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Abstract
We explored a logistic regression procedure for estimating item parameters in the Rasch
model and testing the hypothesis of item parameter invariance across several groups.
Rather than utilizing item responses directly, the procedure relies on "pseudo-paired
comparisons” (PC) statistics defined over all possible pairs of items. We describe methods of
computing the PC statistics in nonindependent and in-lependent fashions. Simulation
results suggest that the procedure yiclds negligibly biased estimates of item difficulty
paramecters even with small numbers of items. The simulation data were used to compare
the distribution of observed test statistics under the null hypothesis of invariant item
pParamecters across groups to the theorecical Student’s t-distribution and the thcoretical chi-

square distribution. An application to sixth grade mathematics achievement data is

presented.




Parameter Invariance in the Rasch Model

Starting from assumptions of the Bradley-Terry-Luce (BTL) model (Bradley & Terry,
1952; Luce, 1959), M:Guire and Davison (in press) described a logistic regression procedure
for estimating stimulus scale values in true paired comparisons (PC) data. The procedure
also yields a chi-square test of the BTL model. When paired comparisons data are available
from two or more populations, the logistic regrassion approach can be extended to a test of
the hypothesis that the PC data conform to the BTL model with equal stimulus scale values
in all populations.

Andrich (1978), Chen and Davison (1991), Choppin (1968), and Rasch (1960) have
discussed a "pseudo”-paired comparisons statistic defined over pa'irs of dichotomously
scored test items. For item pair (j,k), the PC statistic is the conditivnal probability of
passing item j and not item k given that the subject passes exactly one of the two items.
When the items conform to the Rasch model, the "pseudo-"paired comparisons data have the
form specified by the BTL model for true PC data. The stimulus scale values in the BTL
expression for the pseudo-PC statistic Tk will equal the Rasch model item difficulty
parameters. If the Rasch model holds with equal item difficulty parameters in two or more
populations, then the pseudo-PC matrix for each population will have the form specified by
the BTL model for irue paired comparisons data, and the stimulus scale values will be equal
for all populations.

The PC statistics for item pairs are readily computed. Unlike true PC data, the PC
statistics as described by the above authors, are not independent. That is, for two pairs (3,k)
and (j,k’), the responsces to item j will be used in computing both the PC statistic for pair
(j,k) and pair (j,k’) and hence the estimates of PC statistics for these two pairs will pot be
independent.

In the research reported here, we extended the McGuire and Davison (in press)

approach for true PC data to the analysis of pseudo-PC data for item pairs satisfying the



Rasch model. That is, we investigated using a standard logistic regression analysis of
pscudo-PC statistics to estimate item difficulty parameters and to test the often discussed
hypothesis of invariant item difficulty parameters across populations (Hambleton &
Swaminathan, 1985; Lord, 1980).

To evaluate the effect of dependencies between PC statistics for item pairs, a small
simulation study was conducted. The effect of the dependencies on test statistics was
substantial. Consequently, pursuant to a suggestion by van den Wollenberg, Wierda, and
Jansen (1988), we explored a method of computing PC statistics in an independent fashion.
When computed in an independent fashion, each item response is used once and only once in
computing the PC statistics.

We begin by discussing the adaptation of the logistic regression approach to the
analysis of pseudo-PC data. This section describes computation of the PC statistics in both
independent and nonindependent fashions. Then we report results of two small simulation
studies designed to evaluate the effect of dependencies when the null hypothesis is true;
that is, the item responses fit the Rasch model with equal item parameters in two
populations. In Study I, PC statistics were computed in a nonindependent fashion, whereas
in Study 2 they were computed in an independent fashion. Finally, we report an
illustrative application to sixth grade mathematics items. A more extensive evaluation of
the logistic regression approach will be contained in Chen (in progress), including a
comparison of logistic regression results to those obtained by unconditional maximum

likelihood estimation.

The Logistic Regression Analysis of Pseudo-PC Statistics

Let the discrete random variable a,; take the value | when subject v answers item j

cor.cctly and take the value 0 otherwise. Then according to the Rasch model
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1c(a,,j = 1) = ¢xp(®, - b;)/[1 + exp(®, - bj)] (1)

w(a,;=0) = 1/[1 +cxp(8, - b)),

where @, is the ability parameter for subject v and b is the difficulty parameter for item j.
T i i istic

For items, the PC statistic is defined over the set of all possible item pairs. Qur
development of the statistic closely follows earlier work (Andrich, 1978; Chen & Davison,
1991; Choppin, 1968; Rasch 1960) and is presented only for completeness.

Defined over item pairs, the PC statistic is a function of two joint probabilities, the
probability that the subject passes item j and fails item k and the probability that the
subject fails item j and passes item k: 1:(%1,,j =1,a, =0)and 1t(a,,j =0,a,, =1). In terms of

these two joint probabilities, the PC statistic is defined as

" = x(a,; = 1,2, = 0) (2)

R(avj = l, avk = 0) + “(av" = 0, aVk = l)-

In words, the PC statistic for item pair (J,k) is the probability that subject v passes item j
and fails item k given that the subject passes only one item of the pair.
From the assumption of local independence in the Rasch model, these two joint

probabilities have the following form:

*rt(a‘,j =l,a,=0)= exp(8, - bj) (3)

[1 +exp(8, - bj)] [1 +exp(8, - b,)]

x(a,;=0,a,, =1)= exp(8, - b,)

[l +exp(8, - bj)] [1 +exp(8, - bl

Inscriing Equation 3 into the definition in Equation 2 yiclds




x; = exp(by - b)/[1 + exp(by - b)) (4)

Readers familiar with the Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952; Luce,
1959) will recognize that the probability x;, in Equation 4 stands in the same relationship to
item difficulties, b, and b, as do the choice probabilities in the BTL model to the stimulus
scale values.

As can be scen from Equation 4, the PC statistic depends only on the item
difficulties, b, and bj, and is independent of the ability parameters. Consequently, a sample
estimate of T S3Y Pjpe €2N be computed by counting the number of people who passed item
j but not k and dividing that count by the number who passed cxactly one of the two items.

Table 1 shows the PC statistics from a fall (n = 178) and spring (n = 153) testing for
ten items from a sixth grade mathematics test developed by a large suburban school district.
Each data point shows the proportion of students who passed the row item among the
students who passed exactly one of the two items. For instance, the data point in row 2,
column 1 equals .039, because 4 of the fall subjects passed item 2 but not item | and 103
subjects passed either item 1 or item 2 but not both. Hence py, = 4/103 = .039.

If the PC statistics are computed as described above -- counting the number of
people who passed item j but not k and dividing by the number who passed ¢xactly one of
the two items -- then the PC statistics will not be independent. For item pairs (j,k) and
(j,k'), exactly the same responses to item j are used to compute sample cstimates Pik and Pk~
To insure the independence of the PC statistics, they need to be computed so that each data
point is used no more than once.

Let n be the total number of items on the test and let t be the number of items
correctly answered by a given subject. According to van den Wollenberg ct al. (1988), a
subject’s data can be used to estimate a maximum of min[t, (n-t)] PC statistics without using

any of the subjcct’s responscs more than once. That is, min[t, (n-t)] cquals thc maximum



number of item pairs which can be formed in which the subject passed exactly one item of
the pair. The van den Wollenberg et al. result led us to the following approach for
estimating PC statistics.

If min[t, (n-t)] = t, then we randomly paired each item answered correctly with one
and only one of the items answered incorrectly. If pair (j,k) were one of these random item
pairings for the current subject, then we would increase by 1 our count of the number of
people passing exactly one member of the item pair. If the person had passed j but not k,
we would also increment our count of people who passed j but not k. After repeating this
process for each subject, then for every item pair (j,k), we would divide our count of
subjects passing j but not k by our counat of people passing exactly one of the two items. If
min[t, (n-t)] = (n-t), the process would proceed in the same fashion, except that (n-t) item
pairs were created by randomly matching an incorrectly answered item to a correctly
answered item. By following this process, one can use each subject’s data to estimate as

many PC statistics as possible without using any response more than once.

The Logistic Regression Model

Since T+ W= 1, J items will define J(J - 1)/2 uniique PC probabilities. Thus, we
.2¢d to work only with the lower triangular clements of the PC matrix for which the
column is less than the row; i.¢. k < j. Throughout the remainder of this section we shall
procees as if the lower triangular elements of the PC matrix were indcpendent.

The logit of the probabilities in Equation 4 can be expressed as a linear function of
known predictor variables in a design matrix. The unknown regression weights on the
predictor variables are the item difficulties. In other words, the logits of the J(J - 1)/2 item
PC statistics define a system of J(J - 1)/2 equations which are linear functions of clements
in a design matrix. Hence, given sample estimates of the PC statistics, logistic regression

can be used to obtain maximum likelihood estimates of the item difficulty parameiers and



to estimate the fit of the logistic regression model to the PC statistics. We begin by
developing the design matrix for a single population. Subsequently, we extend the PC
model and the design matrix to more than one population.

The Single Group Model. From the equality in Equation 4, it follows that the logit,
L= In[x;, /(1 -%;,)] = (b, - b;). To uniquely determine the item difficultics, let’s impose the
restriction that the sum of the item difficulties equals zero: Ejbj = 0. This restriction

implies that

In developing subscquent expressions for the logit Ljx such as Equation 6, the subscripts j
and k will designate the two stimuli corresponding to the logit, and the subscripti (i = 1,..,J)
will be used to designate stimuli in summations running over stimuli. Equation 5 suggests

that the logits Ljx can be written in terms of difficulties for items 2,...J as follows:

and

ijn b,,‘-bj when k » |,

The design matrix will have J(J - 1)/2 rows, one for cach unique PC statistic; and it
will have J - 1 columns, one column for items 2,...J. Lect the subscript i designate a column
of the design matrix, and let d; refer to the ith clement in the row corresponding to itcm
pair (j,k). Then the clements of the design matrix in the row corresponding to item pair

(J,k) are sct equal to the following values when k = 1:



di=-1fori=2..Jandi+j, (7a)

di=-2fori=j.

When k » 1, the elements of the design matrix in the row corresponding to item pair (j,k)

are sct cqual to the following values:

d,=1fori=k, (7b)
d;=-1fori=j and

d; = 0 otherwise.

With the elements of the design matrix defined as in Equations 7a and 7b, Equation

6 can be rewritten as

Ly = Z;.,bd; . (8)

Table 2 shows the design matrix for all possible pairs of four items. For the first three
rows, k = 1, and hence the elements in these three rows follow the pattern described in
Equation 7a. For the last three rows, k # 1, and hence the elements in these three rows

follow the pattern described in Equation 7b.

Since the logits have the linear form of Equation 8, the expression for the PC
statistic in Equation 4 is a logistic regression equation without an intercept term in which
the criterion variable is the PC statistic ;. the predictor variables are the dummy variables
d;, and the regression weights correspond to the unknown item parameters b, One of the
increasingly popular logistic regression algorithms can be uscd to obtain maximum

likelihood estimates of the regression coefficients. These coefficient estimates constitute

10



maximum likelihood estimates of item difficulty parameters for items 2,.., J. Once
difficulty estimates for items 2,..., J have been obtained, the parameter for item | can be
estimated according to Equation 5. A chi-square measure of fit can be used to test the
hypothesis that the PC statistics fit the model in Equation 4.

Multiple Population Rasch Model. The Rasch model can be extended to more than
one population by rewriting Equation 1 in terms of probabilities and item parameters
specific to each group. Let g (g = 1,..,G) be a subscript designating a group. In terms of
group spccific item parameters, by, the probabilities of correct and incorrect responses to

item j from a member of group g with ability 8, equal

x(a,; = 1) = exp(8, - b;)/[1 + cxp(8, - b)) (9)

Using the reasoning leading f:om Equation 1 to Equation 4, we arrive at the conclusion that

the PC statistic for item pair (j,k) in group g, ®;., is a logistic function of group specific

item parameters:

e = SXP(byg - byg)/I1 + exp(by, - b)) (10)

Qbviously, for the logits in group g,

jkg = Pkg - Djg (11)

To uniquely determinc the item parameter scale, assume that the sum of item difficultics

equals 0 in each group so that for every group, the difficulty of item 1 can be ¢xpressed in

terms of difficultics for the remaining items,
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big = -Ei,1b; (12)

We will now develop a form for the logits which expresses them as a linear function
of known clements in a design matrix and unknown regression coefficients. At the level of
a global hypothesis test, this design matrix leads to a test of the hypothesis that PC statistics
satisfy the BTL form with equal item difficulties in all groups. That is, if we let h‘ be the
vector of J item difficulties for group g, then the hypothesis states that there exists a vector
of item difficulty values b such that be = b forall g. At the level of a hypothesis about a
specific item, the particular design matrix described here leads to a test of the following
hypothesis. For group g, item jand a designated target group (say group g = 1), the null
hypothesis tested is that bj‘ = bjl. That is, item j has the same difficulty in group g as it

does in the target group.

According to Equation 6, the logits in the target group g = 1 can be written as

Ljg= -2b;y - Zi.1,;bip when k = | (13a)
and

Ljxg = byy - bj; when k » 1. (13b)
Let b‘j. = b, - b;, be the difference between the scale value of item Jin group g and the
target group. Then for any group other than the target group, g = 2,...,G, Equaticn 6 and the

definition of b“'j‘ suggest that the logit for group G can be cxpressed as

Likg= ~2bj1 - Zip jbjy - 207 - By, ;b";, for k=1 (14a)

10
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Because by definition b"j‘ - bj‘ - by Equation 14a reduces to ij' =-2b;, - Ei,ubi' when k
= | and Equation 14b reduces to L, = by - b, for k « I.

Equations 13 and 14 ca» be rewritten as a linear function of unknown coefficients,
b, and b‘j‘. and known elements in a design matrix. The design matrix will have GJ(J -

1)/2 rows, where G is the number of groups. That is, it will have one ¢lement for each

probability Pjxe Further, it will have G(J - 1) columns, one for each item 2,..,J in each of
the G groups. Let d;, be the indicator variable for item i (i = 2,...,J) in group h (h = 1,...,G).
Hereafter, the subscript g will be used to designate the group associated with ijr and the
subscript h will be used to designate a group in various sumimations running over groups.
Table 3 will be used to illustrate a design matrix for threc groups and four items.

For observations Pjkg Such that g = | (for example, rows 1 - 6 in Table 3), predictors
d;; (1 = 2,..,J) are defined as in Equations 7a and 7b, and all predictors with h > | equal 0.
For observations L;_such that g « 1 (for example, rows 7 - 18 ip Table 3), predictors d,;
(i = 2,.,J) are defined as in Equations 7a ar 7b. Furthermore, for h = g, d;;, is defined as
in Equations 7a and 7b. When h # 1 and h # g, then d;, = 0.

Having thus redefined the clements of the design matrix, Equations 13 and 14 cun be

combined in the expression
Lixg = Ziab;3diy + Iy, Zi0pb pdipe (15)

Equation 15 cxpresscs the logit as a linear equation with no interccpt term. Using logistic
rcgrcssion. the unknown cocfficients in the cquation, b;; and b*, (i = 2,..J;h = 2,...G)can be
estimatcd by regressing the sample estimates of probabilities Pjkg ONtO the clements of the

design matrix.
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Interpretation of the coefficient estimates in Equation 15 is different depending on
whether the coefficient is associated with the target group. Specifically, the coefficient
estimates associated with the target group are estimates of item parameters by, (i = 2,...,J).
From Equation 12, the difficulty of item | can be estimated as b;; = -I;,,b,,. Regression
weights associated with predictors in other groups, g » 1, will be estimates of the deviations
b‘j. = bj‘ - bj,. Consequently, the individual scale values for items 2 through J in non-target
group g can be estimated as bj‘ = b"j' + b;;, and the scale value for item 1 in non-target
group g can be estimated as blz - -Embir

For cach logistic regression coefficient, there will be an asymptotic standard error
and a t-statistic, the regression coefficient divided by its asymptotic standard error. For
coefficients associated with group I, the j*® t-statistic potentially provides a test of the null
hypothesis b_il = 0, the average item difficulty. In groups 2 - G, the j“‘ coefficient for group
g is an estimate of the difference between the difficulty of item Jin group g and group 1.
Hence, the t-statistic provides a test of the null hypothesis bj. - bj‘ = 0. For cach item,
except item 1, logistic regression leads to a formal test of the hypothesis that the item’s
difficulty in group g is the same as its difficu.lty in the target group.

The submodel in which item difficulties are invariant acrcss groups is one in which

b*,, = 0 for all (i,h), and hence Equation 15 reduces to
Ljvg = Ii,1b;d;, - (16)

According to this submodel, the logit of every group can be expressed in terms of common
item difficulty parameters represented by the variable b, (i = 2,..,J). This model can be fit
to the PC statistics using standard logistic regression. The analysis will yield estimates of
the common item parameters b;; (i = 2,..,J), an asymptotic standard crror for cach

paramcter, and a chi-square measure of fit with (GJ - 2)(J - 1)/2 degrees of frecdom. This
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fit measure forms the basis for deciding whether the data can be reasonably fit with

invariant item parameters across groups.

Simulation Studies
Study |

This study used a 2 x 2 factorial design in which the factors varied were number of
items (n = 6 or 11) and number of subjects (N = 100 or 500). There were 100 replications in
each cell of the design. For each replication, two samples of ability parameters were
randomly drawn from a standard normal distribution. The two samples within each
replication simulate the situation in which there are two samples from different
populations for which the Rasch model holds and item parameters are equal in the two
groups.

For cells with six items, the item difficulties were fixed at -1.70, -1.02, -.34, .34, 1.02,
and 1.70. For cells with eleven items, the difficulties were set at -1.70, -1.36, -1.02, -.68, -.34,
0.00, .34, .68, 1.02, 1.36, and 1.70. Responses were simulated according to Equation 1 using a
program developed by Yoes (1987), and the PC statistics werec computed in a
nonindependent fashion. The logit option in the SPSS-X Probit program was uvsed to fit the
submodel and the full model to the PC statistics for each replication in cach cell.

Table 4 summarizes the results of this study. The first two panels of the first two
scctions in Table 4 contain data on parameter estimates from both the submodel and the full
modcl. Comparing the true item paramecters to the mean cstimatces suggests that therc is a
slight bias, particularly with 100 subjects and estimatcs based on fitting the full model. The
dircction and magnitudec of the bias is related to the sign and absolute value of the item
parametcr. However, comparing the observed standard deviations, s.d(ﬁ), of paramcter

estimates to the root-mean-square asympto.  standard crror estimates, RMS a(b), shows
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that the asymptotic estimates systematically underestimated the true standard deviations of
difficulty and difference parameter estimates, and that the degree of underestimation
secms to have increased with an increase from six to eleven items.

The mean observed fit measures, shown at the right in Table 4, were smaller than the
degrecs-of -freedom, the expected value of the appropriate theoretical chi-square
distribution. Except for the full raodel, the observed standard deviation of the fit measure
was larger than (2df)'/?, the standard deviation of the appropriate theoretical chi-square
distribution. For both the submodel and the full model, less than 5% of the observed sample
fit measures exceeded the critical value (alphz equal .05) of the corresponding theoretical
chi-square distribution. This would seem to suggest that comparing the fit measure to the
theoretica! chi-square critical value for alpha equals .05 yields a very conservative test of
the submodel and full model null hypotheses; that is, a true rate of rcjection less than alpha.
As a result, an observed fit measure whick exceeds the critical value provides evidence
disconfirming the model. However, an observed fit measure less than the critical value is
not strongly supportive of the model.

The observed mean fit-difference statistic, on the other hand, appeared to be
extremely large compared to the expected value for the theoretical chi-square distribution,
Icading to a liberal test of the invariance hypothesis; that 1S, a true rejection rate larger
than the nominal alpha. The dependencics among the PC statistics appear to have caused
the full model to fit "too well," compared to the fit for the submodel; thercfore, a fit-
difference above the critical value is not 4 valid indicator of paramecter variation across
groups when results are based on dependent PC statistics.

The last two sections of Table 4 show data on the estimated differences in item

difficulties across groups as obtaincd from fitting the full model. Comparing the mcan

obscrved diffcrence estimates [labeled Mean (b) in Table 4] to the true differences of zero
14
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suggests little, if any, systematic bias in estimates of item parameter differences. However,
the root-mean-square asymptotic standard error estimates [labeled RMS &(5)] were smaller
than the standard deviation s.d. (B) of difference parameter estimates, indicating that the
asymptotic estimates underestimated the variation in item parameter differences across
replications. As with the item parameter estimates, the degree of underestimation increased
with the increase from six to eleven items.

The t-statistic, the difference estimate divided by the asymptotic standard error, has
too large a standard deviation. Hence, the proportion of t-statistics which exceeded the
critical value in a Student’s t-distribution was larger than alpha. As a means of testing the
hypothesis that the difficulty of item j in group g equals that in the target group, the t-
statistic provides a liberal test: that is, the true rejection rate under the null hypothesis is
greater than alpha. It is our conclusion that the number of jtems with t-statistics above the
critical value must be viewed as an upper bound on the number of items for which the
difference is truly significantly different from zero at the chosen significance level.

Study 2

In Study 2, the PC statistics were computed in an independent fashion. Otherwise,
Study 2 is exactly like Study 1. At present, the analysis has been completed only for the two
cells involving 500 subjects, so only data from this condition are reported here.

The bottom panel of each section in Table 4 summarizes the results of this study.
The first two sections give data on parameter estimates from the submodel and the full
model. Comparing the true item parameters to the mean estimates suggcsts that there is
little, if any, bias in the cstimates of item difficulty paramcters and the dif ference
parametcrs, even with only six items. The obscrved standard deviation of the paramecter
estimates was larger in Study 2 than in Study |, indicating a smaller crror of estimation

when PC statistics are computed nonindependently.

15

17



Comparing the observed standard deviations of paramecter estimates in Study 2 to the
root-mean-square asympiotic standard error estimates shows that, unlike in Study 1, the
root-mean-square asymptotic standard error closely approximated the actual standard
deviation of the parameter estimates.

The mean observed fit measure for the submodel, the mean observed fit measure for
the full model, and the mean difference between these two fit measures, shown at the right
in Table 4, are all slightly smaller than their degrees of freedom, the mean of the
corresponding chi-square distribution. Furthermore, the standard deviations are all smaller
than those of corresponding chi-square distributions. For a .05 level of significance, 5% or
less of the observed submodel fit measures, full model fit measurcs, and fit difference
statistics exceeded the chi-square critical value. These results suggest that comparing any
of these threc fit measures to its corresponding chi-square distribution yields a
conservative test; that is, a true rate of rejection less than alpha when the null hypothesis is
truc. Asa result, an observed fit measure which exceeds the critical value provides
disconfirmation of the corresponding hypothesis. However, an observed fit measure less
than the critical value is not strongly supportive of the model.

The bottom two sections of Table 4 show data on the estimated differences in jtem
difficultics across.groups as obtained from fitting the full model to independent PC
statistics. Comparing the mean observed difference estimates to the true differences of zero
suggests little, if any, systematic bias in estimates of item parameter differences. The root-
mean-square asymptotic standard error again closely approximated the actual standard
deviation of the parameter estimates. The t-ratio, the difference estimate divided by its
asymptotic standard error, has slightly too small a standard deviation. Hence, the
proportion of t-statistics which exceeded the critical value in Student’s t-distribution at the

.05 level was generally smaller than .05. As a means of testing the hypothesis that the
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difficulty of item j in group g equals that in the target group, the t-statistic provides a
conservative test: that is, the true rejection rate under the null hypothesis appears to be
slightly less than alpha. It is our conclusion that the number of items with t-statistics above
the critical value must be viewed as a lower bound on the number of items for which the

difference is truly significantly different from zero at the chosen alpha level.

Example

The data for this example come from a fall and spring administration of a sixth
grade mathematics test developed by a suburban school district in the upper midwest. Qur
two groups are the fall (N = 178) and spring test takers (N = 153). Table 5 shows results
from a logistic regression analysis of the independent PC statistics. While there were 50
items on the test, we have presented a detailed analysis for only 10 of the items to keep the
illustration smalil.

Column 2 of Table 5 shows the logistic regression estimates of the item parameters
for the submodel. Parameters for items 2 - 10 in the target group (fall testing) are the
logistic regression coefficients. The parameter “or item ! is the negative sum of item
parameters (or regression coefficients) for items 2 - 10. The goodness-of-fit statistic for the
submodel was 90.24 with 80 degrees-of -freedom (p > .05). (There are 80 degrees of frcedom
for this analysis, rather than 81, because it was run using the logit option in the SPSS-X
Probit program, which always estimates an intercept constant rather than forcing the
regression through the origin, and hence which leaves one less degree of frecedom.) Columns
5 - 8 of Table 5 contain results from the logistic regression based on the full, multiple group
model, for which the goodness-of-fit statistic was 63.33 with 71 degreces of freedom (p > 05).
The difference in the fit measures for the full and submodcls is 26.91 with ) degrees of

freedom (p <.05). The bottom pancl of Table 5 shows results for the spring testing. Column
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5, labeled regression coefficients, contains estimates of the difference between the items’
difficulties in the fall and spring testings. The t-statistic associated with each item 2 - 10
provides a test of the null hypothesis that the difference between the item's paraineter
estimate for fall and spring testings equals 0. Using a .05 level of significance, the
hypothesis would be rejected for three items.

Overall, the fit measures indicate that the PC statistics can be approximated
reasonably well when item parameters are constrained equal for the fall and spring testings,
but there is a substantial improvement in fit when this constraint is removed. The
significant misfit scems to center on items 3, 4, and 7. After inspecting an earlier analysis
of these data, Wright (personal communication) has suggested that the regression of the
parameter estimates in the fall testing onto those for the spring testing is well fit by a

straight line, but possibly with slope unequal to 1.00.

Discussion

The following conclusions are heavily based on limited simulation results involving
only two test lengths, two sample sizes (one sample size in Study 2), and only one
distribution of item and person parameters in each condition. In each condition, the null
hypothesis of equal item parameters across populations was true. Nevertheless, the results
from these limited conditions are suggestive of the following conclusions.

The results in Study | suggest that, despite dependencies among the PC statistics, the
logistic regression approach appears to yield only slightly biased estimates of item
parameters. The bias appears to decrease as the number of items and/or the number of
subjects increase. While our focus is not on parameter estimation, a word on this subject
scems in order. Van den Wollenberg et al. (1988) have criticized unconditional maximum

likelihood (UML) estimates of item parameters as biased, a bias which cannot be removed
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by a correction factor. Those authors argue that the computationally slow, conditional
maximum likelihood (CML) estimation procedure and the minimum chi-square methods
yield unbiased estimates.

In response to van den Wollenberg ¢t al. (1988), Wright (1988) argued that the bias in
UML estimates can be removed by a correction factor, except for short tests. He further
argued that the pairwise estimation procedure is a better solution if more precision is
desired for short tests. Our results in Study 1 tend to support Wright’s argument. A
comparison of our results with the most comparable results from van den Wollenberg et al.
(See their Table 1.) shows that their ratio of estimated to true item parameters from CML is
virtually the same as that found in Study 1 for logistic regression and 500 subjects.

When nonindependent PC statistics were used, the logistic regression asymptotic
standard errors tended to underestimate the true standard deviation of parameters across
replications. When independent PC statistics were used, the asymptotic standard errors far
more¢ accurately reflected the variation of parameter estimates across replications.

The hypothesis testing statistics, the t-ratio and the fit measure, deviated
systematically from their theoretical counterparts, Student’s t and the chi-square
distribution. Hence, one cannot make precise statements about the probability of Type |
errors simply by referring to either Student’s t or the chi-square distribution. On the other
hand, the deviations from the theorctical distributions were systematic in ways which
suggest that the theorctical distributions might provide useful benchmarks for interpreting
the t-ratio and the fit measure.

Consider first the t-ratio. When cstimated from nonindependent PC statistics, the
obscrved t-ratio consistently displayed a larger standard deviation than that of Student’s t.
Consequently, for alpha cqual .05, more than 5% of the observed t-ratios excecded the

critical valuc in Student’s distribution. This suggests that the number of items for which
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the observed t-ratio exceeds the critical valu= in Student’s distribution might be interpreted
as an ypper bound on the number of items for which the difference in item parameters is
truly significantly different from zero at the chosen level of significance.

When independent PC statistics were used, the number of items exceeding the critical
value behaved meore like a lower bound on the number of items for which the difference in
item parameters is truly significantly different from zero at the chosen significance level.
The t-ratios displayed slightly smaller standard deviations than that of Student’s
distribution. For alpha equal .05, less that 5% of the observed t-ratios exceeded the critical
value. For the conditions investigated in this study, it would scem that any t-ratio
exceeding the critical value could be considered significant at the alpha level.

Turning now to the submodel fit measure for nonindependent PC statistics, that
measure had a much smaller mean and a larger standard deviation than the corresponding
theoretical chi-square distribution. Consequently, using a .05 level of significance, the
observed fit measure exceeded the critical value for less than 5% of the replications. It
would seem that an observed fit measure less than the critical value would support the
submodel only weakly, but a fit measure greater than the critical value would provide
evidence against the submodel.

For independent PC statistics, the submodel fit measures, the full model fit
mecasures, and the fit difference measures had means and standard deviations less than the
corresponding theoretical chi-square distribution. This suggests that at any alpha
level, less than alpha of the observations would exceed the critical value. Consequently, an
observed fit mcasure (or fit difference measure) which exceeds the theoretical critical valuc
should lead to rejection of the model with true significance level 2!pha (or less).

Particularly when estimating the PC statistics in an independent fashion, sample

proportions of zcro and onc occurred frequently. At first, we treated thesc as missing data.
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However, when we made the following substitutions, the t-ratio and the fit measure more
nearly followed the desired theoretical distributions. Let n;, be the number of people who
correctly answered exactly one item of pair (j,k). When the sample value P;x equalled 1.00,
we substituted Pix = (njk - .5)/njk. When Pjx cqualled 0.00, we substituted Pix = .5/njk. The
reported results for Study 2 are based on these substitutions.

In this paper, we focused on the hypothesis of equal item parameters across groups.
The general logistic regression approach is applicable to a wide class of models for PC
statistics. Particularly, lct D be a design matrix with GI(I - 1)/2 rows and G(I - 1) columns,
let b be a vector containing the G(I - 1) item difficulties from the full model, and let b* a
row vector of item difficulties from a submodel. The logistic regression approach can be
used to fit any submodel in which the item difficulties of the submodel have the form
b* = Db. Indecd, Anderson and Davison (1991) discuss the fitting of an even wider class of
models using an extension of logistic regression. Thus, logistic regression of PC statistics,
or its extensions, are potentially useful for fitting a very broad class of Lypotheses about

item difficulties in the Rasch model.
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Table 1

Fall
Item 1 2 3 4 5 6 7 8 9
2 .039
3 364 918
4 029 .469 022
5 .042 515 .036 537
6 119 839 244 904 .865
7 .184 876 341 913 876 618
8 .750 1.000 .864 1.000 .990 Y55 .897
9 .089 .784 152 8377 813 397 317 034
10 052 756 115 844 .803 333 273 016 413
Spring
Item 1 2 3 4 5 6 7 8 9
2 065
3 174 .820
4 078 585 .182
5 .058 554 .143 468
6 273 864 .586 808 857
7 .087 627 205 536 .564 150
8 600 .966 .8370 958 961 875 976
9 071 733 389 655 750 294 .638 .067
10 118 .780 353 674 721 273 633 .034 484
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Table 2

Dummy Coding for J = 4 Items in
One Group

Dummy Coding d,
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Table 4
Selected Simulation Reults
Model Fitting Results

(n=6 Items)
Item X? Goodness of
Type of Parameter True Item Parameter Fit Stat.*
PC Statistic Model Estimatcs Mcan sd %sig
-1.70 -102 -34 34 102 170 (0=.05)
Non- Submodel i 17.51 7.62 2
Indcpendent Mean (b) -171 <103 -35 0 33 104 173
(N=100) s.d. (b) 24 20 16 .19 19 24
RMS 8(b) 22 15 .11 11 15
Full Model 576 184 0
Group 1 Mean (b) -1.76 105 37 36 107 176
s.d. (b) 36 27 23 27 26 31
RMS &(b) 27 20 a6 16 19 -
Group 2 Mean (b) -1.72 104 -33 31 1.04 1.74
sd. (b) 3 28 23 25 25 31
RMS 6(b)
Difference 11.75 725 45
Non- Submodel ) 1667 779 3
Independent Mean (b) -.71 -1.02 -33 35 1.01 1.7
(N=500) sd. (b) 11 08 08 07 07 10
RMS &(b) 10 07 05 05 .07
Full Model 546 214 0
Group 1 Mean (b) -1.73  -1.03 -3l 34 102 1M
s.d. (b) 15 a1 .10 10 12 14
RMS 6(b) 12 09 0 07 09 -
Group 2 Mean (b) 71 4102 -34 0 36 101 171
s.d. (b) 16 10 .11 .10 09 14
RMS &(b)
Difference 11.21 7.14 42
Independent Submodel 22,73 6.31 1
(N=500) Mean (b) -1.72 101 -33 35 100 171
sd. (b) 21 13 11 10 13 19
RMS &(b) 19 J3 .10 .10 13 -
Full Model ) 1828 602 5
Group 1 Mean (b) -.75 <101 =33 33 102 173
sd. (b) 24 16 15 15 17 22
RMS 6(b) 23 17 a4 14 17 -
Group 2 Mean (b) -1.72 101 -34 36 100 171
s.d. (b) 25 16 .14 a2 16 23
RMS &(b) S — —-- -
Difference 445 244 2

*  For Submodels, df(X?) = 24.SQRT(2df) = 6.93; For Full Models, df(X? = 19.SQRT(2df) = 6.16
For Differences between the submodels and the full models, df(X?) = 5.SQRT(2df) = 3.16
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* Table 4 (cont.)
Model Fitting Resulis

(n=11 Items)
Type of Item X? Goodness
PC Paramectcr True Item Parameter of Fit Stat*
Statistic Model Es(imates Mcan s.d. %sig
-1.70 -1.36 -102 -68 -34 .00 34 68 102 136 1.70 (a=.05)
Non- Submodel ) 65.15 22.08 2
Independent Mean (b) -1.69 -144 -101 -66 -34 00 34 70 1.00 140 1.70
(N=100) sd. (b) 23 22 18 13 16 .16 17 A8 .17 20 20
RMS4b) .10 .12 09 10 .09 09 09 .09 .10 09 --
Full Model 21.76 4.04 0
Group 1 Mean (b))  -1.72 -143 -1.01 -66 -36 -01 33 71 102 142 1.72
s.d. (b) 33 28 24 21 22 21 23 27 271 30 28
RMS&(b) .14 15 12 13 42 12 12 12 14 13 ...
Group2  Mean (b)) -1.70 -146 -1.04 -67 -32 .02 35 69 101 140 1.73
sd.()) 32 30 28 22 24 26 24 25 21 27 3
RMS &(b) - - e e e e e e e e
Difference 43.39 21.15 95
Non- Submodel 62.77 18.45 0
Independent Mean (b)  -1.70 -1.36 -1.02 -68 -35 .01 33 68 102 136 171
(N=500) s.d. (b) 09 09 07 07 08 08 07 08 .08 .08 .10
RMS&(b) .04 05 .04 05 04 04 04 04 05 04 -
Full Model 20.03 3.63 0
Group 1 Mean (5) -1.70 -1.37 -1.03 -68 -35 .01 34 69 1.02 136 LTI
s.d. (b) d2 11 11 0 a1 a1 .0 10 .11 .11 .14
RMS6(b) 06 07 05 06 05 05 05 05 06 06 -
Group2  Mean (b)) -1.70 -1.35 -1.01 -69 -35 .01 33 68 1.02 136 171
s.d. (b) A3 12 09 11 10 a1 a2 12 .12 .12 .14
RMS &) - - e mee e e e e e e
Difference 42.74 17.99 96
Independent Subinodel 94,53 11.04 0
(N=500) Mean (b))  -1.69 -137 -1.02 -68 -35 .00 33 69 1.04 135 169
sd.(®) A1 14 09 42 10 10 A1 1 02 a1 3
RMS&Gb) .12 14 10 g2 10 .11 11 10 .13 .01 -
Full Model 85.19 10.72 0
Group1  Mean ()  -1.71 <139 -1.04 -69 -35 02 33 .70 105 1.37 171
sd. (b) 7 07 14 14 14 13 16 .04 14 15 A8
RMS&M) .17 18 15 16 .14 14 .15 14 .16 .16 --
Group2  Mean (B) -1.69 -136 -1.00 -68 -35 -01 34 68 1.04 135 1.69
sd. (b) d6 18 13 16 4 13 U5 14 .17 A5 .19
RMS 8(b) - e e m e it e e e e
Difference 9.35 4.22 3

*  For Submodels, df(X®) = 99.SQRT(2df) = 14.07; For Full Models, df(X?) = 89.SQRT(2df) = 13.34;

For Differences between the submodels and the full models, df(X?) = 10.SQRT(2df) = 4.47
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Table 4 (cont.)
Full Model Results on Estimated Parameter Differences

(n=6 Items)
True Item Paramcter
-1.70 -1.02 -.34 34 1.02 1.70
Type of PC True
Statistic Stat. b=0.0 0.0 0.0 0.0 0.0 0.0 Mcan
NonIndependent mean(b*) 04 01 04 -05 -03 -0t 0.0
(N=100) s.d.(b*) 46 37 32 35 35 38
Rms &(b*) 27 24 22 22 24 -
mean(t) 13 .05 18 .24 - 13 0.0
s.d.(1) 1.65 1.58 1.45 158 147
% sig t 21 21 15 18 17 18.4
(o =.05)
NonIndependent mean(b*) 02 .00 - .03 01 - 01 .00 0.0
(N=500) s.d.(b%) 20 15 14 13 16 20
RmS &(b*) 12 10 10 10 10
mean(t) 2 02 - 31 14 -1 0.0
5.d.(1) 1.67 141 1.45 1.30 1.51
% sig. t 25 13 17 13 21 17.8
(0=.05)
Independent mean(b*) 03 - 01 - .01 .03 - 01 -.02 0.0
(N=500) s.6.{b%) 24 18 18 17 20 24
RmS &8(b*) 24 20 19 19 20
mean(t) 13 . 05 . .08 16 - 06 0.0
s.d.() 98 90 95 91 1.01
% sig. t 2 2 5 3 2 --- 2.8
(@ =.05)

32



Table 4 (cont.)
Full Model Results on Estimated Parameter Differences
(n=11 Items)

Type of True Item Parameter
PC .70 -1.36  -1.02  -68 -34 .00 34 68 102 136 170
Suatistic Stat, Mecan
True b = 0 0 00 0 0 0 0 0 0 0
Non-
Independent Mean (b*) 02 03 -03 -0! 04 03 02 -0 -0t -0l 01 0.0
(N=100) sd. (b*) 45 37 38 33 31 35 32 36 .35 42 43
RMS &(b*) 20 19 1707 16 16 16 1717 19 -
Mean (t) 08  -15 .14 -09 24 14 15 .12 .05  -05 .- 0.0
s.d. (1) 219 199 217 19 192 213 200 212 199 218 -
% sig t (a=.05) 37 29 36 28 30 31 34 34 31 34 324
Non-
Independent Mean (b*) .00 02 02 -0t 00 00 -01 00 -01 -0l -01 0.0
(N=500) s.d. (b%) 18 16 A5 .15 15 14 16 15 8 15 19
RMS &8(b*) 09 08 08 07 07 07 07 07 .08 .08 -
Mean (t) .00 25 20 -06  -01 01 -08 .04 09 -09 - 0.0
s.d. (1) 208 194 191 209 203 200 221 207 229 18l -
% sig t (0t=.05) 36 30 3] 33 3R 35 31 34 34 28 33.0
Independent
(N=500) Mean (b*) 02 03 04 0l -01 -.02 o -0 .01 -02  -02 0.0
sd. (b*) 24 23 20 18 .19 17 21 18 21 20 25
RMS 6(b*) 24 22 21 20 19 19 .19 20 21 22 -
Mean (f) .08 14 19 03 .03 .12 oM .09 -07 -08 - 0.0
sd. (1) 100 102 95 91 99 90 110 92 100 90 -
% sig t (a=.05) 3 5 4 5 1 2 4 3 4 2 33
34
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Table S

Parameter Estimates for Ten Mathematics Items from Logistic Regression

LR Submodel LR Full Model
Item Regression Item
Parameter S.E. t Coefficient S.E. Parameter t
Item 1 -1.594 - - - - -1.655 --
2 1.062 0.214 4.96%* 1.037 0.256 1.037 4.06%*
3 ~-0.879 0.228 -3.86%* -1.307 0.319 -1.307 -4,10%*x*
4 1,353 0.199 6.79%x% 2.117 0.324 2.117 6.53%x%
5 1.160 0.178 6.53%* 1.333 0.245 1.333 S.45%*
6 -0.464 0.188 -2.47* -0.280 0.248 -0.280 -1.13
7 0.148 0.182 0.81 -0.268 0.255 -0.268 -1.05
8 -2.048 0.310 -6.60** -2.462 0.445 =-2.462 -5.54*x
9 0.386 0.217 1.78 0.422 0.262 0.422 1.61
10 0.876 0.245 3.58%* 1.063 0.296 1.063 3,59
Spring
Item 1 -— -- -1.533 -
2 0.019 0.358 1.056 0.05
3 0.906 0.424 -0.401 2.14%
4 -1.513 0.410 0.604 - 3.69*x
5 -0.374 0.364 0.959 - 1.03
6 -0.437 0.392 -0.717 - 1.11
7 0.926 0.360 0.658 2.57*
8 0.903 0.598 ~-1.559 1.51
9 -0.105 0.347 0.317 - 0.39
10 ~0.447 0.382 0.616 -1.17
*p < .UO
**p < .01
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