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Abstract

Some item response theory (IRT) techniques “work™ in applications even though the usual
structural IRT assumptions, and local independence (LI) in particular, do not hold. When the
departure from local independence is too great, traditional procedures will break down. Although
violations of strictly unidimensional, montone, locally independent latent structure can sometimes
be modeled and exploited, many situations call for a unidimensional approach that is tolerant of
minor violations of strict unidimensionality (c.g., Drasgow and Parsons, 1983; Spray and Ackerman,
1987; Reckase 1990). Departures from strict unidimensionality can be detected, and the influence of
these departures on a variety of LI-based ability estimators can be measured. A convenient universe
of models near the LI model in which to investigate structural robustness issues is provided by Stout
(1990b)’s essential unidimensionality modeling approach. In this paper we survey theoretical results

underpinning this approach, and report on work in progress to apply these results in practical
settings.
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*Research supported in part by grants ONR-N00014-90-J-1984, ONR-N00014-91-J-1208, and NIMH-MH15758.

Some of the work reported here is joint with coauthors Bertrand S. Clarke (Purdue University) and William F. Stout
(University of [llinois).

2
BEST COPY AVAILABLE



Structural Robustness in IRT 1

Contents
1 Introduction 2
2 Essential independence 3
3 Structural robustness and maximum likelihood 4
4 The best local independence modeal when LI fails 7
5 Structural robustaess and posterior distributions 8
5.1 Another route to MLE consistency under EI . . . . . . ... .. ... .. ... ... 9
5.2 Asymptotic posterior normality under EI . . . .. ... ...... ... ..o 12
6 A global index of unidimensionality 14
7 A local index of unidimensionality 17




Structural Robustness in IRT 2

1 Infroduction

Traditional uniu.uensional monotornic Item Response Theory (IRT) provides a useful but overly
simple model of examinees’ responses to standardized test questions. For example, Drasgow and
Parsons (1983) assess the shortcomings of the LI-based unidimensionality approack to IRT as
follows:

One way in which most current item response theories (IRTs) are surely incorrect is
in their assumption of a unidimensional latent trait space ... [IJt seems clear that
researchers should be more concerned with the robustness of estimation techniques to
minor violations of dimensionality assumptions than with the possibly never-ending task
of measuring all latent variables that underlie responses in a particular content domain.

We are compelled to understand this structural robustness question because it is central to
current IRT practice. It is widely accepted that the traditional IRT models do not exactly reflect
the item response process; yet because the traditional inferen-e procedures (in the form of computer
programs such as LOGIST and BILOG) are so accessible, traditional IRT is applied to item response
data anyway. Can we trust the inferences from these misspecified models?

Although violations of strictly unidimensional, d; = 1, structure—i.e., models satisfying the
stronger traditional assumptions of Incal independence (LI) and monotonicity (M)—can sometimes
be modeled and exploited (whether by introducing new “dependence” parameters as in Jannarone
(1986) and Gibbons, Bock and Hedeker (1989), or by an explicitly multidimensional approach
as that of Reckase (1990)), many situations call for a unidimensiona! approach that is tolerant of
minor violations of strict unidimensionality (e.g., Drasgow and Parsons, 1983; Spray and Ackerman,
1987; Reckase 1990). It is also important to note that an “acceptable” level of departure from strict
unidimensionality may depend on the particular application; for example, ability rank estimates
on a particular section of the Graduate Record Examination may be more tolerant to violations of
unidimensiorality than detailed item analysis of the same items.

Departures from strict unidimensionality can be detected, and the influence of these departures
on a variety of LI-based ability estimators can be measured. In this paper we survey theoretical
results underpinning this approach, and report on work in progress to apply these results in practical
settings. A convenient universe of models near the LI model in which to investigate structural
robustness issues is provided by Stout (1990b)’s essential unidimensionality, dg = 1, modeling
approach. The main ideas of essential independence, summarized in Section 2, are due to Stout
(1987, 1990). The approach ‘o structural robustness for maximum likelihood estimation of ability
outlined in Section 3 is due to Junker (1991b). The more general statistical considerations of
Sections 4 and 5 represents the joint work of Clarke and Junker (1991). Finally the work on
two new indices of unidimei.sionality described in Sections 6 and 7 represent ongoing joint work of
Junker and Stout. Owing to the “survey” nature of this paper, once Section 2 is rezd the remaining
sections may be read in any order.
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2 Essential independence

A successful approach to identifying unidimensional latent structure outside the strict LI/M frame-
work has been pursued in the seminal work of Stout (1987) and Stout (1990b), and extended by
Junker (1988) and Junker (1991b). The main idea, which borrows from both the “large sample
theory” tradition in mathematical statistics and the “factor analysis™ tradition in psychometrics,
is that of essential independence.

For any (infinite) sequence of items X = (Xj, X3, X3,...) (dichotomous or polytomous), we
define bounded item scores to be functions A;(X;) such that 3M < oo such that |4;(X;)| < M Vj.
In the special case that each X; takes on ordered, discrete values £;; < {;2 < ..., we will call a
bounded item score an ordered item score if moreover A;(§jx) < A;(€j(k+1)) VK (in the dichotomous
case, A;(0) < A;(1), for example). Also, we define a bounded test score to be the average of the

first J bounded item scores A; = -},):3-’21 A;(X;).

Definition 2.1 The infinite item sequence X 1is essentially independent (EI) with respect to Q if

and only if _
Jler;o Var(Aj|@=0)=0 (1)

for all bounded test scores Aj.

It can be shown that therefore A4 is a consistent estimator of the “true score” A;(8) = E[4;|Q = 6],
as J — oo. In particular, for a sequence of dichotomous items X, EI implies that the proportion
correct score X consistently estimate values of the the test characteristic curve (TCC) Py(8), as
J — oo.

Definition 2.2 The item sequence X is essentially unidimensional, dg = 1, if and only if

El: X is EI with respect to a unidimensional ©; and

LAD?!: for every set of ordered item scores, the “true score” A;(8) is nondecreasing in
6.

If no such unidimensional © ezists, we write dg > 1.

All of the theoretical results in this paper apply to polytomously-scored—and in some cases
continuously-scored—items, but for simplicity we will focus mostly on the familiar dichotomous
case in which X; = 0 or 1.

When an item sequence has dg = 1 the true score A;(8) may be estimated with Ay and then
inverted to produce estimates § = A; (&) of @ itself; in particular, P;' (X ;) & 6 as J — 0o. The
notion of essential unidimensionality, dg = 1, should be contrasted with strict unidimensionality,
d;, = 1, under which both local i Jependence (LI) and monotone (M) increasing ICC’s are required.
In particular, any model satisfying LI also satisfies EI. See Stout (1990b) and Junker (1991b) for
detaiis.

14, AD” stands for locally asymptotically discriminating. There is a technical detail about the possibility of “flat”
true scores which need not concern us here. See Junker (1991b) or Stout (1990b) for detuils.
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The dg = 1 condition is built out of the good #-estimation properties of total test scores under
strict unidimensionality. The EI condition is explicitly designed to characterize unidimensional
behavior—the “driving” of X, by a single dominant trait #—under conditions other than local
independence. Nandakumar and Stout (Stout, 1987; Nandakumar, 1987, 1989, 1991a, 1991b) have
investigated the practical assessment of essential unidimensionality in a variety of finite-length tests
with minor violations of the d; = 1 representation.

3 Structural robustness and maximum likelihood

Stout (1990b)’s definition of essential independence covers a broad range of situations in which
one might wish to assert that the fundamental behavior of the data is unidimensional, although
“nuisance traits” prevent strict d;, = 1 from holding. The influences of these nuisance traits are
sufficiently small that it is tempting to use strictly unidimensional estimation techniques to estimate
the dominant (and interesting) trait, rather than to take an explicitly multitrait approach. For
example, maximum likelihood estimation of the dominant or target 8 can be examined in this light.

In the binary (dichotomous) case, in which X; takes the value C or 1 depending on the examinee’s
answer to the j** item, the d; = 1 likelihood is

J
PlX; =2;10=6)= [ A(O)™[1- P(0) ™, 2)
i=1

with monotone item characteristic curves (ICC’s) P;(6) = P[X; = 1|© = 6]. If the log-likelihood
is sufficiently smooth, the MLE must solve the likelihood equation

J
0= Ly(8s) = > Xi(0,)[X; - P(61)], (3)
j=1

where A;(6) = log P;(#)/(1- P;(8)) It should be noted that the “minimum discrimination” condition

LAD in Definition 2.2 plays a crucial role in the rigorous proof of consistency of 8;: LAD guarantees
that the average information function

J
1:6)= 3 2 MOP/6)> >0, (4)

j=1

as J — 0o. See Junker (1991b) for details.

Theorem 3.1 Let X be a dichotomous item sequence with sufficiently smooth ICC’s satisfying El
and ({). Then there ezists a sequence {8y : J > Jo} of roots of (3) such that

JE:&P[|é,-o|<e|e=a]=1, (5)

for every € > 0 (i.e., 65 = 6, given © = 6, a8 J — ).
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Indeed, (3) may be expanded as
SLy(0) = TLO) + (- OLIO) + 57 LY(E)

= Z,\'(o P(0)]+(t-o){JZA”(9[X P;(6)] - JZA(G)P’(G)}
=]

J—l
4ot = 8PS LY(E)
= op(1) = (t = 8) {Ts(8) + 0,(1) + O(2 ~ 0)}.

Note for example that, by Definition 2.1,

“Zf\’ (8)[X; - P;(8)] 2 0

J—l

as J — 0o. The other terms are handled similarly.

In general there are problems with multiple roots of the likelihood equation (3) when the problem
is set up in this manner; moreover it may be argued that a consistency result for a theoretical solution
to (3) is of no value in practice. Fortunately, the same method of proof shows that the familiar

practice of approximating a root of (3) by Newton’s method still leads to consistent estirators,
under EI.

Theorem 3.2 Suppose the assumptions of Theorem 3.1 hold, and let 8; be any sequence of con-
sistent estimates of 8, given © = 0. Then the Newton’s method improvement,

3(?1)
8y

e”

is also consistent for 8.

Followmg the remarks after Definition 2.2, an obvious candidate for the initial guess in Theorem 3.2
is 8y = P; J (71)

In the usual LI ability estimation theory, we expect that the sequence 8; will be asymptotically
normal and efficient,

J4(6; - 6) ~ AN(0,1/15(9)), (6)

as J — oo, where 7;(8) is the traditional test information function introduced in (4). A result like
(6) identifying the standard error of BJ is needed to do statistical inference using §;—or indeed,
merely to know how well to trust §; as an estimator of # for particular fixed J that arise in
applications. However, (6) may fail in the essentially unidimensional case in two interesting ways:
it may be that asymptotic normality holds but the asymptotic variance is no longer / 15(0)°1; orit
may be that asymptotic normality fails completely.
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From (3) and the above results, we see that the consistency ar.d asymptotic distribution of 8;
is tied up with the behavior of the centered weighted averages

le’,(o) = A;-4;0) (7)
= _Z‘a,[x P;(8)), (8)
J=l

with a; = A(8), where the dependence of a; on 8 does not matter since 8 is fixed. Once again, let

o3(8) = Var(4,|0)

1 J 2 J =1
= T;ZaEP,—(G)Il— + 37 2 2 #ia;Cov(Xi, X;| © = 6),
1=1 )=1J=1
and let )
=3 2.2 N(OX(0)Cov (Xi, X;16). (9)
1€ig <t

Theorem 3.3 Suppose that the assumptions of Theorem 3.1 hold for the item sequence X and the
latent trait ©. Also suppose, given © = 6, that in (8),

A;(8)] ~ AN(0,1). (10)

Finally, suppose R(J) is a function for which R*(J)C(8)/J remains bounded. Then,

TG R(J) 14(8) + Ca(8)
R(J)(8; - 8) ~ AN (o, ; TGy )

Moreover, if 85 is any estimator for which R(J )(é; — ) is bounded in probability, 65 from Theo-
rem 3.2 is also asymptotically normal with the same asymptotic variance.

Theorems 3.1, 3.2 and 3.3 are structural robustness results: a method of estimating ability
developed under dz = 1 is robust to violations of d; = 1 within the dg = 1 framework, in the sense
that it still converges to @ as test length J grows. However this robustness of consistency for 65 does
not extend to robustness of variability. Nonefficient and non-normal asymptotic error distributions
for 8; can be expected in many dg = 1 situations; the deviation from the “efficient” LI-based
standard error can be expressed in terms of the “index” C;(8). Further details, and extensions to
the polytomous case, may be found in Junker (1991b).

General conditions for asymptotic normality for dependent sums have been established by
Dvoretzky (1972); particular cases that seem useful include mixing CLT’s (losifescu and Theodor-
escu, 1969) and methods for associated random variables (Cox and Grimmett, 1984; Newman and
Wright, 1982). Once (10) is deemed acceptable, the asymptotic behavior of 6; is determined by
Cy(0). When Cy(0) is near zero, we can expect the items to behave as though LI were true; when
C;(9) is much larger, we should expect item behavior which can be effectively analyzed only with
a multidimensional model. We shall return to C;(8) and (9) in Section 7 below.
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4 The best local independence model when LI fails

One of the lessons of Section 3 was that it is possible to continue using d; = 1 methods when in fact
dr > 1 as long as dg = 1 holds with respect to the trait you want to measure. The construction
there makes a particular choice for the “unidimensional IRF’s” in a fictitious version of the LI
likelihood, namely the “marginal” IRF's in (4) suggested by Stout (1990b). Is this a good choice?
Can it be achieved in practice?

It is valuable to set out general forms of the models we are considering. The “ideal” random-
effects LI-based model for item response (and other) data in psychological measurement is a mixture
model

m(zs) = [rs(2s10) dF(O) (11)
where F is the distribution of ©, and r;(z; | 8) factors as
J
rs(zs16) = [ r; (25 19). (12)
J=1

In dichotomous IRT for example, r;(z; |8) = x;(8)%(1 — x;(8))!~%:, for some set of ICC’s x;(8),
but the formulation in (11) and (12) works for arbitrary observations X}, ..., X on each individual.
The main statistical task is inference about each individual’s unobserved # from each individual’s
observed z;, based on the particular form of the right-hand side of (12).

LI models are an attractive and convenient data analysis tool, and are often assumed even
though it may be agreed that (12) only approxiinately fits or reflects the mechanisms underlying
the data. Suppose the correct formulation is

m(z;) = / vy (zs10) dF(9), (13)

where the conditional model for X ; given 4 is some dependent v;(z; |8) whose structure is not
known in detail. How far could an analysis based on (11) and (12) go? It is useful to first know
what the “best possible” choice for r;(z; |6) is. We shall show that the best choice is indeed
q(2; |6), where

gi (zi |6) = /v;(g;_] 16) dz ... dziey dziyy ... dZn (14)

(when the variables are discrete, as in IRT, the multiple integral here is replaced with a multiple
sum). Recall the Kullback-Leibler distance

D(villrs) = Do (vsllrs) = [log %’-%%w (22 16) das;

models that are close in the Kullback-Leibler sense are also close in other more common senses
such as mean absolute error.

Proposition 4.1 Dy (vy| ) is minimized over rj by takingry = q,.

o
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Indeed, following Aitchison (1975), we note that by (14),

Davilles) = D(wsllan+ 3 [log Sl gz, 10) e,
J-l o

= Dg(villq,)+ ZDO(QjI|rj)'

=1

which is clearly minimized by taking r; = ¢; in each term of the summation at right. This
identification is completely general and applies to binary, polytomous, and even continuously-
scored items. Further details and extensions of this idea may be found in Section 2 of Clarke and
Junker (1991).
In the usual binary IRT context, suppose dy, = 1 is violated and let v j(z;|8) be the true, locally
dependent likelihood for z; given the dominant or target trait 8. Let r;(z;]6) = ]'[J=1 r;(0)%:(1 -
7;(6))'~*: be a locally independent likelihood with arbitrary ICC’s 7;(8). The above proposition
shows that if the desire is to analyze data from v ;(z,|0) using a “fictional” LI-based likelihood of
the form 7;(z,,8), then the best choices for x;(8) in r; are the true marginal ICC’s P;(#) obtained
from vy via (14). If 6 is the first coordinate of a multidimensional trait vector 8% with respect
to which LI holds using multidimensional response functions P; (01) then it can be shown that
obtaining P;(8) via (14) is equivalent to

P;(8) = /P 8%)s(82)8, = 6) dez.

It must be noted that in practice the selection of r; in (12) is itself often subject to uncer-
tainty, in that the r;(-|@) are typically selected {rom 2 parametric family ro (- |#) whose parameters
Qa,,...,ay are estimated from (some subset cf) the data. Tsutakawa and Soltys (1988) and Albert
(1991) provide important insights into correctly addressing this issue. On the other hand, there is
some evidence that this “best possible” case may approximately be achieved in some large-scale
educational testing applications, for example. Wang (1986, 1987) has identified that component
J of 82 = (8y,...,02) in a multidimensional compensatory logistic IRT model which is measured
by a fitted unidimensional logistic IRT model. Wang’s “reference composite” 9 is essentially the
first component of that rotation of ¢ which produces a principal components analysis of the in-
formation matrix I(8), and she argues that popular IRT model-fitting programs such as LOGIST
and BILOG produce stable estimates for item characteristic curves with respect to the reference
composite.

5 Structural robustness and posterior distributions

As we have seen, identifying the “product of marginals” q;(z;|6) as the best LI likelihood to
use was easiest to accomplish by considering the general statistical models of Section 4. In the
same way, the asymptotic consistency results of Section 3 can best be understood and extended by
considering more general models. Let us continue to use the general notation of Section 4.

10
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5.1 Another route to MLE consistency under EI
By analogy with (3), define

J
Ly(8) = logq, (X, |8) =D _logq,(X;l6); (15)

J=1

and by analogy with the Kullback-Leibler distance, define

1 g;(X;10)
D,(8,7) = 7[14](0 - Lj(r)]= JEI q:(XJh')

Let us also abbreviate gj(-) = q;(- |8). Lj(8) would be the log-likelihood if LI were true, but we
are not assuming LI here: i.e., gj(-) may not be the true likelihood function. Finally, for each t,
define Bs(t) = {r: |r ~ t| < 6}. In this general setting we may obtain consistency of the MLE
under the following assumptions, without making explicit assumptions about the violations of LI.
Assumption C1. For each 6 and t # @, there exists ¢(t) > 0, such that

Jlim P[D;(8,8) > ¢(1)| 6] = 1.

Assumption C2. For all t # 6 and all £ > 0, there exists § > ¢ such that

lim P[ inf Dy(t,7) —E' ] = 1.

J—00 TEDB(t)

Assumption C3. There exist ¢ > 0, such that for all § > 0 and A sufficiently large (depending
on 6), liminf ;o P |infyri54 Ds(8,7) > ca|8] 21~ 4.

Under these assumptions we obtain the following proposition ensures consistency of the MLE.
and furthermore gives an “asymptotic convexity” which will be useful later: L;(6) dominates
Lj(r) as J — oo, for all r “away from” 8. The domination will be used in Theorem 5.1 to establish
asymptotic normality of the posterior ability distribution constructed from the LI likeihood gq,
even though LI fails. The proof of may be found in Clarke and Junker (1991). Straightforward
modifications also give consistency of the posterior mode.

Proposition 5.1 Under Assumptions C! through C3, for alle¢ > 0 and all 6 > 0, there exists v
= v(€,8) > 0 such that

1
imi inf — - >
hﬂlggf P T‘lxg‘fw) J[LJ(O) Liy7)] 27

9] >1-6 (16)

and hence the formal MLE 6, =2 YoasJ — oo (where “ Y¢ 7 denotes convergence in v j-probability ).

11
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Assumptions C1-C3 are what is needed to make the proof work. Ideally we would like Propo-
sition 5.1 under Stout’s EI condition, as given in Definition 2.1. An appropriate generalization of
El is the law of large numbers (LLN)

)=

hm Var ( ZaJ(X )
J=1

for all bounded sequences of functions {a;(X;): j = 1,2,...} (for any type of X,’s whatsoever).
However, the proof of Pmposmon 5.1 depends on a LLN that holds for sums of log contrast func-
tions Dy(8,7) = (1/.])):_,=l log{g;(X;16)/q;(X;|7)], whose summands need not be bounded. (In
polytomous or dichotomous IRT settings, since each item has only finitely many possible responses,
Dy(6,r) would have bounded sammands, so that (17) suffices; see Proposition 5.2 below.) Lem-
mas 5.1 and 5.2 show precisely what LLN’s are needed in general to obtain Assumptions C1 and
C2. The proofs of the lemmas are straightforward bounding in probability arguments which are
omitted.

Lemma 5.1 Suppose
(a) For each t # @ there exists 3(t) > 0 such that liminfn—oo(1/J)D (q;’“ q;’) > B(t);

(b) AsJ — o0, Dy(8,t) — (1/J)D (q;,’|| i) %o
Then Assumption C1 holds.
Lemma 5.2 Suppose that, for all t # 6 there ezists {;, > 0 such that

() VE>036€(0,6), such that liminf )0 inf,ep ) E[Du(t,7)|8) > ~€;

(b) ¥V €>036¢(0,8) such that Um,_oop[sup,m(,, |Dy(t,7) - E[Dy(t,7)|8]| < elr] =
Then Assumption C2 holds.

Let us specialize these results to a polytomous IRT setting. Recall that each observable variable
z; has k; values &y, . . ., €1, (the subject makes one of k; respenses for each item), with each ky < kg
for some fixed ky < oo. The LI likelihood is q; (z, |9) = ]'[;-’=, g; (z; | 9), where

kl
¢; (25 18) = T] Pu(8)",
and YJ'[ = l{x_;:f;l}'

Proposition 5.2 Suppose that EI and LAD hold, and thct the response curves P satisfy
For each 7, 0 < it_l,f Pj(t) < sup Pj(t) < 1; (18)
2 2l

P;(t) is continuous at each t, uniformly in j and ! (19)

and suppose Assumption C3 holds. Then the “wrong model MLE” 6, is v ;-consistent for 8, as
J = 0.

12
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Proof. We will verify the conditicns of Lemma 5.1 and Lemma 5.2. It follows from an inequality
of Csiszar {1975), D (fllg) 2 (1/4) [ 1f(t) - g(t)} d)*,

1
5D (d| ) = JZ:D gell 45r)
j=1
> Z[ZIPJIW)— Jl(f)l (20)
le =1

which is bounded away from zero under LAD (consider {a;i} for which a;i, = 1, and aj; = 0 for all
I < k;). This is (a) of Lemma 5.1. On the other hand, (b) of Lemma 5.1 follows from Definition 2.1
and (18), since the summands of Dj(8,7) are bounded.

The continuity condition (a) of Lemma 5.2 follows from (19). (b) of Lemma 5.2 requires that

a] -1
for every ¢ and appropriate 6. The expression in absolute values may be written as
R Jl(t)
7 2 3 MW - Pa®)]log 55
j=11=1

which will tend to zero uniformly in 7 € Bs(t) by Definition 2.1, (18) and (19). O
Assumption C3 may often be verifed directly. Consider the case of binary response data, in
which k; = 2, £;1 = 0and §;; = 1. and the response curves are of the three parameter logistic form

lim P| sup |Dy(t,7)— E{Dj(t,7)|6)| < ¢
J—o0 7€8,(t)

F

1
1+ exp{—aj(e — bj)} |

P;(8) = ¢; + (1 - ¢;)

Then D,(8,7) = (1/J) ZI ,(1), where
Uy — Y. c; + e%(7=b;) ¢j + e (7~b)
t;(1) = X; log s log {1+ ——— o .
Hence
_ 0,if X; =1,
rl-!-.ngo -1, (T) - { 00, if XJ — 0;
dim -ti(r) = -loge,”(1- )",

and we see that Assumption C3 holds as long as P[X; = 1Vj|8] = P[X; = 0Vj|0] = 0; this in
turn follows from Definition 2.1 and (18), which merely requires that the a;'s b;’s and c;’s do not
“wander off” to the edges of their parameter spaces.

13
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§.2 Asymptotic :~osterior normality under EI

We now turn to the possibility of basing inference for # on the formal posterior distribution

q;(z;]6)w(8)
2% (@ IT)w(r)dr’

wy(8]zy) = (21)

where w(#) is the prior density on 6. Of course, the true posterior distribution is

vy (2 |8)w(6)
J2ovi(@s|r)w(r)dr

w(0lzy)=

The point once again is to see whether a “wrong model ana'vsis” based on the LI likelihood ¢ can
work when v is the correct conditional law. Let us make the following regularity assumptions.
Assumption PN1. Let I;(6) = E[(dlogg;(X;|6)/86)%|6] and T,(8) = (1/J) ¥y I;(8). We
assume there exist 0 < €5 < My < co such that ¢ < T;(8) < My, for all large n.

Assumption PN2. [ 9%;(z|6)/86%dz = 0.

Assumption PN3. M, ;(z,0) = sup,¢p,g) 0% log 7;(z|r)/0r? - 0%logq;(z|0)/06?| is bounded
uniformly in z and j, for small € > 0, ; and for M;(¢,0) = (1/J) T} M, ;(X;,0),

lim lim sup E [TI-J((,I))IO] = 0.

=0 Joo

Assumption PN4. The prior density w(r) is positive and continuous throughout a small neigh-
borhood of 6.

Theorem 5.1 Assume EI as in (17), and the conclusion of Proposition 5.1. Under the additional
assumptions PN1 through PN{, for all a < b,

0-.]+de v,
L (61504022 8(b) - #(a) (22)

J+taoy

as J — 0o, where 0; = {"Lg(éj)}-llz, and ®(-) is the the standard normal c.d.f.

Hence, in contrast to Theorem 3.1, which shows that the asymptotic aistribution of the MLE
is sensi.ive to departures from strict unidimensionality, Theorem 5.1 suggests that the asymptotic
posterior ability distribution cannot “detect” such departures. While this may initially seem to be
good ne's, it actually undermines the desirability of basing inference about # on a wrong-model
posterior. We shall return to this point at the end of the section.

The proof of this result, and extensions to situations in which EI fails, may be found in Clarke
and Junker (1991). Chung (1991) has independently produced a proof of this result in the tradi-
tional, LI-based, dichotomous IRT setting. In both cases, the calculations are modeled after Walker
(1969). Straightforward modifications give consistency of the posterior mean and higher posterior
moments.

The next proposition specializes the result to essentially unidimensional polytomous IRT models.

14
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Proposition 5.3 Suppose, in addition to the assumptions of Propositi:n 5.2, that
92
06?
Then, in the sense of (22),

log P;i(#) is bounded pointwise in 8, uniformly in j and l. (23)

. [o-4,

Lq{ o |
Proof. Assumptions PN2 and PN4 are usually true “by fiat,” so only it is only interesting to
consider Assumption PN1 and Assumption PN3. Proposition 4.1 of Junker (1991b) shows that
Assumption PN1 holds under LAD and differentiability conditions (the argument is similar to the

one bounding (20) away from zero). The uniform continuity condition oi Assumption PN3 focuses
on a locally uniform bound for

}'i! N(0,1).

(24)

2} [ = log Pyi(r) - ao,logp,,(a)J

which follows from (23), due to the boundedness of the Yj;'s. O

Example 5.1 Stout (1990b) and Junker (1991b) consider binary responses X, X, X3, ..., having
the same response curve P[X,; = 1|6] = 8. Suppose that the items are arranged in successive groups
of g, items as Xy, Xo, .... Xg,i Xgo41> Xgo42, + o X2g,; €tc., such that different groups of g, items
are independent of one another, given 6, and items within a single group are positively correlated,
given 6, and with

Corr (X, X,|6) = { ¢ i.f X, and X; are in the same group,
0 if not,
for some fixed ¢ € (0,1). This v is a naive model for a paragraph comprehension test in which
several paragraphs are presented and g, questions are asked for each paragraph. Here, 6 represents
a trait common to all the items, which we might wish to think of as reading comprehension; and
the nonzero correlations are induced by nuisance traits, for example, specific knowledge about the
subject matter of the paragraph at hand.
El and LAD hold in this case, and it follows from Proposition 5.2 and Theorem 3.3 that

Vs -8) 5 N(0,0?),

where 6; = T, and 02 = 6(1—0)[1+¢(go — 1)] is somewhat inflated over the anticipated asymptotic
variance 6(1 — 6) under LI. On the other hand, it follows from Proposition 5.3 that

{f& }_”.N(o,l). 0

\/9.](1 - 0_])

15



Structural Robustness in IRT 14

In Example 5.1, the asymptotic distribution of the MLE has an inflated variance, due to the
departure from strict unidimensionality, but the asymptotic posterior does not. Moreover, careful
examination of Theorem 3.1 and Theorem 5.1 makes it clear that the asymptotic distribution of
the MLE is always potentially sensitive to any “local dependence” in the data, even when dg = 1
(Definition 2.2) holds, while the asymptotic posterior distribution under dg = 1 never is. Clarke and
Junker (1991) also examine this phenomenon in some dg > 1 situations. It 1s widely believed that
the two paradigms, likelihood-based inference and posterior-based inference, are philosophically
different but “asymptotically the same”, except in bizarre situations. But the perfectly reasonable
dssire to ana.yze IRT data using unidimensional models that are tolerant of minor violations of
strict unidimensionality has lead us into a situation in which the a.symptotxcs come out differently,
even for “typical” cases. How can we make sense of this?

On the one hand, the Ll-based MLE 4y is really an M-estimator with a particular choice of
objective function, namely the product of the one-dimensional data marginals of v;, which we have
denoted ¢ ;. Thus we may interpret the asymptotic distribution of the M-estimator 8 as a measure
of estimation error under v; without difficulty; in particular we need not a:sume that the data
actually came from q; to arrive at this interpretation.

On the other hand, our approximation to the LI-based posterior shows that it concentrates at
the LI-based M-estimator—cf. equation (22)—but its “asymptotic rate of concentration” is harder
te interpret: LI-based asymptotic posterior standard errors say how much the LI-based posterior
is concentrated around the M-estimator, but not how much the LI-based posterior is concentrated
around the # which “generated” z;. If an LI model really held, then Bayes’ rule would allow us to
interpret the LI-based posterior, and hence its asymptotically normal approximation, in the usual
sense of updating belief about where # was after looking at the data. If LI does not hold, then we
cannot appeal to Bayes’ rule for this interpretation, and the LI-based posterior is interesting only
because it corresponds to what is done in practice. Perhaps the only justifiable interpretation of
wq is a counterfactual: “If LI were true, this is where we would think 8 was.”

Although both MLE and Bayes paradigms lead to consistent estimators when the LI-based like-
iihood g is substituted for the true dependent likelihood v, correct calculation and interpretation
of the variability of the estimators depends on a more careful analysis of the stochastic behavior of
the data-generating mechanism. Detecting situations in which this must be done is the major goal
of the work reported in Sections Section 6 and Section 7.

6 A global index of unidimensionality

Stout (1987) proposes a statistical test of unidimensionality for binary IRT data, which has been
further investigated by Stout and Nandakumar (1987, 1989, 1991a, 1991b). The test statistic is
based on a quantity which may be interpreted as an estimate of the measure

= [(3)7 LI 1Cov (X, X,10)l(6)a

1<i<5<d

of unidimensionality of IRT data. Note that under d; = 1 the covariances are identically zero, so
that ¢ = 0. Under dg = 1, the covariances tend to zero as J grows, and hence ¢; = 0 for dg =

16



Structural Robustness in IRT 15

data. If the data is dramatically multidimensional, the covariance will be prediminantly nonzero
and we expect ¢; > 0. This measure can be estimated directly with the index

ZM( ) 5 1Cov (Xi, X;1 X4 = k)|

k.._O 1<icy<t

where X is the total score on the whole test, Ny is the number of examinees with total score k
out of J on the whole test; and the estimate Cov (X, X ,IX... = k) is obtained in the usual way
as (1/Np) TNk (Zoi = Fi)(2nj — ;). with Z; = (1/Ny) TN z,.; (the sums extending only over
examinees in the k** cohort).
The ideal behavior of this index should be

Eg ~ 0ifdg=1,
& » 0ifdg>1.

Initial study of this index showed that é} was greatly inflated in unidimensional cases. The inflation
could be attributed to either of two causes: some covariances were nonzero because of natural
random variability in the data; and others were nonzero because, in many strictly unidimensional
models, Cov (Xi, X;| X4+ = k) < 0 may occur even though Cov (X;,X;|© = 6) = 0V 6 (see Junker
(1991a) for a theoretical discussion of this point). Since the absolute values of the covariances are
summed in calculating the index €}, these latter negative covariances, which are in fuct due to
unidimensionality, were counted against unidimensionality in the index.
To remedy the situation, the following four-step construction was formulated:

1. Perform a principal components factor analysis of the tetrachoric correlation matrix and
retain the list of second factor loadings, {A\j2: 7 =1,...,J}.

2. Cast out individual items X for which |A;2| < M for some fixed cutoff M.

3. Foreach k = 0,....J, obtain covariance estimates Cov (X;, (;| X+ = k) for all the item pairs
left after applying Step 2. (Note: X, is formed from all the items, but only covariances
among the items remaining after Step 2 are calculated in each X, cohort.)

(a) If Aiz- Aj2 has the same sign as the estimate Cov (Xi, X;| X4 = k), retain this covariance;
otherwise cast it out.

(b) Calculate
-1 e
&(k) = ( J ) Y 1Cov (Xi XXy = k)l

remaining pairs

where the sum is over all those pair remaining after Steps 2 and 3a.

4. Calculate the new index
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A rationale for this construction is most easily seen by contrasting a strictly tnidimensional
test with a test consisting cf two strictly unidimensional subtests, say half “math” items and half
“verbal” items. In the strictly unidimensional case, the first factor of a principal-components factor
analysis of the tetrachoric correlations will be close to the true ability factor underlying the test, and
the second factor will pick up only random variation in the data. Thus many of the second factor
loadings Aj; should be quite small; these items are automatically dropped from the analysis by Step
2. Many pairs of the remaining items will have Cov (Xi, X;|X4+ = k) < 0, and approximately half
of these should be dropped because the “random” second factor loadings should satisfy A;2-Aj2 > 0
about half the time. Thus most of the covariances are not included in the calculation in Steps 3b
and 4, and therefore €; = 0 in the unidimensional case.

In the case of two different, strictly unidimensional subtests, the first factor of a principal-
components factor analysis of the tetrachoric correlations will be a general factor correlating highly
with the number-right score. The second factor will be a “contrast” (or bipolar) factor for which
items in one subtest, say the “math” items, will load positively; and items in the other subtest,
say “verbal” items, will load negatively. A few items will be cast out in Step 2 again because they
do not load heavily enough on the contrast factor. Of those remaining, consider separately the
cases Ajz- Aj2 > 0 and Az - A;j3 < 0. If the product is positive, both items probably come from the
same subtest and we expect Cov (Xi, X;1X4 = k) > 0 (since X is summed over both subtests it
is measuring “Omath + Overbar”; if the items are both “math”, the “verbal” component of X, will
tend to make the covariance positive, and vice-versa). We would like to keep this covariance in the
calculation for €5 and this is what Step 3a does. On the other hand, if the product is negative,
the items probably come from different subtests and we expect Cov (X;, X,;|X+ = k) < 0 (this is
the non-unidimensional behavior that tests of “conditional association”, Holland and Rosenbaum,
1986, are designed to detect). We would also like to keep this covariance in the sum, and Step 3a
does this for us too. Thus most of the covariances are included in the calculation in Steps 3b and
4, and therefore é; 3» 0 in the non-unidimensional case.

Preliminary simulation and real-data studies with the index é; are quite promising, as Tables 1
and 2 show. In Table 1, the first simulation marked “d = 1" is based upon a two parameter logistic
model with discriminations a; ~ N(1.28,(0.8)%), sampled until 0.5 < a; < 3; and difficulties
b; ~ N(-0.12,(0.84)%), sampled until —3 < b; < 3. The simulations marked “d = 2" are based
on tests consisting of two pure subtests with correlation pg, 9, = 0.3 between traits, and item
parameters generated according to the same distributions as in the d = 1 case, except as noted.
The simulations marked ASVAB AR and ASVAB AS are generated according to the three parameter
logistic model, using the fixed item parameter estimates for particular administrations of the Armed
Services Vocational Aptitude Battery, Arithmetic Reasoning and Auto Shop sections, attributed
to Bock by Nandakumar (1987).

The most striking aspect of Table 1 is the marked contrast in the values of é; between the
one- and two-dimensional cases. This certainly supports the rationale behind the construction of
€7 above. It is also interesting to note the progression of values of the index as the second factor
loading cutoff value M increases from 0.0 to 0.2. Clearly, in this range, increasing M improves
the performance of €; in the unidimensional case without degrading its performance on strongly
two-dimensional data. By increasing M to 0.2, we are able to effectively decrease the propensity

18
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Simulated data sets M: 00 .10 .15 .20
J N 100¢,
d=1 40 2000 .84 .21 .15 .10
d=2,0,::0.8 20420 { 2000 | 2.29 2.29 222 2.14
d=2,0,=0.6 2042012000 2.68 2.68 2.68 2.68
d=2,0,=04 20420 | 2000 | 2.38 2.38 238 2.38
ASVAB AR (d=1) 30 2000 .72 .49 .20 .06
ASVAB AS(d = 1) 25 2000 .75 .16 .07 .05

Table 1: €, applied to simulated data sets.

Real data sets M: 00 .10 .15 .20
J N 100é s

ACT F29B (math) | 40 | 2491 | .94 .55 .25 .07
ACT F29C (math) | 40 | 2494 | .96 .52 .26 .10
AR 10 (ASVAB) 30| 1984 | .74 .28 .16 .04
AR 12 (ASVAB) 301961 .74 .23 .17 .11

Table 2: €7, applied to real data sets.

for making a Type I error without noticably affecting Type Il error.

The é; index has also been applied to some real data sets, with the results in Table 2. The first
two lines of the table are from the Mathematics section of the ACT (American College Testing)
Assessment, Forms 29B and 29C. The next two lines are Arithmetic Reasoning sections of the
ASVAB.

These preliminary results show that é; is a promising global index of unidimensionality. Clearly
there is much more work to be done in understanding the performance of the index through sim-
ulation experiments and in applying the index to real data sets. It would also be interesting to
compare €; to the Q3 measure of LI model fit developed by Yen (1984). A more finely-tunable
version of ¢J, in which the “cutoff” parameter M may take different values depending on the signs
of Ajz and Ajz, will also be explored in future work.

7 A local index of unidimensionality

An alternative to developing a single global index of unidimensionalty is to try to develop an index
or diagnostic criterion which helps us understand the nature of violations of strict unidimensionality,
or identifies areas of the “unidimensional” ability scale in which al lity estimation based on strictly
unidimensional assumptions may not succeed. The index C(#) as ('escribed in (9) is such an index.

19
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Under strict unidimensionality the asymptotic standard error of the MLE, for example, is

SE(8;) = \/JVa:(éJIO)
= /1/1,(6),

where 6 is the true ability value for the examinee “generating” the response sequence from which
8, is calculated. However we saw in Section 3 that when strict unidimensionality fails, a correction
using C1(#) from (9) is required:

SE.(éJ) = J’J(%:’o?;-’(o)-

Another way to measure the change in accuracy of ability estimation is to consider a corrected
information function -

1,(6)
1;(0)+Ca(0)

Thus Cy(8), if it could be estimated, would help us to interpret exactly when ability estimation
based on a unidimensional model behaves as though the data were strictly unidimensional. Indeed
there are three interesting cases:

13(8) =

I. When d; = 1 holds exactly, Cj(8) = 0 for all 6, and the “corrected” standard error and
information functions reduce to the familiar traditional forms. More generally if C;(#) hovers
near zero over the range of values of 8 of interest, then it would seem reasonable to pursue
ability estimation assuming that the data strictly satisfies d = 1.

II. If C;(9) is clearly distinct from zero, but not large for most values of 6 of interest, it may be
desirable to continue to use unidimensional ability estimation methods, but use the corrected
standard error SE* in assessing the accuracy of ability estimation.

II1. If C;(0) is quite large for many values of 8 of interest, it is probably most desirable to abandon
unidimensional modeling completely and develop a multidimensional model for the data set.

In order to estimate C;(#) and SE*, the following three quantities must be estimated (see (9)
on p. 6):

1. Item characteristic curves P;(6);
2. Derivatives of item log-odds-ratios A}(8) = P}(8)/(P;(6)(1 - P;(8));
3. “Local” item covariances Cov (X, X;|6).

Estimates of the average test information 7;(6), the usual asymptotic MLE standard error SE,
C;(0) itself, and the corrected standard error § E* may be obtained as straightforward combinations
of the above quantities.



Structural Robustness in IRT 19

In general there are two ways to tackle this problem. One is to explicitly model for the antic-
ipated dependence in the data. This is the approach of Gibbons, Bock and Hedeker (1989), for
example. Consider a multidimensional compensatory IRT model with normal ogive item character-
istic curves (ICC’s). An appropriate—and equivalent—reformulation of the problem is to consider
underlying “propensity variables” Y1,Y3,...,Y;, such that

X;=1lifandonly if Y; > 7,

where, Y3,Y3,...,Ys are independent, N(L§ AjmOm,1 — 2 A%.) random variables, given the mul-
tidimensional latent trait Q‘{’ = (6,...,04); and Q‘l‘ ~ N(Q,I4xe¢).- The thresholds 7, correspond
to difficulty parameters, and the coefficients \;n correspond to discrimination parameters. (This
is also the formulation of item factor analysis which underlies the factor analysis of tetrachoric
correlations in Section 6 above, in which the Ajm, are the m‘? factor loadings). Gibbons, Bock
and Hedeker (1989) consider a slightly different formulation of the problem, in which 6 ~ N(0,1)
is unidimensional, and (Y,...,Y) ~ N((M6,...,A,8), L), given 8, for some covariance matrix
. Clearly, if the A;, 7; and I could be estimated, estimates of C;(8), SE and SE* would follow
naturally from these and the known normal ogive form of the ICC’s. However in our early attempts
to use this model, we have found the parameter estimates to be too unstable, especially for tests
of more than a handful of items, to be of use. Nevertheless this is an interesting and attractive
approach which ought to receive more attention in the future.

A second approach to the problem of estimating ICC’s and local item correlations for possibly
non-unidimensional data may be based on the nonparametric rank regression methods of Ramsay
(1990). Two important observations underlie Ramsay’s approach. The first is that we can sidestep
the usual identifiability problem for the ability ¢istribution—one aspect of which is that ability
estimates are only determined up to rank ordering in the usual IRT formulations—by fixing the
distribution of ability (estimates) in advance and allowing quite general ICC shapes in order fit the
observed item response distribution. Ramsay’s second observation is that very simple ability esti-
mates, based on number-right scores and similar quantities, are quite adequate as “initial guesses”
for constructing ICC estimates. This second observation harmomzes nicely with the observation
of Stout (190G} that, under essential unidimensionality, P; (XJ) — 0, as well as with the more
traditional view that when an unrotated principal-components factor analysis of binary items is
performed, the first factor (corresponding t the largest eigenvalue) is usually strongly related to
the total test score on the test (whether or r.ot the test is unidimensional).

In our implementation of Ramsay’s method, we obtained approximately N(0,1)-distributed
ability estimates by inverse-probability transforms of the ranks of examinees’ number-right scores.
Let us call these crude ability estimates t;,2,,...,tn. Also, let w(t) be the standard normal density.
Then P;(#) can be estimated nonparametrically using the Nardaraya-Watson kernel regression
formula N

P(ﬂ) - Z:,..l 3njw((tu - 0)/h)
’ Tzt w((tn — 6)/h)
where A > 0 is a “window width” or “bandwidth” tuning parameter, and (Zn1,Zn2,.-.,2nJ) is the
observed response pattern of the n** examinee, n = 1,..., N. The derivatives P{(6) may be crudely
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estimated by considering equally-spaced points s,...,3x in the interval [-3, 3] and calculating the
difference quotients

Pi(sp) = Pilowsn) = Bi(on)
Sk41 — Sk
(More sophisticated kernel estimates of the derivatives can be obtained, but these crude estimnates
were quick and adequate for our initial investigations.) Finally, Ramsay’s method was extended to
calculate the local item covariances according to the formula

S Erl:;) ZniZnjw((tn — 0)/h) - 5
ov (X;, X;lt) = - Pi(t)Ps(t).

S A S R -y OB
In our work, all quantities were evaluated at K = 32 equally-spaced points s,,32,...,$32 in [-3,3],
with window-width A = 0.3. Calculations were performed in the statistical package “New S” on
DECstation 3100’s. With default memory allocations in S, data sets with up to N = 500 examinees
and up to approximately J = 50 items could be examined. Work on C(9) is still in preliminary
stages, but we provide some illustrative examples.

To illustrate the method, let us simulate one- and two-Zimensional tests with J = 32 items
and N = 500 examinees, with compensatory two parameter logistic item parameters as in Table 3
(examinee abilities in all dimensions are sampled from N(0,1) as usual). Note that the one-
dimensional item parameters are the average of the two-dimensional parameters.

Since this work is in part a replication of Ramsay’s method it is interesting to see how well
the rank regression method recovers ICC’s. In Figure 1 we have graphed a few one dimensional
logistic ICC’s (symbol “.”) using the parameters on the left in Table 3. Overlaid on these are the
unidimensional rank regression ICC estimates from N = 500 simulated examinees taking the one
dimensional jtems in Table 3 (symbol “*"). It seems that the rank regression ICC estimates recover
the original one dimensional ICC’s quite wall,

On the other hand, consider Figure 2. The ICC’s marked “.” are the marginal ICC’s P;(8,) =
[ Pj(0y1,02)w(62]6,)db;, where P;(6,,8,;) are compensatory logistic ICC’s using thz item parameters
on the right in Table 3. Overlaid (symbol “*”) are the unidimensional rank regression ICC estimates
from Ramsay’s method (again using N = 500 simulated examinees). As expected, the est;mated
ICC’s in Figure 2 do not match the theoretical ICC’s nearly as well as in Figure 1. (This assumes
that 6, is the ability we intend to measure; in the future we would prefer to compare the rank
regression ICC estimates with marginal ICC’s for Wang's (1986, 1987) “reference composite™).

To illustrate the summands for our estimate of C;(#) we may consider Figures 3 and 4, in
which rank-reg~ 2ssion estimates of the covariances Cov (X;, X;|8) (symbol “.”) and the “weighted”
covariances A;(6)A}(8)Cov (X;, X,|0) (symbol “*”) are depicted. Since the data for Figure 3 comes
from a strxctly umdxmensxona.l model we know that the theoretical value of Cov (X, X;|6) is zero
in Figure 3 (which is shown as a horizontal line). The estimated covariances do indeed hover around
zero (note that the vertical scale typically ranges from about —0.04 to +0.10).

On the other hand, we expect Cov (X;, X;|0) to be positive in Figure 4, because the data comes
from a two dimensional model and we are only conditioning on a one-dimensional 8. The estimated
covariances in Figure 4 do seem to range about twice as far from zero, on average, as the covariance
estimates for unidimensional data did. The fact that the estimates sometimes dip below zero in
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One dimensional data parameters

j aj b_,' c
1 | 1.54] 0.453
2 10.75 0.404
3 10781 0.038
4 1149 -0.185
5 | 1.06 | -0.331
6 1096 | 0.023
7 10.99| -0.093
8 (120 -1.104
9 (138 0.300

10| 1.28 | 0.106
111|143 | 0.327
12 | 1.47{ -0.322
13 | 1.20 | -0.339
14 | 1.80 | —0.355
15| 1.87 | -0.174
16 | 1.38 | -0.212
17 | 1.67 | -0.089
18 | 1.43 | ~0.499
19 | 1.45] -0.114
20 | 1.01 | -0.094
21 | 1.10 | -0.097
221 1.85( -0.365
231 1.48 | —1.062
241{0.74| 0.015
25 | 1.46 | -0.250
26 | 1.54 | ~0.542
27| 1.78 | -0.265
28 | 1.35 | -0.573
29 | 1.11| 0.013
30| 1.52| 0.537
31 | 1.00 | -0.082
3211.00| -0.163

OO0 0O OO0 000000000000 OCOCOODO0OOO0O0O000 O O

J=32,N=500,d=1

Two dimensional data parameters

j a) bj ¢
1|1.54 15400201 09254 0
2 1058 091 05282 0.2794 | 0
31070 0.87|-0.0868 0.1632| 0
4 | 145 1.53|-0.0400 -0.3299| 0
51102 1.09| 05738 -1.2352| 0
6 |1.02 0.90|-0.0441  0.0903 | 0
71099 0.99|-08639 0.6787 | 0
8 | 187 053|-1.3073 -0.9015] 0
9 |158 1.19| 0.8938 -0.2934| 0
10| 1.02 15501484 03596 | 0
11|153 1.34]-03824 1.0370 | 0
12081 2.14|-0.7693 0.1253 | 0
13| 062 1.78| -0.8339  0.1558 | 0
14 | 1.87 1.74|-0.3210 -0.3886 | 0
15| 1.59 2.14 | -0.1208 -0.2263 | 0
16 {1.75 1.02| 00816 -0.5054| 0
17| 164 1.71| ~0.3706  0.1931 | 0
18193 0.93|-1.3920 0.3943| 0
19(1.44 1.46| 04418 -0.6704| 0
20087 1.15| 0.0551 -0.2432| 0
21{1.05 1.14| 04246 -0.6180| 0
22203 1.67| 0.6099 -1.3403| 0
231188 109 -13022 -0.8211} 0
24082 0.65| 06171 -0.5866 |. 0
25| 1.87 1.05|-0.0511 -0.4483| 0
26| 1.71 1.37 [ -0.8606 -0.2236| 0
27214 1.42]-0.1327 -0.3973| O
28| 1.26 1.43|-0.7932 -0.3521| 0
290|129 0.93|-0.0478 0.0741| 0
30|1.78 1.26| 0.5742 0.5003 | 0
31| 132 0.69|-0.6269 0.4628 | 0
321065 1.35|-0.3338 0.0078 | 0

J=32,N=500,d=2,p=0

Table 3: Item parameters for illustration.
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Figure 2: One-dimensional ICC’s for two-dimensional data.
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both Figures 3 and 4 is probably related to the tendency for Cov (X,, X;|X;) to be negative in
typiczl IRT data (see Junker, 1991a; as well as the discussion of the ASVAB illustration below).

Estimates of C7(8) for the two data sets are compared in Figure 5. Note how much higher Ci(8)
is for the two-dimensional data set than for the one-dimensional data set. In this case the C(6)'s
are easy to compare, since they are based on data generated from similar models (both use logistic
ICC’s, and the one-dimensional parameters are the averages of the corresponding two-dimensional
parameters) which differ only in latent space dimensionality.

The extent to which the unidimensional information and asymptotic MLE standard errors are
too optimisic for the two-dimensional data set is illustrated in Figure 6. The graph on the left
in Figure 6 is again CJ(O) for this data set. In the center and rightmost graphs in Figure 6, the
uncorrected SE and information functions are plotted with the symbol “.” and the corrected SE*
and information functions are plotted with “*”. The vertical scale for the center graph ranges from
2.0 to 10.0 and for the right graph from 0.0 to 1.2.

Let us turn to another illustration. We have simulated N = 500 examinee response strings to
three parameter logistic items whose parameters were estimated from the Arithmetic Reasoning and
Auto Shop sections of the Armed Services Vocational Aptitude Battery (these are the same item
parameters as used for the ASVAB simulations in Table 1 above). Figures 7 and 8 illustrate the
uncorrected and corrected MLE standard errors for these ASVAB-AR and ASVAB-AS data sets.
Once again the leftmost graph is our estimate of C;(9) and the middle and rightmost graphs contrast
the (estimated) uncorrected S E and informations function (symbol “.”) with the (estimated) C;(8)-
corrected quantities (symbol “*”). In both figures, most of the “action” in Cj(6) is in the range
~0.1 to 0.3. The MLE standard errors hover around 2.0, which seems a bit high, but it is worth
noting that the corrected standard errors are not much different from the uncorrected ones. The
story is similar for the corrected and uncorrected information functions, which effectively range
from about 0.0 to .0 or so. Thus, as one would hope for unidimensional data, CJ(B) did not
“overcorrect” the unidimensional SE and information estimates.

The fact that C;(8) is negative for moderately low values of 8 in Figures 7 and 8 is interesting:
as observed above in Section 6, Cov (X;, X;/X;) tends to be negative for unidimensional data; sce
Junker (1991a). The presence of the nonzero guessing parameter tends to make low-ability responses
independent (without having to condition on #) and this mak = ‘egative values for Cov (X;, X;|X )
even more likely. (On the other hand, the extreme positive vai .s of C;(8) near § = -3 are probably
due to poor estimates of Aj(#).) The standard error and information graphs in Figures 7 and 8
suggest the uncorrected quantities are adequate for measuring variability of MLE ability estimates
for these items.

Our last illustration is a simulated paragraph-comprehension data set. The test consists of eight
5-item testlets (this nice term comes from Wainer and lewis, 1990). The item response functions
were compensatory logistic, with the first five items loading only on 8, and 6, the next five items
loading only on 68; and 63, the next five on 6, and 6y, and s~ on, such that nine latent traits are
needed to achieve local independence in this model. The discriminations a; in each dimension
were sampled from N(1.20,(0.8)?) until 0.5 < a; < 3 and difficulties b; in each dimension were
sampled from N(-0.12,(0.84)%) until -4 < b; < 4. There were no guessing parameters. Recall
from Example 5.1 that a test constructed in this way will be essentia.ly unidimensional, dg = 1,
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Figure 4: Unidimensional local covariance estimates for two-dimensional data.
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with respect to the dominant dimension ;. As usual, abilities in each dimension were generated
to be i.i.d., N(0,1).

In Figure 9, rank regression ICC estimates are compared, for a handful of items, with marginal
8,-ICC’s (here 6, is undoubtedly the ability “intended to be measured,” though again a comparicon
with Wang’s reference composite may be more appropriate). The rank regression ICC’s match the
marginal ICC’s with respect to the dominant dimension 8, quite well. This suggests that for at
least some dg = 1 data sets, ICC’s with respect to the dominant dimension can be recovered.

Figure 10 gives a graph o’ C(8) based on these ICC estimates, and compares uncorrected
(symbol “.”) and corrected (symbol “*") measures of the variability of MLE ability estimates
based on the rank regression ICC’s. Here C(8) hovers between about 0.10 and 0.25, the standard
errors hover just below 2.0, and the information functions live mostly between 0.2 and 0.4. Though
there clearly would be some gain in employing a multidimensional model for this type of data, it
is debatable whether it would be worthwhile, especially if the desire is to measure the dominant
dimension only.

Comparing especially Figures 6, 7, 8 and 10, it appears that C;(8) is a promising local index
of unidimensionality. Clearly C;(#) depends heavily on the local behavior of ICC’s with respect
to the dominant dimension being measured by the test, and especially on item parameters such as
discrimination and guessing. Much more work needs to be done to understand this sensitivity and
distinguish it from sensitivity to true multidimensionality in the data. It would also be interesting
to run parallel studies of C’J(H) and the é; index of Section 6, to see if they detect the same, or
different, features of multidimensionality in item response data. Ultimately ovr goal is a prescriptive
one: do use MLE, don’t use MLE, do trust asymptotic normality, etc., depending on the size(s) of
the indices. The work reported here suggests that such a goal should eventually be achievable.
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