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Foreword
My earliest memories of mathematics are happy ones. Mathematics--
like readingwas powerful. Understanding mathematics separated

you from the "babies" in our family. When the secret of the "nines"
multiplication facts was passed on to you, you became one of an elite group,
and it sure was fun when it was your turn to recite your timestables through
the "ninezers" without a mistake.

Other kids may have groaned about story problems for homework,
but I inwardly cheered because good story problems were like magical
puzzles to be unlocked with a little reason and a little figuring. From the
beginning, the expectation was that my siblings and I would all understand
the mathematics world and be facile with figures. We often watched my
dad use estimation to determine the amount and sizes of lumber needed
to build a garage or remodel an existing building. My siblings and I were
admonished as we matured for needing paper 'to figure," except when
doing schoolwork. On schoolwork it was imperative that we showed both
our answers and our methodsno matter how simplistic and redundant.

Today's mathematics, as described in this book, would be quite in tune
with the reality of my home-taught mathematics. The standards issued by
the NCTM/NCSM groups carry with them the obligation to make
mathematics come alive for :- )ungsters, to make it useful in real-world
problem solving and communication. The standards emphasize the con-
nectedness of each of the branches of mathematics and underline its
relationship to science and technology. The standards also propose teach-
ing estimating, graphing, statistics, and probability at eariier stages than is
now common.

This text turns these new standards into a practical reality for teachers
and school administrators. Seldom is book learning so stimulating as it is
here, thanks to the standards and Willoughby's fresh approach.

How long must we wait for this commonsense approach to become a
reality in the classroom?

Donna jean Carter
ASCD Nesident, 1990-91
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Why Change?

Teachers who have watched self-proclaimed experts lead us through the
"new math" programs of the 1950s and 1960s, the "back-to-basics"

movement of the 1970s, and the "critical thfnking" movement of the 1980s
might be excusedindeed, might be commendedfor looking with a
somewhat jaundiced eye at proposals for still more changes. Are such
changes justified?

Our world is becoming more mathematical. We are constantly sur-
rounded by mathematical situations and are regularly required to make
mathematical decisions. These decisions require number sense, estima-
tions skills, ability to analyze data intelligently, knowledge of two- and
three-dimensional geometry, knowledge of probability, and many other
abilities not often taught in school.

Most people who find themselves in a situation that requires mathe-
matics either don't recognize that good decisions depend on mathematical
thought or don't make the best decisions bece use they are unable or
unwilling to think mathematically. The fast-food clerk who returns $98.16
change to a customer who puts down only a ten-dollar bill, the young
mother who believes she's certain to have a girl next time because she's had
three boys already ("these things even out in the long run"), and the person
who believes that a 40 percent chance of rain on Saturday and a 60 percent
chance of rain on Sunclay guarantee a 100 percent chance of rain on the
weekend are all examples of people failing to think mathematically when
they should. Most such examples are more subtle.

The public's first intimation that there might be something seriously
wrong with mathematics education in the United States came with publi-
caon of the results from the first International Study in Mathematics
Education in 1964. Japan appeared to have done much better than oti.-/
countries. The United States appeared to have done worse.

Editorial writers, politicians, and others viewed these results with
alarm for a few months, but were soon pacified by knowledge that inter-
country comparisons were essentially impossible to drz s from the study
because of the nature of the tests and the populations studied. If the tests
were skewed more toward the curriculum in country A than country B,
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country A could be expected to do better on the tests. Because of a strong
commitment co universal education i. some countries, including the
United States, the top 90 percent of students in those countries were
compared with the top 20 percent in other countries.

Insofar as concern over the apparent weakness in mathematics edu-
cation in the United States had any effect, it was used to condemn and help
kill the "new mathematics" that had just begun to influence the curriculum.
Because virtually all the children tested in the 1964 study had been taught
mostly, or only, "old" mathematics, there seems to be little justification for
that response.

In 1964 there really was cause for concern, just as there is today. But
the problem has never been that Japan (or some other country) is doing
better than the United States is. The problem is that we are not doing
nearly as good a job as possible to help all of our children learn and
understand enough mathematics to lead productive and fulfilling lives in
a modern society. We have always failed to teach mathematics so that
people would be willing and able to use it effectively. Despite that failure,
both individuals and society have usually managed to muddle through.
Muddling through without the appropriate attitudes and abilities in math-
ematics has become, and will continue to become, more difficultfor both
individuals and society

Reforms of the past were driven by individuals and organizations, but
tended to die when advocates reduced their efforts. Today we have a
different situation. Strong individual and organizational voices are advo-
cating reform, but the real motivation for reform is a change in society
itself. Never before has a change in technology made knowledge and
understanding of mathematics so important to so many people. Never
before has .1 change in technology made the kind of mathematics most
people have ii;en learning so obsolete. The technological revolution will
not go away. We will not collect and destroy all calculators and computers
on some day in the future. The reformers may die, but the reforms now
taking place will continue to live. Those who fail to benefit from these
reforms will live less full and less productive lives than those who benefit
from the reforms. Those societies that prepare people well for a techno-
logical future will become better places to live. Those that don't will wither.

In this book, I review recent, widely supported recommendations;
provide specific examples; and make suggestions for change. In addition,
I consider changes in technology and the effects those changes are having
on both the goals of mathematics education and the means of delivering
mathematics education. Finally, I present some suggestions for ways in
which concerned educators can foster constructive changes in the teaching
of mathematics.

This book does not represent an attempt to provide 211 the informa-
tion needed to make and support all necessary change. Rather, I hope to
help the generalist understand where we are, why we should change, where

gt
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we should be going, and how to get there. I have not tried to cite all related
scholarly research, but I have included some references for further reading.
Three sets of "standards" produced by the National Council of Teachers
of Mathematics [Standards for Selection and Implementation of Instructional
Materials (1984), Curriculum and Evaluation Standards fir School Mathemat-
ics (1989), and Professional Standards for Teaching Mathematics (1990)) are
likely to be particularly helpful for those contemplating change.

Why Is Change Needed?

In many respects, U.S. education is doingmore for more children
with fewer resources and less appreciation than has ever been true in the
history of any country. Certainly, our job would be easier if we were not
expected to solve all the problems generated by the breakdown of the
American family, the drug culture, the short attention spans of children in
a multimedia age, and the many other problems of society.

But we don't have that choice. These problems will continue to be
with us. Many people have spoken eloquently and constructively (unfor-
tunately, with little impact) about these problems; but I address them here
only insofar as they provide the larger context within which we must teach
mathematics.

Has mathematics education become much worse in the recent past?
Anyone who has read the many media reports about mathematics educa-
tion, the several international studies, or the analyses of National Assess-
ment of Educational Progress (NAEP) results could be excused for
assuming that there has L :en a disastrous deterioration in the teaching of
mathematics. In fact, that's not true. A cat, ful analysis of these various
reports and other available information shows that the teaching of math-
ematics today is probably not much worse, and not much better, than it
has been at any time in the past 50 years.

Throughout history, most human beings have been unwilling or
unable to do simple mathematics. Even in those few times and countries
where large numbers of people have been taught some mathemaecs, their
general belief has been that mathematics is akin to mysticismformulas
and procedures handed down on stone tablets, to be memorized and used
when necessary, but never to Ic understood by mere mortals. Of course,
the idea that normal human beings might create mathematics to help solve
the real-world problems around them would never occur to most people,
even if they had successfully studied mathematics for ten years or more.

The inability of most people to think mathematically has been an
unfortunate negative factor in civilization's progress over the years. Recent
advances in teclmology, however, and a world that is becoming continually
more complex and quantitative, show us that mathematical thinking is
becoming ever more important. Furthermore, the kind of mathematics
that people will need in an age of computers and calculators is different
from the mathematics needed in the past. Simple symbol manipulationcan
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be done effectively by machines, but higher-order thinking skills and the
ability to communicate intelligently about mathematical situations are still

uniquely human skills.
That does not mean we no longer need the lower-order skills. Know-

ing the addition, subtraction, multiplication, and division facts "by heart"
(or by mind) is at least as important as it ever was, and many other
lower-order skills are still essential so that w: can concentrate on the
higher-order skills. But people of the future will need more, better, and
different mathematical skills. They must be able to relate their mathemat-
ical skills to the world around them and use their skills to help solve
problems that are of importance to themselves and to the world.

Change in the teaching of mathematics is needed, not because it has
recently deteriorated, nor even because it has always been bad (though it
probably has been), but, rather, because the wor:i is changing. The people
who are going to solve the problems of the present and futureor even
understand and evaluate those la! oblems and solutionsmust have a far
better grasp of mathematics than most people have at present, or have ever
had in the past.

Most technologically advanced societies have recognized the need for
better mathematics education and are devoting enormous national, local,
and individual resources to the task of improving the teaching of mathe-
matics. This has resulted in subEtantial disparities among the international
mathematics scores of children, and the United States looks less adequate
than most of the others.

If you talk to educators, parents, or even children in these other
countries, however, you are stuck with the fact that they are, in general,
not satisfied with tlrir mathematics education. But in the United States,
where children are demonstrably learning less mathematics and learning
it less well than in other industrialized societies, teachers, parents, and
children are convinced that they are doing well in mathematics. This is
borne out by every recent international study, including reports by Cross-
white (1984) and Stevenson (1986). Stevenson argues that the main differ-
ences in mathematics education between the United States and Japan are
that the Japanese curriculum is much more challenging, Japanese children
spend far more time on task in school, Japanese children work harder, and
a Japanese child who is having trouble learning is expected to work harder,
whereas in the United States similar children would be excused because
the mathematics is too difficult for them.

We can probably learn to follow, rather than lead, in the solution of
the world problems. We can probably live quite comfortably a. a second-
rate economic and military nation. But some of our children may wish to
participate fully in the exciting life of the next millennium that is about to
burst upon us. They will need- a much better mathematics education than
is generally available in the United States. Indeed, they will need a better
education in mathematics than is generally available in any country. We
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snould give them an opportu fity to learn enough to participate fully in
their world of the future.

We can and must do better. The goal of educationthe goal of good
teachers everywhereis to educate people who will go beyond where we
have gone. The people who believe "if it w as good enough for me and my
parents, then it is good enough for my children and their children" will be
left standing in the dust as the world moves by them.

Can We Improve?

Recently a mathematician said to me: "You guys have been working
on the problems of mathematics education for more than 30 years now.
Why don't you have them all solved?" He was serious.

I wondered briefly why mathematicians who have been working on
the problem called "Fermat's Last Theorem" for more than 300 years have
not yet solved it. I also wondered how well my colleague would do solving
problems in mathematics education where success depends on all sorts of
ariables that change from day to day and year to yearso that a "solution"

fin. the 1930s is often not even pertinent to the 1990s; where a "solution"
for New York City is thought laughable in Bisbee, Arizona (and vice versa);
and where political considerations are likely to play a crucial role in
determining the success of (and even the opportunity to try) new curricu-
lums and methods.

In education, we do not march steady and unhesitatingly forward.
We repeat not only the errors of the past, but also the successesusually

ithout knowing we are repeating ourselves. But worse, we regularly find
that the procedures that failed at some time in the past are successful at a
later date, and the procedures that were successful no longer succeed.

As we evaluate some particular muvement in education, we should ny
t remember that education is not a science. It is a profession that combines
both art and science. We can ask reasonable quesdons about attempts to
reform education, and we can use both art and science to help answer those
questions. Were the goals reasonable in light of the needs of society? Were
the goals achieved? What effects, if any, linger after the movet 'rent has
died? What can we learn from the movement that will help us do better
next dme? In this spirit, let us examine the "new mathematics" of the 1950s
arid 1960s.

Why Didn't the "New Meth" Work?

The new math movement had both posidve and negadve effects.
Overall, there was probably a more positive than negative influence. As we
ci otinue to try to improve the teaching of mathematics, we should remem-
ber u ttich were which, and try to avoid the negative aspects while pursuing
p 'skive goals. Many of the negadve effects of the new math activities could
probably have been avoided if people who were leading the movement had

Why change? 5



spent more time in real classrooms working with real children and teachers,
and had listened intently to those children and teachers. For example, the
undue emphasis on logical rigor was totally inappropriate for children and
even for adults. On the other hand, integration of the various topics in the
mathematics curriculum and an attempt to show more applications
of mathematics to real life arid other academic pursuits were highly
desirable, as was the atteinpt to modernize school mathematics by bringing
some of the mathematics created in the past 3i0 years into the school
curriculum.

The "acceleration" emphasis of the new math movement was a mixed
bag. Certainly our children had both the need and ability to learn mn7e
and better mathematics, but dividing 7th grade children into "good itu-
dents" who can easily do two years of mathematics in one year and "the
others" was unfortunate, at best. James Flanders analyzed three of the
better selling textbook series in 1987 to see how much new material was
introduced in each grade. The results were scandalous. Giving credit to a
book for a "new" page if any new material appears on that page, Flanders
concluded that the average percmtages of "new" pages for each grade from
kindergarten through grade 9 for the three series are:

Grade Percentage

K
1

100
75

2 40
3 60
4 45
5 50
6 38
7 35
8 30
9 90

What could possib!y justify this "dumbing down" of the mathematics
curriculum, particularly for [trades 6, 7, and 8? How could we hope that
children who can learn only 30 percent new material in grade 8 could learn
three times that much in grade 9?

Normal children in most other industrialized countries learn far more
mathematics in grades K-8 than is typical in the United States, with no
apparent ill effects. The variations shown by Flanders make it cicor that
children can learn more in grades 2 and 4, as well as grades 6-8. We must
begin to encourage children ard teachers tt fulfill their potential and
expect reasonably challenging curricular materials for all grades.

By dividing children along imagined ability lines at the start of 7th
grade and allowing the "good" ones to pursue a reasonably challenging
mathematics curriculum while relegating the others to an intellectual

26 Mathematics Education for a Changing World



wasteland, the acceleration of the 1960s institutionalized a vacuous curric-
ulum for grades 7 and 8. As long as parents and teachers of the "good"
children (read "middle class") are happy, there is little chance of correcting
the real problem.

There were both good and bad aspects of the new math movement,
but the overformalism and the lack of any obvious connection to the real
world strengthened opponents of the movement when nostalgic, unen-
lightened pedants took us squarely back into the 19th century with the
hack-to-basics movement.

Lately, conventional wisdom has claimed that the apparent failure of
the new math occurred because change was expected too quickly. I believe
this is wrong. There were substantial positive changes that occurred very
quicldy, many of which have remained with us. If education has any hope
of preparing today's children for tomorrow's world, change must come
quickly. The major failure r_f*the ilew math was in direction, not velocity.
Too many of the goals simply were wrongheaded. That provided ammu-
nition for th,-Ne who were opposed t-o all changes, including the good ones.

References and Further Resources

Crossw hi te, F.J. (1984). Second Study of Mathematics. Champaign, Ill.: International Assoa-
anon for the Evaluation of Educational Achievement, U.S. National Coordinating
Center.

Dossey, J.A. (1989). "Transforming Mathemancs Education." Mutational Leadership 47:
22-24.

Dossey, J.A., LVS. Mullis, M.M. Lindquist, and D.L. Chambers. (1988). Mathematics: Are
We, Measurmg Up? Prmceton, NJ.: Educational Testing Service.

Driscoll, M. (January 1988). "Tram'orming the 'Underachieving' Math Curriculum."
.4SCD Curriculum Update.

Flanders, J.R. (1987). "How Much of the Content in Mathematics Textbooks Is New?"
Anthmetic Teacher 35: 18-23.

McKnight, C.C., F.J. Crosswhite, J.A. Dossey F. Kifer, J.O. Swafford, KJ. Travers, and
TJ. Cooney. (1987). The UnderachievmgCumculum: Assessing U.S. School Mathematks
from an international Perspectit e. Champaign, Ill.: Stipes.

Nancoal COU na I of Teachers of Mathematics. (1984). Standards for Selection and Implemen-
tation of instructional Materials. Reston, Va.: NCTM.

National CARInal of Teachers of Mathematics. (1989). Curriculum and Evaluation Standards
ftir School Mathematics. Reston, Va.: NCTM.

National Couoal of Teachers of Mathematics. (1990). Professional Standards for Teaching
Mathematics. Reston, Va.: NCTM.

Stevenson, 1-1.W, ed. (198f)). Child Developmint and Education in Japan. New York: WI-I.
Freeman.

Why Change? 7



2
Recent Recommendations

of Professional Groups
Even before new math materials were widely adopted, some people had
begun to raise serious questions about various aspects of the "revolu-

tion" and to propose somewhat different goals and implementation pro-
cedures for future reforms in school mathematics. The similarity among
such recommendations over the past 15 years is as striking as the rapidly
growing number of people who subsc ibe to essentially the same views.

Different Skills Emphasized

Though the various recommendations differ in some details, most of
the position papers produced by major texthook-adoption states, lead-
ing professional organizations, and individuals involved in mathematics
education since 1975 have recommended that schoolchildren become
proficient in the following basic skills:

1. Problem solving
2. Communication skills related to mathematics
3. Integration of topics within mathematics
4. Relating mathematics to other subjects and to the leanier's real

world (closely associated with number 1)
5. Understanding and using functions, Hations, and patterns
6. Probability and statistics
7. Approximation and estimation
8. Using number sense and number systems effectively
9. Computational abilityboth written and mental computation--

with rational and some irrational numbers
10. Two- and three-dimensional geometry, including both synthetic

and algebraic arguments in geometry
11. Understanding and using mathematical structures
12. Measurement
13. Algebra

8



14. Trigonomety
15. Discrete matIvrmatics
16. Intuitive foundations of calculus
17. Using technology (calculators, computers, etc.) to help solve

mathematical problems

Beyond this, all groups have recommended that mathematics be
taught in such a way that people not only will be able to use mathematics
to solve problems, but also will want to use mathematics, and will think of
mathematics as a friendly, useful tool, rather than a nemesis to be avoided
at all costs.

Many of these recommendations reflect appropriate goals for teach-
ing mathematics at any time and in any place. Some, however, suggest both
content and methods that are quite different from most mathematics
teaching of the past. Much of the rest of this book is devoted to discussing
some of the more striking differences and how teachers and supervisors
can facilitate the mathematics educaion of children to prepare them better
for life in the 21st century.

To treat each recommendation individually with any degree of com-
pleteness would be both inappropriate and impossible in this book. Certain
principles and procedures, however, will help educators achieve the general
goals. These include: decompartmentalizing mathematics, relating math-
ematics to other subjects and the real world, improving problem-solving
skills, enhancing communication about mathematics, and fostering more
positive attitudes toward mathematics. Other pertinent issues include
procedures for introducing and doing mathematics that will enhance
studenn:' ability and desire to use it intelligently, the effects of curricular
maw-ial and testing on learning, the choice of appropriate materials, and
the selection and support of teachers.

Moreover, some of the recommendations are either so important, or
suggest activities that are so different from traditional practice, that we will
spend some time examining them.

Four Steps to Better Mathematics Education

There are four important steps that children should follow to learn
mathematics and to be willing and able to use it effectively to solve
problems of all kinds: (1) derive the mathematics from their own reality,
(2) discover and use the power of abstract thought, (3) practice, and
(4) apply the mathematics to something that is of interest to them.

Derive Mathematics from the Learner's Reality

Max Beberman was one of the great mathematics educators of this
century. One day his seven-year-old daughter came home from school with
several subtraction pr to do. Her father noticed she was getting
strange answers. For exampk, to the problem: 32 18, she would get an

Recent Recommendations of Professional Groups 9



answer of 26. He watched to see what she was doing. First she lined up the
numbers with tens above tens and units above units. Then
she subtracted I from 3, getting 2, which she wrote in the 32

18tens column of the answer space. Next, since she couldn't
subtract 8 from 2, she subtracted 2 from 8 and wrote the 26

resulting 6 in the units column of the answer space. Everyone who has
taught 2nd gradeand many people who have taught 3rd, 4th, and even
5th gradehas seen this phenomenon.

Professor Beberman decided to correct "le situation using procedures
known to excellent teachers for decades. He got out a bunch of ice cream
sticks and had his daughter group them with rubber bands into bunches
of ten each until she had 32 sticks (three groups of ten and two more) (see
Figure 2.1). He then asked her to take 18 sticks away.

Figure 2.1

" IN

She removed one bunch of ten and examined the situation for a while.
"Is it all right if I take a rubber band off one bunch of ten?" she asked. Her
father's beaming fAce made it clear she had hit on the right solution. She
proceeded to remove the rubber band and take away eight more sticks.

"How many sticks do you have left?" asked Professor Beberman. "Ten
and 4 more-14," she responded.

"Now do you see that 32 minus 18 is 14, not 26?" prompted her father.
She tl.ought about this interesting turn of events for a moment or two

and responded: "With ice cream sticks the answer is 14. In school the
answer is 26."

This story typifies a serious problem with mathematics education.
Intelligent students decide early in their schooling that the mathematics
they learn in school has nothing to do with their real world outside school.
They see no conflict between getting the answer "26" to a problem done
by school methods and getting the answer "14" when the same proolem is
done with real objects. They believe the mathematics of school has nothing

. C
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to do with their real world. They do mathematics in school to please the
teacher or their parents, or they do it to get done with it so people will stop
bothering them, or for some other reasonbut almost never do they do
such problems because they want to know the answer. And almost never
do they have any reason to believe that the problem, or its solution, has
anything whatsoever to do with their real world.

All of mathematics can, and should, be derived from something that
is real to the learner. For very young children, that reality usually is
something physical such as ice cream sticks, fingers, chairs, people, dis-
tances walked, heights of friends and relatives, and so on. For older
students, the reality may be the natural or social sciences, puzzles, or even
some part of mathematics itself. For example, arithmetic, which is quite
abstract to a six-year-old, may be just the reality needed to help an older
student understand algebra.

There is an unfortunate belief among many teachers of mithematics
that manipulative materials, and other references to reality, are designed
for the "slower" student, but that the "good" students don't really need
that sort of thing. Fairly bright children can often learn to manipulate
mathematical symbols reasonably efficiendy, with little or no understand-
ing, in a way that satisfies teachers. But such symbol manipulation, without
physical or other real referents, is precisely what leads these "good"
students to believe that mathematics has nothing to do with their real
worlds. As long as they are successful at the symbol manipulation, such
students often find the success sufficient reward in itself. But as soon as
they rim into difficulties, the more intelligent among them ' egin to suspect
that this abstract game that is so thoroughly removed from reality has little
place in their lives and should be set aside for more interesting and useful
activities.

Sooner or later in their formal education, most people begin to believe
that mathematics is a masochistic way to make people work very hard when
they would otherwise not need to work at all. Nothing could be further
from the truth. In many respeLL;, mathematics is a lazy person's activity. It
is a way to solve problems more easily than they could be solved otherwise,
or a way to solve problems that simply could not be solved by any other
means. By deriving mathematics from the learner's reality and by con-
stantly applying that mathematics back to real situations in which the
learner is interested, we can help students to understand mathematics
better and to see it as a useful, powerful, and even beautiful tool that helps
them solve their problems and helps them understand the world around
them better. -

The Power of Mathematics Is in Its Abstractness

Deriving mathematics from the learner's reality is an important part
of teaching mathematics in a r .taningful way. But the fact that the power
and beauty of mathematics is in its abstractness is equally important and
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must not be neglected. Some people, having understood the first point,
take it so seriously that they completely lose sight of the second.

To give a simple example, suppose we had different kinds of numbers
fi)r counting people, for counting chairs, for counting dogs, and so on.
Then, if we discovered that 2 people plus 3 people is always 5 people, we
might still not know how many a pair of chairs plus a triple of chairs is
because we couldn't generalize our results for people to other objects. Nor
would we know the corresponding answers for dogs, cats, or other things.
The fact that numbers and other objects of mathematics are essentially
independent of the specific reality from which they were derived is what
gives mathematics its power. Having learned that 3 + 5 . 8, we can be sure
that 8 will be the toml when we have brought together sets of 3 dogs and
5 dogs, 3 chairs and 5 chairs, 3 widgets and 5 widgets, or whatever. In a
similar way, the other objects of mathematics are abstractions about which
we can reason quite independently of any specific realityand having
reasoned abstractly, we can be sure that our results apply to any real
situation for which the original assumptions applied.

The apparent conflict between the abstractness of mathematics and
its close connection to the real world gives rise to many problems in
mathematics education. Some teachers, having understood the abstract
nature of mathematics, believe that it should be taught in a totally abstract
way with no reliance on its connection to the real world. Others, having
realized that mathematics is motivated by situations in the real world, is
closely allied to the real world, and can be useful in solving real-world
problems, believe that all mathematics should be learned, taught, and
discussed in connection with some physical referentnever relying on
totally abstract symbols. Either position, carried to an extreme, will defeat
the learning of mathematics.

To help young children learn mathematics with an understanding and
appreciation of its role in the real woed, and at the same time let them see
the power of its abstractness, we should use several different physical
models for the same mathematical concept. We should help pupils see that
mathematical operations turn out the same no matter what the physical
referent. For example, after using the ice cream sticks and rubber bands,
Max beberman could have also used base ten blocks, or three children each
holding up 10 fingers and a fourth child holding up 2 fingers, or three
decimeters (each with 10 centimeters marked) and 2 more centimeters, or
any one of many other representations of 32 to help convince his daughter
that when 18 is subtracted from 32 the answer always comes out 14. Sev-
eral such models might have helped her understand the nature of the
mathematics better.

Having seen how mathematics can be derived from the real world,
children must also learn to work with mathematics in its pure abstract form.
Children should realize that when they reason correctly with the pure
abstractions, the results will be applicable to any reality for which the
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original mathematics was appropriate. They should also learn that reason-
ing with the mathematical symbols is usually both easier and more efficient
than working with the physical referents. Imagine doing every addition or
subtraction problem with ice cream sticks or other similar objects. Just
lugging the stuff around with you would be more trouble than most people
would be willing to accept. Then imagine trying to do the same for
multiplication, division, and so on.

Almost any good procedure can become counterproductive when
carried to extremes. When teaching mathematics, we should certainly
show the connection between the real world and the mathematics; but we
must also remember that the power and beauty of the mathematics is in
its abstractness. We should not try to obscure the abstract nature of
mathematics by forcing children (or encouraging them) to use physical
objects after sufficient initial connection has been made. And we certainly
should not limit children to only one physical referentno matter how
good that referent may seem, or how persuasive the salesperson is who
advocates the use of that material.

Practice Makes Perfect

From time to time, some educators subscribe to the strange notion
that if a student really understands a concept or skill, that student will
always remember the concept and will be able to use the skill wiLlout
having practiced it. Those of us who have spent our lives teaching children
know better. We have ail had the experience of watching a person who
completely understands a concept one minute forget it the next. We have
watched students perform a task perfectly one day and then seen them have
no idea of how to get started on the same task, or an equivalent one, the
next day. From such experiences we have concluded that if we want
students to be really good at a particular skill, or if we want them to really
remember and understand a concept, we must arrange for them to practice.

Practice need not be unpleasant. Indeed, practice is far more effective
if it is pleasant. E.L. Thorndike is often thought of as the patron saint of
behaviorismincluding the idea that pupils should practice correct re-
sponses and thus reinforce them. But Thorndike did not advocate the
unpleasant, punitive kind of practice that has often been associated with
his name. He believed learners should be rewarded for correct responses,
not punished for incorrect ones. He never suggested that the practice itself
should be so unpleasant as to seem like punishment. The "drill-and-kill"
approach, epitomized by the distribution of dozens of dreary ditto sheets
or textbooks that are little more than hardbound ditto ,heets, may have
the advantage of keeping the pupils quiet while the teacher does something
else, but it ib generally not an effective means of providing practice.

There are many w..:Ts to practice skills so that the learner has positive
associations with them and is likely to continue to be willing and able to
use them even after required schooling. Carefully conceived educational
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gares provide one of the most effective methods of practice. Practice with
people or even machines or cards that give positive, immediate feedback
can also be effective for some learners. Projects or activities that require
mathematical skills and concepts to help students reach some goal they
wish to reach can provide excellent practice and can have the additional
advantage of encouraging learners to see mathematics as useful.

These and various other methods of effective practice generally
require more work by the textbook authors and teachers than multiple
pages of dreary "exercises," but the results are dramatically better. Most
teachers think the extra effort is well spent.

Provide RealistIc Applications

"5 lights on. 3 lights off. How many lights on?"
This typical word problem from a 1st grade mathematics textbook is

a classic case of a bit of nonsense masquerading as an "application" of
mathematics. What's wrong with this "problem"?

First, the failure of the authors to write in English sentences is
pernicious. r)ne of the important goals of teaching mathematics to human
beings shou,d be to help them communicate with other people about
mathematics. No normal person communicates in the kind of "telegraph-
ese" used in this and similar "word problems." If children are too young
to read correct English (or whatever the language of instruction is) they
should be introduced to problems orally or through physical activity until
they are able to read.

Problems like this one are a result of the blind, unthinking use of
reading-level formulas by textbook-adoption groups. Textbook publishers
have discovered they can fool the formulas by substituting short non-
sentences for real sentences. Never mind that such procedures are counter
to the goals of both reading and mathematics instruction. Never mind that
children have a harder time reading these short, incomprehensible senten-
ces than longer, correct sentences. If the calculated reading level can be
kept low enough, the textbook will be adopted.

Second, to suppose the child has read this problem and understood it
when the child answers "2" is naive. Any normal adult who reads the
problem will answer "5," unless the adult has been brainwashed by years
of schooling into believing the answer is never provided in the problem
and therefore the reader is expected to perform some mathematical oper-
ation to arrive at the desired answer. A child will get the "correct" answer
to such a problem by noticing how other problems on the page are done,
then doing this one the same way. Or perhaps the child will recall which
operation has been taught most recently and use that. Either method would
produce the expected answer to this problem because of the way the
textbook was designed. Both methods show a certain ability to solve the
problem of how to get along in a somewhat irrational adult world. Neither
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is what we ordinarily think of as mathematical probiem solvingor applying
mathematics to real situations.

Third, suppose the child is sufficiently sophisticated to read the
problem, conclude that the author doesn't know what a verb is and that
the author meant to say: "There were five lights on in a room. Somebody
tunied off three of those lights. After that, how many lights were still on?"
Surely this sophisticated child would also realize that subtraction is not an
efficient method of solving the prob!em. To fiad out how many lights were
on in the beginning, somebody had to count all five of them. Then
somebody had to count the three that were turned off. Finally, the child is
expected to do a subtraction problem with those two pieces of data. Why
not just count rhe two that are left on?

The third objection may seem like a petty point, and one that children
are not likely co notice, but it is really terribly important. If students are
regularly reqaired to solve word prob!ems by complex mathematical
techniques that are less efficient than othei procedures known to them,
they will develop a feeling that mathematics is a way to make them work
when they would not otherwise have to work.

When I was growing up in WisconsiL, I heard a story about two
travelers on a train. One looked out the window and commented on the
many cattle in a farmyard. The second traveler glanced out the window
and said, "Yes, there are 187 of them." The first asked in awe, "How did
you get that number so fast?" To which the second responded, "Simple.
I'm a mathematician. I counted the legs and divided by 4."

Unfortunately, this apocryphal story accurately represents the views
of many people abont mathematics and mathematicians. Years of formal
schooling have left people with the idea that mathematics is a mass of
memorized mental tricks that are to be used in an unthinking and ineffi-
cient manner to make problem solvers work harder than they would
otherwise have to work.

Traditional word problems may occasionally give people an idea of
reasonably realistic applications of mathematics; and they are easier to
produ to administer, and to use for evaluating students than are real
applications that are interesting and worthwhile. But even when they are
good, such word problems are a poor substitute for applications that would
help the learners see the usefulness and beauty of mathematics. When they
.re artificial "make-work" problems, such as the "lights on" example, they

do more harm than good.
Situations taken from pupils' real lives often provide the best applica-

tions: What is the most efficient way to get to school? How early do you
have to leave home to be reasonably sure you'll get to school on time?
Which grocery store offers the best buys? Should quality, convenience,
and other matters influence your decision? How much money will I need
in order to buy a bicycle? Flow can I manage to get that much money? If
I smoke three packs of cigarettes a day and also fly 1,000 miles on airplanes
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every day, am I more likely to die from the effects of smoking or from
injuries sust2ined in an airplane crash?

Students can also create their own problems fron news articles, from
their daily activities, or even from their imaginations. Chapter 4 of this
book discusses procedures for using newspapers to help children formulate
their own problems.

Another kind of application that is real to children, but may not seem
entirely real to all adults, is the intelligent playing of certain games. A good
mathematics game ordinarily should provide practice in some particular
skill, but it also can have problems imbedded in it so that players can
improve their strategies thinking mathematically. Children should be
able to play the game without solving the problems, but they should be
able to play it better if they do solve those problems. This is analogous to
real life in which people can, and do, get by without using mathematics,
but can live and understand better if they are able to think mathematically.
Several such games are described later in this book (see Chapters 3 and 4).

The activities suggested here require more work on the part of
authors, teachers, and pupils. But activities that are meaningful to the
students are more likely to be remembered and more likely to leave the
learners with a feeling that mathematics is useful and worth learning.
Surely that is better than having students believe that mathematics is a
subject they are required to learn to satisfy other people, and that it should
be put out of their minds as soon as possible.
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3
Implementing

Recommendations
The foul steps suggested in Chapter 2 (start with learner's reality,
abstract, practice, apply) are more meaningful if viewed in a context.

The principles are quite general and can be applied to almost any topic in
elementary school, in high school, and in graduate school mathematics.
This chapter presents examples involving early elementary school compu-
tation to keep the mathematical content as unoppressive and familiar as
possible. Examples from topics that have recently been incorporated into
the curriculum are easy to provide, but it is important for educators to
realize that we can also improve substantially the way we approach the
more traditional topics.

Example 1 : Single-Digit Addition

This rather extensive example demonstrates methods of achieving
many of the goals recommended by various professional organizations,
such as improved problem solving and communication and greater inte-
gration of mathematical topics horizontally and vertically. However, to
avoid making the example even longer, many steps have been condensed
or omitted.

Learning About the Learner's Reality

Before beginning any new topic in mathematics, the teacher should
check to see that pupils heve the necessary background. To develop a
concept from the learner's reality, we must first establish what the learner
reality is.

In the case of addition, the essential concept has to do with hlw many
objects are in a set of objects that results from combining two other sets.
lb an average adult, the underlying concepts seem simple, and there
appears to be no doubt that a normal six-year-old would be able to
undersmnd everything necessary. But suppose the child doesn't believe that
the number of objects in a set remains the same when they are rearranged.
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Then, when two sets are brought together, there is no reason for the child
to expect that the number of objects in thc combined set is related in any
rational way to the numbers of objects in the two original sets.

Piaget and others reported experiments with young children that
seem to indicate that many children do not "conserve number." That is,
many young children (under the age of five years) do not seem to believe
the number of objects in a set remains the same whcn the objects are
rearranged. Conservation of number (or area or volume or other things)
is important, but the essential underlying general principle is that teachers
must make a serious effort to understand what is going on in the minds of
their pupils. This requires asking some searching questions; more impor-
tant, it requires listening very carefully with a mind that is as open as we
can possibly make it. Sometimes we will find that we are totally unable to
fathom what is going on in the minds of our pupils, but we must always
make the effort. In a class of 25 or 30 children, this initial evaluation is
anything but easy.

Experiences from the Learner's Reality

Once a child conserves number and Qin count (let's say to 20) we can
start concrete experiences with addition:

Here are four coins. We put three more coins with them. How many
coins are there now?

Repeat this with numerous other kinds of objects, such as crayons,
pencils, sticks, fingers, children, desks, and so forth. Include pairs of
problems, such as:

A. Here are five sticks. I put two more with them. How many are
there now?

B. Here are two sticks. I put five more with them. How many are
there now?

If the child really conserves number and has any inclination at all to
avoid work by thinking (an essential characteristic of mathematically
inclined individuals), the second problem should not require counting. A
child who gets the second problem of a pair like this without any hesitation
probably understands th,: important principle that the order in which we
add two numbers makes no difference in the answer. That is, for any two
numbers A and B,A + B =B + A. This is called the commutative principle of
addition. A good understanding of the commutative principle will reduce
by almost half the number of addition facts that must be learned, and is,
therefore, well worth knowing and stating expl'citly (but not necessarily
with the formal name).

In their early, concrete addition activities, children will count the
number of objects in each addend and then count to find out how many
are in the sum. To add 5 + 4, the child will count out five objects, then
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count out four objects, then put the two bunches together and count the
mai number (nine). Is there a more efficient method?

For a real problem, if you know there are five raspberries and you
want to know how many there would be if you added four more, you'd
"count on" from five as you added the four: "six (one berry in), seven
(second b.trry in), eight (third berry in), nine (fourth berry in), so the total
is nine." But if we don't actually have the b,..rries, and want to represent
them with something we do have, we will have to count out each of the
sets unless we can find a more efficient method.

Physical Representations and Finger 'Amble

A physical manipulative material that is of great value in mathematics
and is always available for most children is fingers. Many elementary school
teachers have built up a sort of phobia about fingers because so many
children seem to misuse them in later grades. If a child is still counting out
addition and subtraction problems on fingers in the 5th or 6th grade, then
that child is wasting valuable time and thought doing something that
should be automatic. That doesn't mea .. he cnild is evil, nor should we
put mittens on the fingers to make the child mentally. Rather, in the
early grades, we should try to teach so that most children will become very
efficient at simple operations and can spend their time and thought on
more advanced ideas.

It does not follow that children should not use their fingers in early
grades. Quite the contrary. If we teach children to use their fingers
intelligently in the early glades, they should be more able to get along
without using them later. Furthermore, if we teach children to use their
fingers at the age of six, then when they are eight they will think of this as
a juvenile activity and try to avoid it. On the other hand, if we let our finger
phobia dominate in the early years, children will decide that using fingers
is a subversive activity, and will continue to do it surreptitiously as long as
they can. We must not become fanatic about fingers. Our goal is to have
children know and use the addition and subtraction facts efficiently when
they are eight and older. If we can achieve this by teaching them to use
fingers at the age of six, we should do so.

An efficient way to teach young children to add involves always using
the same fingers to stand for A given number. Thus (for example), the
thumb up on the right hand is always used to represent one. The thumb
and forefinger on the right hand always represents two. The thumb,
forefinger, and middle finger represents three. All the fingers on the right
hand except the little finger are used to represent four, and all the fingers
on the right hand are used to represent five. Continuing in the same way,
the fingers on the right hand combined with the thumb of the left hand
repmsent six, the fingers on the right hand and the thumb and forefinger
of the left hand represent seven, and so on.
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Once we have learned these "finger sets," if we want to know what
6 + 3 is, we can start by putting up the finger set for six without the need
to count. Then we can count on as we put up more fingers: "one (left
forefinger goes up), two (left middle finger goes up), three (left ring finger
goes up)." Now, we know, without counting, that we have the finger set
for nine, so, we how that 6 + 3 = 9.

We have solved our problem by counti ng on ly one set (the set of three)
rather than having to count all three sets (six, three, and nine).

Notice that if we really understand the commutative law for addition
we can always arrange to count the smaller of two unequal addends. If the
problem is 3 + 6, we can simply turn it around and malce it 6 + 3.

Having taught children to use finger seis to help learn addition facts,
we certainly should feel obliged to show them how to move beyond finger
sets. We might try something calle : -atue arithmetic," in which children
are allowed to do the previous problem by putting up a finger set of six,
but are then required to be statues (they can't move their fingers). Then,
they imagine what set they would have if they counted out three more.
Finally, you can ask them to imagine the six-set, then imagine adding the
three-set, and then visualize the answer.

A great deal of physical experience should accompany the learning of
addition facts. Such activities might include being told there are five
counters (or pebbles, coins, sticks, or other objects) in a can, then watching
(and presumably counting) as somebody p its three more in, then deciding
how many counters there are in the can, and other similar experiments.

To relate counting and addition to geometry and measurement, we
might count how many of a child's feet (heel to toe) it takes to walk the
length of a table. We might then put two tables together and try to predict
how many of the chi!d's feet will be required for the double length. We
could do the same with Cuisenaire rods, or with plastic or cardboard
number strips (ranging in size from one unit to ten unitsan appropriate
unit would be about two centimeters or one inch in length), or similar
objects.

The drive strips (or "holy paper") tom off the sides of computer
printout paper after printing can also be used for measuringthe number
of strips plus the number of holes provide a reasonably precise measure-
ment. Conversion between numbers of strips and numbers of holes seems
more concrete to young children thm conversion between feet and inches
or between meters and centimeters.

After a great deal of this sort of activity and, if necessary, specific
related experiments, child:en should begin to realize that if 3 apples plus
4 apples is 7 apples, then 3 people plus 4 people will be 7 people, and 3
pencils plus 4 pencils is 7 pencils, and so on. This may seem like a trivial
insight to an adult, but it is the very essence of mathematics. We have
started from multiple physical mmiels and abstracted general principles
that will work for all those models and infiniteiy many more models. We
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can now use abstract arithmetic that will work fcr all these situations. That
is the mie power of mathematics.

ry the time children are ready to learn the addition facts in a formai
way, they should have become quite good at a6ding one, two, and three to
any number by simply counting on. They are also likely to have learned
Lae 5's facts if they have been using finger sets as described previously, since
all the numbers up to ten are shown with all five fingers of the right hand
up plus some more on the left hand, and those on the left hand correspond
to the appropriate number on the right hand. For sums beyond 5 + 5,
consider how much greater than five the second addend is. For example,
in S + 7, the seven will be thought of as five on the right hand and two
more. Put the two fives together to make ten, and the answer is ten and
two more.

Base Ten

Before continuing with this addition example, it is worth interjecting
a comment about base ten. The numeration system we use is based on the
number ten. All the standard procedures (or algorithms) we use to add,
subtract, multiply, divide, and do other operations depend on the fact that
we are usin2, a base ten numeration system. Because of this, if children are
explicicly aware of the fact that their numeration system is base ten, they
will generally find it much easier to understand and learn the various
algorithns.

Therefore, most early work with numbers greater than ten should
emphasize base ten concepts. Thus, when teaching children to count above
ten, names such as "ten and one, ten and two, ten and three, . . . ten and
nine, two tens, two tens and one," are more appropriate than the traditional
names of "eleven, twelve, thirteen, . . . nineteen, twenty, twenty-one."
Children will have heard the traditional names and should not be prevented
from using them, but they should also be encouraged to use base ten names.
Notice that, with the exception of "eleven" and "twelve," the usual words
for numbers all have the base ten idea inherent in them. For example,
"fourteen" means four and ten (or "teen"), "sixty" comes from six tens ("ty"
sun( s for tens here), and so on. Some of the words (like "thirteen") seem
a bit far from the cziginal, but a little imagination makes the connection
seem reasonable.

With this interjection in mind, ten and two is a perfectly reasonable
answer to the question of what is 7 plus 5. We also realize that ail the 10
facts are automatic: 10 plus 7 is ten and seven; and, by th n. commutative
rule, so is 7 plus 10.

The 9's facts follow immediately from the 10's facts. If you know that
10 plus 7 is ten and seven, then (since nine is one less than ten) 9 plus 7
must be one less than ten and seven, or ten and six (16). Tlv.: 9's facts are
more difficult than the others discussed, but, with help, children can see a
logical way to remember and figure out the 9's facts.
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Two other sets of facts that children generally learn easily are the
doubles and the sums to ten. Apparently the doubles are easy because there
is only one addend to remember, and the sums to ten are easy if children
have learned the finger setsthe number up plus the number still down
make ten. Although these '.wo sets of facts 2re harder to learn and
remember than those mentioned above, they usually are learned fairly
easily by most children.

All of these sets of facts, with the exception of the doubles facts and
perhaps the sums-to-ten facts, provide a logical way for children to
understand and remember them. An important part of the reality of human
beings is that they have logical minds and can use logic to help understand
and remember. Any procedure for remembering important facts that does
not take this human trait into consideration is likely to be less effective
than procedures that do. So, as well as starting from the learner's physical
reality, we should rely heavily on the learner'- mental reality as we try to
help people understand the abstractions of mathematics.

Unfortunately, a commonly used method of organizing addition facts
is by their sum. Children learn the facts that sum to five on one day, to six
on another day, and so on. Since there is usually no good logical principle
for finding the answer from the question, most children have a very difficult
time remembering the addition facts this way. This is a case of ignoring
the needs of the learner, but still appearing to have organized things in a
logical way.

It is also worth noting that we started with the actual objects to be
added, then used other physical objects to represent them. Next, we could
use pictures or other seemingly more abstract "objects" and finally we
would end with abstract symbols Tally marks and similar semi-concrete
symbols provide another small step that helps children progress from the
concrete to the abstract. Such small steps are desirable even though they
are not spelled out in detail here.

Addition Table

After they have derived the addition facts from their reality and
pracexed for some tiine, children should be encouraged to organize their
information. An addition table offers an excellent ray to organize the
information and to identify difficulties some children may have. Some
work is needed to understand the table in the first place, but it is well worth
the effort because this is such a common way to organize all sorts of data.

Consider the additien table for sums up to 20 (Figure 3.1). If children
are told that they must memorize the 121 facts shown in this table they
tend to be a bit unhappy about the situation. However, if they have been
shown how to relate facts to things they already know, and have been given
a bit of held with some of the other facts before being confronted with the
table, they find the task relatively easy.

1 - 1
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FIGURE 3.1

Addition Table

0 0 1 2 3 4 5 6 7 8 9 10

0 0 1 2 3 4 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10 11

2 2 3 4 5 6 7 8 9 10 11 12

3 3 4 5 6 7 8 9 10 11 12 13

4 4 5 6 7 8 9 10 11 12 13 14

5 5 6 7 8 9 10 11 12 13 14 15

6 6 7 8 9 10 11 12 13 14 15 16

7 7 8 9 10 11 12 13 14 15 16 17

8 8 9 10 11 12 13 14 15 16 17 18

9 9 10 11 12 13 14 15 16 17 18 19

10 10 11 12 13 14 15 16 17 18 19 20

Before starting this activity, I usually tell the children the hardest fact
for me to remember was alway3 6 + 8 (or 8 + 6). Then we figure out the
answer to this problem, and I repeat the question at odd moments while
studying other facts. By the time children have learned all the other facts,
they also know that 6 + 8 = 8 + 6 = 14. This trick will work only if a single
fact is picked, and it should be reserved for the one fact that children are
likely to find most difficult.

Now, examine the table to see if anyone knows all the facts in any one
row or column. Children quickly see that they know all the facts in the 0
row and column, in the 1 rowand column, and in the 10 row and column.
With a bit more effort, and perhaps some practice, they admit to knowing
the 2's facts. Then, the 9's facts (because of their relation to the 10's facts).
After practicing and checking to be sure everybody knows these facts, we
cross them off the table and count the remaining facts. Children are pleased
to discover that of the original 121 facts, they already know 85, and have
only to work on the 36 facts in the small square of the 3, 4, 5, 6, 7, and 8
rows and columns.

'1
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The 3's facts, the 5's facts, and the doubles will require a few days, but
children should become proficient with them fairly quickly if the proce-
dures suggested earlier are followed. The near-doubles (one more than
double, such as 3 + 4, 7 + 8, 6 + 5, and so on) come next and may require
another day or two; but this practice will reinforce the doubles facts, as
well as some of the previously learned facts.

That leaves only four facts (and their commutative versions): 4 + 6,
4 + 7, 4 + 8, and 6 + 8. But we've been practicing 6 + 8 and 8 + 6 all along,
so there are really only the three 4's facts. We have reduced the chore of
learning 121 addition facts to learning three. There are various ways to
held children remember those three. If finger sets are used, the fact that 4
and 6 are complements with respect to 10 may help with 4 + 6 and 6 + 4.
Then, 4 + 7 and 7 + 4 must be one greater du, 10, or ten and one, and,
by breaking up the 4 of 8 + 4 into two 2's, we can help them see that
8 + 4 = 8 + 2 + 2 = 10 + 2 = ten and two (or 12).

Thus, by organizing information in a way that is natural to the learner,
'and helping the children see connections, we can greatly simplify an
apparently overwhelming task. There are, of course, other specific s-ays to
achieve essentially this same result.

Practice: A Game

No matter how well children understand the basis for the addition
facts, they will need lots of practice to make them automatic. Unless these
facts are automatic, children will use their time and creativity to recon-
struct the addition facts when they should have gone on to bigger and
better things. Thus, practice is essential. As suggested earlier, practice need
not be of the "drill and kill" variety provided with flashcards, ditto sheets,
and other dreary training techniques. Instead, various games and other
activities can be used. Beyond that, to help the teacher assess the status of
individuals with respect to each fact, as well as to provide further practice,
some full-class response activity is appropriate. In small doses, with positive
reinforcement from the teacher, such activity is usually helpful.

Many games can be used to practice addition facts. Let's consider a
simple example. Provide each child with two cubes. On one cubt will
appear the numbers 0, 1, 2, 3, 4, and 5. On the other cube will appear the
numbers 5, 6, 7, 8, 9, and 10 (5 appears on both cubes). Later we will show
how these same cubes can be used in a full-class response drill.

Have the children play Cube-15 in pairs (they may play in triples if
this suits the situation better, and you may even want one rk.ember of a
triple to act as referee if the children are not sufficiently mature to play the
game in an appropriate manner in pairs). Each pair of children will have
four cubestwo 0-5 cubes and two 5-10 cubes.

The first player rolls any cube, then rolls a second cube and announces
the sum of the two numbers rolled (if the first two numbers rolled are 3
and 4, the sum so far is 7). Then, the player may stop or roll a third cube,
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"dding its number to the previous sum (if the next number rolled is 9, the
stun is 16). Again, the player may stop or roll the fourth cube, but must
stop after the fourth cube. The goal of the game is to get a final sum as
close to 15 as possible.

Think about the game. Could the first player have rolled a 2 on the
third roll? Why not? If you were the first player, would you stop after the
third roll (with a score of 16)? Why? How close is 16 to the goal?
Remember, it is all right to go over 15, so 16 is a good score since it is only
1 away from the goal of 15, and would tie a score of 14 (and beat any score
other than 14,15, and 16). If you were playing the game, would you roll
the cubes in the same order the first player did? Why or why not? If you
had a score of 13 after rolling the tu.o 5-10 cubes (and didn't know what
the other player's fmal score wo id be), would you roll one of the remaining
cubes? Why or why not?

Notice that even though the ostensible purpose of this game is to
practice addition facts, there is a great deal more involved. To decide who
won, the players must do some informal subtraction. To decide whether
to roll a cube in a given situation, or which cube to roll in cases where there
is a choice. some informal probability may be used.

Beyond that, children generally enjoy playing games of this sort, and
therefore continue practicing long after they are no longer required to do
so. If practice is essential, we should try to provide practice that the learners
will enjoy so they will continue practicing. Some children do enjoy prac-
ticing with flashcards or electronic equivalents of flashcards, and there is
no harm in letting them practice with such devices it they enjoy it. But a
well-devised game can often provide a great deal more than just enjoyable
practice. In this case we have seen that it integrated subtraction and
probability into the addition practice.

Perhaps the most important experience provided by the Cube-15
game, and other games like it, is the opportunity for students to recognize
and formulate their own problems. Throughout formal school mathemat-
ics, from kindergarten to graduate school, students are asked to solve
somebody else's problem or prove somebody else's theorem. They almost
never formulate and solve their own problems. Therefore, mathematics
classes are less interesting than they could otherwise be, and graduates of
such programs are ill equipped to use their mathematics in the real world.

In the real world, we find ourselves in situations that seem to call for
some mathematical analysis (for example, what time do I have to leave
home in order to get to work on time?). We may or may not formulate the
problem explicitly. Then we bring to bear whatever skills and knowledge
we have to help solve the problem. The recognition and formulation of
the problem are the important steps. Then we conjecture and test possible
solutions- and in many cases UT to convince somebody else that our
solution is correct. In Cube-15 and similar games, the teacher does not
tell the players that they must find a better way to play the game, nor even
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ask them ques ions like the ones I asked here. The players want to win anc,
therefore are inclined to use mathematical thinking to improve their
chances of winning.

Beyond that, after discovering what they think i- a better strategy,
most players take a certain amount of pride in telling otners about the new,
good strategy. This enhances communication skills, and it encourages
independent thinking on the part of both participants. If the teacher tells
a pupil what the best strategy is, the pupil is inclined to accept the strat-
egy without thought because the teacher is the authority If, on the other
hand, another pupil suggests such a strategy the pupil has an inclinatior
to think about it and challenge it. Thus, both discussanv, remain free to
think critically rather than accept the proclamation of an authority

Children ought to play games of this sort with different partners so
as,to encourage the interchange of different ideas. Teachers should watch
children play such games as much as possible, both to see what Idnd of
thinking is going on and to be sure children are getting the correct practice.
Occasionally, hoth players will make the same arithmetic error (for exam-
ple, 7 + 8 = 16) and thus reinforce each other's error rather than correcting
it. Sometimes a child, while concentrating on the game, will make an error
that has not been obvious to the teacher at other times. Observation Gf
game-playing activity resembles observation of real-life-out-of-school ac-
tivities as closely as anything we are likely to see in school. Such observation
will often give greater insight into a child's thought patterns than anythin
else the teacher can do.

Practice: Response Drills

A second kind of practice is the whole-class response drill. Teachers
have used such drills, in one form or another, for hundreds of years. One
of the most common forms of whole-class response drill is the oral drill.
The teacher says or writes a problem and the class answers orally in unison.
The most obvious difficulty with this form of response drill is that the
teacher cannot tell for sure what various children are saying, and, in fact,
can't even tell for sure whether i:idividual children are participating. A
child in the back of the room may be saying something quite different from
what the rest are saying without the teacher's realizing it, or the child may
simply remain silent (perhaps moving his or her mouth).

Another form of whole-class response drill that was popular during
the 19th century requires each child to have a small slate and a piece of
chalk. The children write their answers on their slates and then show the
teacher their responses. Such slates are easy to find in antique stores, and
some educational vendors and hobby stores again have them available for
schools. Writing answers on a pad of paper, slate, or similar device is
possible, but there are disadvantages even beyond the need for equipment.
Because children can easily see each other's responses if they are written
large enough for the teacher to see, the independence of a pupil's work is
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hard to judge. Beyond that, children's writing often is not sufficiently
legible for the teacher to be sure what answer was meant.

Various electronic devices also are available. With such a device, each

child has a small keypad, and the teacher can monitor each child's response.
The teacher can get a percentage score of the entire class for certain
answers and can obtain other useful information. These devices seem to
be quite effective for some purposes, but they have been expensive and are

not commonly used.
Number cubes, like those used in the Cube-15 game, also provide an

easy way to show answers. If the cubes are at least two centimeters on a
side and the numerals are written as large and legibly as possible, a teacher

can easily tell, from a distance of 15-20 feet, what answer each student is
showingor even whether all children are participating. For numbers
greater than 10, of course, each child needs more cubes. Two additional
cubes with zhe numbers from 0 to 10, but with a small "TENS" written
below the numeral allow children to show numbers up to 100 and encour-

age further thinking about the base tun nature of our numeration system.
For numbers greater than 99, a stiff cardboard or plastic card with

number wheels attached by grommets so they can turn and show only one
digit at a time can be very effective. Four or five such number wheels per
card can be used to show numbers as great as 9,999 or 99,999. They can
also be used to show decimals (have chiliren pointRith their fingers where
the decimal point should be), fractions (agree that the first two digits will
show the numerator and the last two the denominator, so that 0508 shows
5/8), time (0935 stands for 9:35), and other answers.

For some kinds of responses, one of the most effective and convenient
response devices is the hand. For example, if the teacher asks a "yes" or
"no" type question, holding the hand clenched with the thumb pointed up
could mean "yes" and the thumb pointed downcould mean "no." If a third
response is needed (such as "There is not enough information to answer,"
or "I don't know"), the open hand held horizontally can indicate that.
Similarly, for estimation problems, thumbs up can mean the ansver is
greater than a certain predetermined number, thumbs down can mean irA
less than the number, and a horizontal open hand can mean it's too close
to call. Hand signals should always be sufficiently different from each other
so the teacher can distingLsh one from another easily Thus, using fingers
to show numbers from 0 through 10 is possible, but unless responders hold
their hands steady with their fingers well spread apvt, the teacher may
have a difficult time deciding whether the right answer has been shown.

Whole-class response activities encourage practice, allow students to
correct their own errots, and allow the teacher to identify difficulties that
individual students are having or that are common to the entireclass. To allow

students to correct their own errors, the teacher should respond with the same

device the children use (slate, paper, cubes, cards, thumbs, or whatever) and
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also, at the same time, give the correct response orally, so that children
answers are reinforced or corrected both visually and aurally.

Applications to Interesting, Real Situations

Once children have explored a concept through their own experi-
ences, abstracted it, and practiced it until they have developed an appro-
priate level of skill, they should apply it in a variety of settings. Where
possible, applications should raise questions for which Lhildren mightwant
to know answers.

Interesting games or puzzles are perfectly good applications, even if
they may not seem really important in the adult world. Although "word"
problems provide a reasonably efficient method of having children do lots
of "realistic" problems in a hurry, they often are not at all real to children.
They have the added disadvantage that they often are presented in such a
way as to make children solve them without really thinking (e.g., using the
most recent algorithm taught, using the same algorithm as the other
problems on the page, looking for "key" words, and guessing from the size
of the numbers what operation to apply).

Because of these inadequacies of word problems, children should
regularly be expected to use their skills to solve problems that are not neatly
written in the textbook or on a ditto sheet. Such problems might include
projects (What's the shortest route home? How many heel-to-toe steps
will Maria take to walk the distance of three tables put together? How
much will it cost to buy three candy bars? How many hours a week do I
watch television? and so on). They might invo'.ve matters of importance
largely to adults (How can we "balance" a checkbook?). But children
should, in general, be exposed to applications of their mathematics that
came from somewhere other than the textbook or a ditto sheet.

Example 2: Multidigit Addition

The story told earlier about Max Beberman and his daughter, who
c -is learning two-digit subtraction, demonstrates the kind cf trouble
children have with multidigit algorithms when insufficient at -.mtion is
given to the learner's physical and intellectual status. An early emphasis on
the use of symbols, as opposed to development of understanding based on
concrete situations, is inappropriate and often results in misconceptions,
rapid forgetting, an inability to apply mathematics to real situations, and
loss of desire to learn or do mathematics.

TWo-Diglt Addition, without "Regrouping"

One of the most common mistakes with two-digit addition is to try
to teach the "easy" part early and save the harder part for later. So, in 1st
grade, children are often taught to add two-digit numbers "without re-
grouping" or "without carrying." This makes it appear that children have
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learned to do two-digit addition; and parents, children, teachers, tes-
tmakers, textbook authors, and others are happy that the children have
p:ogressed so far. What is really happening is that children are getting a
gross misconception of the process. 35

If a child learns to add two two-digit numbers such as +54
35 and 54 (where the sum of the units digits is less than 10) 89
in the usual manner, the child has every reason to suppose
that the procedure simply consists of adding the 3 and 5 to get 8, and also
adding 5 and 4 to get 9two separate single-digit problems. It is no
wonder that the same child, faced with adding 35 and 57,
gets 812 and assumes this is reasonable since the addition 35
done in school has nothing to do with reality anyway. They +57
add 3 and 5 to get the 8, and then add 5 and 7 to get 12. 812

Even when teachers are convinced that adding two-
digit numbers without regrouping is undesirable in grade 1, they will tell
you they must teach it because it's on the year-end standardized test. Some
years ago I was trying some materials that avoided two-digit addition mtil
grade 2. I told the teachers the children would do well enough on every-
thing else to make up for their inability to do two-digit addition. But at
the end of the year, the experimental groups did as well on two-digit
addition as control groups.

I suspected the teachers of teaching two-digit addition despite my
pleas. But was teaching one of the classes myself, and my class did as well
as anyone else's. So I asked some of the children how they did a problem
like 35 + 54 (the problems on the test were arranged in vertical format).
The first child examined the problem for a moment and wrote down the
answer. I a..:ed "How did you do that?" He looked at the problem more
carefully and said: "I added 3 and 5 to get 8. Somebody forgot to nut in
the other addition sign, but I kiiew I was supposed to add 5 and 4 to get 9."

The moral of this is that children don't have to be taught to do such
problems the wrong waythey can figure that out all by themselves. But
if they are encouraged to practice a procedure that is incorrect, they will
become quite good at it, and will be loath to give it up. Telling them things
like "Start on the right" or "Remember to add units to units and then tens
to tens" doesn't do any good, because children will be happy as long as they
are using a procedure that is consistently marked correct, even if it is bas...d
on a misconception. By the time they meet problems where the sum of tir
units digits is greater than 9, it is too late.

Certainly, there is no practical reason for teaching 1st grade children
addition (or subtraction) of two-digit numbers without regrouping since
they are just as likely, in real life, to meet those with regrouping as those
without. if such teaching has the disadvantage that children practice doing
something they shouldn't be doing (adding and subtracting as though the
units digits and the tens digits of numbers have nothing to do with each
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other in these operations), then we ought to forgo the activity until such
time as it can be done correctly.

In the meahtime, if teachers want children to do some adding and
subtracting h.volving two-digit numbers that will be beneficial, they
should do problems like 18 + 2 by having the children "count on." In this
case, the child starts counting with 19, then 20, and stops: 18 + 2 = 20.
When the small number is no larger than 3, most 1st grade children have
no trouble doing such problems. Using a number line or base ten materials
may be helpful. If apprcpriate examples are used, children quickly discover
that sometimes what is added in the units column affects the tens column
and sometimes it doesn't. This is exactly what they should learn. Beyond
that, they practice a procedure (however fnefficient) that will work to solve
any addition problem. Counting back for subtraction is equally effective.

TW-Digit Addition, in General

Sometime during 2nd grade, most children are ready to learn formal
two-digit addition and subtraction procedures. Children should know the
addition and subtraction facts well, they should be very comfortable with
numbers at least up to 100 and preferably up to 200; they should have had
a lot of experience with base ten, both with concrete objects and with base
ten symbolism; and they should be sufficiently mature so that they can see
connections and keep a reasonably complicated procedure in mind as they
carry it out.

Then, start with a physical problem in which things are naturally
grouped by tens. For example, three children are holding up all 10 of their
fingers, and another child is holding up 7 fingers (37). In anothergroup,
two children are holding up all 10 of their fingers, and a third child is
holding up 6 fingers (26). How many fingers are up altogether? (37 + 26

?)

The children can se 5 tens. Bring the other two children together.
They have 13 fingers up. If you pretend to remove 3 fingers from the
six-child and place them on the seven-child, then the first now has 3 fingers
up and the second has 10 fingers up. Now there are 6 tens and 3 or 63.
A similar procedure can be used with ice cream sticks in much the way
Max Beberman did subtraction with his daughter

As with addition facts, children should be encouraged to use physical
representations of objects when the objects themselves are not convenient
to manipulateuse ice cream sticks or fingers to represent cars, houses,
or people, tor example. Then, as another step toward abstraction, they may
use pictures or othee symbols.

After children have done many examples of the sort described, using
several different sets of physical objects, as well as some physical and
symbolic representations of physical objects, they should be
encouraged to keep written records of what they are doing. 37
For the fmger problem mentioned previously (37 + 26), for +26
example, encourage the children to start by lining up the

3 7
Implementing Recommendations 31



tens and ones in a vertical format because that makes it easier to keep track
of the activity (though it is not essential, and if children prefer not to do it
this way, encourage them to do it in whatever ways seem appropriate).

What did we do first? Added 3 tens and 2 tens getting 5 tens. Let
write that in the tens column. Next, we added 7 and 6, getting 13. We
rearranged the 13 into 1 ten and 3. That made 6 tens and 3 or 63. Notice
that the natural way to keep records here is to start on the
left and work to the right. That is entirely acceptable but
requires a bit more work than if we started on the right and 37

checked first to see if adding the units would produce an +26

extra ten. Since 7 + 6 yields 1 ten and 3, we will have an 5

extra ten. Now, we can simply write the 3 in the units Ji
column, add 1, 3, and 2 tens, and write the 6 in the tens 63

column.
Slightly ;:ss work and mess is required if we start at the right. This is

enough reason to convince most children that they ought to start at the
right rather than the left. If they choose to work from left to right they
should he allowed to do so as long as they can do it correctly. There
nothing inh;., endy wrong with wo&ng from left to rightit just requires
more work and products a slightly messier paper.

Notice that there is a reason for doing things the way we usually do
them. In the typical classroom the pupil is told to work from right to left
when adding multidigit numbers because the teacher or textbook said to
work from right to left. Then, when subtraction is introduced, they work
from right to left because that's the way we did it in addition. In multipli-
cation we work from right to left because that the way we did it in both
addition and subtraction. In division, we forget all this because there we
work from left to right.

No wonder children begin to get the idea that mathematics is a form
of mysticism in which they must carefully follow rules handed down from
generation to generation to get answers that will satisfy the generationthat
precedes them. No wonder children grow up thinking that there is a
mathematics done in school, and there are real problems done outside of
school, and the two have nothing to do with each other. There are reasons
for almost everything we do in mathematics. Children should be encour-
aged to dkcover, or at least see, those reasons. Understanding the reasons
will help them remember how to do the mathematics; but more important,
it will help them understand that the mathematics is related to their reality
and that mathematics can be used to help them understand the real world.

We should now practice two-digit addition problems with response
exercises, with games, with real applications that are appealing to children,
and so on. One of many games that can be played to practice two-digit
addition is "Roll-a-Problem: Two-digit Adizlition." In this game, the
teacher, or one member of the class, rolls a cube (say the 0-5 cube) four
times and each player writes the number in one of the four spaces. The
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cube is rolled again, and again each player writes the num-
ber in one of the remaining three blanks, and so on, until +
all ft:our blanks are filled. Then, each player adds the two

_
two-digit numbers formed, and the greatest total wins. In
a class of 30, of course, there usually will be lots of people
with the best possible score. In smaller groups, ties are less
likely.

Notice that, as in Cube-I 5, there is more to the game than just
practicing addition of two-digit numbers. D !ciding who won requires
comparing numbers (a not altogether trivia', activity for a seven-year-
old), and to avoid a certain amount of embarrassment, children have a
strong tendency to check their answers before announcing the results
a generally felicitous development.

But beyond that, there is a good deal of probability and strategy
inherent in this game. Suppose the 0-5 cube is being rolled and the first
number rolled is a 3. Where would you put it? Does it make a difference
whether you put it in the top or the bottom tens spot (or units spot if you
chose to put it in a units spot)? Would the number of people playing change
your decision? Would your assessment of the skill of the other play-
ers change your decision? The thinking involved can become quite
sophisticated even for an apparently simple game like this.

One more point should be made about teaching both single-digit and
multidigit addition. Whenever possible, addition and subtraction should
be taught at about the same time so that learners can contrast the two and
so that problems can be presented that are not all solved by using the same
operation.

Often, when addition and subtraction are taught at about the same
time, teachers complain that children are confused. It is true that children
find it much easier to learn only one algorithm at a time, then practice that
algorithm for a long time, then solve "problems" using only that algorithm,
and then go on to something else. The difficulty with such a procedure is
that it pretty much eliminates the need for the learner to think. When the
time comes to decide which operation is appropriate, the pupil is unlikely
to have given enough thought to what the operations mean i3 be able to
make intelligent decisions. Thus, by saving "confusion" and work at the
beginning, we do the learner a disservice that doesn't become apparent
until later. This matter is discussed further in Chapter 4, "Problem
Solving."

Three-Digit (or More) Addition

If children really understand the base ten numeration system and the
process for adding two two-digit numbers, three-digit addition should
seem quite natural to them. Using base ten blocks, ice cream sticks with
bunches of ten and bunches ot ten tens, and other similar physical mate-
rials, they should be able to follow through essentially the same steps used
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for two-digit addition, including the abstracting involved in keeping re-
cords, practice through various means, and good applications.

After that, learning how to add in general should be almost automatic
if children have understood what went on before and if the general
algorithm is approached appropriately. If you are in the middle of an
addition problem such as the one shown here, you don't have to know
whether the 8 and 5 are units, tens, hundreds, or something else. You can
think of them as units (except for possible "carryLig" from the column to
the right). If they are really hundreds, there would be
8 hundreds and 5 hundreds to be added, giving 13 . .. 738 .. .
hundreds (or possibly 14 hundreds if there were more + . 425 .

than 9 tens). Write the "3" in that column and add
the "1" in the column to its left getting 6 ten-hun-
dreds (thousands) (or 6 ten-whatever-is-in-the-right-most-column-
shown). In this case, we can think of whatever is in the right-most column
as units, bunch ten of them together to get the things represented in the
second column, bunch ten of those together to get the things represented
in the next column, and so on. Doing this physically may be desirable for
some children, but imagining this activity is more appropriate where
possible.

By doing enough examples of this sort and encouraging children to
see that the procedure is the same no matter which column is involved,
you can quickly show them how to add, no matter how big the numbers.
Of course, a great deal more development is required than is shown here,
but there is no reason why a typical 3rd grade child cannot understand and
use a general addition algorithm if the developmental work is done
properiy.

The generalization is important for several reasons. First, it saves a
lot of worlc. In many classes and many textbooks, children are taught the
algorithm for two-digit numbers, then three-digit numbers, then four-
digit numbers, and so on, over a period of years as though each procedure
were different from the others. This is a waste of time and gives a distorted
notion of mathematics.

Second, if approached correctly, a general addition algorithm shows
the beauty and power of base ten notation. The fact that a digit in any
column stands for a number exactly ten times what the same digit in the
column to the right would stand for is the crucial point here. Since that is
always the case, you don't really have to know in which column you're
working to proceed.

Third, this shows the great power of abstract reasoning and ger iral-
ization. By thinking abstractly and in general terms, we can make a very
powerful statement that allows in. to do many more problems than we
would be able to do without such abstraction and generalization.

Another important point to be meaioned here is that this discussion
of addition extends over a period of four to five years in the life of a child.
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What happens in kindergarten and grade I very much influences what can
be done in grades 2 and 3. If each step is taken in a way that reinforces
children's outside kmowledge while gently correcting misconceptions,
there will be regular constructive growth. Each step should be planned
with a knowledge of what has gone on before and what will come later.

One of the great weaknesses of U.S. education in mathematks is that
teachers seldom know what happened in previous grades or what will
happen in subsequent grades. A good textbcok series should correct this
by relating the development in one grade to previous and subsequent
grades and by telling the teacher (in the Teachers' Guide) how a ' 'cular
activity fits with previous and subsequent work. A supervisor 1, 'd also
know the entire curriculum well enough to understand th, - ertics.1"
connections and to encourage teachers to teach in a way thai :r ifitate
subsequent teaching (see Chapter 6 of this book, "Connectiins").

The discussion here "las been limited mostly to computation. Every-
thing discussed is applicable, with appropriate modifications, to other
topics in school mathematics. There are several reasons for using compu-
ution as the prime example:

I. The content is familiar to everybody, and therefore easier to
follow than some other topics might seem.

2. Because we have been teaching computation in relatively less
effective ways for decades, showing the details of better ways to teach
computation should allow the reader to see the contrast between the more
and less effective procedures.

3. Since the reformers who are advocating introducion of new
topics (e.g., data analysis, estimation, discrete mathematics, earlier study
of geometry) are also advocating a better pedagogy, textbooks and other
instructional materials from which these topics might be taught are more
likely to approach them in the desired manner.

4. One such topic (functions) is considered in Chapter 6 to show
that both traditional and nontraditional topics ran be treated this way.
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reasonable, but invo! s far more. It includes trying to find a better way to
solve the problem and trying to generalize the problem, the answer, and
the method of solution. It includes trying to think of other problems that
might be related, and so on. "Check your answer" simply does not convey
the richness of this activity when carried out properly.

Key Words

As problem-solving mania spread through the educational world,
publishers produced a plethora of books and pamphlets on how to teach
problem solving (on Friday afternoons after the real work of the weekwas
completed). An advertisement for one such booklet presented the follow-
ing problem and solution procedure as an example of the wonderful things
the booldet could do for education:

Jaclde dress size is 8. Her sister's dress size is 14. How many sizes smaller
is Jackie's dress than her sister's?
Step 1: Circle the key word.
Step 2: Circle the correct equation:

14 + 8 = 22
14 8 = 6

Step 3: Write your answer.

Key words are used for the purpose of a ;viding thought. Children can
start at the end of a problem, work their way backwards until they reach a
"key word" and then do the appropriate operation on the two numbers
given (if there are more than two numbers the operation is almost certainly
addition, so no key words are needed). In this case, the key word is "smaller"
and having circled that word should lead the child to also circle the second
eipation (involving subtraction) and arrive at the answer, 6.

What's wrong with this procedure? Almost everything. Try the
following problem in a 2nd or 3rd grade mathematics class:

Mary walked 11 meters north. She then turned and walked 7 meters west.
Did she turn right or left?

If the most common answer is 4, you will know that the class members
have mastered the key word procedure (since "left" always means subtract)
but are not reading and thinking about the problem.

Step 2 of the dress problem is based on the same assumption we
discussed in connection with rules, namely that all mathematical problems

solved by applying an arithmetic algorithm that the problem solver has
been taught. In this case, apparently the only operations available are
addition and subtraction, so there are only two possible equations (pre-
sumably 8 14 = 6 is not to be considered for other reasons).

Finally, this paragon of problem-solving pamphlets has led the inno-
cent reader unerringly to a wrong answer. The correct answer to the
problem, as anyone who has even a passing acquaintance with women
dress sizes knows, is 3, not 6. Women's dress sizes come in even numbers
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(Odd-numbered dress sizes are called "juniors" and are not usually worn
by people who use the even-numbered sizes.)

The point of this comment is that dress sizes are not numbers in the
usual sense. Numbers can be added, subtracted, multiplied, and divided;
and the result will make some sense. Highway names are a good example
of symbols masquerading as numbers that aren't really numbers. As a car
approaches Hartford, Connecticut, the motorist sees a sign that says "86
is now 84." Every time I see the sign I absently wonderwhether that means
that 86 is now divisible by 7.

In the same sense that we do not do arithmetic with highway numbers,
we do not do arithmetic with dress sizes. If you were to cut up Jackie
sister's dress (size 14) to make a dress for Jackie (size 8) you would not have
three-fourths of a dress for Jackie left over.

Dress sizes are not even universally ordered in the natural way, If you
are size 14 and would like to be size 12, you can accomplish that noble goal
either by dieting, or by buying your dresses in a more expensive store.
Alternatively, if you can wait about 25 years without putting on weight,
you should accomplish the same feat since the size assigned to a given dress
appears to be reduced about one step every 25 years. So, in the 21st century,

the equation 8 14 = 6 may no longer be an unreasonable way to
determine a dress size.

The potentially exciting information that could be communicated to
children with the dress problem is that there ore lots of things around that
seem to be numbers that do not beha ve ot all like numbers. We must be
careful how we treat those things. If a child cannot reach the "20" button
on a hotel elevator, pushing the "10" button twice will not make the
elevator go to the 20th floor, nor is it likely that a person who is staying in
room 1999 of that hotel is next door to the person in room 2000.

To carry out the human activity of solving problems, we must think
about situations and use reasonable judgment.

UnreanstIc Problems
During my second year of teaching, a boy named Bill was in one of

my 8th grade mathematics classes. Bill was very good at arithmetic but
could not solve word problems. He would say "I can do the mathematics,
Mr. Willoughby, I just can't do the problems." I tried many times to explain
that there was no point in learning "the mathematics" (or symbol pushing)
if you couldn't use it to solve problems.

Bill was on the volleyball team that I coached. One evening at about
6 p.m., Bill and I were the last two people to leave the gymnasium, and
therefore the last two people to leave the scho A. As I heard the doorclose
and lock behind us, I realized that it was cold and snowy out, that I had
left my coat in my locked classroom at the other end of the building, and
that I had no way of getting back into the school. I stood there and shivered
for a moment.

4 6

40 Mathematics Education for a Changing Wood



4
Problem Solving

The latest fad in education is "critical thinking and problem solving."
Courses in "How to ThinkAbout Nothing" have been propagated.

Books, pamphlets, and courses purporting to teach anybody how to solve
any problem are abundant.

Recently a teacher approached me at a mathematics convention and
asked what I would recommend to teach problem solving. I suggested a
teacher. She explained that she wanted a pamphlet or book she could use
on Friday artemoons to teach problem solving. I wondered aloud whether,
if mathematics (and other subjects) were taught properly in the first place,
such a book, and such Friday afternoon sessions, wouldn't be superfluous.
She chose to speak tc, somebody else. I'm sure she found what she was
looking for.

There is no rorl road to critical thinking. There's not even a pauper's
paved path to easy problem solving. Teaching today's children to become
the thinking, caring leaders who will be able to solve the world's increas-
ingly complex and quantitative problems requires a total commitment, not
just a Friday afternoon contribution.

Possible Pitfalls in Teaching Problem Solving

Because there are so many people willing to provide easy nostrums to
teach critical thinking and problem solving, there is a need to explain what's
wrong with some of these methods before describing some of the compar-
atively more difficult, but more successful, procedures that help students
become better critical thinkers and problem solvers.

Rules

Teachers often have a misguided belief that we benefit pupils by doing
their thinking for them. If we can come up with a set of rules that children
can memorize to solve mathematics problems, to do science, to write
coherent essays, and to understand the broad implications of history, then
our pupils will be spared the unfortunate necessity of actually thinking for
themselves. In fact, if such rules actually did exist, it would be possible to
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program a computer to do these higher-level thinking tasks. We must
remember that educating a human bo eing is a very different task from
programming a computer, and a much more difficult task.

A 3rd grade textbook presents the following four rules for solving
problems: (1) Read the problem. (2) Think. (3) Add or subtract. (4) Check
your answer.

Later in the same book, the following three rules for solving problems
appear: (1) Read the prob!ern. (2) Add, subtract, or multiply. (3) Check
your answer.

The astute reader will notice that if there are three operations from
which to choose, the authors bdieve you no longer should have the luxury
of thinking.

These may seem to be unusually naive sets of rules for solving
problems, but they have flaws that are common to most. The rules are
essentially not helpful, and are probably counterproductive. If the problem
does not come in the form of a written word" problem, of course, reading
will not necessarily be an appropriate activity. But even a more sophisti-
cated instruction, such as "Be sure you understand the situation" is not
likely to be of much help without a great deal of explanation and a lot of
experience. Such instructions simply don't mean anything to children. If
children are required to memorize such rules, they will do so to regurgitate
them on a test, but experience shows that they never actually use such rules
to help them solve real problems. This is not surprising, because the
rules obviously wouldn't be of much help.

The injunction to "think" is of no value, of course, without some clue
as to what the topic of thought might be, or how one might go about
thinking in a constructive manner. That probably accounts for the fact that
nobody appears to have noticed the absence of this precept when the rules
were repeated.

The next rule, "Add or subtract (or multiply)," shows clearly the
degenerate nature of such rules. There is an inherent assumption here that
all problems involving number are to be solved by performing some
mathematical operation and that the appropriate mathematical operation
will always come from among those the pupil has been taughtusually
quite recently. That simply is not the way the real world works. After
teaching multiplication to a group of students for a few weeks, try giving
them the following problem:

If 1 man can jump a stream that is 3 meters wide, how wide a stream can
5 men jump?

Choosing the most obvious arithmetic operation is not necessarily the
best way to stay dry in this case.

The last rule, "Check your answer," is a grossly oversimplified version
of a useful custom. As is discussed later, most good problem solvers make
it a habit to think about a problem and their solution to the problem aLr
they have solved it. This includes checking to see that the answer seems
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Bill said, "Is something wrong, Mr. Willoughby?"
I explained the problem to him and said it would be a long cold

walk down to the bus stop. He asked, "Would you like your coat,
Mr. Willoughby?"

I said, "Yes."
Bill disappeared around the corner of the building, apparently not

hearing when I yelled, "Bill, don't you want the key to my classroomit's
locked."

About three minutes later Bill walked through the gym door with my
coat. He handed it to me. I said, "Thank you."

He &a' "You're welcome." We never discussed the matter again.
As I walked down to the bus stop in my nice warm coat, I thought

about "poor dumb Bill" who couldn't solve problems. I began to wonder
hether it was Bill who was out of step or the schooling with which he was

trying to cope. After reading and thinking about some of the "word
problems" that appeared in our textbook, I concluded that anybody with
even a modicum of intelligence and good judgment would not waste time
trying to deal with such stuff. The following example comes from a fairly
recent first-year algebra book, but is quite similar to the problems with

hich Bill was asked to deal.

Mary's mother needs three hours to do the laundry. If Mary helps her,
they can do the laundry in only two hours. How long would it take Mary
to do the laundry by herself?

This problem was obviously written by someone who had never done
the laundry. Doing the laundry is usually not a two-person activity. If it
takes Mary's mother three hours to do the laundry, it will probably take at
least that long for Mary and her mother to do the laundry together. Sorting
the laundry requires one mind in control or the sorting criteria will change
from time to time and make for a very inefficient process. Once the laundry
is sorted it is placed in a machine with various quantities of soap and other
chemicals. Then, the person or people wait while the machine goes
through its cycles. Having two people wait does not make the agitator go
faster than if only one person is waiting. The damp, soggy mass is then
vansferred to a dryer where it rotates again, with no noticeable difference
in speed dependent on the number of people waiting. The clean, dry
laundry is again sorted. The launderers then search for the missing
sockthat may be a two-person activity. And how long it takes Mary
herself to do the laundry depends of a lot of thingsher age, her knowlede
o1 laundry intricacies, and how much allowance she gets for the chore.

The point is that most of the problems presented to students in
mathematics classes are patently unreal. Rather than motivating the SU,
dents to solve problems and study more mathematics, these problems teach
what the brighter students already suspect, namely that mathematics has
nothing to do with the real world and can be safely ignored by anybody
who wants to have a better understanding of the world.
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Nonpertinent Clues

For his Ph.D. dissertation, Stanley Erlwanger (1974) interviewed
children about how they solve problems. One boy who had done quite well
at solving problems throughout his school career said that if there were
two numbers and they were both big he subtracted. If there was one large
and one small number he divided, and if it didn't "come out even" he
multiplied.

Interestingly, P.R. Stevenson wrote an article for the Journal of Edu-
cational Research in 1925, in which he reported an almost identical interview
with a young pupil of that era.

Some years ago, I told this story to my secondary school mathematics
methods class. About two weeks later, one of the class members who was
doing her student teaching said, "Do you remember that method of solving
problems you taught us two weeks ago? It really works! My students just
love it, and my cooperating teacher is going to use it from now on."

Since then, whenever I tell a story that is meant to be funny, I make
a point of laughing.

Unfortunately, we as educators all too often lose sight of our real goals.
We settle for short-term, intermediate goals such as getting all the kids to
do well on a standar,lized test on problem solving. Scores on such tests
presumably are positively correlated with a person's ability to solve prob-
lems in the real world. But the more effort we put into teaching for the
tests, the more likely it is that we will fool ourselves, the children, and
others who are interested, into believing that we have taught the children
how to solve real problems when we have not. Some textbooks, and even
some tests, seem to have been written by people who have joined in a
conspiracy to make it appear that children have learned to solve problems
when they have in fact only learned how to take certain kinds of tests. Such
activity is harmful largely because it takes time and 'effort away from the
serious goal of helping children understand and deal with the real world.
In real life, they will not often meet problems that they can solve only
because of the collusion of the problem poser.

Teaching for Problem Solving

The state of California has recently instituted a 12th grade test of
mathematical achievement consisting of 12 parts. One of those parts is an
essay. On one of the other parts calculators are not allowed. According to
a knowledgeable and reliable source, some 12th grade teachers, upon
seeing samples of the new test, asked, "How can we prepare students to
take this test in just two weeks?" The response was; "You can't. Twelve
years of good mathematics education is needed to properly prepare people
to take this test."

That's as it should be.
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The way in waich people originally learn mathematics plays an
important role in determining whether they are able and willing to use it
subsequently to help understand the world around them and solve prob-
lems using their mathematics. Deriving mathematics from the real world,
understanding the power of abstraction, practicing, and applying the
mathematics to situations of interest will all help people use their mathe-
matics to solve problems forever after. Avoiding some of the common
pitfalls described in this chapter will also encourage people to use their
mathematics effectively. What more can be done?

Undoubtedly, the most effective way for people to learn to solve
problems is for them to solve problemslots of problems. Beyond that,
however, there is now considerable research evidence that ?eople who
think about their problem solving after they have solved a problem are
better problem solvers than those who don't. Although learning rules in
advance that are designed to reduce the amount of work needed to solve
problems seems to be of little help (and can even be counterproductive),
working out rules as one solves problems, or in retrospect, is helpful in
solving future problems.

In their early schooling, people should be taught their mathematics
in a way that will encourage future problem solving. They should be
exposed to many problems. As time passes, they should be encouraged to
think about their problem-solving strategies retrospectively. Later, they
should be encouraged, with help, to think about general strategies that
have helped them solve problems. They should then organize those
strategies in a more or less informal way to help them recall appropriate
strategies when they meet various types of problems in the future. Of
course, they should continue to learn new mathematics in the same
constructive manner as earlier and should continue solving lots of
problems, using and modifying their strategies as they work.

Practice in Solving Problems

Before we can set out to practice solving problems, we must first learn
how to recognize a problem. This is not an altogether trivial task. Let's
consider an example.

A hunter started at camp and walked one mile south. Then she walked
one mile west. There she shot a bear. The bear was heavy, so instead of
retracing her steps, she walked one mile straight back to camp, dragging
the bear behind her. What color was the bear?

Is this a problem? Yes and no. If you've seen it before, chances are you
remember the answer and therefore this is not a problem at all, but simply
a memory exercise. Ifyou've not seen it before, you may be so totally unable
to deal with the situation that you have no idea where to start; so you puzzle
over the question for a moment or two, conclude that the person asking
the question has lost his mind (or perhaps never was totally right in the
first place), and you forget the whole thing. Or, if you've never seen the

Problem SoMng 43



story before but can use your knowledge of the way human beings identify
places and directions on the face of the Earth and relate that to colors of
bears, this may be a problem for you, and :,ou may or may not be able to

solve it.
If you solve the bear problemor if you've seen the solution pre-

viouslyyou will, I'm sure, be unable to resist trying to generalize the
problem to identify all places on Earth where a person could start, walk
one mile south, one mile west, then one mile back to the starting spot (there
are infinitely many such spots, which are described at the end of this
chapter for those who are interested).

The situation in isolation is not a problem, nor is it a nonproblem. To
decide whether it is a problem, we need a person to go s% ith it.

Many scholars have done significant research on what constitutes a
problem and how to define a problem. For our purposes, we will consider
a problem to be a situation in which a person wants to reach a particular
goal, is somehow blocked from reaching that goal, but has the necenary
motivation, knowledge, and other resources to make a serious effort (not
necessarily successful) at reaching the goal.

This definition immediately eliminates most of the activities called
"problems" in school mathematics. In many cases theepx7:31103is not the least
interested in reaching the goal set by the teacher or t k. But, even if
the goal is of no inherent interest to the pupil, external pressures may
produce interest where there was none, so we will ignore this issue.
However, problems that are inherently interesting to most pupils are likely

to be more useful tools for teadaing problem solving than those that arn't.
For most students there is really no particular obstacle to reaching

the goal in usual school "word problems." Typically, they have just been
taught precisely how to reach the goal. Indeed, when teachers fail to teach
pupils precisely how to rt-mch the goals, the pupils feel cheated"You
didn't show us how to do that problem." If the teacher had showed them
"how to do that problem" it would no longer have been a problem. For
those students who didn't understand the explanation, or who can't figure
out which problem is to be done with which method of solution, or who
were absent (physically or mentally) when the explanation was given, or
who, for some other reason, don't already know how to answer the
question, the "problem" is also not really a problem, it is simply a very
frustrating situation in which they are doomed to fail.

Unfortunately, good problems are hard to create. Even if a teacher or
textbook author or test writer creates a great problem, it is likely not to be
a problem for a large share of the desired audience. The virtual certainty
of failing for much of the potential audience should not, however, deter us

from trying.
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Examples of Good Problems

To give the flavor of a good problem, I now set forth several examples
of situations that are likely to be good problems for at least some students.
In choosing textbooks and tests, decision makers should look for these
kinds of situations. Teachers should be encouraged to create as many such
situations as they can beyond what is provided in textbooks and tests.

Games. Games like Cube-15, described earlier, offer excellent prob-
lem-solving opportunities. One of the benefits of such games is that some
pupils will simply be practicing necessary skills while others will have
proceeded on to some seious problem solving. Two children playing such
a game together may be thinking on very different levels. However, it is
likely that the player who is solving some serious problems will influence
the other player after a while, either by action or by word. One of the
experiences any teacher will have who uses such games is that somebody
will accuse somebody else of cheating: "Kevin is looking at the cubes before
rolling them." "it's not fair to thinkthis is math class."

The process of recognizing that there is a problem to be solved (How
can I play this game so as to have a better chance of winning? Which cube
should I roll next? Should I roll another cube or stop? Should my strategy
change depending on the other player's score? Should my strategy change
depending on what I think of the other player's ability? and so on) and
expressing it in a form that helps to reach a solution is a very important
part of problem solving. Games are one good way to practice this process.

Good, fun games that provide both worthwhile practice and serious
problem-solving opportunities are not easy to create, and overworked
teachers are not likely to produce many of them. However, there is no
reason why a textbook shoukl not provide good games of this sort to
practice virtually every skill that children ought to practice. Integration of
games that encourage thinking and problem solving into the textbook at
appropriate places (so that children practice skills bnly after they have
understood the underlying.: concept) should be considered a positive attri-
bute of a textbook series. Textbook-adoption committees should look for
such games.

Story Problem:. Special stories that involve serious problem solving
may be of help if written properly and treated effectively in the class. For
younger children, such stories should probably be read by the teacher to
the class to avoid issues of readability and to help keep children on task
Such stories should mix questions that are simple and straightforwrrd with
others that may require considerable thought or that may not even have
one simple, correct answer. They should not, of course, rely heavily on the
most recently taught skills si, .!e that reduces the need to think. Children
should discuss these questions with the entire class.

For older children, such stories are more appropriately wrizten in the
pupils' Woks, and the stories should be read and solved in small groups
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(each group should include at least one good reader). Each small group
should agree on its answers to the various questiorK ^id report back to the
class (orally, in writing, or by other means such as drawings or panto-
mimes). Then, when appropriate, various groups may wish to debate the
merits of the various solutions.

There is an important difference between these special stories and the
activities in certain textbooks that may seem similar on the surface, but are
essentially different. When my son was in 2nd grade he asked me for help
with his homework one day. When we were finished, I noticed that the
only interesting question on the page was in a box in the lower right hand
corner. The box was labeled "THINK"' I pointed to the box and said,
"Look, Todd, there's an interesting problem. Let's do that one."

He took one look at the word "THINK!" and responded, "We don't
have to do that."

Although the problem was good, the labeling technique was terrible.
All members of the class had discovered that they were never expected to
think except when they were doing problems in such boxes. Furthermore,
only the "better" students were ever asked to do such problems. Thus,
nolx dy was ever challenged to decide whether a particular problem could
be done by pedestrian procedures or required serious thought, and only
the "better" students were expected to work on the nonpedestrian prob-
lems. But one of the most important parts of problem solving is deciding
whether there is a problem in the first place, and the people who are most
in r.eed of practicing problem solving are the people who aren't naturally
good at it. Thus, good nonroutine problems like the one Todd chose not
to do should be mixed in with the regular problems on the page with no
special symbols to set them apart as the problems to be done only by the
good students when they want to think.

Good story problems can be pure fantasy (which can be quite real to
most children and many adults), can be based on historical fact (for
examp!e, how did young Karl Gauss determine the sum of the numbers
from 1 to 100 in a matter of a minute or two when his teacher assigned the
problem to his class?), or may involve realistic situations (a realistic story
about reducing air pollution or heat loss, for example).

Projects. Projects are often good ways to get children to do some
serious problem solving. For example, which grocery store in the
neighborhood gives the best buys?

Children usually start this project by assuming they can read adver-
tisements in local pape:s to reach a conclusion, but then quickly decide
that ads are likely to provide a biased sample. A grocery list is often
unrealistic when made up by the children; but with parents' help, a fairly
reasonable class, or group, grocery list usually can be developed. There are
additional difficulties associated with different brands at different stores,
differences in quality (especially of produce and meat), convenience,
service, and so on
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Usually children decide they can't really answer the original question,
but they can collect a lot of interesting information that gives them strong
arguments for one or the other of the stores and that might influence some
shopping decisions. That's the way the world really is. Many questions that
can be asked don't have simple answers; but we can often use mathematics
to help us answer some of those questions, or at least to get a better
understanding of the situation.

A project that will provide good applications of ratio is to have
children measure various body parts, determine ratios, and then try to
predict measurements for an unmeasured person based on one or two
measurements and the average ratios for the class. In Gulliver's Travels, Part
HI, the tailors made suits by measuring only one body part (the thumb)
and then using appropriate ratios to calculate all other dimensions.
Gulliver remarked on the fact that nobody's suit seemed to fit very well,
but failed to apprecil.te the remarkable fact that they fit at all.

Predictions made on the basis of such measurements and calculations
will be less than perfect, but they will be surprisingly close in most cases.
On the other hand, if the average ratio of head circumference to height for
a 3rd grade class is used to predict the height of an adult (given the adult's
head circumference) the prediction will be much further off than predic-
tions for children of about the same age because this ratio changes as we
mature physically.

Other potential projects are all around us. Have a class uy to figure
out how to park more cars, conveniently and safely, in the school park
lot, reduce the waiting time in the school lunch line without extending me
lunch period too much, synchronize traffic lights on a local two-way street
for a reasonable speed in lioth directions, figure out how to gerrymander
the state so one particulai party will get an overwhelming majority of the
congressional seatsthen do the same for the other party, and finally work
out a fair redistricting arrangement, and so on.

A major deterrent to doing this sort of project is that teachers, parents,
and pupils have a hard time categorizing such projects as clearly arithmetic,
algebra, geometry, probabili y, or whatever. Most worthwhile applications
of mathematics, however, are hard to categorize. This is not a good
argument against such projects and applicationsbut is a rather
good argument against the compartmentalization of school mathematics.

Applications to Mathematical Thpics. There is a danger that when
we speak of applying mathematics o. of deriving the mathematics from the
learner's reality we will fail to remember that many of the best applications
of mathematics are to mathematics itself and that, after some years of
studying, the learner's reality includes mathematics. Thus, it is perfectly
reasonable to use a four-dimensional space as part of the learner's reality
when teaching a course in complex variables even though four-dimensional
space would seem quite abstract to many people. Similarly, the arithmetic
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of whole numbers may be real to a youngster learning algebra even though
it was quite abstract to the same person several years earlier.

Consider the following example:
A student examines a table of squares and notices a peculiar pattern.

The differences between successive squares seem to equal the sums of the
numbers of which they are squares:

Number 1 2 3 4 5 6 7 8 9 10 11 12 13.

Square 1 4 9 16 25 36 49 64 81 100 121 144 169...

3 5 25

Notice: 4 1 = 3, and 1 + 2=3; 9-4= 5, and 2 + 3 = 5; ... 169 144 = 25,
and 12 + 13 =25. Will this go on forever? If so, how can we be sure? If not,
when will it end? How can we test the conjecture about successive squares?
We could try random examples to see if it works for them:

I, 432 = 1,849; 442 = 1,936; 1,936 1,849 = 87;
43 +44=87.

1482= 21,904; 1492 = 22,201; 22,201 21,904 =
148 + 149 = 297.

3,0542 = 9,326,916; 3,0552= 9,333,025;

297;

9,333,025 9,326,916 =6,109; 3,054 + 3,055 = 6,109.

This looks very promisingbut maybe we've chosen numbers for
which it happens to work, and there are others for which it doesn't work.
Shall we go on trying different numbers? If we tried a million differcnt
pairs of numbers and it worked for all of them, would we know for sure
that it always works? If we tried a million different pairs of numbers and
it failed to work for one of those pairs, would we know for sure whether it
works for all pairs of numbers? (Yes. We'd know for sure that it doesn't,
but we might be inclined to believe that it works for all pairs except that
one.)

Let's let N stand for any whole number. Then N + 1 would be the next
whole number after N. What is the relationship between N2 and (N + 1)2?
If we know a little algebra, we know that (N + 1)2 = N2 + 2N + 1. The
difference between that and N2, of course, is just 2N + 1, or N + (N + 1),
which is what we were trying to prove. So, we now know that the statement
is true for all whole numbers

Is this important? Is it interesting? Is it even wonn remembering?
Could we use it for anything? Let's try. Suppose we know that 402 = 1,600
and would like to know what 412 is. How can we find out? We know that
412=402+ 40 + 41, we can add 40 and 41 "in our heads," and we can square
40 in our heads. So. we can find the square of 41 by adding 1,600 and 81,
getting 1,681. Sirralarly, 91' is 8,100 + 181 or 8,281, and so on.

5 4
48 Mathematics Education for a Changing Wood



Also, a bit of thought will convince us that 892 is 8,100 (90 + 89) or
8,100 - 179 or 7,921. So we can use this theorem to calculate I ,entally the
squares of numbers that happen to be near (one away from) any whole
number for which we already know the square. That seems reasonably
useful for some purposes.

As well as reviewing the theorem itself to see if it is sufficien,-, useful
or interesting to remember and to use in the future, you might also consider
whether the process through which we went to discover and prove it are
generalizable and likely to be useful. Are there other interesting, testable
patterns? Does letting a letter stand for some general number make sense,
and is it helpful? Is algebra useful in proving general statements about
arithmetic?

The particular trick shown here is not of great importance. But there
are several important messages. First, mathematics can be applied, and
should be applied, to problems withii, mathematics as well as outside
mathematics. Second, by thinking mathematically, people can make life
easier for themselves. There are many instances in which a little bit of
algebra can make arithmetic computations much easier, and similar exam-
ples abound in other areas of mathematics as well. Third, bycompartmen-
talizing mathematics, we are likely to mei-look many of these examples.
We should therefore do all we can to decompartmentalize school
mathematics (this issue is pursued further in Chapter 6, "Connections").

One further comment about the relationship of algebra to arithmetic:
by the time snidei.,..; start studying algebra, they usually are so iamiliar with
arithmetic that it is part of their reality. In that case, the algebra should be
developed, at least partially, from that reality.

For example, if a teacher is teaching how to multiply 27
(3x + 5) times (2x + 7), arithmetic examples might come x35
first. Try multiplying 35 times 27, for example. We would 35
multiply 5 times 7, getting 35; then we would multiply 5 100
times 2, getting 10 (tens), and add, getting 100 + 35. Next 210
we would multiply 3 (tens) times 7 and then times 2 teils, 600
and finally we would add the four partial products together. 945
A teacher could have students work this out in groups and
keep careful track of what they are actually doing, and then, by analogy,
try to work out the problem involving 3x + 5 and 2x + 7, thinking of the x
as 10. After several erperienc , like that, the students should have a fairly
dear idea of the re' inship between the arithmetic examples and the
algebra.

Space Applications. The most common applications of mathematics
to the world around us involve number and space. For some reason, we
tend to neglect the space applications in school mathematicsand when
we do study geometry, it is usually two-dimensional (or plane) geometry.

We live in a three-dimensional world and constantly have to make
decisions about that three-dimensional world on the basi3 of available
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information. We see only a two-dimensional worldor more accurately,
we see two two-dimensional worlds, one with each eye. Our brains make
inferences about the three-dimensional world from the two, slightly dif-
ferent, two-dimensional pictures. Young children ought to have lots of
experiences that emphasize this relationship and that help the chil-
dren understand both two- and three-dimensional space, as well as the
relationship between them.

Such experiences might include predicting how many times they can
fill a small container and pour its contents into a large container. They
would then experiment to gct an actual count (usually more often tha.:
people predict). They could repeat this activity using a conical container
and a cylindrical container of the same height and base.

At a later time they could derive formulas for volume and see why
their intuition led them astray. The volume of similar containers varies as
the cube of a length, but the area we see varies as the square of a length.
Thus, doubling a length multiplies the volum: of a container by 8 while
only multiplying the area we see by 4. Therefore, the smaller container
seems larger with respect to the bigger container than it actually is.
Similarly, a cone has a volume one-third the corresponding cylinder, but
the area (of the triangle) we see for the cone is half the area (of the rectangle)
we see for the cylinder.

Such discuscions can be used to explain the surprising volumes of
various contair crs, and for many other purposcs. For example, J.B.S.
Haldane (1985) used this kind of analysis in a book called On Being the
Right Size to show why two closely related animals are such different
shapes. As height (say) is doubled, volume is multiplied by eight and area
by only four. Cross-sections of legs must expand disproportionately
quickly (to withstand the increased mass), as must areas of exposed skin (to
cool the body and take in oxygen).

Very young children (five or six years old) can make scale models of
their classrooms and use them to see what would happen if they moved
furniture around, moved themselves about the room, or otherwise changed
things. From the scale model they can make scale drawings (by looking
straight dow n on the model). Later, they can study maps, blueprints, and
other two-dimensional models of the three-dimensional world.

Somewhat older children can use paper folding to do various two-di-
mensional activities, such as constructing perpendicular bisectors and
angle bisectors, and can also fold two-dimensional paper to make three-
dimensional objects. By the age of 12 or 13, children are able to construct
all the regular solids and give a convincing argument that ther can be no
more than five of them (see also Chapter 6, "Connedons," for a further
discussion of regular solids).

Lots of physical experiences with both two- and three- dimensional
geometry should be provided in school. Those experiences should be
examined abstractly so that children get a good feeling for two- and
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three-dimensional spaceand also learn that by thinking abstractly about
space they can reach conclusions that might have escaped them if they had
limited themselves only to physical experience.

Several reasons are usually given to justify the traditional 10th grade
course in Euclidean geometry. Cne of these is to provide a better under-
standing of space. In fact, when the appropriate physical experiences have
been provided in previous grades, there is very little more that childrenare
likely to learn about space in 10th grade geometry, other than some
relations involving lines and ch :s (e.g., inscribed angles, tangents,
secants, and chords, and angles involving them). With the general lack of
attention to three-dimensional space in such courses, there is little
likelihood that they will learn much that is new and worthwhile.

A second goal often given for the traditional 10th grade geometry
course is to teach the students the nature of proof. Unfortunately, few learn
much about proof. Many children apparently are simply not sufficiently
mature to appreciate formal proofs, and even if they were, they would get
a distorted notion of proof from the typical two-column, statement-reason
type of proof offered in traditional geometry courses. Outside of such
courses, two-coLmn proofs are never used by anybody. Mathematicians,
scientists, attorneys, politicians, teachers, philosophers, and other people,
including children, who wish to give convincing arguments use whatever
form of proof that appeals to them, including paragraph arguments,
pictures, appeal to authority, and sc on.

In the early 1960s, Edith Robinson (1964) interriewed a group of high
school sophomores, half of whom had taken plane geometry and half of
whom had not. They were all convinced that a particular geometric fact
was true. 7. 2y were asked to give a convincing argument to her. Indepen-
dent of whether they had had a course in geometry, not one of them gave
a statement-reason proof.

Even if statement-reason-type proofs w,!re widely used, the usual
procedure in geometry courses is to tell students to prove many different
theorems in essentially one way. How much more educational it would be
if one theorem were proved in many different ways. Indeed, with all
problem solving, there is generally more to be gained by solving a single
problem in several ways than by solving several problems in a single way.

Deductive Proof

To many people, logical proof is at the heart of mathematics. Many
cultures had developed a great deal of very good mathematics before the
ancient Greeks. A major contribution of the Greeks was to take many
different mathematical statements and put them together in a way that
showed their logical relationship to each other. Insofar a you believe in
those proofs, and you believe the very small number of assumptions (or
axioms) made by Euclid, you are required to believe all of Euclid's theo-
rems. So, if you can convince yourself of the validity of the very few axioms,
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you can safely believe in all the theorems. For 2,000 years, Eudid was
considered by educated people to be the epitome of logical argument.

Our understanding of proof and structure have changed over the
centuriPs, but Euclid is still a remarkably good example of both.

Ide Ay, a mathematician starts with a small number of axioms or
assumptions about a situation and then derives or proves theorems. If the
proofs are correct, then the theorems are true whenever the assumptions
are true. Supposedly, the initial axioms need not apply to any particular
situation. They may or may not be true of some particular part of the real
world. In practice, most mathematical systems that are taken seriously have
their genesis either in the real world or in some theorefical consideration
(such as mathematics itself).

Applied mathematicians can save a great deal of expense in time,
money and danger by constructing a mathematical model of a situation
and predicting what will happen in advancc. If their logic and assumptions
are correct, it may not be necessary to orbit an astronaut, try a drug on
thousands of sick people, or perform some other experiment because the
theorems proved will predict accurately what will happen. Of course,
scientists must constantly have reality checks to be sure the assumptions
and logic have not deviated too far from reality

Abthematical systems and proofs can also be used to predict things
that nobody would ever have imagined without the mathematics. By
deriving some unlikely looking theorems, a mathematician may call atten-
tion to a logical result that seems to defy common sense. As a simple
example, suppose you are in a spaceship chasing a space telescope. You are
both in the same orbit, but you are ten miles behind. How can you catch
up, with the least expenditure of rocket fuel? Mathematics will tell you
(correctly) that you should decelerate! By doing so, you will drop into a
smaller orbit and will have greater angular velocity than before. When you
have caught up with the telescope you should accelerate enough to get out
into the telescope's orbit. "Common sense" is unlikely to lead you to this
conclusion. A mathematical model based on logical proofs and a few
correct assumptions will.

Part of the power of mathematics comes from the fact that a given
vstem may be applicable to many quite different situations. Ln the case of
the spaceship and the telescope, there is a well-developed mathematical
system that describes motion of various bodies in space. Newton used the
system to describe the motion of the planets and various other heavenly
bodies, motion on earth, and various other matters ofinterest. Quite often,
the axioms of a given mathematical system turn out to be applicable to
situations that seem totally unrelated. In such a case, all the theorems
proved about the first situation turn out to be true about the new situation,
without the need of reproving each of these theorems.

Mathemafical models or systems have made pcssible the creation of
our highly technological world. They are appiied in medicine, economics,
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physics, politics, psychology, education, and a host of other human endeav-
ors. Proof is central to such mathematical models, because proof is needed
to show that certain results (theorems) follow from certain assumptions
(axioms) or other theorems.

As is often true with really important ideas, there is a good deal of
disagreement among "experts" as to precisely what a proof really is. A proof
is nothing morenor lessthan an argument that convinces somebody.
What is acceptable as a proof changes depending on when the proof is
given, who is supposed to be convinced, what the nature of the question
is, and many other variables. To try to teach people bow to consti-uct a
proof independent of these many variables is silly.

In general, when we try to teach people about proof, we should also
give them experience with the activities that usually relate to proofs. In real
life, we seldom try to prove something until we have convinced ourselves
that it is probably true. We don't usually convince ourselves until we have
experimented with various alternatives and chosen what appears to be the
most viable one. In school, too, we should encourage children to think
about a particutar subject, experiment, speculate, conjecture, and test
before they set out to try to prove something about it. This is the procedure
we followed in the squares of numbers problem discussed earlier in this
chapter. It can also be applied to geometry.

For example, draw a circle (Figure 4.1). Draw a line through the
center, 0, of the circle, cutting the circle at points P and Q (so that PQ is

FIGURE 4.1
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a diameter of the circic). Now draw some angles whose sides go through
P and Q respectively and whose vertices are on the circle: angles PAQ,
PBQ, and PCQ, for example. Do you notice anything interesting about
all the angles? Did you expect them all to be right angles before you drew
the picture? Do you believe they really are, or did you just draw a few that
happened to turn out that way? Do you think the same thing would be true
of other angles drawn the same way? Measure each of these angles and
sewl-al more that you draw to see if you can find one of these angles for
which your conjecture is not true. If the angle measure is just a little
different from 90 degrees, do you think this is likely to be becluse the angle
is not really a right angle or because you've made a slight erro, in drawing
or measuring?

Now, try to write a convincing argument that your conjecture is true.
Such an argument may require you to use a theorem that says that an angle
inscribed in a circle is measured by half the intercepted arc. You may have
to prove that theorem for your disbelieving audience by drawing such an
angle and a central angle intersecting the circle in the same points, and so
on. The argument, however, should depend on both the facts of the
situation and on the sophistication of the audience.

Both you and the audience may now wish to consider whether this
particular bit of information is interesting enough, or is likely to be useful
enough, to have been worth the effort to discover and prove it, and whether
it is worth remembering now that you know it. You may also wish to
consider whether there is anything general about either the theorem, oc
the process we used to discover and prc re it, that might be useful or
interesting for future problems. Incidentally, the converse of this theorem
can be (and often is) used to find the center of a given circle. A T-square
or other right-angle drawing device is used twice (to draw two dial -ters)
for this purpose.

The observant reader can hardly avoid noticing a parallel between
what we just did for an angle inscribed in a semi-circle and what we did
earlier for squares of certain whole numbers. In each case we experimented
and noticed something that looked interesting. Then we conjectured that
the interesting "coincidence" might really be a general fact. Then we tested
the conjecture with several more examples until we were pretty sure it was
not just a coincidence. Then we developed a general argument that the
conjectured theorem was always true. Finally, we looked back at both
the theorem and the method we used to see if we could gain any insights
that might help us in the future.

here is, of course, no reason for limiting proof and concurrent
activities to geometry. Smh work can be, and should be, carried on in
algebra, arithmetic, probability, and all parts of mathematics.

These same steps, in fact, are inherent in most real problem-solving
situations. Unfortunately, when we try to teach problem solving and proof
in school, we tend to limit ourselves to only one of the steps of this very
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nch processthe formal derivation or proof. We seldom or never let the
students investigate and identify their own problems and theorems, and
then test their conjectures in the absence of an authority who will tell them
the conjecture is true or false. We seldom if ever encourage them to define
their own audience and try to give a convincing argument for that audience.
We trivialize the entire process in the hope that this will somehow make
students more likely to understand. Instead, they are less likely to under-
stand, and they are almost certain not to find the process worth emulating.

Importance of Communication

Communication is, in many respects, the most important part of
mathematics. In an axiomatic system, all of the information is inherent in
the original axioms. Theorems, in general, contain less information than
(or, at most, the same amount of information as) the original set of axioms.
The reason for stating and proving the theorems is that the information is
more useful, or easier to comprehend in that form. Thus, the activity of
stating and proving theorems is essentially one of communicating.

In a similar way, a mathematician who works for industry may be asked
a question and may find an answer to the question. The fact that the
mathematician knows an answer is of absolutely no interest unless the
mathematician can communicate the answer to someone who will use it.
Furthermore, unless the mathematician can understand the original ques-
tion when it is expressed (often in less than completely cogent terms) by
the original poser of the problem, the mathematician is of little use to the
industry.

Communication is, and always has been, an important part of math-
ematical problem solving. Recent advances in technology have made
certain activities (computation, solving equations, and other symbol ma-
nipulating) more appropriately done by machine than by the human mind.
However, use of such machin-s requires the mathematician to be able to
communicate with machines as well as people. Thus, communication has
become even more important than before.

Communication may be oral, it may be written, or it may take other
forms such as building a model or drawing a picture. But mathematicians
must be able to receive and understand communications, and they must
be able to communicate back their results.

In school mathematics, we have a tendency to slight this all-important
aspect of mathematics. We almost always communicate the problem to be
solved or the theorem to be proved in writing, sometimes with words, often
only with mathematical symbols.

We accept answers like "73" or "53 meters" that could not, by any
stretch of the imagination, be called English sentences. Almost never does
a mathematics teacher require students to produce answers to questions in
well-written English sentences that are grammatically correct. Almost
never do we encourage students to communicate with each other, using

c Problem Solving 55



language or other means, to express their discoveries and beliefs about
mathematics. We are simply remiss about teaching children to communi-
cate effectively, and by being remiss, we are doing considerable damage to
those students; indeed, we are reducing their opportunity to make signif-
icant contributions to the future of the world, or even to understand such
contributions when they are made by others.

Student-Formulated Problems

An effective method of encouraging children to think about written
"word problems" is to have them make up some of their own. A general
assignment to "Make up your own problems," however, usually produces
unpleasant noises and few good problems. Gn the other hand, if the
teacher brings in a newspaper (or news magazine), tears off a page for each
group of three or four children, and says "make up three problems based
on information you find on either side of that page," very good problems
usually result.

There is almost always enough information for more than three good
problems. There is usually so much information that I discourage the
groups from maldng up problems based on advertisements because that's
too easy. Children often discover that there are some statements in the
article,that seem to suggest a conclusion that can't be derived on the basis
of the available information. This encourages children to read such news
articles much more carefully thereafter. Such activity also emphasizes the
connections between mathematics and reading and writing, as well as social
studies and other subjects of the articles.

Occasionally, children will discover articles that provide too much
infnrmation--that is, from the information in the article you can derive
two different answers to the same problem. Articles with contradictory
information don't occur very often, but they are certainly worth examining
when they do.

The real goal of having students make up their own word problems
is to encourage them to thiak seriously about the meaning of words and
sentences as they relate to real world mathematical material. Going
through the process of mak'ng up such problems, even as a member of a
group, usually helps childrei read and understand such problems when
they are created by others.

Of course, the group making up a problem is expected to determine
the answer (which may be that there is too little or too much information
given). Then the groups exchange problem sets and check to see if each
group got the same answers for the problems.

Activities of this sort turn out to be one of the best ways to help
children become better solvers of word problems, and such sessions should
probably occur several times a year.
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Problem-Solving Strategies

Telling children strategies or rules for solving problems in advance is
not an effective way of improving their problem-solving skills, though it
is a way to help fool ourselves and others into believing we have helped
them. This is particularly true if a strategy is supplied and then a bunch of
problems, all of which use that one strategy follow. In such cases, the pupil
is simply learning by rote to apply the particular process to any problem
that is on the appropriate page. This is of little or no help, since the real
issue is deciding which process is appropriate. For this reason, problem-
solving rules in general are not especially helpful and may have a negative
effect if they are introduced one at a time with numerous examples using
each strategy as it is introduced.

On the other hand, it is well established that we should look back at
the promses we use to solve problems, think more deeply about those
processes, and even verbalize our thoughts to help us decide when the
processes are likely to be useful in the future.

By the time students are in junior high school, many have become
sufficiently mature to think seriously about their own thinking process (this
is called metacognition in some circles). If they have had sufficient experi-
ence solving good mathematical problems, a list of general strategies for
them to consider, rej _zt if they choose, modify if they wish, but at least to
thwk about, may be helpful.

Many people have produced such lists of problem-solving strategies.
Perhaps the most famous of these is the set produced by George Polya
(1957) in his book How to Solve It.

Students should be encouraged to produce their own lists of strategies,
to think about their own and other people's strategies, and then to continue
solving many interesting and difficult problems using whatever strategies
they wish. But after solving such problems, they should be encouraged to
rethink and discuss what they have done, decide which strategies have been
useful and which have not, and continually reexamine their own and other
people's methods of solving problems. They should be encouraged to
discuss their lists with each other and modify their lists in light of sugges-
tions by others. No single list of strategies should be taken very seriously
except the student's own list, and that list should always be subject to
modification.

Cooperative Learning

From time to time, education goes through various phases, or fads.
The creators and supporters of these fads always come up with attractive-
sounding names: "discovery approach," "individualized instruction,"
"mastery learning," "cooperative learning," and so on. The practices that
then masquerade under the attractive-sounding titles are not always so
attractive. Much of what went on under the guise of individualized instruc-
On, for example, seemed more like solitary confinement to some of the
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victims. For that reason, I prefer to describe in some detail what I think
should and shouldn't happen with learners rather than to simply subscribe
to a particular new phrase or phase.

No one who has read this far can possibly fail to notice that every
aspect of learning mathematics that I have described involved learners
working together. That's the way people do mathematics. That's the way
people should learn mathematics.

If the mathematics department of a major university wishes to hire a
point set topologist and has none at present, it will have to hire two of
them. One would not be willing to work in isolation without someone to
talk withto try new ideas on, to check each other's reasoning, and so on.

If I plan to cook two roast beefs that wen 10 pounds each in the
same oven, and the cookbook suggests I will need 20 minutes per pound
at the chosen ten- perature, I would want to discuss with somebody who
knows more than I do about such things whether the correct time is more
likely to be 200 minutes or 400 minutes. I suspect the timing depends
partially on what kind of oven I'm using (microwave or conventional).
Whenever we do mathematics in situations that are important to us, most
of us try to discuss it with somebody else.

Why, then, do we try to make children learn mathematics in isolation?
Mathematics is not a solitary activity. It should be done and learned with
others. Games, activities, projects, proofs, problem-formulation activities,
and so on are all activities that should be carried on in groups. Where
possible, those groups should involve childret, of different abilities, differ-
ent interests, and different backgrounds; and each member of the group
should be expected to make substantial contributions and derive substan-
tial satisfaction. This was true ten years ago, it is true today, and it will be
true in ten yearswhether or not "cooperative learning" happens to be in
vogue.

The answer to the bear problem presented earlier in this chapter is
"white," since the hunter presumably started at the North Polc. There are,
however, other locations from which the hunter could have started and
followed a path like the one described (though she'd be unlikely to meet a
bear). Consider a circle with its center at the South Pole and a one-mile
circumference. Start one mile north of that circle. Replacing the circle with
one of circumference 1/2, 1/3, or 1/N miles, where N is a natural number,
will also work (but the hunter may become dizzy).
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Technological
Deveiopments

Rapid developments in technology are changing (and ought to be
changing) the way we teach mathematics both because they modify

our goals for the mathematics education of people and because they
provide new tools with which we can better achieve our goals.

Thinking and Technology

Calculators and computers are here to stay and will continue to
become more useful and easier to use. Conversely, it seems to be true that
people will always be able to do certain things that machines can't do and
should be educated to do those things well rather than being trained to do
what a cheap calculator or a computer can do better.

Currently, there are calculators and computers costing less than $100
that can perform most of the mathematical symbol manipulation taught
in schools between kindergarten an t! he second year of calculus. These
machines can do arithmetic with whole numbers, rational numbers, com-
plex numbers, and vectors. They can solve equations and systems of
equations; they perform graphing functions and can "zoom" in on parts of
the graph to get a magnified picture. Machines can perform algebraic
differentiation, integration of functions, and most other mathematical
symbol manipulations taught in schools and colleges.

Does this mean that people no longer need to learn to do arithmetic,
algebra, calculus, and so on? Of course not. Learning mathematics is more
important than ever, but the specific skills needed are changing.

Nor is there reason to believe that people will no longer need to
manipulate symbols. The ability to do certain kinds of symbol manipula-
tions or perform certain rote skills efficiently helps people perform many
of the higher-order tasks. For example, knowledge of the "number facts"
(addition to 10 + 19, subtraction to 20 10, and so on) is essential to mental
calculations and estimations. The ability to estimate allows us to use
calculators and computers more intelligentlycatching obvious errors
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and even avoiding use of the machines when our minds can do the task
more readily.

However, rather than simply continuing to teach students all the skills
and knowiedg that have been assumed to be useful in the past, we must
now decide which abilities people of the next century will need and which
they will not need. There is a limited amount of time for educating people,
and we cannot afford to waste any of it teaching things that are certainly
going to be useless. On the other hand, we must not forget to teach them
the more mundane skills that are prerequisite to the higher-order skills,
and we must be careful not to overlook relatively pedestrian skills that we
now take for granted.

People must learn to do well those things that they can do better than
machines. Such skills include problem identification and formulation, and
restructurirg a problem into a form in which it can be solved with available
tools (incluaing, but not limited to, computers and calculators). People
must develop their abilities to:

choose the most appropriate available intellectual and mechanical
tools to solve a problem,

decide when to give up (because the problem can't be solved, or is
so messy to solve with available tools that it is not worth solving),

recognize reasonable and unreasonable solutions,
interpret the solution of a problem reasonably, and
reexamine a solved problem to look for better solutions, generalize

the solution, and consider other related problems that are interesting and
might be solved in a similar manner.

Perhaps the most important skills the schools can teach are flexibility
and the ability and inclination to learn new things in the future.

Calculators in School and Society

Several years ago the mathematics supervisor ofa small New England
city recommended that calculators be used in the elementary schools so
that pupils could be taught to use them intelligently and also to allow more
interesting mathematics to be done in the schools. The school board
reviewed this proposal and passed a resolution saying that children were
not to be allowed to have or use calculators of any sort in schools.
Furthermore, no teachers or administrators were to use or to be seen in
possession of calculators in the schools. But to show that they were not
against progress, the members of the school board also appropriated
enough money to purchase several computers for the elementary schools.
The computers were to be used to train children to do precisely those
things that a $5 calculator can do better than peoplemultidigit arithmetic
problems and other mechanical symbol manipulation.

Unfortunately, this is not an unusual case. Forsome reason, the public
at large has gotten the strange notion that using a calculator in school is
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somehow cheating, but using a computer is good. The same people who
object to the use of calculators in school usually use (or probably should
,ise) calculators themselves in their everyday ntivities. And usually they
use those calculators far less intelligently and efficiently than they would
if they had been taught to use them well.

Some of the most commonly heard arguments against using calcula-
tors in school are: (1) children will not learn the necessary skills if they are
allowed to use calculators, (2) people will become so dependent on a
calculator that they can do nothing without th e calculator ("What will they
do if the battery fails?"), (3) the use of calculators is inherently unfair
because rich families will be able to buy better calculators for their children
than poor families, and (4) administrative care of the calculators is too
difficult (passing them out, collecting them, making sure each child has a
working calculator, preventing theft, and so on).

There is now substantial research evidence available that shows that
use of calculators does not interfere with the learning of necessary skills.
Numerous studies have been conducted at all levels and have shown that
the use of calculators does not interfere with the learning ofbasic number
facts, with other forms of computation, or with the learning of any other
skill that is commonly thought to be useful. The one exception to this
general statement is at the 4th grade level, where there is some slight
evidence that the use of calculators may interfere with the acquisition of
certain numerizal skills usually tested at the end of grade 4. This appears
to be an anomaly resulting from the content of 4th grade standardized
:ests.

The argument about becoming dependent on calculators seems rea-
onable until it is analyzed more carefully. Beyond the evidence that there

is no substantial loss of skills among children using calculators, there is the
question of whether we really want children to be able to duplicate (more
slowly and less accurately) what a $5 calculator does well. When automo-
biles first appeared, there were undoubtedly many people who kept a spare
horse in the garage lest the automobile fail, but very few people do so tocky.
Calculators, with and without batteries, have become so inexpensive and
reliable that it is more efficient to keep an extra calculator handy than it is
to learn to do well everything a calculator does better. Most of us no longer
find the ability to shoe a horse and cinch a saddle to be essential skills. Is
it not reasonable to suppose that in the near future we may feel the same
way about multidigit long division?

The equity argument against the use of calculators in schools and on
tests may have been valid for several years during the 1970s when calcula-
tors were quite expensive and there was a great variation among calculators.
Today, good calculators can be bought for less than $5, and sophisticated
scientific calculators are commonly sold for less than $25. In spite of this,
the problem could be serious if the ability to purchase a sophisticated
calculator could really make a difference in a person's score on a college
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entrance examination or in a xhool course. There are ways to solve this
problem, such as controlling the kinds of calculators that can be used or
asking questions that will not be easier for a person with a more sophisti-
cated calculator; but teachers and test makers should probably keep the
argument in mind, not as a reason for not allowing the use of calculators,
but rather as a caution in deciding what kinds of calcui-tors to allow and
what kinds of questions to ask on tests.

A report of research done by Gary Bitter (1989) of Arizona State
University raises quite differ ,nt question of equity He repot ted that girls,
who have traditionally performed more poorly in mathematics than boys,
scored as well or better than boys after using calculators in mathematics
class for a year, and that even boys using calculators did better than the
boys who had not used them. If this result is duplicated in further research,
and if the same results turn out to be true for other traditionally un-
derrepresented groups in mathematics, the equity argument for using
calculators in school mathematics will be irresistible.

When calculators were expensive, rare, and very primitive, the control
and maintenance of them in a classroom was a problem, but one that could
be handled. I used them in a class of 37 5th graders in 1978. We lost no
calculators to theft, and only one to an accident. Protecting batteries was
one of the most serious problems then. If a child inadvertently left a
calculator turr d on, the battery would be dead the next day. Today
calculators either are solar powered or turn themselves off after a short
inactive period. Besides that, the calculators take so little electricity and
the batteries are so good that battery-powered calculators can be left on
for several years before the battery wears out. Today, the administrative
problems associated with using calculators should be no more complex
than those associated with using textbooks, pencils, papers, and other
common school materials.

The fact that most of the arguments against using calculators in the
schools don't stand up under careful scrutiny does not, of course, imply
that they should be used in schools. Some clear benefit should accrue to
the learners from using new procedures or materials to justify the expense
and inconvenience of change.

The most obvious reason for teaching children to ose calculators is
that they are all around us in the world outside of xhool, and most people
who have access to them do not use them very intelligently. Since calcula-
tors can be very powerful tools in doing mathematics, one of the obliga-
tions of a good mathematics education program in a school is to teach
students how to use calculators intelligently, including when not to use
them because there are better tools available for the task at hand. Beyond
that, it is hard to convince children that school mathematics has something
to do with the real world if they see everybody outside of school doing
mathematics with calculators but they are not allowed to use them in
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school. Of course, the equity issue mentioned earlier may become the
strongest argument for using calculators in school.

Calculators and the School Cuniculum

Some changes ought to be made in the school curriculum to prepare
children to use calculators more intelligently Undoubtedly the most
obvious and mo.,t essential change of this sort is to introduce decimals
earlier. Because the United States does not use the metric system of
measurement, as do all other industrialized countries, our curriculum
introduces decimals later and places less emphasis on them after they are
introduced, than do other countries. Whether or not the metric system is
taught in schools, there is no reason why decimal fractions should not be
introduced at least by grade 2.

The monetary system of the United States provides good motivation
for introducing decimals; and if the metric system is used, it too can provide
a good model for decimals, as can calculators and computers themselves.
Decimal frac:ions and common fractions should be taught independently
of each other for a while (at least until children can use calculators to
convert common fractions to decimal fractions nd probably until about
grade 5 so that the connection can be undersdood). After this grade level,
decimal and common fractions can be treated as essenzially one topic.
Many textbooks and curriculum guides provide good procedures for
teaching children decimals.

The most obvious and important reason for teaching people to use
calculators in school is that they will use them more intelligently if they
are taught how. Intelligent use of a calculator requires skill with the basic
number facts, knowledge of the base ten system, and good number sense.
These are all things that should be learned in school as a standard practice.
After calculators have been introduced and pupils have learned to use them
reasonably efficiently, a game such as the followir g "race" will help
promote the intelligent use of calculators.

Some of the children in the class will be allowed to use calculators,
and others will not. The ones who are not going to be allowed to use
calculatois usually complain when they hear this.

To make the race seem firer, the teacher announces that those with
calculators will be required to push every keynot skinping any or doing
anything 9n their heads." That is, if the problem is 7 x 58, they must push:
7, x, 5, 8, =, without skipping any steps such as, for example, noting that
7 x 60 is 420 so the answer must be two less than 420 or 406.

This usually seems like a very minor restriction, and the people with
calculators are still happy and the people without them are usually still
upset

Next, have them write the problem numbers on their papersa
column from 1 to 15 down the left side of the paper and from 16 to 30
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down the middle-so they won't be slowed down with any more writing
than necessary

Watch the people with calculators carefully to see that they don't skip
steps as they do the problems in Figure 5.1

FIGURE 5.1

1.

2.

3.

4.

10x 73=
100x73=
1,000x 73=

10,000 x 73 =

16.

17.

18.

19.

730 + 10 =

7,300 + 100 =

73,000 + 1000 =

730,000 + 10,000 =

5. 100,000 x 73 = 20. 7,300,000 + 100,000 =

6. 10+73= 21. 4+8=
7. 100+73= 22. 7+9=
8. 1,000+73= 23. 9-7=
9. 10,000 + 73 = 24. 10x8=

10. 100,0000 + 73= 25. 101-1=
11. 800+500= 26. 63+ 7 =
12. 800-500= 27. 56+8=
13. 8x5= 28. 6x8=
14. 7,568 x 0 = 29. 7x 7=
15. 84,595+0= 30. 1,000,000,000 x 10 =

Usually more than half the students without calculators have finished
the 30 problems correctly before the first person with a calculator finishes.
The students understand the message with no further explanation.

In fact, of course, the race cannot be completed by a person using an
ordinary calculator, following these rules, bec2use problem 30 cannot be
done. There are too many digits in the first factor.

To avoid the inference that calculators are always inefficient, pupils
can be asked to carry on a similar race with exercises that involve messy
computations, such as 34,902 + 6,935.

The moral of all of this is that people will not necessarily learn to use
calculators intelligently unless they are explicitly taught to do so. Students
will first have to understand the base ten system and learn tile basic "table"
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facts so they can do mental arithmetic easily and estimate efficiently. They
must develop a good number sense and be able to evaluate the reasonable-
ness of answers to use technology intelligently. Beyond that, they will have
to become accustomed to thinking and making judgments when they do
mathematics. Students should regularly use calcuhtors in school, with
appropriate instruction, so that they will learn to integrate their various
sUls to solve mathematical problems efficiently. To restrict calculators in
school or to continue teaching the same topics in the same way (ignoring
the technological changes taking place) would be an anti-intellectual,
"head-in-the-sand" way of failing to prepare our children to live in the 21st
century.

Computers in School

In some respects, calculators and computers are similar in the influ-
ence they should have on school mathematics. Both devices are designed
to do the more pedestrian drudgery often associated with mathematics;
and both require an intelligent, thoughtful operator if they are to be used
efficiently. Neither calculators nor computers can compare with human
beings in the higher-order thinking skills. As calculators have become
steadily more sophisticated, it has become much more difficult to define
or describe the difference between a calculator and a computer. Size,
programmability, memory, price, ease of use, and other features have been
used in the past to distinguish computers from calculators; but distinctions
on these variables have become progressively harder to make as technology
has developed.

Considering the similarities, the difference in public perception about
the desirability of using calculators and computers in schools is amazing.
Many otherwise intelligent, thoughtful people, including some educators,
seem to have the s ge notion that computers are good and calculators
are bad, even tho they do essentially the same things. Because of the
greater sophisti tion of computers and because so many commErcial
programs are available, computers can probably be used to do more
goodor more harmin school than calculators.

Because of rapid changes in technology, any comment made now
about the differences between calculators and computers is likely to be
obsolete within a year or two. The reader should interpret any remarks in
light of subsequent developments. At present, however, the most signifi-
cant difference seems to be the availability of large npbers of very
sophisticated programs for computers. There are word processing pro-
grams, spreadsheet programs, database programs, graphing programs,
computational programs for doing the simplest and most complex symbol
manipulations, game-playing programs, simulation programs, teaching
programs, and all sorts of other programs, including virtually every
combination of such programs that one can imagine.
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Because of the availability of large numbers of computer programs,
the user or potential user of computers must make some sort of evaluation
of programs before purchasing (or otherwise deciding to use) a program.
Even if a computer and a copy of all potential programs were available,
evaluation is a major task iequiring a great amount of time and knowledge.
Most normal people are obliged to rely on, at least partially, on the
judgment of others. You may take the word of a friend or sales represen-
tative. You may read reviews published in various professional journals.
You may buy various commercial reviews that are available (either through
computer modem services or in print).

Whatever procedure you use, there are several possible pitfalls. Al-
most certainly, shortly after you make your selection, new hardware or
software will become available that will make your selection seem less than
optimal. On the other hand, if you wait for the best possible combination
of computer and program, you will never make a choice, so you might as
well make the decision as soon as you are ready.

A far more serious problem is the possibility of choosing a program
or computer that is essentially wrong. In choosing a business program or
a program to schedule students, you might get one that doesn't do the iob
the way you want it done. For example, the needed information may not
be retrievable or the program may not be flexible enough to do what really
needs to be done.

The various kinds of difficulties people encounter choosing most
business or administrative programs are both more obviov nd relatively
less important than the kinds of mistakes that can be made in choosing
instructional programs. There are some delightful teaching programs that
encourage creativity and higher-level thinking skills on the part of the user,
but the majority of instructional programs in mathematics (more than 90
percent by one reliable estimate) have as their goal to train the user in some
particular low-level skill. That is, the computer program is designed to use
technology to teach the sthdent to do something that is actually done better
by a computer or calculatcr. This tends to be a waste of computer time
and often of student time, even though it may occasionally have some
beneficial effects.

Because many computer programs are written by people who are
neither educators nor scholars, some have serious mistakes of fact or
pedagogical strategy, or both. These may be hard to notice unless a
competent person goes through the cntire program in much the way the
learner would be expected to doa time-consuming, often boring process.

The really serious difficulty with such programs, however, is that they
tend to leave a distorted idea of the relationship between humans and
computers. Since the computer "knows" all the answers and seems to sit
in judgment of the human, the student may begin to think of the computer
as master and humans as servants. Many people in our society already
behave this way. If the bank computer says your checking account has $1.17
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less than you think it has, do you believe your own figures or the bank's?
Most people will take the bank's figures, even though computers often give

wrong informationsometimes ircause of keypunch errors, sometimes
because they have been deliberately programmed to make small errors in

the bank's favor, sometimes for other reasons.
Anything that schools do to reinforce the notion that computers

should be believed over human beings is dangerous and should be avoided
at all costs. Because of this, and the difficulty of evaluating computer
teaching programs, and the expense of using them, such programs should
be used with great caution. If the same goals can be achieved through
printed material, flathcards, games, and activities, these alternative meth-
ods should be given careful consideration. When computer programs are
used for instructional purposes, those that make the learner an active
participant rather than a passive receptacle should be preferred, just as with

other materials or teaching strategies.
In general, before choosing any computer program, you should decide

what you want the program to do for you and write out in some detail the
things you want and don't want the program to do. Then you should be
reasonably certain that any reviewer you consult (whether friend, sales
representative, professional reviewer, or other source) has the same goals
in mind in making evaluationsor at least gives yousufficient information
so that you can decide whether the program achieves those goals. Then, if
possible, you should try one or two programs that seem most likely to meet
your needs. In doing so, you may discover other characteristics of the
programs that you had never thought ofsome will be positive and some
negative. Take these into consideration too, but don't lose sight of your
original goals.

Ideally, choosing a computer should occur after you have decided on
programs, since programs that are well suited to your needs may run on
certain computers but not on others. At the very least, you should start
with some idea of the most important things you want a computer to do
and be sure the one you choose has programs and technology available that

will do those things well.
Many computer programs are not really teaching programs, but

rather utilities that allow the user to do something useful that will also be
instructional. For example, some utilities allow the user to draw pictures,
do things to the pictures (such as move them in a :n-aight line, reflect them
in a line, rotate them around a point, duplicate them in a different place,
and so on). Other utilities will graph functions. There are spreadsheets that
can be used to help analyze data. Some utilities allow the user to write all
the axioms of a deductive system into the program, and then the computer
will check any purported proof to see if it is valid. There are utilities that
help students make and test conjectures. Programs are available to help
students run simulations to see what would be likely to happen in thousamb
of trials of the same experiment. And many more.
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Undoubtedly one of the most useful and powerful kinds of utilities is
the word processor. Word processors can (and should) be used in mathe-
matics classes (as well as English classes) to help students improve their
exposition about mathematics. They can be used for such mundane tasks
as checking for spelling and typographical errors and thus free student and
teacher to concentrate on content and style. They also allow for much
easier rewriting and thus encourage better final products.

In general, utilities of the sort described here, and the many others
that help the user actively pursue some goal, are of much more value in a
mathematics classroom than are most so-called teaching programs. The
best teaching programs often have something similar to these utilities that
allows the learners to be intellectually active and to follow their own goals.

The following example, like the calculator race, is designed to help
students learn when it is appropriate to use what technology.

Suppose that you go to a fast food store and buy a hamburger for 99 cents,
a milk shake for 75 cents, and a bag of french fries for 40 cents. How
much will this cost you? What is the best way to figure it out?

With a small amount of mental mathematics skills, most people will
note that 99 cents is 1 cent less than a dollar, and 40 cents can easily be
broken into parts of 25 cents and 15 cents. Thus, the shake and fries
together cost $1.15, and the hamburger will add 1 cent less than a dollar,
so the total is $2.14.

This problem was easily done in the mind. Some people may have
wanted pencil and paper or even a calculator, but they don't seem necessary.

Now, suppose you are entertaining friends, (or have an incredible
appetite) and you order 7 hamburgers, 6 milk shakes, and 8 bags of french
fries. Even though you may want to do some of the calculations in your
head, you are likely to be a bit more comfortable using a calculator.

Next, suppose you own the store and want to find out how much
income you should have had last week if you sold 7,349 hamburgers, 5,296
milk shakes, and 6,934 bags of french fries. You could use a calculator, but
if you have a spreadsheet utility on your computer, and have programmed
it to solve this problem each week, you are likely to fmd it much quicker
and more reliable than other methods. Furthermore, if you would like to
find out how much you would have made if you changed the price of
hamburgers to $1.09, you can do this by simply pressing a few keys on your
computer with its spreadsheet.

The poi, 1 of all of this is that children should learn how to ust_
technology as a tool to help them solve their problems. They should learn
when it is appropriate to use which technology, and they should always
expect to do the real thinking about when and how to use the technology
and what the answers produced by machines mean in light of their
understanding of the situation.

Programming is important for anybody who wishes to do any sub-
stantial amount of mathematics with a computer. On the other hand,
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administrators, teachers, students, and others must keep in mind that
programming a computer is not mathematics. The ability to program a
computer may help a student do mathematics, but should not be thought
of as something that can replace the learning of mathematics any more
than typing should be thought of as something to replace learning English
(or whatever the language of the land is). Thus, a course in computer
programming (however useful) should not be counted in lieu of a required
course in mathematics, any more than a course in typing should be allowed
to replace a required English course.

Advances in technology are a reason for changing the mathematics
curriculum and our methods of teaching mathematics. These advances also
provide tools that can be used to help change content and methods. Much
of the material, both print and computer software, that has been written
to accompany the introduction of technology into the school is ofvery low
quality. Decision makers must approach such materials with caution; but
that should not delay or prevent the introduction of technology into the
schools either because of the confused notion that such technology will
interfere with the children's "real education" or because it is difficult to
introduce.
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6
Connections

The fourth standard in each section of the National Council of Teachers
of Mathematics' (NCTM 1989) Curriculum and Evaluation Standards

for School Mathematics is "Mathematical Connections." Under this title, the
NCTM discusses the need for children to see the connections within
mathematics and among topics such as probability, geometry, arithmetic,
and so on. The council also emphasizes the connections between mathe-
matics and other school subjects and between mathematics and situations
children may meet in the world outside of school. In this chapter, I consider
not only these connections, but the connections within mathematics from
grade to grade (sometimes called vertical articulation). None of this is new.
All of it is important. For centuries, people have argued in favor of
strengthening all of these connections.

The tendency to divide knowledge into little compartments and to
teach and learn one compartment at a time is a natural but nevertheless
pernicious tendency in all schooling, from kindergarten through graduate
school. Interestingly, the tendency is less pronounced at both ends than it
is in the middle.

In the early grades, because we expect teachers to be knowledgeable
about all appropriate curriculum content, we have no qualms about having
one person teach all subjects. The teacher may choose to divide the
curriculum into fairly small compartments (reading, writing, arithmetic,
music, art, history, and so on) and may never show the connections between
these various subjects. At least the opportunity is there, however, and in
the early grades there is some evidence that teachers occasionally take
advantage of the opportunity.

At the other end of the educational spectrum, we prepare people to
work at the cutting edge of intellectual creativity. If they are to make serious
contributions to knowledge and to the welfare of the earth, they generally
will have to integrate information and methods from several different
fields. Thus we see doctoral degrees, as well as Nobel prizes, being awarded
in areas such as biophysics, econometrics, and astrochemistry.

Much of the education that goes on between kindergarten and grad-
uate school, however, is very neatly compartmentalized. Even within
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mathematics, there is compartmentalization. The precollege curriculum
is divided into arithmetic, algebra, geometry, and so on. At the college level
and at the beginning graduate school level, the situation gets worse; for
example, topology (a part of geometry) may be divided into point-set
topology, algebraic topology, and general topology.

e products of the education system would be better served if
education were not so neatly compartmentalized. The connections be-
tween mathematics and the real world, between mathematics and the
various sciences, between mathematics and the social studies, between
mathematics and languages, and between mathematics and the arts should
be constantly emphasized, not obscured. Beyond that, the connections
between various parts of mathematics should be made clearer than they
now are.

Connections with Other Subjects

Previous chapters have shown how mathematics can be derived from
the real world of the learner and how mathematics can be applied to
problems from everyday life and various other disciplines. Such
connections should permeate all the teaching of mathematics.

Applications of mathematics to the physical sciences are well !mown
and are commonly seen in schools, both in mathematics classes and in
courses in the physical sciences. This is good, but should be even more
common than is now the case.

Applications to the biological and other life sciences, and to other
subjects, such as politics, history, fine arts, practical arts, and English, are
less commonly studied either in the mathematics classroom or in courses
in those other subjects. Applications abound in reality, though they may
be sparse in classrooms. We have mentioned several, such as Haldane's
(1985) use of geometry to analyze shape and size and other attributes of
various species of animals, as well as the use of mathematics by politicians
to gerrymander the congressional districts of states. The following exam-
ples of applications of mathematics to English, art, and music are men-
tioned simply to give some indication of rtie richness and abundance of
such examples, even in areas not commonly thought to be mathematical.

Statistical analyses have been made of word length and sentence
length of various authors (notably Shakespeare and Bacon) to estimate the
likelihood that material attributed to each was written by the other, or that
the two might have been the same person. As of the present time, the best
evidence is that Shakespeare wrote his own plays and Bacon wrote his own
science book-

Statistical analysis of frcquer.cy of letters in any document written
in the English language can be used, and has been used, to break various
codes. The same is possible in other languages; but, of course, the frequen-
cies differ from language to language. Complex uses of mathematical

12 Mathematics Education for a Changing Wodd

78



number theory, involving the factoring of vt.ry large numbers into their
prime factors, have gained consideraHe notoriety as ways to encode
confidential messages and as ways to break those codes.

Projective geometry is closely related to drawing with perspective.
The assumption that parallel lines meet in an idealized point at infinity is
basic to projective geometry as a point of perspective is standard in
drawings with perspective.

The "golden section" is the result of dividing a line of length q into
two lengths, r and s, so that the ratio of q to r is the same as the ratio of r
to s. A simple mathematical derivation involving the quadratic formula can
be used to show that the ratio of r to s is equal to (1 + 1,f) + 2, or about
1.618. This ratio (approximately) appears in architecture, art, various ratios
of parts of the human body to each other, and in numerous other places
that are thought to be aesthetically pleasing to the human eye.

George David Birkhoff (1933), one of the leading mathematicians
of the 20th century, wrote an entire book on the mathematics of aesthetics
and on a mathematical approach to ethics. Although many people find
some of his approaches and conclusions a bit "far out," such attempts are
interesting and can be used to teach some fairly interesting mathematics
as well as art and philosophy. More recently, Douglas Hofstadter (1979)
wrote a book titled Godd, Escher and Bach, which details many connections
between mathematics, art, and music.

The ancient Greeks knew that if the length of a musical string is
divided in the ratio of 1:2 , then the note of the shorter section is exactly
one octave higher than the note of the longer and that musical notes could,
in general, be described using mathematics.

Any child learning to keep time in music will need to deal with
fractions. Having studied and understood fractions will be of considerable
help to such a child. Of course, studying music can provide good
motivation for learning the mathematics.

Unfortunately, teachers of mathematics, as well as teachers of other
subjects, are often ignorant of these many connections, and even when they
aren't, they often find that the curriculum is too full without discussing
such connections; or they beli we that the discussion of such connections
does not fit conveniently into the particular course they are teaching this
year. Thus, children grow up remarkably oblivious to the many interesting
and beautiful connections between mathematics and other branches of
human thought and activity. Textbooks are often of no particular help in
this matter, though there are some remarkable exceptions. Mathematics, A
Human Endeavor (1970) by Harold Jacobs is certainly one such exception.
An important criterion in choosing textbooks, and in choosing teachers,
should be to encourage children to see and appreciate the connections
between mathematics and the rest of the world.

If the subject of this book were physics, or English, or social studies,
or something else, I would probably make the same statement, replacing
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"mathematics" with the other subject. A good liberal education does not
consist solely of learning a great many things in isolation. A liberally
educated person understands the connections between and within various
branches of knowledge and is able to think and communicate rationally
about them.

Connections within Mathematics

Mathematicians who are trying to solve problems, either within
mathematics or involving applications of mathematics to other subjects,
do not artificially limit themselves to one branch of mathematics, such as
geometry, arithmetic, probability, or algebra. Nor do they even limit
themselves to using only mathematics. In real life, people use whatever
tools are available to solve their problems.

Why, then, do we teach as though crossing the artificial bounds
between geometry and algebra, say, is somehow against the rules?

Pythagorean Theorem

The geometry teacher, for example, claims to be teaching a better
understanding of proof by limiting students to geometric methods when
proving the Pythagorean theorem. The standard proof seems like arcane
drudgery to many students. Some of those students might find the follow-
ing proof both more convincing and more elegant. Examine the picture of
a square within a square (Figure 6.1) and the simr le statement: BEHOLD!

FIGURE 6.1

b

b

BEHOLD!

b

a
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Only someone who is prepared to apply a bit of algebra te a geometry
problem could figure out why this is a proof, and even then it may not be
quite as obvious as the optimistic creator of the proof thought. For some
students, however, this proof is likely more convincing, and easier to
comprehend, than the standard proof or most of the alternate proofs that
have been proposed over the years (there is an entire book of such different
proofs of the Pythagorean theorem [Loomis 1968] proposed by people
from all walks of life, including one President of the United States).

The details of the proof would go something like this: The area of the
big square is (a + b)2 , the area of the small square is c2, the -rea of each of
the right triangles is 1/2 (ab). So, setting the area of the big square equal to
the sum of the areas of the four triangles and the small square, we have:

(a + b)2 = 4 x 1/2 ab + c2
or

a2 + 2ab + b2 :-... 2ab + ?

From which we conclude that o2 + b2= c2.
Of course, the construction of the original figure and the proof that

various figures are, in fact, what we say they are, requires a bit of work; but
the essential nature of the proof is immediately obvious to anyone who
thinks at all seriously about it. That is an elegant argument. Yet, for many
years, and still in some classrooms, that proof would have been declared
inappropriate, unsuitable, or illegal.

If the goal of the geometiy teacher is to teach about mathematical
systems, and show how we can derive various theorems from a small set of
axioms, and so on, a much smaller system than all of Euclidean geometry
would be far more appropriate so that children can really see the connec-
tions. But even when mathematicians work within axiomatic systems, they
usually are willing to accept some material from outside the system, such
as arithmetic or the algebra of real numbers. If we are tying to teach
geometry as an axiomatic system, why not start by assuming the algebra of
real numbers, develop coordinate systems (with or without right angles),
and use both algebraic and synthetic proofs?

Better yet, why not limit ourselves to a small portion of mathematics,
such as incidence geometry or triangles, have the children conjecture and
test their own theorems, and then see which can be derived from which
othersthus creating their own mathematical system?

Regular Solids

Opportunities abound throughout school mathematics to use the
interrelatedness of various mathemaLL.:, topics, rather than to behave as
though there were no connections. Let's consider a very simnle example.

We are studying probability in the 7th grade. We ha, , done many
experiments to get an intuitive feeling for what happens under various
circumstances. We have flipped coins and rolled cubes with numbers on
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their six sides (some people refer to such cubes as dice). We'd like to try
some other objects that will generate certain numbers with equally likely
expectations. We could try a spinner, but unbiased spinners are difficult to
produce. Could we make dice with fewer than six sides or with more than
six sides?

What kinds of conditions would such dice have to satisfy? A bit of
thought usually convinces students that if all the faces were congruent
regular polygons, there would be an equal probability of its landinif on any
one of its faces when rolled. We call such a tigure a regular polyaedron.
One can also imagine a die that is quite different from this that would still
have equal probabilities of landing on any facethere would probably just
not be as strong an intuitive reason to suppose that such a die would be
"fair" (that is, have an equal chance of landing on any side).

Can anyone imagine a regular polyhedron other than a cube? Has
anyone evei seen such a figure? 'Usually children will have seen several such
figures and can imagine otheis. A triangular pyramid usually occurs to
somebody.

Next, we can start considering how many regular solids there could
possibly be. By considering how many faces could meet at a vertex, we can
easily show that no more than five regular polyhedrons are possible (the
sum of the angles could never be as great as 360 degrees, or you couldn't
fold the pattern). Children can then try to create two-dimensional patterns
for those regular solids and, by actually constructing them, prove that there
are exactly five regular polyhedrons.

Looking for patterns between the numbers of faces, edges, and
vertices of the solids ought to result in conjecturing a theorem about that
relationship (sometimes known as Euler's formula), which would be writ-
ten using algebra, though it is classified in the branch of mathematics
known as topology. Concepts of duality may even be raised if students look
for relationships between the various solids.

We have now used some algebra, cpite a bit of arithmetic, solid and
plane geometry, and many of our procedures for solving problems to
investigate a problem that began with probability. The project, in this case,
started with a problem in mathematics that was fairly closely related to
problems in the real world, and our discussions would move quite com-
fortably from abstract considerations to very practical considerations (for
example, where would you put the flaps to stick the solids together?).

Vertical Connections Among Grade Levels

The kinds of connections discussed so far are relatively easy to
assessand even fairly easy to institute. Connections among grade levels,
or "vertical" connections, are much harder to evaluate and to make happen.
Seldom do pupils have the same teacher from year to year: moreover, it is
not uncommon for the teacher of a particular class to change during the
academic year

F2
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Teachers at one grade level (say, 2nd grade) seldom discuss with other
grade-level teachers (say, 1st and 3rd grades) what has been or is going to
be taught Written records help if they are written properly and read
carefully, but tearhers generally do not have time and energy to perform
either of these tasks in an optimal fashion.

Some people believe that curriculum guides alleviate the seriousness
of the situation, but these Odes seem to be honored more in the breach
than in the observance. Textbooks and standardized tests are the principal
influences on what actually gets night in classrot.ns. This is not
surprising, because textbooks offer material to actually help cany out the
day-to-day teaching, and both teachers and entire schools (as well as
children) are often judged by the results of standardized tests.

Textbook Adoption

Textbooks ought to be a major force to encourage a coherent program
ftom grade to grade, building on past activities and preparing for future
learning. However, many school systems adopt textbooks from different
publishers for different grades, so that even if the textbooks have a coherent
plan, that plan doesn't affect children in the classroom. In some cases, the
school system, in the name of freedom, will adopt several different series
and allow each individual classroom teacher to choose from the list The
results are even more chaotic than those from adopting different series for
different grades, because pupils exposed to several different textbooks in
the previous grade will all be in the same classroom.

Even when a school system adopts a textbook series from a single
publisher for a long sequence of grades, say 7th grade through 12th grade,
the authors may have changed from grade to grade in a way that makes it
impossible to cuppose there is any continuity

Textbook adoptions made by single-gade committees or, at most, by
committees that consider two or three grades, exacerbate the situation.
Some years ago one of the large adoption states adopted a prcgam from
a major publisher for grades K-2 and for grades 6-8, but the committee
for grades 3-5 fuund the program wanting. Such decisionsand the
procedures that lead to themdiscourage publishers from producing
textbook series that are vertically integrated.

Functions

To 1nake this abstract discussion about vertical connections more
cencrete, let's consider the topic of functions. The concept of functions is
one of the most pervasi and important top; in mathematics. There have
been numerous recommendations, at least since the 1890s, that this subject
p_ceive more and better attention in precollege schooling.

How can this topic be studied in a way that builds on the learner's
previous understandings, relates the topic to other mathematics and other
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subjects, and is coordinated through the school years to prepare for what
is to come and to build on what has gone before?

Kindergarten. The kindergarten class can get a large cardboard box
from the grocery store ard decom :. the outside to make it look a little like
a computer. Cnt a smay slot in the front to allow objects to be put into
(and out of ) the box. Tn en, while nobody else is looking, the teacher asks
one child to get inside the box with appropriate materials (such as pencils,
erasers, and other small objects common to a classroom) and a rule (such
as "adt1. two").

A few minutes later, the teacher suggests to the class that the box really
is a "magic number machine," and if children vish to see how it works,
they can volunteer to put something in to see whht happens.

The first child approa-hes and puts a pencil in the machine. The
machine rocks back and forth, bounces up and down a couple of times,
may make some strange noises (depending on the talents and inclinations
of the child within) and spits out three pencils. The class is usually
impressed with this result (and, typically, some child looks around the class
to see who is missing).

A second child puts in an eraser. The machine rtturns three erasers.
A third child decides to put in two pennies. What will come out? "Four

pemiies' and "six pennies" are both reasonable answers and should be
commended. The child puts the two pennies in and out come four pennies.

What will happen if somebody puts in three ice cream sticks? What
would happen if somebody put in eight crayons? What would happen if
Manolita climbed into the machine? Why does nothing happen when zero
dollars are put into the machine?

All of these are reasonable questions to ask, though only the first tat
are easy to answer. Even if children agree that Manolita wouldn't fit into
the machine (at least not through ,t,e slot), they like to speculate about
what would happen. Would we get three Manolitas back or one Manolita
and two other children, or someth; g else? As for the zero dollars, there
usually is some general belief that you have to "wake the machine up" or
stimulate it by putting something in before you can reasonably expect to
get anything out. Such discussions are generally constructive, and they call
attention to the difference between fantasy (or theory) and reality; but the
main point is to encourage the children to try to predict future events on
the basis of the patterns they have seen in past events.

At a later time, a child using a subtraction rule can be in the box. This
makes part of the job easier; the child needs no materials since a smaller
number of things will be returned than are put in, but subtraction can lead
to certain difficulties. Suppose the rule is "subtract three" and only two
things are put in. In one kindergarten class where this happened, the
machine promptly announced "I want one more stick!"

ic A
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Grade 1. Li the 1st grade, erfmtially the same machme be used,
but in a slightly more abstract way. nstead of using objects, use small slips
of paper with numbers written on them. The machine then crosses out the
written number, writes a different number, and passes the slip back. So, if
the rule is "subtract two, and "5" is written on the slip, the slip will come
back with the "5" crossed off and a "3" written on the slip.

With numerals written on a piece of paper, there is now a possible
answer to the question that arises when the rule is "subtract two" and "1"
is put in. If children have been exposed to negative numbers (and it is
entirely appropriate that they should have been), "-1" (negative one) is a
possible answer, and "impossible" is also correct, depending on what kind
of things we are pretending we are talking about. If the numbers are
temperatures, bank balances, heights above sea level, or something else for
which negative numbers are reasonable, "I" would be correct; but if they
are thought to represent objects such as sticks, pencils, or coins, then, of
course, impossible" would be correct.

Grade 2. By the 2nd grade, more complicated rules (possibly involv-
ing multiplication) and bigger numbers can be used. After several experi-
ences, the activity can be talcen to a higher level of abstraction by drawing
a picture of the box and snowing several pairs of inputs (numbers going in)
and outputs (numbers coming outXsee Figure 6.2). Then, children can try
to guess the function rule, or may be given a fiinction rule and asked to
supply missing outputs or inputs.

Flgure 6.2

IN OUT

RULE

Grade 3. In the 3rd grade, the box can either be omitted altogether
or used only briefly. Even the pictures of the box can disappear. They can
be replaced by relatively abstract symbols involving arrows, and letters can
be used to stand for numbers (see Figure 6.3). Then students can, for

5
Connections 79



example, find the output
when 5 is put into a machine
that multiplies by 3, can de-
termine what the input was n n.

when 15 comes out of a ma-
chine that subtracts 5, or can 15 x

find the rule for a machine
given several pairs of inputs
and outputs.

Children having trouble
with any of these concepts
would, of course, be led back 2O rule

through as much of the
physical, manipulative basis 15

for the work as necessary.
Students are now ready for
composite machines in which the result from one machine is put into a
second machine. So, for example, if 5 is put into a "times 3" machine and
the result is then placed in a "plus 7" machine, students can figure out that
22 will come out. Or, if they bow some number was put into a "times 3"

machine and the result was
RGURE 6.4run through a "plus 4"

machine pioducing 10, they 5., S"" n m

can figure out that 2 must
have been the original num- io n - _
ber (see Figure 6.4).

Third grade students quickly figure out that an efficient way to sol .e
problems in which the output is known but the input is not know., is to
"run the machine backwards" or "reverse the machine." So, for example,
if they know that 10 came out of a "plus 4" machine, they know that 6 must
have gone in (10 4 = 6). Similarly, if they know that 6 came out of a "times
3" machine, then by running the machine backwards, they discover that 2
must have gone in.

This leads naturally to the
idea of an inverse operation:
when you run a "plus 5" ma-
chine backwards, it subtracts
5, or if you run a "divide by 3"
machine backwards, it multi-
plies by 3 (see Figure 6.5).

The observant reader will notice that if a child has answered the
question of what went into a "times 3" machine to give a result that went
into a "plus 4" machine to produce 10, then the child has, in effect, solved
the linear equation 3n + 4 = 10.

FIGURE 6.3

FIGURE 6.5

0--

E', 6
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In 1975 I field tested materials that followed essentially the program
autlined here. One of the 3rd grade tenhers had taught 9th grade algebra
the previous year. One day after class, she cornered me and asked whether
what the children were doing was not awfully similar to the solving of linear
equations with which her 9th grade students had such serious difficulty the
previous year. I admitted that there was a good deal of similarity and asked
whether her 3rd graders were having any trouble with the material.

"No," she responded, "but my 9th graders had a lot of trouble with
linear equations last year. I don't think you should do this in the 3rd grade."

If a proper foundation that relies appropriately on physical manipu-
latives and other aspects of the learner's reality is built over a period of
years, young children can learn important concepts that might escipe their
older brothers and sisters who have not had the necessary preparation. The
fact that people without appropriate preparation fail to learn something
does not, of course, suggest that younger people, with the appropriate
foundation, should not be taught the conceptespecially if it is as
important as the function concept.

Most elementary school teachers do not find the work described here
with functions either difficult or distasteful. They see it as a fun, appropri-
ate way to practice arithmetic, which it is. This calls attention to the fact
that we are integrating algebra with arithmetic through this process, and
showing how the algebra grows quite naturally out of arithmetic. It is not
surprising that many elementary school teachers also see this work with
functions as practice in recoi,mizing patterns, since :anctions are, in fact,
specific kinds of patterns.

Grade 4. In the 4th grade, children can continue practicing the use
of function machines and arrow arithmetic with more complex rules; but
they can also begin to integrate their work in algebra with geomeliy.

Children should begin learning the power of graphing early in their
mathematical careers, and they can integrate it with algebra through the
graphing of functions by 4th grade. In kindergarten and 1st grade, children
can begin to learn about bar graphs by putting a counter with a hole
through it on a peg for each time a certain evelit occurs (a car goes by on
the street outside the window, for example). Several different kinds of
events (a pedestrian walks by, a vehicle other than a car goes by, etc.) can
be recorded at the same time on other pegs with similar counters. Then,
a picture of the piles of counters becomes a bar graph. Keeping track of
events with tally marks is a slightly more abstract approach to bar graphs.

Two-dimensional graphing can be modeled first with city streets and
avenues, labeled 1, 2, 3, and so forth. To decide where the corner of Third
and Fifth is, you must decide whether streets or avenues will be reported
first (or give the entire name). Then locating points in the "city" is
equivalent to locating points on a graph. Building on this background, and
the graphing of such things P s a child's height over time, students should
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be ready to graph linear functions and similar relations in the 4th and 5th
grades.

Grade 5. If, in the 5th grade, the teacher introduces the standard
notation for describing algebraic functions (y = 7x 5, y = x2 + 2, and so
on), the students almost always complain that ihis simple notation has been
withheld from them for so long and argue that they should have been
taught with this "simple" notation from the beginning. Of course, the
reason they find it so easy and natural is because theyhave gor e. through
the relatively more cumbersome, but much more intuitive, procedures
described here.

Grade 6. In the 6th grade, children can continue to graph more
complicated functions, including periodic functions (average monthly
temperatures for various cities throughout the year, for example), quadrat-
ics (the area of a square plotted against the length of a side, the area of a
circle plotted against the radius, or y = x2 3x + 4, for example) and can
even find, or approximate, the values ofx that ma,...ey equal 0, 10, or another
number, for such functions by using graphs (and a calculator when the
arithmetic becomes difficult). Thus, solving quadratic equatiom by appro-
priate means in the 6th grade is not at all beyond the powers of normal
children, if appropriately integrated developmental material pre -edes this
work.

Using graphing techniques with calculators and computers to solve
equations also ought to make possible a substantial reduction in the
emphasis on much of the exotic factoring that now occupies a major
portion offirst- and second-year algebra courses, thus saving time for more
useful activities.

The grade levels reported here are not speculative. Tens of thousands
of American children from all socioeconomic backgroundswith all the
usual variations in intellectual ability and with all the common physical,
social, and personal problems--have successfully completed the work
described here before the end of the 6th grade (along with equally
challenging work in other aspects of mathematics). (See Dilworth and
Warren 1980 and Herbert 1984 for evaluations and field testing reports.)

On the other hand, there is nothing sacred about these particular
grade levels for these particular topics. To list each of the skills mentioned
here as a requirement for that particular grade in a curriculum guide, and
then reject any mathematics series that did not teach the given skills at that
grade level, would be sheer madness. Rather, textbook committees and
other decision makers should be looking for an approach to each important
strand that is clearly integrated from grade to grade, that is based on the
best information we know about how children learn mathematics, and that
has been tested with real children in real classrooms. The general order of
the topics described here demonstrates serious thought about human and
mathematical development over a period of years. Evidence of such serious
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thought should be one of the most important criteria used in selecting
textbooks.

Grades 7 and 8. In grades 7 and 8, students who have the kind of
background described here can continue to study various kinds of func-
tions, including exponential, quadratic, and other polynomial fiinction
periodic functions such as moon phases and tide heights; and other
functions that originate in the real world around them. They should
constantly connect this work with other parts of mathematics and with
other subjects as well as with the work that has preceded this.

An example may help. Pretend that
we are going into the turtle life insurance FIGURE 6.6
business. We must start by collecting
some data. We find a sample of .0 000
newborn turtles and mark them so we can
identify them later. We have reason to
believe they are ordinary turtles who will
live ordinary lives, and so we will be able
to infer from them to the entire popula-
don of turtles for life expectancy. We have
a limited amount of money to collect data,
so we send a researcher out to count tur-
des only once every 20 years. The results
appear in Figure 6.6.

This figure represents a function
showing the number of turtles alive at age
X. Given an age (such as 120 years) we can
find how many turtles were alive then
(7,800). Assuming this sample is repre-
sentative of the population, we can now
calculate the probability of a newborn
turtle's living to the age of 120 (7,800 +
10,000 . .78).

Suppose we want to calculate the

Age X
Turtles surviving

to age X

o 10,000

20 9,200

40 9,000

60 8,900

80 8,700

100 8,300

120 7,800

140 7,000

160 6,100

180 5,100

200 3,900

220 800

240 40
probability of a 57-year-old turtle's living
another 100 years. How do we do this? 260 3

We first must decide how many turtles
from our sample were alive at age 57. We
don't know. We can't know because no one was around at the time and the
turtles aren't talking. What do we do? We assume that turtles died at a
constant rate between ages 40 and 60 (this is almost certainly a false
assumption, but it's the best we can do). There were 9,000 turtles alive at
age 40 ard 8,900 at age 60, so 100 turtles died in 20 years. That 5 per
year. So, after 17 years, 85 turtles can be assumed to have died, leaving
8,915 live turtles.
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The next step is to determine how many turtles were alive at age 157.
Between ages 140 and 160, 900 turtles died at an average rate of 45 turtles
per year. That leaves 6,235 live turtles at age 157.

So, the probability of a 57-year-old turtle living another 100 years is
about 6,235 4- 8,915 or .70.

We have just done the most difficult kind of interpolation for students
in trigonometry and other coursesthe kind in which one number is
getting larger while the other is getting smaller. We have also seen both
the reason that interpolations generally do not give exactly correct answers
and the reason w tend to believe they are good estimates anyway. We've
connected our study of functions (and algebra) with statistics and with
probability. If we also had graphed the function, we would have shown a
connection with geometry as well. And, of course, the work is based on an
understanding of functions that was gained in preceding grade levels.

High School and College. Most of the study of mathematics in high
school and college is directly or indirectly related to functions. Most of
modern trigonometry is a study of circular functions. The consideration
of periodic functions mentioned earlier should help prepare pupils for such
study. Of course, we would start with some good concrete geometric work
with right tziangle trigonometry, and we would actually have students wrap
a tape measure or marked string around a unit cardboard circle to derive
the standard circular functions and the relations between them before
going into the more abstract study of circular functions.

First- and second-year algebra and calculus could almost be described
as not much more than the ever deeper and broader study of functions,
their properties, and their applications. The study of al of these should
build on a strong intuitive understanding of the function concept,built up
over many years, and its importance both in mathematics and in the world
aronnd us.

There are, ot course, many other ways functions should be studied
and used in school mathematics, but those discussed here give an indication
of the kinds of connections that ought to be made---both "vertically" and
"horizontally"when studying any topic.

Adopting a Connected Program

The purpose of this discussion of functions was to show how a topic
in mathematics can be taught over a period of years. The foundation in
the early years is built on the learner's reality, which is gradually expanded
to involve serious study of very abstract mathematics. This study always
relates back to the real world, other academic subjects, and other parts of
mathematics. Similar development should occur for every major strand in
school mathemc,ics.

The typical classroom teacher is not prepared to make all the connec-
tions required for such an activity and should not be expected do so. On
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the other hand, textbook authors can quite reasonably be expected to do
the thinking, planning, writing, field testing, and rewriting necessary to
accomplish the kind of integration I have been discussing. Adoption
committees ought to ask for some kind of evidence that this has been done.
At the very least, they should ask who did the overall planning of the series
and what kinds of considerations influenced that person or persons when
making decisions about what topics would be studied at what levels, and
how they would be approached.

Beyond that, however, textbook adoption committees should be di-
vided into "vertical" subcommittees and "horizontal" subcommittees. For
K-8, one subcommittee might look at the development of arithmetic
operations, another might consider functions, another might examine the
development of geometric concepts, and so on. For grades 9 through 12,
functions could again be a strand to be studied; a second strand might be
problem solving and applications; a third could study the presentation of
geometric ideas in all four grades and how these ideas are integrated into
the rest of the program.

A subcommittee should consider both the pedago7ical development
and the mathematical development. It should decide whether each is
appropriate for children of the given age with the background provided by
the textbook series. It should also decide whether the proposed activities
prepare pupils for what is to follow.

If such adoption activities were carried on as a regular part of all major
adoptions, the effects would be most salubrious for the quality of available
mathematics textbook series.
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Fostering Chafige
In this book, I try to present arguments supporting the need for change
and to indicate what kinds of changes are needed, occasionally even

suggesting specific actions that can be taken to ensure those changes come
about. Constructive change, of course, is very difficult to achieve; but there
are various ways educational leaders can encourage positive change.

Metamorphobia

A characteristic that appears to be present to a greater or lesser degree
in almost all human beings is a fear of change or an avoidance of change.
I call this characteristic "metamorpho ia." Two basic principles seem to
govern the behavior of most people in t. is regard:

1. People try to create or acquire the simplest possible rules to
explain situations and to govern their behavior.

2. People try to keep the rules that appear to have served them or
others well in the past, even in the face of new evidence that those rules
are not optimal.

Let me give some simple examples of what I mean. First, in early
infancy we somehow identify a set of very different-looking perceptual
images as a single thing that we ukimately call "mother." Much thought is
saved by not treating each instance as a separate and unknown being. By
doing this we have created a simple, and simpWing, rule.

Second, a young child natorally concludes that, in general, of two sets
of discrete, identical objects, the one that covers the greater area has the
greater number of objects. This conclusion is generally true, barring the
intervention of some malevolent outside force (such as an adult psycholo-
gist). Even when the conclusion fails to be true, the child has neither the
intellectual equipment nor the inclination to recogmze the ialsity of the
proposition. For the normal preschool child, the conclusion relating area
and number is easy to make and appears to work. Before Piaget, probably
no more than one child in a million was ever embarrassed in the slightest
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wnen applying this principle. Since the principle seems to work, the child
is loath to give it up.

Similar resistance occurs whenever people of any age are faced with
information or theories that might cause them to question the simple
principles they have previously acquired and used successfully. We see an
analogous phenomenon in adult human beings who are presumed to be at
the pinnacle of their intellectual professions. For example, the medical
profession rejected antiseptic procedures and the whole germ theory of
disease until long after the evidence was overwhelming.

Human beings at all levels follow the two simple metamorphobia
principles: (1) create simple rules, and (2) try to retain previously hown
rules.

There are two obvious reasons that people behave this way. First, as
individuals, we conserve energy, reduce the need for substantial thought,
and avoid potentially dangerous situations. Second, as a society, we con-
serve the knowledge of the past (even when it happens to be false knowl-
edge). The ability to transfer substantial quantities of knowledge and
experience from one generation to the next is one of the main character-
istics that sets the human race apart from other animals. It gives us the
ability to build on the past rather than starting over with each new
generation. This ability should be cherished and preserved.

These rational reasons that metamorphobia ought to exist do not, of
course, prove that it does. Can it be tested? Perhaps by observation.
Perhaps even by making a prediction or two about how people will behave
in certain situations. Try to do this with your own behavior as well as with
other people's (even though you may incur some difficulty remaining
totally objective). Do you have a tendency to believe, for instance, that all
people with some characteristic X (for example, having red hair or
physically attractive) will also have characteristic Y(for example, lose their
tempers easily or be honest and nice) simply because you have previously
seen two or three instances of this confluence of characteristics? Do you
change your mind easily when you observe counter examples, or do you
assume these are "the exceptions that prove the rule"?

Most people seem to resolve the conflict between "known" general
theories and an easy acceptance of new ideas and facts in favor of the
former. Such people are characterized as knowledgeable, mature, conser-
vative, close-minded, reactionary, or bigoted, depending on who is doing
the characterizing.

Some among us tend more often to resolve such conflicts in favor of
the new. Such people are characterized as creative, young at heart, liberal,
immature, flighty, or irresponsible, again depending on who is doing the
characterizing.

I believe that the most important contributions to making the world
a better place to live never fall completely within either category. In
general, the people who really help the world become a better place tend
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to accept new ideas readily but at the same time to be very aware of the
knowledge of the past, as well as the knowledge that others are producing
at the time. They remain ready to accept or create new ideas when the
evidence supports them, but they retain a healthy respect for past
howl Age.

Historically, the educational system has been charged with the duty
of passing on _the knowledge of the past. This is as it should be, since
knowledge of the past is required if we are to improve on it with any
efficiency or even live comfortably in the present. Language, social insti-
tutions, mathematics, science, and other kinds of knowledge are all passed
on from generation to generation, at least partially, through schooling.
Althou0 passing information on to the next generation is necessary and
desirable, there are obvious difficulties with any system that only presents
past information. First, there could be no progress if the human race were
limited to only the knowledge of the past. Second, this knowledge is never
transferred perfectly (witness the game of "telephone). There is always
some loss and some distortion. So, while valuing those who bring us
knowledge from the past, we must also cherish those who bring doubt and
creativity to bear on such knowledge.

Formal schooling is one of the prime mednisms society uses to
instill the wisdom of the past in each new generation so that the human
race can conserve thought and build on what has gone before rather than
recreating, in each generation, what our ancestors knew. Given this im-
portant mission of the schools, we wi uld expect them to be conservative
and authoritarian. They are.

Teachers, textbook publishers, creators of standardized tests, parents,
pupils, and the public at large all have a vested interest in the status quo.
Life is easier and less threatening when we continue doing things the way
we, and our predecessors, have always done them. How then can we expect
the schools to change so as to prepare children for the challenges they will
face in the 21st century?

I have no simple rule that educational leaders can use to govern their
behavior to help themselves and others change mathematics education. I
have, instead, only a few suggested actions that may be of some help in
facilitating the sorely needed changes.

The Role of Teachers in Change

Other than the pupils themselves, teachers are the most important
part of the educational process. The popular press and various political
pundits have had a field day telling us what a bad job our teachers are doing.
Low grade-point averages and low standardized test scores for people
hoping to be teachers are cited to prove that teachers aren't good enough.
It has been widely reported that U.S. teachers teach only 180 days a year
and teach only 25 to 30 students in a class. These facts have beel presented
as apparent indications of how lazy and overpaid our teachers at c!, and also
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as reasons our schools achieve less at greater cost than schools in certain
other countries, such as Japan.

But the reports seldom mention that more and better qualified people
would choose to enter the teaching profession if conditions and compen-
sation were better. Nor do they mention the fact that Japanese teachers
teach only 16 hours in a six-day week while our teachers teach an average
of 25 hours in a five-day week. U.S. teachers actually teach more hours in
a year than Japanese teachers do, even though Japanese teachers are said
to teach (and be paid for!) a full year.

Seldom do the reports call attention to the fact that the reason
Japanese teachers are able to handle classes of 45 students is that there is
strong family and societal support for education in Japan, and dscipline
problems as we know them simply don't occur in Japan.

Two surveys on discipline in U.S. schools, one taken in the 1940s and
the other in the 1980s, suggest the difficulty of teaching school at present.
The most serious discipline problems in the 1940s were talking, chewing
gum, making noise, running in the halls, getting out of turn in line, wearing
improper clothes, and not putting paper in wastebaskets. The correspond-
ing list for the 1980s included drug abuse, alcohol abuse, pregnancy,
suicide, rape, robbery, assault, arson, gang warfare, and venereal disease
(Will 1987).

It has been said that anyone who is really qualified to teach mathe-
matics and chooses to do so, knowing what corditions are like in the
schools and knowing what the other options are, is truly committedor
truly ought to be. Given the conditions of teaching and lack of respect for
education, there is an amazingly large number of truly qualifiedtruly
committedteachers of mathmatics in the United States today. As a
society, we should be grateful to them and should try to improve the
conditions under which they labor, both to help them do their jobs better
and to attract more of these excellent mathematics teachers for the future.

Another fact that is widely ignored by those who view our school
system with alarm is that much of the money they claim to be "throwing
at the problem of education" simply is not spent on traditional education.
Much of that money is spent on busing; special classes for the physically
and mentally handicapped; police-type protection for teachers and stu-
dents; impressive physical plants maintained by janitors who are paid more
than the teachers or other instructional staff, special courses about drugs,
AIDS, dental hygiene, driving an automobile, and nutrition; and other
activities that were not traditionally thought to be part of educating
children in this country, and are not included in the education budgets of
most other countries.

However worthy you may believe these many activities to be, it is
simply not rational to pretend that the money spent on them is likely to
improve the quality of education in mzthematics, history, English, music,
or science. The recent report of the Economic Policy Institute (1990),
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ranldng the United States 14th out of 16 industrialized countries in
expenditures for education, has generated considerable debate. But, even
if we are closer to the middle of the pack than suggested by that study, we
still spend far less on what has traditionally been called education than do
the other industrialized nations.

Other than behaving as concerned, voting citizens and bringing
pressure on elected representatives at all levelsof government, there is little
we as educators can do to correct the many problems with U.S. education.
Even within this unfortunate context, there are many things we can do to
help teachers do a better job. We can choose candidates who are likely to
be effective teachers, help them to become and remain high-level
professionals, and support their positive classroom activities through visits
and conferences.

Choosing Teachers

In recent years, and still today in many situations, a discussion of
"choosing mathematics teachers" would seem strange. Anyone who is
certified and who applies for a position would automatically be offered the
job. When nobody who is certified applies, anyone who can get temporary
or provisional certification is hired. Failing that, a person who is certified
to teach some other subject and who is willing to teach mathematics, even
without the necessary background, would be impressed into service.

Whether there is a plethora or dearth of candidates for a teaching
position, there are certain criteria that ought to be considered in determin-
ing whether the candidate is qualified. These include knowledge of con-
tent, ability to communicate about that content, knowledge of the people
to be taught (e.g., a knowledge of psychology and sociology), general
understanding of the place of education in society over the years (history
and philosophy of :Aucation), a good general liberal education that allows
the candidate to understand and discuss the connections between mathe-
matics and many other areas of human thought, a personality that is
attractive to both children and colleagues, and a substantial amount of
energy and commitment so that tile candidate will be able and willing to
put all these talents together to do an excel!, .nt job of teaching.

Occasionally people raisc a false dichotumy between a liberal educa-
tion and professional education and seem to suggest one or the other is
superfluous. Indeed, some states, and even some branches of the federal
government, have suggested that anyone who is qualified to teach one
subject is therefore qualified to teach any subject. This is analogous to
suggesting that dermatologists and orthopedic surgeons ought to be freely
interchangeable.

Others have suggested that if teachers just know the content, all
professional education is useless; or, at most, all one needs is a couple of
ceurses in the summer and maybe a supervised internship to become
a qualified teacher. This is equivalent to suggesting that anyone with a
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degree in anatomy should be allowed to practice medicine, perhaps after
taking some summer courses in medical practice and serving a brief
internship.

The medical analogies are not meant to be facetious. Education is at
least as difficult as medicine, and is more important to society (if not to the
individual). If we don't take ourselves seriously, nobody else will. There
have been instances of people practicing medicine without having attended
medical school (sometimes with considerable success over a long period of
time), just as there have been instances of people teaching successfully
without the generally expected background. That does not mean that
either practice is desirable on a global basis.

How a particular person acquires the requisite knowledge is another
matter. If a potential teacher can study mathematics without attending
school and learn as much as someone who has, there is no real need to
expose the individual to the mathematics faculty of a college or university.
The same goes for professional education co.arses. Evaluating such indi-
vidual learning to see if it is really adequate would be difficult, but should
be possible in both cases. The same should be true of someone who wishes
to become a physician by nonstandard proceduresif the prospective
physician or teacher can demonstrate all the knowledge and skill typically
required, the technicality of whether a particular course or degree ap nears
on a transcript should not be pertinent.

Several organizafions have published standards on qualifications of
mathematics teachers. The Mathematical Association of America (Com-
mittee on the Mathematical Eduction of Teachers 1988) and the National
Council of leachers of Mathematics (NCTM 198919) are two such profes-
sional organizations. Several other groups are working on similar standards
or have alread) published them. Certainly anyone who is about to hire a
teacher of mathematics ought to refer to such documents.

Elementary school teachers usually are teachers of mathematics, and
the organizations mentioned here have also made specific reference to the
kinds of mathematics and professional courses they should have. Of course,
similar consideration should be given to other subjects elementary school
teachers will teach, such as reading, sciencr , music, and art.

Good teachers who are already on the faculty should be involved in
the hiring of new teachers. They will have insights different from those of
a supervisor or administrator. Beyond that, if other teachers in the school
have a voice in choosing a new teacher, they are likely to feel they have a
stake in that teacher's success and are more likely to provide counsel and
support for the teacher when it is needed.

I f the criteria listed here and the criteria of various professional groups
are used, rather than the much mon., limited, technical, legal minimum
requirements imposed by the state, there is a high probability that no one
who is qualified for the job will be found. Whenever that happens, the
school leaders owe it to the community and to education to make the fact
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public. If the citizens of a community are told on a fairly regular basis that
no one who is really qualified can be found who is willing to teach in their
community, they may mice action to improve the conditions of servitude
for teachers.

Continuing Professional Growth of Teachers

Even if the best potential teachers are hired, they must continue their
professional development to live up to their potential. To advocate educa-
tion for others but refuse to continue one's own education is hypocriti-
cal. To be an honest supporter of education for others, a teacher must
continue to learn.

A teacher's continuing education should be multifaceted. Every per-
son whose primary responsibility is teaching mathematics should belong
to appropriate professional mathematics teachers' groups. On a national
level, the appropriate organization for pre-college teachers is the NCTM.
The NCTM has local and state affiliates in every state, which serious
tcachers of mathematics should also join. Some high school teachers may
also wish to consider membership in the Mathematical Association of
America and the American Mathematical Association of Two-Year Col-
leges. Teachers should read the appropriate journals of the various profes-
sional organizati ins and should attend professional meetings of those
organizations. Teachers, supervisors, and others often respond to such a
suggestion with "Yes, but how are we going to find time and money for
this given the other pressures of being a teacher?" The answer is not trivial,
but often a simple reordering of priorities will provide an answer.

In one school system in the southeastern United States, a teacher who
had been invited to speak at a regional NCTM convention was refused
permission to go because she was needed in the classroom. Approximately
one month later, the same teacher was required to leave her class to go to
the state basketball tournament to check coats. The priorities of that school
system were in dire need of reexamination (Willoughby 1984). In fact,after
this story was publicized, priorities in this system were reexamined.

As a standard practice, part of the school budget should be set aside
to help provide continuing education for all teachers.

Besides reading professional journals and attending professional
meetings, a teacher can attend classes in colleges and universities (with or
without credit), can work with other teachers in the school system in
seminars or more formal classes to continue learning about mathematics
and pedagogy, and should spend some time each year observing other
teachers and being observed by others.

Reciprocal observations are almost always good for both teachers
involved. The teacher who is being observed prepares an especially good
lesson, which benefits the students of that class and can be reused in the
future. The teacher who is observing sees an excellent lesson and can use
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ideas from it in future lessons. Even if the lesson is not exceptionally good,
the visiting teacher may notice things to avoid doing.

Again, the question of how to provide time for teachers to visit each
other is a serious one. At the risk of alienating some of my readers, I suggest
that the answer is obvious. Principals and supervisors should, on a regular
basis, substitute for teachers to allow those teachers to make such
visitations.

The goal of schools is to educate. The main function of supervisors
and principals is to improve that education. Unless they occasionally teach
in the classroom, they will lose touch with reality and not be able to help
teachers as much as they should. (By the same logic, of course, I believe
that any teacher of methods courses or writer of textbooks should regularly
teach at the appropriate level.) The word principal is not really a noun at
all; it is an adjective. In schools, "principal" was originally part of the phrase
"principal teacher." If supervisors and principals are really our best teachers
(and they should be), then secretaries, clerks, and others should be taking
care of the paperwork, administrative details, and public relations; and the
educational leaders should be involved in the classroom.

Helping in the Classroom

Whenever possible, visits to a teacher's classroom should be for the
purpose of helping the teacher do a better job, not for "evaluation" in the
pejorative sense. Ordinarily, a good supervisory visit will be announced to
the teacher in advance, and the teacher will describe the plans for that
period. If a good textbook has been adopted, the supervisor should have a
copy of the teacher's guide and should become familiar with the goals and
procedures set forth for that lesson.

Recently, a staff member of a development project visited a field-test
school. One of the participating teachers complained that certain prelim-
inary activities should have preceded the first lesson. The staff member
asked if the teacher had not read the teacher's guide for lesson 1, since it
described all the teacher's activities and more. The teacher responded: "I
never read instructions." Other teachers in the school concurred, saying
they also never read instructions.

Society has serious problems when even teachers rebel at the thought
of learning through the printed word because of the strain on their intel-
lect or energy. At the very least, a visiting supervisor should see clear
evidence that the teacher has read the teacher's guide. Virtually every
teacher's guide ever published has soine good suggestions for improving
teaching. If the textbooks have been chosen carefully, there should be many
such good suggestions for intrcducing and presenting concepts; for prac-
ticing skills in constructive, enjoyable ways; for alternate teaching strate-
gies; for daily and longer term periodic informal assessment; and for
remedial activities that can be carried out as soon as trouble is indicated.
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If the teacher deviates substantially from the teacher's guide, the kind
and quality of those deviations should be noted. For example, if the guide
suggests doing some mental arithmetic, playing a game, working in groups
on a project, and other such positive activities, and the teacher actually
spends the entire period talking and having pupils do a page or two of
written exercises, there should be some serious questions asked as to why
the teacher chose to deviate in this way.

If, on the other hand, the deviations are in the opposite direction, with
the teacher adding exciting activities that were not suggested in the
teacher's guide, the teacher should probably be commended and perhaps
asked to share some of those activities with colleagues so they, too, can
"deviate" in this constructive manner.

Almost never should the teacher spend a long time talking "at" the
class. It has been said of American education that people learn by doing
but teachers teach by talking. Though some talking is appropriate, most
teachers have a tendency to talk too much and allow too little time for
involved participation. Mathematics is not a spectator sport. Teachers must
endeavor to overcome the "sage on the stage" syndrome.

The teacher should be well organized and have prepared any neces-
sary materials for the class. Beyond that, the children should be .4ell
organized. If there is written work to be done, they should have paper and
sharpened pencils (without lining up at the sharpener after the assignment
has been given). If a game is to be played or a project pursued, there should
be an efficient method of distributing the necessary materials. If mental
mathematics is being practiced, there should be some means by which the
teacher can be sure everybody is participating and can also tell what
mistakes are being made by which children. At the very least, all students
in the class should know what they are supposed to be doing at all times.
The teacher should also know both what individuals are supposed to be
doing and what they are doing.

In a class in which pupils do many things other than listen and write,
discipline is likely to be more of a problem than in more traditional
classrooms; but good discipline is even more necessary because of the need
to allow children to pursue their goals (play a game, solve a puzzle,
complete a project, etc.) without undue interference from others. The
beginning teachers with the greatest promise often have the most sel ious
discipline problems precisely because they are trying to encourage intel-
lectual freedom and have a hard time distinguishing in their minds and the
minds of the pupils between intellectual freedom and social irresponsibil-
ity. An experienced supervisor can be a great help here. Such a teacher
should be encouraged LI) solve the diccipline problem quickly, even if some
intellectual freedom must be temporarily abridged, lest all freedom be
eliminated by the irresponsible acts of a few.

A spirit of cooperation, sportsmanship, inquiry, flexibility, and enjoy-
ment should permeate the classroom. Thus, the teacher and students
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!,houid listen to each other's views and respect different, but reasonable,
answers. When playing games, players can reasonably be expected to help
their opponents do better. When investigating an interesting mathematical
question, students should show reasonable signs of interest and even
excitement, as well as respect for others' opinions.

There should be a reasonable balance between "getting on with the
work" and allowing time for deeper consideration of interesting problems.
If the problems are really interesting, and the students are truly interested,
there is very little excuse for rushing on to the next topic. On the other
hand, once the interest of most class members has flagged or there seems
little hope of learning anything new from continued consideration of a
problem, moving on should be encouragedperhaps with the suggestion
that individuals pursue the matter further outside of class, in cooperation
with other class members, by themselves, or with the help of other people.

Textbook Selection and Use

Studies about the influence of textbooks on the mathematics curric-
ulum invariably conclude that the most important single factor in deter-
mining what content children are exposed to in the classroom is the
textbook. In almost all mathematics classrooms in the United States,
virtually nothing is taught that is not in the textbook. Thus, choosing
textbooks and other curricular material is one of the most important
activities in the educational process.

Despite the importance of textbook selection, texts are often chosen
in a remarkably cavalier manner. During my first year of teaching in a
junior hig;i school, I was told I was on the mathematics textbook selection
committee and should report to a particular room at 2:30 that afternoon
(the time the last cla..-s ended). Two other teachers and I appeared in the
room and began looking at the 10 to 12 series of textbooks that had been
submitted. T observed that my more learned and experienced colleagues
each chose a favorite topic, checked each series to see whether the book
had done it "right," and quickly assigned each series to the reject or
acceptable category. Several series were also rejected because they didn't
appear to be attractive enough to somebody. By 3:30 we found ourselves
with three series that had not been rejected. We voted and left. The series
we adopted was the same series the school had used for the previous five
years.

There are better ways to select textbooks. The NCTM (1984) has
published a list of professional standards for selection and implementation
of instructional materials that is well worth reading by anybody involved
with textbook adoption. The first standard is:

The entire process of textbook selection should be led by teachers and
supervisors with expertise and responsibility in mathematics education.

1 01 Fostering Change 95



Except in most unusual circumstances the recommendations of the
committee must be followed.

Although this recommendation may seem so obvious as to not be
necessary, the NCTM committee that wrote these standards had been
surprised by results of their survey that indicated that often textbooks are
adopted by majority vote of the uninformed (teachers who in many cases
had not even seen some of the books they were voting on) or by a political
process often more dependent on which sales representative had made
friends with the largest number of school board members than on any
professional considerations.

Another NCTM recommendation is that criteria to be used in select-
ing books be published in advance. A short list of criteria is of far more use
in such selection activities than a detailed, telephone-book-size, curricu-
lum guide. There should be no attem_pt to specify exactly what is to be
taught (or is not to be taught) at each level, nor exactly how each topic is
to be taught. The general flavor and methods, the need for vertical and
horizontal integration, appropriate level of expectations, and similar
matters can quite reasonably be specified, however.

NCTM strongly recommends that those responsible for writing the
criteria first spend a substantial amount of time studying various recom-
mendations of professional organizations and others, and making decisions
as to which of the goals specified by national groups they believe to be most
important and appropriate for the local community. The organization
recommends consulting current research and evaluating the presently used
program to see where it is particularly strong and where improvement
would be desirable.

Two additional comments made by NCTM are interesting because
so many textbook adoptions seem to violate them. "Difficulties in imple-
mentation should be considti ed only if they seem insurmountable" and
"Copyright dates and formula-determined reading levels are generally
inappropriate as selection criteria."

NCTM recognizes that it will always be more difficult to implement
a program that requires change than one that does not. Thus, ifan adoption
committee starts with the belief that any program that is a little hard to
implement should not be adopted, there will never be substantial change.
However, the standards suggest that substantial inservice support be
provided whenever a new program is instituted. Such inservice support
should precede the actual adoption and should continue well into the first
year of the adoption. For really substantial changes, inservice support may
reasonably continue for several years.

The point about copyright dates and formula-determined reading
levels is particularly important in mathematics: a book with an old
copyright date may be more up-to-date than a book with a more recent
date. Readnig-level formulas have been instrumental in destroying the
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quality of the language used in "word problems" and other exposition and
should not be used.

Adoption committees ought to look at all available materials even if
there is no local sales representative for them. Some excellent materials
have been developed by nonprofit groups and by very small publishers. A
serious effort should be made to locate all such materials that have any
chance of being adopted. If the distributors are so small that they will not
be able to supply consultants and other implementation support, efforts
should be made to find out what sort of support would be available from
other sources. Often there are good independent consultants who can fill
such a gap, or hiring an additional member of the supervisory staff may be
necessary and appropriate.

After the committee has reduced the number of serious candidates to
two or three programs, the remaining programs should be piloted in local
classrooms, if possible, to find out how they work in practice. Then,
committee members should visit pilot classrooms; should listen carefully
to both positive and negative comments from teachers, pupils, parents, and
others associated with the pilot; and should make their final decision on
the basis of all available information. If, for some reason, a pilot test is
impossible, the committee (or some subset of the committee) should visit
other school systems that are using the materials and see how the progran_
is working there.

Occasionaily people object to the suggestion of pilots or visits on the
basis that new programs could not be considered since they would not have
been used in the year preceding adoption. That, of course, is not true if
the programs are being developed with anv kind of decent respect for how
they will work in the classroom, since proper development would certainly
require serious field testing for at least a year before publication, and for
several years if a series is involved and there is any attempt at vertical
integration.

In the previous section, the point was made that teachers should
continue their education throughout their teaching careers. In addition,
whenever a truly new program is adopted, there should be strong inservice
preparation and support. The contract to buy the books should inducte an
agreement by the publisher to provide appropriate inservice education for
teachers, supervisors, and others associated with the adoption. Usually a
day or two for most teachers will be as much as can reasonably be expected,
but t is not unreasonable to suggest that certain key teachcrs be given
substantially more preparation so they can become resource teachers for
others in their school.

Beyond this preparatory inservice work, there ought to be some
systematic follow-up a few weeks into the programa refresher course in
which teachers can ask pointed questions about things that don't seem to
be going quite right. Ideally, the publishei should have someone available
at the other end of a telephone line (preferably an "800" number so the
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school or teacl'er doesn't have to pay for the call) who can answer most
questions or can get the answer to questions and respond. But beyond that,
a consultant should appear in the school regularly for the first year, and
occasionally even in later years.

The school system itself should create a procedure allowing teachers
who have trouble with a particular lesson to discuss it with othersto see
whether they too had the same trouble and what they can do to improve
the situation. When teachers join the system, there should be an automatic
procedure for ensuring that an experienced teacher who is familiar and
comfortable with the textbooks is assigned to acquaint the new teacher
with the material and help smooth out the rough spots.

Supervisors, principals, and other leaders should also have some
inservice preparation to become familiar with the goals and procedures of
the new program and to be able to help teachers implement it effectively.

After a new textbook series has been in use for about a year, serious
evaluation of the success of the program should be undertaken. If the
evaluation points to weaknesses, appropriate modifications ought to be
considered. Is more teacher preparation required? Would certain supple-
mentary materials help? Should other modifications be made? As a last
resort, should a different set of books be considered?

This last question is usually not considered seriously because of the
expense involved, but changing hooks a year early often turns out not to
be as expensive as some people think. For grades K-2, most student books
are paperback "disposable" items that must be replaced every year anyway.
For the other grades, if the cost of the material is prorated over five or six
years, the actual cost turns out not to be terribly great. If a truly new and
more challenging program is to be adopted in a future year, adopting K-3
early may help prepare pupils for the different and greater demands to be
expected in grade 4 and above.

This discussion of cost brings us to a really important point about
textbooks. The process suggested here seems to require a great deal of
time, effort, and money. It does. The committee must be given time and
substantial support to carry out its duties. However, the overall cost of
textbooks in the United States is less than 1 percent of the total school
budget (and also less than the nation spends on Nintendo). The influence
of textbooks on the education of children is out of all proportion to their
cost. There is no excuse for not taking the adoption of textbooks far more
seriously than is presently the case in most schools. Beyond that, as the
NCTM stated, because of textbooks' small portion of the school budget,
cost should not be a determining factor in selecting textbooks. "Potential
financial savings do not justify the selection of less desirable materials"
(NCTM 1984).

One more point ought to be considered. If a textbook series is adopted
that is considerably better than the previous series, children coming
through the new series will be expected to know a great deal more and be
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able to do many more things than children -.ho used the old series. Under
those circumstances, with a K-8 adoption, for example, the upper grade
teachers and students will have substantial difficulty because of lack of
preparation. Parents, pupils, teachers, and others ought to be warned about
this in advance Expectations for the first year ought to be somewhat lower
than for subsequent years because a lot of time is likely to be spent
rernediating the weaknesses of the old program. Obviously, failure of many
clacses to finish the book should not be seen as a weakness of the new
program (though it might be seen as a weakness of the old one).

Assessment of Pupil Progress

Various methods of assessment should be used throughout the edu-
cational process in mathematics. Response exercises of the sort described
earlier should give teachers immediate feedback. Observation of children
playing games, doing activities together, responding to oral story prob-
lems, and discussing other special situations designed to foster thinking
should show different aspects of each child's achievement. Written work
done individually by the children provides still a different opportunity for
assessment.

The primary purpose of all this evaluation should be to give the
teacher a clear picture of the individual differences that exist within the
class and to provide an opportunity to help children in need of help and
challenge children in need of challenging.

"Individualization" has been in and out of favor at various times in the
recent history of educatio Nobody can object to the usual professed goals
of individualization (to meet the needs of eacn individual child, or some-
thing similar), but solitary confinement with a ditto sheet, or opportunity
to go "at your own speed," which for some children turns out to be zero,
is not the best way to provide each child with the best education possible.
The teacher should be as aware as possible of each child's progress.
Individual progress records should be kept of children's accomplishments
and needs; and as the needs turn into accomplishments, that progress
should be recorded.

When a teacher discovers that a particular child is unable to do
something that is necessary for further progress, the teacher should
evaluate the situation further to decide whether the child does not under-
stand or simply needs extra practice to become proficient in the skill. If
understanding is deficient, the teacher will have to spend extra time with
the child until the deficiency is remedied. When the problem requires
nothing more than extra practice, the teacher can usually prescribe appro-
priate practice in the form of a game or some other activity that can easily
be supervised by parents or others, or possibly accomplished without
supervision.

Children ought not to be sorted out by somebody's idea of ability at
an early age. There will certainly be times when individuals fail to
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understand certain concepts and will be in need of considerable extra help.
It is also likely that certain individuals will need help far more often than
others. That's the way the world is. Good textbooks should help good
teachers provide that extra help.

Rather than giving up on those children who have serious difficulties
or Are different from typical successful mathemati-s students in other ways,
we must do a better job of helping them. We must be alert to differences
among children whenever they occur. We must have high expectations for
all children, and we must give them the necessary help to live up to those
high expectations. A:: children can and should learn mathematics.

Evaluation should be an ongoing, important part of education.
However, the pathological fascination with grades and public assessments
of children, teachers, and schools that permeates our society has no place
in good education. Almost nothing useful is gained from such activities;
and a great deal of damage can be caused when teachers teach for,
and students study for, a less-than-perfect test. Virtually all schools would
be better off with fewer standardized testsand with less public
dissemination of test results.

At the very least, schools should try to avoid any activity that would
encourage teachers to teach for such tests and children to study for them,
since that is not only a waste of good educational time, but distorts the
function of the test. Standardized tests are designed to sample a small
portion of the learning the school is expected to deliver. If nobody "preps"
for such tests, they can be a fairly good indicator of the quality of the rest
of the education. But that sampling procedure is completely destroyed by
specific test preparation. When "test data" are published in the local
newspapers or otherwise used to evaluate children, teachers, and schools,
the motivation to teach to the test rather than for the education of the
children becomes almost irresistible.

Some states and localities, and even some test makers, have given up
trying to get people to use tests more intelligently and now hope to
improve education by improving the tests. Soule of the tests from this new
generation are significantly better than the old ones. These new tests
certainly should be used if such tests are going to be usedand abusedas
they have been in the past. But we'd be better off if tests were used in a
more intelligent way.

Every mathematics course ends with a final examination. So as not to
disappoint the reader, I provide the following final examination and
solution key. Please try the test before looking at the solutions.
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Test

Preliminary Information

A. I have ten fingers altogether and, for this test, assume everybody
else does. That is, I do cour t thumbs as fingers, so I have a total of exactly
ten fingers, not eight.

B. Chris (a 2nd grade teacher) and Pat (a mathematician) are
married and have a four-year-old daughter, Wendy. One day Chris came
home from school and found Pat teaching Wendy the addition facts,
whereupon Chris said: "You really shouldn't do that until we are sure she
conserves numberyou may be doing more harm than good "

Questions
1. Write a four-letter word (beginni ig with "J") for an amusing

anecdote.
2. Write a four-letter word (starting with "Y") that is sometimes

used to refer to a pair of oxen, and is sometimes applied to a wooden frame
holding the two oxen together. (Spelling counts!)

3. Whet do we call the white of av egg? (Spelling still counts!)
4. How many fingers are there on ten hands?
5. What is Wendy's mother's name? (Do not look back at the story.)
6. What do we call the yellow of an egg? (Do not change any

previous answers.)
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Discussion

If you are a computer, you probably answered the questions as follows:
joke, yoke, albumen, 50, not sufficient information, and yolk. If you are
not a computer, you very likely answered some of the questions differently.
If you have friends who are not computers, try these questions on them.

Human beirgs often look for quick and easy rules to solve problems.
Sometimes those rules help. Sometimes they hindte. But we all do it. How
quickly we are able to pick up a nonpertinent pattern and follow it! And
how hard it is for us to give up those quick and easy rules even when we
know better.

There ic considerable evidence that the procedures dem ribed in this
book for teaching children eliminate many of the differences we are
accustomed to seeing between the mathematical learning of boys and girls,
between the learning of "middle class" and "lower class" children, and
between the learning of the groups we refer to as "minorities" and other
children.

But beyond that, the way we treat individual children in the mathe-
matics classroom has a great deal to do with how they see themselves
mathematically. If girls are excused from working Irrd to really learn
some difficult mathematics (because girls don't need that stuff) while boys
are made to do the work, boys will expect to learn and will learn
more mathematics. If Native Americans are assumed not to be good in
mathematics, they will be not good in mathematics..

We are all more or less prejudiced. We have gi own up in a sexist, racist
society, and it has had its effect on us. If you think Wendy's mother must
be the 2nd grade teacher because mathematicians don't become mothers
(or vice versa), you are sexist. That's normal. But ies not good. It is
especially not good if you are an educator who will influence the learning
and the prejudices of tbe next generation. Even if you answered all the
questions correctly, as an educator you must constantly take precautions
not to treat children differently based on their sex, their ethnic background,
their parents' occupations, or other nonpertinent information. If you
didn't answer the questions correctly, you may have to be doubly careful.

Change is needed in the way all children learn mathematics. As a
matter of equity, we should stop ignoring 90 percent of our population
when we teach mathematics. Equally important for society, we cannot hope
for the solution of the problems that will face us in the 21st century if we
fail to educate all children to the limit of their capacity. In a world tiaat is
becoming steadily more quantitative, we must provide better mathematics
education, for everyone, from kindergarten through graduate school.

All children learn and use mathematics better if it is derived from their
reality, abstracted, practiced in enjoyable and effective ways, and applied
to situations that are interesting and real to them. All children must learn
to communicate more easily about and with mathematics. All children
must learn to use technology efficiently to help them solve their problems,
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Chikiren must learn to think of technology as a tool or servant rather than
something mystical of which they should be afraid or in awe. Children
must learn to use their native intellect to solve real problems that involve
mathematical thinldng. i'hey must learn in a way that will make them want
to think mathematically, rather than in a way that will make them want to
avoid mathematics at all costs.

Because of the ever increasing body of mathematical thought that is
available and the ever wider uses of mathematic., perhaps the most
important outcome school mathematics should be that all people leave
school with the ability and desire to continue learning more mathematics
and to continue ;earning new ways to use mathematics.
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