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ABSTRACT

In the process of developing a conditionally dependent item-response the-

ory model, we were confronted with the problem of modeling an underlying
multivariate normal (MVN) response process with general correlation among
the items. Without the assumption of conditional independence, for which
the underlying MVN cdf takes on comparatively simple forms, and can be nu-
merically evaluated using existing reduction formulae, our task required the
development of a computationally fast, tractable and accurate approximation
of multivariate normal orthant probabilities for general correlation {pi2}. The
focus of our previous technical reports have provided such a method, based on
Clark's (1961) approximation of the moments of n correlated random normal
variables. The major thrust of our work continues in the area of applying this
algorithm to problems in item-response theory (IRT). The focus of this report,
however, is on the application of our previous results to another problem in
statistics; namely, the generation of simultaneous confidence bounds for multi-
ple correlated comparisons. There is a large statistical literature on this topic,
however, as in IRT, the solutions have been based on reduction formulae which
limits their application to special cases (e.g., equa-correlation), which arises in
the comparison of multiple treatment groups each of size ni = m to a single
control of size no. More general problems, such as, obtaining simultaneous con-
fidence bounds for regression coefficients cannot be solved using these existing
methods. In this report we illustrate how the results we have obtained in the
IRT context can be applied to simultaneous statistical inference problems of
various kinds.
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1 Introduction
If the random variables x11...,xp follow the multivariate normal (MVN) dis-
tribution with means zero, common variance cr2, and a correlation matrix

[piji, and if (v.s2)1(72 is at. independent k2 variable with v degrees of free-
dom, then the random vector t = (t1,...,tp), where ti = xi/s (for i = ,p)
is said to have the p-variate t-distribution with v degrees of freedom. This
distdbution is the multivariate analogue of Student's t with density function:

r(c)(0-111/2
f(tI, t2, tp) = 1 (1 ItlritrIF+11)/2. (1)(inr)P12 r(v/2) v

The distribution has applications in a number of statistical problems, most
notably in the multiple comparison of several treatments with a control (Dun-
nett, 1955), and as John (1961) has noted, in the construction of simultaneous
confidence bounds for the parameters in a linear modcl. We will discuss these
applications of the multivariate-t distribution and suggest a numerical method
for evaluating the probabilities associated with this distribution.

2 Dunnett's Test
Consider the problem of comparing each of p treatments with a control in
respect to their means ;to, P21- ...Pp. vi here po designates the control and
x i = 1,2, ... ,p, the treatments. Assume that the observations are normally
and independently distributed with common within-group standard deviation
ry. In this case. Dunnett (195:5) has provided a procedure for making confi-
dence statements about the p differences p, po, such that the probability of
all p statements being simultaneously correct is equal to a specified P level.
Dennett's procedure and the assz:ciated tables are available for the case of
equal sample sizes in all groups. Here. we will expand the procedure to the
case where the sample sizes are not equal, and to an even more general class
of problem involving simultaneous statiitical inference.

Suppose that there are no observations for the control. n1 observations for
the first treatment, ... , np observations for the p-th treatment, and denote
these observations by Xt., (i = 0,1 ..... p; j = and the correspond-
ing i-th treatment meat as X. Assume that there is an estimate of G2 available
(denoted s2) based on ti degrees of freedom, which is independent of the esti-
mator of the mean. Now let

= (P: Po)

non,

5
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and let ti = zils for i = 1,2._ ,p. As Dunnett (1955) a tes, the lower
confidence limits with joint confidence coefficient P for the p treatmen' effects

Pi Po are given by

g, go d.s nb + n', (3)
non,

if the p constants d, are chosen so that

Prob(t1 < d1, t2 < d2.... . tp < dr) = P. (4)

To find the p constants d, that satisfy these equations, the joint distribu-
tion of the t, is required, which is the multivariate analogue cg Student's t-
distribution defined by Dunnett and Sobel (1955). Dunnett (1955) has shown
how the problem of evaluating the multivariate t-distribution can be reduced
to the problem of evaluating the corresponding MVN distribution. For the
latter. notice that the joint distribution of the ; is a MVN distribution with
means 0 and variances o.2. The cdivelation between ; and :..; is given by:

p, =11 C\I-11+1)(22 + 1).(5)\n, i \n J

which for the special case of equal sample sizes equals 1/2 for all i and j.
,

Dunnett and Sobel note tb.at the joint probability statement given above can
be written in the following way:

P = Prob(t/ < dl.t2 < d2 tr < dr)
= Prob(:1 < do.:2 < d2.5 -p < dps)

L4-,x)

F(dis. d2s dpS) f(6)6. (6)

where F(d1.5.d2s dps) is the MVN cdf of the ; and f(s) is the one-
dimensional density function of s. Thus. with probability values for F(.). the
above equation can be evaluated using numerical integration over the distribu-
tion of s. For this. note that the density function of s is given by Pearson and
Hartley (1976) as:

vs,/2
f(s) = r (1,..p(u/21-10.-usu-I

exp(vs2/2a2).
2 -

(7)

.Since .5210'2 = 21v we can rewrite the equation for P in terms of integration
over the distribution of u = s/o. (which is defined on 0 to +oc) as:

:3
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P=Jo
+co

F(diu,d2u,...1dpu) f(u)c43;-4 du

v/2

r(i)240,2)..1 te exp( vu2/2) du. (8),

Numerical integration over the distribution of c can then be performed to yield
the associated probability P for selected values of d, p, and v.

3 Some Special Cases
Direct evaluation of the MVN cdf is not possible for p > 3. In the following,
we note some special cases for which reduction formulae are available.

3.1 Case 1: no = ni = n, (i -1 p)
When all sample sizes are equal, the correlation in (5) is 1/2 for all possible
pairings of the treatment groups and the control. Dunnett (1955) has given
tables for the critical values of this distribution. In this case, the MVN prob-
ability in (8) is simply

1
Fp(0.0,...,0: {.5}) = (9)

3.2 Case 2: no = n and ni = m.
When the p treatment groups are each of size m, but the control group is of
size n. where n m, then from (5), pu, = p for all i,j, and the the probability
in (8) is

Fp(ds,ds,... , (p}) = K[Fp r_ p')] f(y)d(y), (10)
1/2

where f(t) = exp(-1t2)/(2101/2 and F(t) = f f (t)dt, see Gupta (1963).

3.3 Case 3: no = n and ni unequal
When the treatment group sample sizes are, unequal, the correlation matrix
ipt,} has thé.spedal form

4
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Pil = aiai

no -1/2= -r ) (no ,)-1/2
n,

for (i j), where -1 < a, < +1. In this case, the MVN cdf is:

Fp(d1s.d2s dps:{Pu})

= [114 F f (y)d(y),
- =1 1 -

(see Dunnett and Sobel. 1953). This MVN integral can be approximated to
any practical degree of accuracy .ising Gauss-Hermite qaudrature (Stroud and
Sechrest, 1966).

4 The General Case
The special cases in the previous sections provide methods for evaluating
the MVN integral in (8). that cover all possible applications of the Dunnett
type multiple comparison with control procedure. regardlels of the sample
sizes of the various groups. Nevertheless, there are still situations in which
a completely general solution is required. Of course, for the general ca.se, a
more general method for evaluating the probabilities of the MVN cdf F(.)
is needed. For example, in regression analysis the (b1. bz,... , bp) are MVN
with means (3:,32,... , ip) and variance covariance matrix {c}(72 = 5-1a2,
where St, = E;v_2(zir ic)(x.o. - ".t.,) for (i.j = 12 p). In this case.
{Ai} = (ccnrillci, and none of the previous reduction formulae apply. One
computationally tractable possibility is to use Clark's (1961) formulae for the
rr nents of the maximum of p correlated normal variableg as applied by Gib-
bons et. al.. (1987) to the proble.n of appr,oximating MVN orthant probabil-
ities. A brief des:ription of this approximation is now provided, and we will
show that these probabilities are sufficiently accurate for practical purposes.

4.1 Thc Clark Algorithm
We begin by noting that .the MVN cdf F1(d1Q d2s dps: ) can be written
as:

Fp = Pr(x1 < h1.x2 < < hn),

5
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where hi = clic. If h1 ... It, = h = 0, and the ; follow a standerdized MVN
distribution, F: is a so-called "orthant" probability. However, note that we
can also write this MVN probability as:

F: = Pr {max(xt xn) 5 0) . (13)

If max(x 1, .. . , x,,) were normally distributed, which it clearly is not, with mean
Elmax(x .. . , x)1 and variance Ilmax(x ... ,x)1, then,

F° = F
P

[E(mar(xt

1\./V(max(xt .rn)

where in this case h = 0. For general h,, we would set h = 0 and subtract h,
from the mean of x,.

In or6er to proceed. we need the first two moments of max(x. . . xn) where
the x, have a joint MVN distribution witl, general correlation {pu}, and some
bound on the error introduced by assuming that max(x . . . x) has a normal
distribution. Clark (1961), has provided an approximation for the first four
moments of the maximum of p jointly normal correlated random variables, and
Gibbons et. al.. (1990). have shown that the accuracy of the approximation is
approximately 10-3 in proolems of this kind. ,An overview of the approximaion
is provided in the following.

Let any three successive components from an p-variate vector, yl, be dis-
trib).ited:

Y.+1 -- -% ii.+1 . cri <71+1 PLI+1 0'1+1
Ut+2 Pi+2

at

Crt (7,1-2 Pi.1+2 Cri+I Cr t, 2 Pt+1.t+2

2

ato2 I )

2

Let U, = max(y() = yj. and compute the probability that y,.1.1 > U, as
follows:

set

where

Then

4:82+ t

= (PI Pi+ i )/(:(+1.

= (7,2 + (7,2+1 crs cr.+ i P,.(+ I

P(y1+1 > U)
=

the value of theunivariate normal distribution function at the standard deviate
-;+i

6



Now let = max(,yi, yi+i) and assume (as an approximation) that (yi+2, gi+i)
is bivariate normal with means,

ii(yi+2) = e(V1+2) =
gui+1) = e(g:+1) iiit(zi+t) + + 0+10(z1+1),

variances

where

E(y:2+2 ) 12( )

= E(g+1)

(15)

(16)

e(g:24.1) = (14 + (7:2)(1)(;+1 ) + (112,+1 + cr:24-1)4qz:+i) + (p, + ii:+1)(i+10(zi+j).
(17)

and correlation

gui+1. Ys+2 ) =
Gr:Pi.:+24)( :1+1) + Gri+IPi+1.i+20( ;+1)

Then.

P (yi+2 = max(Y:, Y:+t Y:+2)) = P ((':+2 Yi+1 > 0) n (Yi+2 Yi > 0))

is approximated by

P(m+2 > g:+i) = P(yi+2 11+1 > 0)

= ( PH-2 ii(ui+i)
V(742 (7.2(ui+i 2Gri+2(7(Yi+1)PLui+1, Yi+2 )

(18)

(19)

(20)

Assuming as a working approximation that gi+, is normally distributed
with the above mean and variance, we may therefore proceed, recursively from
i 1 to i = g 1, where yp.4.1 is an independent dummy variate with mean
zero and variance zero (i.e. yp4.1 = 0). Then, for example,

P1Yp+1 = max(yle, Y21". Yp+I)1

= P Ryp+1 .yr > 0) n (yp+1 Y2 > n n (yp+1 yp > c)l

= P f(yi > 0) n (y2 > 0) n n (y> 0)]

1 0

(21)



approximates the negative orthant. The probability of any other orthant can
be obtained by reversing die signs of the variates corresponding to l's in the
orthant pattern.

More generally, to compute any MVN orthant probability, for example,

h

,rp; {pu})d.ri drp (22)

we compute the negative orthant 'etting 1104 = h. P-.tally, to approximate the
integral for general h we compute the negative orthant by seuing pp.4.1 = 0
and pi = ps h. In the present context hi = d1s

4.2 Applications
To illustrate the usr: zhe general approximation, consider the following two
multivariate prediction problems.

4.2.1 Confidence Bounds for Means

Simultaneous confidence bounds for the means of correlated normal variables
can now be found using the general method. Suppose are MVN
with mean vectsr pl pp and dispersion matrix 62{pii}, where {Ai} is the
correlation matrix. The Clark algorithm can be used to satisfy the inequality,

1, < < 1, + (23)

for (i = 1 p).

4.2.2 Confidence Bounds for a Future Observation

Similarly, simultaneous confidence bounds for a future p-variate observation
may also be found in this way. Suppose xi xp represent a future observa-
tion vector from a MVN population with equal variances and correlation matrix
{pi,}. A previous sample of size N is availab!e from which the estimates and
s are obtained. The Clark algorithm can be used to satisfy the inequality,

(24)

for (i = 1.... ,p). The value h = ds is selected. such that the desired confidence
level P in (6) is obtained.

11



Table 1

95% Critical Values for Various Modifications of Dunnett's Test

Case no n1 n2 na n4 (P.)

/
= )2 =

//
.5/ (Pi) = P)

III
(Pi; = ctial)

/V
{P}

1 10 10 10 10 10 2:39 2.92 2.22 2.20

1 90 20 20 90 90 2.19 2.19 2.19 2.17

2 10 20 20 90 20 2.19 2.13 2.13 2.12
9 10 30 30 :30 :30 9.18 2.09 9.09 2.07

2 90 10 10 10 10 2.90 1.15 2.25 2.29

3 10 :30 50 90 10 2.19 2.1G 2.11 2.10

3 10 5 50 10 50 2.13 2.09 2.13 2.13

I Dunnett's original test (correct for case 1 only)
II no controls awl in = :), =. .= n4 treatments (correct for cases 1 St 2)
III All n, potentially different (1 dimensional quadrature; correct for cases 1.2.3)
IV General {pi)} (Clark Approximate for all cases)

5 Illust rat ions
Table 1 presents comparisons of various modifications of Dunnett's test for
various sample size combinations a 5 group study.

Inspection of Table 1 reveals that all three of the reduction formulae work
exactly as anticipated. TFte general solution based on the Clark approximation
performs quite well. and if anything. it's accuracy is best in those cases when
it is most needed. i.e.. when the correlations are heterogeneous. Dunnett's
original tabled values (i.e.. case I). appear to overestimate the tr..e values
when no < n, and underestimate the true values when no < nt. In genetal, the
case II solution (i.e.. {Ai} = p) works reasonably well under all conditions;
however, it is somewhat biased in the final example in which the sample sizes
are quite variable.

As a second numerical example. let us return to the problem of obtain-
ing simultaneous confidence bounds for regression coefficients. Mosteller and
Tukey (1977, pages 549-551) recovered demographic transition data on fertility
rates and five socioeconomic indicators from 47 Swiss provinces in 1888. The
socioeconomic indicators were:

1. Prnportion of population involved in agriculture as an occupation.

2. Proportion of draftees receiving highest mark on army examination.

9
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3. Proportion of population whose education is beyond primary school.

4. Proportion of the population who are catholic.

5. Infant mortality: proportion of live births who live less than 1 year.

The common standardized fertility measure was used as the dependent
measure and the socioeconomic indicators x1,...,x5 were the predictors. The
least squares estimated regression equation was:

4..645 .203/i .29512 .89613 + .00114 + 1.316xs

This regression equation reveals that fertility is inversely related to socioe-
conomic status, which is consistent with the fact that at the time. fertil-
ity was beginning to fall from the high level generally found in underdevel-
oped countries to the lower level that it has today. The correlation matrix
{ = (cc.0)-Inc,., of the (61.62... .65) was:

1.00
.-)1

.39
.26
.17

1.00

.59
.55
.63

1.00

.47
.15

1.00

.17 1.00

and the unbiased moment estimator s' of

.2 = ( Tyy bi Tyi h2Ty2 b5Ty5)p

Ty: = =L.)

(25)

(26)

(27)

was s 2 = .0045. The elements c. i = 1.2, ....p of S' were c11 = .96,
c22 = 11.89. c3,1 = 6.55. c44 = .000024, and css = 30.58. Using the general
approximation. we find that the inequalities

. 6, dclis < < 61 + dc.9 (i 1, p). (28)

are simultaneously satisfied for P = .9.5 when d = 2.32. which yields the
cOnfidence limits:

10
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-.36 < i3 < -.051

-.83 < 14- < .24

-1.29 < < -.50
.00024 < 34 < .0018

.46 < 35 < 2.18

The confidence limit for 62 (i.e., proportion of draftees receiving highest marks
on army examination,, was the only interval that included 3 = 0. For a single
interval d = t41..os = 2.02. which is consideralqy smaller than the simultaneous
value of d = 2.32 used here. Had we used a simple Bonferroni type adjustment
(i.e., a .05/5 = .01). then d = t41..01 = 2.70, which would clearly have been
overly conservative.

6 Summary
In this paper we have provided methods for evaluating the multivariate t-
distribution with and without restrictions on the form of the correlation matrix
fik, 1. Using these results. Dunnett's test for multiple treatments compared to
a single contrr' -vas then generalized to various unbalanced cases. In the more
eeneral case. in which {A} does not have a simple unidimensional form. we
have applied Clark's approximation to the moments of the maximum of n cor-
related random normal variables to the problem of approximating the required
NIVN cdf. This approach appears to work well, and is the only computation-
ally tractable solution for the case of general {p,,}. Application to the problem
of obtaining simultaneous confidence limits for regression coefficients, clearly
illustrates the importance of this approach. given that repeated use of limits
designed for a single comparison yield inadequate coverage, and simplistic ad-
justments that do pot take the correlational structure into consideration. (e.g.,
Bonferroni adjusted a = oh)). yield limits that are overly conserative.

11
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