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Abstract

Structural equation modeling has become increasingly popular as a

technique for the analysis of non-experimental data in the social

sciences. This increase can be traced in part to aw development of

computer programs which facilitate structural equation modeling. The

LISREL (Linear Structural Relations) program is the most widely used

tool for implementing struc'ural equation models. LISREL is applicable

across a wide range of study, but is most useful in analyzing social

science data. This paper examines some of the characteristics of the

LISREL program. The general LISREL model is explained along with

methods for establishing the identification and goodness-of-fit of the

overall model and its individual parameters.
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Sone Notes on the Use of LISREL

The linear structural relations (LISREL) computer program is a

powerful tool for the analysis data according to specific, theory-driven

models which can be represented by a system of structural equations,.

LISREL allows for the analysis of many different standard and non-

standard models including factor analysis, regression analysis,

recursive and non-recursive path analysis, and many others. The program

also allows for the comparison of these models across sample populations

(Joreskog & Sorbam, 1985). LISREL, therefore, can be of great use to

researchers Who need a way in which to test theoretical relationships

among variables in a concise manner. LISREL is particularly useful in

the Social Sciences and has been used in studies ranging from

psychopharmacology, child development, geroncology, sociology, health

behavior, and psychology (Agren et al., 1986; Anderson, 1987; Bentler,

1987; Crano, 1987; Liang et al., 1987; Rothman, 1983; Volkan, 1987).

The purpose of this paper is to provide a guide to the use of and

interpretation of LISREL methodology.

The LISREL VI program compares the fit of a model to the data by

the use of maximum likelihood analysis of struLJtural equations with

latent variables. This method allows a simultaneous comparison of the

fit of both the structural and the measurement components of the model.

This method of analysis uses only the factorally validated portion of

the observed variables to estimate the stru-Aural components of a model

and is therefore more precise than standard regression procedures. This

method also allows for comparisons between a number of models which all

may appear theoretically valid (Bentler, 1980). Therefore, even though

a general model under analysis is assumed to be confirmatory, the

4
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configuration of components within the general framework may be tested

against each other in an exploratory fashion. Lomax (1982) stated that

the major goal of LISREL -type structural equation nodeling is

confirmatory, in the sense of substantiating some theory, and

exploratory, in the sense of making finer theoretical distinctions than

were initially hypothesized" (p. 4). This use of the LISREL program

corresponds to Joreskog's view that LISREL is both exploratory and

confirmatory (Joreskog, 1978).

The LISREL program also allows for the specification of error

variance and the correlation of error variance. The addition of

correlated measurement errors in a model can sometimes be meaningfully

interpreted and can often allow the researcher to achieve a better fit

of the model to the observed data. This procedure of getting a better

fit of the model through the use of error variance corresponds to the

derivative analysis suggested by Lomax (1982). The derivative analysis

can he done during the preliminary testing of the measurement components

of the model. The derivative analysis allows for measurement errors to

be correlated as long as the correlated error terms make theoretical

sense and their addition gives a significant increase in the Chi square

difference between models.

The LISREL program follows conventional path analysis terminology.

Variables within squares represent measured or observed variables and

the circled variables represent the latent variables of the model. The

latent X variables are notated as KSI and the latent Y variable is

notated as ETA. The arrows drawn fran both the KSI and ETA variables to

the observed X and Y variables indicate that it is the factor loadings

whicl are used to estimate the, correlation matrix among the observed

variables. Each of these arrows in the model represents the factor

5
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loading of an observed variable and the factor fiam which the variable

is drawn awl is notated as LAMBDA (LAM)Ax for X variables and LAMBDW

for Y variables). One of the LAMBDA coefficients is usually set to 1.00

for each latent variable in the model. Therefore, in a two factor

model, there are two LAMBDA coefficients set to 1.00. These

coefficients are set to 1.00 following Joreskog's (1978), and Joreskog

and Sorbam's suggestion (1985) that the largest hypothesized factor

loadings be used to set the metric of the factor loadings.

The KSI variables can either be defired as independent or

dependent. Dependent KSI variables are notated with a correlation arrow

between these variables. The GAMMA coefficients relate the KSI

variable(s) to the ETA variable and represent the structural component

of the model. The ETA variable is the latent Y variable and the arrows

from it to the observed Y variables represent the LAMBDA factor

loadings, which are interpreted like the factor loadings for the X

variables. The DELTA coefficients represent the error variances and

covariances for the X variables, and the correlations among the DELTA

terms are represented by the THETA DELTA matrix. Likewise, the EPSILON

coefficients represent the error variances and covariances of the Y

variables, and the correlations among them are represented by the THETA

EPSILON matrix. The ZETA coefficient represents the error in the

structural equation and is sometimes called the disturbance term.

Identification of the Model

In LISREL it is necessary to establish the identification of the

models according to methods suggested by Joreskog and Sorbom (1985),

Joreskog (1978) and Lomax (1982). Without identification of the model

it is not possible to tell whether or not the model is indeterminant.
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An indeterminant model is one in which any nanber of alternative

estimates are acceptable as paraneter values (Long, 1983). There arc

three conditions which are used to establish identification of a model.

The first two conditions are relatively easy to ascertain and involve

the constraint of model parameters. The third condition is the most

difficult to establish. This method for checking identification using

another more caiplicated method alsu suggested by Joreskog and Sorban

(1985).

The first condition for identification is called the order
condition. This condition is a necessary, but not a sufficient
condition for identification of a model. In other words, even if the

order condition is fulfilled, the model still may not mept sufficient

conditions for identification. A model is said to fulfill the order

condition if the nurnber of parameters estimated in the model is less or

equal to the nanber of equations in the model. This relationship can be

expressed in the algebraic form:

t < q(q + 1)/2

where t is the nurnber of parameters to be estimated and q is the nurnber

of equations in the model (Long, 1983, p. 42; Joreskog & Sorban, 1985,

p. 1.22). The exanple model considered in this paper fulfilled the

necessary condition of identification.

The sufficient conditions for identification are difficult to

establish and must be mathematically resolved from the
variance/covariance equations in the model. Joreskog recognized that

this type of calculation would be beyond the ability of most users of

LISREL and he built a check of the sufficient conditions for
identification into the LISREL program. This method worka try checking

the positive definiteness of the information matrix. If the information
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matrix is positive definite, then the model is most likely identified.

Joreskog claims that although this method is not completely reliable, it

usually works in practice. Most users of LISREL assume their models are

identified if the program does not give them a nonpositive definite

warning (Joreskog & Sorbom, 1985, p. 1.23). All LISREL models should

fulfill this condition of identification.

The last method of establishing identification is somewhat more

involved and is often used only in the final, stages of model

development. This method for checking identification requires running

the model with all parameters set to reasonable values. The program

then gives the estimated SIGMA variance/covariance matrix as output.

The SIGMA matrix is then used as input data for the program and the

previously set parameters are set free. The program is then run and if

the model is identified, the free parameters will correspond closely to

the original reasonable estimates used to produce the SIGMA matrix. The

final, best-fitting model can be checked for identification in this way.

Overall Assessment of Fit

A number of methods of establishing the overall assessment of fit

of a model can be used with the LISREL program. The foremost of these

is the Chi square/df ratio. Many writers (Hoelter, 1983; Long, 1983)

including Joreskog and Sorbom (1985) have determined that the Chi square

paraneter is insufficient as a statistical test of a model. Instead, it

is to be understood to be an assessment of fit. In this co itext, the

use of the Chi square is only of use if the overall fit of one model is

compared with that of another, nested model (Bentler, 1980). In

addition, the Chi square (and the maximum likelihood (ML] estimates)

should be considered valid only if the structural equation component of

8
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the model can be shown to meet the assumptions of multivariate

normality. If the multivariate distribution is unknown, then the Chi

square must be used with caution as an indicator of goodness of fit.

The way to approach this problem is to generate estimates for the model

using the unweighted least squares (UL) procedure (which does not assume

multivariate normality) before obtaining the maximum likelihood

solution. The UL parameter" estimates are then compared with the ML

estimates. If both estinates give similar solutions, then it is likely

that the ML estimation procedure is unaffected by the distribution of

the data. Under these .mnditions the Chi square can be safely used as a

test of the relative goodness of fit among the models tested. It should

be noted, however, that the UL estimation procedure is scale dependent.

This necessitates the use of the correlation rather than the covariance

matrix for analysis in order to assess the variables on a standard

scale. Since the UL estimates are compared with the ML estimates for

consistency, the ML estimates must also be derived from the correlation

matrix. Joreskog and Sorbom (1985) also suggest that the correlation

matrix be analyzed when the units of measurement in the analysis are

arbitrary. The use of the correlation matrix in the analysis does not

pose a problem as long as models are not compared across groups. In

addition, the Chi square should always be examined in light of the other

goodness of fit indices when multivariate normality is in question

(Fornell, 1983; Joreskog & Sorbom, 1985, pp. 1.38-1.40; Long, 1983, pp.

47-48). The fit of a model should not necessarily be interpreted as

"good" just because the Chi square/df ratio is very small. It is

possible that the fit may be trivial due to small values among the

observed relationships or high colinearity among the latent variables.

A low Chi square/df ratio and thence a high probability are not as
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important as the change in the Chi square/df ratio from one mciel to

another (Fornell, 1983; Joreskog, personal communication, 1986). The

Chi square value is also sensitive to sample size as well as departures

from normality and either of these constraints may raise the Chi

square/df ratio. A number of authors have suggested that Chi square/df

ratios ranging fram 2 to 5 indicate a reasonable fit of the model to the

data (Carmines & McIver, 1981; Wheaton et al., 1977). However, these

criteria can sometimes be misleading (Hoelter, 1983). Thus it is

possible that a model may be well fitted even though the Chi square/df

ratio is large and significant.

In order to compensate for these problems in using the Chi square,

a few indices have been developed which are not affected by either

sample size or departures from normality. The first of these indices

are the Goodness of Fit Index (GFI) and the Adjusted Goodness of Fit

Index (AGFI). The AGFI is adjusted for the degrees of freedom in the

model. These are measures of the variance and covariance accounted for

by the model. The GFI should range between 0 and 1 and is of limited

use in comparing models (Hoelter, 1983; Joreskog & Sorbom, 1985, p.

1.40). The distribution of the GFI Ind the AGFI are unknown and

therefore there is no known standard to which to compare them (Joreskog

& Sorbam, 1985, p. 1.41). Nevertheless, GFI coefficients of 0.9 and

above are generally considered to represent an adequate fit of the

model.

Another index of fit which takes into account the influence of

sample size is the critical N (CM suggested by Hoelter (1983). This

index assesses the fit of a model relative to identical hypothetical

models with differing sample sizes and is expressed as:
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CN ('zcrit V2df 1)2 + G

2X2/(n-G)

where zcrit is the critical value of the selected probability level and

G is the number of groups analyzed simultaneously Hoelter suggested

that CN values exceeding 200(G) indicate that a model adequately

reproduces the covariance structure of the observed data and that the

difference between SIGMA and the covariance structure of the observed

data are trivial. Hoelter based this assumption on the fact that in a

number of trails, using diffcrent models, he found that the average

residual variation to be under 1% when CN values were equal to, or

exceeded, 200(G). Although Hoelter stressed the tentative nature of

this index, he believed it to be valuable when used in conjunction with

other goodness of fit indices.

The last overall goodness of fit parameter to be discussed is the

root mean square residual (RMSR), which i3 a measure of the average

variance and covariance of the residuals. This measure of goodness of

fit is of value in comparing different models which use the same data.

The RMSR does not, however, give any information about the individual

parameters which may contribute to the overall residual error.

Goodness of Fit of Individual Parameters

The overall goodness of fit parameters are important in comparing

differences across models. Nevertheless, it is the assessment of fit of

the individual parameters which is important in understaneing the final

model. These individual parameter goodness-of-fit indices provide

detailed information about the fit of each parameter of tne model. The

individual goodness-of-fit indices also provide information about

possible modifications of a model, although this information must bn

evaluated carefully Poreskog, personal communication, 1986; Lomax,

11
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1982). The indiceo of individual parameter fit given by the LISREL

program are the standard error terms for each parameter, the normalized

residuals (including the Q-plot), and the modification indices. The

standard error terms provide a measure of the precision of each

parameter (for ML only). These should be examined for any unusually

large values which would be indicative of a problem in a parameter. The

normalized residuals are perhaps the most important indices for

assessing the fit of the model. A normalized residual value higher than

2 may indicate a specification error in the model, and the pazameters of

this error should be examined. The Q-plot gives a summary of the

residual errors ;or all the parameters. The normalized residuals should

fall along, or be slightly greater than, a 45° angle. If the normalized

residuals are too steep, the model is over-fitted and there is a chance

that more than cne set of model parameters will account for the data.

If the angle of the normalized residual plot is smaller than 450, then

the model is poorly fitted and there is probably some specification

error. Periodicity in the Q-plot may be caused by specification error

or non-normality of the data. Generally, a small amount of periodicity

is noticeable in the Q-plot and is not a problem unless it is extreme.

The modification indices are associated with the derivatives of the

fitting function. The modification indices give an estimate of the

amount of expected decrease in Chi square per 1 df if a parameter is set

free in the model. In general, a modification index of 5 or more is

indicative of a problem (Joreskog, personal communication, 1986). This

index provides a means by which changes in the model may be judged;

however, it should be used with care (joreskog & Sorbom, 1985, p. 1.42).

12
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Summary

The most impc:tant aspect of LISREL methodology is its flexibility.

Most any kind of problem involving regression or factor analytic

procedures can be done using LISREL. Time series analysis and

lonnittdinal type analyses can also be done. LISREL modeling parameters

can be specified according to a given theory and will yield very precise

results. LISREL, however, is not a panacea. LISREL models should be

theory driven, and not used to explore the grosser aspects of a theory.

Practitioners who employ LISREL in this fashion will quickly find

themselves overwhelmed by the task of clearly interpreting their

LISREL methodology has spawned a generation of offshoots, each of

which has tried to improve on the original (Bentler, 1985; Muthen,

1984). The LISREL program itself har undergone a number of revi!-ons.

In addition, newer versions of the LISREL program are available which do

not require tune consuming statistical programming. These programs,

PRELIS and SIMPLIS, as well as LISREL, are available for IBM coapatible

computers from Scientific Software Incorporated, P.O. Box 536,

Mooresville, IN 46158-0536.

LISREL can definitely be seen as a revolutionary synthesis of

classical measurement theory and methcXkdogy, with computer technology.

Although LISR-L methodology requires a good deal of technical

understanding, it has now arrived in a form that is accessible to a

large nunber of users.
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