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Abstract
Research is conducted to cumulate knowledge across studies, so
assessing the generalizability of results is an escential component
of scientific inquiry. Unfortunately, statistical significance
testing does not inform judgment regarding the probability that
results will replicate. The presen*. paper presents a series of
related logics that can be enbloyed to empirically evaluate the
replicability of results. Data reported by Holzinger and Swineford
(1939), widely available to researchers and frequently used in
previous heuristic examples, are employed to make the discussion

concrete,



Hinkle, Wiersma and Jurs (1979, p. 415) noted that "“it is
becoming increasingly important for behavioral scientists to
understand aultivariate procedures even if they do not use them in
their own research." Recent empirical studies of research practice
confirm that multivariate methods are employed with some regularity
in behavioral research (Elmore & Woehlke, 1988). Fish (1988) notes
that there are two reasons why multivariate methods are so
important in behavioral research.

First, multivariate methods limit the inflation of Type I

"experimentwise" error rates. The seriousness of "experimentwise"

error inflation, and what to do about it, are both matters
prompting some disagreement (e.g., Bray & Maxwell, 1982, p. 343,
1985, p. 10; Hummel & Johnston, 1986). But it is clear that,
"Whenever multiple statistical tests are carried out in inferential
data analysis, there is a potential problem of 'probability
pyramiding'" (Huberty & Morris, 1989, p. 306). And as Morrow and
Frankiewicz (1979) emphasize, it is also clear that in some cases
inflation of experimentwise error rates can be quite serious.
Most researchers are familiar with "testwise" alpha. But while

"testwise" alpha refers to the probability of making a Type I error

for a given hypothesis test, "experimentwise" error rate refers to
the probability of having made a Type I error anywhere within the

study, i.e., across all hypotheses. Therefore, when only one
hypothesis is tested for a given group of people in a study,
"experimentwise" error rate will exactly equal the "testwise" error

rate.
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But when more than one hypothesis is tested in a given study,
the two error rates will not be equal. Witte (1985, p. 236)
explains the two error rates using an intuitively appealing example
involving a coin toss. If the toss of heads is equated with a Type
I error, and if a coin is tossed only once, then the probability of
a head on the one toss and of at least one head within the set of
one toss Wwill both equal 50%. But if the coin is tossed three
times, even though the "testwise" probability of a head on each
toss is 50%, the "experimentwise" probability that there will be at
least one head in the whole set of three flips will be inflated to
87.5%. This dynamic is illustrated in Table 1. Analogies for
research are presented in Table 2. Researchers control "testwise"
error rate by picking small values, wusually 0.05, for the
"testwise" alpha. "Experimentwise" error rate can be limited by

employing multivariate statistics.

INSERT TABLES 1 AND 2 ABOUT HERE.

Paradoxically, although ‘he use of several univariate tests in
a single study can lead to too many null hypotheses being
spuriously rejected, as reflected in inflation of "experimentwise"
error rate, it is also possible that the failure to employ
multivariate methods can 1lead to a failure to identify
statistically significant results which actually exist. Fish (1988)
and Maxwell (1991) both provide data sets illustrating this equally
disturbing possibility. Thus, "correcting" the testwise alpha level

(e.g., with a Bonferroni correction--Huberty, 1987) so as to

9



control experimentwise error rate inflation is not a satisfactory
solution to this problem. The basis for this paradox is beyond the
scope of the present treatment, but involves the second major
reason why multivariate statistics are so important.

Multivariate methods are often vital in behavioral research

because multivariate methods best honoy the reality to which the
researcher is purportedly <trying to deneralize. This is

particularly important, since significance testing and error rates
may not always be the most important aspect of research practice
(Thompson, 1989b). Thompson (1986, p. 9) notes that the reality
about which most researchers wish to generalize is usually one "in
which the researcher cares about multiple cutcomes, in which most
outcomes have multiple causes, and in which most causes have
multiple effects." Tatsuoka's (1973, p. 273) previous remarks
remain telling:

The often-heard argument, "I'm more interested in

seeing how each variable, in its own right, affects

the outcome" overlooks the fact that any variable

taken in 1isolation may affect the criterion

differently from the way it will act in the company

of other variables. It also overlooks the fact that

multivariate analysis--precisely by considering all

the variables simultaneously--can throw light on how

each one contributes to the relation.

Although multivariate methods have enjoyed fairly widespread

usage (Thompson, 1989%a; Wood & Erskine, 1976) since computers and
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statistical software became widely available, multivariate methods
also have been used in intrigquing ways in measurement and
assessment contexts. For example, Merenda, Novack and Bonaventure
(1976) reported a multivariate reljability analysis involving
subtest scores from the California Test of Mental Maturity.
Similarly, Sexton, McLean, Boyd, Thompson and McCormick (1988)

reported results involving a multivariate concurrent validity

nalysis.

Unfortunately, as Nunnally (1978, p. 298) notes, "one tends to
take advantage of chance in any situation where something is
optimized from the data at hand." In fact, this capitalization
occurs in all classical parametric methods, because all these
methods (e.g., t-tests, ANOVA, regression, MANOVA) are least
squares procedures that implicitly or explicitly (a) use weights,
(b) focus on latent synthetic variables, and (c) yield effect sizes

analogous to 2, i.e., all classical analytic methods are

correlational (Knapp, 1978; Thompson, 1988a).

The problem of <capitalizing on sampling error when
multivariate methods are used is particularly acute, because the
models being tested involve a larger system of parameter estimates.
For example, the problem is particularly difficult when factor
analytic methods are employed, because "one has numerous
possibilities for capitalizing on chance. Most extraction
procedures, including principal factor solutions, reach their
criterion by such capitalization. The same is true of rotational

procedures, including those which rotate for simple structure"



(Gorsuch, 1983, p. 330).

Thus, it is critically important to evaluate the influences of
sampling error on obtained results, i.e., the replicability or the
invariance of results. Contrary to somewhat common misconceptions,

tistical significance testi ces not inform j e a
bab eplicabjli ampling-spe c s
(Carver, 1978; Thompson, 1987, 1989b). The purpose of the present
paper is to describe selected methods for empirically evaluating
the stability of results, especially as regards multivariate
analyses.

The data reported by Holzinger and Swineford (1939, pp. 81-
91), wused with some frequency to illustrate multivarjate
statistical analyses (e.q., Gorsuch, 1983, passim; Joreskog &
Sdérbom, 1986, pp. IIX.106-III.122), are used here to make the
discussion more concrete. These data were selected for use in the
examples because they are widely available, and interested readers
can therefore readily replicate the analyses described here.
Appendix A presents the SPSS-X program used to generate the
results. Table 3 presents descriptive statistics and labels for the

variables.

INSERT TABLE 3 ABOUT HERE.

A Univariate Analysis as a Starting Point

Readers more familiar with univariate analyses may appreciate
an initial example of a univariate invariance analysis, prior to

discussion of some methods that can be employed in the multivariate



case. In a seminal article, Cohen (1968, p. 426) noted that ANOVA
and ANCOVA are special cases of multiple regression analysis, and
argued that in this realization "lie possibilities for more
relevant and therefore more powerful exploitation of research
data." Thus, regression analysis provides a good context for an
invariance analysis example, because regression is so useful.

Researchers have increasingly recognized that conventional
multiple regression analysis of data as they were initially
collected (no conversion of intervally scalea independent variables
into dichotomies or trichotomies) does not discard information or
distort reality, and that the general linear model

...can be used equally well in experimental or non-
experimental research. It can handle continuous and
categorical variables. It can handle two, three,
four, or more independent variables... Finally, as
we will abundantly show, multiple regression
analysis can do anything the analysis of variance
does--sums of squares, mean squares, F ratios~-and
more. (Kerlinger & Pedhazur, 1973, p. 3)

Discarding variance is not generally good research practice
(Kerlinger, 1986, p. 558; Thompson, 1988b) and amounts to
"squandering of information" (Cohen, 1968, p. 441). As Pedhazur
(1982, pp. 452-453) notes,

Categorization of attribute variables is all too
frequently resorted to in the social sciences... It

is possible that some of the conflicting evidence in

)
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the research literature of a given area may be
attributed to the practice of categorization of
continuous variables... Categorization leads to a
loss of information, and consequently to a less
sensitive analysis.

One reason why researche s may be prone to categorizing
continuous variables is that some researchers unconsciously and
erroneously associate ANOVA with the power of experimental designs.
Humphreys (1978, p. 873) notes that:

The basic fact is that a measure of individual
differences is not an independent variable, and it
does not become one by categorizing the scores and
treating the categories as if they defined a
variable under experimental control in a factorially
designed analysis of variance.
Similarly, Humphreys and Fleishman (1974, p. 468) note that
categorizing variables in a nonexperimental design using an ANOVA
analysis "not infrequently produces in both the investigator and
his audience the illusion that he has experimental control over the
independent variable. Nothing could be more wrong."

As Cliff (1987, p. 130) notes, the practice of discarding
variance on intervally scaled predictor variables to perform OVA
analyses creates problems in almost all cases:

Such divisions are not infallible; think of the
persons near the borders. Some who should be highs

are actually classified as lows, and vice versa. In
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addition, the "barely highs" are classiiied the same

as the "very highs," even though they are different.

Therefore, reducing a reliable variable to a

dichotomy makes the variable more unreliable, not

less.
These various realizations have led to less frequent use of OVA
nethods, and to more frequent use of general linear model
approaches such as regression (Elmore & Woehlke, 1988; Goodwin &
Goodwin, 1985; Willson, 1982).

The regression example utilized scores of the 301 subjects on
variable T6, paragraph comprehension, as the dependent variable.
Scores on variables T12, T13, T23, and T24, described in Table 3,
were arbitrarily selected as the predictors for the example. The
effect size in the example was noteworthy (R? = .277) and
statistically significant (F = 28.395, df = 4/296, p < .0001).

Researchers have increasingly recbgnized, however, that the
effect sizes in parametric analyses are subject to "shrinkage",
i.e., 1least squares methods for data in hand tend to be
overestimates of the effects that would be realized by the
application of the calculated sample weights to data in other
samples (Fisk, 1991). One approach tc this problem invokes
statistical correction formulas grounded in certain assumptions
about the sample and sampling error. For example, one might eumploy
Wherry's (1931) correction formula to R?. The Wherry correction can

be expressed as:

11



R? - ((1 =R%*) * (v / (n-v-1))).
When applied to the example results, the corrected population

estimate is:

.27731 ~ ((1 - .27731) * (4 / (301 - 4 - 1)))
.27731 - (  .72269 * (4 / 296 ))
.27731 = ( .72269 * .013513 )
.27731 - .009766

.267543.

However, Stevens (1986, pp. 78-84) incisively implies that
researchers usually ground their work in empirical findings from
previous samples, and in actual practice usually want their work to
generalize to future samples in future research rather than to the
unknowable population. Herzberg (1969) provides a correction for
this estimate:

1 - ((n-1)/(n-v-1)) ((n=2)/(n-v-2)) ((n+1) /n) (1-R?).

For these data the correction for R? would be:

1 - (300 / 296 ) * (299 / 295 ) * (302/301)* (1-.27731)
1 - 1.013513 * 1.013559 * 1.003322 * 0.72269
1 - 1.027256 * 1.003322 * 0.72269
1 - 1.030668 * 0.72269
1 - 0.744854
0.255145,

a result which even further overcorrects the estimate, and is thus
still more conservative.

These sorts of statistical corrections for effect size
estimates make smaller corrections both as (a) sample effect sizes
are larger and (b) sample sizes are larger. However, evaluating the
stability of an effect size is a different proposition than
evaluating the stability of the least squares weights used to yield
the identified effect. Since researchers usually consult the system
of weights as part of their result interpretation (Thompson &

9
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Borrello, 1985), the statistical correction formulas in and of
themselves are not sufficient for evaluating the invariance of
results.

Efforts to estimate the sampling specificity of coefficients
for specific variables are more difficult, or at least more
tedious. some researchers randomly split their sample data, conduct
separate analyses for the two subgroups, and then subjectively
compare the results to determine if they appear to be similar. Two
points need to be emphasized about such an approach.

First, such procedures almost always overestimate the
invariance or generalizability of results, as Thompson (1984, p.
46) emphasizes. Most researchers work with samples of convenience
that are homogeneous in several if not many respects, e.g.,
geographic location. The members of the random subgroups, then,
have more in common with each other than will independent future
samples drawn by other researchers. This is not said to discourage
the practice of replicability analysis, but is emphasized only to
give a context for the interpretation of results. It is always
better to have an empirical overestimate of result replicability
than to have merely a dogmatic attachment to the presumption that
sample results will generalize.

Second, it 1is emphasir~d that inferences regarding
replicability nust be made empirically rather than subjectively,
€.9., not by visually comparing coefficients across two randomly
identified sample subgroups. Subjective comparisons will not do,

because two sets of weights that appear to be different may in fact
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yield quite similar estimates of the synthetic or latent variables
actually being correlated in all parametric analyses, e.g., the
synthetic variable ¥ being correlated with Y to yield R in 4
regression analysis. Rowell (1991) provides a concrete example of
just such a case. Cliff (1987, pp. 177-178) suggests that such
cases involve "insensitivity" of the weights to departures from
least squares constraints.

Cross-validation is one vehicle for empirically exploring the
stability of regression weights and resulting effect sizes across
samples (Huck, Cormier & Bounds, 1974, pp. 159-16C). Rowell (1991)
and Thompson (1989b) provide examples for the regression case. Of
course, other empirical methods are available for evaluating result
replicability, such as the bootstrap (Diaconis & Efron, 1983;
Lunneborg, 1987). Thompson and Melancon (1990) provide an example
of the application of the bootstrap in the regression case.

In the first step of the cross-validation process the sample
is divided into two subsamples, usually randomly. However, for the
purposes of the present heuristic example, the two schools
represented in the Holzinger and Swineford (1939) data were used as
the subgroups.

Next, separate analyses were conducted for the two data sets.
The effect size for the 156 students at Pasteur School, R? = ,240,
was statistically significant (F = 11.927, df = 4/151, p < .0001).
The prediction equation was:

Zy <-==- ¥,; = (+.032125 * Zp,,) + (-.031195 * Z..,) +

(+.383€41 * Z.,3) + (+.170181 * Z.,,)

11
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The effect size for the 145 students at Grant-White School, R? =
-313, was statistically significant (L = 15.979, df = 4/140, p <
-0001). The prediction equation was:
Zy <==== Y, = (=.252179 * Z_,) + (+.215562 * Zpy3) +
(+.295226 * Z.y4) + (+.333045 * Z,,)

The third step in the analysis requires that the predictor
variables in each subsample be standardized into z-score form using
each group's own means and SDs, and then that new Q's be calculated
for subsample one using group two's weights (called here §12)r and
for subsample two using group one's weights (called here §21)° Once
this is done, correlation coefficients are computed among the
various synthetic variable estimates. For the example data, these

results are presented in Table 4.

INSERT TABLE 4 ABOUT HERE.

The Table 4 invariance coefficients (-8506 and .8613) suggest
that the subsample results are reasonably invariant. The results
also illustrate the importance of empirically evaluating
invariance, since the weights yield reasonably comparable estimates
of Q, notwithstanding the fact that the beta weights might appear
different on the basis of subjective inspection (e.g., +.032125 vs
-.252179, -.031195 vs +.215562).

The researcher with such results will conclude that the R?
effect size is relatively stable, that the beta weights fluctuate,
but that the effect sizes tend to be "insensitive" to these

fluctuations. Of Course, the regression results for the full sample

12
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will then provide the final basis for interpretation. The subsample
results are employed to evaluate result stability, and are not used
as _the basis for interpretation. The results for the full sample
are used for interpretation, since these results should
theoretically be the most stable, as a function of sample size.
nvariance Analyses for Two Multjvariate Analvses
The same 1logic for evaluating invariance can be readily
generalized to analyses that are multivariate. Factor analysis and
canonical correlation analysis were the two methods selected as
examples of this generalization.
xample #2; Fact Analysis
Factor analysis has been closely associated with evaluating
the construct validity of measures. Nunnally (1978, p. 111) notes
that "construct validity has been spoken of as 'trait validity' and
‘factorial validity.'" Gorsuch (1983, pp. 350-351) suggests that
A prime use of factor analysis has been 1in the
development of both the theoretical constructs for an
area and the operational representatives for the
theoretical constructs... If a theory has clearly defined
constructs, then scales can be directly built to embody
those constructs.
Thus, "factor analysis is intimately involved with questions of
validity... Factor analysis is at the heart of the measurement of
psychological constructs" (Nunnally, 1978, p. 112).
Twenty-four variables from the Holzinger and Swineford (1939)

data, T1 through T24, were employed in this example. A variety of

13
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invariance logics can be applied in factor analysis, including
"best fit" Procrustean rotation across sample splits (Thompson,
1991), bootstrap factor analysis (Thompson, 1988c), and various
other methods described and compared by Guadagnoli and Velicer
(1988). However, the method selected for discussion here is a
generalization of the regression cross-validation strategy, a
method familiar to many researchers.

A variety of procedures can be employed to calculate the
synthetic variables in factor analysis, called factor scores
(Thompson, 1983). However, the most common estimation procedure is
the regression procedure represented by the matrix algebra
algorithm:

szV waF ’

where

Wyxr = Ryxv™’ Pyyrs
and where 2 is the set of v z-scores for each of the n subjects, R™1
is the inverse of the correlation matrix for the variable set, and
P is the orthogonal factor pattern/structure matrix.

The W matrix is related to the beta weights employed to
estimate the synthetic variable scores in regression. Thus, one
approach to evaluating invariance of factor analytic results could
invoke a comparison of the synthetic factor scores derived using W
matrices acfoss sample splits.

Table 5 presents the varimax-rotated structure matrix for the
156 Pasteur students, and Table 6 pPresents the associated Weight

matrix for the students. Table 7 presents cthe varimax-rotated

14
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structure matrix for the 145 Grant-White students, and Table 8

presents the associated Weight matrix for the students.

INSERT TABLES 5 THROUGH 8 ABOUT HERE.

Appendix A presents the SPSS-X commands employed to compute
the factor scores for each group involving each group's own data
and each group's own weights, i.e., variables "fs111" through
"fs114" for the 156 Pasteur students, and variables "fs221" through
"£5224" for the 145 Grant-wWhite students. Appendix A also presents
the SPSS-X commands employed to compute the factor scores for each
group involving each group's own data and the other group's
weights, i.e., variables "fs121" through "fs124" for the 156
Pasteur students, and variables "fs211" through "f£s214" for the 145
Grant-White students.

Table 9 presents the invariance coefficients for analysis, and
these coefficients are bolded. The first set of coefficients for
the four principal components scores is: .9677, .9447, .9740, and
-9590. The second set of coefficients is: .9695, .9606, .9565,
-9633. If such results had occurred across random subgroups of a
sample, the researcher would doubtless be relatively sanguine about

the stability of results.

INSERT TABLE 9 ABOUT HERE.

Example #3: Canonical Correlation Analysis

Though multiple regression is a useful analytic method,

canonical correlation analysis, and not regression analysis, is the

15
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most general case of the general linear model (Baggaley, 1981, p.
129; Fornell, 1978, p. 168). In an important article, Knapp (1978,
P. 410) demonstrated this in some mathematical detail and concluded
that “"virtually all of the commonly encountered tests of
significance can be treated as speci .l cases of canonical
correlation analysis." Thompson (1988a) illustrates how canonical
correlation analysis can be employed to implement all the
parametric tests that canonical methods subsume as special cases.
Thus, canonical correlation analysis is a powerful analytic

paradigm that can be applied to myriad research problems. The
method is valuable because it honors the complexity of reality by
simultaneously considering all relationships among variables, and
does not require that intervally scaled predictor variables be
converted to nominal scale. As Stevens (1986, p. 373, emphasis
omitted) notes,

canonical correlation... is appropriate if the wish

is to parsimoniously describe the number and nature

of mutually independent relationships between the

two [or more] sets [of variables])... Since the

combinations [of the variables derived through least

squares weighting) are uncorrelated, one will obtain

a very nice additive partitioning of the total

between association.

Canonical analysis yields an effect size estimate, Rq2, that

is akin to the R? effect in multiple regression. L:ike regression,

which yields both weights (called beta weights) and correlations

16
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coefficients (called structure coefficients) between observed
predictors (e.g., Xp;;) and the synthetic variable, Y (Thompson &
Borrello, 1985), canonical analysis also yields least squares
weights (called canonical function coefficients) and structure
coefficients. The two sets of coefficients have the same function
and meaning in canonical analysis as they do in regression, and are
the two primary rivals for evaluating variable importance at the
function level (Harris, 1989; Kerlinger & Pedhazur, 1973, p. 344;
Levine, 1977, p. 20, Meredith, 1964, p. 55; Thompson, in press-b).

However, though canonical effect sizes tend to be reasonably
stable across samples (Thompson, 1990), the individual function
coefficients and structure coefficients that are an important
component of the analysis tend to be less stable (Thompson, in
press-a). Thus, invariance analyses are very important in the
canonical case, and several methods can be utilized (Thompson,
1984). The single method illustrated here is in the same genre as
the previous examples.

Variables T1 through T4 were related to variables T5 through
T9 in the present example. Four uncorrelated canonical functions
were possible in the example, since the smallest variable set
consisted of four variables. For the full sample the effect size
(Re2 = .00720) for the third function was negligible and the
likelihood ratio for roots three and four was not statistically
significant, therefore invariance analyses were conducted only for
the first two functions. Appendix A presents the COMPUTE statements

with the canonical function weights used to calculate the synthetic

17
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variables correlated in the analysis. For example, the synthetic
criterion composite variable on Function I for the 145 Pasteur
students using their data and their weights ("CRIT111") was:
Critlll = (.90048 * p,.,) + ( .09741 #* Pgra) +
(.0561S * pyp3) + (.08840 * p,.,)

Table 10 presents the "shrunken" effect size coefficients
derived for the example. For the first subsample, the R, of .5108
shrinks to .3091 when group two's weights are applied to group
one's data, and the second R, of .2788 shrinks to -.1831. For the
second subsample, the R, of .5195 shrinks to .3685 when group one's
weights are applied to group two's data, and the second Re of .1679
shrinks to =-.1282. Though the effect sizes for both the two
functions were relatively similar across the sample splits, the
weights employed in the analysis were appreciably more comparable

for the first than for the second function in both subsamples.

INSERT TABLE 10 ABOUT HERE.

Summary
Statistical significance testing does not inform the

researcher regarding the replicability of results. Yet the business
of science is formulating generalizable insight. No one study,
taken singly, establishes the basis for such insight. As Neale and
Liebert (1986, p. 290) observe:
No one study, however shrewdly designed and
carefully executed, can provide convincing support

for a causal hypothesis or theoretical statement...

18
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Too many possible (if not plausible) confounds,

limitations on generality, and alternative

interpretations can be offered for any one

observation. Moreover, each of the basic methods of

research (experimental, correlational, and case

study) and techniques of comparison (within- or

between-subjects) has intrinsic 1limitations. How,

then, does social science theory advance through

research? The answer is, by collecting a diverse

body of evidence about any major theoretical

proposition.
Evaluating the generalizability of multivariate results to other
samples of subjects or of variables is a daunting task, but a task
which the serious scholar can ill~afford to shirk. Science will
cumulate knowledge only to the extent that idiosyncratic findings
are recognized as such, and significance testing is not
particularly useful for making this evaluation. The present paper
has illustrated the application of a few of the various logics
available to the researcher who wishes to pursue such

investigations.
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Table 1
All Possible Families of Outcomes
for a Fair Coin Flipped Three Times

Flip #
1 2 3
1. T:T:T
2. H:T:T i P of 1 or more H's (TW error analog)
3. T:H:T | in set of 3 Flips = 7/8 = 87.5%
4. T : T : H !
5. H:H:T | or
6. H: T :H | where TW error analog = .50,
7. T:H:H | EWp=1-(1-,5)3
8. H:H:H | = 1-.5% = 1-.125 = .875
p of H on
each Flip 50% 50% 50%

Note. The probability of one or more occurrences of a given outconme
in a set of events is 1 - (1-p)¥, where P is the probability of the
given occurrence on each trial and k is the number of trials in a
set of perfectly independent events.

Table 2
Formula for Estimating Experimentwise Type I Error Inflation
When Hypotheses are Perfectly Uncorrelated

W Experimentwise
alpha Tests alpha
1 - (1-0.05) = 1 =
1 - ( 0.95 ) ## 1 = a
1 - 0.95 = 0.05000
Range Over Testwise (TW) alpha = .01
1 - (1-0.01) #* 5 = 0.04901
1 -(1-0.01) *x=* 10 = 0.09562
1 = (1 -0.01) #** 20 = 0.18209
Range Over Testwise (TW) alpha = .05
1 -(1-~0.05) #* 5 = 0.22622
1 -(1-0.05) #* 10 = 0.40126
1 -(1-0.05) #* 20 = 0.64151
Range Over Testwise (TW) alpha = .10
1 = (1-0.10) #* 5 = 0.40951
1-(1~-0.10) ** 10 = 0.65132
1 -(1=-0.10) %% 20 = 0.87842

Note. "#**" = "rajse to the power of".

AThese calculations are presented (a) to illustrate the
implementation of the formula step by step and (b) to demonstrate
that when only one test is conducted, the experimentwise error rate
equals the testwise error rate, as should be expected if the
formula behaves properly.
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Table 3

Descriptive Statistics for Holzinger and Swineford (1939) Data

Variable Mean

SCHOOL

T1
T2
T3
T4
TS
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
T22
T23
T24
T25
T26

1.482
29.615
24.352
14.229
18.003
40.591
9.183
17.362
26.126
15.299
96.276
69.163
110.542
193.468
175.153

90.010
102.525

8.233

9.425
14.037
26.890
14.249
26.239
18.136
24.266
15.648
36.303

SD

.500
7.005
4.710
2.830
9.048

12.381
3.492
5.162
5.675
7.669

25,059

15.670

20.252

36.329

11.508
7.729
7.633
4.916
4.488
4.077

19.334
4.562
9.197
9.140
4.735
3.086
8.339

variable Label

VISUAL PERCEPTION TEST FROM SPEARMAN VPT
CUBES, SIMPLIFICATION OF BRIGHAM'S SPATI
PAPER FORM BOARD--SHAPES THAT CAN BE COM
LOZENGES FROM THORNDIKE--SHAPES FLIPPED
3ENERAL INFORMATION VERBAL TEST
PARAGRAPH COMPREHENSION TEST

SENTENCE COMPLETION TEST

WORD CLASSIFICATION--WHICH WORD NOT BELO
WORD MEANING TEST

SPEEDED ADDITION TEST

SPEEDED CODE TEST--TRANSFORM SHAPES INTO
SPEEDED COUNTING OF DOTS IN SHAPE
SPEEDED DISCRIM STRAIGHT AND CURVED CAPS
MEMORY OF TARGET WORDS

MEMORY OF TARGET NUMBERS

MEMORY OF TARGET SHAPES

MEMORY OF OBJECT-NUMBER ASSOCIATION TARG
MEMORY OF NUMBER-OBJECT ASSOCIATION TARG
MEMORY OF FIGURE~-WORD ASSOCIATION TARGET
DEDUCTIVE MATH ABILITY

MATH NUMBER PUZZLES

MATH WORD PROBLEM REASONING

COMPLETION OF A MATH NUMBER SERIES
WOODY-MCCALL MIXED MATH FUNDAMENTALS TES
REVISION OF T3-~-PAPER FORM BOARD
FLAGS--POSSIBLE SUBSTITUTE FOR T4 LOZENG
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Table 4
Invariance Coefficients for the Regression Example

Y i Y12 Y21 Y22
Y 1.0000
~ a
Y;,  .4900 1.0000
N c e
Y,, .4168 .8506 1.0000
N d
Y,, .4822 . 1.0000
A b f
Y,, .5599 . . .8613 1.0000

"This is the multiple R for the 156 students at Pasteur.

PThis is the multiple R for the 145 students at Grant-White.
°This is the "shrunken" value of the R for the 156 students at
Pasteur, based on using the beta weights for the Grant-White
Students. The shrinkage is .49002 - .41682 = .2401 ~ .1737 = .0664.
IThis is the "shrunken" value of the R for the 145 students at
Grant-White, based on using the beta weights for the Pasteur
students. The shrinkage is .55992 - 48222 = .3135 -~ ,232% = ,0810.
°This is the invariance coefficient for the 156 students at
Pasteur.

fThis is the invariance coefficient for the 145 students at Grant-
White.
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Table 5
Varimax Rotated Pattern/Structure Matrix for Pasteur Students

(n = 156)
Variable FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4
T1 .35496 .62024 . 08623 .13566
T2 .01632 .64395 -.06319 -.06295
T3 . 09557 .552948 . 05815 -.24556
T4 .01989 .72448 .14223 .19744
TS .84834 .01298 .14422 -.07502
T6 .83010 .13268 .13814 .09395
T7 .89409 .06204 .06757 -.01908
T8 .75202 .15203 .08439 .14611
T9 .80579 .22468 .17590 .04170
T10 .16125 -.21005 .75728 .11505
T11 .35796 .03703 .62533 .20684
T12 . 03551 . 08427 .71847 -.05683
T13 .01455 .27829 .61539 .03179
T.4 .03530 .05151 .00034 .74889
T15 .14516 .15742 -.08054 .71260
T16 . 08347 .41132 .26089 .50423
T17 . 05943 -.09097 .33372 .59274
T18 .14625 -.06880 .03472 .61530
T19 .06763 22600 27531 .43278
T20 .11427 .60330 . 04047 .22728
T21 .29862 .41483 .43691 .13297
T22 .50750 .48108 .16256 .01041
T23 .39696 .58608 .24882 .15038
T24 .25074 .27372 .53294 .23170
30



Table 6
Regression Factor Score Weight Matrix for Pasteur Students

(n = 156)
Variable FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4
T1 .03613 .18800 ~. 05855 .00734
T2 -.05198 .25519 -.06732 -.06730
T3 ~.03485 .21754 . 00877 -.15560
T4 -.09427 .25735 ~.00020 .01818
TS .23775 -.08361 -.02595 -.04572
T6 .22213 -.04758 -.05440 .02127
T7 .25641 -.06830 -.07813 -.01511
T8 .20342 -.03259 ~.07813 . 04886
T9 .20066 -.00839 -.03323 ~.01324
T10 -.02154 -.15523 .34434 -.02159
T11 .03008 -.07765 .23000 .01804
T12 -.08539 -.01425 .34184 -.11566
T13 -.09797 .06293 .27168 -.07840
T14 .01041 -.03819 -.09559 .32932
T15 -.04524 .02857 -.11519 .31381
T16 -.04415 .09627 .02875 .16406
T17 -.00964 -.10607 .08931 .23123
T18 .05097 -.08815 ~.06895 .27537
T19 -.03277 .03066 .05849 .14391
T20 -.02896 .20182 -.06092 .05311
T21 -.00314 .09159 .13054 -.02052
T22 .08612 .12328 -.01656 -.04619
T23 .03258 .17°888 .01494 -.00248
T24 -.01461 .02850 .18016 .02203
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Varimax Rotated Pattern/Struc

Variable

T1
T2
T3
T4
TS5
Te6
T7
T8
T9
T10
T1i1
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
T22
T23
T24

FACTOR 1

.18969
. 09441
16318
.24833
«.77924
.80685
. 84695
.65732
. 84512
.16110
.17916
.02526
.19371
. 20665
.07807
.07075
.16902
.00698
.17820
.45866
.17998
44465
.44543
-.41133

(n

19

Table 7
ture Matrix for Grant-white Students
= 145)

FACTOR 2

.69323
.65983
.51715
.71458
.21503
.15161
.11903
.25086
.16299
. 07206
.12677
.22914
.45332
. 02488
.16183
.45477
.07154
«35969
.13186
.386135
.48808
.36018
.48780
.08011

32

FACTOR 3

17062
. 02583
.13603
. 06545
. 19557
.07417
.16615
.25931
. 04717
.83716
.60857
.78476
.61470
. 05357
.01560
.03646
.27888
.36721
.22208
.05303
.44788
.10038
.20782
.55939

FACTOR 4

.16118
.01294
«12246
.07524
.07616
.19990
.07617
.11186
.18076
.11438
.33076
.04228
.02085
.66968
.64922
.57780
.70520
47717
+45047
.33040
.18824
.33810
.23026
.28566



Table 8

Regression Factor Score Weight Matrix for Grant-White Students

Variable

T1
T2
T3
T4
TS
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T1e6
T17
T18
T19
T20
T21
T22
T23
T24

FACTOR 1

-.05942
-.06284
-.03719
-.02332
.23536
.25056
.27651
.17620
.26728
-.00634
-.03412
-.08810
-.04231
—.00362
-.06587

-.10440
-.02489
-.12885

-.01861
.07507

-.05779

. 06915
.05464
.06746

(n = 145)

FACTOR 2

« 27437
.30421
.20040
29744
-.03608
-.07273
-.08955
-.01198
~-.06760
-.15925
-.06617
.02109
.12665
—-.10132
-.00971
-14043
-.17071
.08030
-.03707
.07865
.14348
.06203
.12554
-.11178

33

FACTOR 3

e 02782
-.06587
~.01860
-.07279
=-.00039
=.06840
-.00928
. 03046
-.08271
.37219
.21552
-33573
.22256
-.07867
-.09831
-.10957
.03516
.07278
.01905
-.09283
.12063
-.06786
-.01729
.18538

FACTOR 4

-.03557
-.08359
-.02880
-.07783
-.09318
-.00593
-.08556
-.07281
-.01840
-.05343
. 06830
~.10645
-.14094
- 33244
. 32409
. 24912
.33842
.17023
.18221
.07819
-.03113
. 08093
-.00647
. 03025



Table 9
Factor Score Correlation Matrix

FS111 FS112 FS113 FS114 FS211 FS212 FS213 F5214 FS221 FS222 FS223
FS111 1.0000

(156)
FS112 .0000 1.0000
(156)  (156)
FS113 .0000  .0000 1.0000
(156)  (156)  (156)
FS114 .0000  .0000 .0000 1.0000
(156)  (156)  (156)  (156)
FS211 . . . . 1.0000
( 0 (0 (0 ( 0 (145)
FS212 . . . . .2397 1.0060
( 0) ( 0) ( 0) ( 0) (145) (145)
FS213 . . . . -0474  .0790 1.0000
( 0) ( 0) ( 0) ( 0) (145) (145) (145)
FS214 . . . . -2756  .2015 .1247 1.0000
( 0) ( 0) ( 0) ( 0) (145) (145) (145) (145)
FS221 . . . . -9677  .1956 -.0006 .1380 1.0000
( 0 (0 (0 ( 0 (145) (145)  (145)  (145) (145)
FS222 . . . . -0747  .9447  .1017 .5734  .0000 1.0000
( 0 (0 (0 ( o) (145) (145)  (145)  (145) (145) (145)
FS223 . . . . -0518 -.0497  .9740  .0694 .0000 .0000 1.0000
(00 o (0 ( 0 (145) (145) (145) (145) (145) (145)  (145)
FS224 . . . . -1281  .1401  .0808 .9590 .0000 .0000 .0000
(0 (0 (0 ( 0) (145) (145) (145) (145) (145) (145)  (145)
FS121 -9695  .0626 .0248 -.1319 . . . . . . .
(156) (156) (156) (156) ( 0) ( 0) ( 0) ( 0) ( 0) ( 0) ( 0)
FS122  -.0520 .9606 -.0241 -.0578 . . . . . .
(156) (156) (156) (156) ( 0) ( 0) ( 0) ( 0) ( 0) ( 0) ( 0)
FS123 .0844 -.2062 .9565 -.0161 . . . . . .
(156) (156) (156) (156) ( 0) ( 0) ( 0) ( 0) ( 0) ( 0) ( 0)
FS124 -.1401 .0399 .0234 .9633

0 (9 (o0 (0o (0o (o ( o)

.

(156) (156) (156) (156)
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Table 9 (cont.)

FS224 FS121 FSl22 FS123 FS124

FS121 1.0000 -.0236 .0781 -.2568

( 0) (156)  (156)  (156)  (156)
FS122 . -.0236 1,0000 -~.2031 -.0436
( 0) (156) (156)  (156)  (156)
FS123 . .0781 ~.2031 1.0000 -.0367
( 0) (156)  (156) (136)  (156)
FS124 . ~.2568 -,0436 -.0367 1.0000
( 0) (156)  (156)  (156)  (156)

Note. The two sets of four invariance coefficients are presented in
bold.
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Table 10
correlation Coefficients for Various Pairs of Canornical Variate Scores

CRIT111 CRIT112 PRED111 PRED112 CRIT121 CRIT1z2 PRED121 PRED122 CRIT211 CRIT212 PRED211

CRIT111 1.0000

(156)
CRIT112 .0000 1.0000

(156) (156)
PRED111 [.5108 ] .0000 1.0000

(156) (156) (156)
PRED112 .0000 [.2788 ] .0000 1.0000

(156) (156) (156) (156)

CRIT121 .8367 =~.2956 .4274 -.0824 1.0000
(156) (156) (156) (156) (156)
CRIT122 .0353 =.5702 .0170 -.1%90 ~.0082 1.0000
(156) (156) (156) (156) (156) (156)
PRED121 .4264 .0993 .8348 .3563 «3091 -.0211 1.0000
(156) (156) (156) (156) (156) (156) (156)
PRED122 -.1180 .2471 -.2311 .8864 -.1465 =,1831 .0035 1.0000
(156) (156) (156) (156) (156) (156) (156) (156)
CRIT211 . v . . . . . . 1.0000
( 0) (0 (0 (0 (0 (0 ( 0 ( 0 (145)
CRIT212 . . . . . . . . -.0310 1.0000
( 99 ( 0 ( 0) ( 0 (0 ( 0) ( 0) ( 0) (145) (145)
PRED211 . . . . . . . . «3685 -~-.1174 1.0000
( 00 ( 0 (0 (0 ( 0 ( 0) ( 0) ( 0) (145) (145)  (145)
PRED212 . . . . . . . . .1632 =~,1282 . 0060
( 00 ( 0 (0 (0 (0 ( ©0) ( 0 ( 0) (145) (145)  (145)
CRIT221 . . . . . . . . .8306 -.3105 4312
( 0) ( 0 ( 0 (o0 ( 0 ( 0) ( 0 ( 0) (145) (145)  (145)
CRIT222 . . . . . . . . 0769 ~.6145 -.0328
( 0) ( 0 ( 0 ( 0 ( 0 ( 0 ( 0) ( 0) (145)  (145)  (145)
PRED221 . . . . . . . . .4315 -.1613 .8301
( 0) ( 0 ( 08 (0 ( 0 ( 0 ( o) ( 0) (145) (145) (145)
PRED222 . . . . . . . . .0129 =-.1032 ~-.1951
( 00 ¢ 0 (0 ( 0 ( 0 ( 0 ( 0) ( 0) (145) (145)  (145)
36
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Table 10 (conc.)

PRED212 CRIT221 CRIT222 PRED221 PRED222

PRED212 1.0000 .1728 .1492 .3326 .8887
(145) (145) (145) (145) (145)
CRIT221 .1728 1.0000 .0000 [ .5195 ] .0000
(145) (145) (145) (145) (145)
CRIT222  .1492 .0000 1.,0000 .0000 [ .1679 ]
(145) (145) (145) (145) (145)
PRED221  .3326 .5195 .0000 1.0000 .0000
(145) (145) (145) (145) (145)
PRED222  .8887 .0000 .1679 .0000 1.0000
(145) (145) (145) (145) (145)

Note. The two R, values for the two subsamples are presented in
[square brackets in italics]. The two sets of invariance
coefficients are presented in bola.

37

4z

- - R R B ot o s St SR R~ S [P —— . s

eyl



Appendix A:
SPSS-X Program Used to Implement the Reported Analyses

TITLE 'Holzinger & Swineford (1939) Data *#*Citation in Comment**!
C 0 M M E N T
KRR R RR AR AR KRR RN R AR R AR AR AR AR AR AR NN AR AR AA R R AR AR ARk kh ke kkhhhhd

COMMENT Holzinger, K.J., & Swineford, F. (1939). A study in factor analysis:

COMMENT The stability of a bi-factor solution (No. 48). Chicago, IL:
COMMENT University of Chicago. (data on pp. 81-91)
C o) M M E N T

' 232232223223 2 3 R R R SRR SRR RS RS RSS2SR 222 2R R R Rl R R

DATA LIST FILE=BT RECORDS=2
/1 ID 1-3 SEX 4 AGEYR 6-7 AGEMO 8-9
T1 11-12 T2 14-15 T3 17-18 T4 20-21 T5 23-24 T6 26-27
T7 29-30 T8 32-33 T9 35-36 T10 38-40 T11 42-44 T12 46-48
T13 50-52 T14 54-56 T15 58-60 T16 62-64 T17 66-67
T18 69-70 T19 72-73 T20 74-76 T21 78-79
/2 T22 11-12 T23 14-15 T24 17-18
T25 20-21 T26 23-24
COMPUTE SCHOOL=1
IF (ID GT 200)SCHOOL=2
IF (ID GE 1 AND ID LE 85)GRADE=7
IF (ID GE 86 AND ID LE 168)GRADE=8
IF (ID GE 201 AND ID LE 281)GRADE=7
IF (ID GE 282 AND ID LE 351)GRADE=8
IF (ID GE 1 AND ID LE 44)TRACK=2
IF (ID GE 45 AND ID LE 85)TRACK=1
IF (ID GE 86 AND ID LE 129) TRACK=2
IF (ID GE 130)TRACK=1
PRINT FORMATS SCHOOL TO TRACK(F1.0)
VALUE LABELS SCHOOL(1)PASTEUR (2) GRANT-WHITE/
TRACK (1) JUNE PROMOTIONS (2)FEB PROMOTIONS/
VARIABLE LABELS T1 VISUAL PERCEPTION TEST FROM SPEARMAN VPT, PART III
T2 CUBES, SIMPLIFICATION OF BRIGHAM'S SPATIAL RELATIONS TEST
T3 PAPER FORM BOARD--SHAPES THAT CAN BE COMBINED TO FORM A TARGET
T4 LOZENGES FROM THORNDIKE--SHAPES FLIPPED OVER THEN IDENTIFY TARGET

TS GENERAL INFORMATION VERBAL TEST

T6 PARAGRAPH COMPREHENSION TEST

T7 SENTENCE COMPLETION TEST

T8 WORD CLASSIFICATION--WHICH WORD NOT BELONG IN SET
T9 WORD MEANING TEST

T10 SPEEDED ADDITION TEST

T11 SPEEDED CODE TEST--TRANSFORM SHAPES INTO ALPHA WITH CODE
T12 SPEEDED COUNTING CF DOTS IN SHAPE

T13 SPEEDED DISCRIM STRAIGHT AND CURVED CAPS

Ti4 MEMORY OF TARGET WORDS

T15 MEMORY OF TARGET NUMBERS

T16 MEMORY OF TARGET SHAPES

T17 MEMORY OF OBJECT-NUMBER ASSOCIATION TARGETS
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T18 MEMORY OF NUMBER-OBJECT ASSOCIATION TARGETS
T19 MEMORY OF FIGURE-~WORD ASSOCIATION TARGETS

T20 DEDUCTIVE MATH ABILITY
T21 MATH NUMBER PUZZLES
T22 MATH WORD PROBLEM REASONING
T23 COMPLETION OF A MATH NUMBER SERIES
T24 WOODY-MCCALL MIXED MATH FUNDAMENTALS TEST
T25 REVISION OF T3--PAPER FORM BOARD
T26 FLAGS--POSSIBLE SUBSTITUTE FOR T4 LOZENGES
LIST VARIABLES=ALL/CASES=500/FORMAT=NUMBERED
SUBTITLE '0 DESCRIPTIVES ON ALL SUBJECTS POOLED'
FREQUENCIES VARIABLES=ID TO T26/FORMAT=NOTABLE/STATISTICS=ALL
DESCRIPTIVES VARIABLES=SCHOOL T1 TO T26
SUBTITLE 'la SCH=PASTEUR COMPARE WITH GORSUCH PP. 384-385"'
TEMPORARY
SELECT IF (SCHOOL EQ 1)
DESCRIPTIVES VARIABLES=ALL
SUBTITLE 'lb SCH=GRANT-WH COMPARE WITH GORSUCH PP. 384-385!
TEMPORARY
SELECT IF (SCHOOL EQ 2)
DESCRIPTIVES VARIABLES=ALL
SUBTITLE '2 COMPARE R MATRIX WITH GORSUCH P. 100!
CORRELATIONS VARIABLES=T1 TO T26
SUBTITLE '3a REGRESSION #f##### ALL CASES!
REGRESSION VARIABLES=T6 T12 T13 T23 T24/DESCRIPTIVES=MEAN STDDEV CORR/
DEPENDENT=T6 /ENTER T12 T13 T23 T24
SUBTITLE ‘'3b REGRESSION ####### Pasteur'
TEMPORARY
SELECY IF (SCHOOL EQ 1)
REGRESSION VARIABLES=T6é T12 T13 T23 T24/DESCRIPTIVES=MEAN STDDEV CORR/
DEFENDENT=T6/ENTER T12 T13 T23 T24
SUBTITLE '3b REGRESSION ####### Grant-white'
TEMPORARY
SELECT IF (SCHOCL EQ 2)
REGRESSION VARIABLES=T6 T12 T13 T23 T24/DESCRIPTIVES=MEAN STDDEV CORR/
DEPENDENT=T6/ENTER T12 T13 T23 T24

SUBTITLE '4a FACTOR ALL CASES'

FACTOR VARIABLES=T1 TO T24/PRINT=DEFAULT FSCORE
SUBTITLE ‘'4b FACTOR Pasteur®
TEMPORARY

SELECT IF (SCHOOL EQ 1)

FACTOR VARIABLES=T1 TO T24/PRINT=DEFAULT FSCORE/CRITERIA=FACTORS (4)

SUBTITLE '4c FACTOR Grant-White'

TEMPORARY

SELECT IF (SCHOOL EQ 2)

FACTOR VARIABLES=T1 TO T24/PRINT=DEFAULT FSCORE/CRITERIA=FACTORS (4)

SUBTITLE '5a CANONICAL ALL CASES'

MANOVA T1 TO T4 WITH T5 TO T9/PRINT=SIGNIF(EIGEN DIMENR) /
DISCRIM(STAN COR ALPHA(.999) /DESIGN

SUBTITLE '5b CANONICAL Pasteur'

TEMPORARY
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SELECT IF (SCHOOL EQ 1)

MANOVA T1 TO T4 WITH T5 TO T9/PRINT=SIGNIF(EIGEN DIMENR) /
DISCRIM(STAN COR ALPHA(.999)/DESIGN

SUBTITLE 'Sc CANONICAL Grant-White!

TEMPORARY

SELECT IF (SCHOOL EQ 2)

MANOVA T1 TO T4 WITH T5 TO T9/PRINT=SIGNIF (EIGEN DIMENR) /
DISCRIM(STAN COR ALPHA(.999) /DESIGN

subtitle '6a 2z scores for Pasteur only!

temporary

select if (school eq 1)

descriptives variables=t1 (pztl) t2 (pzt2) t3 (pzt3) t4 (Pzt4) t5 (pzts)
t6 (pzte6) t7 (pzt7) t8 (pzt8) t9 (pzt9) ti1o (pztio) ti11 (pztll)
t12 (pzt12) ti3 (P2t13) t14 (pzt14) ti1s (pztl15) t16 (pztie)
t17 (pztl7) t18 (pzt18) t19 (pzt19) t20 (pzt20) t21 (pzt21)
t22 (pzt22) t23 (pzt23) t24 (pzt24)

subtitle '6b =z scores for Grant-White only'

temporary

select if (school eq 2)

descriptives variables=t1 (9z2t1) t2 (gzt2) t3 (gzt3) t4 (gzt4) t5 (gzts)
t6é (gzte) t7 (gzt7) ts (gzt8) to (gzt9) ti10 (gz2t10) ti1 (gzti1)
t12 (gztl2) t13 (gzt13) t14 (gztld) ti5 (gzt15) ti16 (gztie)
t17 (gzt17) t18 (gzt18) t19 (gzt19) t20 (gzt20) t21 (gzt21)
t22 (gzt22) t23 (gzt23) t24 (gzt24)

subtitle '7 regression invariance analysis’

compute yhatli= (.032125*pzt12)-(.031195*pzt13)+(.383641*pzt23)+
(.170181*pzt24)

compute yhat12=-(.252179*pzt12)+(.215562*pzt13)+(.295226*pzt23)+
(.333045*pzt24)

compute yhat21= (.032125*gzt12)-(.031195*gzt13)+(.383641*gzt23)+
(.170181%gzt24)

compute yhat22=-(.252179*gzt12)+(.215562*gzt13)+(.295226*gzt23)+
(-333045*gzt24)

variable labels
Yhatll 'group 1 data group 1 weights'
yhatl2 'group 1 data group 2 weights'
yhat21l 'group 2 data group 1 weights'
yhat22 'group 2 data group 2 weights'

correlations variables=t6 yhati1l to yYhat22/statistics=descriptives

subtitle '8 factor score invariance analysis'

compute fslil= (.03613*pzt1)-(.05198*pzt2)-(.03485*pzt3)~(.09427*pzt4)
+(.23775*pzt5)+(.22213*pzt6)+(.25641*pzt7)+(.20342*pzt8)+(.20066*pzt9)
-(.02154*pzt10)+(.03008*pzt11)-(.08539*pzt12)-(.09797*pzt13)
+(.01041*pzt14)-(.04524*pzt15)-(.O4415*pzt16)-(.00964*pzt17)
+(.05097*pzt18)-(.03277*pzt19)—(.02896*pzt20)-(.00314*pzt21)
+(.08612*pzt22)+(.03258*pzt23)-(.01461*pzt24)

compute fs112= (.18800*pzt1)+(.25519*pzt2)+(.21754*pzt3)+(.25735*pzt4)
-(.08361*pzt5)-(.04758*pzt6)—(.05830*pzt7)—(.03259*pzt8)~(.oos39*pzt9)
=(.15523%pzt10)~(.07765%pzt11 =(.01425%pzt12)+(.062934pzt13)
-(.03819*pzt14)+(.02857*pzt15)+(.09627*pzt16)~(.10607*pzt17)
-(.08815*pzt18)+(.03066*pzt19)+(.20182*pzt20)+(.09159*pzt21)
+(.12328*pzt22)+(.15888*pzt23)+(.02850*pzt24)
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compute fsll3=-(.05855*pzt1)—(.06732*pzt2)+(.00877*pzt3)m(.ooozo*pzt4)
-(.02595*pzt5)—(.05440*pzt6)-(.07813*pzt7)-(.07813*pzt8)~(.03323*pzt9)
+(.34434*pzt10)+(.23000*pzt11)+(.34184*pzt12)+(.27168*pzt13)
-(.09559*pzt14)-(.11519*pzt15)+(.02875*pzt16)+(.08931*pzt17)
—(.06895*pzt18)+(.05849*pzt19)-(.06092*pzt20)+(.13054*pzt21)
—(.01656*pzt22)+(.01494*pzt23)+(.18016*pzt24)

compute fslld= (.00734*pzt1)-(.06730*pzt2)—(.15560*pzt3)+(.01818*pzt4)
-(.04572*pzt5)+(.02127*pzt6)-(.01511*pzt7)+(.04886*pzt8)-(.01324*pzt9)
—(.02159*pzt10)+(.01804*pzt11)-(.11566*pzt12)-(.07840*pzt13)
+(.32932*pzt14)+(.31381*pzt15)+(.16406*pzt16)+(.23123*pzt17)
+(.27537*pzt18)+(.14391*pzt19)+(.05311*pzt20)—(.02052*pzt21)
~(.04619*pzt22)-(.00248*pzt23)+(.02203*pzt24)

compute fs211= (.03613*gzt1)-(.05198*gzt2)-(.03485*gzt3)-(.09427*~zt4)
+(.23775*gzt5)+(.22213*gzt6)+(.25641*gzt7)+(.20342*gzt8)+(.20066*gzt9)
-(.02154*gzt10)+(.03008*gzt11)-(.08539*gzt12)n(.09797*gzt13)
+(.01041*gzt14)—(.04524*gzt15)-(.O4415*gzt16)~(.00964*gzt17)
+(.05097*gzt18)—(.03277*gzt19)-(.02896*gzt20)-(.00314*gzt21)
+(.08612%g2zt22) +(.03258%g2t23) - (.01461*gzt24)

compute fs212= (.18800*gzt1)+(.25519*gzt2)+(.21754*gzt3)+(.25735*gzt4)
-(.08361*gzt5)—(.04758*gzt6)-(.06830*gzt7)-(.03259*gzt8)—(.00839*gzt9)
-(.15523*gzt10)-(.07765*gzt11)-(.01425*gzt12)+(.06293*gzt13)
-(.03819*gzt14)+(.02857*gzt15)+(.09627*gzt16)-(.10607*gzt17)
-(.08815*gzt18)+(.03066*gzt19)+(.20182*gzt20)+(.09159*gzt21)
+(.12328*qzt22)+(.15888*gzt23)+(.02850*gzt24)

compute f5213=-(.05855*gzt1)-(.06732*gzt2)+(.00877*gzt3)-(.00020*gzt4)
-(.02595*gzt5)—(.05440*gzt6)-(.07813*qzt7)-(.07813*gzt8)-(.O3323*gzt9)
+(.34434*gzt10)+(.23000*gzt11)+(.34184*gzt12)+(.27168*gzt13)
-(.09559*gzt14)—(.11519*gzt15)+(.02875*gzt16)+(.08931*gzt17)
—(.06895*gzt18)+(.05849*gzt19)-(.06092*gzt20)+(.13054*gzt21)
w(.01656*gzt22)+(.01494*gzt23)+(.18016*gzt24)

compute fs214= (.00734*gzt1)-(.06730*gzt2)-(.15560*gzt3)+(.01818*gzt4)
-(.04572*gzt5)+(.02127*gzt6)-(.01511*gzt7)+(.O4886*gzt8)-(.01324*gzt9)
-(.02159*gzt10)+(.01804*gzt11)-(.11566*gzt12)-(.07840*gzt13)
+(.32932*gzt14)+(.31381*gzt15)+(.16406*gzt16)+(.23123*gzt17)
+(.27537*gzt18)+(.14391*gzt19)+(.05311*gzt20)-(.02052*gzt21)
-(.04619*gzt22)—(.00248*gzt23)+(.02203*gzt24)

compute f5221=-(.05942*gzt1)-(.06284*gzt2)-(.03719*gzt3)-(.02332*gzt4)
+(.23536*gzt5)+(.25056*gzt6)+(.27651*gzt7)+(.17620*gzt8)+(.26728*gzt9)
—(.00634*gzt10)—(.03412*gzt11)-(.08810*gzt12)~(.04231*gzt13)
-(.00362*gzt14)-(.06587*gzt15)-(.10440*gzt16)-(.02489*qzt17)
-(.12885*gzt18)—(.01861*gzt19)+(.07507*gzt20)-(.05779*gzt21)
+(.06915*gzt22)+(.05464*qzt23)+(.06746*gzt24)

compute fs222= (.27437*gzt1)+(.30421*gzt2)+(.20040*gzt3)+(.29744*gzt4)
-(.03608*gzt5)-(.07273*gzt6)-(.08955*gzt7)-(.01198*gzt8)-(.06760*gzt9)
—(.15925*gzt10)-(.06617*gzt11)+(.02109*gzt12)+(.12665*gzt13)
-(.10132*gzt14)-(.00971*gzt15)+(.14043*gzt16)-(.17071*gzt17)
+(.0803o*gzt18)—(.O3707*qzt19)+(.07865*gzt20)+(.14348*gzt21)
+(.06203*gzt22)+(.12554*gzt23)-(.11178*gzt24)

compute f3223=-(.02782*gzt1)-(.06587*gzt2)-(.01860*gzt3)-(.07279*gzt4)
-(.00039*gzt5)-(.06840*gzt6)—(.00928*gzt7)+(.03046*gzt8 -(.08271%gzt9)
+(.37219*gzt10)+(.21552*gzt11)+(.33573*gzt12)+(.22256*gzt13)
-(.07867*gzt14)-(.09831*gzt15)-(.10957*gzt16)+(.03516*gzt17)
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+(.07278%gzt18) +(.01905%gzt19) - (

.09283+%gzt20)+(.12063%gzt21)

-(.06786*g2t22) -(.01729*%gzt23)+(.18538%gzt24)

compute f5224=-(.03557*gzt1)-(.08359*gzt2)—
-(.09318%g2t5) -

(.02880*gzt3) -(.07783*gzt4)
(.00593*gzt6)~(.08556%g2t7)~(.07281*gzt8)~(.01840%*gzt9)

ﬂ(.05343*gzt10)+(.06830*gzt11)-(.10645*gzt12)w(.14094*gzt13)
+(.33244*gzt14)+(.32409*gzt15)+(.24912*gzt16)+(.33842*gzt17)
+(.17023*gzt18)+(.18221*gzt19)+(.07819*gzt20)-(.03113*gzt21)
+(.08093*gzt22)-(.00647*gzt23)+(.03025*gzt24)

compute f3121=-(.05942*pzt1)—(.06284*pzt2)—(.03719*pzt3)—(.02332*pzt4)
+(.23536*pzt5)+(.25056%

=(.00634*pzt10) ~

Pzt6)+(.27651%pzt7)+(.17620%pzt8)+(.26728%pzt9)
(.03412%pzt11)-(.08810*pzt12)-(.04231%pzt13)

~(.00362*p2t14) - (.06587*pzt15)-(.10440%pzt16)~(.02489*pzt17)
=(.12885%pzt18) -(.01861%pzt19)+(.07507*pzt20)~(.05779%pzt21)
+(.06915%pzt22) +(.05464*pzt23)+(.06746*pzt24)

compute fsl122=

(.27437%

pzt1)+(.30421*pzt2)+(.20040*pzt3)+(.29744*pzt4)

=(.03608%pzt5)-(.07273*%pzt6)-(.08955%pz2t7)~(.01198*pzt8)~(.06760*pzt9)

-(.15925*pzt10)-~(.0661

7*pzt11)+(.02109*%pzt12)+(.12665%pzt13)

-(.10132*pzt14)-(.00971*pzt15)+(.14043*pzt16)-(.17071*pzt17)

pzt19)+(.07865%p2t20)+(.14348%pzt21)
+(.06203*pzt22)+(.12554*pzt23)-(.11178*pzt24)

compute f5123=-(.02782*pzt1)-(.06587*pzt2)—(.01860*pzt3)-(.07279*pzt4)
=(.00039%pz2t5)-(.06840*
+(.37219%p2t10)+(.21552

+(.08030*pzt18)~-(.03707*

~(.07867*pzt14)~(.098314pzt15)-(
+(.07278%pzt18)+(.01905+pz+19) - (

pzt6)-(.00928%pzt7)+(.03046*pzt8)~(.08271*pzt9)
*pzt11)+(.33573%pzt12)+(.22256%pzt13)
.10957*pzt16)+(.035164pzt17)
.09283*pzt20)+(.12063*pzt21)

~(.06786%pzt22) - (.01729%pzt23)+(.18538*pzt24)

compute f5124=~(.O3557*pzt1)-(.08359*pzt2)-
~(.09318*pzts5)~(.0059

3%*pzc6)~(.08556%pzt7)~

-(.05343*pzt10)+(.06830*pzt11)~(.10645*pzt1
+(.33244%pzt14) +(.32409%pzt15)+(.24912%pzt16)+(.338424pzt17)
+(.17023%pzt18)+(.18221%pzt19)+(.07819*pzt20)~(.03113%pzt21)
+(.08093*pzt22)-(
variable labels

(.02880*%*pzt3)~-(.07783*pzt4)
(.07281*pzt8)-(.01840*pzt9)
2)-(.14094*pzt13)

-00647*pzt23)+(.03025*%pzt24)

fs111 'grp 1 data grp 1 weights factor I1'
fs112 'grp 1 data grp 1 weights factor II'
fs113 'grp 1 data grp 1 weights factor III'
fs114 'grp 1 data grp 1 weights factor 1IV!
fs211 'grp 2 data grp 1 weights factor I!
fs212 'grp 2 data grp 1 weights factor II°
fs213 'grp 2 data grp 1 weights factor III!
fs214 'grp 2 data grp 1 weights factor IV
£s221 'grp 2 data grp 2 weights factor I!
fs222 'grp 2 data grp 2 weights factor II'
£s223 'grp 2 data grp 2 weights factor III!
£5224 'grp 2 data grp 2 weights factor 1IV!
fs121 'grp 1 data grp 2 weights factor I
fs122 'grp 1 data grp 2 weights factor II'
fs123 'grp 1 data grp 2 weights factor III'
fs124 'grp 1 data grp 2 weights factor 1IV!
correlations variables=fs111 to fsl24/statistics=descriptives
subtitle '9 canonical invariance analysis'

compute critilil= (.90048*pzt1)+(.09741*pzt2)+(.05615*pzt3)+(.08840*pzt4)
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compute critll2= (.50911*pztl)-(.68916%pzt2)+(.33707*pzt3)~-(.69424*pzt4)
compute predlll=-(.31370%pzt5)+(.50778%pzt6)~(.46168*pzt7)+(.50972*pzt8)

+(.77965*pzt9)

compute predl12=(1.16044*pzt5)+(.60716*pzt6)+(.09385%pst7)-(.75882*pzt8)

-(.72138*pzt9)

compute critl21= (.34770#%pztl)+(.09867*pzt2)+(.35597*pzt3)+(.52233*pzt4)

compute critl122=-(.09842*pzt1)+(1.09157*pzt2)~(.23021*pzt3)
-(.36428%pzt4)

compute predl2l= (.42959*pzt5)+(.31092*%pzt6)-(.19267*pzt7)+(.51866*pzt8)

+(.09882*%pzt9)

compute predl22=(1.09361*pzt5)+(.66983*%pzt6)-(.37908*pzt7)-(.89606*pzt8)

-(.556344pzt9)

compute crit211=
compute crit212=
compute pred2ll=

+(.77965%gzt9)

compute pred2l12=

~(.72138*%gzt9)

compute crit221=
compute crit222=

-(.36428*gzt4)

compute pred221=

+(.09882*gzt9)

compute pred222=(1.09361*gzt5)+(.66983*%gzt6)~(.37908*gzt7)-(.89606%g2t8)

~(.55634*%gzt9)
variable labels

critiil
critil2
criti21
criti22
predill
predill2
predl21
predl22
crit211
crit212
crit221
crit222
pred211
pred212
pred221
pred222

correlations variables=critl1ll to pred222/statistics=descriptives

Note. Lower case commands were inserted after an initial run was conducted to

'criterion
'criterion
'criterion
‘criterion
'predictor
'predictor
'predictor
‘predictor
‘criterion
'‘criterion
‘criterion
‘criterion
'predictor
‘predictor
'predictor
'predictor

grp
grp
grp
grp
grp
grp
grp
grp
grp
grp
grp
grp
grp
grp
grp
grp

NNV NNNDNN S R

data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

grp
grp
grp
grp
grp
grp
grp
grp
grp
grp
grp
grp
grp
grp
grp
grp

weights
weights
weights
weights
weights
weights
weights
weights
weights
weights
weights
weights
weights
weights
weights
weights

NN NN NN NN

function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function

obtain the values required in the second and last run.
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(.90048*%gzt1)+(.09741%gzt2)+(.05615%gzt3)+(.08840%gzt4)
(.50911*%gztl)-(.68916*gzt2)+(.33707%qgzt3)~(.69424%gzt4)
-(.31370*gzt5)+(.50778*gzt6) ~(.46168%gzt7) +(.50972%gzt8)
(1.16044*gzt5)+(.60716*gzt6)+(.09385%g2t7) ~(.75882*gzt8)

(.34770*gzt1)+(.09867*gzt2)+(.35597%gzt3)+(.52233*%gzt4)
-(.09842%gzt1)+(1.09157*gzt2) ~(.23021*gzt3)

(.42959%gzt5) +(.31092*gzt6) ~(.19267*gzt7) +(.51866*gzt8)

1'
2l
1!
2.
1'
2'
1'
2'
1'
ll
1'
2'
1'
1'
1!
2l
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