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Abstract

Commonality analysis is used in educational and social science

research to partition the variance of a dependent variable into its

constituent predicted parts. Commonality analysis determines the

proportion of explained variance that is unique to a predictor

variable and the proportion that is common to two or more

predictors. Whereas the ordering of the predictors using stepwise

regression may lead to faulty interpretation of the data,

commonality analysis is a method by which all possible predictor

combinations are tested to determine the model that best explains

predicted wriance. Data from a study of life satisfaction among

nursing homn residents are used to illustrate the procedures for

conducting commonality analysis with regression results. In

addition, a SAS computer program procedure for obtaining all

possible R2 values is discussed as an efficient method of

implementing the required analyses. Four tables of data are

presented.



Partitioning Predicted Variance into Constituent Parts:

How to Conduct Commonality Analysis

Multiple regression analysis continues to be used more

frequently by educational and social researchers as a means of

describing the relationship among a given set of independent

variables and in predicting the impact of these same variables on

a dependent variable (Elmore & Woehlke, 1988; Goodwin & Goodwin,

1985; Willson, 1982). It is often difficult to determine the "true"

effects of the independent variables upon the dependent variables.

More often than not, these independent variables are correlated,

even substantially, and this increases the complexity of sifting

through the data for accurate explanations of obtained results

(Pedhazur, 1982).

To better understand the relative contribution of each

independent variable, researchers may choose among a number of

variance partitioning methods by which the squared multiple

correlation (R2) can be reduced into constituent portions that can

be attributed to the independent variables. Among these mrthods,

commonality analysis offers a useful method of partitioning

variance because it does not depend upon a_priori knowledge of the

influence of the predictors. According to Cooley and Lohnes (1976),

"such neutrality allows the information inherent in the data about

the value of organizing observations in a certain framework (that

of the domains of predictors) to emerge" (p. 219). Because

commonality analysis views all possible orders of entry of the
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predictors into the model, there is no distortion of the results

that may occur with stepwise regression analysis (Snyder, 1991),

and essentially the predictors fall where they may. In support of

this stance, Thompson, Smith, Miller, and Thomson (1991) contend

that conventional stepwise regression analysis can lead to

erroneous interpretations due to inflated Type I errors, the

variables selected after k steps may not include all or even any of

the variables in the best predictor set of size k, and the order of

entry provides limited information regarding variable importance.

Seibold and McPhee (1979) explain that commonality analysis

decomposes the squared multiple correlation into the proportion of

the explained variance of the dependent variable associated with

each independent variable and with the common effects of each. They

also state that this decomposition of R2 into its unique and common

components is rarely conducted and argue that:

Advancement of theory and the useful application of

research findings depend not only on establishing

that a relationship exists among predictors and the

criterion, but also upon determining the extent to

which those independent variables, singly and in all

possible combinations, share variance with the

dependent variable. Only then can we fully know the

relative importance of independent variables with

regard to the dependent variable in question. (p.

355)

The purpose of the present paper is not to argue the utility
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of commonality analysis as against other methods of analysis, since

others have already presented these arguments (Cooley & Lohnes,

1976; Creager, 1971; Daniel, 1989; Mood, 1969; Seibold & McPhee,

1979; Thompson, 1985; Wisler, 1972). Instead, the paper explains

how commonality analysis can be conducted using a specific SAS

procedure and some simple computations. To make this discussion

concrete, data involving life satisfaction among elderly nursing

home residents are used for heuristic purposes.

Defining the Components of Commonality Analysis

The unique contribution of an independent variable can be

specifically defined as the squared semipartial correlation between

the dependent variable and the selected independent variable after

all other independent variable components have been partialed out

(Wisler, 1972). As an example, suppose that in a model with two

independent variables, we are given U(1) and U(2) as the unique

contribution of variables 1 and 2 respectively, R2y.12 as the

squared multiple correlation of Y with variables 1 and 2, R2y.1 as

the squared correlation of Y with variable 1, and R2y.2 as the

squared correlation of Y with variable 2. The unique contributions

of variables 1 and 2 are:

U(1) = R2Y.12 R2Y.2

U(2) = R2Y.12 R2Y.1

The commonality of variable 1 and 2, i.e., the proportion of

variance in Y predictable using either variable : or variable 2,

can be written:

C(12) = R2 - U(1) - U(2)
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As a result, three variance components can be derived from the R2

of the model, namely U(1), U(2), and C(12).

In general, the number of possible combinations of unique and

commonality components is determined by 2P - 1 where E is the

number of independent variables examined in the model. Sirwe P

independent factors are considered, the number of unique components

equals E as well. The number of commonality components can then be

derived as the difference between the total number of components

and the number of unique components, or (2P - 1) - E.

Since the number of possible unique and commonality components

is exponentially determined, five or more independent variables of

interest will render the analysis extremely burdensome. For

example, with five variables, the total possible components are 25

- 1 = 31, with 5 being unique components and 26 being commonality

components. Thus, the number of components or variance partitions

increases very rapidly as additional predictors are considered.

The rules for calculating the uniqus and commonality

components are fairly straightforward algebraic product expansions

of the independent variables; however, as the number of independent

variables increases, the complexity of the respective component

calculations also increases. Table 1 presents the necessary

formulas far 2-, 3-, and 4-variable models. As illustrated in this

table, deriving all required unique and commonality component

values is somewhat tedious since all possible R2 combinations are

necessary for these calculations. For a more detailed explanation

of the required calculations and their derivations, the reader can
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consult Mood (1969), Pedhazur (1982), or Wisler (1972). In

addition, Seibold and McPhee (1979) offer the formulas for a

5-variable model.

Insert Table 1 about here.

When five or more independent variables are involved in the

model, some have recommended alternative grouping of these

variables into meaningful subsets through such methods as cluster

analysis, factor analysis, or theoretical constructs (Mood, 1969;

Seibold &McPhee, 1979; Wisler, 1972). One inherent problem however

is that the primary reason for conducting commonality analysis is

to make some sense of intercorrelated variables and to maintain

neutrality in determining the most meaningful predictors. High

intercorrelations may render grouping of these data into meaningful

subsets impossible. An alternate solution, which was used in this

study, is to limit the number of independent variables to four by

initially selecting the best predictors through a series of

preliminary analyses.

Commonality analysis requires every possible R2 value for all

variable combinations. SAS provides a useful program (PROC RSQUARE)

that will print out in ascending order the R2 values of all

possible combinations of the independent variables in the model.

This SAS rrnitine makes commonality analysis much simpler, since the

calculation of the required R2 values is fully automated. Appendix

A presents the SAS file used to execute the analysis for the

present example.
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The R2's obtained from PROC RSQUARE are then subjected to the

appropriate arithmetic computations suggested in Table 1. These can

be rapidly done using a microcomputer spreadsheet program.

Next, once the variance components have been determined, the

results can be placed in tabular summary that is easy to interpret

and allows for a quick check of arithmetic (Pedhazur, 1982). Row

entries are the specific unique and commonality effects of each

independent variable. The column totals of each independent

variable will equal to the R2 of the regression model in which that

independent variable is the only variable entered into the model.

Another check is that the sum of all unique and commonality values

should equal the R2 value of the regression model when all the

independent variables are entered into the model.

An_Application of Commonality Analysis

Data from a previous study involving the life satisfaction of

nursing home residents can be employed to illustrate the steps in

the process. In this study, 198 elderly nursing home residents in

17 Texas nursing homes completed a life satisfaction questionnaire

to determine if their self-report of life satisfaction differed

from that of the elderly living outside of nursing homes. In

addition, eight subscale components and the number of years of stay

in the nursing home were analyzed by regression to determine which

of the variables best predicted nursing home satisfaction.

For purposes of discussion only, and not as part of the

commonality analysis, a stepwise regression analysis was computed.

Using a .15 level of significance for entry into the model, a
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forward stepwise regression analysis was conducted. These results

are presented in Table 2. Only three of the nine independent

variables were entered into the model used to predict

satisfaction--past and present life having meaning (beta = .3407),

need for social contact (beta = -.0389), and Years in the nursing

home (beta = .0250).

Insert Table 2 about here.

One's feeling that his or her life has been and continues to

be meaningful was the best predictor of nursing home satisfaction.

Additionally, the results suggest that the less one needs social

contact and the longer one stays in the nursing home, the better is

adjustment. The problem however is that this implies that these

factors cannot be influenced by mental health interventions.

Because of the high degree of correlation between the predictor

variables, commonality analysis can be used to determine the unique

and common components of these variables so that a more accurate

explanation of satisfaction derivatives can be obtained.

The first step was to determine from the SAS printout of R2

values which four variables best accounted for variance in the

dependent measure of satisfaction. Inspection of these values

revealed that the variable, planning for new goals, adds more to

the model than do the remaining variables (R2 increased .0032 while

all others added only .0010 or less). This gives four independent

variables of interest--meaning, need for social contact, years of

stay in the nursing home, and planning for new goals. In this
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particular sample, meaning, social, and years were also the

predictors selected by the stepwise procedure; however, this may

not necessarily be the case for other studies. That is, stepwise

results can be more anamolous than they were in the present study.

With these variables now having been selected, the second step

is to obtain the 15 equations necessary for computing the unique

and commonality components of a 4-variable model. These are

obtained from Table 1.

The third step is to then extract all R2 values from the SAS

printout (Appendix A) and substitute these accordingly into the 15

equations. The computations can then be conducted using a standard

calculator or computer routine. For example:

Ul (meaning) = -R2(234) + R2(1234)

= -.13534 + .54451

= .40917

Therefore the unique contribution of the variable, meaning, to the

proportion of total dependent variable variance explained is

.40917, or approximately 41%. Also, as an example, the commonality

between years (1) and meaning (2) is calculated as:

C14 = -R2(23) + R2(123) + R2(234) - R2(1234)

= -.11929 + .13534 + .54022 - .54451

= .01176

Therefore, the common variance of the model shared by meaning and

years is .01176, or approximately 1.2%.

The fourth step is to arrange these obtained values into a

commonality analysis table, like the one presented in Table 3. Once
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in tabular form, the previously mentioned arithmetic checks can be

performed. For instance, summing down column 4 (meaning) results in

an value of .52985, which is the R2 value for the regression model

when only the variable, meaning, is entered. Additionally, the sum

of all 15 unique and commonality components equals .54451, which is

the R2 value for the regression model when all four independent

variables have been entered into the model.

Insert Table 3 about here.

Discussion

The commonality summary table presented in Table 3 indicates

that the unique predicted variance contribution of the predictor,

meaning, is approximately 41% (.40917) and its total commonality

variance with one or more of the other predictors is approximately

12% (.12068). In this particular example, the variable, meaning, is

the dominant factor in predicting nursing home satisfaction and

alone accounts for about 80% of all explained variance in the

sample. The other variables offer little unique contribution to

the variance. In fact, the other variables (goals, social, and

years) have greater commonality components than their respective

unique components. Because meaning, social, and years are factors

which are based on life experience, and are not "mutable"

conditions of the nursing home environment, providing new

meaningful goals for nursing home residents would not significantly

enhance their life satisfaction, according to the results of this

commonality analysis.
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It should be noted that some instances negative commlnalities

may occur, as in this particular example with C12 and C134, as

reported in Table 3. As Thompson (1985) explains, this resule can

be "counterintuitive since the result could be taken to mean that

predictor variables have in common the ability to explain less

than 0% of the variance" (p. 54). But the presence of negative

commonalities is typinally attributable to suppressor effects and

is more likely to occur with higher order partitions, as in this

case (Beaton, 1973; Creager, 1971; DeVito, 1976).

Commonality analysis is but one method of partitioning

variance in regression analysis of educational and social models.

It offers a fairly straightforward method of analysis when no more

than four independent variables are of interest, and vith the

assistance of the SAS PROC RSQUARE routine, the most difficult

aspect of commonality analysis can be greatly simplified. As such,

commonality analysis can be readily employed in research. This

analysis can be very useful as a supplement to conventional

regression analysis.
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Table 1
Formulas for Unique and Commonality Components of Variance

Two Independent Variables

Ul
U2
C12

= -112(2)
= -R2(1)

R2(1)

+ R2(12)
+ R2(12)
4. R2(2) R2(12)

Three Independent Variables

Ul = -R2(23) + R2(123)
U2 = -112(13) + R2(123)
U3 = -R2(12) + R2(123)
C12 = -111(3) + R2(13) + R2(23) - R2 (123)
C13 = -R2(2) + R2(12) + R2(23) - R2(123)
C23 = -R2 (1) + R2(12) + R2(13) R2 (123)
C123 = R2(1) + R2(2) + R2(3) - R2(12) - R2 (13) - R2 (23)

+ R2(123)

Four Independent Variables

Ul = -R2(234) + R2(1234)
U2 = -R2(134) + R2(1234)
U3 = -R2(124) + R2(1234)
U4 = -R2(123) + R2(1234)
C12 = -R`(34) + R2(134) + R2(234) - R2(1234)
C13 = -R2(24) + R2(124) + R2(234) - R2(1234)
C14 = -R2(23) + R2(123) + R2(234) - R2(1234)
C23 = -R2(14) + R2(124) + R2(134) - R2(1234)
C24 = -R2(13) + R2(123) + R2(134) - R2(1234)
C34 = -112(12) + R2(123) + R2(124) - R2(1234)

C123 = -R2(4) 4. R2(14) 4. R2(24) 4. R2(34) R2 (124) - R2(134)
- R2(234) + R2(1234)

C124 = -112(3) + R2(13) + R2(23) + R2(34) - R2(123) - R2(134)
- R2(234) + R2(1234)

C134 = - R2(2) + R2(12) + R2(23) + R2(24) - R2(123) - R2 (124)
- R2(234) + R2(1234)

C234 = -R2(1) + R2(12) + R2(13) + R2(14) - R2(123) - R2 (124)
- R2(134) + R2(1234)

C1234 R2/i) 4. R2(.2) 4. R2(3) 4. R2(4) _ x-2 (12) - R2(13)
- R (14) - R 2 (23) - R2(24) - R2(34) + R2(123) + R2 (124)
+ R2(134) + 11(234) - R2(1234)
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STEP 1 VARIABLE MEANING ENTERED

REGRESSION
ERROR
TOTAL

INTERCEPT
MEANING

DF

1

196
197

B VALUE

-0.46113731
0.32772707

BOUNDS ON CONDITION NUMBER:

Table 2
STEPWISE REG OF LIFE SAT SUBSCALES TO NH_SAT

LEVEL OF SIGNIFICANCE = .15 FOR ENTRY

STEPWISE REGRESSION PROCEDURE FOR DEPENDENT VARIABLE NH SAT

R SQUARE = 0.52985330 C(P) =

SUM OF SQUARES

241.21705263
214.03547262
455.25252525

STD ERROR

0.02205074

1,

STEP 2

REGRESSION
ERROR
TOTAL

INTERCEPT
MEANING
SOCIAL

BOUNDS ON

VARIABLE SOCIAL ENTERED

DF

2

195
197

B VALUE

-0.03327342
0.34250707

-0.03775607

CONDITION NUMBER:

1

MEAN SQUARE

241.21705263
1.09201772

TYPE II SS

241.21705263

5.20979602

PROB>F

220.89 0.0001

PROB>F

220.89 0.0001

R SQUARE = 0.53612074

SUM OF SQUARES

244.07032233
211.18220292
455.25252525

STD ERROR

0.02377241
0.02326091

1.171945, 4.68778

17

C(P) =

MEAN SQUARE

122.03516116
1.08298566

TYPE II SS

224.80978765
2.85326970

4.55416484

PROB>F

112.68 0.0001

207.58
2.63

PROB>F

0.0001
0.1062
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(Table 2 cont.)

STEP 3 VARIABLE YEARS ENTERED R SQUARE = 0.54129874 C(P) = 4.36015322

DF SUM OF SQUARES MEAN SQUARE F PROB>F

REGRESSION 3 246.42761762 82.14253921

ERROR 194 208.82490763 1.07641705

TOTAL 197 455.25252525

B VALUE STD ERROR TYPE II SS

INTERCEPT -0.08562938
MEANING 0.34075652 0.02372971 221.96469121

SOCIAL -0.03891501 0.02320348 3.02766996

YEARS 0.02498929 0.01688641 2.35729529

BOUNDS ON CONDITION NUMBER: 1.174865, 10.06175

76.31 0.0001

F PROB>F

206.21 0.0001
2.81 0.0951
2.19 0,1405

15
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Table 3
Commonality Analysis Summary Table

Component
1

Years
2

Social
3

Goals
4

Meaning

Ul .00429

172 .00587

U3 .00321

U4 .40917

C12 -.00041 -.00041

C13 .00089 .00089

C14 .01176 .01176

C23 .00078 .00078

C24 .00759 .00759

C34 .07840 .07840

C123 .00003 .00003 .00003

C124 .00274 .00274 .00274

C134 -.00552 -.00552 -.00552

C234 .02546 .02546 .02546

C1234 .00025 .00025 .00025 .00025

Total .01403 .04231 .10350 .52985

.00429 .00587 .00321 .40917

.00974 .03644 .10029 .12068

16
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APPENDIX A

RSQUARES OF LIFE SAT SCALES TO NH_SAT

N=198
MODEL: MODEL1

NUMBER IN
MODEL

1

1

1
1

REGRESSION MODELS FOR DEPENDENT VARIABLE:

R-SQUARE VARIABLES IN MODEL

0.01403466 YEARS
0.04230736 SOCIAL
0.10350445 GOALS
0.52985330 MEANING

NH SAT

2 0.05373485 YEARS SOCIAL
2 0.11929491 GOALS SOCIAL
2 0.12188332 GOALS YEARS
2 0.53464821 MEANING YEARS
2 0.53475748 MEANING GOALS
2 0.53612074 MEANING SOCIAL

3 0.13533964 GOALS YEARS SOCIAL
3 0.53864125 MEANING GOALS YEARS
3 0.54021848 MEANING GOALS SOCIAL
3 0.54129874 MEANING YEARS SOCIAL

4 0.54450878 MEANING GOALS YEARS SOCIAL
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