DOCUMENT RESUME

ED 330 840	CE 057 554
TITLE	Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.
INSTITUTION SPONS AGENCY	Luzerne County Community Coll., Nanticoke, Pa. Pennsylvania State Dept. of Education, Harrisburg. Bureau of Vocational and Adult Education.
PUB DATE Contract	30 Sep 88 85-8027
NOTE	147p.; For an earlier report, see ED 288 020.
PUB TYPE	Guides - Classroom Use - Teaching Guides (For Teacher) (052)
EDRS PRICE	MF01/PC06 Plus Postage.
DESCRIPTORS	<pre>*Articulation (Education); Community Colleges; *Competency Based Education; Computer Software; *Curriculum Development; Electronics; Equipment; *Lasers; *Optics; Physics; Regional Schools; Secondary Education; Two Year Colleges; Vocational Schools</pre>
IDENTIFIERS	Luzerne County Community College PA

ABSTRACT

The project described in this report was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in conjunction with area vocational-technical schools, the second year of a competency-based curriculum in laser/electro-optics technology. During the project, a task force of teachers from the area schools and the college developed courses and competencies for both secondary and postsecondary laser/optics programs. The task force also developed materials and equipment lists, supervised the layout of the laboratory in a new Advanced Technology Center, created a competency-based catalog of proposed courses, and implemented the program. Most of this (ocument consists of the curriculum materials, including competencies for four courses in laser/electro-optics technology, recommendations for equipment/software selection, and recommendations for articulation. Attachments include a list of task force members, task force data and recommendations, the Advanced Technology Center brochure, a program brochure, specifications for two laboratories, and information on use of a laser laboratory for technical physics. (KC)

*****	*****	******	*******	* * * * * * * * * * * * * * * * * * * *	******
*	Reproductions	supplied by	EDRS are	the best that can be made	đe *
*		from the	original	document.	*
****	*****	*******	*******	* * * * * * * * * * * * * * * * * * * *	* * * * * * * *

PA88CD34

U.S. DEPARTMENT OF EDUCATION e of Educational Research and Improvement

EOUCATIONAL RESOURCES INFORMATION CENTER (ERIC) This document has been reproduced as received from the person or organization

C Minor changes have been made to improve reproduction quality

Points of view or opinions stated in this doc ument do not necessarily represent official OERt position or policy.

originating it

てい

0

.

FINAL REPORT

DEVELOPMENT OF ARTICULATED COMPETENCY-BASED CURRICULUM IN LASER/ELECTRO-OPTICS TECHNOLOGY CONTRACT NUMBER

Wesley E. Franklin, Project Director Regina Antonini, Project Coordinator

Community College of Luzerne County

Nanticoke, Pennsylvania 18634

September 30, 1988

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RECOURCES INFORMATION CENTER (EHIC)."

BEST COPY AVAILABLE

PENNSYLVANIA DEPARTMENT OF EDUCATION BUREAU OF VOCATIONAL AND ADULT EDUCATION CURRICULUM AND PERSONNEL DEVELOPMENT SECTION

TABLE CF CONTENTS

ACKNOWLEDGEMENTS
SECTION I
Abstract
Financial Summary
SECTION IIPROJECT APPROACH/METHODOLOGY
Methodology
Analysis/Evaluation
Dissemination
SECTION IIIPROJECT SUMMARY
SECOND YEAR PROGRAM OF STUDY
General Business/Industry Trends
Laser/Electro-Optics Technology (Program)
Program Competencies
Course Competencies for:
LEO 101 - Introduction to Lasers
LEO 102 - Laser Optics
LEO 201 - Laser Measurements and Equipment
LEO 202 - Laser Applications and Projects
Special Laboratory Equipment
Articulation
SECTION IV ATTACHMENTS
Attachment #1 - Curriculum Development Task Force
Attachment #2 - Task Force Data/Recommendations
Attachment #3 - Advanced Technology Center Brochure
Attachment #4 - Program Brochure

3

ł

Attachment #5 - Equipment Specifications

- 1. Laser/Electro-Optics Laboratory Accessories and Components.
- 2. Laser/Electro-Optics Lab -- Major Equipment

Attachment #6 - Special Considerations for Laser Lab Attachment #7 - Use of Laser Lab for Technical Physics

PROSPECT STREET AND MIDDLE ROAD
NANTICOKE, PENNSYLVANIA 18634

ACKNOWLEDGEMENTS

The completion of thi[,] curriculum development project was made possible through the hard work, diligence, and cooperation of the following, listed in alphabetical order:

Regina Antonini	Director, Community-Based and Institutional-Based Special Programs and Task Force Coordinator
Elaine Brown	Assistant to the Project Director
Patrick J. Santacroce	Executive Director, Institute for Developmental Educational Activities
Elizabeth Yeager	Coordinator, Customized Job Training and Task Force Coordinator
Stephen Yokimishyn	Director, BIE Partnership

The work of the Curriculum Development Task Force (see Attachment #1 for a list of their names and institutions) also merits special recognition. Their cooperation and expertise have greatly facilitated the secondary/post-secondary partnership and articulation that have resulted from this project.

A special note of appreciation is due Mr. Thomas J. Moran, President of the Community College of Luzerne County. His interest and support were very important in pursuing the project to a successful completion.

Wesley E. Franklin Project Director and Executive Director, Advanced Technology Center September 30, 1988

SECTION I:

ABSTRACT

AND

FINANCIAL SUMMARY

ABSTRACT

85-8027: Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology.

Regina Antonini Community College of Luzerne County Prospect Street and Middle Road Nanticoke, PA 18634

\$37,306 Federal 7/1/87 to 6/30/88

The purpose of this project was to develop, in cooperation with area vocational-technical schools, the second year of a competencybased curriculum in laser/electro-optics technology.

OBJECTIVES

Develop courses and competencies for second year of program, 1. both secondary and post-secondary.

2. Develop equipment lists and instructional materials for second year both secondary and post-secondary.

3. Review all developed materials and lists (by Task Force).

Layout Laser lab in new Advanced Technology Center and develop 4. plan to integrate proposed laser equipment into secondary school physics and AVTS electronics labs.

5. Integrate laser/electro-optics courses and competencies, using V-TECS model, into one unified competency-based catalog.

6. Prepare and review first draft of final report.

7. Publish and disseminate final report.

OUTCOMES

1. Task force membership was continued from previous year, with addition of four science and math teachers from four area school districts and several faculty from LCCC science and engineering technology departments. Task force met periodically and prepared advanced placement competency testing, reviewed proposed textbooks, and reviewed proposed second year program.

2. New staff for new programs were incorporated into task force and prepared detailed equipment specifications for use in competitive bid process. 7

3. Construction of new advanced technology center was monitored, and task force along with secondary school guidance counselors toured new facility in April and May, 1988.

4. Changes in lab layouts and specifications were made as a result of task force recommendations.

5. Second year of competency-based curriculum was approved by task force, College Senate, and President Moran, and included in 1988-89 College Catalog.

6. Program was implemented and began accepting enrollments for the 1988 Fall Semester.

7. Final report was completed and distributed to task force, AVTS's, private sector participants, and appropriate agencies.

FINANCIAL SUMMARY

LUZERNE COUNTY COMMUNITY COLLEGE LASER/ELECTRO-OPTICS TECHNOLOGY CURRICULUM MATERIALS DEVELOPMENT 1987-1988

LASER/ELECTRO-OPTICS TECHNOLOGY

	APPROVED	EXPENDED	BALANCE
SALARIES	- 19363.00	12212.95	7150.05
BENEFITS	- 6777.00	3211.10	3565.90
HONORARIA		9186.67	-2786.67
SUPPLIES/	-		
COMM	- 400.00	2663.00	-2263.00
PRINTING	- 500.00	274.15	225.85
TRAVEL	- 426.00	726.07	-300.07
AUDIT	- 677.00	0.00	677.00
INDIRECT COST	- 2763.00	2261.92	501.08
TOTAL	- 37306.00	30535.86	6770.00

SECTION II:

PKOJECT APPROACH/

METHODOLOGY

METHODOLOGY

This curriculum materials development project began in 1986-87 and continued in 1987-88 with the assistance of a task force whose membership included representatives from the five area vocational-technical schools: Hazleton, Lackawanna, Monroe, West Side and Wilkes-Barre (see ATTACHMENT #1). In the initial grant proposal, the stated plan was to use vo-tech faculty (task force) to assist in curriculum development and in identification of equipment and facilities needed for the program. After several meetings with the task force during the fall semester, this approach did not appear to be feasible because of time and expertise limitations -- most of the members of the task force taught evening courses as well as teaching full-time during the day. Also, because the proposed program is a new technology, there was a significant amount of research that had to be done, both for the college and the task force.

For these reasons, it was decided to use expertise already available, namely consultants, and have the task force function in a review/reaction mode once there were materials/reports from the consultant to consider. This way, the task force's knowledge of the local educational and industrial training requirements could be used to make appropriate changes in the consultant's reports and recommendations so the proposed program would be in line with the needs of the college's service area. Also, representatives of the college's engineering and science departments, administration, and

11

from the private sector were able to participate in the process and provided valuable input throughout. This process was continued during 1987-88.

ATTACHMENT #2 summarizes the work of the Task Force regarding program changes, textbook reviews, and advanced placement testing for certain first-year courses. Because this task force was integrated with other task forces for certain aspects of the curriculum development project, this attachment presents an integrated perspective.

Also, one of the results of the task force's review process was the recommendation that the best articulation procedure would be one which provided advanced placement for competencies and/or knowledge rather than attempt to integrate a socondary with a postsecondary curriculum, trying to fit the student in wherever he or she happened to be on the competency continuum. The consultant agreed with this recommendation and included a separate section on articulation in his report. This report is included under SECTION III, which provides a total program report.

ANALYSIS/EVALUATION

The proposed second-year program, along with a revised equipment and facilities plan, were first evaluated by the task force. The task force made several recommendations to the consultants, which were incorporated into the final documents. These documents were then reviewed and approved by the appropriate college administrators, the College Senate, and President Moran.

ERIC Full Taxt Provided by ERIC

12

DISSEMINATION

Copies of the final report will be distributed to the following: Bureau of Vocational and Adult Education, PDE Area Vocational-Technical Schools Private Sector participants Members of Task Force Consultants Ben Franklin Partnership Pennsylvania Economic Development Partnership Economic Development Council of Northeastern Pennsylvania This is the final year of a two-year project and includes the

complete curricular program. This program has been implemented in the college's new Advanced Technology Center, see ATTACHMENT II, for the 1988 Fall Semester.

SECTION III:

PROJECT SUMMAKY

LASER/ELECTRO-OPTICS (LEO) TECHNOLOGY CURRICULUM

(Two Year Program of Study)

LUZERNE COUNTY COMMUNITY COLLEGE Nanticoke, Pennsylvania 18634

June, 1988

TABLE OF CONTENTS

General Business/Industry Trends	•	•	•	•	•	. 3
Laser/Electro-Optics (LEO) Technology (Program)	•	•	•	•	•	. 8
Program Competencies	•	•	•	•	٠	, 9
Course Competencies for:						
LEO 101 - Introduction to Lasers	۰	•	•	•	•	. 11
LEO 102 - Laser Optics	•	•	•	•	•	.17
LEO 201 - Laser Measurements and Equipment.	•	•	•	•	•	.23
LEO 202 - Laser Applications and Projects .	•	•	•	•	•	. 32
Special Laboratory Equipment	•	•	٠	•		.38
Articulation	•		•		•	.40

LASER/ELECTRO-OPTICS TECHNOLOGY CURRICULUM

General Business/Industry Trends

The use of Electro-Optical Laser Technology, both in industry and in research has shown dramatic growth in the past 10 years. Some studies have indicated the need for 360,000 laser technicians nationally by 1990. High technology industries tend to congregate in certain geographical areas. A recent report indicated that 83% of high technology manufacturing employment is located in only 24 states.¹ Because the laser industry is developing most rapidly in the heavily populated areas of the East Coast and West Coast, these sections of the country appear to have the greatest employment opportunities in the near future. However, excellent employment opportunities are now becoming evident in midwestern areas such as Chicago, Minneapolis, Milwaukee and Detroit.

The starting salary for electro/optic-laser technicians ranges from \$15,600 to \$18,200 per year in the metropolitan Philadelphia area. Salaries for experienced technicians average approximately \$26,000 per year depending upon background and experience. Since Luzerne County Community College has an Electrical-Electronics Technology program, the development of a laser program becomes a natural progression in curriculum development.

¹<u>The State Role in Implementing a High Technology Program</u>. National Workshop on High Technology Careers. John H. Lloyd, St. Louis, Missouri, December 2, 1982.

3

ERIC Full Text Provided by ERIC

A laser technology program introduces an educational program that surpasses the traditional offering This new program will be a service to that portion of the population that currently is not being served; i.e., electronics technicians, junior engineers, and other working professions. A more in-depth analysis of this technology is presented below. The following materials discuss educational requirements, employment outlook, Philadelphia area employment (because it was readily available and represented the largest employment area in Pennsylvania), national salaries, benefits and working conditions, and advancement opportunities.

ŧ

LASER TECHNICIAN D.O.T. #: 019,181-101

Educational Requirements:

The skills of high technology are acquired by developing an understanding of the physical sciences and how they are applied. A total "systems" approach is emphasized including knowledge of applied physics. Students interested in high tech careers should study core courses in high school and then complete their education at a community college or technical school. This allows students to move from high school to post-secondary school without duplicating courses.

Employment Outlook:

Laser technology is a "high tech" field. It is one of the jobs of the future and has a very good employment outlook. Studies indicate that 360,000 industrial laser process technicians will be needed in the United States by 1990.

Philadelphia Area Employment:

Applications of laser technology are relatively new. Users of lasers can be found in the following industries: construction and excavation; machining and materials working; communications; surveying; testing and measurement; data processing; photo optics; medicine and surgery; military; clothing manufacturing; and research and development.

19

The potential uses for laser technology are considerable. They are already being used in supermarket checkout counters, gyroscopes to aid navigation, film animation, information transmission, printing, and other areas. Show business uses lasers to entertain audiences by creating color, patterns, and movement to accompany music.

Refer to your local "Yellow Pages" under "Lasers" for listings of possible employers in your area.

Most laser manufacturing firms are located in California -- in the famous "Silicon Valley" area and in southern California. Others are located in metropolitan Boston (Massachusetts).

Salaries/Wages - 1987:

Phila. Area Avg. Starting Salary:\$15,600 to \$18,200/yr.Phila. Area Average Salary:\$23,400 to \$28,400/yr.Maximum Salary:\$33,800/yr.

ALL ENGINEERING TECHNICIANS

National Average Annual Salaries - 1986:

Engineering Technicians 1 yr. exp. \$16,881/yr. Engineering Technicians 2-3 yrs. exp. \$20,312-\$23,896/yr. Engineering Technicians 4-5 yrs. exp. \$28,412-\$32,718/yr.

Benefits, Working Conditions, Advantages & Disadvantages:

- Some laser technicians work in laboratory-like conditions. Others are employed at construction sites, manufacturing plants, hospital operating rooms, and others.
- 2. Working conditions are good.
- 3. Most work a five day, 40 hour week.
- 4. The usual benefits are available: health and life insurance, paid holidays and vacations, sick leave, etc. Some employers provide their employees with paid prescription, optical and dental plans.
- 5. Laser technicians often work as part of a team, sometimes with scientists and engineers.

Disadvantages:

1. The training program for laser technicians is difficult.

- The work can be dangerous if safety procedures are not followed. Power supplies for many lasers involve high voltages. Direct exposure to a laser beam is a possible source of danger.
- 3. Special goggles are worn when working around lasers.

Advancement Opportunities:

Laser technicians*, with experience and ability, can advance to laser technologists**. Some become field laser technicians, working outside of the laboratory in business settings, hospitals and other sites where lasers are used.

*Generally requires a two-year college degree or equivalent. **Generally requires a four-year college degree or equivalent.

LASER/ELECTRO-OPTICS (LEO) TECHNOLOGY

Recommended Program of Studies Leading to the A.A.S. Degree

The theory and applications of Laser/Electro-Optics technology is emphasized in this program. A broad based knowledge of electronics, optics, and lasers is required for competency in this emerging technology. The purpose of the program is to prepare graduates for entry-level positions in industry, business, and government, for assignments such as laser operator, laser technician, and electro-optical sales.

The program is sufficiently comprehensive to allow graduates the opportunity to transfer to other institutions to pursue advanced studies.

First Semester

	<u>Credits</u>
Introduction to Lasers	4
LEO 101 Technical Mathematics I	5
MAT 111 D.C. Electricity IEL 131	4
English Composition I ENG 101	3
ENG IUI	16
Second Semester	Credits
Laser Optics LEO 102	4
Technical Mathematics II MAT 112	5
A.C. Electricity IEL 132	. 3
Technical Physics I PHY 123	4
FAI 123	16

Third Semester

Laser Equipment and Measurements LEO 201	4
Electronic Devices	3
IEL 135 Technical Physics II	4
PHY 124	_
Fundamentals of Speech SPE 125	3
Introduction to Computer Programming	3
GET 234	17
Fourth Semester	
Laser Applications and Projects LEO 202	4
Digital Circuits IEL 205	3
Social Science Elective	3
Technical Report Writing ENG 261	3
Electronic Amplifier Circuits	3
IEL 201 Health/Physical Education	1
HPE	

LASER/ELECTRO-OPTICS TECHNOLOGY PROGRAM COMPETENCIES

Credits

17

This program is designed to meet the needs in the areas of Medicine and Surgery, Specialized Materials, Medical Devices and Scientific Instrumentation, Communications Services and Equipment, Construction, and Manufacturing.

Electro/Optics Laser technicians are trained in electricity, electronics, mechanical, optical, fluid, thermal, and optical hardware. Laser technicians must understand the properties and principles of lasers, mirrors, light sources, and power supplies. Upon successful completion of this program the technician must be able to:

- *** operate laser systems.
- *** troubleshoot and repair lasers.
- *** operate interferometers, spectrometers, monochromators, and spectrophotometers.
- *** operate and calibrate photodetectors, photomultipliers, optical power meters, and calorimeters.
- *** fabricate and assemble components for laser/electro-optic devices.
- *** troubleshoot and repair electro-optic devices:
- *** produce and reconstruct holograms.
- *** perform optical inspections and cleaning of optical components.
- *** maintain a laboratory notebook, perform data reduction, and prepara reports.
- *** prepare and read shop drawings and schematics.
- *** perform tests and measurements using electronic devices.

Laser technicians can be found in many industries. In hospitals, they maintain and adjust the intensity and depth of the laser beam penetration for surgical procedures. The technician couples the laser to a robot in automated manufacturing for welding, drilling and cutting metal. The lasers in supermarkets and libraries are serviced by laser technicians.

Technicians may be involved in laser assembly and production; maintenance and operation; troubleshooting and repair; research and development; or sales and service in a number of areas.

10

Course Competencies For:

1. Introduction to Lasers - LEO 101

4 credits 3 lect., 2 lab.

2. Course Description: This course presents an overall view of laser properties, principles of operation and safety. The theory of light and laser operation concludes with an in-depth study of the Helium-Neon low power gas laser.

Suggested Audience: Laser/Electro-Optics Students.

Co-requisites: Math 111, IEL 131

- 3. Course Competencies/Behavioral Objectives Competency 1: Elements and Operation of a Laser. In order to attain this competency, the student should be able to:
 - 1.1 Define the properties of laser light.
 - 1.2 Describe the process of stimulated emission.
 - 1.3 Draw the basic elements of several types of lasers.
 - 1.4 List the safety precautions for operating low powered lasers.
 - 1.5 Operate a helium-neon laser safely.
 - 1.6 List safety precautions applicable to all types of lasers.
 - 1.7 Determine the power of a laser beam.
 - 1.8 Understand the use of a photoelectric power meter.
 - 1.9 Indicate how the eye can be damaged by laser emissions.

11

- 1.10 Describe the types of reflection and determine the eye hazards involved.
- Competency 2: Properties of Light-Emission and Absorption of Light. In order to actain this competency, the student should be able to:
- 2.1 Define frequency, wave length, period, phase, and polarization.
- 2.2 Sketch and label a plane-polarized electromagnetic wave.
- 2.3 Explain the significance of Brewster's angle.
- 2.4 Calculate and measure Brewster's angle given the index of refraction.
- 2.5 Sketch plane and spatial wave fronts.
- 2.6 Understand temporal and spatial coherence.
- 2.7 Measure wavelengths using a grating spectroscope.
- 2.8 Determine the wavelength, frequency, and energy of a photon.
- 2.9 Describe the stimulated emission of a photon by an atom.
- 2.10 Explain Doppler broadening of a spectral line.
- 2.11 Observe and compare the absorption spectra of Nd:YAG and Nd:glass.
- Competency 3: Lasing Action Optical Cavities and Modes of Operation. In order to attain this competency, the student should be able to:
- 3.1 Explain absorption coefficient.

- 3.2 Understand the exponential law of absorption.
- 3.3 Given the optical density of a filter, calculate its transmission.
- 3.4 Explain normal population distribution and inversion.
- 3.5 Sketch gain vs. wavelength for a typical laser emission line.
- 3.6 Draw the energy-level diagram of a laser.
- 3.7 Measure the transmission of colored filters at the HeNe laser wavelength.
- 3.8 Draw a diagram of an optical cavity.
- 3.9 Explain the loss in an optical cavity.
- 3.10 Determine the gain and output power as a function of time for CW and pulsed lasers.
- 3.11 Discuss the advantages and disadvantages of different laser cavities.
- 3.12 Illustrate the longitudinal modes in a typical laser system.
- 3,13 Clean and align an open cavity HeNe laser.
- Competency 4: Temporal and Spatial Characteristics. In order to attain this competency, the student should be able to:
- 4.1 Define pulse duration, repetition rate, and peak power.
- 4.2 Define normal, Q-switched, and mode locked laser pulses.
- 4.3 Graph amplifier gain, loop gain, and power vs. time in a Q-switched laser.

13

- 4.4 Explain mode-locking.
- 4.5 Determine frequency bandwidth of laser output.
- 4.6 Determine longitudinal coherence length.
- 4.7 Measure the temporal output characteristics of a repetitively pulsed laser.
- 4.8 Sketch some transverse electromagnetic modes of a laser.
- 4.9 Draw and label the irradiance of the TEMoo mode as a function of beam width.
- 4.10 Explain the significance of the TEMoo mode in lasers.
- 4.11 Calculate diffraction-limited beam divergence.
- 4.12 Determine beam divergence angle.
- 4.13 Explain the near field and the far field of a laser.
- 4.14 Measure transmission through a calibrated aperture.
- Competency 5: The Helium-Neon Lasers and Others. In order

to attain this competency, the student should be able to:

- 5.1 Explain the energy transfer process.
- 5.2 Describe superradiant lasing.
- 5.3 Calculate the helium and neon gas pressures for maximum power output.
- 5.4 Draw a voltage versus current curve for a HeNe laser.
- 5.5 Explain the failure mechanisms of HeNe lasers.
- 5.6 Understand the operation of various lasers including HeNe, Argon, CO₂, Ruby, Nd:YAG, etc.

- 5.7 Discuss operating efficiency of several lasers.
- 5.8 List the types of gases used as the active media of lasers.
- 5.9 Discuss applications of semiconductor lasers.

Recommended Course Textbooks:

Introduction to Lasers

Laser/Electro-Optical Technology Services Vol.1

Center for Occupational Research & Development

Methods of Evaluation:

How will the grade for	the course be computed:
Tests	60%
Laboratory	20%
Homework/Final	20%

Attendance Requirements:

Students are expected to adhere to the attendance requirements that are delineated in the college catalog.

Safety Considerations:

Students are urged to dress appropriately, exercise caution in the laboratory, and wear eye protection when recommended.

Summary of Topics/Course Outline:

	Chapter	Weeks
Elements and Operation of a Laser	1	1
Elements and Operation of an Optical		
Power Meter	2	1
Introduction to Laser Safety	3	1
Properties of Light	4	2
Emission and Absorption of Light	5	1
Lasing Action	6	1.5
Optical Cavities and Modes of Operation	7	1.5
Temporal Characteristics of Lasers	8	1
Spatial Characteristics of Lasers	9	1
Helium-Neon Gas Laser - A Case Study	10	1
Laser Classifications and Characteristics	11	2
Review		1

Course Competencies For:

1. Laser Optics - LEO 102

4 Credits 3 lect., 2 lab.

2. Course Description: The geometrical ray nature of light through mathematical and graphical methods forms the first half of this course. Reflection, refraction, and propagation of light from the viewpoint of wave optics is studied in the second half of this course. Holography is the final topic.

Suggested Audience: Laser/Electro-Optics Soudents Pre-requisites: Introduction to Lasers

- 3. Course Competencies/Behavioral Objectives
 - Competency 1: Geometrical Optics. In order to attain this competency, the student should be able to:
 - 1.1 Define the properties of light rays.
 - 1.2 Trace the path of light rays at plane and spherical surfaces.
 - 1.3 Predict the direction of reflection of light rays on plane and spherical surfaces.
 - 1.4 Experimentally verify the law of reflection.
 - 1.5 Understand the principles of refraction.
 - 1.6 Define the relative and absolute index of refraction.
 - 1.7 Understand color dispersion.
 - 1.8 Using the graphical ray tracing technique, determine the refraction angle at plane and spherical surfaces.

Competency 2: Optical Systems and Components. In order to attain this competency, the student should be able to:

- 2.1 Define a thin lens, converging lens and diverging lens through a series of sketches.
- 2.2 Identify the following lens: equi and plano convex, positive and negative meniscus, equi and plano concave.
- 2.3 Determine analytically, graphically, and experimentally the primary and secondary focal points of various lenses.
- 2.4 Diagram and define field stop and aperture stop.
- 2.5 Identify the exit pupil, the entrance pupil, and aperture stop for two lenses analytically and graphically.
- 2.6 Illustrate the principle of a simple magnifier.
- 2.7 Calculate lateral and angular magnification.
- 2.8 Understand the working principle of a compound microscope.
- 2.9 Draw two different types of laser beam expanding collimators.

2.10 Outline a ray tracing procedure for an optical system. Competency 3: Fundamentals of Light. In order to attain

this competency, the student should be able to:

- 3.1 Describe a point source of light.
- 3.2 Measure the irradiance of a point source of light.
- 3.3 Identify different types of spectra.

- 3.4 Using a spectral source, produce line, band, and continuum spectra.
- 3.5 Differentiate between radiometry and photometry.
- 3.6 Plot the standard luminosity curve and explain.
- 3.7 Convert between spectral photometric and spectral radiometric quantities.
- 3.8 Measure irradiance and illuminance for a HeNe laser.
- Competency 4: Wave Nature of Light Reflection and Refraction. In order to attain this competency, the student should be able to:
- 4.1 Distinguish between geometrical and wave optics.
- 4.2 Explain wave parameters including wavelength, frequency, wave number, and wave speed.
- 4.3 Understand and explain Huygen's principle.
- 4.4 Apply Huygen's principle to develop by construction both reflected and refracted plane waves.
- 4.5 State the laws of reflection and refraction.
- 4.6 Discuss Fresnel's equation for the percentage of light reflected from a di-electric surface.
- 4.7 Test the law of reflection and refraction at a dielectric interface.
- Competency 5: Attenuation of Light. In order to attain this competency, the student should be able to:
- 5.1 Discuss laser propagation through the atmosphere.
- 5.2 Define beam irradiance, absorption coefficient, transmittance, and optical density.

- 5.3 Measure the transmittance of a laser beam through a material and determine absorption coefficient.
- 5.4 Define scattering mechanisms; in particular Raleigh, Mie, and diffraction scattering.
- 5.5 Demonstrate an understanding of interference.
- 5.6 Explain the importance of coherence in the interference process.
- 5.7 Understand the meaning of diffraction.
- 5.8 Distinguish between Fraunhofer and Fresnel diffraction.
- 5.9 Sketch several Fraunhofer diffraction patterns.
- 5.10 Explain the meaning of Raleigh's criterion for determining the limit of resolution.
- 5.11 Define diffraction-limited optics.
- 5.12 Produce the far field diffraction pattern of a laser beam due to several different openings.
- Competency 6: Polarization and Holography. In order to attain this competency, the student should be able to:
- 6.1 Understand the difference between natural and polarized light.
- 6.2 Define linear, circular, and elliptical polarization of light.
- 6.3 Discuss methods for producing polarized light.
- 6.4 State the law of Malus.
- 6.5 Describe the effect of wave retarders or wave converters on polarized light.

- 6.6 Determine the state of polarization of light of unknown polarization.
- 6.7 Draw an experimental arrangement that can be used to produce a transmission hologram of a three-dimensional object.
- 6.8 Make a hologram of a three-dimensional object, develop the film, and reconstruct the virtual image.

Recommended Course Textbooks:

Geometrical Optics

Laser/Electro-Optical Technology Series Vol. 2

Center for Occupational Research & Development

Light Sources and Wave Optics

Laser/Electro-Optical Technology Series Vol. 5

Center for Occupational Reserach & Development

Methods of Evaluation:

Tests Laboratory Homework/Final

Attendance Requirements:

Students are expected to adhere to the attendance requirements that are delineated in the college catalog.

Safety Considerations:

Students are urged to dress appropriately, exercise caution in the laboratory, and wear eye protection when recommended.

Summary of Topics/Course Outline:

	Chapter	Weeks
Reflection and Ray Tracing	2-1	1
Principles of Refraction	2-2	1.
Refraction and Ray Tracing	2-3	0.5
Imaging With a Single Lens	2-4	1
Imaging With a Multiple Lens	2-5	0.5
F-Stops and Apertures	2-6	0.5
Optical Systems	2-7	1
Matrix Optics	2-8	1
Light Sources and Their Characteristics	5-1	1
Radiometry and Photometry	5-2	1
Wave Nature of Light	5-3	1
Reflection and Refraction	5~4	1
Propagation	5-5	1
Interference	5 – 6	1
Diffraction	5-7	1
Polarization	5-8	1
Holography	5-9	0.5

22

Course Competencies for:

- 1.Laser Measurement and Equipment LEO 2014 Credits3 lect., 2 lab.
- 2. Course Description: The theory and operation of specialized equipment used to measure laser parameters is studied. Calibration procedures, measurements, and Q switching are also explained.

Suggested Audience: Laser/Electro Optics Students Prerequisites: Introduction to Lasers and Laser Optics

- 3. Course Competencies/Behavioral Objectives Competency 1: Tools of technology - support hardware and components. In order to attain this competency, the student should be able to:
 - 1.1 Demonstrate a knowledge of optical benches and tables.
 - 1.2 Use an optical axis established by a laser beam, align an optical bench parallel to the optical axis.
 - 1.3 Measure the frequencies of the vertical and horizontal vibrations in an optical table.
 - 1.4 Identify the different types of components mounts.
 - 1.5 Use a differential screw micrometer translater and a piezoelectric translater.
 - 1.6 Reflect and focus the diffracted beam of a specific wavelength onto a target accurately.

Competency 2: Precision optical components. In order to attain this competency, the student should be able to:

37

- 2.1 Understand the characteristics, quality, and finish of optical materials used in windows.
- 2.2 Examine optical surfaces using a coherent light beam and evaluate their finish by observing scattered light.
- 2.3 Discuss the limitations and applications of various mirror types.
- 2.4 Demonstrate a knowledge of filters by discussing the advantages and disadvantages of various filters.
- 2.5 Use a beam splitter to divide an optical beam into several components.
- 2.6 Discuss the limitations of a beam splitter.
- 2.7 Describe configurations and applications of several commonly used prisms.
- 2.8 Calculate the minimum deviation angle and the index of refraction of a wedge prism.
- 2.9 Describe configurations and applications of several commonly used lenses.
- 2.10 Experimentally determine the focal length of a concave and a convex lens.
- 2.11 Illustrate spherical aberration in lenses and describe a method for reading it.
- 2.12 Use the grating equation to calculate the wavelength of light incident upon a grating.
- 2.13 Know when and how to use diffraction gratings in optical experiments.
- 2.14 Demonstrate a knowledge of polarizers by explaining various types.

- 2.15 using the principles of absorption, reflection, and refraction explain how the polarizer selects certain transverse vibrations and rejects others.
- 2.16 Polarize a light beam and plot a curve of intensity versus angle of rotation.
- 2.17 Discuss nonlinear optical materials and their applications.

.

- Competency 3: Detectors photo, laser power, and energy. In order to attain this competency, the student should be able to:
- 3.1 Demonstrate a knowledge of the theory of operation and application of basic photo-emissive, photo-conductive, and photo-voltaic devices.
- 3.2 Describe and sketch a laboratory set up for measuring noise equivalent power.
- 3.3 Calculate the shot noise current from a photodiode detector.
- 3.4 Calculate the Johnson noise voltage across a resistor.
- 3.5 Measure the absolute responsivity of a silicon photodiode detector.
- 3.6 Measure the linearity of a photodiode detector and determine the saturation point.
- 3.7 Demonstrate a knowledge of optical power meters.
- 3.8 Discuss the radiometric and photometric measurement systems.
- 3.9 Discuss each of the components and their function in a typical power/energy meter.

- 3.10 Using the pulse shape and peak power measurements, calculate the output energy of a pulsed laser.
- Competency 4: Photographic and holographic techniques and equipment. In order to attain this competency, the student should be able to:
- 4.1 Exhibit a knowledge of the accessories and techniques of oscilloscope photography in recording repetitive and nonrepetitive events.
- 4.2 Discuss the operation and application of an infrared image converter.
- 4.3 Operate a Q-switched laser.
- 4.4 Photograph the pump pulse and laser output pulse of a Q-switched laser.
- 4.5 Calculate the peak power output of a Q-switched laser.
- 4.6 Use the necessary laboratory equipment to produce good holograms.
- 4.7 Discuss split beam transmission and reflection holograms, single beam transmission and reflection holograms, and sine grating holograms.
- 4.8 Sketch the appearance of noise in a finished hologram from a laser with no spatial filter, plane parallel beam splitter, and dust particles.
- 4.9 Reduce intermodulation noise by selecting the correct angle between the object and reference beams.
- Competency 5: Collimators, expanders, and isolators. In order to attain this competency, the student should be able to:

- 5.1 Explain the basic design and application of the ordinary collimator and the autocollimator.
- 5.2 Discuss the "focused return" method and the "autocollimated return" method of aligning spherical mirrors using an adjustable autocollimator.
- 5.3 Align a laser with an autocollimator.
- 5.4 Demonstrate a knowledge of laser beam expanders and spatial filters.
- 5.5 Explain the basic design of the Galilean and Keplerian beam expanders.
- 5.6 Understand the fundamental principles of spatial filtering of a laser beam.
- 5.7 Calculate the angular divergence of an expanded laser beam.
- 5.8 Using a HeNe laser beam, align a spatial filter.
- 5.9 Based upon the Faraday rotation effect, explain the basic design and operation of optical isolators.
- 5.10 Describe how bleachable dye absorber functions as an optical isolator.
- 5.11 Build and use a Faraday rotation device to demonstrate the principles of an optical isolator.

Competency 6: Modulation and Q switching. In order to attain this competency, the student should be able to:

- 6.1 Describe the operation of a bleachable dye Q-switch.
- 6.2 Describe the phenomenon of mode-locking and calculate pulse spacing and minimum pulse duration.

- 6.3 Discuss mechanical light beam deflection including galvanometer and rotating mirrors, and piezo-electric deflectors.
- 6.4 List the advantages and disadvantages of mechanical light beam deflectors.
- 6.5 Operate a bleachable dye Q-switched laser.
- 6.6 Discuss the operation, applications, advantages and disadvantages of electro-optic devices.
- 6.7 Understand the birefringence phenomenon.
- 6.8 Calculate the transmission of an electro-optics modulator.
- 6.9 Measure the modulation frequency and transmission of the modulator.
- 6.10 Discuss the operation, application, advantages and disadvantages of acousto-optic devices.
- 6.11 For an acousto-optic device measure the angle of deflection, the number of resolvable spots and the modulation.
- 6.12 State how an acousto-optic device can be used either as a modulator or a deflector.
- 6.13 Compare the output of a mode locked laser to the output of a nonmode locked laser.
- 6.14 Draw, label, and explain the pulse train produced by a mode locked pulsed laser.
- 6.15 Measure the minimum pulse duration, pulse repetition time, and the number of nodes oscillating.
- 6.16 Operate a mode locked pulsed laser.

- 42

Competency 7: Optical instruments. In order to attain this competency, the student should be able to:

- 7.1 Understand the characteristics of the prism spectrometer and the grating spectrometer.
- 7.2 Define and calculate the resolving and dispersive powers of both types of spectrometers.
- 7.3 Set up and align a prism spectrometer for use in measurement of reflective index and wavelength.
- 7.'4 Measure the wavelength of a light source using both types of spectroscopes.
- 7.5 Use a monochromator to obtain transmission and absorption spectra of optical filters.
- 7.6 Demonstrate a knowledge of monochromators.
- 7.7 Explain the methods used to obtain the absorption spectrum of a liquid.
- 7.8 Define percent transmission, absorbance, and molar absorptivity.

Competency 8: Interferometric measurements. In order to attain this competency, the student should be able to:

- 8.1 Discuss the components of a Michelson, Fabry-Perot. Twyman-Green, and Mach-Zehnder interferometers.
- 8.2 Accurately measure the wavelength of a spectral line. the difference in wavelength between adjacent spectral lines, and the coherence length of a HeNe laser.
- 8.3 Determine the line width of optical sources.

- Adjust a laser to operate in a single transverse mode. 8.4
- Use a Twyman-Green interferometer to test lenses, 8.5 prisms, optical flats, and glass for imperfections.
- Explain how to use the Mach-Zehnder interferometer to 8.6 measure density, pressure, and temperature changes in gases.

30

Recommended Course Textbooks

Laser and Electro-Optic Components Laser/Electro-Optical Technology Series Vol. 6 Center for Occupational Research & Development

Laser/Electro-Optic Devices Laser/Electro-Optical Technology Series Vol. 7 Center for Occupational Research & Development

Laser/Electro-Optic Measurements Laser/Electro-Optical Technology Series Vol. 10 Center for Occupational Research & Development

Attendance Requirements

Students are expected to adhere to the attendance requirements that are delineated in the college catalog.

Safety Considerations

Students are urged to dress appropriately, exercise caution in the laboratory, and wear eye protection when recommended.

Summary of Topics/Course Outline:

	Vol.	Chap.	Weeks
Tools of Technology	6	1&2	1
Precision Optical Components	6	4-11	4
Detectors	7	1&2	1
Photographic & Holographic Techniques	7	3&4	1
Collimators, Expanders, and Isolators	7	5-7	1
Modulation and Q-switching	7	8-11	2
Optical Instruments	10	2-3	2
Interferometric Measurements	10	4 - 9	2
Review			1

Course Competencies For:

1. Laser Applications and Projects - LEO 202

4 Credits 3 lect., 2 lab.

- 2. Course Description: Practical application is the primary focus of this course. The student is exposed to fabrication methods, calibration techniques and a wide variety of materials that are in use today. Suggested Audience: Laser/Electro-Optics Students Prerequisite: Laser Measurements and Equipment - LEO 201
- 3. Course Competencies/Behavioral Objectives Competency 1: Laser materials processing. In order to attain this competency, the student should be able to:
 - 1.1 Demonstrate a knowledge of welding.
 - 1.2 Weld wires together using a ruby laser.
 - 1.3 Join two sheets of plastic using a CO₂ laser.
 - 1.4 Measure the depth of penetration of the weld versus laser power.
 - 1.5 List the advantages and limitations of laser welding.
 - 1.6 Describe how a laser beam vaporizes solid surfaces.
 - 1.7 Enumerate the advantages and limitations of laser hole drilling.
 - 1.8 Calculate the maximum hole depth that can be drilled in a specific material.
 - 1.9 Cut lucite and scribe ceramic materials.
 - 1.10 Set up a system to drill holes in metal targets.

46

Competency 2: Data processing. In order to attain this competency, the student should be able to:

- 2.1 Describe the advantages of an optical computer.
- 2.2 Describe a holographic optical computer memory.
- 2.3 State how optical processing works.
- 2.4 Calculate the brightness of a display which uses laser light to form the display.
- 2.5 Describe a light valve array system that employs laser control.
- 2.6 Understand the operation of the ferroelectricphotoconductor sandwich devices.
- 2.7 Calculate the transmission of a ferroelectric material between crossed polarizers.
- 2.8 Assemble and operate a display using a laser.
- Competency 3: Testing and monitoring. In order to attain this competency, the student should be able to:
- 3.1 Demonstrate a knowledge of laser air pollution monitoring methods.
- 3.2 Draw an absorption spectroscopy arrangement.
- 3.3 Describe how Raman scattering is used to identify air pollutants and their concentrations.
- 3.4 List the advantages and disadvantages of optical radar techniques for measuring air pollutant concentrations.
- 3.5 Describe optical heterodyne techniques for identifying air pollutants.
- 3.6 Describe how diffraction can be used to measure dimensions of small objects.

- 3.7 Detect defects on a flat surface using scattering techniques.
- 3.8 List the advantages and applications of holographic interferometry.
- Competency 4: Rangefinding and angle tracking. In order to attain this competency, the student should be able to:
- 4.1 Sketch the waveforms for a pulsed ranging system.
- 4.2 Calculate the maximum pulse rate and minimum received power for a pulsed noncooperative ranging system.
- 4.3 Describe a CW, tone ranging system and calculate the maximum frequency and received power.
- 4.4 Set up and operate a pulsed ranging system.
- 4.5 Demonstrate a knowledge of angle tracking techniques and terminology.
- 4.6 Describe the basic elements of an angle tracking system and list uses.
- 4.7 Draw and label a typical commercial alignment system.
- 4.8 Assemble and operate a laser angle tracking receiver.
- 4.9 Measure the angular displacement of a laser mounted on a linear translater.
- Competency 5: Lasers in medicine, communications and construction. In order to attain this competency, the student should be able to:
- 5.1 Discuss the absorption of laser light by human tissue and calculate the depth of penetration.
- 5.2 Calculate the temperature rise in human tissue caused by lasers.

4 S

- 5.3 Describe how photocoagulation is used to treat eye defects.
- 5.4 Discuss the use of fiber optics in medicine.
- 5.5 Sketch a block diagram of an optical communication system.
- 5.6 Identify the properties of CW and pulsed optical transmitters and receivers.
- 5.7 Demonstrate a knowledge of modulators and modulation schemes used in optical communications.
- 5.8 Define signal to noise ratio and bit error rate.
- 5.9 Assemble and operate an AM light emitting diode communications system.
- 5.10 Demonstrate a knowledge of laser uses in construction including rotating beam and straight line projection laser systems.
- 5.11 Make a topographic profile of a given area.
- Competency 6: Laser projects. In order to attain this competency, the student should be able to:
- 6.1 Either alone or with a group of students, design a working, student-built laser or other electro-optic device from the following list from Module #9: **Open-cavity Helium Neon Laser **Communications Link **CW pumped Nd:YAG Laser **Carbon Dioxide Laser

****AutoCollimator**

**Optical Power Meter for CW Lasers **Other Projects as assigned by the instructor.

6.2 Maintain an accurate laboratory notebook containing drawings, schematics, manufacturers' literature, data, and photographs.

Recommended Course Textbooks:

Laser Applications Laser/Electro-Optical Technology Series Vol. 8 Center for Occupational Reserach & Development

Laser Projects Laser/Electro-Optical Technology Series Vol. 9 Center for Occupational Research & Development

Attendance Requirements

Students are expected to adhere to the attendance requirements that are delineated in the college catalog.

Safety Considerations

Students are urged to dress appropriately, exercise caution in the laboratory, and wear eye protection when recommended.

Summary of Topics/Course Outline

	Vol.	Chap.	Weeks
Laser Materials Processing	8	1&2	2.5
Data Proc ess ing	8	3&4	2.5
Testing and Monitoring	8	5&6	3
Rangefinding and Angle Tracking	8	7&8	2
Medicine, Communications, and Construction	8	9-11	4
Projects	9	1-7	
Review			1

Special Lab Equipment List: 1. Helium-neon Laser unpolarized - either: Metrologic #ML869 (1.5 mw) \$459 Metrologic #ML855 (5.0 mw) \$695 Photoelectric power meter with ambient light shade \$135 2. 3. Laser power meter \$350 4. Grating spectroscope \$250 5. Optical Bench system consisting of: (Metrologic \$400) One meter bench Leveling base Pin carriers Mounting pins Laser holder Mirror holder Ring mount 6. Lenses (various combinations) Diverging Converging (5cm focal length) Thin lens positive Thin lens negative 7. Mirrors including: High reflectance (99% reflective @ 632.8 nm) Output mirror (1-2% transmissivity @ 632.8 nm) Plane Concave Convex 8. Prisms 60° , $45^{\circ} - 45^{\circ} - 90^{\circ}$ 9. Filters 632.8 nm neutral density (1% transmission) Set of 7 broadband interference filters Optical Industries #03F1B015 10. Set of precision apertures on 35 mm glass slides Single, double, and multiple slits Circular apertures Square aperture Grating (Pasco Scientific)

- 11. Collimator Tropel #280
- 12. Polarizer Coherent #32
- 13. Beam splitter Oriel #261 \$50
- 14. Beam expander (10X) \$190
- 15. Micrometer
- 16. Meter stick

ARTICULATION

(Secondary and Post-Secondary Education)

Vocational/occupational education supports the needs of local business and industry and prepares workers with entry-level skills. The need for articulation of programs is becoming more apparent due to growing local and national concerns for efficiency in education, rising costs of education, and elimination of duplication of effort and demands from the public for accountability. Employment needs and trends have changed drastically in the last decade as high technology transformed many jobs.

Coordination of secondary and post-secondary programs was a major theme of the 1976 educational legislation. The 1983 efforts of the Pennsylvania Advisory Council on Vocational Education fostered, among other things, stronger business and industry linkages with vocational programs and articulation efforts between secondary and post-secondary and adult vocational education programs.

In 1983, the Pennsylvania Advisory Council on Vocational Education made a recommendation on articulation agreements. The recommendation, as it addressed articulation, stated:

4. Articulation agreements between comprehensive schools, community colleges, colleges, universities and AVTS should be established. These agreements should stimulate joint efforts in facilities' utilization, curriculum planning, providing customized job training, utilizing business/industry contracts, etc. These agreements would be considered in the approval process for receiving state and federal vocational education funds.

54

Further, articulating programs between secondary area vocational-technical schools and the local community college would maximize the efforts and efficiency of our state educational system. This integration would be efficient and economical in terms of better use of facilities, staff and equipment, reduced length of study time, and the ability to address employer needs in a systematic plan.

In the development of this curriculum, the Laser/Electro-Optics Technology Program, it was designed to build upon maximum integration of at least two major state education delivery systems, the community college and the secondary vocationaltechnical system. With this articulation plan and cooperation in mind, a decision must be made as to which students could profit the most from this learning experience.

Generally speaking, secondary students with a mathematics, physics and/or electronics background seemed to have many of the basic skills necessary for a smooth articulation. These general categories suggest students from course selections such as:

- * Electronics
- * Electrical
- * Electromechanical
- * Mathematics, Science, Physics

55

* and other courses as deemed appropriate by a joint committee of the community college and the area vocationaltechnical school.

Specific courses which seem to be appropriate or "easonable starting points of exploration of articulation include:

- * D.C. Electricity,
- * Technical Mathematics,
- * Technical Physics,
- * A.C. Electricity, and
- * Electronic Devices

While no one student would be expected to possess the background and/or competencies in all of the above courses, different students from various courses (programs) would have completed parts of or complete courses. Again, the determination of breadth, depth and evaluation of the articulation agreement should be determined by the joint committee.

Other courses not mentioned above should also be walved by students possessing competency in that area. Usually most institutions have a mechanism of evaluation to assess that background.

SECTION IV:

.

.

A T T A C H M E N T S

ATTACHMENTS

- 1. Curriculum Development Task Force
- 2. Task Force Data/Recommendations
- 3. Advanced Technology Center Brochure
- 4. Program Brochure
- 5. Equipment Specifications
- 6. Special Considerations for Laser Lab
- 7. Use of Laser Lab for Technical Physics

.

CURRICULUM DEVELOPMENT TASK FORCE

1987 - 88

- 1. George Butwin Meyers High School
- 2. Joseph DeSanto Luzerne County Community College
- 3. Stanley Fraind Crestwood High School
- Albin Grabowski Wilkes Barre AVTS
- 5. James Haggerty Wilkes Barre AVTS
- 6. Kathleen Heltzel West Side AVTS
- 7. James Kane West Side AVTS
- 8. Joseph Kasztejna Monroe Country AVTS
- 9. Edward Kuehner Luzerne County Community College
- 10. Kenneth Lewis Luzerne County Community College

- 11. Ormond Long Wilkes Barre AVTS
- 12. David Lyons West Side AVTS
- 13. Robert Mattern GAR High School
- 14. James Newell Wilkes Barre AVTS
- 15. Arthur Parsons Wyoming Valley West Sr. High School
- 16. Ben Rondomanski Lackawanna County AVTS
- 17. Walter Rounds Lackawanna County AVTS
- 18. Leonard Tarapchak Hazleton AVTS
- 19. Nathan Williams Wilkes Barre AVTS

ATTACHMENT =2

Task Force Data/Recommendations

MANUFACTURING PROCESSES I & II (GET 121 & 122)

Book Review

1. Basic Manufa	acturing Processes	ATTACHMENT	#2
Kazanas, Bak	ker, Gregor		
Dave Lyons -	Text adequate in coverage of manufacturing areas		
-	Robotics not mentioned		
	Format and photographs reveal that the book is dat	ed	
	Recommend use of a more modern text		
Lenny Tarapo	hak – Not very up to date		
*	Material covered is somewhat insignificant		
	l do not recommend this book		
Joe Kasztejn	a - Recommend this text for GET 121		
*	Contains all needed information to meet competend	с ц	
	requirements	•	
	Information in the text is up to date and well writ	ten	
	Illustrations are also very good		
Jim Newell/N	Nate Williams - Out of date		
	Recommend look for a different text		
2. <u>Principles o</u> r	<u>í Machining</u>		
American Sc	ciety for Metals		
Joe Kaszteji	na - Text collection of technical writings in module	form	
·	Each module can be used as a separate lesson with		
	the competency requirements matching the lessons	· •	
	Recommend that the text he be used as separate le		

Recommend that the text be be used as separate lesson with the order revised to meet course competency requirements

Lenny Tarapchak - Well defined processes as well as good back-up materials Recommend this book

Advanced Placement

Lenny Tarapchak recommends a written and a practical test. The time limit for both sections of the test is approximately 6 hours. Sample test attached.

Joe Kasztejna recommends a written and a practical test for Manufacturing Processes II. The practical test should emphasize competencies 3, 4, and 5. Manufacturing Processes I has a heavy emphasis on theory and therefore only requires a written test. Comments attached.

Additional Comments

SKETCHING AND PRINT INTERPRETATION (GET 108)

Book Review

 <u>Blueprint Reading for Industry</u> Walter Brown Ben Rondomanski - Recommends use of this text with additional handouts to cover competency requirements not included May require use of second text

John Witko - Material in the text is well written and easy to understand Instructor should present the material in a different order than the book Meets the competency requirements of the course The text can be used by a beginner or by someone with some experience The advanced section uses a variety of blueprints with different styles

Advanced Placement

Ben Rondomanski provided the attached test for advanced placement. John Witko feels the test is a good starting point for advanced placement criteria. Portfolios, interviews, etc. still must be examined.

Additional Comments

John Witko feels that actual industry blueprints should be used whenever appropriate. He is currently working on prints and parts for various sections of the course.

INTRODUCTION TO COMPUTER PROGRAMMING (GET 234)

Book Review not applicable - current course

Advanced Placement

Kathy Heitzel recommends a one (1) hour written test and a one (1) hour practical test. The written test should include the following: Know the difference between micros and mainframe computers

> Know the function of and understand the differences between hardware, software, electronic spreadsheets, peripheral devices, etc.

Know and explain the following terms and acronyms: Input, output, peripheral, CPU, graphics, bit, PC, LAN, mouse, hard copy, boot, execute, storage device, RAM, ROM, disk storage, CRT, byte, modem, ASCII, light pen, hard disk, files, debug, database, floppy disk, format, initialize, DOS, BASIC, microprocessor, host computer, remote terminal, monitor, menu, mode, backup, program

Know and understand the following commands - the exact command may differ depending on the computer used. But whatever computer is used, one must learn the commands. directory, erase, kill, BASICA - command to get in BASIC mode, system - to get back to system mode, rename

Know and understand the following BASIC commands - the above statement is still true regarding the computer used. SAVE, LIST, LOAD, PRINT, AUTO, LET, SUBR, FOR/NEXT, RUN, SYSTEM, EDIT, ERASE, DELETE, GOTO, IF THEN, READ DATA, INSERT

Know how to boot up the system - both ways

Know how to format a floppy disk to prepare it for use. Understand why we must prepare a disk.

Understand all the words listed previously and know what the acronyms mean in terms of the function they perform.

Know how to key in a program, execute it, debug it, and test it after corrections have been made.

Know how to call up files, check what is on your disk.

Know and understand all components of a PC, how they interface.

Know and understand where the PC field is going technologically.

Know and understand databases - internal and external.

Know and understand the additional equipment needed to access an external database.

Know and understand the difference between packaged software and user written programs.

Have an introductory knowledge of spreadsheets.

Additional Comments

D.C. AND A.C. ELECTRICITY (IEL 131 & 132)

Book Review

not applicable - current course

Advanced Placement

D.C. Electricity - May 10, 1988 discussion (attached)

Additional Comments

FLUID POWER (ASR 207)

Book Review

 Industrial Hydraulics Pippenger and Hicks Jim Newell/Nate Williams - Book is outdated The text looks at fluids from a plumber's point of view Need robotic point of view for this program Walter Rounds - Book covers competencies as specified It is not easy to read I do not recommend this text

Advanced Placement

Not appropriate at this time.

Additional Comments

Walter Rounds suggests we review the following books for this course:

- Mobile Hydraulics Manual Technical Training Center VICKERS, Inc. 1401 Crooks Road Troy, Michigan 48084
 Industrial Hudraulic Techn
- Industrial Hydraulic Technology Bulletin 0221-B1 Power and Controls Group Parker-Hannifin Corp. 17325 Euclid Avenue Cleveland, Ohio 44112

CIM 101/103/104

Book Review

1. <u>Basic CNC Programming</u> Laviana and Cormier Lenny Tarapchak - More an example of a ready reference book than an actual theoretical book

2. Principles of Numerical Control

Childs Al Grabowski - Book is obsolete - used a book like this in 1961

DIGITAL ELECTRONICS (IEL 205)

Book Review not applicable - current course

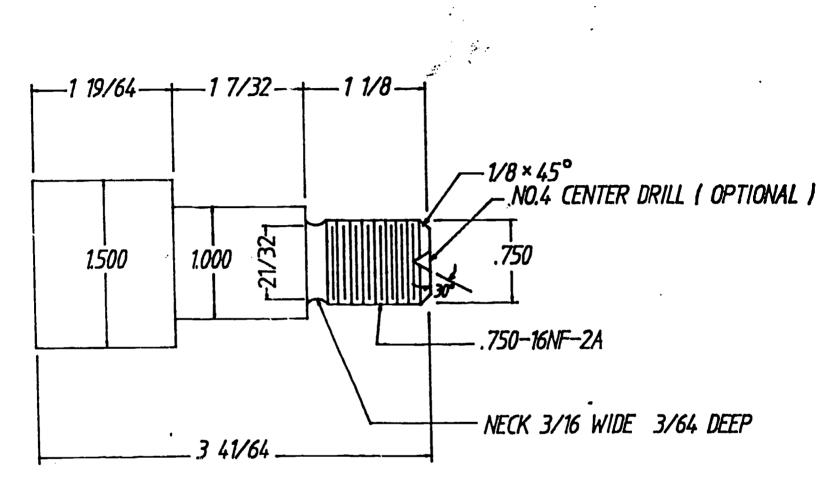
Advanced Placement

Art Parsons recommends a written and practical test. The test(s) should be designed so that the same test can be given in various forms. This would prevent students from passing the test information on to other students. A sample test is attached.

Additional Comments

MANUFACTURING PROCESSES

LAB ADVANCED


PLACEMENT

Job/Task: ENGINE LATHE

PERFORMANCE OBJECTIVE:

The student given the necessary print and materials, will have two (2) hours to turn, neck, angle, and thread the lathe project. The student will be evaluated according to the operations of an engine lathe, General safety specifications, and tolerances on the Blueprint.

UNLESS OTHERWISE SPECIFIED:

LIMITS ON DECIMAL DIMENTIONS WITHIN ±.001° LIMITS ON FRACTIONAL DIMENSIONS WITHIN ±.1/64°

INSPECTION_SHEET

Student_____

Instructor

PROJECT: TURNING EXERCISE. Length, overall 3 41/64 Diameters, 0.D. 1.500 × 1 19/64 _____ × _____ 1.000 × 1 7/32 _____ × _____ × _____ .750 x 1 1/8 . _____ × _____ 1/8 x 45 Chamfer 3/16 x 21/32 Neck _____ × _____ ____ × ____ .750-16 T.P.I. Class 2A

WORKMANSHIP

•

GRADE

سے رو چر جو سے بند ہو جو ہو ہے جو ہو جو ہو ہے

· •

.

MANUFACTURING PROCESSES

LAB ADVANCED

PLACEMENT

Job/Task: MILLING MACHINE

PERFORMANCE OBJECTIVE:

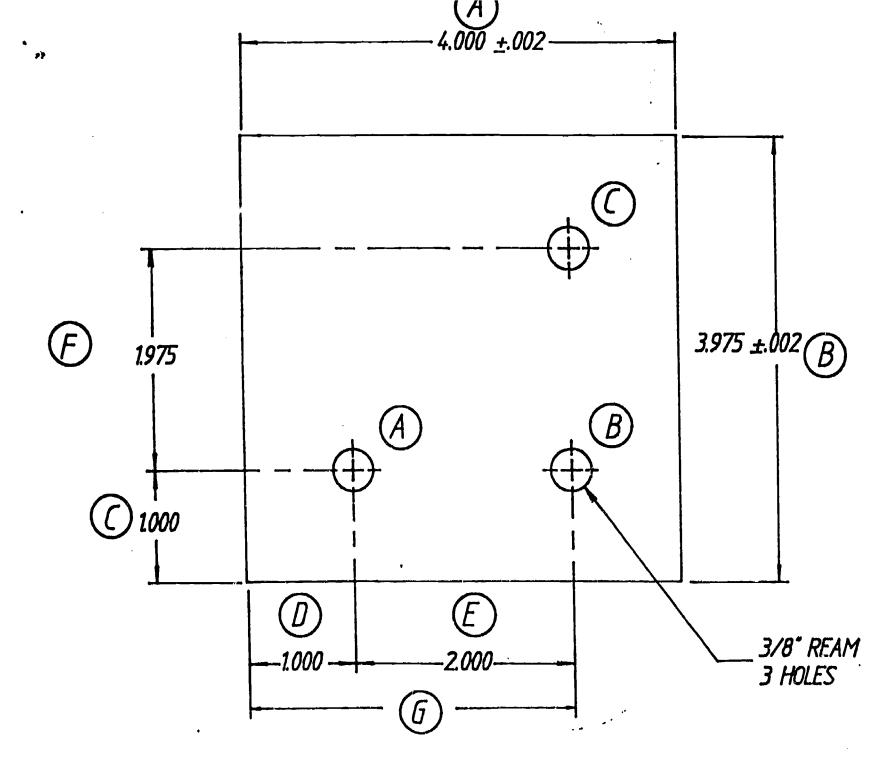
· .

The student given the necessary print and materials, will have 1 hour to mill, drill, ream the project. The student will be evaluated according to milling, drilling and reaming safely, general safety specifications and tolerances on print.

MANUFACTURING PROCESSES

LAB ADVANCED

PLACEMENT


Job/Task: LAYOUT WORK

PERFORMANCE OBJECTIVE:

The student given the necessary print and materials will layout work piece that will be milled, drilled and reamed. The student will be evaluated according to the specifications of print and tolerances and general safety.

.

UNLESS OTHERWISE SPECIFIED:

LIMITS ON DECIMAL DIMENSIONS WITHIN +.001"

INSPECIION_SHEET

STUDENT_____ Instructor_____

PROJECT ____VERIICAL_MILLING__DBILLING__REAMING_EXERCISE_ Length A 4,000 ± .002 Langth 8 0.975 ± .002 **** Location of Hole A - 1.000 × 1.000 ± .001 Locetion of Hole 0 - 1.000 × 2.000 + .001 Location of Hole_C - 3.000 x 2.975 + .002 Location.of_G - 1.00 ± .001 Logation_of_D - 1.00 + .001 Location of E - 2.00 ± .001

<u>Location of G</u> - 3,000 - ,002

WORKMANSHIP

GRADE

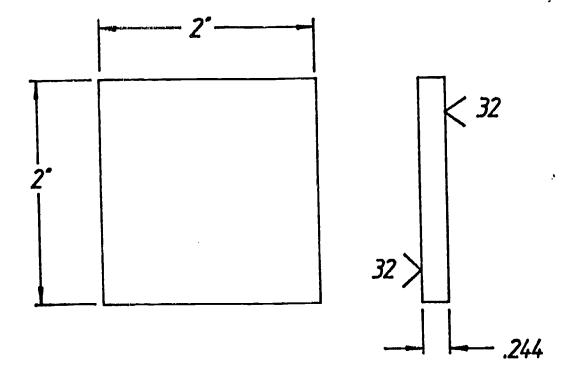
BEST COPY AVAILABLE

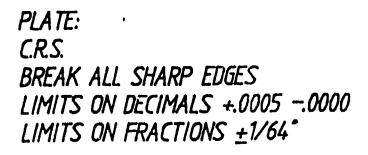
MANUFACTURING PROCESSES

LAB ADVANCED

PLACEMENT

Job/Task: SURFACE GRINDING


PERFORMANCE OBJECTIVE:


The student given the necessary print and materials will have 45 minutes to dress grinding wheel, to achieve size and finish the project.

The student will be evaluated according to the operations of a surface grinder, safety, general safety, specifications and tolerances on print.

٠,

INSPECTION_SHEET

Student	Ir	structor
	32	
Grind Finish	.244	
	+.0005	
2 surfaces	- 0000	محد جول زين چي محد محد حود در د احد زين هم خد خد احد احد احد احد جو حود احد جو محد محد مح وي حد احد احد احد احد مح حد حد

٠

•

.

•

 \backslash

•;

۰.

.

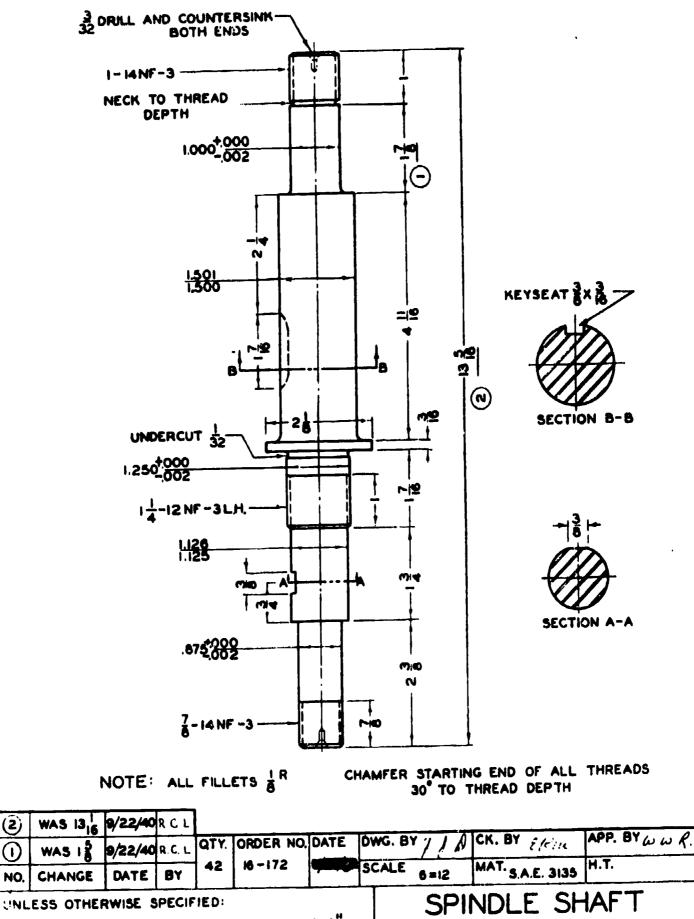
,

MANUFACTURING PROCESSES

LAB ADVANCED

PLACEMENT

Job/Task: BLUEPRINT READING


PERFORMANCE OBJECTIVE:

The student given the necessary Blueprint will have 45 minutes to interpret this drawing.

The student will be evaluated according to the number of questions answered correctly of given Blueprint.

A minimum of 85 percent accuracy is required.

LIMITS ON DECIMAL DIMENSIONS WITHIN ± .005 LIMITS ON FRACTIONAL DIMENSIONS WITHIN ± 1 64" FINISH: D-20 BREAK ALL SHARP EDGES LIMITS ON ANGULAR DIMENSIONS WITHIN ± 1 2"

(2)

NO.

SPINDLE SHAFT

۰.

•

1.	What is the name of the part?
2.	What is the blue print number?
3.	What is the material used?
4.	What is the largest diameter on the shaft?
5.	What is the overall length on the shaft?
6.	Starting at the bottom end of the shaft, what are the successive diameters up to the 2-1/8" diameter?
7.	Starting at the top end of the shaft, what are the successive diameters down to the 2-1/8" diameter?
8.	At how many places are threads being cut?
9.	Starting at the bottom, what are the thread diameters along the shaft?
10.	Specify, for any <u>left-hand thread</u> on the job, the thread diameter and number of threads per inch.
11.	How many threads per inch are being cut on the 7/8", 12", and 1" diameters?
12.	What class of fit is required on the threads?
13.	Is this a close fit or a loose fit?

SPINDLE SHAFT

1.

- 14. What is the length of that portion of the shaft which has the 7/8"-14 thread?
- 15. What is the length of the thread cut along this diameter?
- 1C. How much clearance is allowed between the last thread and the shoulder on the 7/8" diameter?
- 17. What is the length of the 1.125" diameter?
- 18. What is the upper limit of size of the 1-1/8" diameter?
- 19. What is the lower limit of size of the 1-1/8" diameter?
- 20. How long is that portion of the shaft which has the 11"-12 thread?
- 21. What is the length of the $l_4^{2n} 12$ thread?
- 22. What is the distance from the thread (11"-12) to the 2-1/8" diameter shoulder?
- 23. What is the largest size to which the 1.250" portion of the shaft can be turned?
- 24. What is the smallest size to which this can be turned?
- 25. How far is it from the bottom end of the shaft to the shoulder of the 2-1/8" diameter?
- 26. How far is it from the shoulder made by the 7/8" and 1.125" diameters to the center of the flat?

SPINDLE SHAFT

.

- 27. In section A-A is shown the cut across the shaft at the point the flat is milled. How wide is the <u>flat</u> cut?
- 28. What width of cutter is used in milling the flat?
- 29. How far is it from the bottom end of the shaft to the shoulder formed by the 1.125" and 1.250" diameters?
- 30. What is the thickness of the 2-1/8" collar?
- 31. How far from the top end of the shaft is the 2-1/8" shoulder?
- 32. How long is the 1.500" diameter?
- 33. How long is the 1" diameter?
- 34. What is the length of thread cut on the 1" diameter?
- 35. For what purpose is the 3/16" x 3/8" cut in section B-B used?
- 36. What is the length of this cut?
- 37. How far is this cut from the shoulder of the 1" diameter?
- 38. What is the largest diameter to which the 1.500" shaft can be turned?
- 39. What is the amount of chamfer on each end of the piece?
- 40. What operation cuts below the lin diameter near the collar?

TO:	Wesley E. Franklin
FROM:	Joseph P. Kasztejna
SUBJECT:	Criteria for Advanced Placement
RE:	April 22, 1988

AREA: MANUFACTURING PROCESSES LAB I

All course competencies and objectives for Manufacturing Processes Lab I are designed to require the student to absorb theoretical information. Because of the emphasis on theory, I would recommend a comprehensive written test to obtain advanced placement status for this course or study. The questions on this test must be based on the seven course competencies and their objective.

AREA: MANUFACTURING PROCESS LAB II

Competencies and objectives for Manufacturing Processes Lab II are both theoretical and practical. I recommend both a comprehensive written test and a practical shop test. The written test should measure the student's ability to identify various machines, machining operations, cutters, holding devices, and measuring instruments use in the machine field. The test should also include blueprint reading, mathematics and safety practices used in the setup and operation of basic machine tools.

The practical test for LAB II should require the student to demonstrate his/her ability to use precision measuring instruments and perform both precision and semi precision layout. The actual machine tool operation part of the practical test should require the student to complete one or two projects that would test his/her ability to setup and operate the following machine tools.

COMPETENCY	MACHINE TOOL	OPERATION TESTED
No 3	Lathe	Straight turning, shoulder turning, drilling, angle turning, threading, select tooling, measuring, tool sharpening
No 4	Verticl Milling	Align fixtures, attachments and cutting tools; slot cutting; mill to length; mill sides square; drilling with a milling machine.
No 5	Grinding Surface	Dress grinding wheel, secure workpiece, perform parallel grinding, setup and grind 90 to parallel surface

As part of the practical test the student should be observed selecting the proper tools and cutters, using proper procedures when setting up machine tools, setting proper cutting speeds and feed rate, and working in a safe and careful manner. The practical test should have an area in its criteria for safety and work habits observed as the student performs the test.

G.E.T. 108 SKETCHING & PRINT INTERPRETATION

PART I - GENERAL INFORMATION

•

Below are two columns of information, Column A gives terms associated with print reading and Column B provides definitions. On the answer sheet give the letter of the definition that matches the term in Column A.

PART II - MACHINE DRAWINGS

On your answer sheet answer all questions noted.

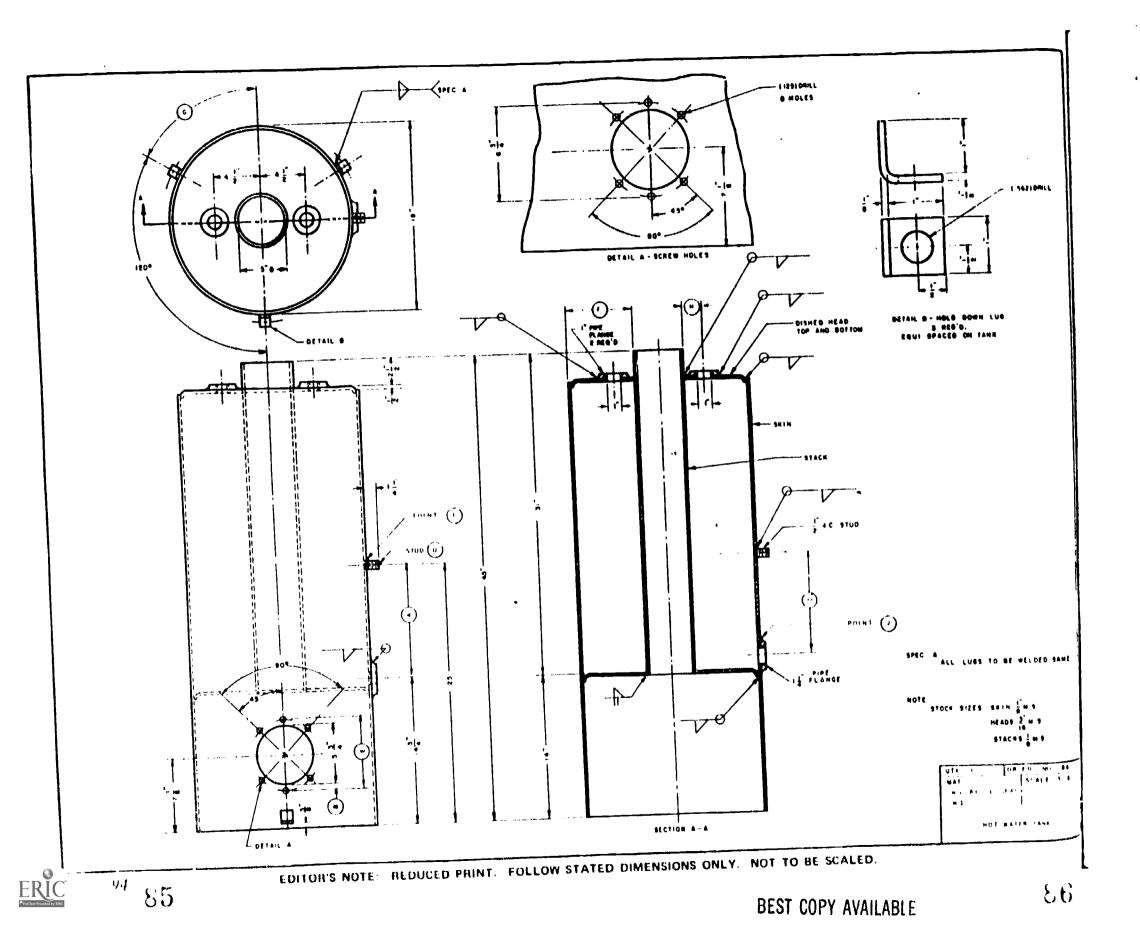
PART III - WELDING DRAWINGS

On your answer sheet answer all questions noted.

NAME :

ERIC

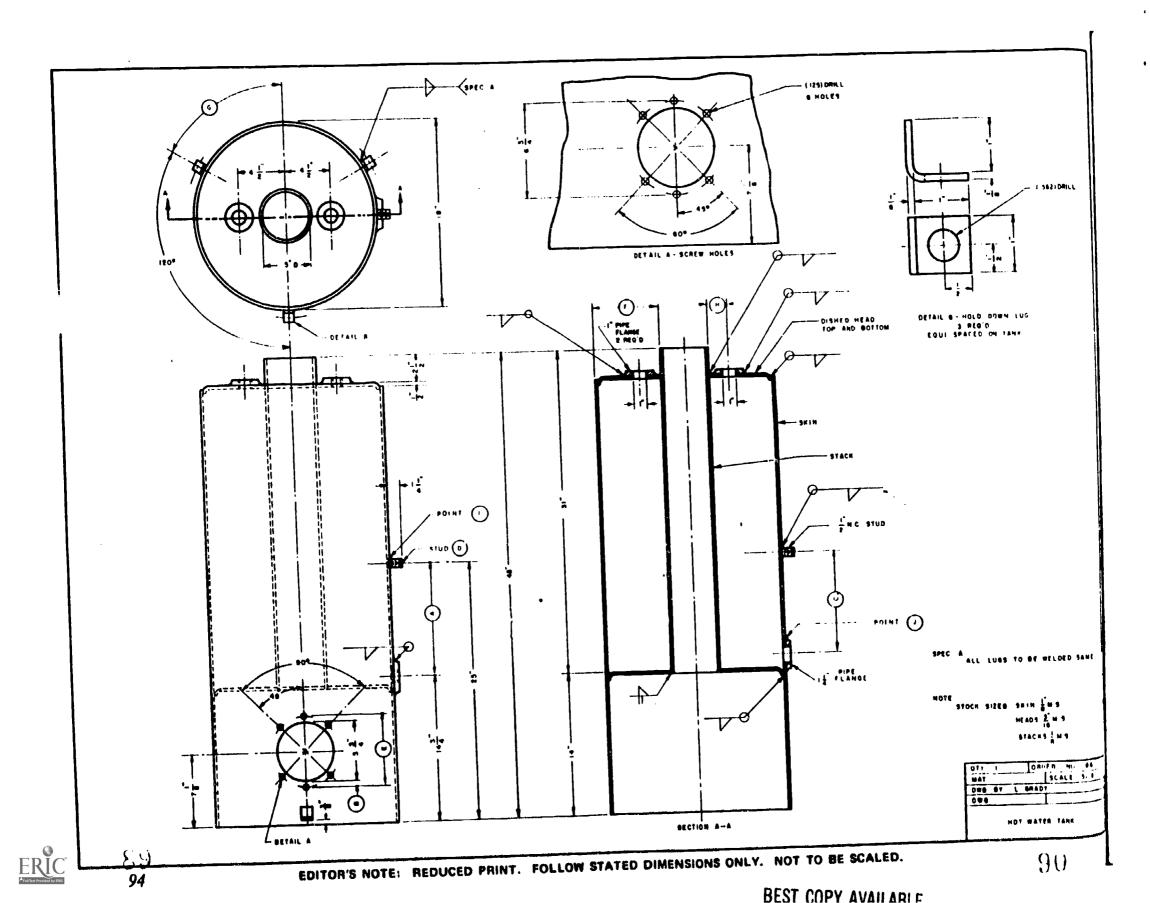
S.S.#

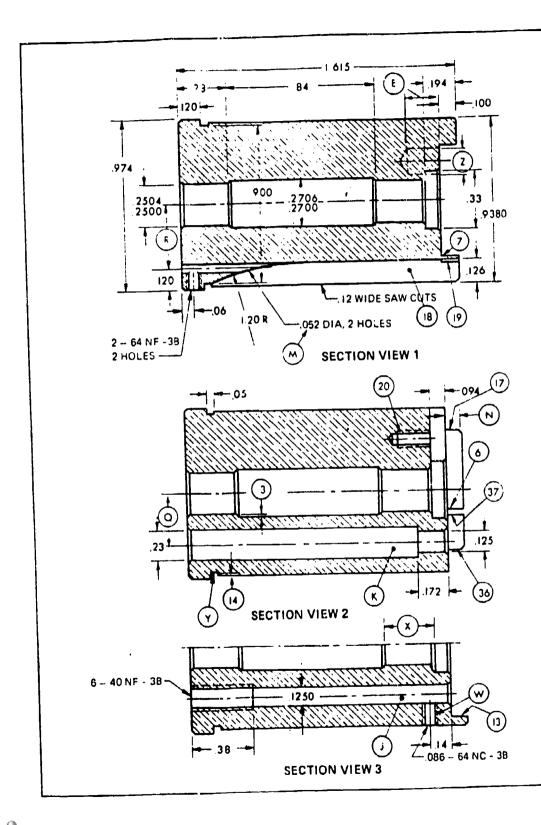

ł

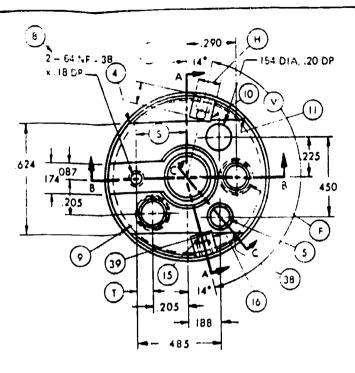
ANSWER SHEET

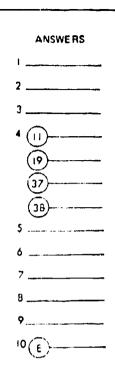
		· · ·
PART I	PART II	PART III
1	Section View I	1
2.	Section View II	2.
3。	Section View III	3
4.	1	4. a
5.	2	b
6.	3	5.
7.	4.	6.
8.		7. Dia
9.		Lgth
10.		8. Size
11.	5.	Qty
12.	6.	9. f
13.	7.	h
14.	8.	10. Inches
	9.	Туре
	10.	11
16.		12.
17		13.
18		14.
19		15.
20.		16.
		17. a
		e
		18.
		19.
•	83	20.

	COLUMN A		COLUMN B
PART	1	PARI	r 1
1.	Orthographic Views	Α.	A geometric shape associated with various types of fasteners
2.	Dimensions	в.	Values indicating size
3.	Notes	с.	Contains value and dimensioning distance
4.	Object Line	1	Bringing a line beyond the object to provide
5.	Hidden Line		for clear dimensioning and show dimensioning points
6.	Threads	E.	Positions of an object that are perpendicular
7.	Extension Line		to the plane of projection
8.	Dimension Line	F.	Shows a single unit with contour and size
9.	Leader Line	G.	A piping drawing that have all lines in a sin- gle plane
10.	Cutting Plane Line	н.	A technique used to show internal structure
11.	Cross Sectioning		of a part
12.	Assembly Drawings		Shows the visible shape of an object
13.	Detail Drawings	J.	Represents material being cut by a cutting plane line
14.	Auxiliary View	к.	A drawing providing information of an elect-
15.	Sectional View		rical circuit
16.	Tolerance	L.	Points directly to a point of surface to apply a dimension or note
17.	Isometric View	м.	The upper and lower limits of a dimension
	Developed Drawing Graphs	N.	Written information on a drawing applying to an entire drawing or a specific location
		0.	A drawing that shows relationship between
20.	Single Dine Scheme 220		parts
		Р.	A technique used to show description of an inclined or oblique plane
		Q.	Shows edges and outlines not visible
		R.	A pictorial type drawing that uses an ordinary scale value
		s.	Indicates position of view in sectioning
		т.	A drawing used to represent engineering facts, statistics and/or laws of phenomea
ERIC A true true true to the tenc			84

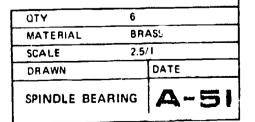



SUMMARY REVIEW NO. 2


- A. Refer to the drawing, Hot Water Tank, page 94.
- 1. How thick is the bottom head? _____
- 2. How thick is the material used in the stack? _____
- 3. How thick is the skin of the tank?
- 4. Give the dimensions of the sheet required for the
 - a. skin of the tank _____ b. the stack _____
- 5. What type of threaded fittings are used?
- 6. Give the sizes and number of fittings used.
- 7. What is the diameter and length of stud \bigcirc ?
- 8. What size and how many screw holes are used around the large hole?
- 9. What is the size of distance (F)? _____ of (1)? _____
- 10. How many inches and what type of weld is required to join the stack to the head at the top of the tank?
- 11. What type of weld is required at point (\mathbf{J}) ? _____
- 12. What type of weld is used to join the hold-down lug to the tank?
- 13. How many hold-down lugs are there?
- 14. a. Do all these lugs require the same type of weld?


- 17. What is the dimension of (A)? _____ of (F)? _____
- 18. What is the distance from the water-holding bottom of the tank to the bottom of the hold-down lugs?
- 19. How many degrees apart are the hold-down lugs?
- 20. What types of welds are required to join the stack to the bottom of the tank?

• • • •



ASSIGNMENT

Label each of the section views with the appropriate titles with reference to the cutting plane lines on the end view.

QUESTIONS

- I. What is the diameter of hole (F)?
- 2. What is the diameter of hole (Z)?
- 3. Identify hole (B) in another view.
- 4. Locate lines (1) (19 (37) (33) in another view.
- 5. Determine angle 🛛 .
- 6. Locate line (Y) in another view.
- 7. Determine depth of slot at (14)
- 8. Determine maximum depth of recess at 3
- 9. Locate hole (M) in another view
- 10. Determine distances (E)

BEST COPY AVAILABLE

CURRICULUM PLANNING TASK FORCE MEETING MAY 10, 1988

Discussion of advanced placement criteria resulted in formulation of the following tentative plans and opinions.

D.C. ELECTRICITY

This course had been selected originally as one in which advanced placement might be possible. There seemed to be general agreement that the mathematics background of students from vocational schools and from comprehensive high schools where electronics courses are offered is inadequate to warrant advanced placement in this course. High school instructors stated that their electronics students have a good laboratory background, but the theory and math involved in the D.C. electricity course is such that a student would rarely benefit by exclusion from the course.

There are students, however, who have the lab experience that might be sufficient to exempt them from either <u>all</u> or <u>part</u> of the D.C. experiments.

DIGITAL ELECTRONICS

All participants agreed that this course might be one in which both vocational high school and comprehensive high school students with electronics backgrounds might earn advanced placement.

TECHNICAL PHYSICS

Advanced placement in the technical physics course would be based upon the following criteria:

Successful completion, with an A or B grade, of a course in a recognized, advanced placement high school course, along with at least a B grade on its associated standardized exam. Recommendation of a high school instructor is also required.

TECHNICAL MATH 111

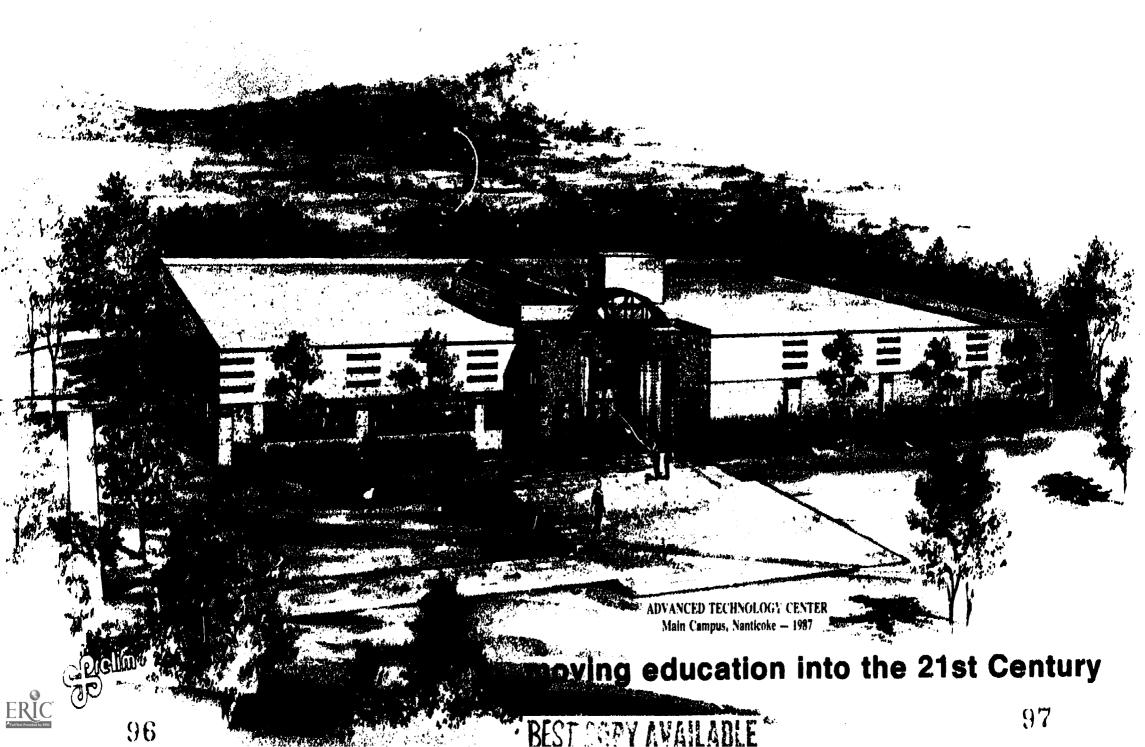
Discussion included the possibility of accepting credit only from advanced placement courses in high school.

in the event that a student has not taken advanced placement courses in high, an alternative method of screening for awarding of advanced placement was explored. It would include the following steps:

- 1. Interview with counselor/college representative during which the student's background is explored with respect to requirements of the course.
- 2. Recommendation of the appropriate high school instructor.
- 3. Demonstration of completion of the prerequisite courses in high school. For example, electronics students must have completed algebra I and II, trigonometry, and physics before being considered for advanced placement in math or electronics courses.
- 4. Documentation of any relevent experience.
- 5. Formal testing in the course must result in a minimal score of ______

ATTACHMENT =3

Advanced Technology Center Brochure


•

.

٠

Community College of Luzerne County

fulfilling our mission ...

uzerne County Community College over its two decades of service to the region has developed strong programs in technical-career education and training. Follow-up studies show that the students that have been served by these programs have been well prepared to compete in the region's job market. In a continuing effort to fulfill the College's mission, and to maintain the marketability of our constituents, a major new initiative has been identified. A decision was made in 1986, after an assessment of regional manpower needs and emerging manufacturing process, to expand technical-career offerings into the areas of the advanced technologies to better position the College to support the careers of tomorrow and to foster community and regional economic development.

The intent of this new initiative is to attract new industries and to support existing enterprises which will add to the stability and health of the manufacturing and business communities in Northeastern Pennsylvania.

88

Fulfillment of this commitment will be accomplished through the development of an Advanced Technology Center (ATC) which will be dedicated to and designed for a wide array of new and upgraded programs that will provide the foundations for careers of tomorrow. ATC programming will be designed to support the identification, selection, and implementation of new technologies. The ATC will play a vital role in economic development by providing companies with a central source for help in applying the new technologies to their operations as well as providing a pool of trained personnel to meet manpower needs. This facility will featuring, laser-electro optics, computer systems maintenance, computer-assisted design, robotics, computer-aided drafting, automotive technology and broadcast telecommunications.

A strong design feature of the ATC will be built-in structural flexibility to respond to manpower needs as currently identified as well as those that will emerge in the future. The ability to eliminate, modify, add, or customize a specific training program within an extremely short time frame is of utmost priority to the College and to the region.

Finally, development of the ATC has grown out of the belief that continued regional economic growth requires government, business and education cooperation. The need to integrate new technical resources challenges all of us to come to grips with new technology and innovation. This new initiative will foster and encourage new partnerships to work together for a better tomorrow.

::;;

more than a building ...

n Advanced Technology Center (ATC), as we should define it, is more than just a building... it's a CONCEPT. Involved with the concept are the following elements:

Credit (certificate/degree) program instruction:

- Telecommunications (Broadcast Communications)
- Automotive Technology
- Architectural Engineering Technology
- Mechanical Engineering Technology
- Electrical/Electronics Technology
- Computer Integrated Manufacturing Technology
- Automated Systems/Robotics Technology*
- Computer Assisted Design Technology*
- Computer Systems Maintenance Technology*
- Laser/Electro-Optics Technology Computer Numerical Control Technology
- Nuclear Power Technology
- May develop as **options** of other programs.

in the above-listed programs. the objective will be to produce a well-balanced, technical person capable of assisting architects, enginer rs, and other technology experts in a variety of support functions, to include, for example, designing and maintaining various design and manufacturing systems.

In the individual/business setting, this person will be somewhere on a level between the design and production stages of the manufacturing processes. This person will be the "troubleshooter" - the one with the **prac**tional knowledge of what needs to ERC ract with what in what way to duce a product. Yet, this person will also have enough backgrounds (credits) to pursue advanced degrees, beyond the associate level.

These programs will be primarily competency-based, and will be delivered utilizing a variety of instructional approaches, including inter-active video, and computer-assisted instruction. The pool of available students will include recent high school graduates interested in seeking a degree or certificate, and adults interested in upgrading skills and/or changing careers.

Short-Term training

As technology continues to advance and change, especially in the Northeast corridor (regional scope - 20 county area), short-term training (10 to 25 hr. range) will become increasingly important in order for the private sector to keep employees (especially production personnel) current regarding new processes and new equipment. For the most part, this short-term activity will be of a customdesigned nature ... a blend of standard pedagogical methodology and innovative delivery approaches with new content (subject matter).

The ATC will be the setting for a host of initiatives connected with custom-designed, shorttraining ... especially term where equipment manufacturers located outside the region will need to provide training to local manufacturers as a cr idition of the sale of equipments in this regard, the ATC will become the training site and/or location for equipment manufacturers like Cincinnati-Milicron, Allen-Pradley, Bridgeport, General Electric, etc. to do outreach regionally. The College's role in this process will be to provide space, interface with the training activity, and obtain, as a result (consequence), donated equipment. The spin-offs from this activity, in terms of benefits to the College, are impossible to clearly identify at this writing, but it seems logical to think they will be significant.

Contract Training

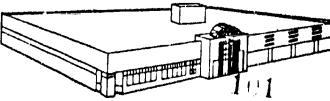
As technology advances in our region, the private sector will be in need of specific training to up-grade and advance the skills of employees. Remembering that the Northeast has an **older** work force, it seems logical to assume that rather than engage in union-difficult, lay-off strategies, companies in the private sector will be looking for means to "bail them out" of the problem of re-training with reasonable cost.

Contract training, i.e., educational programming and support services specifically geared to the re-training needs of a particular manufacturing process or company should be the answer to many prayers in the private sector. This type of training will be in the 100 hr. to 500 hr. range, delivered in the ATC and/or on site (of the company) in various fashions-and designed and delivered in such manners as to address an immediate training need, while, at the same time, having application in some manner to existing (degree) programs.

Technology Exchange

While definitely connected to short-term training, this ATC element can be of great significance in providing the setting for existing, regional companies (and local ones) to view and examine new technological advances—the actual equipment, not just pictures or catalog cuts. Displays and exhi-

BEST COPY AVAILABLE


bitions, either as stand-alone activities, or in conjunction with workshops and seminars (5 hr. to 10 hr. duration) will be important to the development of the ATC as a highly visible community/private sector resource, and important to the educational conference center as a focus for private sector thrusts (fundraising).

Other Considerations

The Institute has already conducted a very successful "Incubator Without Walls" project under a grant from Sears PDF/ KAW-AACJC. The Sears project, as it is affectionately known, has garnered many plaudits and acknowledgements as a unique, effective approach to assisting new, fledgling companies. We need to do more of the same, and this kind of activity can be continued through the application of the ATC concept.

The private sector in our region has many needs ...and needs to be supported and assisted, especially existing small and moderately sized businesses/companies.

The ATC is more than just a building; it is a jumping-off point for a venture into the future that should be on-going well into the next century. Because of what the ATC is and will do, the very foundation upon which the College was founded—to address the changing needs of the community (with the emphasis on "changing")—this foundation should be bolstered tremendously.

ommitted to the introduction of new technology into the workplace, the ATC is both market driven and business responsive. In building and expanding its role as a technology resource, the ATC will carefully focus on an agenda tailored to increasing productivity, improving product quality, enhancing employee skills, and helping Northeastern Pennsylvania companies gain and maintain a competitive status.

The 85,000 sq. ft. Center will offer:

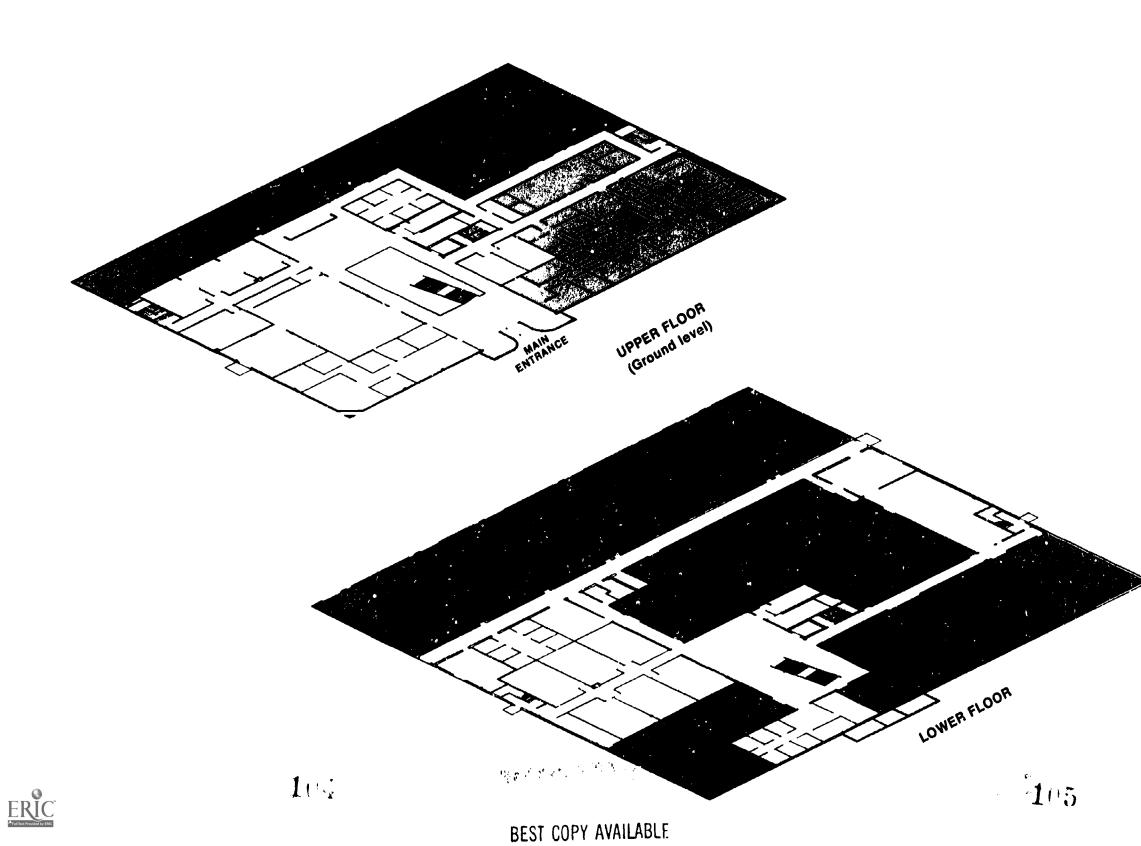
- Comprehensive teleconference facilities.
- Exhibition space for technology systems and demonstrations supported by furnished office and reception suites for customer meetings and business transactions.
- Many individual computer workstations permitting self-paced instruction to support custom-designed training delivery.
- Dedicated computer training labs.
- On-site media support systems.
- Seminar and meeting rooms with audio-visual support.
- Climate controlled manufacturing process lab with 20 stations.
- Fluid Power Lab with 24 stations.
- A robotics lab with three cells featuring the latest automatic machinery.
- Computer Integrated Manufacturing (CIM) lab.
- Computer aided drafting lab.
- Laser lab.
- Six auto-labs.

Here, in one location, businesses can find many of the services needed to integrate modern technology into their operations.

Upper Level

- Offices
 - Administrative
 - Faculty
- Technology Training and Demonstration
 - Large Group/Demonstration
 - Small Group Seminar
- Lobby/Display and Exhibition
- Broadcast Communications Facility
 - FM Radio Station Studio/Control
 - Audio Production/Editing
 - Video Production/Editing
 - TV Production Studio
 - TV Production Control
- Mathematical Instructional Laboratories
 - Electrical Machines
 - AC/DC
 - Microprocessor
 - Mechanical Drafting
 - Architectural Drafting
- [] Restrooms, Elevator, Stairways
- 1 Classrooms

Lower Level


- Offices
- Faculty

Lobby/Display and Exhibition

- Instructional Laboratories
- Laser
- Automotive
- Manufacturing Processes
- Computer Integrated Manufacturing
- Computer Aided Drafting
- Fluid Power
- Robotics
- Technical Equipment Service

Classrooms

- Receiving, Staging, and Exhibition
- Restrooms, Elevator, Stairways
- Broadcast Communications Facility

opportunities in high technology

BROADCAST COMMUNICATIONS TECHNOLOGY

This two-year associate degree program utilizes a "hands-on" approach, whenever feasible, to provide the student with a comprehensive understanding of the theory and skills vital in the broadcast medium, as well as the private and corporate communications fields. An emphasis is placed on student competency in the operation of advanced technology equipment in audio and video production, and in the latest computer graphics video system.

AUTOMOTIVE TECHNOLOGY

The Automotive Technology program is a two-year associate degree program which offers both theory and practical experience combined. Students enrolled in the program will acquire a comprehensive understanding of the theory and skills necessary to diagnose, service and repair automotive systems and components utilizing varied computer systems/ technology.

ARCHITECTURAL ENGINEERING TECHNOLOGY

The College offers both a one-year certificate and a twoyear associate degree program in Architectural Engineering () () which prepares students for employment opportunities as technicians in the field. In addito positions with architecl firms, the student may also gualify as an engineering aide, architectural draftsman, assistant surveyor, detailer, building materials and equipment salesman or estimator.

MECHANICAL ENGINEERING TECHNOLOGY

This curriculum is offered in both a one-year certificate or two-year associate degree program and is designed to prepare students for work in industry as an engineering technician, and for advancement to group leader or foreman. The program includes the basics in humanities, social sciences, applied math and physics, and appropriate technical courses.

EVECTRICAL/FLECTRONICS TECHNOLOGY

The Electrical/Electronics Technology program is offered in both a one-year certificate program and a two-year associate degree program. The twoyear program emphasizes both the theory and the practical applications of electrical/ electronics which is in line with the rapid changes in this extremely diversified field which requires competency in a broad range of fundamentals.

The one-year program enables students to develop the specialized skills necessary to design, install, service, and operate electrical/electronic equipment.

COMPUTER INTEGRATED MANUFACTURING TECHNOLOGY

Both a one-year certificate and two-year associate degree program are being developed for this program which will train technicians for employment in modern computerized manufacturing industries. Such technicians produce production parts by using computer-controlled machine tools and similar sophisticated equipment.

Employment in the field of automated manufacturing is expected to increase faster than the average for all occupations through the 1990's.

AUTOMATED SYSTEMS/ROBOTICS TECHNOLOGY

This two-year associate degree program is designed to provide students with the knowledge and practical experience for electromechanical equipment and controls common to both robotic and automated systems.

COMPUTER SYSTEMS MAINTENANCE TECHNOLOGY

This two-year associate degree program is a specialty concentration within the broader scope of the Electronics Engineering Technology program. The complexity and scope of the internal functions of the microcomputer as well as its wide variety of associated peripherals, instruments and systems, requires high academic capacity as well as technological/ manipulative skills.

LASER/ELECTRO-OPTICS TECHNOLOGY

This two-year associate degree program will emphasize the theory and applications of Laser/Electro-Optical technology. A broad based knowledge of electronics, optics, and lasers is required for competency in this emerging technology.

NUCLEAR POWER TECHNOLOGY

This two-year associate degree program is designed to provide technically trained personnel to support the nuclear power industry. The objective of the program is to provide students with a comprehensive understanding of the theory and skills necessary to function in one of the following areas reactor operations, instrumentation and control, and health physics.

COMPUTER AIDED DESIGN (CAD) TECHNOLOGY

This two-year associate degree curricuum is designed to provide students with a working knowledge of micro and mainframe CAD systems. It also introduces basic and advanced drafting and design done on computers as well as basic programming and automated systems concepts.

COMPUTER NUMERICAL CONTROL TECHNOLOGY

The Computer Numerical Control (CNC) Technology curriculum, which is a two-year associate degree program of study, emphasizes the use of current computerized numerical control and computer aided manufacturing technologies to program machine tools to perform drilling, milling, and turning operations. Instruction em-

phasizes hands-on skills as well as related information.

... in a perfect setting

he Educational Conference Center has been designed to meet the needs of outside agencies, businesses and organizations for meetings, seminars and conferences. Seven various size seminar rooms and two auditoriums offer the needed flexibility in preparing for a successful learning experience. The attractive, spacious dining area provides for all day or mealcentered activities. All of the latest electronic and communication equipment, including a satellite receiving station, is available.

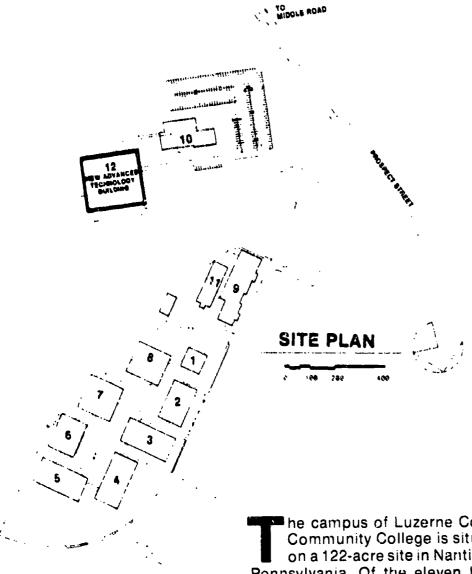
A professional coordinator and staff are available to answer your every need. The College is pleased to offer its comprehensive conference planning program to area residents at the most reasonable price possible.

he campus of Luzerne County Community College is situated on a 122-acre site in Nanticoke. Pennsylvania. Of the eleven buildings the General Academic Build-

ing (#4) and the two Technical Arts Buildings (#2 and #3) contain classrooms. laboratories, and faculty offices. Recently completed was the Medical Arts Complex (#9), consisting of a dental arts facility, a nursing arts facility and a multipurpose facility

The Student Center Building (#7) houses student lounges. a dining-vending rea, the College Bookstore, the College Health Office, and student activity offices. The Health and Physical Education Building (#8) includes a two-station gymasium, and a training area. The Administration Building (#5) houses the majority t the College's Administrative services, plus the Programmed Study Center.

The Physical Plant Services Building (#1) contains a warehouse, and repair shops The Instructional Resource Center (Library) (#6) contains study areas. periodical and reference areas, archives, and facilities for the College's book collecons


The Educational Conference Center (#10), includes six seminar rooms, two todiariums and a spacious dining area

ERICewest facility a Faculty Office and Classroom Building (#11), contains 46 offices a secretary-reception area, and five classrooms.

1118

BEST COPY AVAILABLE

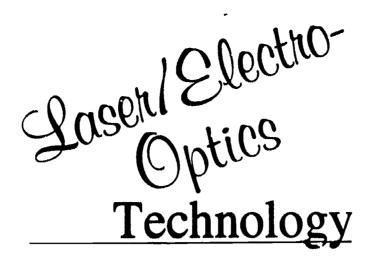
Credits

Robert P. Casey, Governor Commonwealth of Pennsylvania Thomas K. Gilhool State Secretary of Education Luzeine County Board of Commissioners Frank Trinisewski, Chairman Jim Phillips Frank Crossin Thomas J. Moran. President John Hosage, D.D.S. Chairman, Board of Trustees John M. Beccaris Dean of Institutional Development and College Project Officer Pyros and Sanderson Architect Sordoni Construction Company **Construction Manager Board of Trustees** Albert Wasley, Vice Chairman Leonard Falcone, Secretary Edward A. Brominski Charles J. Bufalino, Esq. George Hayden **Robert Jones** Joseph Lombardo, M.D. Martin L. Murray Walter Placek, Ph.D. **Thomas Stish** Harold Trethaway Michael Turco Allan M. Kluger, Esq., Solicitor Pauline G. Carmody, Assistant to President/External Affairs

110

BEST COPY AVAILABLE

Community College of Luzerne County · Nanticoke, PA · (717) 829-7300


a construction of the state o

ATTACHMENT =4

)

Program Brochure

Community College of Luzerne County

. . moving education into the 21st Century

113 BEST COPY AVAILABLE

1

Laser/Electro-**Optics Technology**

Laser technicians can be found in many industries. In hospitals, they maintain and adjust the intensity of the laser beam penetration for surgical procedures. The technician couples the laser to a robot in automated manufacturing for welding, drilling and cutting metal. The lasers in supermarkets and libraries are serviced by laser technicians.

Technicians may be involved in laser assembly and production; maintenance and operation; troubleshooting and repair; research and development; or sales and service in a number of areas.

Should you enroll in LCCC's Laser/Electro-Optics **Technology program?**

If you enjoy electronics, science, math, and, working with your hands, Laser/Electro-Optics may be for you. The program's emphasis on practical hands-on experience will help you develop your interest in electronics and technology into rewarding employment skills.

What are your job and salary opportunities as a graduate of LCCC's Laser/Electro-Optics **Technology program?**

Starting salaries range from \$15,600 to \$18,200 per year in Eastern Pennsylvania. Experienced technicians average about \$26,000 per year depending upon your background and experience.

Associate Degree Program

1st Sei	mester	Semester Hou	ars
LEO	101	Introduction to Lasers	4
MAT	111	Technical Mathematics I	5
IEL	131	D.C. Electricity	4
ENG	101	English Composition 1	3
			16
2nd S	emester	Semester Ho	urs
LEO	102	Laser Optics	4
MAT	112	Technical Mathematics II	5
IEL	132	A.C. Electricity	3
PHY	123	Technical Physics I	4
			16
3rd S	emester	Semester Ho	urs
LEO	201	Laser Equipment and Measurements	4
IEL	135	Electronic Devices	3
PHY	124	Technical Physics II	4
SPE	125	Fundamentals of Speech	3
GET	234	Intro. Computer Program	. 3
			17
4th S	emester	Semester Ho	urs
LEO	202	Laser Appli. & Projects	4
IEL	205	Digital Circuits	3
		Social Science Elective	3

Technical Report Writing

Elect. Amplifier Circuits

Other Education & Training Options

Short-term training (10-30 hours), work-

shops, seminars, and customized training for

business and industry are available on a

scheduled basis and by request. Call the Ex-

ecutive Director of the Advanced Technology

Health/Physical Education 1

3

3

17

Flease send me information on each category or area of study checked below:

- ☐ Admissions Procedures
- □ Advanced Placement Procedures

Advanced Technology Center Programs

☐ Automotive

- □ Architectural Engineering
- □ Automated Systems/Robotics
- □ Broadcast Communications
- □ Computer Assisted Design
- □ Computer Integrated Manufacturing
- □ Computer Numerical Control
- Computer Systems Maintenance
- Electrical/Electronics
- □ Laser/Electro-Optics
- □ Mechanical Engineering
- □ Other Training (please specify)

Name	····	
Street		
City	State	Zip
Telephone Nur	nber	

Luzerne County Community College does not discriminate on the grounds of race, color, national origin, sex, age or handicap in the administration of any of its educational programs, activities or employment in accordance with applicable federal statutes and regulations. Inquiries concerning application of this policy should be directed to Susan Fay, Office of Affirmative Action/Employee Relations, Prospect Street and Middle Road, Nanticoke, PA 18634 (Phone 717-829-7393)

115

Center for more information at 829-7300.

261

201

ENG

IEL

HPE

BEST COPY AVAILABLE

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 41 NANTICOKE, PA

POSTAGE WILL BE PAID BY:

Advanced Technology Center Community College of Luzerne County Prospect Street & Middle Road Nanticoke, PA 18634-9987 ł

ł

BEST COPY AVAILABLE

Here's How To Apply For LCCC's Advanced Technology Programs

1. You may call 829-7343 or visit the Admissions Office to obtain an application, or go to your local high school guidance office. The Admissions Office at the Community College is located in Building 5 (Administration Building).

2. Have your high school transcripts or GED scores and your completed application for admission sent to the college's Admissions Office.

3. The college will contact you regarding your program of study.

4. An interview is not required, but may be scheduled to obtain additional information. Please call 829-7343 or 459-1600 for more information.

You May Qualify For Financial Aid

At LCCC, several types of financial aid may be available to you. You may apply for federal and state grants that do not have to be repaid. A number of scholarships also are available.

Other options you may want to consider are loans and student employment — both on and off campus. LCCC does not turn students away because of financial need. Let us work with you to make college affordable.

Call LCCC's Financial Aid Office for detailed information at 735-8300, 829-7300, or 459-1600 extension 389.

FOR MORE INFORMATION

Wesley E. Franklin, Executive Director Advanced Technology Center for Northeastern Pennsylvania Community College of Luzerne County Nanticoke, Pennsylvania 18634-3899

116

ı.

ATTACHMENT #5

LASER/ELECTRO-OPTICS

EQUIPMENT SPECIFICATIONS

- 1. Laser/Electro-Optics Laboratory Accessories and Components.
- 2. Laser/Electro-Optics Laboratory Major Equipment

i mW Helium Neon Laser System

Quantity: 4

Location: Laser Lab

Description:

1 mW Helium neon laser system having the following characteristics:

-minimum output power (mW, TEM_{oo} , 633nm) = 1.0 mW -beam diameter at $1/e^2 = 0.48$ mm -beam divergence = 1.7 mrad -minimum polarization ratio = 500:1 -longitudinal mode spacing = 1070 MHz -beam pointing stability from cold start (25°C) <0.10 mrad, after 15 minute warm-up < 0.01 mrad -CDRH Class IIIa UNIPHASE MODEL 1507 or equivalent

MODEL PROPOSED .

UNIT PRICE______TOTAL COST_____

LUZERNE COUNTY COMMUNITY COLLEGE

Autocollimator

Quantity: 1

Location: Laser Lab

DESCRIPTION

Autocollimator having following characteristics:

Resolution: 5 x 10 rad. (3 arc sec)

Objective: focal length 160 mm, working aperture 2 to 30 mm, focus fixed at infinity, controlled by iris diaphragm.

Ocular: linear magnification 20 x, rotation of the mirror (+/-2 deg.). field 15 mm.

Eyepiece reticule: fixed cross hairs covering the whole field, thickness of the cross hair being 10 micrometers.

Lighting: axial.

KLINGER SCIENTIFIC MODEL 115003 or EQUIVALENT

Total cost to include delivery, set up, and one day training.

Model Proposed_____

Single Item Cost_____Total Cost_____

LUZERNE COUNTY COMMUNITY COLLEGE

Optical Table with Vibration Isolation Support System

L,

Quantity: 2 of each item

Location: Laser Lab

Description:

Optical table, laminated steel type with vibration isolation support system. Unit to consist of the following:

- 1.) Table Top, laminated steel, honeycomb optical table, 4 feet x 8 feet table with 12 inches thickness, rigid and damped. Top to be terromagnetic stainless steel with 1/4 -20 tapped holes 2 inches on center. Must include laser port. EALING MODEL 37-8588 or equal
- 1.) Vibration Isolation Support for optical table with floor stand. EALING MODEL 24-5225 or equal
- 1.) Laser Shelf which mounts to the underside of the 12 inches thick table. Shelf made from laminated steel same as optical table. Measures 2 feet x 4 feet. EALING MODEL 24-5969 or equal

Total cost to include inside delivery.

Model Proposed_____

Single Item Cost______Total Cost______

120

LUZERNE COUNTY COMMUNITY COLLEGE

Optical Table with Vibration Isolation Support System

Quantity: 3 of each item Location: Laser Lab

Description:

Optical table, laminated steel type with vibration isolation support system. Unit to consist of the following:

- 1.) Table Top, laminated steel, honeycomb optical table, 4 feet x 8 feet table with 8 inches thickness, rigid and damped. Top to be ferromagnetic stainless steel with 1/4 -20 tapped holes 2 inches on center. Must include laser port. EALING MODEL 37-9230 or equal
- Vibration Isolation Support for optical table with floor stand.
 EALING MODEL 24-5225 or equal
- 1.) Laser Shelf which mounts to the underside of the 12 inches thick table. Shelf made from laminated steel same as optical +able. Measures 2 feet x 4 feet. EALING MODEL 24-5969 or equal

Total cost to include inside delivery.

 Model Proposed______

 Single Item Cost______

Total Cost______

121

35mW Helium-Neon Laser

Ł

Quantity: 1

Location: Laser Lab

Description:

35mW output power Helium-Neon Laser to have the following characteristics:

Output Power -- 35mW Wavelength -- 632.8nm Transverse mode -- TEM 00 Polarization Extinction Ratio -- 500:1 Angle of Polarization -- Horizontal +/- 5 deg. Beam Diameter at 1/e Points -- 1.25 +/- 0.10mm Beam Divergence -- 0.66 +/- 0.05mrad Beam Waist Location -- outer surface of output mirror Static Alignment: Beam Pointing Tolerance -- +/- 6mrad Beam Position Tolerance -- +/- 2.3mm Operating Stability: Beam Pointing -- < 0.2mrad Beam Position -- < 0.05mm Electrical Requirements: Voltage -- 90-130/180-260 Vac Current -- 1/0.5 A Frequency -- 50-60 Hz Spectra-Physic Model 127-35 or Equivalent

Model Proposed___________Total Cost_______

122

Multimeter, digital type, portable

QUANTITY: 5 of each item

LOCATION: Laser Lab

Item Description:

Multimeter, digital type, portable having the following characteristics:
4 1/2 digits and microprocessor based
basic dc accuracy = 0.03%
provides digital read-out of decibels referenced to any one of sixteen imped test from 8 ohms to 1200 ohms
five voltage ranges = ± 200 mV, ± 2 V, ± 20 V, ± 200 V, and ± 1000 V
resolution = 10 µV on lowest range, 0.1 V on 1000 V range
true rms from 20 Hz to 50 KHz
nine functions to include relative reference, dB, dBm, dBV, dBW (8 ohms), conductance. Diode test.

FLUKE MODEL 8050A OR EQUIVALENT

Accessories to Accompany Portable Digital Multimeter

Item Description:

I Test Lead Kit to include the following:

a black and a red insulated wire lead

- two insulated alligator clips
- two spade lug tips
- a spring loaded hook tip
- two probes with solid metal pin tips, finger guards, and pouch

FLUKE MODEL NUMBER Y8134 OR EQUIVALENT

Item Description:

١

- Soft Carrying case having the following characteristics:
 - a soft vinyl plastic container designed for the storage and transport of the Portable Digital Multimeter
 - a separate storage compartment for test leads and other accessories

FLUKE MODEL NUMBER Y8205 OR EQUIVALENT

MODEL PROPOSED_____

UNIT PRICE

TOTAL COST

123

Coaxial Cables with BNC Connectors

Quantity: 12

Location: Laser Lab

:

.

Description:

Coaxial cables with BNC connectors, 42" long

TEXTRONIX MODEL NUMBER 012-0057-01 or equivalent

MODEL PROPOSED

UNIT PRICE______TOTAL COST_____

AC TRANSFORMER

Quantity: 1

Location: Laser Lab

Description:

AC transformer which provides voltages of 2 to 12 Vac. in two volt steps. It will supply 100 watts of power at any retting. A convenient source of power for the Blackboard Optics ray projectors.

PASCO MODEL NUMBER SE 9197 or equivalent

MODEL PROPOSED_____

UNIT PRICE_____TOTAL COST_____

Blectroformed Slits

Quantity: 5

Location: Laser Lab

.#

.

.

Description:

Electroformed slits (±5 micron tolerance): a complete set of 16 slits on 4 slides

PASCO MODEL NUMBER OS-9165 or equivalent

 MODEL PROPOSED______

 UNIT PRICE_______

TOTAL COST______

1

Helium Neon Laser Mirrors

QUANTITY: (each set	4 sets includes both high reflector and output coupler mirrors)
Descriptio	۵۵: ۱
•	Helium Neon Laser mirrors. Each set consists of:
1	High reflector HeNe mirror for 633 nm wavelength and 7.75 mm diameter
	Spectra-Physics model G3801-001 or equivalent
1	Output coupler HeNe mirror for 633 nm wavelength and 7.75 mm diameter
	Spectra-Physics model G3801-002 or equivalent
MODEL PROI	POSED
UNIT PRIC	TOTAL COST

.

-

and a second second

::-

.

Complete Suction Mount Blackboard Optics System

. .

Guantity	: 1 (includes each of the following items)	Location:	Laser Lab
Descript	ion:	. <u></u> .	•
Complete	suction mount blackboard optics system to include:		
2	Ray projector		
2	Holder for projector		
2	Clamping bar, 13"		
1	Clamping bar, 15"		
1	Plano convex lens		
1	Plano concave lens		
1	Semicircular lens		
1	Rectangular block		
1	Prism, right angle		
2	Plane mirror		
1	Curved mirror, double		
1	Projector lamp, spare		
1	Cushioned storage cabinet		
1	Flint glass prism		
1	Projection screen		
1	Screen holder		
1	Grating (replica, 6000/cm)		
1	Grating holder		
1	Set of color filters		
1	Double slit		

1

.

Equilateral prism

.,

1	Planoconvex lens
1	Planoconcave lens
1	Planoconvex lens, long focus
1	Multiple-ray projector
1	Replacement lamp for above
2	13" clamping bar
	PASCO MODEL NUMBER SE 9199 or equivalent
MODEL PR	OPOSED
UNIT PRI	CETOTAL COST

•

.

100 MHz Dual Trace Oscilloscope with Counter/Timer/Multimeter

Quantity: 3	}	Location:	Laser Lab
Description:			
Vertical System			
Bandwidth(-3dB) and Rise Time:	100 MHz	and 3.5nseco	nd.
Bandwidth Limit: 20 MHz +/-10%			
Deflection Factor Accuracy: 2mV	/ to 5V/0	iv. at +/- 2	\$
Step Response Aberrations: +4%, +5%,		t p-p (5mV to t p-p (2mV/di	
Display Modes: CH1, CH2, CH2 In (500KHz)	ivert, Ad	ld, Alternate	, chop

Common-Mode Rejection Ratio: At least 10:1 at 50MHz for signals of 6 div or less

Input R and C: 1MAL, 22pF

Maximum Input Voltage: 400V (dc+ peak ac) or 800V (p-p to 10KHz)

· Channel Isolation: 100:1 at 50 MHz

Horizontal System

Time Base: 0.05 sec to 0.5 sec/div in 1-2-5 sequence. Sweep Linearity: +/- 5% over any two of center eight divisions.

Display Modes: A, Alternate (A Intensified and B delayed) and Β.

Triggering

A Trigger Sensitivity: } Internal: 10 MHz, 0.35 div External: 10 MHz, 40 mV Internal: 60 MHz, 1.2 div External: 60 MHz, 150mV Internal: 100 MHz, 1.5 div External: 100 MHz, 250 mV B Trigger Sensitivity: Internal: 10 MHz, 0.4 div 60 MHz, 1.2 div 100 MHz, 1.5 div TV Trigger Sensitivity -- TV Field: 1.0 div of composite sync. TV line: 0.35 div Trigger System Operating Modes -- Normal, p-p automatic, TV line, TV field, and single sweep.

x-y operation

Deflection Factors -- same as vertical system

Accuracy -- y-axis (+15 to +35 deg C) : +/- 2% y-axis (0 to + 50 deg C) : +/-3% x-axis (+15 to +35 deg C) : +/- 3%x-axis (0 to +50 deg C) : +/- 4%

Bandwidth -- y-axis: same as vertical system x-axis: 2.5 MHz

CRT and Display Features

CRT - 8 x 10 cm display; internal unilluminated graticule

Controls - Beam Finder, Focus, Separate A and B Sweep Intensity, Trace Rotation

Power Requirements

Line Voltage Range - 90 to 250V ac

Other Characteristics

Integrated Counter/Timer/DMM

Totalize - Over 8000000 events.

Multimeter Inputs - Isolated from oscilloscope ground.

Unit to have two 10x voltage probes; DMM leads; Reference Guide; Operator Manual; Service Manual

TEKTRONIX MODEL 2236 OR EQUIVALENT

1

Total cost to include delivery, set up, and one day training.

Model Proposed_____

Single Item Cost______Total Cost_____

LASER LABORATORY EQUIPMENT

QUAN	ITEM DESCRIPTION	EDMUND SCIENTIFIC Model Number <u>or Equivalent</u>	MODEL PROPOSED	UNIT Price	TOTAL <u>Price</u>
10	Linear polarizers, 7" X 24", cut from 2 sheets	P70888			
5	Lab jacks, 6" x 6"	P36283			
5	Optical benches, triangular, one meter	P83008			
15	Carriers, triangular base, 60 mm width	P60796			
5	Helium spectrum tube, 10 cms long	P60907			
5	Neon spectrum tube, 10 cms long	P60910			
5	Spectrum tube power supply, 5000v, 7mA max. transformers	P71559			
5	Mercury Vapor spectrum tube, 10 cms long	P60908			
5	Student English micro- meter, 0.025 nm resolutio	P60666 n			
5	Beam expanders, 52 mm diameter	P94757			
5	Linear translators, calibrated, 25 mm travel	P33489			
5	Fiber optic probe, 1/16" aperture diameter	Г40640			
5	Magnifier, 12X, diameter 0.545", field of view $\frac{1}{2}$ ", AR coated lens system, $1\frac{1}{4}$ " height	P30055			
5	Carbon Dioxide spectrum tube, 10 cms in length	P60914			
		-1-			

.

133

QUAN	EI ITEM DESCRIPTION	DMUND SCIENTIFIC MODEL NUMBER OR EQUIVALENT	MODEL PROPOSED	UNIT PRICE	TOTAL PRICE
5	60° equilateral prism, face size 32 mm, length 28 mß	P31053			
5	Broadband interference filters, 650 nm wavelength 3/4" x 3/4" size				
5	Broadband interference filters, 600 nm wavelength 3/4" x 3/4" size	P30715			
5	Broadband interference filters, 671 nm wavelength, 3/4" x 3/4" size	P30886			
5	Broadband interference filters, 405 nm wavelength, 3/4" x 3/4" size	F30704			
5	Broadband interference filters, 450 nm wavelength, 3/4" x 3/4" size	P30706			
5	Broadband interference filters, 505 nm wavelength, 3/4" x 3/4" size	P30755			
5	Broadband interference filters, 550 nm wavelength, 3/4" x 3/4" size	P30845			
6	Neutral density filters ¹ / ₂ " x 1", optical density at 500 nm being 2.0	P30893			
1	Microscopic slides package, 1" x 3" quantity - 72	P40001			
1	Package of 500 sheets of lens tissue 7 3/4" x 3 1/4"	P60375			
6	Positive lens, 12 mm diameter, 18 mm F.L.	P32013			
6	Converging lens, 26 mm diameter, 5 cms F.L.	P94274			

.

,

.

QUAN	ITEM DESCRIPTION	EDMUND SCIENTIFIC MODEL NUMBER OR EQUIVALENT	MODEL PROPOSED	UNIT PRICE	TOTAL Price
6	Hemostats, made of stainless steel	P40571			
6	First surface mirrors, 8.2 cms diameter	P31003			•
б	Diverging lens, 19 mm diameter, 18 mm F.L.	P32206			
12	Converging lens, 18 mm F.L., 12 mm diameter	P32006			
6	Prism, chromatic dispersion 25 mm face size	P31801			
6	Concave mirror, 25 mm F.L., 25 mm diameter	P42967			
6	Convex mirror, 62 mm F.L., 26 mm diameter	P42974			
6	Diverging lens, 2-4 cms F.L.	P95458			
12	Plate, glass 1/8" x 3" square	P31035			
6	Plano-convex lens, uncoated, 18 mm diameter, 36.0 mm effective F.L.	P32000			
6	Plano-convex lens, AR coated, 18.0 mm diameter, 36.0 mm focal length	P31857			
4	Variable-speed electric motor w/rotary disk that has six evenly-spaced cut in it. Motor 7000rpm, 24v				
6	Second surface mirrors	P32230			
ΰ	Mirrors, partially- reflective dielectric	P41960			

.

QUAN	ITEM Description	DMUND SCIENTIFIC MODEL NUMBER OR EQUIVALENT	MODEL PROPOSED	UNIT PRICE	TOTAL PRICE
6	Right angle prism, Aluminized	P40995			
6	Amici roof prism	F3002			
6	Dove prism	P31055			•
6	Converging lens, 6" F.L. 2" diameter	P94127 v			
6	Plano-convex lens, 38 mm F.L., 30 mm diamete	P94832 L			
6	Plano-convex lens, 25 mm F.L., 25 mm diamete	P32001 r			
6	Lens, diameter 38 mm, F.L. 49 mm	P96013			
6	Biconvex lens, 38 mm F.L.	P94800			
6	Biconvex lens, 10 mm F.L. 12 mm diameter	, P32014			
6	Biconcave lens, 30 mm F.I 12 mm diameter	. P31835			
6	Wedge prism	P30265			
2 sheets	Polaroid H-type	P71942			
6	Lens, 10 cm F.L.	P94931			
5	Hydrogen spectrum tube, 10 cms in length	P60906			
	IT THE ITEMS - ROMUND SCI	ENTIFIC MODELS AS	LISTED ABOVE (DR EQUIVALENT	

ALL THE ITEMS - EDMUND SCIENTIFIC MODELS AS LISTED ABOVE OR EQUIVAL

.

-4-

4

136

.

۱

*

LASER LABORATORY EQUIPMENT

QUAN	ITEM DESCRIPTION	RODHEAD-GARRETT MODEL NUMBER OR EQUIVALENT	MODEL PROPOSED	UNIT PRICE	TOTAL Price
12	Non-skid flexible stainless steel rulers (12" long)	246528			•
6	Meter stick	328317			
12	Semi-circular protractor	1 3 2 0 9 1			
6	30°/60° 12" triangles	Model S-390 131848			
6	45°/90° 10" triangles	Model S-450 131881			
6	Pencil compass	Model 842 237367			
l package	8½" x 11" Translucent tracing paper (500 sheets/package)	224307			

.

LASER LAB EQUIPMENT

QUAN	ITEM DESCRIPTION	EALING MODEL NUMBER OR EQUIVALENT	MODEL PROPOSED	UNIT PRICE	toțal P rice
5	Lens holders, 50 mm sliding grip lens holder	228106			
6	Rotary tables, graduated in degrees	227918			
10	Mirror mounts with X-Y adjusting screws	356436			
2	Optical flat - $\lambda/10$ flatness, 127 mm diameter	358846			
5	Filter mount; holds 50.8 x 50.8 mm filters upto 6 mm total thickness	22-8650			
2	Reticle; glass 1 cm in 0.1 mm divisions	11-8505			
4	Twin-lamp light source (has a 4v low pressure mercury vapor lamp and a 6v, 0.3A incandescent l	25-8723 amp)			
<i>!</i> 4	Power supply for twin- lamp light source, 115/230v. Has separate controls for mercury and white light sources	25-9036			
2	Kodak Wratten Gel neutral-density filters (set consisting of 13 filters with neutral dens 0.1 to 4.0)	35-1676 ity			
2	Standard bandpass filters for HeNe lasers, center 632.8 nm (λ), filter size 25.4 mm	35-3904			

.

- Student measuring 11-2771
 microscope, 100 mm
 total travel, 100 mm
 calibrated scale reads
 to 0.1 mm, usable in six
 positions
- Spectral Lamphouse 27-1254
 (cmits light through a 19 mm diameter aperture centered on the bright portion of the spectral lamp arc which is 6.6" above the base)

ł

- Spectral lamp power 26-2683 supply (a current selector switch provides ten, almost equal, steps from 0.7 to 1.6 amperes)
- 1 Sodium spectral lamp, 26-2808 operating current 0.9A, power 14 W, arc length 19 mm
- 2 Quarter-wave retarders 34-5835 for 632.8 nm wavelength, 25.4 mm diameter, 14.55 mm clear aperture, 8 mm thickness
- Microscopic objective, 24-9730 10 x. achromatic, dry, 14.6 mm effective focal length
- 1 .licroscopic objective, 24-9797
 20 x, achromatic, dry,
 8.4 mm effective focal
 length
- 5 Utility pinhole set (a 22-6506 set of twenty utility pinholes), each hole is centered in a 3 mm disc of unmounted nickel shim stock 40 microns thick
- 5 Standard bandpass filter 35-3631 for 532.0 nm wavelength, filter size 50.8 mm x 50.8 mm

139.

-7-

- 5 Standard bandpass filter 35-4928 for 1060 nm wavelength, filter size 25.4 mm
- 20 Broad spectrum goggles 25-5570 for protection against Neodymium, Gallium, Arsenide, Ruby and ultra violet lasers
- 5 Utility Iris diaphragms, 22-3875 made of blued spring steel, maximum aperture 8 mm and minimum aperture 1 mm, outside diameter 16 mm
- 1 Universal interferometer 25-9093 which includes Universal interfermoter base, Michelson optics, Fabry-Perot optics, • And Twyman-Green optics

ALL THE ITEMS EALING ELECTRO-OPTICS MODELS AS LISTED ABOVE OR EQUIVALENT

1

LASER LAB EQUIPMENT

QUAN	NI I TEM Description	EWPORT CORPORATION MODEL NUMBER OR EQUIVALENT	MODEL PROPOSED	UNIT P RICE	TOTAL PRICE
5	Beam steering device having exit aperture height 2.5 - 9.75", entrance-exit beam Spacing 1.25 - 7.25", angular range 3° both at mirror reflectivety ≥ 9 each, and angular sensi 5 arc-second	3%			
5	Plate glass holder. holds objects up to 7.75 inches tall at any height from 0.4 to 3.2"	PH-1			
5	Stainless steel film plate holder, holds two 4" x 5" film plates up to 0.25" thick	540			
5	Base plate	BP-3			
5	Support post, 8" in length, stainless steel precision ground 0.5" post	SP-8			
5	Post clamp, holds two posts at an arbitrary angle with respect to each other,	CA-2			

ALL THE ITEMS NEWPORT CORPORATION MODELS AS LISTED ABOVE OR EQUIVALENT

• BEST COPY AVAILABLE

-

LASER LAB EQUIPMENT

QUAN	ITEM DESCRIPTION	MODEL PROPOSED	UNIT PRICE	TOTAL PRICE
S sets	Six each blue, green, red gelatin or plastic color filters, 2"x 2"			
Ē,	Bea m blocks, 8" high, 2" x 4" wooden board with base, painted blac	:k		
12	Bott les with medicine droppers, 30-ml capacit	.y		
6	Glass block, 4" cube			
5	Alignment table with 3 adjusting screws, 2" x out approximately 18" 1 Drill and tap holes; 2 front corners, 1 in cer back, x-tra fine thread 1/2" x 28" threads per 3" long or fine, 1/2" x threads per inch, 3" lo	long. in hter i inch, < 20"		
5	L as er tube holders, vee support	2		
500 grams	Methanol			
5 0	33 Kohms, 2 Watt resis	tors		
5	Brewster window Helium laser tubes, output pow 1.4 mW, wavelength 633 TEM mode, minimum polarization ratio 500	aver nın	142	•

SPECIAL CONSIDERATIONS FOR LASER LAB - ADVANCED TECH BUILDING

A. Space and Construction

- 1. The total space which is currently allotted for the lab should be adequate (lab 2,595 sq. ft., storage 375 sq. ft). No further space requirements are anticipated.
- 2. However, in view of the contemplated high-energy laser, a separate room within this area should be provided to house it. The room should be approximately square in shape and have at least 300 sq. ft. of floor area. The offset area in the presently planned lab space should lend itself nicely for this purpose (see attached diagram). Walls for this room need not be constructed of any special material (cinder block was recommended), but should be windowless and surfaced on the inside with a non-reflective, non-flammable material.
- 3. It is estimated that the outer, main lab will have space for about four work areas. Each of these work areas should have sufficient floor strength to support a four by eight foot (4' x 8') optical bench weighing in excess of one ton and having pneumatically-damped legs. These tables should be placed around the inner perimeter of the main lab area, with enough space provided for curtain-type laser barriers to be installed around them. An additional optical bench will be necessary for the inner, high-energy room (see diagram).
- B. Power

Power requirement for the inner (high-energy) laser room is 220 volt. 3 phase, 20 amp., along with conventional 120 volt, 20 amp. outlets. Power for the remainder of the laser lab area can be provided by conventional 120 volt, 20 amp. outlets.

C. Water

Conventional water supply lines are acceptable, but water should be provided at all work stations.

D. Air

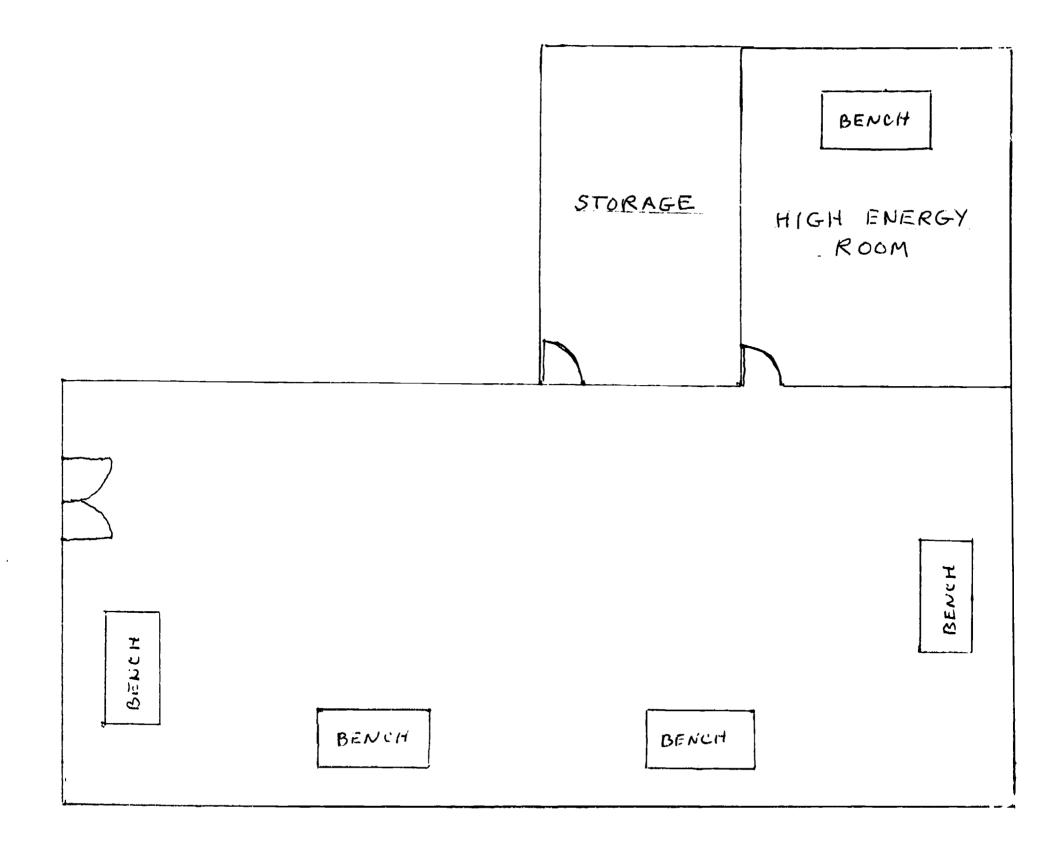
Compressed air (100 p.s.i.) should be provided at all work stations to service the pneumatic damping legs of optical benches.

E. Safety

1. The entrance door to the high-energy room should be fitted with a nondefeatable interlock system which will cut power to the laser upon opening the door.

A similar interlock system should be provided for the entrance door to the main laser lab which will cut power to any class III lasers that may be operating within.

- 2. All work areas should be fitted with panic buttons inside and outside the barriers, with key-operated reset for all buttons.
- 3. While it is not anticipated that the vaporization of materials induced by normal laser activity will generate toxic fumes to any great extent, it is recommended that normal exhaust venting be provided in all areas should this problem develop.


F. Equipment

With the exception of the high-energy laser, all other lasers and ancillary test equipment are not expected to pose any special problems involving lab construction. Most of these devices are extremely light, portable pieces of equipment with modest power requirements which generate a safety concern only when they are improperly handled while in use.

KAL/eb

2/9/87

BEST COPY AVAILABLE

LASER LAB

USE OF THE LASER LAB FOR TECHNICAL PHYSICS

It may be feasible to use a laser laboratory for courses in Technical Physics. In addition to the optics equipment already in place, the following items are also part of a laser lab and would not have to be ordered separately:

oscilloscopes clip leads resistors(33 K ohms, 2 watt) power supply Balmer tube timers compass pressure gauge/manometer AC wattmeter DC milliammeter digital voltmeter DC power supply(5 volt DC) 115 Volt power supply function generators

However, while such multi-purpose use is feasible from a facilities point-of-view, it might not be cost effective unless there are no other alternatives, bocause there is still approximately \$68,000 in additional equipment and supplies that would have to be purchased to offer technical physics courses. That cost is arrived at by calculating the minimum required for a class of 24 students.

Another point to consider is the amount of space available for storing the additional equipment and supplies--at least 300 square feet would be needed, with appropriate shelving and cabinets.

A final point is the use of optical tables for experiments in mechanics and thermodynamics. Precautions will have to be taken to insure that the additional hookups required will not damage the vibration free characteristics of the laser/optics tables. An alternative would be to use separate benches, which might not be feasible, if space permits.

A final recommendation would be to use the laser lab just for the optics portion of the technical physics courses, and use other labs for the remaining experiments.

147