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Ebstract

In multiple choice items the response probability on an item

may be viewed as the result of two distinct latent processes.

A cognitive process to solve the problem and another random

process that leads to the choice of a certain alternative. An

incomplete latent class model is formulated that describe the

first process by a Rasch model and the second process by a

guessing model.

Alternative models are be specified that contain

additional parameters describing differential item

functioning (DIF) in the two processes.

DIF with respect to either known or unknown subgroups

can be tested by d likelihood ratio test that is

asymptotically distributed as chi-square.

Key words: differential item functioning, multiple choice

items, Rasch model, guessing model, incomplete

latent class model, goodness of fit testing
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Differential Item Functioning

in Multiple Choice Items

Items in educational or psychological tests show differential

item performance (DIF) if the probability of a correct

response among equally able test takers is different between

racial, ethnic, or other subgroups. DIF may lead to tests

that are unfair for certain subgroups, and it is important to

spot such items so that they can be improved or deleted from

the test.

Many DIF detection methods have been proposed since

Binet and Simon (1916, see also Jensen, 1980, p. 367) were

the first to draw attention to this problem. Reviews of older

DIF (also called item bias) oetection methods are given by

Osterlind (1983) and Shepard, Camilli and Averill (1981).

Handbooks on item bias detection methods am provided by Berk

(1982) and Jensen (1980).

In the last decade methods have been improved by giving

better possibilities to match on ability. Various methods

have used the number correct sccre of the test for this

purpose (Camilli, 1979; Holland & Thayer, 1986; Kok,

Mellenbergh, & van der Flier, 1985; Mellenbergh, 1982;

Nungester, 1977 (see Ironson 1982); Scheunaman, 1979).

Recently, DI. detection methods have been proposed that

are based on item response theory (IRT) (Durovic, 1975;

Fischer & Formann, 1982; Lord, 1980; Mislevy, 1981; Muthen &

Lehman, 1985; Wright, Mead & Draba, 1975). An IRT model

explains the probability of an item response on the basis of
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a person parameter and one or more item parameters.

Differences between estimated item parameters across

subgroups are considered as an indication of DIF. Thissen,

Steinberg and Wainer (1989b) give an overview of IRT-based

DIF detection methods and demonstrate their use. They also

discuss DIF detection methods that can be used with multiple

choice items.

The fact that in multiple choice items response

alternatives are given introduces new potential sources of

DIF. Green, Crone and Folk (1989) focus on differential

popularity of the incorrect responses (or "distractors"). If

a particular distractor is more attractive to subjects from

one subgroup than for another, Green et al. conjecture that

"...the item probably means something different to the

different groups". They perform loglinear analysis of the

subgroup x score group x incorrect response contingency table

for each item, to detect distractors that are more popular in

one subgroup than in another.

Another source of DIF in multiple choice items does not

involve the popularity of the distractors, but concerns

differential difficulty of the problem to be solved. Just as

in other types of items, an item may pvbc a problem that is

more difficult to some subjects nen to oth,Irs, even if they

are equally able on the trait of interest. In this paper an

item bias detection model is described that separates both

sources of bias.

In the model it is assumed that the subject's response

to a certain item depends on two distinct processes. The

8



Multiple Choice Items

4

first process determines whether an individual with a certain

ability solves the problem that is presented by the item, the

second process determines the actual response given.

Furthermore, we assume that if the subject solves the

problem, (s)he will give the correct answer. Here the

probability that the subject solves the problem is assumed to

be governed by a Rasch (1960) model. If the subject cannot

solve the problem the subject will guess the answer, where

the guessing probabilities may be different for different

alternatives.

The model differs from that of Thissen, Steinberg and

Fitzpatrick (1989a), who distinguish between a "Don't know"

state and a state in which the subject has partial or

complete knowledge of the answer. In the "Don't know" state

he guesses the answer as before, but in the "Partial

knowledge" state the subject may answer a response

alternative, where the response probabilities are governed by

Bock's (1972) nominal response model.

The proposed model is simpler than the model by Thissen

et al (1989a). This has two advantages. Firstly, it contains

less parameters. For examplee in a four choice item, our

model has five item parameters while Thissen's model has

fourteen. Obviously, if the sample is not very large the

parameters in the latter model cannot be estimated reliable.

So, in that case one may be inclined to "Buy informatiol by

assumption" and use the simpler model. Secondly, the proposed

model can easily be formulated as a latent class analysis

(LCA) model. LCA models have been introduced by Lazarsfeld

9
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(1950; see also Lazarsfeld & Henry, 1968) and developed

further by Goodman (1973), Haberman (1979), Clogg (1981) and

others. LCA models have been used extensively for measurement

in sociology, psychology and education. Formann (1985),

Kelderman (1988, 1989), Kelderman and Macready (1988) and

Mislevy and Verhelst (1987) and Yamamoto, a987, 1988)

integrated IRT models into LCA models. There is a well-

developed theory for maximum-likelihood estimation and

likelihood-ratio testing of LCA models. By comparing the fit

of different latent class models, DIF in the guessing

probabilities and DIF in the parameters of the Rasch model

can be tested separately. Also, the model can be extended

with latent classes, so that the subgroups for which the

items exhibits DIF may be latent too.

In what follows the model for multiple choice items is

developed and formulated as a LCA model. Different models for

the detection of DIF are formulated. Also a model with latent

subgroup variable is discussed. A computationally efficient

estimation method is described and its use is illustrated

using empirical data.

A Model for Multiple Choice Items

Suppose that each subject, randomly drawn from a population

of N subjects, respond to k test items. where his/her answer

to item j may be any of rj responses yj (yj=1,...,rj). The

response pattern of this subject on the test items is denoted

1u
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by the vector y=(y1,...,yk). The corresponding random

variables are denoted by capital letters Yj (j=1,...,k) and

Y. Let xj indicate the latent response of the subject, taking

values xj=1 if (s)he solved the problem or xj=0 if (s)he did

not solve the problem posed by item j. And let x=(xl,...,xk)

be the vector of these values. The corresponding random

variables are denoted by Xj and X.

The relationship between the latent responses xj and the

observed responses yj is described by the conditional

probability

(1) eJYJ a P(yjlxj)
xjyj

where the superscripts are symbolic notation indicating that

the random variables Xj and Yj are involved in the

conditional probability. For the sake of simplicity, the

notations yj, xj, etc. in the probabilities are used for

Yj=yj, Xj=xj, etc.

It is assumed that if the subject can solve the problem,

(s)he chooses the correct alternative, that is J4DJYy must
1 j

equal to 1 if yj is tha right alternative.

Assuming that yj depends on xj only, we have

k k
(2) P(ylx, 0) = n P(yjlxj) = fl

j=1 j j=1 xiYi

where 0 is the latent ability value.
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The latent responses are assumed to be governed by an

one-parameter-logistic model (Rasch, 1960), where the

probability of the latent response xj given that the subject

has ability 0 is

(3) p(xile) = exp(xj(0-8j))/(1 + exp(04j))

and 64
J

is the difL.Lculty of item j.

Assuming that xj depends only on the latent ability 0 we

have

k k
(. P(x10) = n pocile) = exp(t0 - n xj&j) coLorl

j=1 j=1

with

k
C(0,8) = 11 (1 + exp(0-69)

j=1

where 6=(61,...,4), and t=x1.4-...+xk is the number correct

score.

Let F(0) be the continuous distribution function of the

latent ability 0. Using (2), and (4) the marginal probability

of the observed responses y then becomes

12
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(5) P(y) = E j P(ylx, 8) p(d()) dF(8)
x

.420

8

.2.,

TI
4v4 k

= E ( II 4rJ)exp(- E xj8j) f exp(0)C(0,8)-1dF(0).
x j=1 gi j=1 -00

In the next section we will formulate this model as an

incomplete latent class model. The integral in model (5) will

then be absorbed intc, a latent class parameter which depends

only on the number correct score t. This means that it is not

needed to specify the distribution fun, an F(8) any further.

To detect DIF in multiple choice items, model (5) has to

be extended with subgroups. In order to keep the main idea of

this section clear the subgroups have been ignored so far. In

the third section we will extend the incomplete latent class

model with the subgroups.

An Incomplete-Latent-Class Model

Kelderman (1988) has showed that model (5) is an incomplete

latent-class model in the sense of Haberman (1979, ch. 10)

(6) p(y) = E 07 el... ik ell]. ekIrk
t xi xk xiyi xkyk

with

13
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j
= exp(-xj8j)
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j= 1 ,..., k,

and where the - parameters are subject to the restrictions

(7) qi = 1, j = 1 , k,

(8) + ..+ eiYi = 1
xj, xjrj 1, j = 1 k,

In this model each value of x represents a latent class.

Model (6) is incomplete because for certain given values of X

only a limited number of combinations (Y1,...,Yk) are

possible. Because of the fact that 4;1' depends on an

underlying latent trait distribution F(8), these parameters

are subject to the following complex inequality constraints

(Cressie & Holland, 1983; Kelderman, 1984):

and

det.(0 Hql ) 2 0r+s r,s=0

det.(11 47r+s+1 r,
IN2

s=0
) 2 0

14



where

1 k/2

ql =
(k-1) /2

1 (k-2)/2

q2 =
(k-1) /2

if k is even,

if k is odd,

if k is even,

if k is odd,
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det.(Il lq,s=0
) means the determinant of a matrix with row

index r and column index s both running from zero to q.

Since it is not our goal to fit a model for the data,

but to decide if a certain item exhibits DIF, we will follow

Cressie and Holland and ignore these inequality constraints.

This, tne so called generalized Rasch model, provides an easy

way to decide that an item exhibits DIF. The generalized

Rasch model is also equivalent to the "conditional" Rasch

model. That is, a Rasch model in which there is a

conditioning on the number correct score (Kelderman, 1984).

Incomplete table methodology can be used to formulate

several hypotheses about DIF by specifying alternative models

that contain additional subgroup-dependent parameters.

Parameters describing DIF

An item can show DIF in two different ways. First, as

indicated before, the item exhibits DIF if equally able

10
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individuals from different subgroups have different

probabilities of solving the problem that the item poses.

This will be called DIF in the latent response.

It was assumed earlier that if the subject can solve the

problem (s)he wi'l choose the correct alternative. But if the

subject can't solve the problem, (s)he would guess the most

attractive alternative. Therefore, the item exhibits also DIF

if the attractiveness of the alternatives varies from

subgroup to subgroup. This will be called DIF in the guessing

probabilities.

In most applications subgroup membership (e.g., sex) is

known. In some situations, however, items are expected to

exhibit DIF with respect to certain subgroups, but it is not

known to which subgroup each of the individuals belongs.

In the following models are formulated for studying the

two types of DIF, i.e, both for DIF in the latent response

and DIF in the guessing probabilities. Further, the cases

that the subgroup i (i=1,...,g) is observed or that it is not

observed are considered.

DIF in the Latent Response

To detect DIF with respect to the process of solving the

problem, an alternative model is formulated as

P
41IT 0IX1 02

(9) eckYk
it in. x2 xk xiyi xkyk

where P(sdi) is the conditional distribution of observed

1 ti
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response y given observed subgroup i, x = exp;-x1811.), 81i

is the difficulty of item 1 in subgroup i, and

0.

OIT = fexp(te)C(9,8)-1dFi(e)
it

where Foe) is the distribution of the latent trait in

subgroup i.

To test whether the interaction between subgroup i and

the latent response to item 1 is zero, i.e., item 1 exhibits

DIF in the latent response, this alternative model is

compared with the model

(10) P(yli) = E OTT 01 elY1 ekYk
IL X1 Xk xlyl xkyk

If the test is significant, it may be concluded that the

difficulty of item 1 varies from subgroup to subgroup. In

this case the subjects in one subgroup may find it more

difficult to solve the problem than subjects from another

subgroup.

DIF in the Guessing Probabilities

To test the null hypothesis that the interaction between

the subgroup and the observed response to item 1 is zero,

i.e. item 1 exhibits DIF in the guessing probabilities, the

alternative model

1
P1
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(11) P(yli) = E 017 el ek 01X1Y1 e2Y2 ekYk
it xi x iv v v ...

x k -1.1 -21'2 xkllk

where P(yIi) is the conditional distribution of observed

response y given observed subgroup i and (DECc = P(ylx,i) is

the conditional probability of observed response y given

latent response x and observed subgroup i, is compared with

model (10). If the test is significant, it may be concluded

that the attractiveness of the alternatives of item 1 varies

from wilsgroup to subgroup.

In model (9) and model (11) the 0-terms are specified to

test DIF for only one item. Obviously, similar model terms

can be specified for two or more items if necessaiy. It is

also possible to analyse models in which one item exhibits

DIF in the latent response and another (or the same) item DIF

in the guessing probabilities.

Latent Sij2group Models

When subgroup membership is unobserved, the subgroup

variable I becomes also a latent variable. And the models for

the detection of DIF are -till latent-class models. Models

with unobserved subgroups are very useful in situations where

grouping information is not available, or when it is not

desirable to link the concept of DIF to any specific manifest

variable.

Unlike the models in (9) to (11), the models with

unobserved subgroups are not always identified. For example,

18



Multiple Choice Items

14

a model with unobserved subgroups in which only one item

exhibits DIF in the latent response, is not identified. In

order to overcome this problem, models can be specified to

test DIF for v items (25v<k). The models (9) to (11) then

become

01X e+1(12) P(y) = E E 'It 'ix]. ix
v
v xvv+1x

ek egl ekYk
xk xiyi xkyk

-It
k elY1 ekYk(13) P(Y) = E E -It xl xk xiyi xkyk

and

arIT dC1 ek eX1Y(1.0 P(Y) = E E it -xi ix11Y1

IXvYv ev+1Yv+1 ekYk
ixvyv xv+iyv.1.1 xkyk

where iii = exp(-x1811.), 81i is the difficulty of item 1 in

latent subgroup i, and m Pxyi = P(ylx,i) is the conditional

distribution of observed response y given latent response x

and latent subgroup i.

Just as in the case of observed subgroups, it is also

possible to analyse models in which some items exhibit DIF in

19
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the latent response and other (or the same) items DIF in the

guessing probabilities.

Parameter Estimation and Model Testing

Let nixy be the number of individuals in subgroup i with X=x

and Y=y under a certain model and let mixy = N P(i,x,y) be

the expected value of nixy. Although nixy is not observed, it

is possible to estimate the means mixy of nixy, and the 0-

parameters from the observed niy (or ny if the subgroup is

unobserved) by the method of maximum likelihood. To

illustrate this, consider the model defined by

0IT 0IX1 opk 0IX1Y1 cpkYk
(15)

mixy
N it ix' 'ixk ixiyi ixkyk '

The maximum likelihood equations for model (15) would be

(Haberman, 1979) :

AIT AIT
m
it

= n
it '

where

AIXiYi fiIXiYi
ixjyj ixjyj '

(16) ( A / T
(16) pixy mixy 11, niy

j = 1 k

IT IX4Y4and where n
it

and nixiyii J J are the numbers of individuals in

2O
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subgroup i with T=t, Xj=xj and Yj=yj, respectively. Further

mat and mIXiYj are the expected values of nit and n.PCiYj.it rxjyj ...xjyj

If the subgroup i is not observed, then niy and may in (16)

has to be replaced by ny and my.

The equations can be solved by the iterative

proportional fitting algorithm or the scoring algorithm

(Goodman, 1978; Haberman, 1979). The iterative proportional

fitting algorithm is to be preferred, since it is less

sensitive to the choice of starting values.

In model (15) all ite:its were considered to exhibit DIF

in the latent response and DIF in the guessing probabilities.

If some items exhibit no DIF in the latent response or DIF in

the guessing probabilities, then the 0-parameters for these

items are restricted. For example, if in a certain model item

1 exhibits no DIF in the latent response, then the

parameter is restricted in the following manner

41IX1
=

(DIX].

lx1 gx1

Similar estimation equations can be formulated for restricted

models.

The overall goodness of fit of an incomplete latent-

class model can be tested by the Pearson statistic (Q) or the

likelihood-ratio statistic (LR) (see Haberman, 1979). Both

statistics are asymptotically distributed as chi-square with

degrees of freedom equal to the difference between the number

of count ny (or niy if the subgroup is observed) and the

21
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number of estimable parameters. The number of estimable

parameters of a model should be equal to the rank of the

information matrix (cf McHugh, 1956; Goodman, 1978).

By the difference in likelihood-ratio test statistics of

both models (LR(a;b)) it can be tested whether the

alternative model (b) yields a significant improvement in fit

over the compact model (a), which is a special case of model

(b). Under the assumption of model (a), LR(a;b) is

asymptotically chi-square distributed with degrees of freedom

equal to the difference in numbers of estimable parameters of

both models (Bishop, Fienberg 5 Holland, 1975).

An Empirical Example

As an example four items from the Second International

Mathematics Study in the Netherlands were considered. (Eggen,

Pelgrum & Plcmp, 1987). Each item was a five-choice item with

only one correct alternative.

A sample of 3002 students from two schooltypes of lower

secondary education in the Netherlands representing the whole

ability range was drawn. To illustrate the use of quasi-

loglinear models for detection of DIF, the students level of

education was chosen as grouping variable: subgroup MAVO

(intermediate general education) and subgroup HAVO/VWO

(higher general education and pre-university education).

The models (9) and (11) were fitted to the data using

the computer-program LCAG (Hagenaars & Luijkx, 1987). LCAG is

22
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a program for estimating the parameters of loglinear models

with latent variables. LCAG yields, besides the estimated

latent conditional probabilities (i.e. the guessing

probabilities), the estimated expected frequency distribution

of the latent variables under the model. From this frequency

distribution the difficulty parameters were estimated using

LOGIMO (Kelderman & Steen, 1988). LOGIMO is a general

computer program especially written to analyse loglinear IRT

models.

DIF is ...ested by comparing model (9) (for DIF in the

latent response) and model (11) (for DIF in the guessing

probabilities) with model (10) (no DIF). In Table 1 for each

item the values of the likelihood ratio test and the degrees

of freedom are shown for models (9) and (11). In both cases

the level of education was observed.

Insert Table 1 about here

From Table 1 it may be concluded that, except for item

2, the difficulty to solve the problems represented by the

items does not vary significantly between the subgroups MAVO

and HAVO/VWO. In Table 2 the difficulty parameters of the

four items in the model, in which item 2 exhibit DIF in the

latent response, are given.

23
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Insert Table 2 about here

It can be seen from Table 2 that the difficulty of item

2 was substantially smaller for MAYO- students then for

HAVO/VWO-students.

Table 1 also shows that the attractiveness of the

alternatives of the items 1, 2, and 4 were significantly

different in both subgroups. To give a more detailed

interpretation of the attractiveness of the alternatives, the

guessing probabilities of the alternatives for each item are

presented in Table 3.

Insert Table 3 about here

For a HAVO/VW0-student the correct alternative of item 1

is more attractive then for a MAYO- student. So (s)he is more

inclined to choose the correct alternative. On the other hand

a MAYO- student would be more inclined to choose the correct

alternative of item 2, because his/her guessing probability

of the correct alternative is twice as big as the guessing

probability for a HAVO/VWU-student. However, for both

subgroups the correct alternative is not the most attractive

alternative.

The guessing probabilities for the correct alternative

24
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of item 4 are almost the same for both subgroups, but for the

alternatives B and C there is a curious different between the

tat) subgroups. A HAVO/VWO-student would guess alternative B

with almost the same probability as a MAVO-student would

guess alternative C and guessing alternative C with almost

the same probability as a MAYO- student would guess

alternative B.

Item 3 exhibits no DIF in the guessing probabilities.

However, alternatives B and D of item 3 have a relatively

large attractiveness.

In the foregoing the two types of DIF were studied

separately from each other. Also on2y one item at the time

was studied. As was indicated earlier, it is also possible to

analyse models in which more than one item exhibits DIF. To

illustrate this possibility model M, in which the items 1, 2,

and 4 exhibits DIF in the guessing probabilities and where

item 2. exhibit DIF in the latent response, was considered.

Model M gives a considerably improvement in fit to the data

over model (10) (LR(10;M) = 100.5; DF = 13). From Table 2 it

also follows that model M fits the data better than the

models discussed before. The parameters, however, do not

differ much from the parameters of the previous models.

Therefore they are not given.

In summary, the difficulty of the four items can be

ordered in the following way 83 > 81 > 84 > 82. That is, item

2 is the easiest item and item 3 is the most difficult one.

The attractiveness of alternatives 1, 2, and 4 as well as the

difficulty of solving item 2 is not the same for the two
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subgroups. Item 3 exhibits no DIF in the latent response or

DIF in the guessing probabilities.

Discussion

In the present paper a model for multiple choice items

is proposed, which views the observed response of a subject

to a certain item as a result of two distinct processes. The

first process consists of solving the problem and the second

process of giving the actual response. This model is extended

with subgroups (observes or latent) in order to study DIF in

the two processes. The model was illustrated with an example.

In this paper all tests of DIF are two-sided. This

means, that it is not possible to test directional hypothesis

about DIF. The estimated difficulty parameters and the

estimated guessing probabilities provides only an indication

for the direction of DIF.

Because of the fact that LCAG claims much memJry-space,

it was not possible to consider more t'an four five-choice

items. A line of further research will be to find an

estimation me'..hod that overcomes this problem. Further

research should also give an answer to the question if a

certain model is identified or not.
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Table 1

Likelihood ratio Tests for detecting juri2ntheciataaLlhe
Second International Mathematics Study

Item(s) LR(10;9) DF LR(10;11) DF

1 1.701 1 26.519* 4

2 4.720* 1 21.340* 4

3 1.747 1 6.033 4

4 .018 1 52.595* 4

Note. Tests marked with an asterisk are significant.

(a = .05)
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Table 2

Difficulty parameters of the items in the model of DIF in the

latent response in item 2

Item 1.

Subgroup 1 2 3 4

HAVO/VWO

MAW

1.52

1.52

- .82

-1.90

3.54

3.54

-1.32

-1.32

Note. The difficulty parameters of items 1, 3 and 4 for MAYO

are set equal to the difficulty parameters for HAVO/VWO.
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Table 3

allealingP-ighsibilities of the alternatives of item .J.

Alternatives

Item A B C D E

Subgroup HAVO /VWO

1 .073 .033 .685 .:.74 .035

2 .743 .123 .061 .045 .028

3 .112 .327 .139 .323 .099

4 .110 .355 .235 .092 .208

Subgroup MAVO

1 .211 .024 .563 .193 .009

2 .662 .240 .068 .015 .015

3 .112 .327 .139 .323 .099

4 .068 .241 .341 .084 .266

Note 1. The correct alternatives are underlined.

Note 2. Item 3 was not significantly biased in the g,essing

probabilities.
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