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Abstract

Research is conducted to cumulate knowledge across studies, so

assessing the generalizability of results is an essential component

of scientific inquiry. Unfortunately, statistical significance

testing does not inform judgment regarding the probability that

results will replicate. The present paper presents a series of

related logics that can be enn1ovci to empirically evaluate the

replicability of results. Data reported by Holzinger and Swineford

(1939), widely available to researchers and frequently used in

previous heuristic examples, are employed to make the discussion

concrete.



Hinkle, Wiersma and Jurs (1979, p. 415) noted that "it is

becoming increasingly important for behavioral scientists to

understand Nultivariate procedures even if they do not use them in

their own research." Recent empirical studies of research practice

confirm that multivariate methods are employed with some regularity

in behavioral research (Elmore & Woehlke, 1988). Fish (1988) notes

that there are two reasons why multivariate methods are so

important in behavioral research.

First, multivariate methods limit the inflation of Type I

"experimentwise" error rates. The seriousness of "experimentwise"

error inflation, and what to do about it, are both matters

prompting some disagreement (e.g., Bray & Maxwell, 1982, p. 343,

1985, p. 10; Hummel & Johnston, 1986). But it is clear that,

"Whenever multiple statistical tests are carried out in inferential

data analysis, there is a potential problem of 'probability

pyramiding" (Huberty & Morris, 1989, p. 306). And as Morrow and

Frankiewicz (1979) emphasize, it is also clear that in some cases

inflation of experimentwise error rates can be quite serious.

Most researchers are familiar with "testwise" alpha. But while

"testwise" alpha refers to the probability of making a Type I error
for a given hypothesis test, "experimentwise" error rate refers to

the probability of having made a Type I error anywhere within the
study, i.e., across all hypotheses. Therefore, when only one

hypothesis is tested for a given group of people in a study,

"experimentwise" error rate will exactly equal the "testwise" error
rate.



But when more than one hypothesis is tested in a given study,

the two error rates will not be equal. Witte (1985, p. 236)

explains the two error rates using an intuitively appealing example

involvim; a coin toss. If the toss of heads is equated with a Type

I error, and if a coin is tossed only once, then the probability of

a head on the one toss and of at least one head within the set of

one toss will both equal 50%. But if the coin is tossed three

times, even though the "testwise" probability of a head on each

toss is 50%, the "experimentwise" probability that there will be at

least one head in the whole set of three flips will be inflated to

87.5%. This dynamic is illustrated in Table 1. Analogies for

research are presented in Table 2. Researchers control "testwise"

error rate by picking small values, usually 0.05, for the

"testwise" alpha. "Experimentwise" error rate can be limited by

employing multivariate statistics.

INSERT TABLES 1 AND 2 ABOUT HERE.

Paradoxically, although use of several univariate tests in

a single study can lead to too many null hypotheses being

spuriously rejected, as reflected in inflation of "experimentwise"

error rate, it is also possible that the failure to employ

multivariate methods can lead to a failure to identify

statistically significant results which actually exist. Fish (1988)

and Maxwell (1991) both provide data sets illustrating this equally

disturbing possibility. Thus, "correcting" the testwise alpha level

(e.g., with a Bonferroni correction--Huberty, 1987) so as to



control experimentwise error rate inflation is not a satisfactory

solution to this problem. The basis for this paradox is beyond the

scope of the present treatment, but involves the second major

reason why multivariate statistics are so important.

Multivariate methods are often vital in behavioral research

because Mg.liteg_t_h_Qnslity_to which the
researcher is purportedly trying to generalize. This is

particularly important, since significance testing and error rates

may not always be the most important aspect of research practice

(Thompson, 1989b). Thompson (1986, p. 9) notes that the reality

about which most researchers wish to generalize is usually one "in

which the researcher cares about multiple outcomes, in which most

outcomes have multiple causes, and in which most causes have

multiple effects." Tatsuoka's (1973, p. 273) previous remarks

remain telling:

The often-heard argument, "I'm more interested in

seeing how each variable, in its own right, affects

the outcome" overlooks the fact that any variable

taken in isolation may affect the criterion

differently from the way it will act in the company

of other variables. It also overlooks the fact that

multivariate analysis--precisely by considering all

the variables simultaneously--can throw light on how

each one contributes to the relation.

Although multivariate methods have enjoyed fairly widespread

usage (Thompson, 1989a; Wood & Erskine, 1976) since computers and



statistical software became widely available, multivariate methods

also have been used in intriguing ways in measurement and

assessment contexts. For example, Merenda, Novack and Bonaventure

(1976) reported a multivariate reliabili v analysis involving

subtest scores from the California Test of Mental Maturity.

Similarly, Sexton, McLean, Boyd, Thompson and McCormick (1988)

reported results involving a multivariate concurrent validity

analysis.

Unfortunately, as Nunnally (1978, p. 298) notes, "one tends to

take advantage of chance in any situation where something is

optimized from the data at hand." In fact, this capitalization

occurs in all classical parametric methods, because all these

methods (e.g., t-tests, ANOVA, regression, MANOVA) are least

squares procedures that implicitly or explicitly (a) use weights,

(b) focus on latent synthetic variables, and (c) yield effect sizes

analogous to r2, i.e., all classical analytic methods are

correlational (Knapp, 1978; Thompson, 1988a).

The problem of capitalizing on sampling error when

multivariate methods are used is particularly acute, because the

models being tested involve a larger system of parameter estimates.

For example, the problem is particularly difficult when factor

analytic methods are employed, because "one has numerous

possibilities for capitalizing on chance. Most extraction

procedures, including principal factor solutions, reach their

criterion by such capitalization. The same is true of rotational

procedures, including those which rotate for simple structure"

4



(Gorsuch, 1983, p. 330).

Thus, it is critically important to evaluate the influences of

sampling error on obtained results, i.e., the replicability or the

invariance of results. Contrary to somewhat common misconceptions,

statistical significance testing does not ipformjudgitten regarding

b b l cab 1' am li s e

(Carver, 1978; Thompson, 1987, 1989b). The purpose of the present

paper is to describe selected methods for empirically evaluating

the stability of results, especially as regards multivariate
analyses.

The data reported by Holzinger and Swineford (1939, pp. 81-

91), used with some frequency to illustrate multivariate

statistical analyses (e.g., Gorsuch, 1983, passim; Jöreskog &
Sörbom, 1986, pp. 111.106-111.122), are used here to make the

discussion more concrete. These data were selected for use in the

examples because they are widely available, and interested readers

can therefore readily replicate the analyses described here.

Appendix A presents the SPSS-X program used to generate the

results. Table 3 presents descriptive statistics and labels for the

variables.

INSERT TABLE 3 ABOUT HERE.

A Univariate Analysis as a Starting Point

Readers more familiar with univariate analyses may appreciate

an initial example of a univariate invariance analysis, prior to

discussion of some methods that can be employed in the multivariate



case. In a seminal article, Cohen (1968, P. 426) noted that ANOVA

and ANCOVA are special cases of multiple regression analysis, and

argued that in this realization "lie possibilities for more

relevant and therefore more powerful exploitation of research

data." Thus, regression analysis provides a good context for an

invariance analysis example, because regression is so useful.

Researchers have increasingly recognized that conventional

multiple regression analysis of data as they were initially

collected (no conversion of intervally scaled independent variables

into dichotomies or trichotomies) does not discard information or

distort reality, and that the general linear model

...can be used equally well in experimental or non-

experimental research. It can handle continuous and

categorical variables. It can handle two, three,

four, or more independent variables... Finally, as

we will abundantly show, multiple regression

analysis can do anything the analysis of variance

does--sums of squares, mean squares, F ratios--and

more. (Kerlinger & Pedhazur, 1973, p. 3)

Discarding variance is not generally good research practice

(Kerlinger, 1986, p. 558; Thompson, 1988b) and amounts to

"squandering of information" (Cohen, 1968, p. 441). As Pedhazur

(1982, pp. 452-453) notes,

Categorization of attribute variables is all too

frequently resorted to in the social sciences... It

is possible that some of the conflicting evidence in



the research literature of a given area may be

attributed to the practice of categorization of

continuous variables... Categorization leads to a

loss of information, and consequently to a less

sensitive analysis.

One reason why researchc-, may be prone to categorizing

continuous variables is that some researchers unconsciously and

erroneously associate ANOVA with the power of experimental designs.

Humphreys (1978, p. 873) notes that:

The basic fact is that a measure of individual

differences is not an independent variable, and it

does not become one by categorizing the scores and

treating the categories as if they defined a

variable under experimental control in a factorially

designed analysis of variance.

Similarly, Humphreys and Fleishman (1974, p. 468) note that

categorizing variables in a nonexperimental design using an ANOVA

analysis "not infrequently produces in both the investigator and

his audience the illusion that he has experimental control over the

independent variable. Nothing could be more wrong."

As Cliff (1987, p. 130) notes, the practice of discarding

variance on intervally scaled predictor variables to perform OVA

analyses creates problems in almost all cases:

Such divisions are not infallible; think of the

persons near the borders. Some who should be highs

are actually classified as lows, and vice versa, In



addition, the "barely highs" are classiiied the same

as the "very highs," even though they are different.

Therefore, reducing a reliable variable to a

dichotomy makes the variable more unreliable, not

less.

These various realizations have led to less frequent use of OVA

nethods, and to more frequent use of general linear model

approaches such as regression (Elmore & Woehlke, 1988; Goodwin &

Goodwin, 1985; Willson, 1982).

Fxamle IljMultij1eRgression AnaJ.ysis

The regression example utilized scores of the 301 subjects on

variable T6, paragraph comprehension, as the dependent variable.

Scores on variables T12, T13, T23, and T24, described in Table 3,

were arbitrarily selected as the predictors for the example. The

effect si.ze in the example was noteworthy (R2 = .277) and

statistically significant (f = 28.395, di = 4/296, g < .0001).

Researchers have increasingly recognized, however, that the

effect sizes in parametric analyses are subject to "shrinkage",

i.e., least squares methods for data in hand tend to be

overestimates of the effects that would be realized by the

application of the calculated sample weights to data in other

samples (Fisk, 1991). One approach to this problem invokes

statistical correction formulas grounded in certain assumptions

about the sample and sampling error. For example, one might employ

Wherry's (1931) correction formula to R2. The Wherry correction can

be expressed as:



R2 ((1 R2) * / (n 1))).

When applied to the example results, the corrected population

estimate is:

.27731 - ((1 - .27731) * (4 / (301 - 4 - 1)))

.27731 ( .72269 * (4 / 296 ))

.27731 - ( .72269 * .013513 )

.27731 - .009766

.267543.

However, Stevens (1986, pp. 78-84) incisively implies that

researchers usually ground their work in empirical findings from

previous samples, and in actual practice usually want their work to

generalize to future samples in future research rather than to the

unknowable population. Herzberg (1969) provides a correction for

this estimate:

1 - ((n-1)/(n-v-1))((n-2)/(n-v-2))((n+1)/n)(1-R2).

For these data the correction for R2 would be:

1 (300 / 296 ) * (299 / 295 ) * (302/301)* (1-.27731)
1 - 1.013513 * 1.013559 * 1.003322 * 0.72269
1 - 1.027256 * 1.003322 * 0.72269
1 - 1.030668 * 0.72269
1 - 0.744854
0.255145,

a result which even further overcorrects the estimate, and is thus

still more conservative.

These sorts of statistical corrections for effect size

estimates make smaller corrections

are larger and (b) sample sizes are

stability of an effect size is

both as (a) sample effect sizes

larger. However, evaluating the

a different proposition than

evaluating the stability of the least squares weights twed to yield

the identified effect. Since researchers usually consult the system

of weights as part of their result interpretation (Thompson &
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Borrello, 1985), the statistical correction formulas in and of

themselves are not sufficient for evaluating the invariance of

results.

Efforts to estimate the sampling specificity of coefficients

for specific variables are more difficult, or at least more

tedious. Some researchers randomly split their sample data, conduct

separate analyses for the two subgroups, and then oubjectively

compare the results to determine if they appear to be similar. Two

points need to be emphasized about such an approach.

First, such procedures almost always overestimate the

invariance or generalizability of results, as Thompson (1984, p.

46) emphasizes. Most researchers work with samples of convenience

that are homogeneous in several if not many respects, e.g.,

geographic location. The members of the random subgroups, then,

have more in common with each other than will independent future

samples drawn by other researchers. This is not said to discourage

the practice of replicability analysis, but is emphasized only to

give a context for the interpretation of results. It is always

better to have an empirical overestimate of result replicability

than to have merely a dogmatic attachment to the presumption that

sample results will generalize.

Second, it is emphasi7^d that inferences regarding

replicability must be made empirically rather than subjectively,

e.g., =I by visually comparing coefficients across two randomly

identified sample subgroups. Subjective comparisons will not do,

because two sets of weights that appear to be different may in fact

1 3
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yield quite similar estimates of the synthetic or latent variables

actually being correlated in all parametric analyses, e.g., the
A

synthetic variable Y being correlated with Y to yield R in

regression analysis. Rowell (1991) provides a concrete example of

just such a case. Cliff (1987, pp. 177-178) suggests that such

cases involve "insensitivity" of the weights to departures from

least squares constraints.

Cross-validation is one vehicle for empirically explor3ng the

stability of regression weights and resulting effect sizes across

samples (Huck, Cormier & Bounds, 1974, pp. 159-160). Rowell (1991)

and Thompson (1989b) provide examples for the regression case. Of

course, other empirical methods are available for evaluating result

replicability, such as the bootstrap (Diaconis & Efron, 1983;

Lunneborg, 1987). Thompson and Melancon (1990) provide an example

of the application of he bootstrap in the regression case.

In the first step of the cross-validation process the sample

is divided into two subsamples, usually randomly. However, for the

purposes of the present heuristic example, the two schools

represented in the Holzinger and Swineford (1939) data were used as

the subgroups.

Next, separate analyses were conducted for the two data sets.

The effect size for the 156 students at Pasteur School, R2 = .240,

was statistically significant (F = 11.927, cif = 4/151, < .0001).

The prediction equation was:

Z <---- = (+ Z.032125 * 031195 *11 T12) (-' ZT13)

(+.383641 * ZT23) + (+.170181 * ZT24)

11
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The effect size for the 145 students at Grant-White School, R2 =

. 313, was statistically significant ( E = 15.979, df = 4/140, p <

. 0001). The prediction equation was:

Zy Y-22 = (-.252179 * Z-T12) + (+.215562 * Z
T13)1 +

(+.295226 * + (+.333045-T23,1 * ZT24)

The third step in the analysis requires that the predictor

variables in each subsample be standardized into z-score form using

each group's own means and SDs, and then that new Y's be calculated

for subsample one using group two's weights (called here Y12), and
Afor subsample two using group one's weights (called here Y21). Once

this is done, correlation coefficients are computed among the

various synthetic variable estimates. For the example data, these

results are presented in Table 4.

INSERT TABLE 4 ABOUT HERE.

The Table 4 invariance coefficients (.8506 and .8613) suggest

that the subsample results are reasonably invariant. The results

also illustrate the importance of empirically evaluating

invariance, since the weights yield reasonably comparable estimates
of Y, notwithstanding the fact that the beta weights might appear

different on the basis of subjective inspection (e.g., +.032125 vs

-.252179, -.031195 vs +.215562).

The researcher with such results will conclude that the R2

effect size is relatively stable, that the beta weights fluctuate,

but that the effect sizes tend to be "insensitive" to these

fluctuations. Of course, the regression results for the full sample

12



will then provide the final basis for interpretation. The subsample

results are employed to evaluate result stability, and are not used

as the basis for interpretation. The results for the full sample

are used for interpretation, since these results should

theoretically be the most stable, as a function of sample size.

EXImple Invariance Analyses for_Two Multivariate Analyses

The same logic for evaluating invariance can be readily

generalized to analyses that are multivariate. Factor analysis and

canonical correlation analysis were the two methods selected as

examples of tris generalization.

Example f2; Factor Analysis

Factor analysis has been closely associated with evaluating

the construct validity of measures. Nunnally (1978, p. 111) notes

that "construct validity has been spoken of as 'trait validity' and

'factorial validity.'" Gorsuch (1983, pp. 350-351) suggests that

A prime use of factor analysis has been in the

development of both the theoretical constructs for an

area and the operational representatives for the

theoretical constructs... If a theory has clearly defined

constructs, then scales can be directly built to embody

those constructs.

Thus, "factor analysis is intimately involved with questions of

validity... Factor analysis is at the heart of the measurement of

psychological constructs" (Nunnally, 1978, p. 112).

Twenty-four variables from the Holzinger and Swineford (1939)

data, T1 through T24, were employed in this example. A variety of

13
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invariance logics can be applied in factor analysis, including

"best fit" Procrustean rotation across sample splits (Thompson,

1991), bootstrap factor analysis (Thompson, 1988c), and various

other methods described and compared by Guadagnoli and Velicer

(1988). However, the method selected for discussion here is a

generalization of the regression cross-validation strategy, a

method familiar to many researchers.

A variety of procedures can be employed to calculate the

synthetic variables in factor analysis, called factor scores

(Thompson, 1983). However, the most common estimation procedure is

the regression procedure represented by the matrix algebra

algorithm:

2NxV WINF

where

-1WVxF = RVxV PVxF

and where Z is the set of v z-scores for each of the n subjects, R-1

is the inverse of the correlation matrix for the variable set, and

P is the orthogonal factor pattern/structure matrix.

The W matrix is related to the beta weights employed to

estimate the synthetic variable scores in regression. Thus, one

approach to evaluating invariance of factor analytic results could

invoke a comparison of the synthetic factor scores derived using W

matrices across sample splits.

Table 5 presents the varimax-rotated structure matrix for the

156 Pasteur students, and Table 6 presents the associated Weight

matrix for the students. Table 7 presents the varimax-rotated

14
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structure matrix for the 145 Grant-White students, and Table 8

presents the associated Weight matrix for the students.

INSERT TABLES 5 THROUGH 8 ABOUT HERE.

Appendix A presents the SPSS-X commands employed to compute

the factor scores for each group involving each group's own data

and each group's own weights, i.e., variables "fs111" through

"fs114" for the 156 Pasteur students, and variables "fs221" through

"fs224" for the 145 Grant-White students. Appendix A also presents

the SPSS-X commands employed to compute the factor scores for each

group involving each group's own data and the other group's

weights, i.e., variables "fs121" through "fs124" for the 156

Pasteur students, and variables "fs211" through "fs214" for the 145

Grant-White students.

Table 9 presents the invariance coefficients for analysis, and

these coefficients are bolded. The first set of coefficients for

the four principal components scores is: .9677, .9447, .97401 and

. 9590. The second set of coefficients is: .9695, .96061 .95651

. 9633. If such results had occurred across random subgroups of a

sample, the researcher would doubtless be relatively sanguine about

the stability of results.

INSERT TABLE 9 ABOUT HERE.

ZIcapple /3: Canonical Correlation Analysis

Though multiple regression is a useful analytic method,

canonical correlation analysis/ and not regression analysis/ is the

15
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most general case of the general linear model (Baggaley, 1981, p.

129; Fornell, 1978, P. 168). In an important article, Knapp (1978,

p. 410) demonstrated this in some mathematical detail and concluded

that "virtually all of the commonly encountered tests of

significance can be treated as specia cases of canonical

correlation analysis." Thompson (1988a) illustrates how canonical

correlation analysis can be employed to implement all the

parametric tests that canonical methods subsume as special cases.

Thus, canonical correlation analysis is a powerful analytic

paradigm that can be applied to myriad research problems. The

method is valuable because it honors the complexity of reality by

simultaneously considering all relationships among variables, and

does not require that intervally scaled predictor variables be

converted to nominal scale. As Stevens (1986, p. 373, emphasis

omitted) notes,

canonical correlation.., is appropriate if the wish

is to parsimoniously describe the number and nature

of mutually independent relationships between the

two (or more] sets (of variables]... Since the

combinations [of the variables derived through least

squares weighting] are uncorrelated, one will obtain

a very nice additive partitioning of the total

between association.

Canonical analysis yields an effect size estimate, Rc2, that

is akin to the R2 effect in multiple regression. Lice regression,

which yields both weights (called beta weights) and correlations

16
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coefficients (called structure coefficients) between observed

predictors (e.g., X112,1 and the synthetic variable, Y (Thompson &

Borrello, 1985), canonical analysis also yields least squares

weights (called canonical function coefficients) and structure

coefficients. The two sets of coefficients have the same function

and meaning in canonical analysis as they do in regression, and are

the two primary rivals for evaluating variable importance at the

function level (Harris, 1989; Kerlinger & Pedhazur, 1973, p. 344;

Levine, 1977, p. 20, Meredith, 1964, p. 55; Thompson, in press-b).

However, though canonical effect sizes tend to be reasonably

stable across samples (Thompson, 1990), the individual function

coefficients and structure coefficients that are an important

component of the analysis tend to be less stable (Thompson, in

press-a). Thus, invariance analyses are very important in the

canonical case, and several methods can be utilized (Thompson,

1984). The single method illustrated here is in the same genre as

the previous examples.

Variables T1 through T4 were related to variables T5 through

T9 in the present example. Four uncorrelated canonical functions

were possible in the example, since the smallest variable set

consisted of four variables. For the full sample the effect size

(Rc2 = .00720) for the third function was negligible and the

likelihood ratio for roots three and four was not statistically

significant, therefore invariance analyses were conducted only for

the first two functions. Appendix A presents the COMPUTE statements

with the canonical function weights used to calculate the synthetic

17



variables correlated in the analysis. For example, the synthetic

criterion composite variable on Function I for the 145 Pasteur

students using their data and their weights ("CRIT111") was:

crit111 = (.90048 * PzT1) + ( .09741 * PzT2)

(.05615 * PzT3) + (.08840 * PZT4 )
Table 10 presents the "shrunken" effect size coefficients

derived for the example. For the first subsample, the Re of .5108

shrinks to .3091 when group two's weights are applied to group

one's data, and the second Re of .2788 shrinks to -.1831. For the

second subsample, the Re of .5195 shrinks to .3685 when group one's

weights are applied to group two's data, and the second Re of .1679

shrinks to -.1282. Though the effect sizes for both the two

functions were relatively similar across the sample splits, the

weights employed in the analysis were appreciably more comparable

for the first than for the second function in both subsamples.

INSERT TABLE 10 ABOUT HERE-.

Summary

Statistical significance testing does not inform the

researcher regarding the replicability of results. Yet the business

of science is formulating generalizable insight. No one study,

taken singly, establishes the basis for such insight. As Neale and

Liebert (1986, p. 290) observe:

No one study, however shrewdly designed and

carefully executed, can provide convincing support

for a causal hypothesis or theoretical statement...

18
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Too many possible (if not plausible) confounds,

limitations on generality, and alternative

interpretations can be offered for any one

observation. Moreover, each of the basic methods of

research (experimental, correlational, and case

study) and techniques of comparison (within- or

between-subjects) has intrinsic limitations. How,

then, does social science theory advance through

research? The answer is, by collecting a diverse

body of evidence about any major theoretical

proposition.

Evaluating the generalizability of multivariate results to other

samples of subjects or of variables is a daunting task, but a task

which the serious scholar can ill-afford to shirk. Science will

cumulate knowledge only to the extent that idiosyncratic findings

are recognized as such, and significance testing is not

particularly useful for making this evaluation. The present paper

has illustrated the application of a few of the various logics

available to the researcher who wishes to pursue such

investigations.

19
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Table 1
All Possible Families of Outcomes
for a Fair Coin Flipped Three Times

Flip
1 2 3

1. T T T
2. H : T T p of 1 or more H's (TW error analog)
3. T H T in set of 3 Flips = 7/8 = 87.5%
4. T : T : h
5. H H T or
6. H T : H where TW error analog = .50,
7. T : H : H EW p = 1 - /1 - .5)3
8. H : H : H = 1-.5' = 1-.125 = .875

p of H on
each Flip 50% 50% 50%

potq. The probability of one or more occurrences of a given outcome
in a set of events is 1 - (1-p)k, where g is the probability of the
given occurrence on each trial and k is the number of trials in a
set of perfectly independent events.

Table 2
Formula for Estimating Experimentwise Type I Error Inflation

When Hypotheses are Perfectly Uncorrelated

1

1

- (

(

1

TW
alpha

- 0.05
0.95

)

)

**
**

Tests
1
1

Experimentwise
alpha

=
= a

1 - 0.95 = 0.05000
Range Over Testwise (TW) alpha = .01
1 - ( 1 - 0.01 ) ** 5 - 0.04901
1 ( 1 - 0.01 ) ** 10 = 0.09562
1 - ( 1 - 0.01 ) ** 20 = 0.18209

Range Over Testwise (TW) alpha = .05
1 ( 1 - 0.05 ) ** 5 = 0.22622
1 - ( 1 - 0.05 ) ** 10 = 0.40126
1 ( 1 - 0.05 ) ** 20 = 0.64151

Range Over Testwise (TW) alpha = .10
1 ( 1 - 0.10 ) ** 5 = 0.40951
1 ( 1 - 0.10 ) ** 10 = 0.65132
1 - ( 1 - 0.10 ) ** 20 = 0.87842

Note. "**" = "raise to the power of".

&These calculations are presented (a) to illustrate the
implementation of the formula step by step and (b) to demonstrate
that when only one test is conducted, the experimentwise error rateequals the testwise error rate, as should be expected if the
formula behaves properly.
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Table 3
Descriptive Statistics for Holzinger and Swineford (1939) Data

Variable Mean SD Variable Label

SCHOOL 1.482 .500
TI 29.615 7.005 VISUAL PERCEPTION TEST FROM SPEARMAN VPT
T2 24.352 4.710 CUBES, SIMPLIFICATION OF BRIGHAM'S SPATI
T3 14.229 2.830 PAPER FORM BOARD--SHAPES THAT CAN BE COM
T4 18.003 9.048 LOZENGES FROM THORNDIKE--SHAPES FLIPPED
T5 40.591 12.381 i;ENERAL INFORMATION VERBAL TEST
T6 9.183 3.492 PARAGRAPH COMPREHENSION TEST
T7 17.362 5.162 SENTENCE COMPLETION TEST
T8 26.126 5.675 WORD CLASSIFICATION--WHICH WORD NOT BELO
T9 15.299 7.669 WORD MEANING TEST
T10 96.276 25.059 SPEEDED ADDITION TEST
T11 69.163 15.670 SPEEDED CODE TEST--TRANSFORM SHAPES INTO
T12 110.542 20.252 SPEEDED COUNTING OF DOTS IN SHAPE
T13 193.468 36.329 SPEEDED DISCRIM STRAIGHT AND CURVED CAPS
T14 175.153 11.508 MEMORY OF TARGET WORDS
T15 90.010 7.729 MEMORY OF TARGET NUMBERS
T16 102.525 7.633 MEMORY OF TARGET SHAPES
T17 8.233 4.916 MEMORY OF OBJECT-NUMBER ASSOCIATION TARG
T18 9.425 4.488 MEMORY OF NUMBER-OBJECT ASSOCIATION TARG
T19 14.037 4.077 MEMORY OF FIGURE-WORD ASSOCIATION TARGET
T20 26.890 19.334 DEDUCTIVE MATH ABILITY
T21 14.249 4.562 MATH NUMBER PUZZLES
T22 26.239 9.197 MATH WORD PROBLEM REASONING
T23 18.136 9.140 COMPLETION OF A MATH NUMBER SERIES
T24 24.266 4.735 WOODY-MCCALL MIXED MATH FUNDAMENTALS TES
T25 15.648 3.086 REVISION OF T3--PAPER FORM BOARD
T26 36.303 8.339 FLAGS--POSSIBLE SUBSTITUTE FOR T4 LOZENG
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Table 4
Invariance Coefficients for the Regression Example

1.0000
a

Y11 .4900

Y12 .4168

Y21 .4822

Y22 .5599

A
y
11 Y12 Y21 Y22

1.0000

.8506 1.0000

1.0000

.8613 1.0000

aThis is the multiple R for the 156 students at Pasteur.
bThis is the multiple R for the 145 students at Grant-White.cThis is the "shrunken" value of the R for the 156 students atPasteur, based on using the beta weights for the Grant-White
students. The shrinkage is .49002 - .41682 = .2401 - .1737 = .0664.dThis is the "shrunken" value of the R for the 145 students atGrant-White, based on using the beta weights for the Pasteurstudents. The shrinkage is .55992 - .48222 = .3135 - .2325 = .0810.°This is the invariance coefficient for the 156 students atPasteur.

tThis is the invariance coefficient for the 145 students at Grant-White.
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Table 5
Varimax Rotated Pattern/Structure Matrix for Pasteur Students

Variable FACTOR 1

(n = 156)

FACTOR 2 FACTOR 3 FACTOR 4

Tl .35496 .62024 .08623 .13566
T2 .01632 .64395 -.06319 -.06295
T3 .09557 .5529a .05815 -.24556
T4 -.01989 .72448 .14223 .19744
T5 .84834 .01298 .14422 -.07502
T6 .83010 .13268 .13814 .09395
T7 .89409 .06204 .06757 -.01908
T8 .75202 .15203 .08439 .14611
T9 .80579 .22468 .17590 .04170
T10 .16125 -.21005 .75728 .11505
T11 .35796 .03703 .62533 .20684
T12 .03551 .08427 .71847 -.05683
T13 .01455 .27829 .61539 .03179
T14 .03530 .05151 .00034 .74889
T15 -.14516 .15742 -.08054 .71260
T16 .08347 .41132 .26089 .50423
T17 .05943 -.09097 .33372 .59274
T18 .14625 -.06880 .03472 .61530
T19 .06763 .22600 .27591 .43278
T20 .11427 .60330 .04047 .22728
T21 .29862 .41483 .43691 .13297
T22 .50750 .48108 .16256 .01041
T23 .39696 .58608 .24882 .15038
T24 .25074 .27372 .53294 .23170
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Table 6
Regression Factor Score Weight Matrix for Pasteur Students

(n = 156)

Variable FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4

Tl .03613 .18800 -.05855 .00734T2 -.05198 .25519 -.06732 -.06730T3 -.03485 .21754 .00877 -.15560T4 -.09427 .25735 -.00020 .01818T5 .23775 -.08361 -.02595 -.04572T6 .22213 -.04758 -.05440 .02127T7 .25641 -.06830 -.07813 -.01511T8 .20342 -.03259 -.07813 .04886T9 .20066 -.00839 -.03323 -.01324T10 -.02154 -.15523 .34434 -.02159T11 .03008 -.07765 .23000 .01804T12 -.08539 -.01425 .34184 -.11566T13 -.09797 .06293 .27168 -.07840T14 .01041 -.03819 -.09559 .32932T15 -.04524 .02857 -.11519 .31381T16 -.04415 .09627 .02875 .16406T17 -.00964 -.10607 .08931 .23123T18 .05097 -.08815 -.06895 .27537T19 -.03277 .03066 .05849 .14391T20 -.02896 .20182 -.06092 .05311T21 -.00314 .09159 .13054 -.02052T22 .08612 .12328 -.01656 -.04619T23 .03258 .3-888 .01494 -.00248T24 -.01461 .02850 .18016 .02203
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Table 7
Varimax Rotated Pattern/Structure Matrix for Grant-White Students

Variable FACTOR 1

(n = 145)

FACTOR 2 FACTOR 3 FACTOR 4

TI .18969 .69323 .17062 .16118T2 .09441 .65983 .02583 .01294T3 .16318 .51715 .13603 .12246T4 .24833 .71458 .06545 .07524T5 .77924 .21503 .19557 .07616T6 .80685 .15161 .07417 .19990T7 .84695 .11903 .16615 .07617T8 .65732 .25086 .25931 .11186T9 .84512 .16299 .04717 .18076T10 .16110 -.07206 .83716 .11438T11 .17916 .12677 .60857 .33076T12 .02526 .22914 .78476 .04228T13 .19371 .45332 .61470 .02085T14 .20665 .02488 .05357 .66968T15 .07807 .16183 .01560 .64922T16 .07075 .45477 .03646 .57780T17 .16902 -.07154 .27888 .70520T18 .00698 .35969 .36721 .47717T19 .17820 .13186 .22208 .45047T20 .45866 .38635 .05303 .33040T21 .17998 .48808 .44788 .18824T22 .44465 .36018 .10038 .33810T23 .44543 .48780 .20782 .23026T24 .41133 .08011 .55939 .28566
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Table 8
Regression Factor Score Weight Matrix for Grant-White Students

Variable FACTOR 1

(n = 145)

FACTOR 2 FACTOR 3 FACTOR 4

Tl -.05942 .27437 -.02782 -.03557T2 -.06284 .30421 -.06587 -.08359T3 -.03719 .20040 -.01860 -.02880T4 -.02332 .29744 -.07279 -.07783T5 .23536 -.03608 -.00039 -.09318T6 .25056 -.07273 -.06840 -.00593T7 .27651 -.08955 -.00928 -.08556T8 .17620 -.01198 .03046 -.07281T9 .26728 -.06760 -.08271 -.01840T10 -.00634 -.15925 .37219 -.05343T11 -.03412 -.06617 .21552 .06830T12 -.08810 .02109 -33573 -.10645T13 -.04231 .12665 .22256 -.14094T14 -.00362 -.10132 -.07867 .33244T15 -.06587 -.00971 -.09831 .32409T16 -.10440 .14043 -.10957 .24912T17 -.02489 -.17071 .03516 .33842T18 -.12885 .08030 .07278 .17023T19 -.01861 -.03707 .01905 .18221T20 .07507 .07865 -.09283 .07819T21 -.05779 .14348 .12063 -.03113T22 .06915 .06203 -.06786 .08093T23 .05464 .12554 -.01729 -.00647T24 .06746 -.11178 .18538 .03025

33



Table 9
Factor Score Correlation Matrix

FS111 FS112 F$113 F5114 FS211 FS212 FS213 FS214 FS221 FS222 FS223FS111 1.0000
(156)

FS112 .0000 1.0000
(156) (156)

F5113 .0000 .0000 1.0000
(156) (156) (156)

FS114 .0000 .0000 .0000 1.0000
(156) (156) (156) (156)

FS211 . . . . 1.0000
( 0) ( 0) ( 0) ( 0) (145)FS212 . .

. .2397 1.0000
( 0) ( 0) ( 0) ( 0) (145) (145)FS213 . . . . .0474 .0790 1.0000
( 0) ( 0) ( 0) ( 0) (145) (145) (145)FS214 . . . . .2756 .2015 .1247 1.0000( 0) ( 0) ( 0) ( 0) (145) (145) (145) (145)F5221 . . . . .9677 .1956 -.0006 .1380 1.0000( 0) ( 0) ( 0) ( 0) (145) (145) (145) (145) (145)FS222 .

. . .0747 .9447 .1017 .0734 .0000 1.0000( 0) ( 0) ( 0) ( 0) (145) (145) (145) (145) (145) (145)FS223 . . . . .0518 -.0497 .9740 .0694 .0000 .0000 1.0000( 0) ( 0) ( 0) ( 0) (145) (145) (145) (145) (145) (145) (145)FS224 . . . . .1281 .1401 .0808 .9590 .0000 .0000 .0000( 0) ( 0) ( 0) ( 0) (145) (145) (145) (145) (145) (145) (145)FS121 .9695 .0626 .0248 -.1319
. . . . .(156) (156) (156) (156) i 0) i 0) ( 0) ( 0) ( 0) ( 0) ( 0)FS122 -.0520 .9606 -.0241 -.0578
. . . . .(156) (156) (156) (156) i 0) i 0) ( 0) ( 0) ( 0) ( 0) ( 0)FS123 .0844 -.2062 .9565 -.0161
. . . . .(156) (156) (156) (156) i 0) i 0) ( 0) ( 0) ( 0) ( 0) ( 0)F5124 -.1401 .0399 .0234 .9633

. .
.(156) (156) (156) (156) i 0) i 0) ( 0) ( 0) ( 0) ( 0) ( 0)
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Table 9 (cont.)

F$224 FS121 F5122 FS123 FS124
FS121 1.0000 -.0236 .0781 -.2568

( 0) (156) (156) (156) (156)
FS122 -.0236 1.0000 -.2031 -.0436

( 0) (156) (156) (156) (156)
FS123 .0781 -.2031 1.0000 -.0367

( 0) (156) (156) (1J6) (156)
FS124 -.2568 -.0436 -.0367 1.0000

( 0) (156) (156) (156) (156)

Votq. The two sets of four invariance coefficients are presented in
bold.
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Table 10
Correlation Coefficients for Various Pairs of Canohical Variate Scores

CRIT111 CRIT112 PRED111 PRED112 CRIT121 CRIT122 PRED121 PRED122 CRIT211 CRIT212 PRED211
CRIT111 1.0000

(156)
CRIT112 .0000

(156)
PRED111 (.5108 .7

(156)
PRED112 .0000

(156)
CRIT121 .8367

(156)
CRIT122 .03J3

(156)
PRED121 .4264

(156)
PRED122 -.1180

(156)
CRIT211

CRIT212

PRED211

PRED212

CRIT221

CR1T222

PRED221

PRED222

40

1.0000
(156)
.0000 1.0000
(156) (156)

[.2788 1 .0000 1.0000
(156) (156) (156)

-.2956 .4274 -.0824 1.0000
(156) (156) (156) (156)

-.5702 .0170 -.1590 -.0082 1.0000
(156) (156) (156) (156) (156)
.0993 .8348 .3563 .3091 -.0211 1.0000
(156) (156) (156) (156) (156) (156)
.2471 -.2311 .8864 -.1465 -.1831 .0035 1.0000
(156) (156) (156) (156) (156) (156) (156)

. 1.0000
( 0) ( 0) 0) ( 0) ( 0) 0) 0) ( 0) (145)

. -.0310 1.0000
( 0) ( 0) 0) ( 0) 0) 0) 0) 0) (145) (145)
. .3685 -.1174 1.0000
( 0) ( 0) 0) ( 0) 0) 0) 0) 0) (145) (145) (145)

. .1632 -.1282 .0060
( 0) ( 0) 0) ( 0) 0) 0) 0) 0) (145) (145) (145)
. .8306 -.3105 .4312
( 0) ( 0) 0) ( 0) 0) 0) 0) 0) (145) (145) (145)

. .0769 -.6145 -.0328
( 0) ( 0) 0) ( 0) 0) 0) 0) 0) (145) (145) (145)
. .4315 -.1613 .8301
( 0) ( 0) 0) ( 0) 0) 0) 0) 0) (145) (145) (145)

. .0129 -.1032 -.1951
( 0) ( 0) 0) ( 0) 0) 0) 0) 0) (145) (145) (145)
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Table 10 (con.c..)

PRED212 CRIT221 CRIT222 PRED221 PRED222
PRED212 1.0000 .1728 .1492 .3326 .8887

(145) (145) (145) (145) (145)
CR1T221 .1728 1.0000 .0000 [ .5195 ] .0000

(145) (145) (145) (145) (145)
CR1T222 .1492 .0000 1.0000 .0000 [ .1679

(145) (145) (145) (145) (145)
PRED221 .3326 .5195 .0000 1.0000 .0000

(145) (145) (145) (145) (145)
PRED222 .8887 .0000 .1679 .0000 1.0000

(145) (145) (145) (145) (145)

3

Npte. The two Rc values for the two subsamples are presented in
[square brackets in italics]. The two sets of invariance
coefficients are presented in bold.
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Appendix A:
SPSS-X Program Used to Implement the Reported Analyses

TITLE 'Holzinger & Swineford (1939) Data **Citation in Comment**'
0

***********************************************************************
COMMENT
COMMENT
COMMENT

Holzinger, K.J., & Swineford, F. (1939). A study in factor analysis:
The stability of a bi-factor solution (No. 48). Chicago, IL:
University of Chicago. (data on pp. 81-91)
0

***********************************************************************
DATA LIST FILE=BT RECORDS=2

/1 ID 1-3 SEX 4 AGEYR 6-7 AGEMO 8-9
T1 11-12 T2 14-15 T3 17-18 T4 20-21 T5 23-24 T6 26-27
T7 29-30 T8 32-33 T9 35-36 T10 38-40 T11 42-44 T12 46-48
T13 50-52 T14 54-56 T15 58-60 T16 62-64 T17 66-67
T18 69-70 T19 72-73 T20 74-76 T21 78-79
/2 T22 11-12 T23 14-15 T24 17-18
T25 20-21 T26 23-24

COMPUTE SCHOOL=1
IF (ID GT 200) SCHOOL=2
IF (ID GE 1 AND ID LE 85)GRADE=7
IF (ID GE 86 AND ID LE 168)GRADE=8
IF (ID GE 201 AND ID LE 281)GRADE=7
IF (ID GE 282 AND ID LE 351)GRADE=8
IF (ID GE 1 AND ID LE 44)TRACK=2
IF (ID GE 45 AND ID LE 85)TRACK=1
IF (ID GE 86 AND ID LE 129)TRACK=2
IF (ID GE 130)TRACK=1
PRINT FORMATS SCHOOL TO TRACK(F1.0)
VALUE LABELS SCHOOL(1) PASTEUR (2) GRANT-WHITE/

TRACK (1)JUNE PROMOTIONS (2)FEB PROMOTIONS/
VARIABLE LABELS T1 VISUAL PERCEPTION TEST FROM SPEARMAN VPT, PART III

T2 CUBES, SIMPLIFICATION OF BRIGHAM'S SPATIAL RELATIONS TEST
T3 PAPER FORM BOARD--SHAPES THAT CAN BE COMBINED TO FORM A TARGET
T4 LOZENGES FROM THORNDIKE--SHAPES FLIPPED OVER THEN IDENTIFY TARGET

T5 GENERAL INFORMATION VERBAL TEST
T6 PARAGRAPH COMPREHENSION TEST
T7 SENTENCE COMPLETION TEST
T8 WORD CLASSIFICATION--WHICH WORD NOT BELONG IN SET
T9 WORD MEANING TEST

T10 SPEEDED ADDITION TEST
T11 SPEEDED CODE TEST--TRANSFORM SHAPES INTO ALPHA WITH CODE
T12 SPEEDED COUNTING (0F DOTS IN SHAPE
T13 SPEEDED DISCRIM STRAIGHT AND CURVED CAPS

T14 MEMORY OF TARGET WORDS
T15 MEMORY OF TARGET NUMBERS
T16 MEMORY OF TARGET SHAPES
T17 MEMORY OF OBJECT-NUMBER ASSOCIATION TARGETS
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T18 MEMORY OF NUMBER-OBJECT ASSOCIATION TARGETS
T19 MEMORY OF FIGURE-WORD ASSOCIATION TARGETS

T20 DEDUCTIVE MATH ABILITY
T21 MATH NUMBER PUZZLES
T22 MATH WORD PROBLEM REASONING
T23 COMPLETION OF A MATH NUMBER SERIES
T24 WOODY-MCCALL MIXED MATH FUNDAMENTALS TEST
T25 REVISION OF T3--PAPER FORM BOARD
T26 FLAGS--POSSIBLE SUBSTITUTE FOR T4 LOZENGES

LIST VARIABLES=ALL/CASES=500/FORMAT=NUMBERED
SUBTITLE 10 DESCRIPTIVES ON ALL SUBJECTS POOLED'
FREQUENCIES VARIABLES=ID TO T26/FORMAT=NOTABLE/STATISTICS=ALL
DESCRIPTIVES VARIABLES=SCHOOL T1 TO T26
SUBTITLE 'la SCH=PASTEUR COMPARE WITH GORSUCH PP. 384-385,
TEMPORARY
SELECT IF (SCHOOL EQ 1)
DESCRIPTIVES VARIABLES=ALL
SUBTITLE 'lb SCH=GRANT-WH COMPARE WITH GORSUCH PP. 384-385,
TEMPORARY
SELECT IF (SCHOOL EQ 2)
DESCRIPTIVES VARIABLES=ALL
SUBTITLE '2 COMPARE R MATRIX WITH GORSUCH P. 100'
CORRELATIONS VARIABLES=T1 TO T26
SUBTITLE '3a REGRESSION Milli ALL CASES'
REGRESSION VARIABLES=T6 T12 T13 T23 T24/DESCRIPTIVES=MEAN STDDEV CORR/

DEPENDENT=T6/ENTER T12 T13 T23 T24
SUBTITLE '3b REGRESSION iiiiiii Pasteur'
TEMPORARY
SELECA IF (SCHOOL EQ 1)
REGRL,SION VARIABLES=T6 T12 T13 T23 T24/DESCRIPTIVES=MEAN STDDEV CORR/

DEPENDENT=T6/ENTER T12 T13 T23 T24
SUBTITLE '3b REGRESSION iiiiiii Grant-White'
TEMPOPARY
SELECT IF (SCHOOL EQ 2)
REGRESSION VARIABLES=T6 T12 T13 T23 T24/DESCRIPTIVES=MEAN STDDEV CORR/

DEPENDENT=T6/ENTER T12 T13 T23 T24
SUBTITLE '4a FACTOR ALL CASES,
FACTOR VARIABLES=T1 TO T24/PRINT=DEFAULT FSCORE
SUBTITLE '4b FACTOR Pasteur'
TEMPORARY
SELECT IF (SCHOOL EQ 1)
FACTOR VARIABLES=T1 TO T24/PRINT=DEFAULT FSCORE/CRITERIA=FACTORS(4)
SUBTITLE '4c FAcTOR Grant-White'
TEMPORARY
SELECT IF (SCHOOL EQ 2)
FACTOR VARIABLES=T1 TO T24/PRINT=DEFAULT FSCORE/CRITERIA=FACTORS(4)
SUBTITLE '5a CANONICAL ALL CASES'
MANOVA T1 TO T4 WITH T5 TO T9/PRINT=SIGNIF(EIGEN DIMENR)/

DISCRIM(STAN COR ALPHA(.999)/DESIGN
SUBTITLE 15b CANONICAL Pasteur'
TEMPORARY
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SELECT IF (SCHOOL EQ 1)
MANOVA T1 TO T4 WITH T5 TO T9/PRINT=S1GNIF(EIGEN DIMENR)/DISCRIM(STAN COR ALPHA(.999)/DESIGN
SUBTITLE '5c CANONICAL Grant-White'
TEMPORARY
SELECT IF (SCHOOL EQ 2)
MANOVA Tl TO T4 WITH T5 TO T9/PRINT=SIGNIF(EIGEN DIMENR)/DISCRIM(STAN COR ALPHA(.999)/DESIGN
subtitle '6a z scores for Pasteur only'
temporary
select if (school eq 1)
descriptives variables=t1 (pztl) t2 (pzt2) t3 (pzt3) t4 (pzt4) t5 (pzt5)t6 (pzt6) t7 (pzt7) t8 (pzt8) t9 (pzt9) t10 (pzt10) tll (pztll)t12 (pzt12) t13 (pzt13) t14 (pzt14) t15 (pzt15) t16 (pzt16)
t17 (pzt17) t18 (pzt18) t19 (pzt19) t20 (pzt20) t21 (pzt21)
t22 (pzt22) t23 (pzt23) t24 (pzt24)

subtitle '6b z scores for Grant-White only'
temporary
select if (school eq 2)
descriptives variables=t1 (gztl) t2 (gzt2) t3 (gzt3) t4 (gzt4) t5 (gzt5)t6 (gzt6) t7 (gzt7) t8 (gzt8) tP (gzt9) t10 (gzt10) t11 (gztll)t12 (gzt12) t13 (gzt13) t14 (gzt14) t15 (gzt15) t16 (gzt16)t17 (gzt17) t18 (gzt18) t19 (gzt19) t20 (gzt20) t21 (gzt21)t22 (gzt22) t23 (gzt23) t24 (gzt24)
subtitle '7 regression invariance analysis'
compute yhatll=

(.032125*pzt12)-(.031195*pzt13)+(.383641*pzt23)+(.170181*pzt24)
compute

yhat12=-(.252179*pzt12)+(.215562*pzt13)+(.295226*pzt23)+(.333045*pzt24)
compute yhat21=

(.032125*gzt12)-(.031195*gzt13)+(.383641*gzt23)+(.170181*gzt24)
compute

yhat22=-(.252179*gzt12)+(.215562*gzt13)+(.295226*gzt23)+(.333045*gzt24)
variable labels
yhat11 'group 1 data group 1 weights'
yhat12 'group 1 data group 2 weights'
yhat21 'group 2 data group 1 weights'
yhat22 'group 2 data group 2 weights'

correlations variables=t6 yhatll to yhat22/statistics=descriptivessubtitle '8 factor score invariance analysis'compute fs111=
(.03613*pzt1)-(.05198*pzt2)-(.03485*pzt3)-(.09427*pzt4)

+(.23775*pzt5)+(.22213*pzt6)+(.25641*pzt7)+(.20342*pzt8)+(.20066*pzt9)
-(.02154*pzt10)+(.03008*pzt11)-(.08539*pzt12)-(.09797*pzt13)
+(.01041*pzt14)-(.04524*pzt15)-(.04415*pzt16)-(.00964*pzt17)
+(.05097*pzt18)-(.03277*pzt19)-(.02896*pzt20)-(.00314*pzt21)
+(.08612*pzt22)+(.03258*pzt23)-(.01461*pzt24)

compute fs112=
(.18800*pzt1)+(.25519*pzt2)+(.21754*pzt3)+(.25735*pzt4)

-(.08361*pzt5)-(.04758*pzt6)-(.06830*pzt7)-(.03259*pzt8)-(.00839*pzt9)-
(.15523*pzt10)-(.07765*pzt11)-(.01425*pzt12)+(.06293*pzt13)-
(.03819*pzt14)+(.02857*pzt15)+(.09627*pzt16)-(.10607*pzt17)-
(.08815*pzt18)+(.03066*pzt19)+(.20182*pzt20)+(.09159*pzt21)

+(.12328*pzt22)+(.15888*pzt23)+(.02850*pzt24)
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compute
fs113=-(.05855*pzt1)-(.06732*pzt2)+(.00877*pzt3)-(.00020*pzt4)

-(.02595*pzt5)-(.05440*pzt6)-(.07813*pzt7)-(.07813*pzt8)-(.03323*pzt9)
+(.34434*pzt10)+(.23000*pzt11)+(.34184*pzt12)+(.27168*pzt13)
-(.09559*pzt14)-(.11519*pzt15)+(.02875*pzt16)+(.08931*pzt17)
-(.06895*pzt18)+(.05849*pzt19)-(.06092*pzt20)+(.13054*pzt21)
-(.01656*pzt22)+(.01494*pzt23)+(.18016*pzt24)

compute fs114=
(.00734*pzt1)-(.06730*pzt2)-(.15560*pzt3)+(.01818*pzt4)

- (.04572*pzt5)+(.02127*pzt6)-(.01511*pzt7)+(.04886*pzt8)-(.01324*pzt9)
-(.02159*pzt10)+(.01804*pzt11)-(.11566*pzt12)-(.07840*pzt13)
+(.32932*pzt14)+(.31381*pzt15)+(.16406*pzt16)+(.23123*pzt17)
+(.27537*pzt18)+(.14391*pzt19)+(.05311*pzt20)-(.02052*pzt21)
-(.04619*pzt22)-(.00248*pzt23)+(.02203*pzt24)

compute fs211=
(.03613*gzt1)-(.05198*gzt2)-(.03485*gzt3)-(.09427*,-zt4)

+(.23775*gzt5)+(.22213*gzt6)+(.25641*gzt7)+(.20342*gzt8)+(.20066*gzt9)
-(.02154*gzt10)+(.03008*gzt11)-(.08539*gzt12)-(.09797*gzt13)
+(.01041*gzt14)-(.04524*gzt15)-(.04415*gzt16)-(.00964*gzt17)
+(.05097*gzt18)-(.03277*gzt19)-(.02896*gzt20)-(.00314*gzt21)
+(.08612*gzt22)+(.03258*gzt23)-(.01461*gzt24)

compute fs212=
(.18800*gzt1)+(.25519*gzt2)+(.21754*gzt3)+(.25735*gzt4)

- (.08361*gzt5)-(.04758*gzt6)-(.06830*gzt7)-(.03259*gzt8)-(.00839*gzt9)
- (.15523*gzt10)-(.07765*gzt11)-(.01425*gzt12)+(.06293*gzt13)
-(.03819*gzt14)+(.02857*gzt15)+(.09627*gzt16)-(.10607*gzt17)
- (.08815*gzt18)+(.03066*gzt19)+(.20182*gzt20)+(.09159*gzt21)
+ (.12328*gzt22)+(.15888*gzt23)+(.02850*gzt24)

compute
fs213=-(.05855*gzt1)-(.06732*gzt2)+(.00877*gzt3)-(.00020*gzt4)

-(.02595*gzt5)-(.05440*gzt6)-(.07813*gzt7)-(.07813*gzt8)-(.03323*gzt9)
+(.34434*gzt10)+(.23000*gzt11)+(.34184*gzt12)+(.27168*gzt13)
-(.09559*gzt14)-(.11519*gzt15)+(.02875*gzt16)+(.08931*gzt17)
- (.06895*gzt18)+(.05849*gzt19)-(.06092*gzt20)+(.13054*gzt21)
-(.01656*gzt22)+(.01494*gzt23)+(.18016*gzt24)

compute 1s214=
(.00734*gzt1)-(.06730*gzt2)-(.15560*gzt3)+(.01818*gzt4)

-(.04572*gzt5)+(.02127*gzt6)-(.01511*gzt7)+(.04886*gzt8)-(.01324*gzt9)
- (.02159*gzt10)+(.01804*gzt11)-(.11566*gzt12)-(.07840*gzt13)
+
(.32932*gzt14)+(.31381*gzt15)+(.16406*gzt16)+(.23123*gzt17)

+
(.27537*gzt18)+(.14391*gzt19)+(.05311*gzt20)-(.02052*gzt21)

-(.04619*gzt22)-(.00248*gzt23)+(.02203*9zt24)
compute

fs221=-(05942*gzt1)-(.06284*gzt2)-(.03719*gzt3)-(.02332*gzt4)
+(.23536*gzt5)*(.25056*gzt6)+(.27651*gzt7)+(.17620*gzt8)+(.26728*gzt9)
-(.00634*gzt10)-(.03412*gzt11)-(.08810*gzt12)-(.04231*gzt13)
-(.00362*gzt14)-(.06587*gzt15)-(.10440*gzt16)-(.02489*gzt17)
- (.12885*gzt18)-(.01861*gzt19)+(.07507*gzt20)-(.05779*gzt21)
+(.06915*gzt22)+(.05464*gzt23)+(.06746*gzt24)

compute fs222=
(.27437*gzt1)+(.30421*gzt2)+(.20040*gzt3)+(.29744*gzt4)

-(.03608*gzt5)-(.07273*gzt6)-(.08955*gzt7)-(.01198*gzt8)-(.06760*gzt9)
-(.15925*gzt10)-(.06617*gzt11)+(.02109*gzt12)+(.12665*gzt13)
-(.10132*gzt14)-(.00971*gzt15)+(.14043*gzt16)-(.17071*gzt17)
+(.08030*gzt18)-(.03707*gzt19)+(.07865*gzt20)+(.14348*gzt21)
+(.06203*gzt22)+(.12554*gzt23)-(.11178*gzt24)

compute
fs223=-(.02782*gzt1)-(.06587*gzt2)-(.01860*gzt3)-(.07279*gzt4)

- (.00039*gzt5)-(.06840*gzt6)-(.00928*gzt7)+(.03046*gzt8)-(.08271*gzt9)
+(.37219*gzt10)+(.21552*gzt11)+(.33573*gzt12)+(.22256*gzt13)
- (.07867*gzt14)-(.09831*gzt15)-(.10957*gzt16)+(.03516*gzt17)
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+(.07278*gzt18)+(.01905*gzt19)-(.09283*gzt20)+(.12063*gzt21)
-(.06786*gzt22)-(.01729*gzt23)+(.18538*gzt24)

compute fs224=-(.03557*gzt1)-(.08359*gzt2)-(.02880*gzt3)-(.07783*gzt4)
-(.09318*gzt5)-(.00593*gzt6)-(.08556*gzt7)-(.07281*gzt8)-(.01840*gzt9)
-(.05343*gzt10)+(.06830*gzt11)-(.10645*gzt12)-(.14094*gzt13)
+(.33244*gzt14)+(.32409*gzt15)+(.24912*gzt16)+(.33842*gzt17)
+(.17023*gzt18)+(.18221*gzt19)+(.07819*gzt20)-(.03113*gzt21)
+(.08093*gzt22)-(.00647*gzt23)+(.03025*gzt24)

compute fs121=-(.05942*pzt1)-(.06284*pzt2)-(.03719*pzt3)-(.02332*pzt4)
+(.23536*pzt5)+(.25056*pzt6)+(.27651*pzt7)+(.17620*pzt8)+(.26728*pzt9)
-(.00634*pzt10)-(.03412*pzt11)-(.08810*pzt12)-(.04231*pzt13)
-(.00362*pzt14)-(.06587*pzt15)-(.10440*pzt16)-(.02489*pzt17)
- (.12885*pzt18)-(.01861*pzt19)+(.07507*pzt20)-(.05779*pzt21)
+(.06915*pzt22)+(.05464*pzt23)+(.06746*pzt24)

compute fs122= (.27437*pzt1)+(.30421*pzt2)+(.20040*pzt3)+(.29744*pzt4)
- (.03608*pzt5)-(.07273*pzt6)-(.08955*pzt7)-(.01198*pzt8)-(.06760*pzt9)
- (.15925*pzt10)-(.06617*pzt11)+(.02109*pzt12)+(.12665*pzt13)
-(.10132*pzt14)-(.00971*pzt15)+(.14043*pzt16)-(.17071*pzt17)
+(.08030*pzt18)-(.03707*pzt19)+(.07865*pzt20)+(.14348*pzt21)
+(.06203*pzt22)+(.12554*pzt23)-(.11178*pzt24)

compute fs123=-(.02782*pzt1)-(.06587*pzt2)-(.01860*pzt3)-(.07279*pzt4)
-(.00039*pzt5)-(.06840*pzt6)-(.00928*pzt7)+(.03046*pzt8)-(.08271*pzt9)
+(.37219*pzt10)+(.21552*pzt11)+(.33573*pzt12)+(.22256*pzt13)
-(.07867*pzt14)-(.09831*pzt15)-(.10951*pzt16)+(.03516*pzt17)
+(.07278*pzt18)+(.01905*pzi-19)-(.09283*pzt20)+(.12063*pzt21)
-(.06786*pzt22)-(.01729*pzt23)+(.18538*pzt24)

compute fs124=-(.03557*pzt1)-(.08359*pzt2)-(.02880*pzt3)-(.07783*pzt4)
-(.09318*pzt5)-(.00593*pze6)-(.08556*pzt7)-(.07281*pzt8)-(.01840*pzt9)
-(.05343*pzt10)+(.06830*pzt11)-(.10645*pzt12)-(.14094*pzt13)
+(.33244*pzt14)+(.32409*pzt15)+(.24912*pzt16)+(.33842*pzt17)
+(.17023*pzt18)+(.18221*pzt19)+(.07819*pzt20)-(.03113*pzt21)
+(.08093*pzt22)-(.00647*pzt23)+(.03025*pzt24)

variable labels
fs111 'grp 1 data grp 1 weights factor I'
fs112 'grp 1 data grp 1 weights factor II'
fs113 'grp 1 data grp 1 weights factor III'
1s114 'grp 1 data grp 1 weights factor IV'
fs211 'grp 2 data grp 1 weights factor I'
fs212 'grp 2 data grp 1 weights factor II'
fs213 'grp 2 data grp 1 weights factor III'
fs214 'grp 2 data grp 1 weights factor IV'
fs221 'grp 2 data grp 2 weights factor I'
fs222 'grp 2 data grp 2 weights factor II'
fs223 'grp 2 data grp 2 weights factor III'
fs224 'grp 2 data grp 2 weights factor IV'
fs121 Igrp 1 data grp 2 weights factor I'
fs122 'grp 1 data grp 2 weights factor II'
fs123 'grp 1 data grp 2 weights factor III'
fs124 'grp 1 data grp 2 weights factor IV'

correlations variables=fs111 to fs124/statistics=descriptives
subtitle '9 canonical invariance analysis'
compute crit111= (.90048*pzt1)+(.09741*pzt2)+(.05615*pzt3)+(.08840*pzt4)
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compute crit112= (.50911*pzt1)-(.68916*pzt2)+(.33707*pzt3)-(.69424*pzt4)
compute pred111=-(.31370*pzt5)+(.50778*pzt6)-(.46168*pzt7)+(.50972*pzt8)

+(.77965*pzt9)
compute pred112=(l.16044*pzt5)+(.60716*pzt6)+(.09385*Lut7)-(.75882*pzt8)

- (.72138*pzt9)
compute crit121= (.34770*pzt1)+(.09867*pzt2)+(.35597*pzt3)+(.52233*pzt4)
compute crit122=-(.09842*pzt1)+(1.09157*pzt2)-(.23021*pzt3)

-(.36428*pzt4)
compute pred121= (.42959*pzt5)+(.31092*pzt6)-(.19267*pzt7)+(.51866*pzt8)

+(.09882*pzt9)
compute pred122=(1.09361*pzt5)+(.66983*pzt6)-(.37908*pzt7)-(.89606*pzt8)

- (.55634*pzt9)
compute crit211= (.90048*gzt1)+(.09741*gzt2)+(.05615*gzt3)+(.08840*gzt4)
compute crit212= (.50911*gzt1)-(.68916*gzt2)+(.33707*gzt3)-(.69424*gzt4)
compute pred211=-(.31370*gzt5)+(.50778*gzt6)-(.46168*gzt7)+(.50972*gzt8)

+(.77965*gzt9)
compute pred212=(1.16044*gzt5)+(.60716*gzt6)+(.09385*gzt7)-(.75882*gzt8)

- (.72138*gzt9)
compute crit221= (.34770*gzt1)+(.09867*gzt2)+(.35597*gzt3)+(.52233*gzt4)
compute crit222=-(.09842*gzt1)+(1.09157*gzt2)-(.23021*gzt3)

-(.36428*gzt4)
compute pred221= (.42959*gzt5)+(.31092*gzt6)-(.19267*gzt7)+(.51866*gzt8)

+(.09882*gzt9)
compute pred222=(1.09361*gzt5)+(.66983*gzt6)-(.37908*gzt7)-(.89606*gzt8)

-(.55634*gzt9)
variable labels

crit111 'criterion grp 1 data grp 1 weights function l'
crit112 'criterion grp 1 data grp 1 weights function 2'
crit121 'criterion grp 1 data grp 2 weights function l'
crit122 'criterion grp 1 data grp 2 weights function 2'
pred111 'predictor grp 1 data grp 1 weights function l'
pred112 'predictor grp 1 data grp 1 weights function 2'
pred121 'predictor grp 1 data grp 2 weights function l'
pred122 'predictor grp 1 data grp 2 weights function 2'
crit211 'criterion grp 2 data grp 1 weights function l'
crit212 'criterion grp 2 data grp 1 weights function l'
crit221 'criterion grp 2 data grp 2 weights function l'
cr1t222 'criterion grp 2 data grp 2 weights function 2'
pred211 'predictor grp 2 data grp 1 weights function 10
pred212 'predictor grp 2 data grp 1 weights function 1'
pred221 'predictor grp 2 data grp 2 weights function l'
pred222 'predictor grp 2 data grp 2 weights function 2'

correlations variables=crit111 to pred222/statistics=descriptives

Notq. Lower case commands were inserted after an initial run was conducted to
obtain the values required in the second and last run.
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