
DOCUMENT RESUME

ED 325 509 TM 015 747

AUTHOR Thompson, Bruce; Melancon, Janet G.

TITLE Bootstrap versus Statistical Effect Size Corrections:

A Comparison with Data from the Finding Embedded

Figures Test.

PUB DATE 1 Nov 90

NOTE 30p.; Paper presented at the Annual Meeting of the

Mid-South Educational Research Association (19th, New

Orleans, LA, November 14-16, 1990).

PUB TYPE Reports - Evaluative/Feasibility (142) --
Speeches/Conference Papers (150)

EDRS PRICE MF01/PCO2 Plus Postage.

DESCRIPTORS Comparative Analysis; Computer Assisted Testing;
*Correlation; *Effect Size; Error of Measurement;
Estimation (Mathematics); Higher Education; Meta

Analysis; Research Methodology; *Sampling;
*Statistical Analysis; *Test Interpretation;

Undergraduate Students

IDENTIFIERS *Bootstrap Methods; *Finding Embedded Figures Test;

Group Embedded Figures Test

ABSTRACT
Effect sizes have been increasingly emphasized in

research as more researchers have recognized that: (1) all parametric

analyses (t-tests, analyses of variance, etc.) are correlational; (2)

effect sizes have played an important role in meta-analytic work; anC

(3) statisticctl significance testing is limited in its capacity to

inform scientific inquiry. However, effect sizes tend to be biased by

sampling and measurement error. The performance of the statistical

corrections .for sampling error bias of R. J. Wherry and P. A.

Herzberg is illustrated and reviewed. The corrections are compared

with empirical estimates of sampling error derived using "bootstrap"

methods. A data set involving the responses of 31 college

undergraduates (18 females and 13 males) on the Finding Embedded

Figures Test (FEFT) and the Group Embedded Figures Test, is used for

illusrative purposes to maim the discussion concrete. It i suggested

that bootstrap methods provide important insights for the researcher

and are readily accessible to researchers due to the availability of

user-friendly computer programs that automate the procedure (i.e.,

programs designed for use on microcomputers). Seven tables illustrate

the example. An appendix provides an item ana3ysis for heuristic FEFT

data. A list of 65 references is included. (Author/SLD)

Reproductions supplied by EDRS are the best that can be made

from the original document.



boostrap.wp0 11/1/90

DEPARTMENT OP EDUCATION
Office al Educehonsi Research she improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

1214.14 document has been reproduced as
received from tft person or ownitatton
orenittag it

0 Maw changes have 0 mark to improv
reprotlucteon quality

Point* of mow Or opinions Mated in Ihm
moot do hot reCeSeenly reOreeent othmal
OEIN PostOort Or Polley

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

L)CE 7;04A50A)

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

BOOTSTRAP VERSUS STATISTICAL EFFECT SIZE CORRECTIONS:

A COMPARISON WITH DATA FROM THE FINDING EMBEDDED FIGURES TEST

Bruce Thompson Janet G. Melancon

Texas A&M University 77843-4225 Loyola University

Paper presented at the annual meeting of the Mid-South
Educational Research Association, New Orleans, November 14, 1990.

2



ABSTRACT

Effect sizes have been increasingly emphasized in research, as more

researchers have recognized: (a) that all parametric analyses (t-

tests, ANOVA, etc.) are correlational, (b) that effect sizes have

played an important role in meta-analytic work, and (c) that

statistical significance testing is limited in its capacity to

inform scientific inquiry. But effect sizes tend to be biased by

sampling and measurement error. The paper illustrates and reviews

the performance of the Wherry and the Herzberg statistical

corrections for sampling error bias, and compares the corrections

w3tt. empirical estimates of samOing error derived 113ina

"bootstrap" methods. A data set involving responses of 31 subjects

on the Finding Embedded Figures Test and the Group Embedded Figures

Test is used for illustrative purposes, to make the discussion

concrete. It is suggested that "bootstrap" methods provide the

researcher with important insights, and are today readily

accessible to researchers thanks to the availability of user-

friendly computer programs that automate the procedure, some of

which have been written for popular microcomputern,



Researchers have increasingly emphasized the examination of

effect sizes as a focal part of interpretthg empirical results.

Many effect size estimates (e.g., Hays, 1981; Tatsuoka, 1973) are

available for researchers who wish to garner some insight regarding

result importance. The simplest effect sizes are analogous to the

coefficient of determination (r2). For example, in analysis of

variance the sun of squares (SOS) for an effect can be divided by

the SOS total to compute the correlation ratio (also called eta

squared), just as the SOS explained in regression divided by the

SOS total is the squared multiple correlation coefficient. Such

statistics inform the researcher regarding what proportion of

variance in the dependent variable(s) is explained by a given

predictor. The simplest effect sizes are based on the data in hand

and sample size is not considered as part of the calculations.

Three factors have led to the increased emphasis on effect

size interpretation. First, researchers have increasingly

X=Panized that 411 parametric analytic methods (t-tests, ANOVA.

ANCOVA. MANOVA,_ 2tc.) _are correlational, i.e., are special cases

of canonical correlation analysis (Knapp, 1978; Thompson, 1984).

Thus, canonical correlation analysis can be used to implement all

parametric analyses, as Thompson (1988a) illustrates, just as all

univariate parametric methods can be implemented as regression

analyses (Cohen, 1968; Thompson, 1985). This recognition has

stimulated researchers to realize that effect sizes analogous to

squared correlation coefficients are just as important to interpret

with experimental designs as squared correlation coefficients are



to interpret with correlational designs.

Second, researchers have increasingly recognized the

legitimacy and the utility of meta-analytic methods. Though

popularized by Glass and his colleagues (Glass, 1976; Glass, McGaw

& Smith, 1981), meta-analytic methods actually date back to work

by Fisher (1932), by Cochran (1937, 1943), and especially to work

by Rosenthal (1963, 1984). Kulik and Kulik (in press) provide an

excellent review of this history. One effect of popularized meta-

analytic methods has been the popularization of effect size

computations like those derived in meta-analysis.

Third, researchers increasingly recognized that

statistical significance testing is extremely limited in its

cApacity to inform scientific inquiry (Carver, 1978; Chow, 1988;

Huberty, 1987; Kupfersmid, 1988; Rosnow & Rosenthal, 1989;

Thompson, 1988c, 1989a, 1989b). Even some widely respected authors

of prominent textbooks are sometimes not quite sure what role

significance tests should play in analysis (Thompson, 1987a,

1988e), and some dissertation authors too may be disproportionately

susceptible to excessive awe for significance tests (Eason &

Daniel, 1989; Thompson, 1988b). Researchers who have had the

fortunate experience of working with large samples (cf. Kaiser,

1976) soon realize that virtually ail null hypotheses will be

rejected, since "the null hypothesis of no difference is almost

never exactly true in the population" (Thompson, 1987b, p. 14). As

Meehl (1978, p. 822) notes, "As I believe is generally recognized

by statisticians today and by thoughtful social scientists, the
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null hypothesis, taken literally, is always false." Thus Hays

(1981, p. 293) argues that "virtually any study can be made to show

significant results if one uses enough subjects." The recognition

that statistical significance testing is largely a test of sample

Size, which size the researcher already knew prior to conducting

a significance test, has led to an increased emphasis on effect

size interpretation.

Because the simpler effect sizes (e.g., eta squared)

capitalize on sampling error as part of their inherent least-

squares or correlational logic, the simpler effect sizes do

overestimate both the effect size in the full population and thR

effect size likely to be realized in future studies. But correction

formulas (Maxwell, Camp & Arvey, 1981; Rosnow & Rosenthal, 1988)

can be applied to estimate population effect sizes based on sample

results (e.g., Wherry, 1931), or to estimate the effect size

estimates likely in future samples (Herzberg, 1969). Correction

formulas are also available to adjust for attenuation due to

measurement features such as limited reliability of measurement

(Guilford, 1954, p. 400) or restricted variability of measurement

(Borg & Gall, 1989, pp. 598-599).

The purpose of the present paper is to review two effect size

estimates (Herzberg, 1969; Wherry, 1931) that can be computed to

adjust for sample size influences (called "shrinkage" corrections,

since the corrected effect size estimates tend to be smaller in

size than uncorrected estimates), and to compare these two

theoretically derived statistical corrections requiring assumptions

3
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about the form of sampling error influences with methods that make

fewer assumptions and instead ground estimates in a more thorough

empirical examination of the data in hand. With respect to

estimates in the second genre, the present study will review the

°bootstrap" logics developed by Efron and his colleagues. A small

data set (n=31) is employed for heuristic purposes to make the

discussion more concrete.

Heuristic Example

Data from 31 subjects who completed both the Finding Embedded

Figures Test (FEFT) (Melancon & Thompson, 1987, 1989, 1990a, 1990b,

1990c; Thompson & Melancon, 1990) and the widely known Group

Embedded Figures Test (GEFT) are employed here for illustrative

purposes. These data have not been previously reported.

The 31 (18 females; 58.15%) subjects were undergraduate

college students. The mean age of the subjects was 20.7 (EQ=4.7).

The means for number of correct answers on the four vdriables of

interest in the present example were: (a) number of right answers

on the 35 items in FEFT Part A, 27.9 (EQ=4.9); (b) number of right

answers on the 35 items in FEFT Part B, 26.8 (EQ=4.7); (c) number

of right answers on the full 70 items of the FEFT, 54.7 (SD=9.0);

and (d) number of right answers on the 18 items of the GEFT, 11.4

(EQ=5.1).

The six unique correlation coefficients ((v*(v-1))/2 =

(4*3)/2) among the four variables were of interest from a

measurement point of view. The correlation between FEFT total

scores and GEFT total scores was of particular interest, since the

4
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result is a concurrent validity coefficient. The calculated

correlation matrix is presented in Table 1.

INSERT TABLE 1 ABOUT HERE.

Corrections for Shrinkage in Estimating
Population Effect Size Using Sample Results

Various correction formulas are available to adjust for

expected "shrinkage" when estimating population effect size using

sample results (e.g., Olkin & Pratt, 1958). However, Carter (1979)

notes that the various corrections tend to yield very similar

results, especially when sample sizes are greater than 50. The

Wherry (1931) correction formula is probably the most widely used,

e.g., this is the correction SPSS-X uses to compute the "adjusted"

squared multiple correlation coefficient. Given y predictor

variables (y=1 in the bivariate case involving a single predictor)

and n subjeAs, the Wherry correction can be expressed as:

R2 - ((1 R2
) * (V / (n - v - 1))),

or equivalently as:

1 - ((n - 1) / (n - v - 1)) * (1 - R2) .

Thus, for the correlation (r=.5120) between FEFT total scores

and GEFT total scores for the 31 subjects, the correction would be:

**2 ((I - r
.5120 **2 - ((I - .5120 **2) * ( 1 / (31 - 1 -1)))
.262144 - ((I - .262144 ) * ( 1 / ( 29 )))

.262144 - (( .737856 ) * ( .034482 ))

.262144 - ( 0.025443

.236700

Table 2 presents all six unique Livariate correlation coefficients

for the 31 subjects, after adjustment for "shrinkage" using the
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Wherry algorithm.

INSERT TABLE 2 ABOUT HERE.

Corrections for Shrinkage in Estimating
Begaioation Effect Size Expected in Future Studies.
Based on Sample Results

Stevens (1986, pp. 78-84) incisively implies that researchers

usually ground their work in empirical findings from previous

samples, and in actual practice usually want their work to

generalize to future samples in future research rather than to the

-
unknowable population. Herzberg (1969) provides a correction for

this estimate that also might be used in creating coefficient

aggregates to evaluate variable importance:

1 - ((n-1)/(n-v-1))((n-2)/(n-v-2))((n+1)/n)(1-R2).

Thus, for the correlation (r=.5120) between FEFT total scores

and GEFT total scores for the 31 subjects, the correction would be:

1

1
- (( n-1)/( n-v-1))*(( n-2)/( n-v-2))*(( n+1)/ n)*(1- r **2)

- ((31-1)/(31-1-1))*((31-2)/(31-1-2))*((31+1)/31)*(1- .5120**2)
1 - (( 30 )/( 29 ))*(( 29 )/( 28 ))*(( 32 )/31)*(1- .262144 )

1 - ( 1.034482 )*( 1.035714 )*( 1.032258)*( .737856 )
1 - ( 1.071428 )*( 1.032253)*( .737856 )
1 - ( 1.105990 * .737856 )

1 - .816061
.183938

Table 3 presents all six unique bivariate correlation coefficients

for the 31 subjects, after adjustment for "shrinkage', using the

Herzberg algorithm.

INSERT TABLE 3 ABOUT HERE.

6
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Mat
A third strategy, like the Herzberg correction, emphasizes

interpretation based on estimated likelihood that results will

replicate. This emphasis is compatible with the basic purpose of

science: isolating conclusions that replicate under stated

conditions. Notwithstanding common misconceptions to the contrary,

significance tests do not evaluate the probability that results

will generalize (Carver, 1978; Thompson, 1987b).

The "bootstrap" methods developed by Efron and his colleagues

(cf. Diaconis & Efron, 1983; Efron, 1979; Lunneborg, 1987, in

press) are extremely powerful. Most conventional statistical

estimates invoke the concept of the standard error (a) of the

statistic of interest, i.e., the standard deviation of the error

of the estimates of population parameters. Typically, an assumption

is made that standard errors are randomly and normally distributed

during the sampling process, and the SE is derived statistically

rather than empirically.

For example, for all bivariate correlation coefficients (r)

expressed after the Fisher r-to-Z transformation and involving a

sample size of 31, the standard error (Glass & Hopkins, 1984, p.

305) is taken to be

1 / ( n - 3) ** 5

For the correlation (L=.5120) between FEFT total scores and GEFT

total scores for the 31 sucjects, the correlation expressed as

would be:

7
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1Z1 = .5 ln ((I + 1 r 1) / (1 - 1 r 1))

0.5 ln ((I + 0.512 ) / (1 - 0.512 ))

0.5 ln (( 1.512 ) / ( 0.488 ))

0.5 ln ( 3.09836
0.5 1.13087

0.56543

The correlation (r=.9418) between FEFT total scores and scores on

the 35 item Part A of the FEFT is expressed as Z as 1.75374.

The researcher using classical statistical procedures will

presume that the standard error of Z=0.56543 and the standard error

of Z=1.75374 are exactly equal (Glass & Hopkins, 1984, p. 306),

i.e., .188982 (1/(n-3)**.5 = 1/28**.5 = .035714**.5). This

presumption means that the researcher will assume that the 95%

confidence intervals about both Zs are also exactly equal in their

width, i.e.,

Z + and - 1.96 * .188982, or

I + and - .3704047.

It seems illogical to make strong assumptions that standard

errors are randomly and normally distributed, when one has data in

hand that can be employed to empirically estimate standard error.

"Bootstrap" methods (Efron, 1982, 1986) provide sophisticated

estimates of the standard errors of results, informed by the data

in hand rather than by paltry assumptions about the likely

distribution of sample-estimates of parameters. Thus, Lunneborg

(1987, p. 38, his emphasis) characterizes these as "real"

estimates. And various types of confidence intervals can be

constructed using these methods (Buckland, 1985; Efron, 1987; Efron

& Tibshirani, 1986; Lunneborg, 1986).

8
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Conceptually, "bootstrap" methods involve copying the data

set over again and again many, many times into a large "mega" data

set. Then dozens (or hundreds or thousands) of different samples

are drawn from the "mega" file, and results are computed separately

for each sample and then averaged. The method is powerful because

the analysis considers so many configurations of subjects and

informs the researcher regarding the extent to which results

generalize across different configurations of subjects. Lunneborg

(1987) has offered some excellent computer programs that automate

this logic for univariate applications; Thompson (1988d) and

Lambert, Wildt and Durand (1990) provide similar software for some

multivariate applications. Borrello and Thompson (1989) and Scott,

Thompson and Sexton (1989) illustrate applications of these

methods.

Table 4 presents selected entries from bootstrap estimation

of the correlation matrix presented in Table 1, based on 1,000

resamplings of the data from the 31 subjects. These analyses were

conducted on a microcomputer using Lunneborg's (1987) program,

CORBOOT.

INSERT TABLE 4 ABOUT HERE.

Lunneborg's (1987) program, BOOTLV, was run to derive various

descriptive statistics for the results associated with the 1,000

resamplings. Some of these results are presented in Table 5. The

tabled results suggest some important benefits of "bootstrap"

estimation procedures. For example, the fact that the standard

9
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deviation of the estimates over 1,000 resampIings (empirical

estimates of standard error; of the r for the variable pair GEFT

with FEFT Total (EQ=.12698800) did not equal the 2R for the

variable pair FEFT Part A with FEFT Total (OR=,02987297)

illustrates that it may not be tenable to assume that all standard

errors for a fixed sample size are exactly equal. Furthermore, the

fact that mean (e.g., .50920460) and median (e.g., .52025070)

estimates of the r for the variable pair GEFT with FEFT Total were

not exactly equal illustrates that the assumption that sampling

error is normally distributed may also not always be exactly true.

INSET TABLE 5 ABOUT HERE.

Lunneborg's (1987) program, BOOTCI, was run on the

microcomputer to calculate 95% confidence intervals. Selected

results for the example are presented in Table 6. The program will

compute any width intervalc the user desires, and also provides

intervals constructed using several different logics.

INSERT TABLE 6 ABOUT HERE.

In the present example the conventional standard error for r

expressed as was .188982 (1/(n-3)**.5 = 1/28**.5 = .035714**.5).

The empirical estimates, i.e., the 22 over 1,000 resamplings, was

0 of r .12698800; the E. form of this 5z equals .12767. The

smaller empirical estimate of the OE results in narrower 95%

confidence intervals for the bootstrap procedure, as illustrated

in Table 6.

10
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To illustrate the invariance of bootstrap estimates (at least

when 1,000 resamplings are conducted), a new set of 1,000

resamplings was isolated. Descriptive statistics for the analysis

are presented in Table 7, and can be compared with the results

reported in Table 5.

INSERT TABLE 7 ABOUT HERE.

Discussion

Three general comments can be made regarding the three effect

size corrections reported here. First, the Wherry (1931) and the

Berzberg (19691 _correctionsnd_ to be larger as either effects

sizes or_s_ample sizes become smaller, as illustrated by Thompson

(.i190). Thus, with a very large effect size approaching 1.0, or a

large sample size, or both, it will matter less which, if any,

statistical corrections the researcher applies in estimating effect

sizes.

However, meta-analyses of substantive findings (effect sizes

tend to be larger in reliability or criterion-related validity

studies) suggest that effect sizes do not tend to get much larger

than 25 to 33%. For example, Cohen's (1988) perusal of published

research suggests that a correlation ratio of around 25% (r=.5)

should be considered large in terms of typical findings across

disciplines. The empirical meta-analytic work of Glass and others,

which has yielded some additional ways of evaluating effect size,

has also led to s1milar conclusions:

In Izone of the dozen or so research literatures that

11
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we have integrated in the past five years have we

ever encountered a cross-validated multiple

con:elation between study findings and study

Lharacteristics that was larger than approximately

0.60. That is, I haven't seen a body of literature

in which we can account for much more than a third

of the variPility in the results of studies, [which

is distinct from talking about results for only one

smaller group of subjects]. [Glass, 1979, p. 13)

Second, as suggested by the illustration, the Herzberg (19691

correction tends tbe more conservative than the Wherry 111111

correction. However, this only makes sense. Since the Herzberg

correction iS used to estimate effect sizes that may be isolated

in a new sample, the estimate in effect must correct hgth for

sampling error influences for the data in hand and for the sampling

error that will recur in new samples. The Wherry correction only

presumes one set of sampling error influences, i.e., sampling error

for the data in hand.

Third, as illustrated by the case study, statistical estimates

of standard errors toreffect sizes and empirically v

estimates may differ. and the confidence intervals derived using

the two approaches may also differ. It seems illogical to be

prepared to accept the sample-based estimates, ste:h as an r or a

squared r, and to then to estimate the standard error of the

sample-grounded estimates based on strong assumptions rather than

the data in hand. Such illogic may have been necessary in the era

12
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preceding both the elaboration of "bootstrap" logic (Efron, 1979,

1982, 1986, 1987; Efron & Tibshirani, 1986; Lunneborg, 1985, 1987,

in press; Lunneborg & Tousignant, 1985) and the widespread

availability of computer programs that readily implement the

necessary calculations (e.g., Lunneborg, 1987; Thompson, 1988d).

But a new day upon us.

Put differently, assumpf:ons that sampling error is normally

distributed might be tenable if researchers lived in a world in

which they routinely drew true probability samples from defined

populations, and if in thia world all randomly selected subjects

then participated in studies. But most of us inhabit a world in

which samples of convenience may be necessary (though thoughtful

usually compare the characteristics of the sample of convenience

with those of the population), and a world in which some subjects

do not agree to participate and still more withdraw subsequent to

agreeing to participate.

Bootstrap logics are appealing, because they focus on the sina

qua non of science, i.e., replication. As Thompson (1989b, p. 4)

notes, "significance, importance, and replicability are all

important issues in research. (But) Too many researchers attend

only to issues of significance in their research. And in some

respects, statistical significance may be the least important

element of this research triumvirate."

13
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Table 1
Bivariate Correlation Matrix

(n=31)

FEFT Fora A
FEFT Form B
FEFT Total
GEFT Total

(yr35)
(y=35)
(yr70)
(y=18)

FEFTA

.7617

.9418

.4239

FEFTB

.9352

.5402

FEFTTOT

.5120

Table 2
Effect Size Estimates Invoking the Wherry Correction

(n=31)

Variables Being
Correlated

r from
Table 1

2 Adjusted
r square

FEFT B FEFT A 0.7617 0.580186 0.565710
FEFTTOT FEFT A 0.9418 0.886987 0.883090
FEFTTOT FEFT B 0.9352 0.874599 0.870274
GEFT FEFT A 0.4239 0.179691 0.151404
GEFT FEFT B 0.5402 0.291816 0.267395
GEFT FEFTTOT 0.5120 0.262144 0.236700

Table 3
Effect Size Estimates Invoking the Herzberg Correction

(nr31)

Variables Being
Correlated

r from
Table 1

2

r
Adjusted
r square

FEFT B FEFT A 0.7617 0.580186 0.535690
FEFTTOT FEFT A 0.9418 0.886987 0.875008
FEFTTOT FEFT B 0.9352 0.874599 0.861307
GEFT FEFT A 0.4239 0.179691 0.092746
GEFT FEFT B 0.5402 0.291816 0.216755
GEFT FEFTTOT 0.5120 0.262144 0.183938
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Table 4
Calculated Correlation Coefficients for the Sample of 31

Subjects and Seven of 1,000 Random Resamplings of the 31 Subjects

Sample Estimates of the Six Unique r#
0 .42388050 .54021650 .51195450 . 76173090

.94184750 .93515300
1 .44996280 .38785020 .45017010 .73693000

.93473370 .92903820
2 .40545540 .57462420 .54441740 .64641050

.89779330 .91637680
3 .26309840 .60893980 .48483890 .56424870

.89433320 .87400320
4 .69394230 .79731420 .77426050 .85819620

.96291700 .96486490
5 .50877910 .65551280 .61955510 .75999140

.93972070 .93641970

999 .57282050 .68778800 .66222770 .80693140
.95198860 .94900570

1000 .34975410 .40709220 .42246560 .59790740
.89981100 .88771040

Note. Sample 0 involves the results calculated for the 31 subjects.
The correlation coefficients are presented in the order: (a) GEFT
x FEFT Part A; (b) GEFT x FEFT Part B; (c) GEFT x FEFT total; (d)
FEFT Part A x FEFT Part B; (e) FEFT total x FEFT Part A; and (f)
FEFT total x FEFT Part B.

Table 5
Bootstrap Results Across 1,000 Resamplings
of 31 Subjects in Random Configurations

Statistic
GEFT x
FEFT Total

FEFT A x
FEFT Total

r for 31 Subjects .51195 .94185
Mean of 1,000 Samples .50920460 .93533360
SD (akin to SE) .12698800 .02987297
Median of 1,000 Samples .52025070 .94288290
Lowest Estimate -.006179 .7603
Largest Estimate .8108 .9907
Range .8170 .2305
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Table 6
Conventional and Four Bootstrap Confidence Intervals

for the GEFT x FEFT Total Variable Pair

Conventional Estimates
0.51195

r as 0.56536
Statistical SE 0.188982
95% CI for Z 0.194954 to 0.935765

Bootstrap Estimates
0.51195

r as Z 0.56536
Impiriaal SE 0.12699

Symmetric (Normal Theory)
95% CI for r 0.26263 to 0.76128

as 0.26893 to 0.99925
Percentile Method
0.23514 to 0.72782
0.23962 to 0.92407
Bias Correctea Percentile
0.21984 to 0.72028
0.22348 to 0.90822
Minimum Width
0.26930 to 0.75235
0.27610 to 0.97834

95% CI for r
as Z

95% CI for r
as Z

95% CI for x
as Z

Table 7
Bootstrap Results A New 1,000 Resamplings
of 31 Subjects in Random Configurations

Statistic

K for 31 Subjects
Mean of 1,000 Samples
SD (akin to SE)
Median of 1,000 Samples
Lowest Estimate
Largest Estimate
Range

GEFT x FEFT A x
FEFT Total FEFT Total

2 4

.51195

.51206590

.12820730

.52079060

.06310

.8790

.8159

.94185

.93687050
-02870789
.94280670
.S200
.9907
.1706



APPENDIX A:
Item Analysis for Heuristic FEFT Data

(IP°31)

Corr. r Corr. r Corr. r
Form A with 39 with 34 with 17
Item P SD FEFT A FEFT A GEFT
A 1 0.94 0.25 -0.01 0.05 0.49
A 2 0.84 0.37 0.33 0.38 0.28
A 4 0.81 0.40 -0.01 -0.08 -0.09
A 5 0.52 0.51 0.45 0.47 0.01
A 9 0.55 0.51 0.43 0.38 0.43
All 0.81 0.40 0.25 0.23 0.17
A13 0.84 0.37 0.27 0.19 0.24
A17 0.77 0.43 0.27 0.29 0.10
A18 1.00 0.00 -- __ __

A23 0.94 0.25 0.35 0.38 0.31
A25 0.81 0.40 0.28 0.27 0.22
A26 0.68 0.48 0.33 0.31 0.09
A27 0.94 0.25 0.18 0.24 0.15
A28 0.90 0.30 0.05 0.04 -0.21
A30 0.81 0.40 0.30 0.27 0.12
A31 0.84 0.3' 0.50 0.49 0.26
A32 0.87 0.34 0.40 0.35 0.09
A33 0.87 0.34 0.40 0.37 0.01
A34 0.84 0.37 0.66 0.61 0.03
A35 0.87 0.34 0.42 0.35 0.03
A36 0.65 0.49 0.42 _... 0.15
A37 0.71 0.46 0.09 _- -0.18
A38 0.32 0.48 0.27 __ -0.08
A39 0.74 0.44 0.43 __ 0.22

A40 0.52 0.51 0.32 _- 0.29
A 3 LO1 0.97 0.18 0.03 0.03 -0.02
A 6 L02 0.84 0.37 0.25 0.6 0.45
A 7 L03 0.35 0.49 0.07 0.06 0.33
A 8 L04 0.71 0.46 0.64 0.62 0.26
A10 LO5 0.52 0.51 0.29 0.28 -0.04
Al2 L06 0.61 0.50 0.27 0.30 0.18
A14 L07 0.90 0.30 0.21 0.25 0.24
A15 L08 0.48 0.51 0.75 0.76 0.45
A16 L09 0.87 0.34 0.19 0.12 0.09
A19 L10 0.87 0.34 0.24 0.28 0.01
A20 Lll 0.77 0.43 0.27 0.27 0.18
A21 L12 0.94 0.25 0.16 0.16 -0.11
A22 L13 0.97 0.18 0.45 0.50 0.23
A24 L14 0.87 0.34 0.26 0.30 0.05
A29 L15 0.77 0.43 0.55 0.57 0.30

Non-Linking
Mean 0.774 0.379 0.306 0.294 0.131
SD 0.157 0.109 0.157 0.160 0.172
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Linking
Mean 0.763 0.374 0.307 0.319 0.174
SD 0.183 0.108 0.196 0.201 0.169

All Form A
Mean 0.770 0.377 0.299 0.305 0.144
SD 0.167 0.109 0.178 0.180 0.171

Form B
Item P SD

Corr. r
with 39
FEFT B

Corr. r
with 34
FEFT B

Corr. r
with 17
GEFT

B 2 0.42 0.50 0.40 0.38 0.38
B 3 0.26 0.44 0.21 0.21 0.22
B 4 0.55 0.51 0.15 0.18 0.04
B 7 0.81 0.40 0.30 0.31 -0.09
B 8 0.81 0.40 0.23 0.20 0.12
B10 0.74 0.44 0.33 0.34 0.15
B12 0.77 0.43 0.43 0.46 0.21
B13 0.23 0.43 0.38 0.31 0.43
B16 0.74 0.44 0.32 0.36 0.19
B19 1.00 0.00 ...... ...._ ...._

B20 0.94 :.25 0.24 0.31 0.23
B23 0.87 0.34 0.20 0.23 0.16
824 0.81 0.40 0.39 0.43 0.18
B25 0.81 0.40 0.44 0.43 0.31
B27 1.00 0.00 ...._ -- __

B30 0.55 0.51 0.35 0.42 0.16
B31 0.94 0.25 0.43 0.46 0.15
B33 0.90 0.30 0.26 0.21 0.13
B34 1.00 0.00 ...... ...._ ...-

B35 0.81 0.40 0.34 0.33 0.22
B36 0.19 0.40 0.21 -- 0.25
B37 0.16 0.37 0.11 ...... 0.23
B38 0.42 0.50 0.15 -- 0.34
B39 0.42 0.50 0.28 ...... 0.35
B40 0.52 0.51 0.12 -- 0.25
B 1 LO1 0.97 0.18 0.50 0.48 0.23
B 5 L02 0.81 0.40 0.40 0.39 0.18
B 6 L03 0.39 0.50 -0.02 -0.02 0.12
B 9 L04 0.77 0.43 0.24 0.26 0.20
B11 LO5 0.68 0.48 0.29 0.30 0.23
B14 L06 0.74 0.44 0.24 0.22 0.29
B15 L07 0.90 0.30 0.30 0.26 0.24
B17 L08 0.48 0.51 0.23 0.22 0.26
B18 L09 0.90 0.30 0.28 0.33 0.35
B21 L10 0.87 0.34 0.48 0.50 0.30
B22 L11 0.81 0.40 0.30 0.22 0.10
B26 L12 0.94 0.25 0.13 0.14 -0.06
B28 L13 0.94 0.25 0.48 0.46 0.20
B29 L14 0.84 0.37 -0.01 -0.04 0.26
B32 L15 0.84 0.37 0.51 0.52 0.35
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Non-Linking
Mean 0.666 0.365 0.318 0.328 0.210
SD 0.266 0.153 0.086 0.092 0.112

Linking
Mean 0.791 0.368 0.291 0.283 0.218
SD 0.160 0.094 0.163 0.167 0.101

All Form B
Mean 0.713 0.366 0.266 0.306 0.197
SD 0.240 0.134 0.146 0.134 0.118
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