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Donald A. Berry®, School of Statistics
270 Vincent Hall, Univ. of Minnesota, Minneapolis MN 55455

Abstract

Bayesian inference focuses on questions of
interest to clinicians: In view of the available
information, is the therapy effective? how
effective? How does the response depend on
the type of patieni? on the treating physician?
The Bayesian approach requires that the
statistician use all available irformation in
drawing conclusions. This makes the approach
ideal for analyzing data from many centers and
for metaanalyses. I will describe a hierarchical
Bayes approach to analyzing suck data.

Key Words: Assessing prior probabilities;
Hierarchical Bayesian analyses; Mixtures;
Center effects.

1. Introduction

An analysis of data from more than one
study is a metaanalysis. The main distinction
between a metaanalysis and an analysis of a
multicenter trial is that different studies n.ay
have very different Jesigns while the centers
in a multicenter trial usually follow the same
protocol. In particular, different studies in a
metaanalysis may involve different treatment
comparisons while centers withkin the same
trial usually consider the same treatments.

Different studies in a metaanalysis often
deal with different types of patients. So it is
not too surprising that they frequently show
different treatment effects. Multicenter trials
are similar in the sense that different centers
may well have different patient populations.
This is in part because investigators at the
individual center» may interpret the trial's
patient inclusion/exclusion criteria differently
and so end up with different types of patients.
Sometimes it is possible to account for such a
difference using measurable covariates, and
sometimes not.

2. Bayesian Approach
The focus of the Bayesian approach is ihe

probability distribution of any unknowns given
the available information. In particular,

* Research supported in pait by the National Scicnce

Foundation under grant DMS 8911548.
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Bayesian inference deals with probabilities of
hypotheses and probability distributions of
parameters. A conclusion of a hypothesis test
of equality of tretment means, say, is the
probability that the means are equal in view of
the data. And one can calculate the probability
that the true mean difference is contained in
any irterval.

Probabilities of hypotheses that are
conditioned on data from an experiment are
posterior probabilities. Calculating a posterior
probability requires Bayes' theorem:

P(H|data) < P(data|H)P(H),

where H is any hypohesis and P(Hidata) is the
litelihood function  -aluated at H. So Bayes'
theorem relates th nditional probability of a
hypothesis given data to its unconditional
probability. The latter depends on information
present before the experiment, and so is called
a prior probability.

The designations "prior” and
refer to a particular experiment. Probabilities
between experiments are posterior to the
previous experiment and prior to the next
one—in the words of the Bard, "What's pas. is
prologue.” So perhaps it would be better to use
“current” in place of both "prior" and
"posterior”.

Bayesian inference is not merely data
analysis to be applied to a particular trial.
Rather, Bayes' theorem provides a formalism
for learning: "That's what I thought tefore, this
is what I've just seen, so here's what I now
think; and I may learn something more
tomorrow.”

An advaatage of Bajesian methods is that
they allow for using all available information.
This characteristic makes such methods ideal
for analyzing data from clinical trials with
many centers and from many studies, though a
Bayesian analysis ‘n such cases may not be
easy.

Consider a drug whose effect in some
population is not completely known. A
multicenter clinical trial is contemplated.
Bayesian methods require assessing the
information available before the trial (along
with its associa.:d uncertainty) as 2 orobability
distribation. This prior distribution depends on
the person doing the assessing, and so is

"posterior”
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subjective. Since posterior probabilities
depend on prior probabilities, posterior
probabilities are also subjective. A common

(though not unanimous) view among Bayesians
is that all probatilities are subjective. An
advantage of the subjective view is that
probabilities apply in any setting in which a
person has an opliion. Counting ignorance as
an opinion, though obviously a very weak one,
this includes every setting.

3. Bayesian ve, Frequentist Approach

In the frequentist Neyman-Pearson
approach, analysis and design are tied together,
the design dictating the analysis.  Strictly
speaking, a frequentist analysis is not possible
when the design is not known—this can lead to
nonsense (Berry 1987). And tying the analysis
to the design means that when several separate
experiments are conducted to address the same
question, each has to be analyzed separately.
The consumer is left with the task of combining
them, and with little guidance from frequentist
methods.

Bayesian methods are more flexible. Data
from clinical trials affect Bayesian inferences
only through the likelihood function.  Any
multiplicative constants in the likelihood

function are irrelevant—see Bayes' theorem.
This means that the stopping rule and other
such characteristics of the design are also
irrelevant. So Bayesian methods allow
continual or periodic daw analysis without
penalties such as those imposed by classical
inferences (Berry 1987). In particular,
available data can be taken at face value when
deciding whether to stop or continue a trial, or
otherwise change its design. For example, a
decision to continue a multicenter trial may

include stopping patient accrual in some
centers while continuing it in others.
There 1is an attitude among some

frequentist statisticians that says that centers
in a multicenter trial can be pooled in a single
analysis only if their results are similar. If the
data cannot be pooled then the sample in each
center has to be large enough to "stand or. its
own." I hope and believe that this is a minority
view. All the data contain evidence about the
safety and efficacy of a drug, so the results
from the individual centers must be combined
in some way and by someone to come to a
single conclusion. This is difficult but not
impossible using frequentist ideas; it is
required in the Bayesian paradigm.

Small trials have small power: they provide

4
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the ability to reject the null hypothesis of no
treatment difference with high probability only
if one treatment is much better than the other.
Some frequentist statisticians complain about
trials that are too small to have a reasonable
"chance of detecting differences of therapeutic
value.” (Mosteller, Gilbert, and McPeck 1983).
Some contend that many actual tr.als are too
small to be worthwhile, and recommend large
trials (Peto, Pike, Armitage, et al. 1976). Some
even suggest that it is unethical to conduct a
small trial since some of the patients will be
exposed to inferior treatment with little hope
of rejecting a false null hypothesis. This is true,
but it's not the point. Many researchers view
science differently from the way frequentists
view science. If a study turns out to be too
small to be conclusive then the researchers can
conduct another :°udy (or studies) and combine
results—the first study is never wasted (as
leng as it was honestly conducted). A
piecemeal approach allows researchers to
digest information as it becomes available and
decide whether further investigation is
appropriate.  If the experimental treatment
turns out to be clearly bad or clearly good, they
can stop. And if thc data are equivocal, then it
may be reasonable to continue experimenting.
Such an approach aas the additional
advantages of revealing any variation over
time and of showing reproducibility of results.

chere are many small trials in medicine
today because the associated flexibility is
important to clinicians. They bypass statistics
as they know it, with its obscure P values, in
:avor of addressing the important questions: Is
this treatment effective? Is drug A better than
drug B for Ms. Smith? They answer these
questions in an informal, subjective and usually
private way, using all the information at their
disposal. The Bayesi... approach provides a
formalism for »ddressing these questions that
is not unlike tue informal way that clinicians
are forced to do it now.

4, Hierarchicai
Ceanter Effect

Approach to Assessing

I have indicated that Bayesian updating ran
take place at any time. Such updat®ng requires
a likelihood function: the conditional
probability of the current data given the
unknown parameters.

I will describe a Bayesian hierarchical
approach (Lindley and Smith 1972; Berger
1986). Individual centers have unknown
characteristics that set them apart from (he
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other centers. Like all unknowns in the
Bayesian approach, these are random. So the
Bayesian approach gives rise to a random
effects model.

Think of each center 2s having a particular
distribution of patient responses for each
therapy. Selecting a center means selecting one

of these distributions. If the distribution of the
selected center were to be revealed this would
give us direct information about how the center
distributions are themselves distributed, and
we would have a standard statistics problem,
one that could be addressed by either Bayesian
or frequentist methods. But since each center
contributes only a finite number of patients,
the individual center distributions are not
revealed. Instead, we observe only a sample
from each center's distribution. This gives
indirect information about the distribution of
center distributions.

Consider a simple analogy. A bag contains
severair thousand coins. The coins may have
diffcrent probabilities of heads. We'd like to
know something about the distribution of
probabilities of heads amoung these coins. 30
we select ten of them, and toss euch of the ten
a total of 30 times. Our data consist of ten
sample proportions of heads (along with the
ten sample sizes). If these proportions are
wildly different then the coins in the bag must
have different probabilities of heads, though
periaps not as different as the sample
proportions among the ten coins tossed. And if
the sample proportions are quite similar then

the coins in the bag may have similar
probabilities o1 heads. In any case, the sample
proportions give information about the

distribution of probabilities of heads among the
coins in the bag.

5. Example with Dichotomous Responses

Table 1 gives results for nine studies
(Janicak, Lipinski, Davis, et al. 1988) involving
the anti-depressant drug S-adenosylmethionine
(SAMe). The number of paiients in study i is nj
and the number successes is xj. These data
were part of a metaanalysis, but you may also
think of them as coming from a multicenter
trial. Suppose that the patients in center i are
exchangeable in the sense that all had the same
probability p; of success. (For a Bayesian
analysis in the presence of differing prognoses,
see Berry (1989).)

TABLE 1: Successes observed on the.
antidepressant drug S-adenosylmethionine

i ] ny  Pi==xi/nj
1 20 20 1.00
2 4 10 0.40
3 11 16 0.69
4 10 19 0.53
5 5 14 0.36
6 36 46 0.78
7 9 10 0.90
8 7 9 078
9 4 6 0.67
Totals i06 150 0.71

The likelihood function of (pi, p2,....PY)is
9 . roxs
IL_, p®i(1-pp)"iT™i
A combined analysis assumes that all 150

patients are exchangeable, so that the nine p's
are equal (with common value p, say). The
likelihood function of p is then

p106(l-p)44,

which is shown in Figure 1.

p|05“ )44

Y

Figure 1. Likelihood function of p for
the data in Table 1 assuming the 150

patients in the nine studies are
exchangeable. (The nine dots
correspoad to the obser/ed

proportions for the nine studies, with
¢ 't areas proportional to sample sizes.)

This figure shows that p is very likely to be
between 60 and 80%. This conclusion .s




somewhat curious since, as shown by the dous
on the p-axis in Figure 1, the observed success
proportions in five of the nine studies are
outside this range. While sampling variability
accounts for some differences, the variability in
Table 1 is greater than would be expected from
sampling alone. This suggests that the pi's may
not be equal.

Separate analyses of the nine studies is
even less satisfactory than the above combined
analysis. The effect of the drug is not well
addressed by giving nine different likelihood
functions, or by giving nine different
confidence intervals. Suppose one would like
to know the probability of success if the drug
were given to a patient in a tenth center. How
should the results in these nine centers be
weighed? And how should the other eight
centers be weighed when considering the next
patient to be treated at one of these nine
centers?

The Bayesian hierarchical perspective is
that each center's success proportion is selected
from some population. To quantify information
about the population requires a probabiiity
distribution of population distributions.

Suppose pi1, ..., py is a random sample
from population distribution F whiclh is itself
random. Assume F is a beta distribution with
parameters a and b, where a and b are
unknown. An observation p from F has density

(1) B(ab) p? ! (1-p)° 1,
where a >0 and b > 0 and

1
B'l(a,b)=j0 p? l1-py)b-lap.
The variance of such an observation is

ab
(a+b)2(a+b+1)

So if a + b is large, the distribution of the p's is
highly concentrated and consequently there is
little center effect. While if a + b is small, the
p's will tend to be spread out, and there is a
large center effect.

Like all unknowns in the Bayesian
approach, the user must assess a probability
distribution for a and b; call it n(a,b). If the
user has information suggesting that there is
little center effect then much of the =n-
probability should be concentrated on large
values of a and b, and if information suggests
the possibility of substantial center differences
then much of the n-probability can be placed
on small values of a and b. The prior

6

distribution = can be discrete or continuovus,
though in the examples below I will assume it
is discrete.

Consider a generic sample, say p, on F.
Suppose it were possible to observe p. Call
n'(a,blp) the posterior distribution of (a,b) given
p. From Bayes' theorem,

x(ablp) o< B(ab)p? 1(1-p)° 1 x(a,b).

Extending this to observing a sample pi,..., P9,

2) n'(a,blp1,...,p9) &<
T, {BGab)p® (1.9 } nca,b.

In Section 7 1 will assume p; =...=p9 = 1/2
and evaluate (2) for the two special cases of
n(a,b) given in Section 6.

Now consider an observation on x, a
binomial variable with parameters p and n.
Such an x contains only indirect information
about F. Call n*(a,blx) the posterior probability
distribution of a and b given x and n. From
Bayes' theorem,

n*(a,blx) oc {(xla,b) n(a,b),

wnere
f(xla,b)

= J(B)pr ™ Babp*la-p®lap
_ (n) B(a,b)

X/ B(a+x,b+n-x) *

Therefore,

n*(a,blx) o< _B@b) _ n(a,b).

B(a+x,b+n-x)

Upon observing a sample xi,...,x9, where the
xi are binomial variables with parameters pj
and nj and p1,...,p9 is a random sample
from F,

(3) =n*(a,blxy,..., x9)
o 1'1?=1 {—B—(a—'ll)—} n(a,b).

B(a+xj,b+nj-x;)

As nj — 00, the limit of this cxpression is the
expression in (2), with x1/n] set equal to p;.
Consider the response of an as yet
untreated patient. First suppose the patient is
treated with SAMe at one of the centers




in Table 1. Giventheresultsin

considered
Table 1, the probability of success for a patient

treated at center i, fori=1,2,...,9,is

(4) E(pixt, ..., %9) =E{ iy [x1 . 30}

This expectation is with respect to distribution
(3). On the other hand, if the patient is treatcd

with SAMe at a new center—call it center
10—~then

a
(5) E(iox1, ..., x9) =E{ Tl ..., %0}

This is just the expected posterior mean.
In Section 7 I will evaluate (3), 4), and (5)
for the data in Table 1 assuming the two

different forms for =(a,b) given in the next.

section. I will also evaluate the expected

posterior density of the p's.
6. Assessing Priors for Beta Parameters

There are two general attitudes toward
selecting prior probabilities n(a,b). One is
“"subjective” and the other I will call "objective”,
for want of a better word. The subjective
approach assumes a particular assessor. I will
give an example in which an assessor is quite
confident that there is substantial variability
among centers and so assigns most of the frior
probability with small values of a + b. It is not
appropriate for employees of a pharmaceutical
company to use their prior probabilities in
filing a new drug application to the Food and
Drug Administration, say. But it is appropriate
to consider various types of assessors and show
how the available information may be used to
update each assessor's opinions. An alternative
is to use various types of objective prior
distributions.

I believe that every inference is subjective,
and that prior probability assignments cannot
be objective. However, "objective" is

sometimes used to describe "uninformative
priors", which are wuniform in some
parametization. When prior probabilities are

uniform, the posterior probabilitics are
proportional to the likelihood function on those

points where the prior probabilities are
positive.

Consider the example of the previous
section. Suppose an assessor's best cstimate of

the effectiveness of SAMe over all centers is
50%. Moreover, the assessor's tenistive opinion
ic that the distribution F of success proportions
over centers is that they are uniformly spread

-3

on the interval (0,1)—the beta (I,1)
distribution shown in Figure 2. This is not only
the assessor's prior estimate of F, it has about
40% of the assessor's probability: n(l1,1) = 0.40.
Figure 3 shows that 15% of the assessor's
probability is associated with each of the two
densities with a + b = 3: n(2,1) = n(1,2) = 0.15.
It happens that the average of these two
densities is assessor's prior estimate: beta (1,1).
Figure 4 shows that 5% of the assessor's
probability is associated with each of the three
densities with a + b = 4: n(3,1) = n(2,2) = =n(1,3)
= 0.05, and again the average of these densities
is also assessor's prior estimate: beta (1,1).
And so on.

Prior estimoted density: beta (1,1)

0 2 4 .6 .8
p

Figure 2. Assessor's prior estimate of
population distribution of success
proportions. This is a mixture of beta
(a,b) distributions that happens to be
itself a beta density: a = b = 1. The
beta (1,1) density has 40% of the prior
probability.

Densities witha+b = 3:

beta (2,1}

15%

0o .2 4 6 .8 1

P

betu(l 2)
)
Figure 3. The assessor's prior
probability of each of these two

densities with a + b = 3 is about 15%.
The average of the beta (2,]) and beta
(1,2) densities happens to equal the
prior estimate, the beta (1,1) density.




Oensities witha + b = 4;

beto (3,1)
0 .2 3 6 .8
P
beta (2,2)
6 2 .4 . B i
p
beta (1,3)
5%
0 2 3 6 B 1
p
Figure 4. The assessor's prior
probability of each of these three

Jeusities with a + b = 4 is about 5%.
The average of the beta (3,1), beta
(2,2), and beta (1,3) densities happens
to equal the prior estimate, the beta
(1,1) density.

The joint distribution n(a,b) implicit in the

previous paragraph is the product of two
independent geometric variables:

(6) n(ab) o< exp{-a-b} fora,b=12,... .

This_distribution is pictured in Figure 5.

b 81

Figure 5. Independent geometric
distributions on a and b—formula (6);
the points with the six largest
probabilities correspond to the
deansities shown in Figures 2, 3, and 4.

The other distribution of prior probabilities
considercd in the next sectic is the product of
two independent uniform variables:

7N n(a,b) o< 1 fora,b=1,2,...,10.

(An alternative is the uniform distribution on a
and b with their sum restricted, say a + b s 20.)
Prior distributicn (7) is pictured in Figure 6.
This distribution associates a reasonably large
probability with a + b large and also with a + b
small. Distribution (7) gives substantial
probability to a and b nearly equal, and
corresponds to a stronger opinion that the p’s
will tend to be near 1/2 than under
distribution (6). As indicated above, for any
uniform distribution the posterior probabilities
are proportional to the likelihood function on
the lattice points where the prior probabilities
are positive.

Figure 6.
beta parameters (a,b) fora=1,...,10
and o=1,...,10~formula (7).

Uniform: probabilities for

7. Calculations When Observing Each
Pi = 1/2

Suppose it were possible to observe actual
population success proportions, and that for
nine studies they all equal 1/2. The posterior
probabilities of (a,b) are then calculated from
(2) with p1 =...=p) = 1/2. (As indicated in
Section 5, this hypothetical circumstance is
approximated by xi/n1 =...=x9/ng = 1/2 with
Xi/nj — <0.)

rigures 7 and 8 show the posterior
probabilities assuming =n(a,b) given by (6) and
(7), respectively. Figure 8 reflects the fact that
the data are consistent with study
homogeneity, and that most of the success
propoztions are close to 1/2. Figure 7 shows
that the orior distribution given in (6) is so
heavily weighted in favor of small a +
b—heterogeneity among the studies— that in

C~




the face of substantial contrary evidence, small
values of a + b continue to weigh heavily.

Figurs 7.
n'(a-blpy, . ..

Posterior probabilities
, p9) calculated from (2),

assuming ~n(a,b) given by (6) and
shown in Figure 5, and with p;=...=
p9 = 1/2.

Figure 8.
n'(a,blpt, ...

Posterior probat .ties
, po) calculated from (2),
assum‘ng n(a,b) given by (7) and
shown in Figure 6, and with p;=...=
po = 1/2. {Compare Figure 7.) When,
obcerving these values of the pj, the
likelihood function increases as a and
b increase, with a = b. On this
restricted set, the maximum likelihood
estimate of (a,b) occurs at (10,10), the

point with highest posterior
probability assuming a uniform prior
distribution.

Figures 9 and 10 show the posterior density
estimates assuming p1 =...=p9 = 1/2 and the
prior distributions =(a,b) given by (6) and (7),
respectively. These are averages of beta
densities, where the respective averages are
with respect to the distributions shown in
Figures 7 and 8. Again, it is evident from these
two figures that geometric prior (6) is more
resistant to data suggesting that the studies a..
homogeneous than is uniform prior (7).

0 W1 2 3 4 .5 .6 N .8 .9p 1
Figure 9. Posterior density estimate of
popuiation success proporticas for the
posterior distribution of beta
parameter given in Figure 7, which
assumes pt =...=pg = 1/2. This is
not itself a beta density but is a
mixture of beta densities. It is similar
to the beta (2,2) and beta (3,3)
densities because, as is evident from
Figure 7, there is substantial posterior
probability on these (a,b).

0 .1 2 3 4 S5 6 2 .8 .9 1
P

Figure 10. Posterior density estimate
of population success proportions for

the posterior distribution of beta
parameters given in Figure 8, which
assumes py=...=pg = 1/2. (Compare

Figure 9.)

8. Estimating the Effectiveness of SAMe

Consider the data in Table 1. The posterior
probabilities of (a,b) can be calculated from (3).
Figures 11 and 12 show these probabilitics
assuming prior distributions n(2.b) given by (6)
and (7), respectively.




Figure 11. Posterior probabilities
n*(a,blxy, ..., x9) calculated from (3),
assuming mw(a,b) given by (6) and
shown in Figure 5, and conditioning on

the results of the nine studics shown
in Table 1.

Figure 12. Posterior probabilities
n*(a,blxy,. .., x9) calculated from (3),
assuming =n(a,b) given by (7) and
shown in Figure 6, and conditioning on
\he results of the nine studies shown
in Table 1. (Compare Figure 11.) The
maximum likelihood estimate of (a,b)
occurs at (4,2), the point with highest
posterior probability assuming a
uniform prior distribution.

Figures 13 ¢nd 14 show the posterior
density estimates assuming the data in Table 1
and the prior distributions w(a,b) given by (6)
and (7), respectively. These are averages of
beta densities, where the respective averages
are with respect to the distributions shown in
Figures 11 and 12. A _ain, it is evident from
these two figures that geometric prior (6) is
more heavily weighted toward substantial
study heterogeneity than is uniform prior (7).
The means of the densities in Figures 13 and
14 are 0.65 and 0.68, which can be evaluated
using (5).

10

0 A 2 3 4 5 .6 2 8 .9 > 1

Figure 13. Posterior density estimate
of population success proportivns for
geometric prior (6) and the data in
Table 1. The average is with respect
to the probability distribution of (a,b)
shown in Figure 11. Due to the large
posterior probability on a=2, b=1, this
estimate is similar to the beta (2,1)
density. This estimate should be
compared with the likelihnod function
pictuted in Figure 1, which assumes
that all 150 patients from these
centers can be treated as though they
come from a single cemcr. (As in
Figure 1, the nine dots correspond to
the observed proportions for the nine
studies.)

- L
o 4 2 3 4 S & 32 8 9 1

P

Figure 14. Posterior density estimate
of population success proportions for
uniform prior (7) and the data of Table
1. This is the average density with
respect to the posterior distribution of
(a,b) shown in Figure 12. (As in Figure
13, the dots correspond to the
observed proportions.)

Table 2 repeats Table 1 and also shows the
probability of success for the next patient at
each of the nine constituent centers (4) and for
a patient at a tenth center (5)—the latter is the
everall mean and is shown as the column total.
The column headed (6) assumes geometric
prior (6) and the one headed (7) assumes

7




uniform prior (7). The individual center
probabilities are shrunk toward the overall
mean. This shrinkage is less for the geometric
prior because it associates more credence With
study heterogeneity than does the uniform
prior. Also, as is reasonable, shrinkage to the
overall mean is greater for a smaller study.

TABLE 2: Succusses -bserved on SAMe and
predictive probabilities of success by center

Pred. prob. {rom

i Xi ni Pi=xi/ng (6) )]
i 20 20 1.00 0.95 0.90
2 4 10 040 046 053
3 11 16 0.69 0.68 0.69
4 10 19 053 055 057
5 5 14 0.36 0.41 0.48
6 36 46 0.78 0.77 0.77
7 9 10 0.90 0.84 0.80
8 7 g 078 075 073
9 4 6 067 066 068
Totals 106 150  0.71 065 0.68

9. Comparing Treatments

So far I Lave addressed a single treatmen(.
Multicenter trials frequently involve two or
more treatments. Bayesian updating for
multiple treatments is the same as described
above for a single treatment. For example,
suppose there are two treatments, A and B, and
responses are dichotomous. Then F is a
bivariate distribution of two success
proportions pa and pp, and is again random.
The calculations are now more complicated. In
particular, to allow for center effect it is
necessary to include a covariance between pA
and pg.

I will not extend the ana.ysis of the
previous sections but will instcad simply refer
to DuMouchel (1989), who analyzes the study
(Janicak et al. 1988) that reported the data
given in Table 1. The full data set is given in
Table 3, and in. a dot diagram in Figure 15.
SAMe was compared in nine randomized trials
with ecither placebo or standard therapy or
both. I'll call these treatments A, B, and C,
respectively.

0 10 20 30 40 Lti 60 70 80 90 100

TABLE 3: Results from »ine clinical trials.

SAMe (A) Placebo (B) Standard (C)
I npp xpy 0y Xy Ny X
1 20 20 10 1
2 10 4 19 0
3 16 11 15 9
4 19 10 10 8
5 14 5 14 4
6 46 36 41 30
7 10 9 10 9
8 9 7 s 6
9 6 4 5 0 4 3
150 106 25 1 103 69
(718) (4%) (67%)

" Plocebo

& SiMe

Stondard

Pgreentoge f successes

Figure 15. Dot diagram version of data
in Table 3. Areas of dots are
approximately proportional to sample
sizes. Lines connecting dots are
labeied with study numbers. The dots
for SAMe are the same as in Figures 1,
13, and 14.

Let (pai.pBi.PCi) stand for the success
probabilities of A, B, and C that apply in study
i, ori=1,2,...,9 Asinthe case of a single
treatment, the nine triples (pAi,pBi,PCi) are not
observed. Rather, the data consist of
(nAi,nBi,nci) and (XAi,XBi,XCi)» where xajis
distributed as binomial (nai,pAi), xBi is binomial
(nB;,pBi), and xcj is binomial (nci,pci). For
example, the first row of Table 3 gives naj = 20,
xa1 =20, ng; =10, xg1 =1,nc1 =0,and xc1=
0.

DuMouchel (1989) considers differences
between p's, uses the normai approximation to
the binomial, and assumes uniform (hence
"improper") priors. He finds that the posterior
mean and standard deviation of pA - pp are
0.70 and 0.12, those of pA - pc are 0.00 and
0.09, and those of pc - pp are 0.70 and 0.14. He
also describes incorpt -ating historical data and
subjective  information into the prior
distribution.
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