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1

Mbstract

In multiple choice items the response probability on an item
may be viewed as the result of two distinct latent processes,
A cooritive process to solve the prohlem and another random
process that leads to the choice of a certain alternative. An
incomplete latent class model is formulated that describe the
first process by a Rasch model and the second process by a
guessing model.

Alternative mcdels are be specified that contain
additional parameters describing differential item
functioning (DIF) in the two prccesses.

DIF with respect to either known or unknown subgroups
can be tested by « 1likelihood ratio test that is

asymptotically distributed as chi-square.

Key words: differential item functioning, multiple choice
items, Rasch model, guessing model, incomplete

latent class model, goodness of fit testing
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Differential Item Funccioning

in Multiple Choice Items

Items in educational or psychological tests show differential
item performance (DIF) if the probability of a correct
response among equally able test takers is different between
racial, ethnic, or other subgroups. DIF may lead to tests
that are unfair for certain subgroups, and it is important to
spot such items so that they can be improved or deleted from
the test.

Many DIF detection methods have been proposed since
Binet and Simon (1916, see also Jensen, 1980, p. 367) were
the first to draw attention to this problem. Reviews of older
DIF (also called item bias) aetection methods are given by
Osterlind (1983) and Shegpard, Camilli and Averill (1981).
Handbooks on item bias detection methods are provided by Berk
(1982) and Jensen (1980).

In the last decade methods have been improved by giving
better possibilities to match on ability. various methods
have used the number correct sccre of the test for this
purpose (Camilli, 1979; Holland & Thayer, 1986; Kok,
Mellenbergh, & van der Flier, 1985; Mellenbergh, 1982;
Nungester, 1977 (see Ironson 1982); Scheun2man, 1979).

Recently, DI. detection methods have been proposed that
are based on item response theory (IRT) (Durovic, 1975;
Fischer & Formann, 1982; Lord, 1980; Mislevy, 1981; Muthén &
Lehman, 1985; Wright, Mead & Draba, 1975). An IRT model

explains the probability of an item response on the basis of
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a person parameter and one or more item parameters.
Differences Dbetween estimated item parameters across
subgroups are considered as an indication of DIF. Thissen,
Steinberg and Wainer (1889%) give an overview of IRT-based
DIF detection methods and demonstrate their use. They also
discuss JIF detection methods that can be used with multiple
choice items.

The fact that in multiple choice items response
alternatives are given introduces new potential sources of
DIF. Green, Crone and Folk (1989) focus on differential
popularity of the incorrect responses (or "distractors"). If
a particular distractor is more attractive to subjects from
one subgroup than for another, Green et al. conjecture that
"...the item probably means something different to the
different groups". They perform loglinear analysis of the
subgroup x score group x incorrect response contingency table
for each item, to detect distractors that are more popular in
one subgroup than in another.

Another source of DIF in multiple choice items does not
involve the popularity of the distractors, but concerns
differential difficulty of the problem to be solved. Just as
in other types of items, an item mav pus: a problem that is
more difficult to some subjects t'an to othars, even if they
are equally able on the trait of interest. In this paper an
item bias detection model is described that separates both
sources of bias.

In the model it is assumed that the subject’s response

to a certain item depends on two distinct processes. The
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first process determines whether an individual with a certain
ability solves the problem that is presented by the item, the
second process determines the actual response given.

Furthermore, we assume that if the subject solves the
problem, (s)he will give the rorrect answer. Here the
probability that the subject solves the problem is assumed to
be governed by a Rasch (1960) model. If the subject cannot
solve the problem the subject will guess the answer, where
the guessing probabilities may be different for different
alternatives.

The 1r.odel differs from that of Thissen, Steinberg and
Fitzpatrick (1989a), who distinguish between a "Don’t know"
state and a state in which the subject has partial or
complete knowledge of the answer. In the "Don’t kuow" state
he guesses the answer as before, but in the "Partial
knowledge" state the subject may answer a response
alternative, where the response probabilities are governed by
Bock’s (1972) nominal response model.

The proposed model is simpler than the model by Thissen
et al (1989a). This has two advantages. Firstly, it contains
less parameters. For example. in a four chcice item, our
model has fiv~ item parameters while Thissen’s model has
fourteen. Obviously, if the sample is not very large the
parameters in the latter model cannot be estimated reliable.
So, in that case one may be inclined to "Buy informatici by
assumption” and use the simpler model. Secondly, the proposed
model can easily be formulated as a latent class analysis

(LCA) model. LCA models have been introduced by Lazarsfeld
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(1950; see also Lazarsfeld & Henry, 1968) and developed
further by Goodman (1973), Haberman (1979), Clogg (1981) and
others. LCA models have been used extensively for measurement
in sociology, psychology and education. Formann (1985),
Kelderman (1988, 1989), Kelderman and Macready (1988) and
Mislevy and Verhelst (1987) and Yamamoto, (1987, 1988)
integrated IRT models into LCA models. There is a well-
developed theory for maximum-likelihood estimation and
likelihood-ratio testing of LCA mcdels. By comparing the fit
of different latent class models, DIF in the gquessing
probabilities and DIF in the parameters of the Rasch model
can be tested separately. Also, the model can be extended
with latent classes, so0 that the subgroups for which the
items exhibits DIF may be latent *“oo.

In what follows the model fcr multiple choice items is
developed and formulated as a LCA model. Different models for
the detection of DIF are formulated. Also a model with latent
subgroup variahle is discussed. A computationally efficient
estimation method is described and its use is illustrated

using empirical data.

A Model for Multiple Choice Items

Suppose that each subject, randomly drawn from a population
of N subjects, respond to k test items. where his/her answer
to item j may be any of r4y responses yj (yj=1,...,rj). The

response pattern of this subject on the test items is denoted
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by the vector y=(yj,...,¥x). The corresponding random
variables are denoted by capital letters Yy (J=1,...,k) and
¥. Let x4 indicate the latent response of the subject, taking
values xj=] if (s)he solved the problem or xj=0 if (s)he did
nNot solve the problem posed by item j. And let x=(x1,...,Xg)
be the vector of these values. The corresponding random
variables are denoted by Xj and X.

The relationship between the latent responses x4 and the
observed responses Y4 is described by the conditional

probability
Y
(1) dﬁgyg - P(yj|Xj)

where the superscripts are symbolic notation indicating that
the random variablus xj and Y4 are involved 1in the
conditional probability. For the sake of simplicity, the
notations Y4, %4, etc. in the probabilities are used for
Yj=yj, Xj=Xj, etc.

It is assumed that if the subject can solve the problem,
(s)he chooses the correct alternative, that 1is ¢’fj§§ must
equal to 1 if Y4 is the right alternative.

Assuming that Y4 depends on X4 only, we have

k
(2) P(ylx, 0) = jII Plyylxy =
=1

el
&

3¥3
3 3¥3

where 0 is the latent ability value.

11
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The latent responses are assumed to be governed by an
one-parameter-logistic model (Rasch, 1960), where the
probability of the latent response x4 given that the subject

has ability 0 is
(3) p(lee) = exp(x4(0-84)}/(1 + exp(8-84))

and bj is the difiiculty of item 7.

Assuming that x4 depends only on the latent ability 0 we

have
k k

- P(xl6) = I P(lee) = exp(t - I x485) c(0,8)"1
j=1 jsl

with

k
I (1 + exp(e-sj))
i=1

c(,d)

where 8=(81,...,8¢), and t=xj+...+x is the number correct
score.

Let F(0) be the continuous distribution function of the
latent ability 0. Usiag (2), and (4) the marginal probability

of the observed responses y then becomes
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’
{5) P(y) = | P(ylx, ) pP(x|0) arF(0)
X

=X (Il ij)exp(- Z x40 4) exp (t0)C(0,8) ~1dF ().
:jldzjyj jjIp

In the next section we will formulate this model as an
incomplete latent class model. The integral in model (5) will
then be absorbed intc¢ a latent class parameter which depends
only on the number correct score t. This means that it is not
needed to specify the distribution fun. >n F(0) any further.

To detect DIF in multiple choice icems, model (5) has to
be extended with subgroups. In order to keep the main idea of
this section clear the subgroups have been ignored so far. In
the third section we will extend the incomplete latent class

model with the subgroups.

An Incomplete-Latent-Class Model

Kelderman (1988) has showed that model (5) is an incomplete

latent-class model in the sense of Haberman (1979, ch. 10)

= " 1 k 1¥1 kY¥k
(6)  P(y) E o 03‘(1 d‘xk 0:‘(1!(1 .. di‘(kYk

with
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¢{ = f exp(t0)C(0,8) ~1dr (0),
dﬁg = exp(-Xij) j=1,..., k,
and where the ®-parameters are subject to the restrictions
M =1, J=1,.00, k,
Y Y =
(8) dﬁglj PO d§§r§ =1, J=1,.00, k

In this model each value of ®: represents a latent class.
Model (6) is incomplete “ecause for certain given values of X
only a limited number of combinations (Yp,...,Yy) are

possible. Because of the fact that d{ depends on an
underlying latent trait distribution F(8), these parameters
are subject to the following complex inequality constraints

(Cressie & Holland, 1983; Kelderman, 1984):
get. (l@f, 91 )20
* r+s 'r,s=0
and

T a2
det. (Il @ 132 o) 20

+s+1

i4
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where
{ k/2 if k is even,
q =
1 (k-1) /2 if k is odd,
{ (k=2)/2 if k is even,
q =
2 (k-1) /2 if k is odd,

det. (Il - H3,s=o) means the determinant ot a matrix with row
index r and column index s both running from zero to q.

Since it is not our goal to fit a model for the data,
but to decide if a certain item exhibits DIF, we will follow
Cressie and Holland and ignore these inequality constraints.
This, the so called G2neralized Rasch model, provides an easy
way to decide that an item exhibits DIF. The generalized
Rasch model is also equivalent to the "conditional" Rasch
model. That 1is, a Rasch model in which there 1is a
conditioning on the number correct score (Kelderman, 1984).

Incomplete table methodology can be used to formulate
several hypotheses about DIF by specifying alternative models

that contain additional subgroup-dependent parameters.

Parameters describing DIF

An item can show DIF in two different ways. First, as

indicated before, the item exhibits DIF 1f equally able
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individuals from different subgroups have different
probabilities of solving the problem that the item poses.
This will be called DIF in the latent response.

It was assumed earlier that if the subject can solve the
problem (s)he wi'l choose the correct alternative. But if the
subject can’t solve the problem, (s)he would guess the most
attractive alternative. Therefore, the item exhibits also DIF
if the attractiveness of the alternatives varies from
subgroup to subgroup. This will be called DIF in the guessing
probabili*ies.

In most applications subgroup membership (e.g., sex) is
known. In some situations, however, items are expected to
evhibit DIF with respect to certain subgroups, but it is not
kaown to which subgroup each of the individuals belongs.

In the following models are formulated for studying the
two types of DIF, i.e, both for DIF in the latent response
and DIF in the guessing provabilities. Further, the cases
that the subgroup i (i=1,...,9) is observed or that it is not

observed are considered.

DIF in the Latent Response
To detect DIF with respect to the process of solving the

problem, an alternative model is formulated as

(9 ewyly =g off dﬁi q{“g co. Ok @f1Y1 | ofk¥k

Xk X1Y1 XkYk

where P(yli) is the conditional distribution of observed

1t
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response y given observed subgroup i, d&ﬁ% = exp-x1814), 814
is the difficulty of item 1 in subgroup i, and

of = fexp(te)cw.srldri 0)

where F;(0) is the distribution of the latent trait in
subgroup 1.

To test whether the interaction between subgroup i and
the latent response to item 1 is zero, i.e., item 1 exhibits
DIF in the latent response, this alternative model is

compared with the model

100 e(yly =2 o of1 ... ofc J1¥1 || ik
(10) (yli) x it "xq Xk X1Y1 XxYk

If the test 1is significant, it may be concluded that the
difficulty of item 1 varies from subgroup to subgroup. In
this case the subjects in one subgroup may find it more
difficult to solve the problem than subjects from another

subgroup.

DIF in the Guessing Probabilities

To test the null hypothesis that the interaction between
the subgroup and the observed response to item 1 is zero,
i.e. item 1 exhibits DIF in the guessing probabilities, the

alternative model
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Gl ... ofk @10 @f2¥2 .. afkk

(11)  p(yli) =§ d’if: Xx 1x1y) X2y2 Xk Yk
where P(yli) is the conditional distribution of observed
response y given observed subgroup i and ¢€§§ = P(ylx,i) is
the conditional probability of observed response y given
latent regponse x and observed subgroup i, is compared with
model (10). If the test is significant, it may be concluded
that the attractiveness of the alternatives of item 1 varies
from s"bgroup to subgroup.

In model (9) and model (il) the P-terms are specified to
test DIF for only one item. Obviously, similar model terms
can be specified for two or more items if necessa.v. It is
also possible to analyse models in which one item exhibits

DIF in the latent response and another (or the same) item DIF

in the guessing probabilities.

Latent Subgroup Models

When subgroup membership is unobserved, the subgroup
variable I becomes also a latent variable. And the models for
the detection of DIF are ~till latent-class models. Models
with unobserved subgroups are very useful in situations where
grouping information is not available, or when it is not
desirable to link the concept of DIF to any specific manifest
variable.

Unlike the models in (9) to (11), the models wich

unobserved subgroups are not always identified. For example,

18
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a model with unobserved subgroups in which only one item
exhibits DIF in the latent response, is not identified. In
order to overcome this problem, models can be specified to
test DIF for v items (2Sv<k). The models (9) to (11) then

become

_ T X X 1
(12)  P(y) —i‘.i ;¢ d{xi e OV gfvel

= T o1 k ¢f1Y1 kYk
(13)  P(y) i:i d{t difl d’:“k Gg‘(lyl d’:‘(kYk ,

and

(1) P(y) =Z I @ &1 ... ofk o¥1¥1 .
ix X1

Xk 1ix1y]

q;Xva v+l¥vel e ok¥k
1xv¥v Ays1Yyel Xx¥Yx

where dﬁii = exp(-x1874), 813 is the difficulty of item 1 in
latent subgroup i, and dﬁzi = P(ylx,i) is the conditional
distribution of observed response y given latent response x
and latent subgroup i.

Just as in the case of observed subjroups, it is also

possible to analyse models in which some items exhibit DIF in

19
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the latent response and other (or the same) items DIF in the

guessing probabilities.

Parameter Estimation and Model Testing

Let Nixy be the number of individuals in subgroup i with X=x
and ¥=y under a certain model and let mjyy = N P(i,x,y) be
the expected value of njzy. Although nj,, is not observed, it
is possible to estimate the means mixy of Njxy, and the -
parameters from the observed njy (or ny if the subgroup is
unobserved) by the method of maximum 1likelihood. To

illustrate this, consider the model defined by

= T aiX1 X ol¥X1Y1 Xy Yk
(15)  mixy = N d&t d&xl T q{xk dﬁxlyl *e d{xkyk ’

The maximum likelihood equations for model (15) would be

(Haberman, 1979):

AIT _ AIT AIX4Y4 _ AIX4Y

my, = 0y o mix%yg = nixgyg R j=1,..., k
where

A _ ., a4 ATIY 1Y
(16) nixy = ( mixy / miy ) niy ’
and where niz and niigig are the numbers of individuals in

ERIC 20
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subgroup i with T=t, Xj=xj and Yj=yj, respectively. Further

IT IT IX4Yo
it it and nixgyg'

If the subgroup i 1is not observed, then Njy and Mmiy in (16)

m,, and miigzg are the expected values of n
has to be replaced by Ny and My .

The equations «can be solved by the iterative
proportional fitting algorithm or the scoring algorithm
(Goodman, 1978; Haberman, 1979). The iterative proportional
fitting algorithm is to be preferred, since it is less
sensitive to the choice of starting values.

In model (15) all itews were considered to exhibit DIF
in the latent response and DIF in the guessing probabilities.
If some items exhibit no DIF in the latent response or DIF in
the guessing probabilities, then the ®-parameters for these
items are restricted. For example, if in a certain model item
1 exhibits no DIF in the latent response, then the dﬁ:i—

parameter is restricted in the following manner

Similar estimation equations can be formulated for restricted
models.

The oyerall goodness of fit of an incomplete latent-
class model can be tested by the Pearson statistic (Q) or the
likelihood-ratio statistic (LR) (see Haberman, 1979). Both
statistics are asymptotically distributed as chi-square with
degrees of freedom equal to the difference between the number

of count Ny (or Nijy if the subgroup is observed) and the
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number of estimable parameters. The number of estimable
parameters of a model should be equal to the rank of the
information matrix (cf McHugh, 1956; Goodman, 1978).

By the difference in likelihood-ratio test statistics of
both models (LR(a;b)) it can be tested whether the
alternative model (b) yields a significant improvement in fit
over the compact model (a), which is a special case of model
(b). Under the assumption of model (a), LR(a:b) is
asymptotically chi-square distributed with degrees of freedom
equal to the difference in numbers of estimable parameters of

both models (Bishop, Fienberg & Holland, 1975).

An Empirical Example

As an example four items from the Second International
Mathematics Study in the Netherlands were considered. (Eggen,
Pelgzum & Pl-omp, 1987). Each item was a five-choice item with
only one correct alternative,

A sample of 3002 students from two schooltypes of lower
secondary education in the Netherlands representing the whole
ability range was drawn. To illustrate the use of quasi-
loglinear models for detection of DIF, the students level of
education was chosen as grouping variable: subgroup MavO
(intermediate general education) and subgroup HAVO/VWO
(higher general education and pre-university education).

The models (9) and (11) were fitted to the data using

the computer-program LCAG (Hzgenaars & Luijkx, 1987). LCAG is

22
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a program for estimating the parameters of loglinear models
with latent variables. LCAG yields, besides the estimated
latent conditional probabilities (i.e. the guessing
probabilities), the estimated expected frequency distribution
of the latent variables under the model. From this frequency
distribution the difficulty parameters were estimated using
LOGIMO (Kelderman & Steen, 1988). LOGIMO is a general
computer program especially written to analyse loglinear IRT
models.

DIF is .ested by comparing model (9) (for DIF in the
latent response) and model (11) (for DIF in the guessing
probabilities) with model (10) (no DIF). In Table 1 for each
item the values of the likelihood ratio test and the degrees
of freedom are shown for models (9) and (11). In both cases

the level of education was observed.

Insert Table 1 about here

From Table 1 it may be concluded that, except for item
2, the difficulty to solve the problems represented by the
items does not vary significantly between the subgroups MAVO
and HAVO/VWO. In Table 2 the difficulty parameters of the
four items in the model, in which item 2 exhibit DIF in the

latent response, are given.
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Insert Table 2 about here

It can be seen from Table 2 that the difficulty of item
2 was substantially smaller for MAVO-students then for
HAVO/VWO-students.

Table 1 also shows that the attractiveness of the
alternatives of the items 1, 2, and 4 were significantly
different in both subgroups. To give a more detailed
interpretation of the attractiveness of the alternatives, the
guessing probabilities of the alternatives for each item are

presented in Table 3.

Insert Table 3 about here

For a HAVO/VWO-student the correct alternative of item 1
is more attractive then for a MAVO-student. So (s)he is more
inclired to choose the correct alternative. On the other hand
a MAVO-student would be more inclined to choose the correct
alternative of item 2, because his/her guessing probability
of the correct alternative is twice as big as the guessing
probability for a HAVO/VWu-student. However, for both
subgroups the correct alternative is not the most attractive
alternative,

The guessing probabilities for the correct alternative

24
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of item 4 are almost the same for both subgroups, but for the
alternatives B and C there is a curious different between the
tso subgroups. A HAVO/VWO-student would guess alternative B
with almost the same probability as a MAVO-student would
guess alternative C and guessing alternative C with almost
the same ©probability as a MAVO-student would guess
alternative B.

Item 3 exhibits no DIF in the guessing probabilities.
However, alternatives B and D of item 3 have a relatively
large attractiveness.

In the foregoing the two types of DIF were studied
separately from each other. Also on'y one item at the time
was studied. As was indicated earlier, it is also possible to
analyse models in which more than one item exhibits DIF. To
illustrate this possibility model M, in which the items 1, 2,
and 4 exhibits DIF in the guessing probabilities and where
item 2. exhibit DIF in the latent response, was considered.
Model M gives a considerably improvement in fit to the data
over model (10) (LR(10;M) = 100.5; DF = 13). From Table 2 it
also follows that model M fits the data better than the
models discussed before. The parameters, however, do not
differ much from the parameters of the previous models.
Therefore they are not given.

In summary, the difficulty of the four items can be
ordered in the following way 83 > §; > 84 > 8. That is, item
2 is the easiest item and item 3 is the most difficult one.
The attractiveness of alternatives 1, 2, and 4 as well as the

difficulty of solving item 2 is not the same for the two

25
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subgroups. Item 3 exhibits no DIF in the latent response or

DIF in the guessing probabilities.

Discussion

In the present paper a model for multiple choice items
is proposed, which views the observed respcnse of a subject
to a certain item as a result of two distinct processes. The
first process consists of solving the problem and the second
process of giving thc actual response. This model is extended
with subgroups (observeu or latent) in order to study DIF in
the two prucesses. Tne model was illustrated with an example,

In this paper all tests of DIF are two-sided. This
means, that it is not possible to test directional hypothesis
about DIF. The estimated difficulty paramcters and the
estimated guessing probabilities provides only an indication
for the direction of DIF.

Because of the fact that LCAG claims much memory-space,
it was not possible to consider more than four five-choice
items. A 1line of further research will be to find an
estimation method that overcomes this problem. Further
research should also give an answer to the question if a

certain model is identified or not.

26
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