an intercept term in which

the criterion variable is the PC statistic nik, the predictor variables arc thc dummy variables

di, and the regression wcights correspond to the unknown itcm parameters bi. One of the

increasingly popular logistic regression algorithms can be uscd to obtain maximum

likelihood estimates of the regression coefficients. Thcsc coefficient cstimatcs constitute
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maximum likelihood estimates of item difficulty parameters for items 2,..., J. Once

difficulty estimates for items 2,..., J have been obtained, the parameter for item I can be

estimated according to Equation S. A chi-square measure of fit can bc used to test the

hypothesis that the PC statistics fit the model in Equation 4.

MAlikls_p_mulitimilingh_Mzja The Rasch model can be extended to more than

one population by rewriting Equation 1 in terms of probabilities and item parameters

specific to each group. Let g (g 1,...,G) be a subscript designating a group. In terms of

group specific item parameters, bir the probabilities of correct and incorrect responses to

item j from a member of group g with ability 0 equal

n (a = 1) = exp(Ov bjg exp(Ov bjg)]
vj

Itijayj = 0) = 11(1 exp(Ov bjg)).

(9)

Using the reasoning leading ftom Equation 1 to Equation 4, wc arrive at the conclusion that

the PC statistic for itcm pair (j,k) in group g, nikg, is a logistic function of group specific

item parameters:

njkg eXp(bke - bjid/rj + eXp(bkg - bjg)]. (10)

Obviously, for the logits in group g,

Ljkg = bkg - bjg. ( 1 1 )

To uniquely determine the item parameter scale, assume that the sum of item difficulties

equals 0 in cach group so that for every group, thc difficulty of item 1 can be expressed in

terms of difficulties for thc remaining items.
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-E iol bit (12)

We will now develop a form for the logits which expresses them as a linear function

of known elements in a design matrix and unknown regression coefficients. At the level of

a global hypothesis test, this dcsign matrix leads to a test of the hypothesis that PC statistics

satisfy the BTL form with equal item difficulties in all groups. That is, if we let bir be the

vector of J item difficulties for group g, then thc hypothesis states that there exists a vector

of item difficulty values such that bit = 12 for all g. At thc level of a hypothesis about a

specific item, thc particular design matrix described here leads to a test of the following

hypothesis. For group g, item j and a designated target group (say group g = 1), the null

hypothesis tcsted is that big = bp. That is, item j has the same difficulty in group g as it

does in the target group.

According to Equation 6, the logits in the target group g 1 can be written as

and

Ljkl -2bi1 - E.1b11 when k = 1

Ljkl bkl - bjl whcn k 1.

(13a)

(13b)

Let b*jg bje - bj1 be thc difference between thc scale value of itcm j in group g and the

targct group. Then for any group other than the target group, g = 2,...,G, Equation 6 and the

definition of b*jg suggest that the logit for group G can bc expressed as

Lj -2b - E
1.

b. - 21; - E. 0 b.
i

for k=1kg j1 1.1j 11 jg 11,j g

10
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bkl bil + b*kg - b*ig for k * 1. (I4b)

Because by definition bsig = big - b1 Equation 14a reduces to Lilt, -2big - Eioubig when k

= 1 and Equation 14b reduces to Likg = bkg - big for k * 1.

Equations 13 and 14 car, be rewritten as a linear function of unknown coefficients,

big and Vic and known elements in a design matrix. The design matrix will have GRJ -

1)12 rows, where G is the number of groups. That is, it will have one element for each

probability pikg. Farther, it will have G(J - I) columns, one for each item 2,...,J in each of

the G groups. Lct dih bc the indicator variable for item i (i 2,...,i) in group h (h I,...,G).

Hereafter, the subscript g will be used to designate the group associated with Likg, and the

subscript h will bc used to designate a group in various summations running over groups.

Table 3 will be used to illustrate a design matrix for three groups and four items.

For observations pikg such that g = 1 (for example, rows 1 - 6 in Table 3), predictors

dil (i = 2,...,J) are defined as in Equations 7a and 7b, and all predictors with h > 1 equal 0.

For observations Likg such that g 1 (for example, rows 7 - 18 in Table 3), predictors da

(i = 2,...,J) are defined as in Equations 7a ar 7b. Furthermore, for h = g, dih, is defined as

in Equations 7a and 7b. When h * I and h * g, then dib = 0.

Having thus redefined thc elements of the design matrix, Equations 13 and 14 can be

combined in the expression

L. = E. b. d. + E. b* d.jkg 1.1 11 11 hal 101 ih ih* (15)

Equation 15 expresses the logit as a linear equation with no intercept term. Using logistic

regression the unknown coefficients in the equation, bil and b*ih(i = 2,...J;h = 2,...,G)can bc

estimated by regressing the sample estimates of probabilities pjkg onto thc elements of thc

dcsign matrix.

I I
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Interpretation of the coefficient estimates in Equation 15 is different depending on

whether the coefficient is associated with The target group. Specifically, the coefficient

estimates associated with the target group are estimates of item parameters bit (i 2,...,J).

From Equation 12, the difficulty of item 1 can be estimated as bu -E1.1b11. Regression

weights associated with predictors in other groups, g * 1, will be estimates of the deviations

b*ig big - bil. Consequently, the individual scale values for items 2 through J in non-target

group g can be estimated as big + b11, and the scale value for item 1 in non-target

group g can be estimated as blot

For each logistic regression coefficient, there will be an asymptotic standard error

and a t-statistic, the regression coefficient divided by its asymptotic standard error. For

coefficients associated with group 1, the jth t-statistic potentially provides a test of the null

hypothesis bil = 0, the average item difficulty. In groups 2 - G, the jth coefficient for group

g is an estimate of thc difference between the difficulty of item j in group g and group 1.

Hence, the t-statistic provides a test of the null hypothesis big - bil = 0. For each item,

except item 1, logistic regression leads to a formal test of the hypothesis that the item's

difficulty in group g is the same as its difficulty in the target group.

The submodel in which item difficulties are invariant acrcss groups is one in which

b*Ih 0 for all (i,h), and hence Equation 15 reduces to

L. = E. b. d.jkg 1101 (16)

According to this submodel, the logit of every group can be expressed in tcrms of common

item difficulty parameters represented by the variable bil (i = 2,...,J). This model can bc fit

to the PC statistics using standard logistic regression. Thc analysis will yield cstimatcs of

the common item parameters b11 (i = 2,...,1), an asymptotic standard crror for each

parameter, and a chi-square measure of fit with (GJ 2)(1 - 1)/2 degrees of freedom. This

12
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fit measure forms the basis for deciding whether the data can be reasonably fit with

invariant item parameters across groups.

Simulation Studies

Study j

This study used a 2 x 2 factorial design in which the factors varied were number of

items (n 6 or 11) and number of subjects (N 100 or 500). There were 100 replications in

each cell of the design. For each replication, two samples of ability parameters were

randomly drawn from a standard normal distribution. The two samples within each

replication simulate the situation in which there are two samples from different

populations for which the Rasch model holds and itcm parameters are equal in the two

groups.

For cells with six items, the item difficulties were fixed at -1.70, -1.02, -.34, .34, 1.02,

and 1.70. For cells with eleven items, the difficulties were set at -1.70, -1.36, -1.02, -.68, -.34,

0.00, .34, .68, 1.02, 1.36, and 1.70. Responses were simulated according to Equation 1 using a

program developed by Yoes (1987), and the PC statistics were computed in a

nonindeperident fashion. The logit option in thc SPSS-X Probit program was used to fit the

submodel and thc full model to thc PC statistics for each replication in each cell.

Table 4 summarizes thc results of this study. The first two panels of the first two

scctions in Table 4 contain data on parameter estimates from both the submodcl and thc full

model. Comparing thc true itcm parameters to the mean estimates suggests that thcrc is a

slight bias, particularly with 100 subjects and estimates based on fitting the full model. The

dircction and magnitude of the bias is related to the sign and absolute value of the itcm

parameter. However, comparing thc observed standard deviations, s.d(b), of parameter
. -

estimates to thc root-mean-square asympto. standard crror estimates, RMS a(b), shows

13
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that the asymptotic estimates systematically underestimated the truc standard deviations of

difficulty and difference parameter estimates, and that the degree of underestimation

seems to have increased with an increase from six to eleven items.

The mean observed fit measures, shown at the right in Table 4, were smaller than the

degrees-of-freedom, the expected value of the appropriate theoretical chi-square

distribution. Except for the full model, the observed standard deviation of thc fit measure

was larger than (2df)1/3, the standard deviation of thc appropriate theoretical chi-square

distribution. For both the submodel and the full model, less than 5% of the observed sample

fit measures exceeded the critical value (alpha equal .05) of the corresponding theoretical

chi-square distribution. This would seem to suggest that comparing the fit measure to the

theoretical chi-square critical value for alpha equals .05 yields a very conservative test of

the submodel and full model null hypotheses; that is, a true rate of rejection less than alpha.

As a result, an observed fit measure which exceeds the critical value provides evidence

disconfirming the model. However, an observed fit measure less than the critical value is

not strongly supportive of the model.

The observed mean fit-difference statistic, on the other hand, appeared to be

extremely large compared to the expected value for the theoretical chi-square distribution,

leading to a liberal test of the invariance hypothesis; that is, a true rejection rate larger

than the nominal alpha. The dependencies among the PC statistics appear to have caused

the full model to fit "too well," compared to the fit for the submodel; therefore, a f it-

dif ference above the critical value is not a valid indicator of parameter variation across

groups when results arc based on dependent PC statistics.

The last two sections of Table 4 show data on the estimated differences in item

difficulties across groups as obtaincd from fitting thc full model. Comparing thc mean

observed difference estimates (labeled Mean (b) in Table 4) to the true differences of zero

14
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suggests little, if any, systematic bias in estimates of item parameter differences. However,

the root-mean-square asymptotic standard error estimates [labeled RMS ii(b)] were smaller

than the standard deviation s.d. (1.3) of difference parameter estimates, indicating that the

asymptotic estimates underestimated the variation in item parameter differences across

replications. As with the item parameter estimates, the degree of underestimation increased

with the increase from six to eleven items.

The t-statistic, the difference estimate divided by the asymptotic standard error, has

too large a standard deviation. Hence, the proportion of t-statistics which exceeded the

critical value in a Student's t-distribution was larger than alpha. As a means of testing the

hypothesis that the difficulty of item j in group g equals that in the target group, the t-

statistic provides a liberal test: that is, the true rejection rate under the null hypothesis is

greater than alpha. It is our conclusion that the number of items with t-statistics above the

critical value must be viewed as an upper bound on the number of items for which thc

difference is truly significantly different from zero at the chosen significance level.

Study 2

In Study 2, the PC statistics were computed in an independent fashion. Otherwise.

Study 2 is exactly like Study I. At present, the analysis has been completed only for the two

cells involving 500 subjects, so only data from this condition are reported here.

The bottom panel of each section in Table 4 summarizes the results of this study.

The first two sections give data on parameter estimates from the submodel and the full

model. Comparing thc true item parameters to the mcan estimates suggests that there is

little, if any, bias in the estimates of item difficulty parameters and the difference

parameters, even with only six items. Thc observed standard deviation of thc parameter

estimates was larger in Study 2 than in Study 1, indicating a smaller error of estimation

when PC statistics arc computed nonindependently.

15
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Comparing the observed standard deviations of parameter estimates in Study 2 to the

root-mean-square asympwtic standard error estimates shows that, unlike in Study 1, the

root-mean-square asymptotic standard error closely approximated the actual standard

leviation of the parameter estimates.

The mean observed fit measure for the submodel, the mean observed fit measure for

the full model, and the mean difference between these two fit measures, shown at the right

in Table 4, are all slightly smaller than their degrees of freedom, the mean of the

corresponding chi-square distribution. Furthermore, the standard deviations are all smaller

than those of corresponding chi-square distributions. For a .05 level of significance, 5% or

less of the observed submodel fit measures, full model fit measures, and fit difference

statistics exceeded the chi-square critical value. These results suggest that comparing any

of these three fit measures to its corresponding chi-square distribution yields a

conservative test; that is, a true rate of rejection less than alpha when the null hypothesis is

true. As a result, an observed fit measure which exceeds the critical value provides

disconfirmation of the corresponding hypothesis. However, an observed fit measure less

than the critical value is not strongly supportive of the model.

The bottom two sections of Table 4 show data on the estimated differences in item

difficulties across groups as obtained from fitting the full model to independent PC

statistics. Comparing the mean observed difference estimates to the true differences of zer.o

suggests little, if any, systematic bias in estimates of item parameter differences. The root-

mean-square asymptotic standard error again closely approximated the actual standard

deviation of the parameter estimates. The t-ratio, the diffcrcnce estimate divided by its

asymptotic standard error, has slightly too small a standard deviation. Hence, thc

proportion of t-statistics which exceeded the critical value in Student's t-distribution at thc

.05 level was generally smaller than .05. As a mcans of tcsting the hypothesis that the
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difficulty of item j in group g equals that in the target group, the t-statistic provides a

conservative test: that is, the true rejection rate under the null hypothesis appears to be

slightly less than alpha. It is our conclusion that the number of items with t-statistics above

the critical value must be viewed as a lower bound on the number of items for which the

difference is truly significantly different from zero at the chosen alpha level.

Example

The data for this example come from a fall and spring administration of a sixth

grade mathematics test developed by a suburban school district in the upper midwest. Our

two groups are the fall (N - 178) and spring test takers (N 153). Table 5 shows results

from a logistic regression analysis of the independent PC statistics. While there were 50

items on the test, we have presented a detailed analysis for only 10 of the items to keep the

illustration small.

Column 2 of Table 5 shows the logistic regression estimates of thc item parameters

for the submodel. Parameters for items 2 - 10 in the target group (fall testing) arc the

logistic regression coefficients. The parameter for item 1 is the negative sum of itcm

parameters (or regression coefficients) for items 2 - 10. The goodness-of-fit statistic for the

submodel was 90.24 with 80 degrees-of-freedom (p > .05). (There arc 80 degrees of freedom

for this analysis, rather than 81, because it was run using the logit option in thc SPSS-X

Probit program, which always estimates an intercept constant rather than forcing the

regression through the origin, and hence which leaves one less degree of freedom.) Columns

5 - 8 of Table 5 contain results from the logistic regression based on the full, multiple group

model, for which the goodness-of-fit statistic was 63.33 with 71 degrees of freedom (p > 05).

Thc difference in thc fit measures for the full and submodcls is 26.91 witl. ) degrees of

freedom (p <.05). The bottom panel of Table 5 shows results for thc spring testing. Column
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5, labeled regression coefficients, contains estimates of the difference between thc items'

difficulties in the fall and spring testings. The t-statistic associated with each item 2 - 10

provides a test of the null hypothesis that the difference between the item's parameter

estimate for fall and spring testings equals 0. Using a .05 level of significance, the

hypothesis would be rejected for three items.

Overall, the fit measures indicate that the PC statistics can be approximated

reasonably well when item parameters are constrained equal for the fall and spring testings,

but there is a substantial improvement in fit when this constraint is removed. The

significant misfit seems to center on items 3, 4, and 7. After inspecting an earlier analysis

of these data, Wright (personal communication) has suggested that the regression of the

parameter estimates in the fall testing onto those for the spring testing is well fit by a

straight line, but possibly with slope unequal to 1.00.

Discussion

The following conclusions are heavily based on limited simulation results involving

only two tcst lengths, two sample sizes (one sample size in Study 2), and only one

distribution of item and person parameters in each condition. In each condition, the null

hypothesis of equal item parameters across populations was true. Nevertheless, the results

from these limited conditions arc suggestive of the following conclusions.

The results in Study 1 suggest that, despite dependencies among the PC statistics, the

logistic regression approach appears to yield only slightly biased estimates of item

parameters. The bias appears to decrease as the number of itcms and/or the number of

subjects increase. While our focus is not on parameter estimation, a word on this subjcct

sccms in order. Van den Wollenberg et al. (1988) have criticized unconditional maximum

likelihood (UML) estimates of itcm parameters as biased, a bias which cannot be removed
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by a correction factor. Those authors argue that the computationally slow, conditional

maximum likelihood (CML) estimation procedure and the minimum chi-square methods

yield unbiased estimates.

In response to van den Wollenberg et al. (1988), Wright (1988) argued that thc bias in

UML estimates can be removed by a correction factor, except for short tests. Hc further

argued that the pairwise estimation procedure is a better solution if morc precision is

desired for short tests. Our results in Study 1 tend to support Wright's argumcnt. A

comparison of our results with thc most comparable results from van den Wollenberg et al.

(Sec thcir Table 1.) shows that thcir ratio of estimated to true item parameters from CML is

virtually the same as that found in Study 1 for logistic regression and 500 subjects.

When nonindependent PC statistics were used, the logistic regression asymptotic

standard errors tended to p_n_dnestimate thc true standard deviation of parameters across

replications. Whcn independent PC statistics wcre used, the asymptotic standard errors fa r

more accurately reflected the variation of parameter estimates across replications.

Thc hypothesis testing statistics, the t-ratio and the fit measure, deviated

systematically from their theoretical counterparts, Student's t and the chi-square

distribution. Hence, one cannot make precise statements about the probability of Type I

errors simply by referring to either Student's t or thc chi-square distribution. On the other

hand, the deviations from the theoretical distributions were systematic in ways which

suggest that thc theoretical distributions might provide useful benchmarks for interpreting

thc t-ratio and the fit measure.

Considcr first the t-ratio. When cstimatcd from nonindependent PC statistics, the

observed t-ratio consistently displayed a larger standard deviation than that of Studcnt's t.

Consequently, for alpha equal .05, morc than 5% of the observed t-ratios exceeded thc

critical value in Studcnt's distribution. This suggests that thc numbcr of itcms for which
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the observed t-ratio exceeds the critical valu- in Student's distribution might be interpreted

as an mom bound on the number of items for which the difference in item parameters is

truly significantly different from zero at the chosen level of significance.

When independent PC statistics were used, the number of items exceeding thc critical

value behaved more like a lower bound on the number of items for which thc difference in

item parameters is truly significantly different from zero at the chosen significance level.

The t-ratios displayed slightly smaller standard deviations than that of Studcnt's

distribution. For alpha equal .05, less that 5% of the observed t-ratios exceeded the critical

value. For the conditions investigated in this study, it would seem that any t-ratio

exceeding thc critical value could bc considered significant at the alpha level.

Turning now to the submodel fit measure for nonindependent PC statistics, that

measure had a much smaller mean and a larger standard deviation than the corresponding

theoretical chi-square distribution. Consequently, using a .05 level of significance, thc

observed fit measure exceeded the critical value for less than 5% of the replications. It

would sccm that an observed fit measure less tharl the critical value would support the

submodel only weakly, but a fit measure greater than the critical value would provide

evidence against the submodel.

For independent PC statistics, the submodel fit measures, the full model fit

measures, and the fit difference measures had means and standard deviations less than thc

corresponding theoretical chi-square distribution. This suggests that at any alpha

level, less than alpha of the observations would exceed the critical value. Consequently, an

observed fit measure (or fit difference measure) which exceeds the theoretical critical value

should lead to rejection of the model with true significance level alpha (or less).

Particularly when estimating the PC statistics in an independent fashion, sample

proportions of zero and one occurred frequently. At first, we treated these as missing data.
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However, when we made thc following substitutions, the t-ratio and the fit measure more

nearly followed the desired theoretical distributions. Let njk be the numbcr of people who

correctly answered exactly one item of pair (j,k). When the sample value pjk equalled 1.00,

we substituted pjk (njk - When Rik equalled 0.00, we substituted Pik = .5/nik. The

reported results for Study 2 are based on these substitutions.

In this paper, we focused on the hypothesis of equal item parameters across groups.

The general logistic regression approach is applicable to a wide class of models for PC

statistics. Particularly, let D be a design matrix with GI(1 - 1)/2 rows and G(1 - 1) columns,

let b be a vector containing the G(I - 1) item difficulties from the full model, and let b. a

row vector of item difficulties from a submodel. The logistic regression approach can be

used to fit any submodel in which the itcm difficulties of the submodel have the form

b* = Db. Indeed, Anderson and Davison (1991) discuss the fitting of an even wider class of

models using an extension of logistic regression. Thus, logistic regression of PC statistics,

or its extensions, arc potentially useful for fitting a very broad class of hypotheses about

item difficulties in the Rasch model.
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Table 1

nired Comparisons Statistics for 10 Math Items. Fall and Spring Testing

Fall

Item 1 2 3 4 5 6 7 8 9

2 .039
3 .364 .918
4 .029 .469 .022
5 .042 .515 .036 .537
6 .119 .839 .244 .904 .865
7 .184 .876 .341 .913 .876 .618
8 .750 1.000 .864 1.000 .990 .955 .897
9 .089 .784 .152 .877 .813 .397 .317 .034

10 .052 .7`6 .115 .844 .803 .333 .273 .016 .41f

Spring

Item 1 2 3 4 5 6 7 8 9

2
3
4
5
6
7
8
9
10

.065
.174
.078
.058
.273
.087
.600
.071
.118

.820

.585

.554

.864

.627

.966

.733

.780

.182

.143

.586

.205

.870

.389

.353

.468

.808

.536

.958

.655

.674

.857

.564

.961

.750

.721

.150
.875
.294
.273

.976

.638

.633
.067
.034 .484



Table 2

Dummy Coding for J - 4 Items in
One Group

Dummy Coding di

1 k cl.2 c1.3 c14

2 1 -2 -1 -I

3 1 -1 -2 -1

4 1 -1 -1 -2

3 2 1 -1 0

4 2 1 0 -1

4 3 0 1 1

2 C7
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Type of
PC Statistic Model

Item
Parameter
Estimates

Table 4
Selected Simulation Rc mks

Model Fitting Results
(n=6 Items)

True Item Parameter
X2 Goodness of

Fit Stat.*

-1.70 -1.02 -.34 .34 1.02 1.70
Mean sd eksig

(a=.05)
Non- Submodel 17.51 7.62 2

Independent Mean (6) -1.71 -1.03 -.35 .33 1.04 1.73

(N=100) s.d. (6) .24 .20 .16 .19 .19 .24

RMS et(6) .22 .15 .11 .11 .15
Full Model 5.76 1.84 0
Group 1 Mcan (6) -1.76 -1.05 .37 .36 1.07 1.76

s.d. (6) .36 .27 .23 .27 .26 .31

RMS ti()) .27 .20 .16 .16 .19

Group 2 Mean (b) -1.72 -1.04 -.33 .31 1.04 1.74

s.d. (6) .30 .28 .23 .25 .25 .31

RMS er(b)
Difference 11.75 7.27 45

Non- Submodel 16.67 7.79 3

Independent Mean (6) -1.71 -1.02 -.33 .35 1.01 1.71

(N=500) s.d. (6) .11 .08 .08 .07 .07 .10

RMS 6(6) .10 .07 .05 .05 .07
Full Model 5.46 2.14 0

Group 1 Mean (6) -1.73 -1.03 -.31 .34 1.02 1.71

s.d. (6) .15 .11 .10 .10 .12 .14

RMS ei(b) .12 .09 .07 .07 .09
Group 2 Mean (6) -1.71 -1.02 -.34 .36 1.01 1.71

s.d. (6) .16 .10 .11 .10 .09 .14

RMS o(6)
Difference 11.21 7.14 42

Independent Submodel 22.73 6.31 1

(N=500) Mean (6) -1.72 -1.01 -.33 .35 1.00 1.71

s.d. (6) .21 .13 .11 .10 .13 .19
RMS es(6) .19 .13 .10 .10 .13

Full Model 18.28 6.02 5

Group 1 Mean. (6) -1.75 -1.01 -.33 .33 1.02 1.73

s.d. (b) .24 .16 .15 .15 .17 .22
RMS 6(b) .23 .17 .14 .14 .17 -

Group 2 Mean (6) -1.72 -1.01 -.34 .36 1.00 1.71

s.d. (6) .25 .16 .14 .12 .16 .23
RMS es(6) =0

Difference 4.45 2,44 2

For Submodels, df(X2) 24.SQRT(2d0 = 6.93; For Full Models, df(X2) = 19.SQRT(2d0 = 6.16
For Differences between the submodels and the full models, df(X2) = 5.SQRT(2d1) = 3.16
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Type of Item
PC Parameter
Statistic Model Esdmates

Non- Submodel
Independent Mean (6)
(N=100) s.d. (6)

RMS a(b)
Full Model
Group 1 Mean (6)

s.d. (6)
RMS 6(b)

Group 2 Mean (6)
s.d. (6)
RMS 6(b)

Difference
Non- Submodel
Independent Mean (6)
(N=500) s.d. (6)

RMS 6(6)
Full Model
Group 1 Mean (6)

s.d. (6)
RMS 6(b)

Group 2 Mean (6)
s.d. (6)
RMS 6(6)

Difference
Independent Submodel
(N=500) Mean (6)

s.d. (6)
RMS 6(6)

Foil! Model
Group 1 Mean (6)

s.d. (6)
RMS 6(b)

Group 2 Mean (6)
s.d. (6)
RMS 6(6)

Difference

Table 4 (cont.)
Model Fitting Results

(n=11 Items)

True Item Parameter
X2 Goodness
of Fit Stat*_

-1.70 -1.36 1.02 -.68 -.34 .00 .34 .68 1.02 1.36 1.70
Mean s.d. %sig

(0t=.05)
65.15 22.08 2

-1.69 -1.44 -1.01 -.66 -.34 .00 .34 .70 1.00 1.40 1.70
.23 .22 .18 .13 .16 .16 .17 .18 .17 .20 .20
.10 .12 .09 .10 .09 .09 .09 .09 .10 .09 ---

21.76 4.04 0
-1.72 -1.43 -1.01 -.66 -.36 -.01 .33 .71 1.02 1.42 1.72

.33 .28 .24 .21 .22 .21 .23 .27 .27 .30 .28

.14 .15 .12 .13 .12 .12 .12 .12 .14 .13 ---
-1.70 -1.46 -1.04 -.67 -.32 .02 .35 .69 1.01 1.40 1.73

.32 .30 .28 .22 .24 .26 .24 .25 .21 .27 .31
--- --- ---

43.39 21.19 95
62.77 18.45 0

-1.70 -1.36 -1.02 -.68 -.35 .01 .33 .68 1.02 1.36 1.71
.09 .09 .07 .07 .08 .08 .07 .08 .08 .08 .10
.04 .05 .04 .05 .04 .04 .04 .04 .05 .04 co

eN

20.03 3.63 0
-1.70 -1.37 -1.03 -.68 -.35 .01 .34 .69 1.02 1.36 1.71

.12 .11 .11 .10 .11 .11 .10 .10 .11 .11 .14

.06 .07 .05 .06 .05 .05 .05 .05 .06 .06
-1.70 -1.35 -1.01 -.69 -.35 .01 .33 .68 1.02 1.36 1.71

.13 .12 .09 .11 .10 .11 .12 .12 .12 .12 .14
--

42.74 17.99 96
94.53 11.04 0

-1.69 -1.37 -1.02 -.68 -.35 .00 .33 .69 1.04 1.35 1.69
.11 .14 .09 .12 .10 .10 .11 .11 .12 .11 .13
.12 .14 .10 .12 .10 .11 .11 .10 .13 .11 --

85.19 10.72 0
-1.71 -1.39 -1.04 -.69 -.35 .02 .33 .70 1.05 1.37 1.71

.17 .17 .14 .14 .14 .13 .16 .14 .14 .15 .18

.17 .18 .15 .16 .14 .14 .15 .14 .16 .16 ---
-1.69 -1.36 -1.00 -.68 -.35 -.01 .34 .68 1.04 1.35 1.69

.16 .18 .13 .16 .14 .13 .15 .14 .17 .15 .19
.... ... __. ... ..... ..... .....

9.35 4.22 3
For Submodels, df(X2) 99.SQRT(2d1) = 14.07; For Full Models, df(X2) = 89.SQRT(2d1) = 13.34;
For Differences between the submodels and the full models, df(X2) 10.SQRT(2di) = 4.47 31



Type of PC
Statistic Stat.

Non Independent mean(6*)

(N=100) s.d.(6*)

Rms er(6*)

mean(t)

s.d.(t)

% sig t
(cc =.05)

Non Independent mean(6*)

(N=500) s.d.(6*)

RmS e(bit')

mean(t)

sx1.(t)

% sig. t
(a=.05)

Independent mean(6*)

(N=500) s.ci.(6*)

RmS tr(6*)

mean(t)

s.d.(t)

% sig. t
(a =.05)

Table 4 (cont.)
Full Model Results on Estimated Parameter Differences

(n=6 Items)
True Item Parameter

-1.70

True

-1.02 - .34 .34 1.02 1.70

b=0.0 0.0 0.0 0.0 0.0 0.0 Mean

.04 .01 .04 -.05 -.03 -.01 0.0

.46 .37 .32 .35 .35 .38 -

.27 .24 .22 .22 .24

.13 .05 .18 -.24 - .13 0.0

1.65 1.58 1.45 1.58 1.47

21 21 15 18 17 --- 18.4

.02 .00 - .03 .01 .01 .00 0.0

.20 .15 .14 .13 .16 .20

.12 .10 .10 .10 .10

.21 .02 - .31 .14 - .11 0.0

1.67 1.41 1.45 1.30 1.51

25 13 17 13 21 17.8

.03 - .01 - .01 .03 - .01 -.02 0.0

.24 .18 .18 .17 .20 .24

.24 .20 .19 .19 .20 ......... ---

.13 - .05 - .08 .16 - .06 0.0

.98 .90 .95 .91 1,01 ---

2 2 5 3 2 --- 2.8



Table 4 (cont.)
Full Model Results on Estimated Parameter Differences

(nr-11 Items)

Type of
PC
Statistic S tat.

True b =

True Item Parameter

Mean
-1.70

0

-1.36

0

-1.02

0

-.68

0

-.34

0

.00

0

.34

0

.68

0

1.02

0

1.36

0

1.70

0

Non-
Independent Mean (6*) .02 -.03 -.03 -.01 .04 .03 .02 -.02 -.01 -.01 .01 0.0
(N=100) s.d, (6*) .45 .37 .38 .33 .31 .35 .32 .36 .35 .42 .43

RMS 6(6*) .20 .19 .17 .17 .16 .16 .16 .17 .17 .19
Mean (t) .08 -.15 -.14 -.09 .24 .14 .15 -.12 -.05 -.05 0.0
s.d. (t) 2.19 1.99 2.17 1.96 1.92 2.13 2.00 2.12 1.99 2.18
% sig t (a=.05) 37 29 36 28 30 31 34 34 31 34 32.4

Non-
Independent Mean (6*) .00 .02 .02 -.01 .00 .00 -.01 .00 -.01 -.01 -.01 0.0
(N=500) s.d. (641) .18 .16 .15 .15 .15 .14 .16 .15 .18 .15 .19

R MS 6(6*) .09 .08 .08 .07 .07 .07 .07 .07 .08 .08
Mean (t) .00 .25 .20 -.06 -.01 .01 -.08 -.04 -.09 -.09 0.0
s.d. (t) 2.08 1.94 1.91 2.09 2.03 2.00 2.21 2.07 2.29 1.81

% sig t (ct=.05) 36 30 31 33 38 35 31 34 34 28 33.0

Independent
(N=500) Mean. (6*) .02 .03 .04 .01 -.01 -.02 .01 -.02 -.01 -.02 -.02 0.0

s.d. (b*). .24 .23 .20 .18 .19 .17 .21 .18 .21 .20 .25
RMS 6(b*) .24 .22 .21 .20 A9 .19 .19 .20 .21 .22 ---
Mean (t) .08 .14 .19 .03 -.03 -A/ .04 -.09 -.07 -.08 0.0
s.d. (t) 1.00 1.02 .95 .91 .99 .90 1.10 .92 1.00 .90
% sig t (a=.05) 3 5 4 5 1 2 4 3 4 2 3 3.11.1
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Table 5

Parameter Estimates for Ten Mathematics Items from Logistic Regression,

LR Submodel LR Full Model

Item
Parameter S.E.

Regression
Coefficient S.E.

Item
Parameter

Item 1 -1.594 -- -1.655

2 1.062 0.214 4.96** 1.037 0.256 1.037 4.06**

3 -0.879 0.228 -3.86** -1.307 0.319 -1.307 -4.10**

4 1.353 0.199 6.79** 2.117 0.324 2.117 6.53**

5 1.160 0.178 6.53** 1.333 0.245 1.333 5.45**

6 -0.464 0.188 -2.47* -0.280 0.248 -0.280 -1.13

7 0.148 0.182 0.81 -0.268 0.255 -0.268 -1.05

8 -2.048 0.310 -6.60** -2.462 0.445 -2.462 -5.54**

9 0.386 0.217 1.78 0.422 0.262 0.422 1.61

10 0.876 0.245 3.58** 1.063 0.296 1.063 3.59**

Spring

Item 1 -1.533

2 0.019 0.358 1.056 0.05

3 0.906 0.424 -0.401 2.14*

4 -1.513 0.410 0.604 - 3.69**

5 -0.374 0.364 0.959 - 1.03

6 -0.437 0.392 -0.717 1.11

7 0.926 0.360 0.658 2.57*

8 0.903 0.598 -1.559 1.51

9 -0.105 0.347 0.317 0.30

10 -0.447 0.382 0.616 -1.17
* p < .Ub
**p < .01


