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1 In#roduction

Traditional umLinensional monotonic Item Response Theory (IRT) provides a useful but overly
simple model of examinees' responses to standardized test questions. For example, Drasgow and
Parsons (1983) assess the shortcomings of the LI-based unidimensionality approach to IRT as
follows:

One way in which most current item response theories (IRTs) are surely incorrect is
in their assumption of a unidimensional latent trait space ... [Ilt seems clear that
researchers should be more concerned with the robustness of estimation techniques to
minor violations of dimensionality assumptions than with the possibly never-ending task
of measuring all latent variables that underlie responses in a particular content domain.

We are compelled to understand this structural robustness question because it is central to
current IRT practice. It is widely accepted that the traditional IRT models do not exactly reflect
the item response process; yet because the traditional inferen-R procedures (in the form of computer
programs such as LOGIST and BILOG) are so accessible, traditional IRT is applied to item response
data anyway. Can we trust the inferences from these misspecified models?

Although violations of strictly unidimensional, clL = 1, structurei.e., models satisfying the
stronger traditional assumptions of local independence (LI) and monotonicity (M)can sometimes
be modeled and exploited (whether by introducing new "dependence" parameters as in Jannarone
(1986) and Gibbons, Bock and Hedeker (1989), or by an explicitly multidimensional approach
as that of Reckase (1990)), many situations call for a unidimensional approach that is tolerant of
minor violations of strict unidimensionality (e.g., Drasgow and Parsons, 1983; Spray and Ackerman,
1987; Reckase 1990). It is also important to note that an "acceptable" level of departure from strict
unidimensionality may depend on the particular application; for example, ability rank estimates
on a particular section of the Graduate Record Examination may be more tolerant to violations of
unidimensiorality than detailed item analysis of the same items.

Departures from strict unidimensionality can be detected, and the influence of these departures
on a variety of LI-based ability estimators can be measured. In this paper we survey theoretical
results underpinning this approach, and report on work in progress to apply these results in practical
settings. A convenient universe of models near the LI model in which to investigate structural
robustness issues is provided by Stout (1990b)'s essential unidimensionality, dE = 1, modeling
approach. The main ideas of essential independence, summarized in Section 2, are due to Stout
(1987, 1990). The approach to structural robustness for maximum likelihood estimation of ability
outlined in Section 3 is due to Junker (1991b). The more general statistical considerations of
Sections 4 and 5 represents the joint work of Clarke and Junker (1991). Finally the work on
two new indices of unidimei.sionality described in Sections 6 and 7 represent ongoing joint work of
Junker and Stout. Owing to the "survey" nature of this paper, once Section 2 is read the remaining
sections may be read in any order.
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2 Essential independence
A successful approach to identifying unidimensional latent structure outside the strict LI/M frame-
work has been pursued in the seminal work of Stout (1987) and Stout (1990b), and extended by
Junker (1988) and Junker (1991b). The main idea, which borrows from both the "large sample
theory" tradition in mathematical statistics and the "factor analysis" tradition in psychometrics,
is that of essential independence.

For any (infinite) sequence of items 2C = (X1, X21X3,...) (dichotomous or polytomous), we
define bounded item scores to be functions Ai(Xj) such that 3M < oo such that 1A3(X3)I < M V j.
In the special case that each Xi takes on ordered, discrete values fii < fj2 < we will call a
bounded item score an ordered item score if moreover Ai(eik) < Ai(fi(k+l)) Vk (in the dichotomous
case, Ai(0) < Ai(1), for example). Also, we define a bounded test score to be the average of the
first J bounded item scores Aj = EJ A (X.7

.)j=1 1

Definition 2.1 The infinite item sequence X is essentially independent (EI) with respect to a if
and only if

lirn Var (jl=2) = o (1)Jco
for all bounded test scores Aj.

It can be shown that therefore Aj is a consistent estimator of the "true score" Aj(9) = E[Aja = el,
as J co. In particular, for a sequence of dichotomous items X, EI implies that the proportion
correct score Tj consistently estimate values of the the test characteristic curve (TCC) j(0), as
J co.

Definition 2.2 The item sequence X. is essentially unidimensional, dE = 1, if and only if

EL X is EI with respect to a unidimensional 0; and
LAD': for every set of ordered item scores, the "true score' A j(0) is nondecreasing in

0.

If no such unidimensional exists, we write dE > 1.

All of the theoretical results in this paper apply to polytomously-scoredand in some cases
continuously-scoreditems, but for simplicity we will focus mostly on the familiar dichotomous
case in which Xi = 0 or 1.

When an item sequence has dE = 1 the true score qj(0) may be estimated with 71 j and then
inverted to produce estimates = A;1(74) of 0 itself; in particular, 15;1(3(j) 40 as J oo. The
notion of essential unidimensionality, dE = 1, should be contrasted with strict unidimensionality,
dL = 1, under which both local iLiependence (LI) and monotone (M) increasing ICC's are required.
In particular, any model satisfying LI also satisfies EL See Stout (1990b) and Junker (1991b) for
details.

'IAD' stands for locally asymptotically discriminating. There is a technical detail about the possibility of 'tat"
true scores which need not concern us here. See Junket (1991b) or Stout (1990b) for details.

5
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The dE = 1 condition is built out of the good 0-estimation properties of total test scores under
strict unidimensionality. The EI condition is explicitly designed to characterize unidimensional
behaviorthe "driving" of Ij by a single dominant trait 0under conditions other than local
independence. Nandakumar and Stout (Stout, 1987; Nandakumar, 1987, 1989, 1991a, 1991b) have
investigated the practical assessment of essential unidimensionality in a variety of finite-length tests
with minor violations of the di, = 1 representation.

3 Structural robustness and maximum likelihood
Stout (1990b)'s definition of essential independence covers a broad range of situations in which
one might wish to assert that the fundamental behavior of the data is unidimensional, although
"nuisance traits" prevent strict dt, = 1 from holding. The influences of. these nuisance traits are
sufficiently small that it is tempting to use strictly unidimensional estimation techniques to estimate
the dominant (and interesting) trait, rather than to take an explicitly multitrait approach. For
example, maximum likelihood estimation of the dominant or target 8 can be examined in this light.

In the binary (dichotomous) case, in which Xj takes the value C or 1 depending on the examinee's
answer to the jth item, the di, = 1 likelihood is

ppij =Xj o = = P.,(9)z)[1 -
.7=1

is2)

with monotone item characteristic curves (ICC's) Pi(0) = P[X = 1 10 = 0]. If the log-likelihood
is sufficiently smooth, the MLE must solve the likelihood equation

0 E Lij(6) = E A;(0.Apc,
i=1

(3)

where Aj(0) = log P1(0)/(1P1(0)) It should be noted that the "minimum discrimination" condition
LAD in Definition 2.2 plays a crucial role in the rigorous proof of consistency of 0j: LAD guarantees
that the average information function

7,(e) = E A(8)I(0) > fo > o,j I I
.7=1

as J oo. See Junker (1991b) for details.

(4)

Theorem 3.1 Let X. be a dichotomous item sequence with sufficiently smooth ICC's satisfying El
and (4). Then there exists a sequence {0.1 : I > Jo) of roots of (3) such that

lim P[1ej el<cle=0]= 1, (5)

for every e > 0 (i.e., ej -12. 0, given 0 = 0, as J oo).

0
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Indeed, (3) may be expanded as

1 1 1 1= -LIM J+ -(t - 9)L5(8)+ 2J
LT(f)J J

J J
1 j1 1.

1 1+-
2

(t - o),Ly(e)J
= op(1)- (t - 9) flj(8) + op(1) + 0(t - 0)} .

Note for example that, by Definition 2.1,

P,(9)) o

.7=1

as J oo. The other terms are handled similarly.
In general there are problems with multiple roots of the likelihood equation (3) when the problem

is set up in this manner; moreover it may be argued that a consistency result for a theoretical solution
to (3) is of no value in practice. Fortunately, the same method of proof shows that the familiar
practice of approximating a root of (3) by Newton's method still leads to consistent estirr ators,
under EI.

Theorem 3.2 Suppose the assumptions of Theorem 3.1 hold, and let O., be any sequence of con-
sistent estimates of 0, given 0 = O. Then the Newton's method improvement,

6(9-j)
ej(9j)'

is also consistent for 0.

Following the remarks after Definition 2.2, an obvious candidate for the initial guess in Theorem 3.2
is -8j =

In the usual LI ability estimation theory, we expect that the sequence ij will be asymptotically
normal and efficient,

.11(6j 9) AN(0,1fij(0)), (6)

as J oo, where i(9) is the traditional test information function introduced in (4): A result like
(6) identifying the standard error of.0,7 is needed to do statistical inference using 8jor indeed,
merely to know how well to trust ej as an estimator of 9 for particular fixed J that arise in
applications. However, (6) may fail in the essentially unidimensional case in two interesting ways:
it may be that asymptotic normality holds but the asymptotic variance is no longer /40)-1; or it
may be that asymptotic normality fails completely.
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From (3) and the above results, we see that the consistency and azymptotic distribution of ej
is tied up with the behavior of the centered weighted averages

1
ej(0) j A.1(0) (7)

1
=

J=1
(8)

with al A;(0), where the dependence of aj on 9 does not matter since 9 is fixed. Once again, let

a3(9) = Var(Aj 10)
J

2
= E al2P2(0)[1 P3(0)] + T2- E E aialCov(Xi, X) 10 = 0),

j.1 j=1 J=1

and let
2 EEC J(6) = A'i(0)Cov (X1, X.710).7 .(0)A,

1<i<j<J
(9)

Theorem 3.3 Suppose that the assumptions of Theorem 3.1 hold for the item sequence X and the
latent trait 0. Also suppose, given 0 = 0, that in (8),

1 I(0)} AN(0,1). (10)
aj(e)

Finally, suppose R(J) is a function for which R2(J)C.1(0)/J remains bounded. Then,

R(J)(Oj 0) AN (0,R2(.07 J(9) + C j(0)
J j(9)2 ).

Moreover, if -0,1 is any estimator for which R(J)(ij 0) is bounded in probability, fej from Theo-
rem 3.2 is also asymptotically normal with the same asymptotic variance.

Theorems 3.1, 3.2 and 3.3 are structural robustness results: a method of estimating ability
developed under di, = 1 is robust to violations of 4=1 within the dE =1 framework, in the sense
that it still converges to 0 as test length J grows. However this robustness of consistency for 0.1 does
not extend to robustness of variability. Nonefficient and non-normal asymptotic error distributions
for 0j can be expected in many dE = 1 situations; the deviation from the "efficient" LI-based
standard error can be expressed in terms of the "index" CA0). Further details, and extensions to
the polytomous case, may be found in Junker (1991b).

General conditions for asymptotic normality for dependent sums have been established by
Dvoretzky (1972); particular cases that seem useful include mixing CLT's (Iosifesca and Theodor-
escu, 1969) and methods for associated random variables (Cox and Grimmett,.1984; Newman and
Wright, 1982). Once (10) is deemed acceptable, the asymptotic behavior of 9.1 is determined by
Cj(0). When CA0) is near zero, we can expect the items to behave as though LI were true; when
Cj(0) is much larger, we should expect item behavior which can be effectively analyzed only with
a multidimensional model. We shall return to CA0) and (9) in Section 7 below.
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4 The best local independence model when LI fails
One of the lessons of Section 3 was that it is possible to continue using 4, = 1 methods when in fact
dL > 1 as long as dE = 1 holds with respect to the trait you want to measure. The construction
there makes a particular choice for the "unidimensional IRF's" in a fictitious version of the LI
likelihood, namely the "marginal" IRF's in (4) suggested by StoUt (1990b). Is this a good choice?
Can it be achieved in practice?

It is valuable to set out general forms of the models we are considering. The "ideal" random-
effects LI-based model for item response (and other) data in psychological measurement is a mixtu-e
model

m(gj) = rj(zj 1 0) dF(0) (11)

where F is the distribution of 0, and rj (14 I 0) factors as

r j (Li 1 9) = fl ri (xi 1 9).
i=l

(12)

In dichotomous IRT for example, 7.3 (x, 18) = ri(0)x)(1 - r3(19))1-x.i, for some set of ICC's ri(0),
but the formulation in (11) and (12) works for arbitrary observations X1, . . Xj on each individual.
The main statistical task is inference about each individual's unobserved U from each individual's
observed Li, based on the particular form of the right-hand side of (12).

LI models are an attractive and convenient data analysis tool, and are often assumed even
though it may be agreed that (12) only approximately fits or reflects the mechanisms underlying
the data. Suppose the correct formulation is

m(j) = vj(c_j 19) dF(9), (13)

where the conditional model for 20 given 9 is some dependent vj (X j I 0) whose structure is not
known in detail. How far could an analysis based on (11) and (12) go? It is useful to first know
what the "best possible" choice for ?J(L! 19) is. We shall show that the best choice is indeed
qj(zj10), where

(x; 1 9) = J v (zj 18) dz1 dz_idz,+j dz (14)

(when the variables are discrete, as in IRT, the multiple integral here is replaced with a multiple
sum). Recall the ICullback-Leibler distance

D(v-IIIrj)== De (vjlirj) I log P.1(L7 I e)

models that are close in the Kullback-Leibler sense are also close in other more common senses
such as mean absolute error.

Proposition 4.1 Do (vj11rj) is minimized over rj by taking rj qj.
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Indeed, following Aitchison (1975), we note that by (14),

De (vjll rj) = De (PA 9.;)+ log qi (xi 19)
9' (

x
I )

d
ri (xi 10)

= De(Vjliqj)+EDe(qjlirj),
j=1

which is clearly minimized by taking rj qi in each term of the summation at right. This
identification is completely general and applies to binary, polytomous, and even continuously-
scored items. Further details and extensions of this idea may be found in Section 2 of Clarke and
Junker (1991).

In the usual binary IRT context, suppose ch, = 1 is violated and let vj(xj10) be the true, locally
dependent likelihood for xj given the dominant or target trait 0. Let 1%1(.110) = ni_, irj(0)Z;(1 -
iri(0))1-r, be a locally independent likelihood with arbitrary ICC's r3(0). The above proposition
shows that if the desire is to analyze data from vj(xj10) using a "fictional" LI-based likelihood of
the form TALI, 0), then the best choices for ri(0) in rj are the true marginal ICC's P3(0) obtained
from vj via (14). If 0 is the first coordinate of a multidimensional trait vector Of with respect
to which LI holds using multidimensional response functions P.,(0/), then it can be shown that
obtaining P3(0) via (14) is equivalent to

P,(0) = (i)b-(4101 = 9)(12.1.

It must be noted that in practice the selection of rj in (12) is itself often subject to uncer-
tainty, in that the ri(I0) are typically selected from a parametric family ro, (I0) whose parameters

1 are estimated from (some subset cf) the data. Tsutakawa and Soltys (1988) and Albert
(1991) provide important insights into correctly addressing this issue. On the other hand, there is
some evidence that this "best possible" case may approximately be achieved in some large-scale
educational testing applications, for example. Wang (1986, 1987) has identified that component

of of = (oi,...,od) in a multidimensional compensatory logistic IRT model which is measured
by a fitted unidimensional logistic IRT model. Wang's "reference composite" 19 is essentially the
first component of that rotation of of which produces a principal components analysis of the in-
formation matrix I(e), and she argues that popular IRT model-fitting programs such as LOGIST
and BILOG produce stable estimates for item characteristic curves with respect to the reference
composite.

5 Structural robustness and posterior distributions
As we have seen, identifying the "product of marginals" qj (T4 19) as the best LI likelihood to
use was easiest to accomplish by considering the general statistical models of Section 4. In the
same way, the asymptotic consistency results of Section 3 can best be understood and extended by
considering more general models. Let us continue to use the general notation of Section 4.
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5.1 Another route to MLE consistency under EI

By analogy with (3), define

j(9) = log q j (2ij 10) = E log 92(X iI9);

and by analogy with the Kullback-Leibler distance, define

1 1 gi(Xj10)
Dj(0,r) E [L.1(9) LAr11= 7 2, log giviir).

.i=1

(15)

Let us also abbreviate qi() .74 q j (. 10). 14(0) would be the log-likelihood if LI were true, but we
are not assuming LI here: i.e., gi(.) may not be the true likelihood function. Finally, for each t,
define Bs(t) fr : ir tl < 6) . In this general setting we may obtain consistency of the MLE
under the following assumptions, without making explicit assumptions about the violations of LI.
Assumption Cl. For each 0 and t 0, there exists c(t) > 0, such that

lim P[Dj(0,t) > c(t)10] = 1.J.ce

Assumption C2. For all t and ail e > 0, there exists 6 > II such that

Ern P[ inf Dj(t,r)?
J-.00 rEB6(t)

Assumption C3. There exist cc, > 0, such that for all 6 > 0 and A sufficiently large (depending
on b), lim P [infm>4 Dj(0,r) > c419] 1

Under these assumptions we obtain the following proposition ensures consistency of .the MLE.
and furthermore gives an "asymptotic convexity" which will be useful later: Lj(0) dominates
Lj(r) as J oo, for all r "away from" 0. The domination will be used in Theorem 5.1 to establish
asymptotic normality of the posterior ability distribution constructed from the LI likeihood qj,
even though LI fails. The proof of may be found in Clarke and Junker (1991). Straightforward
modifications also give consistency of the posterior mode.

Proposition 5.1 Under Assumptions Cl through CS, for all e > 0 and all b > 0, there exists 7
= -y(e,b) > 0 such that

1
liminf P[

(e)
inf ALM)) Lj(r)] 7

J--oo rig13, J
01> 1 (16)

and hence the formal MLE aj ti 0 as J oo (where "te denotes convergence in v j -probability).

1 1
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Assumptions CI-C3 are what is needed to make the proof work. Ide 3.1Iy we would like Propo-
sition 5.1 under Stout's EI condition, as given in Definition 2.1. An appropriate generalization of
EI is the law of large numbers (LLN)

Jlim
Var ( Ea )(XJ) = 0 (17)oo J j=1

for all bounded sequences of functions {ai(Xj) : j = 1,2, ...} (for any type of X)'s whatsoever).
However, the proof of Proposition 5.1 depends on a LLN that holds for sums of log-contrast func-
tions DAC r) = (1/J)Zjilog[q3(Xj10)/q1(XiIr)J, whose summands need not be bounded. (In
polytomous or dichotomous IRT settings, since each item has only finitely many possible responses,
Dj(0,r) would have bounded summands, so that (17) suffices; see Proposition 5.2 below.) Lem-
mas 5.1 and 5.2 show precisely what LLN's are needed in general to obtain Assumptions Cl and
C2. The proofs of the lemmas are straightforward bounding in probability arguments which are
omit ted.

Lemma 5.1 Suppose

(a) For each t 9 there exists OM > 0 such that lim inf,-..(1/J)D ql) > I3(t);

(b) As J oo, Dj(0,t) (1/J)D ti 0
Then Assumption Cl holds.

Lemma 5.2 Suppose that, for all t 0 there exists tt > 0 such that

(a) V e > 0 3 6 E (0, 15), such that liminf E [13.1(t, r) > --e;

(b) V 4' > 0 3 6 E (0, 6t) such that P [suPTEB6()113.7(t, 7-) E [D j(t, r)I 0j I < = 1.

Then Assumption C2 holds.

Let us specialize these results to a polytomous IRT setting. Recall that each observable variable
xjhaski values 61, ..., eik, (the subject makes one of ki responses for each item), with each lc) < ko
for some fixed ko < oo. The LI likelihood is qj (x./ I 0) = qi (xi 10), where

k

41 (r j 19) = Pj1(9)Yil
1=1

and YjI

Proposition 5.2 Suppose that EI and LAD hold, and that the response curves P31 satisfy

For each t, 0< inf PAO < sup Pii(t) < 1;

PO) is continuous at each t, uniformly in j and I

(18)

(19)

and suppose Assumption C3 holds. Then the "wrong model MLE" ej is j-consistent for 0, as
J 00.

1 2
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Proof. We will verify the conditicn! of Lemma 5.1 and Lemma 5.2. It follows from an inequality
of Csiszar (1975), D ( fll g) (1/4) [f 11(t) g(t)Idt?,

D (01q;1)
J

= ED(q.7,011q.b.r)
.7=1

2

1 1
J '

i7 E IPii(9) P31(r)Il , (20)
2=1 1=1

which is bounded away from zero under LAD (consider {ail} for which ajk, = 1, and aji E. 0 for all

I < kJ). This is (a) of Lemma 5.1. On the other hand, (b) of Lemma 5.1 follows from Definition 2.1
and (18), since the summands of D AO, r) are bounded.

The continuity condition (a) of Lemma 5.2 follows from (19). (b) of Lemma 5.2 requires that

lim P[ sup IDj(t,r) E[13.7(t,r)10]1 < c
j-";° TEB6(t)

= 1

for every and appropriate 6. The expression in absolute values may be written as

J
1 Pp(t)_EE[yfi_ PM)] log --
J j=I 1=1

which will tend to zero uniformly in r E B6(t) by Definition 2.1, (18) and (19). 0
Assumption C3 may often be veriied directly. Consider the case of binary response data, in

which kj E 2, E 0 and &72 a 1, and the response curves are of the three parameter logistic form

1pj(9) = c (1 c2) 1 + exp.( a (9

Then Dj(0, r) = (1/J) Eli WO) ij(r), where

log [1 +t(r) = log ;
1 cj 1 c.

Hence

0, if Xi = 1,lirn ij( ) =
oo, if X = 0;

lim tj(r) =

and we see that Assumption C3 holds as long as P[Xi = 1V AO] = P[Xi = OVAO] = 0; this in
turn follows from Definition 2.1 and (18), which merely requires that the ai's Vs and ci's do not
"wander off" to the edges of their parameter spaces.

1 3
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5.2 Asymptotic sosterior normality under EI

We now turn to the possibility of basing inference for 9 on the formal posterior distribution

9.1 (ga e)w(0)

where Lo.7(9) is the prior density on O. Of course, the true posterior distribution is

11.7 (X./ 9)w(9)
vj (Li jr)w(r)dr.

The point once again is to see whether a "wrong model ana'vsis" based on the LI likelihood qj can
work when vj is the correct conditional law. Let us make the following regularity assumptions.
Assumption PN1. Let Ii(8) = E [(a log q,(Xii0)/80)210] and TAO) = (1/J)E1 Ij(0). We
assume there exist 0 < ce < Me < co such that (9 < lj(0) < Afe, for all large n.
Assumption PN2. f a2q,(z10)/802dx = 0.
AsJumption PN3. = sup,EB,(0) P21og 7.7(*)/ar2 02logqi(x19)/a921 is bounded
uniformly in s and j, for small > 0, ; and for Afj(c, 9) = (1/J) E.( itf,,;(xj, 0),

lim lim sup E [Al j(c,0)I0} = 0.co

(21)

Assumption PN4. The prior density w(r) is positive and continuous throughout a small neigh-
borhood of O.

Theorem 5.1 Assume El as in (17), and the conclusion of Proposition 5.1. Under the additional
assumptions PN1 through P.V4, for all a < 6,

P
wq (9 I 2i1j)(10 4)(b) 4)(a)

hil-ac
(22)

as J co. where cyj = {L'i(ej)}/2, and ON is the the standard normal c.d.f.

Hence, in contrast to Theorem 3.1, which shows that the asymptotic distribution of the MLE
is sensi.ive to departures from strict unidimensionality, Theorem 5.1 suggests that the asymptotic
posterior ability distribution cannot "detect" such departures. While this may initially seem to be
good news, it actually undermines the desirability of basing inference about 9 on a wrong-model
posterior. We shall return to this point at the end of the section.

The proof of this result, and extensions to situations in which EI fails, may be found in Clarke
and Junker (1991). Chung (1991) has independently produced a proof of this result in the tradi-
tional, LI-based, dichotomous IRT setting. In both cases, the calculations are modeled after Walker
(1969). Straightforward modifications give consistency of the posterior mean and higher posterior
moments.

The next proposition specializes the result to essentially unidimensional polytomous IRT models.

4
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Proposition 5.3 Suppose, in addition to the assumptions of Propositi;:n 6.2, that

82
log PAO) is bounded pointwise in 9, uniformly in j and I.

a02

Then, in the sense of (22),

1.

e ;JO.' Li}v j N(0,1).

(23)

Proof. Assumptions PN2 and PN4 are usually true "by fiat," so only it is only interesting to
consider Assumption PN1 and Assumption PN3. Proposition 4.1 of Junker (1991b) shows that
Assumption PN1 holds under LAD and differentiability conditions (the argument is similar to the
one bounding (20) away from zero). The uniform continuity condition of Assumption PN3 focuses
on a locally uniform bound for

1=1

1192
l log Ppm02 Iog Pii(r)

ae

which follows from (23), due to the boundedness of the Yji's. 0

(24)

Example 5.1 Stout (1990b) and Junker (1991b) consider binary responses X1, X2, X3, ..., having
the same response curve P[X = 1 19] a O. Suppose that the items are arranged in successive groups
of go items as X1, X21 X9.; X 90+1 X go+2, X290; etc., such that different groups of go items
are independent of one another, given 9, and items within a single group are positively correlated,
given 9, and with

Corr (X, X 10)
c if X, and Xj are in the same group,

, = 0 if not,

for some fixed c E (0,1j. This vj is a naive model for a paragraph comprehension test in which
several paragraphs are presented and go questions are asked for each paragraph. Here, 9 represents
a trait common to all the items, which we might wish to think of as reading comprehension; and
the nonzero correlations are induced by nuisance traits, for example, specific knowledge about the
subject matter of the paragraph at hand.

EI and LAD hold in this case, and it follows from Proposition 5.2 and Theorem 3.3 that

I/70j 0) N(0,02),

where ij = 7j, and a2 9(1 8)[1+ c(go 1)] is somewhat inflated over the anticipated asymptotic
variance 0(1 0) under LI. On the other hand, it follows from Proposition 5.3 that

.OÔj Li}
19,0 9,)

1 5
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In Example 5.1, the asymptotic distribution of the MLE ha.s an inflated variance, due to the
departure from strict unidimensionality, but the asymptotic posterior does not. Moreover, careful
examination of Theorem 3.1 and Theorem 5.1 makes it clear that the asymptotic distribution of
the MLE is always potentially sensitive to any "local dependence" in the data, even when dE = 1
(Definition 2.2) holds, while the asymptotic posterior distribution under dE = 1 never is. Clarke and
Junker (1991) also examine this phenomenon in some dE > 1 situations. It is widely believed that
the two paradigms, likelihood-based inference and posterior-based inference, are philosophically
different buz "asymptotically the same", except in bizarre situations. But the perfectly reasonable
thsire to analyze IRT data using unidimensional models that are tolerant of minor violations of
strict -unidimensionality has lead us into a situation in which the asymptotics come out differently,
even for "typical" cases. How can we make sense of this?

On the one hand, the LI-based MLE Oj is really an M-estimator with a particular choice of
objective function, namely the product of the one-dimensional data marginals of i/j, which we have
denoted qj. Thus we may interpret the asymptotic distribution of the M-estimator lb as a measure
of estimation error under vj without difficulty; in particular we need not wsume that the data
actually came from qj to arrive at this interpretation.

On the other hand, our approximation to the LI-based posterior shows that it concentrates at
the LI-based M-estimatorcf. equation (22)but its "asymptotic rate of concentration" is harder
to interpret: LI-based asymptotic posterior standard errors say how much the LI-based posterior
is concentrated around the M-estimator, but not how much the LI-based posterior is concentrated
around the 0 which "generated" xj. If an LI model really held, then Bayes' rule would allow us to
interpret the LI-based posterior, and hence its asymptotically normal approximation, in the usual
sense of updating belief about where 0 was after looking at the data. If LI does not hold, then we
cannot appeal to Bayes' rule for this interpretation, and the LI-based posterior is interesting only
because it corresponds to what is done in practice. Perhaps the only justifiable interpretation of

is a counterfactual: "If LI were true, this is where we would think 9 was."
Although both MLE and Bayes paradigms lead to consistent estimators when the LI-based like-

lihood qj is substituted for the true dependent likelihood vj, correct calculation and interpretation
of the variability of the estimators depends on a more careful analysis of the stochastic behavior of
the data-generating mechanism. Detecting situations in which this must be done is the major goal
of the work reported in Sections Section 6 and Section 7.

6 A global index of unidimensionality
Stout (1987) proposes a statistical test of unidimensionality for binary IRT data, which has been
further investigated by Stout and Nandakumar (1987, 1989, 1991a, 1991b). The test statistic is
based on a quantity which may be interpreted as an estimate of the measure

j
Q k 2 ) iCoy (X1,Xj10)If(9)0

1<t<j<J

of unidimensionality of IRT data. Note that under di, = 1 the covariances are identically zero, so
that cj Es 0. Under dE = 1, the covariances tend to zero as J grows, and hence Ej A: 0 for dE = 1
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data. If the data is dramatically multidimensional, the covariance will be prediminantly nonzero
and we expect cj 0. This measure can be estimated directly with the index

- E Nk( icov k)i
k=0

where X4- is the total score on the whole test, Nk is the number of examinees with total score k
out of J on the whole test; and the estimate Coy (Xi, XJIX+ = k) is obtained in the usual way
as (1/Nk)Enlv!1(zn1 Yi)(xnj Yi), with ; = (1/Nk)EnN-hi zni (the SUMS extending only over
examinees in the kth cohort).

The ideal behavior of this index should be

6 0 if dE = 1;

cj > 0 if dE > 1.

Initial study of this index showed that i3 was greatly inflated in unidimensional cases. The inflation
could be attributed to either of two causes: some covariances were nonzero because of natural
random variability in the data; and others were nonzero because, in many strictly unidimensionai
models, Cov (Xi, XX = k) < 0 may occur even though Coy (Xi, Xile = 9) 0 V 9 (see Junker
(1991a) for a theoretical discussion of this point). Since the absolute values of the covariances are
summed in calculating the index 6, these latter negative covariances, which are in fixt due to
unidimensionality, were counted against unidimensionality in the index.

To remedy the situation, the following four-step construction was formulated:

1. Perform a principal components factor analysis of the tetrachoric correlation matrix and
retain the list of second factor loadings, { Ai2 : j = J}.

2. Cast out individual items XI for which lAj21 M for some fixed cutoff M.

3. For each k = 0, J, obtain covariance estimates Cov (Xi, XilX+ = k) for all the item pairs
left after applying Step 2. (Note: X+ is formed from all the items, but only covariances
among the items remaining after Step 2 are calculated in each X4. cohort.)

(a) If At2. Al2 has the same sign as the estimate Cov (Xi, X7IX+ = k), retain this covariance;
otherwise cast it out.

(b) Calculate

= EE Icov pc,,,yitx+ =
remaining pairs

where the sum is over all those pair remaining after Steps 2 and 3a.

4. Calculate the new index

= -N- E NkiJ(k).
k=0

7
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A rationale for this construction is most easily seen by contrasting a strictly unidimensional
test with a test consisting of two strictly unidimensional subtests, say half "math" items and half
"verbal" items. In the strictly unidimensional case, the first factor of a principal-components factor
analysis of the tetrachoric correlations will be close to the true ability factor underlying the test, and
the second factor will pick up only random variation in the data. Thus many of the second factor
loadings Ail should be quite small; these items are automatically dropped from the analysis by Step
2. Many pairs of the remaining items will have Cov (Xi, Xi1X+ = k) < 0, and approximately half
of these should be dropped because the "random" second factor loadings should satisfy Ai2 j2 > 0
about half the time. Thus most of the covariances are not included in the calculation in Steps 3b
and 4, and therefore I j 0 in the unidimensional case.

In the case of two different, strictly unidimensional subtests, the first factor of a principal-
components factor analysis of the tetrachoric correlations will be a general factor correlating highly
with the number-right score. The second factor will be a "contrast" (or bipolar) factor for which
items in one subtest, say the "math" items, will load positively; and items in the other subtest,
say "verbal" items, will load negatively. A few items will be cast out in Step 2 again because they
do not load heavily enough on the contrast factor. Of those remaining, consider separately the
cases Ai2 Aj2 > 0 and As2 Al2 < 0. If the product is positive, both items probably come from the
same subtest and we expect Cov (Xi, Xi1X+ = k) > 0 (since Xi. is summed over both subtests it
is measuring "Omath everbal"; if the items are both "math", the "verbal" component of X.4. will
tend to make the covariance positive, and vice-versa). We would like to keep this covariance in the
calculation for ij and this is what Step 3a does. On the other hand, if the product is negative,
the items probably come from different subtests and we expect Coy (Xi, XiIX+ = k) < 0 (this is
the non-unidimensional behavior that tests of "conditional association", Holland and Rosenbaum,
1986, are designed to detect). We would also like to keep this covariance in the sum, and Step 3a
does this for us too. Thus most of the covariances are included in the calculation in Steps 3b and
4, and therefore ij > 0 in the non-unidimensional case.

Preliminary simulation and real-data studies with the index ij are quite promising, as Tables 1
and 2 show. In Table 1, the first simulation marked "d = 1" is based upon a two parameter logistic
model with discriminations a; N(1.28, (0.8)2), sampled until 0.5 < ai < 3; and difficulties
bi N(-0.12,(0.84)2), sampled until 3 < bi < 3. The simulations marked "d = 2" are based
on tests consisting of two pure subtests with correlation p01,02 = 0.3 between traits, and item
parameters generated according to the same distributions as in the d = 1 case, except as noted.
The simulations marked ASVAB AR. and ASVAB AS are generated according to the three parameter
logistic model, using the fixed item parameter estimates for particular administrations of the Armed
Serv ices Vocational Aptitude Battery, Arithmetic Reasoning and Auto Shop sections, attributed
to Bock by Nandakumar (1987).

The most striking aspect of Table 1 is the marked contrast in the values of ij between the
one- and two-dimensional cases. This certainly supports the rationale behind the construction of
ij above. It is also interesting to note the progression of values of the index as the second factor
loading cutoff value Al increases from 0.0 to 0.2. Clearly, in this range, increasing M improves
the performance of ij in the unidimensional case without degrading its performance on strongly
two-dimensional data. By increasing M to 0.2, we are able to effectively decrease the propensity

1 8
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Simulated data sets M: .00 .10 .15 .20

J N 1001j
.

d = 1 40 2000 .84 .21 .15 .10

d = 2, a. , 0.8 20+20 2000 2.29 2.29 2.22 2.14
d = 2, a. = 0.6 20+20 2000 2.68 2.68 2.68 2.68
d = 2, a. = 0.4 20+20 2000 2.38 2.38 2.38 2.38
ASVAB AR (d = 1) 30 2000 .72 .49 .20 .06

ASVAB AS (d = 1) 25 2000 .75 .16 .07 .05_,

Table 1: ij, applied to simulated data sets.

Real data sets M: .00 .10 .15 .20

J N 100ij
ACT F298 (math) 40 2491 .94 .55 .25 .07

ACT F29C (math) 40 2494 .96 .52 .26 .10
AR 10 (ASVAB) 30 1984 .74 .28 .16 .04
AR 12 (ASVAB) 30 1961 .74 .23 .17 .11

Table 2: ij, applied to real data sets.

for ma'..:ing a Type I error without noticably affecting Type II error.
The ij index has also been applied to some real data sets, with the results in Table 2. The first

two lines of the table are from the Mathematics section of the ACT (American College Testing)
Assessment, Forms 29B and 29C. The next two lines are Arithmetic Reasoning sections of the
ASVAB.

These preliminary results show that ij is a promising global index of unidimensionality. Clearly
there is much more work to be done in understanding the performance of the index through sim-
ulation experiments and in applying the index to real data sets. It would also be interesting to
compare ij to the Q3 measure of LI model fit developed by Yen (1984). A more finely-tunable
version of ij, in which the "cutoff" parameter M may take different values depending on the signs
of Al2 and Aj2, will also be explored in future work.

7 A local index of unidimensionality
An alternative to developing a single global index of unidimensionalty is to try to develop an index
or diagnostic criterion which helps us understand the nature of violations of strict unidimensionality,
or identifies areas of the "unidimensional" ability scale in which al) lity estimation based on strictly
unidimensional assumptions may not succeed. The index Cj(8) as l'escribed in (9) is such an index.

19
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Under strict unidimensionality the asymptotic standard error of the MLE, for example, is

SE(ej) = 1JVar (,710)

= 11/77(11),

where 9 is the true ability value for the examinee "generating" the response sequence from which
0j is calculated. However we saw in Section 3 that when strict unidimensionality fails, a correction
using C,7(0) from (9) is required:

sElej). ip(7j4-06;2.1(0).

Another way to measure the change in accuracy of ability estimation is to consider a corrected
information function

7,1(02
=

7.1(0)+Cj(9)
Thus Cj(0), if it could be estimated, would help us to interpret exactly when ability estimation
based on a unidimensional model behaves as though the data were strictly unidimensional. Indeed
there are three interesting cases:

I. When dL = 1 holds exactly, Cj(0) a 0 for all 0, and the "corrected" standard error and
information functions reduce to the familiar traditional forms. More generally if Cj(0) hovers
near zero over the range of values of 9 of interest, then it would seem reasonable to pursue
ability estimation assuming that the data strictly satisfies di, = 1.

II. If Cj(0) is clearly distinct from zero, but not large for most values of 9 of interest, it may be
desirable to continue to use unidimensional ability estimation methods, but use the corrected
standard error SE* in assessing the accuracy of ability estimation.

III. If Cj(0) is quite large for many values of 0 of interest, it is probably most desirable to abandon
unidimensional modeling completely and develop a multidimensional model for the data set.

In order to estimate Cj(0) and SE*, the following three quantities must be estimated (see (9)
on p. 6):

1. Item characteristic curves P3(0);

2. Derivatives of item log-odds-ratios Aii(0) = P;(0)/(P3(0)(1

3. "Local" item covariances Coy (Xi, X110).

Estimates of the average test information lj(0), the usual asymptotic MLE standard error SE,
Cj(0) itself, and the corrected standard error SE* may be obtained as straightforward combinations
of the above quantities.

20
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In general there are two ways to tackle this problem. One is to explicitly model for the antic-
ipated dependence in the data. This is the approach of Gibbons, Bock and Hedeker (1989), for
example. Consider a multidimensional compensatory IRT model with normal ogive item character-
istic curves (ICC's). An appropriateand equivalentreformulation of the problem is to consider
underlying "propensity variables" Y1, Yz, Y.!, such that

= 1 if and only if Y >

where, Y1, Y2, , Yj are independent, N(Ef random variables, given the mul-

tidimensional latent trait if = ...,8d); and if N(Q,/dxd). The thresholds y, correspond
to difficulty parameters, and the coefficients Ai, correspond to discrimination parameters. (This
is also the formulation of item factor analysis which underlies the factor analysis of tetrachoric
correlations in Section 6 above, in which the Aim are the re' factor loadings). Gibbons, Bock
and Redeker (1989) consider a slightly different formulation of the problem, in which 0 N(0,1)
is unidimensional, and (Y1, ..., Yj) AA), E), given 0, for some covariance matrix
E. Clearly, if the Ai, and E could be estimated, estimates of CAO), SE and SE* would follow
naturally from these and the known normal ogive form of the ICC's. However in our early attempts
to use this model, we have found the parameter estimates to be too unstable, especially for tests
of more than a handful of items, to be of use. Nevertheless this is an interesting and attractive
approach which ought to receive more attention in the future.

A second approach to the problem of estimating ICC's and local item correlations for possibly
non-unidimensional data may be based on the nonparametric rank regression methods of Ramsay
(1990). Two important observations underlie Ramsay's approach. The first is that we can sidestep
the usual identifiability problem for the ability d;stributionone aspect of which is that ability
estimates are only determined up to rank ordering in the usual IRT formulationsby fixing the
distribution of ability (estimates) in advance and allowing quite general ICC shapes in order fit the
observed item response distribution. Ramsay's second observation is that very simple ability esti-
mates, based on number-right scores and similar quantities, are quite adequate as "initial guesses"
for constructing ICC estimates. This second observation harmonizes nicely with the observation
of Stout (19(2,0) that, under essential unidimensionality, 75,-'(Xj) 0, as well as with the more
traditional view that when an unrotated principal-components factor analysis of binary items is
performed, the first factor (corresponding to the largest eigenvalue) is usually strongly related to
the total test score on the test (whether or Lot the test is unidimensional).

In our implementation of Ramsay's method, we obtained approximately N(0, 1)-distributed
ability estimates by inverse-probability transforms of the ranks of examinees' number-right scores.
Let us call these crude ability estimates t1, t2, tN. Also, let w(t) be the standard normal density.
Then Pi(9) can be estimated nonparametrically using the Nardaraya-Watson kernel regression
formula

pio) znjw((tn 0)/h)Eni=

EL w((tn 8)/h)
where h > 0 is a "window width" or "bandwidth" tuning parameter, and (xi,x,,2,...,x,a) is the
observed response pattern of the nth examinee, n = 1, , N. The derivatives 11(0) may be crudely
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estimated by considering equally-spaced points si, sK in the interval [-3, 3] and calculating the
difference quotients

pf(sk) Pj(ski) Pj(8k)
Sk+1 Sic

(More sophisticated kernel estimates of the derivatives can be obtained, but these crude estimates
were quick and adequate for onr initial investigations.) Finally, Ramsay's method was extended to
calculate the local item covariances according to the formula

EN(XXilt)= x jw((tn 0)1h)n=1 n n

In our work, all quantities were evaluated at K = 32 equally-spaced points 31,32, , 332 in [-3,3],
with window-width h = 0.3. Calculations were performed in the statistical package "New S" on
DECstation 3100's. With default memory allocations in S, data sets with up to N = 500 examinees
and up to approximately J = 50 items could be examined. Work on Cj(0) is still in preliminary
stages, but we provide some illustrative examples.

To illustrate the method, let us simulate one- and two-dimensional tests with J = 32 items
and N = 500 examinees, with compensatory two parameter logistic item parameters as in Table 3
(examinee abilities in all dimensions are sampled from N(0, 1) as usual). Note that the one-
dimensional item parameters are the average of the two-dimensional parameters.

Since this work is in part a replication of Ramsay's method it is interesting to see how well
the rank regression method recovers ICC's. In Figure 1 we have graphed a few one dimensional
logistic ICC's (symbol ".") using the parameters on the left in Table 3. Overlaid on these are the
unidimensional rang regression ICC estimates from N = 500 simulated examinees taking the one
dimensional items in Table 3 (symbol "*"). It seems that the rank regression ICC estimates recover
the original one dimensional ICC's quite wnll.

On the other hand, consider Figure 2. f he ICC's marked ".' are the marginal ICC's Pi(91) =
f Pi(91,02)w(82191)(192, where Pi(81, 02) are compensatory logistic ICC's using the item parameters
on the right in Table 3. Overlaid (symbol "*") are the unidimensional rank regression ICC estimates
from Raznsay's method (again using N = 500 simulated examinees). As expected, the estimated
ICC's in Figure 2 do not match the theoretical ICC's nearly as well as in Figure 1. (This assumes
that ei is the ability we intend to measure; in the future we would prefer to compare the rank
regression ICC estimates with marginal ICC's for Wang's (1986, 1987) "reference composite").

To illustrate the summands for our estimate of CAB) we may consider Figures 3 and 4, in
which rank-rer anion estimates of the covariances Coy (Xi, Xj19) (symbol ".") and the "weighted"
covariances A:(0)Vi(9)Cov (Xi, X119) (symbol "*") are depicted. Since the data for Figure 3 comes
from a strictly unidimensional model, we know that the theoretical value of Coy (Xi, Xj18) is zero
in Figure 3 (which is shown as a horizontal line). The estimated covariances do indeed hover around
zero (note that the vertical scale typically ranges from about 0.04 to +0.10).

On the other hand, we expect Coy (Xi, Xii0) to be posithe in Figure 4, because the data comes
from a two dimensional model and we are only conditioning on a one-dimensional O. The estimated
covariances in Figure 4 do seem to range about twice as far from zero, on average, as the covariance
estimates for unidimensional data did. The fact that the estimates sometimes dip below zero in
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One dimensional data parameters

j ai c2

1 1.54 0.453 0

2 0.75 0.404 0

3 0.78 0.038 0

4 1.49 -0.185 0

5 1.06 -0.331 0

6 0.96 0.023 0

7 0.99 -0.093 0

8 1.20 -1.104 0

9 1.38 0.300 0

10 1.28 0.106 0

11 1.43 0.327 0

12 1.47 -0.322 0

13 1.20 -0.339 0

14 1.80 -0.355 0

15 1.87 -0.174 0

16 1.38 -0.212 0

17 1.67 -0.089 0

18 1.43 -0.499 0

19 1.45 -0.114 0

20 1.01 -.0.094 0

21 1.10 -0.097 0

22 1.85 -0.365 0

23 1.48 -1.062 0

24 0.74 0.015 0

25 1.46 -0.250 0

26 1.54 -0.542 0

27 1.78 -0.265 0

28 1.35 -0.573 0

29 1.11 0.013 0

30 1.52 0.537 0

31 1.00 -0.082 0

32 1.00 -0.163 0

J = 32, N = 500, d = 1

Two dimensional data parameters

612_ bi

1 1.54 1,54 0.0201 0.9254 0

2 0.58 0.91 0.5282 0.2794 0

3 0.70 0.87 -0.0868 0.1632 0

4 1.45 1.53 -0.0400 -0.3299 0

5 1.02 1.09 0.5738 -1.2352 0

6 1.02 0.90 -0.0441 0.0903 0

7 0.99 0.99 0.8639 0.6787 0

8 1.87 0.53 -1.3073 -0.9015 0

9 1.58 1.19 0.8938 -0.2934 0

10 1.02 1.55 0.1484 0.3596 0

11 1.53 1.34 0.3824 1.0370 0

12 0.81 2.14 -0.7693 0.1253 0
13 0.62 1.78 -0.8339 0.1558 0

14 1.87 1.74 -0.3210 -0.3886 0

15 1.59 2.14 -0.1208 -0.2263 0

16 1.75 1.02 0.0816 -0.5054 0

17 1.64 1.71 0.3706 0.1931 0

18 1.93 0.93 -1.3920 0.3943 0

19 1.44 1.46 0.4418 -0.6704 0

20 0.87 1.15 0.0551 -0.2432 0

21 1.05 1.14 0.4246 -0.6180 0

22 2.03 1.67 0.6099 -1.3403 0

23 1.88 1.09 -1.3022 -0.8211 0

24 0.82 0.65 0.6171 -0.5866 0

25 1.87 1.05 -0.0511 -0.4483 0

26 1.71 1.37 -0.8606 -0.2236 0

27 2.14 1.42 -0.1327 -0.3973 0

28 1.26 1.43 0.7932 -0.3521 0

29 1.29 0.93 -0.0478 0.0741 0

30 1.78 1.26 0.5742 0.5003 0

31 1.32 0.69 -0.6269 0.4628 0

32 0.65 1.35 -0.3338 0.0078 0

= 32, N = 500, d = 2, p = 0

Table 3: Item parameters for illustration.
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both Figures 3 and 4 is probably related to the tendency for Coy (X1, XiIX+) to be negative in
typicrl IRT data (see Junker, 1991a; as well as the discussion of the ASVAB illustration below).

Estimates of Cj(0) for the two data sets are compared in Figure 5. Note how much higher.Cj(0)
is for the two-dimensional data set than for the one-dimensional data set. In this case the Cj(0)'s
are easy to compare, since they are based on data generated from similar models (both use logistic
ICC's, and the one-dimensional parameters are the averages of the corresponding two-dimensional
parameters) which differ only in latent space dimensionality.

The extent to which the unidimensional information and asymptotic MLE standard errors are
too optimisic for the _two-dimensional data set is illustrated in Figure 6. The graph on the left
in Figure 6 is again Cj(0) for this data set. In the center and rightmost graphs in Figure 6, the
uncorrected SE and information functions are plotted with the symbol "." and the corrected SE°
and information functions are plotted with "*". The vertical scale for the center graph ranges from
2.0 to 10.0 and for the right graph from 0.0 to 1.2.

Let us turn to another illustration. We have simulated N = 500 examinee response strings to
three parameter logistic items whose parameters were estimated from the Arithmetic Reasoning and
Auto Shop sections of the Armed Services Vocational Aptitude Battery (these are the same item
parameters as used for the ASVAB simulations in Table 1 above). Figures 7 and 8 illustrate the
uncorrected and corrected MLE standard errors for these ASVAB-AR and ASVAB-AS data sets.
Once again the leftmost graph is our estimate of Cj(0) and the middle and rightmost graphs contrast
the (estimated) uncorrected SE and informations function (symbol ".") with the (estimated) Cj(0)-
corrected quantities (symbol "*"). In both figures, most of the "action" in Cj(0) is in the range
0.1 to 0.3. The MLE standard errors hover around 2.0, which seems a bit high, but it is worth
noting that the corrected standard errors are not much different from the uncorrected ones. The
story is similar for the corrected and uncorrected information functions, which effectively range
from about 0.0 to 1.0 or so. Thus, as one would hope for unidimensional data, Cj(0) did not
"overcorrect" the unidimensional SE and information estimates.

The fact that Cj(0) is negative for moderately low values of 0 in Figures 7 and 8 is interesting:
as observed above in Section 6, Coy (Xi, XilX) tends to be negative for unidimensional data; see
Junker (1991a). The presence of the nonzero guessing parameter tends to make low-ability responses
independent (without having to condition on 8) and this mak iegative values for Coy (Xi, XjIX+)
even more likely. (On the other hand, the extreme positive va s of Cj(8) near 9 = 3 are probably
due to poor estimates of A'j(8).) The standard error and information graphs in Figures 7 and 8
suggest the uncorrected quantities are adequate for measuring variability of MLE ability estimates
for these items.

Our last illustration is a simulated paragraph-comprehension data set. The test consists of eight
5-item testlets (this nice term comes from Wainer and Lewis, 1990). The item response functions
were compensatory logistic, with the first five items loading only on 01 and 821 the next five items
loading only on 01 and 03, the next five on 01 and 04, and sr on, such that nine latent traits are
needed to achieve local independence in this model. The discriminations a.; in each dimension
were sampled from N(1.20, (0.8)2) until 0.5 < cti < 3 and difficulties 6, in each dimension were
sampled from N(-0.12, (0.84)2) until 4 < bi < 4. There were no guessing parameters. Recall
from Example 5.1 that a test constructed in this way will be essentia:4 unidimensional, dE = 1,
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with respect to the dominant dimension 01. As usual, abilities in each dimension were generated

to be i.i.d., N(0,1).
In Figure 9, rank regression ICC estimates are compared, for a handful of items, with marginal

91-WC's (here Oi is undoubtedly the ability "intended to be measured," though again a comparison
with Wang's reference composite may be more appropriate). The rank regression ICC's match the
marginal ICC's with respect to the dominant dimension el quite well. This suggests that for at
least some dE = 1 data sets, ICC's with respect to the dominant dimension can be recovered.

Figure 10 gives a graph o'. Cj(0) based on these ICC estimates, and compares uncorrected

(symbol ".") and corrected (symbol "*"). measures of the variability of MLE ability estimates
based on the rank regression ICC's. Here Cj(0) hovers between about 0.10 and 0.25, the standard
errors hover just below 2.0, and the information functions live mostly between 0.2 and 0.4. Though
there clearly would be some gain in employing a multidimensional model for this type of data, it
is debatable whether it would be worthwhile, especially if the desire is to measure the dominant
dimension only.

Comparing especially Figures 6, 7, 8 and 10, it appears that OM) is a promising local index
of unidimensionality. Clearly Cj(0) depends heavily on the local behavior of ICC's with respect
to the dominant dimension being measured by the test, and especially on item parameters such as
discrimination and guessing. Much more work needs to be done to understand this sensitivity and
distinguish it from sensitivity to true multidimensionality in the data. It would also be interesting
to run parallel studies of Cj(8) and the ij index of Section 6, to see if they detect the same, or
different, features of multidimensionality in item response data. Ultimately ors goal is a prescriptive
one: do use MLE, don't use MLE, do trust asymptotic normality, etc., depending on the size(s) of
the indices. The work reported here suggests that such a goal should eventually be achievable.

References
Aitchison, J. (1975). Goodness of prediction fit. Biornetrika, 62, 547-554.

Albert, J. H. (1991). Bayesian estimation of normal ogive item response curves using Gibbs sam-
pling. Paper presented at the Workshop on Bayesian Computation via Stochastic Simulation,

Ohio State University, Columbus Ohio, February 15-17.

Birnbaum, A. (1968). Some latent trait models and their use in inferring an exarninee's ability,
in Lord, F. M. and Novick, M. R. (1968). Starstical Theory of Mental Test Scorrs. Addison-
Wesley. Reading, Massachusetts.

Chung, H.-H. (1990). Asymptotic posterior normality of IRT models. Paper presented at the ONR
Contractors' Meeting on Model-Based Psychological Measurement, Portland State University,
Portland Oregon, June 16-19.

Clarke, B. S. and Junker, B. W. (1991). Inference from the product of marginals of a dependent
likelihood. Submitted to the Journal of the American Statistical Association.

31



Structural Robustness in IRT 30

0

0

f

.2 -1 0 1 2

17

32

0

t

10

.:"...

.0.1

/ 1

-2 .1 0

31

2

1./

-2 4 0 1 2

3'

Figure 9: One-dimensional ICC's for simulated paragraph comprehension test.



Structural Robustness in IRT 31

11.In

\./
. /

Figure 10: Accuracy of unidlin.nsional ability estimates for simulated paragraph comprehension
test.

Cox, J. T. and Grimmett, G. (1984). Central limit theorem for associated random variables and
the percolation model. Annals of Probability, 12, 514-528.

Csiszar, I. (1975). Information type measures of difference of probability distributions and direct
observations. Studia Scientiarum Mathematicum Hungarico, 2, 299-318.

Drasgow, F. and C. K. Parsons (1983). Application of unidimensional item response theory modeis
to multidimensional data. Applied Psychological Measurement, 7, 189-199.

Dvoretzky, A. (1972). Asymptotic normality for sums of dependent random variables. Proceedings of
the Sixth Berkeley Symposium on Mathematical Probability and Statistics, Volume II, 513-535.

Gibbons, R. D., Bock, R. D. and Hedeker, D. R. (1989). Conditional dependence. Final Research
Report. Office of Naval Research and Illinois State Psychiatric Institute. Chicago, Illinois:
University of Illinois at Chicago.

Holland, P. W. and Rosenbaum, P. R. (1986). Conditional association and unidimensionality in
monotone latent trait models. Annals of Statistics, 14, 1523-1543.

Iosifescu, M. and Theodorescu, M. (1969). Random processes and learning. New York: Springer.
Verlag.

Jannarone, R. J. (1986). Conjunctive item response theory kernels. Psychometrika, 51, 357-373.

33



Structural Robustness in IRT 32

Junker, B. %V. (1488). Statistical aspects of a new latent trait model. Ph.D. dissertation, Department
of Statistics, University of Illinois. Champaign, Illinois.

Junker, B. %V. (1991a). Conditional association, essential independence and monotone unidimen-
sional item response models. Submitted to the Annals of Statistics.

Junker, B. W. (1991b). Essential independence and likelihood-based ability estimation for polyto-
mous items. To appear, Psychometrika, 56.

Nandakumar, R. (1987). Refinement of Stout's procedure for assessing latent trait unidimensional-
ity. Ph.D. dissertation, School of Education, University of Illinois. Champaign, Illinois.

Nandakumar, It. (1989). An improved statistical test for assessing essential unidimensionality in
binary latent trait models. Submitted, Journal of Educational Statistics.

Nandakumar, R. (1991a). Assessing dimensionality of a set of itemscomparison of different ap-
proaches. Paper presented at the Annual Meeting of the American Educational Research As-
sociation, April 1991, Chicago IL.

Nandakumar, R. (1991b). Traditional dimensionality vs. essential dimensionality. To appear, Jour-
nal of Educational Measurement, 28.

Newman, C. M. and Wright, A. L. (1982). Associated random variables and martingale inequalities.
Z. IVahrscheinlichkeitstheorie verw. Gebiete, 59, 361-371.

Ramsay, J. 0. (1990). A kernel smooth' -, approach to IRT modeling. Talk presented at the Annual
Meeting of the Psychometric Society at Princeton New Jersey, June 28July 1, 1990.

Reckase, M. (1990). Unidimensional data from multidimensional tests and multidimensional data
from unidimensional tests. Paper presented at the Annual Meeting of the American Educational
Research Association, April 1990, Boston MA.

Spray, J. A. and Ackerman, T. A. (1987). The effect of item response dependency on trait or ability
estimation. ACT Research Report Series #87-10. American College Testing Program. Iowa
City, Iowa.

Stout, W. F. (1987). A nonparametric approach for assessing latent trait unidimensionality. Psy-
chometrika, 52, 589-617.

Stout, W. F. (1990a). Latent ability multidimensionality and an aymptotic item response theory
modeling approach. Paper presented at the Annual Meeting of the American Educational
Research Association, April 1990, Boston MA.

Stout, W. F. (1990b). A new item response theory modeling approach with applications to unidi-
mensionality assessment and ability estimation. Psychometrika, 55, 293-326.

Tsutakawa, R. K. and Soltys, M. J. (1988). Approximation for Bayesian ability estimation. Journal
of Educational Statistics, 13, 117-130.



Structural Robustness in IRT 33

Wainer,_ H. and Lewis, C. (1990). Towards a psychometrics for testlets. Journal of Educational
Measurement, 27, 1-14.

Wang, M.-M. (1986). Fitting a unidimencional model to multidimensional item response data. Pa-
per presented at Office of Naval Research Model-Based Measurement Contractors' Meeting,
Knoxville, TN, April 28, 1986.

Wang, M.-M. (1987). Estimation of ability parameters from response data that are precalibrated with
a unidimensional model. Paper presented at the Annual Meeting of the American Educational
Research Association, Washington, DC, April 22, 1987.

Walker, A. M. (1969). On the asymptotic behaviour of posterior distributions. Journal of the Royal
Statistical Society, Series B, 31, 80-88.

Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the
three-parameter logistic model. Applied Psychological Measurement, 8, 125-145.

35


