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Introduction

What a mathematical proof consists of seems clear to all mathematics teachers and
mathematics educators. That is: "A careful sequence of steps with each step following
logically from an assumed or previously proved statement and from previous steps"
(NZTM, 1989, p.144). This description is almost the same all over the world, and it is
very close to what a logician would formulate, perhaps more formally. Comments made
on mathematical proof as a content to be taught emphasize two points: first they stress
that it has nothing to do with empirical or experimental verification, second they call
attention to the move from concrete to abstract. Here is an example of such comments:

"It is a completely new way of thinking for high school students. Their previous
experience both in and out of school has taught them to accept informal and empirical
arguments as sufficient. Students should come to understand that although such arguments
are useful, they do not constitute a proof." (NCTM, 1989, p.145).

We can say that the definition of mathematical proof, as an outcome of these official texts
is mathematically acceptable, but there is a long way from this definition to the image
built in practice along the teaching interaction. More or less, teaching mathematical
proof is understood as teaching how to formulate deductive reasoning: "Pour les
professeurs, une demonstration, c'est tres nettement l'expose formel deductif d'un
raisonnement logique" (Braconne, 1987, p.187).

The construction of this reasoning, and its possible relationships with other kind of
reasoning, is hidden by that over emphasis on its "clear" formulation. That conception
is so strong that some teachers can come to an evaluation of a mathematical proof just
considering the surface level of the discourse. For example, in her requirement for
teachers comments on a sample of students formulations, Braconne reports' that:

"Les professeurs ont Magi aux longueur inutiles du texts de Bertrand, au desordre dans
la solution de Karina, au fait que le texts d'Elodie ne suive pas le raisonnement deductif,
etc. Toutefois, sect Fawners n'ont pas remsrque que, dans Is texts de Bertrand, c'est
la reciproque du theoreme neeessaire I la demonstration qui &sit cit6 an premier
paragraphe, et huit n'ont pas signals quo le texts de Laurent contenait la memo erreur
[...] Done pour l'eleve, et pour nous, les notes ne refibteat pas le fait que le professeur
se soit appergu de l'erreur ou non." (Braconne, 1987, p.99)

A report on proof frames of elementary preservice teachers shows a similar behaviour:

"Many students who correctly accept a general-proof verification did not reject a false
proof verification; they were influenced by the appearance of tea argument - the ritualistic
aspects of the proof - rather than the correctness of the argument. (...] Such students
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appear to rely on a syntactic-level deductive frame in which a verification of a statement
is evaluated according to ritualistic, surface features."

(Martin & Hard, 1989)

Thus, mathematical proof appears ultimately as a kind of rhetoric specific to the
mathematical classroom, it is not surprising then that it appears as such to the eyes of
students. The nature of mathematical proof as a tool to establish a mathematical
statement is to sonic extent hidden by the emphasis on the linguistic dimension. What
does not appear in the school context is that the mathematical proof is a tool for
mathematicians for both establishing the validity of some statement, as well as a tool for
communication with other mathematicians. Also, it is often forgotten that what
constitutes the present consensus about rigor has not been created ex nihilo, but that it is
the product of an historical and a social process within the community of mathematicians'.
As Marlin' recalls, ultimately "a proof becomes a proof after the social act of 'accepting
it as a proof ."

There is another reason for considering so strongly the social dimension of mathematics
teaching and learning. For as we recognized that learning is a personal process, we
should also consider that its outcome is likely to be firstly a private knowledge: The
students' conceptions. But that conflicts with two constraints specific to the teaching,
which has to guarantee the socialization of students' conceptions for the following
reasons:

- Mathematics is a social knowledge. Students should make their own the
knowledge that exists outside the classroom. It has a social status in society, or in
smaller social groups under whose control it is used. For example, the community of
mathematicians or that of engineers can be taken as a social reference.

- The mathematics class exists as a community. The teacher has to obtain a
certain homogeneity in the meaning of the knowledge constructed by students, and she
or he has to ensure its coherence. Otherwise, the functioning of the class will hardly be
possible. Because of the constructivist hypothesis we consider, the use of authority is not
desirable. Thus, the homogenization can only be the result of a negotiation or of other
specific social interactions such as the one Brousseau (1986) has described in the frame
of his theorie des situations didactiques.

2

3

The essay of I. LAkatos (1976) on the diabetic of proofs and refutations gives a good insight of
this historical process.

Mania quoted by Hanna (1983).
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Social Interaction and Situations for Validation

What is now clear is that as long as students rely on the teacher to decide on th, validity
of a mathematical outcome of their activity, the word 'proof' will net make sense for
them as we expect it to do. In such a context they are likely to behave mainly to please
their teacher, just as one of the British students interviewed by Galbraith (1979) told his
interviewer: "To prove something in maths means that you have worked it out and it
proves how good you are at working questions out and understanding them."

But it is not sufficient to propose a problem to the mathematics classroom and to tell the
students that they have the responsibility of solving it. There is no reason for them, a
priori, to consider that the problem is their problem and to feel committed to solving it;
they can still think that they have to do so in order to please the teacher and thus their
behaviour will not be significant.

Before going ahead, let us consider a short story told by Sir Karl Popper, which will
throw a relevant light on what we want to suggest:

"If somebody asked me, 'are you sure that the piece in your hand is a tenpenny piece?'
I shouldperhaps glance at it again and say 'yes'. But should a lot depend on the truth
of my judgement, I think I should take the trouble to go into the next bank and ask the
teller to look closely at the piece; and if the life ofa wan depended on it, I should even
try to get to the Chief Cashier of the Bank of England and ask him to certify the
genuineness of the piece."

(Popper, 1979, p.78).

And then Popper adds that "the 'certainty' of a belief is not so much a matter of its
intensity, but of the situation: Of our expectation of its possible consequences." (ibid.)

Along the same line, I would like to suggest that ifstudents do not engage in any proving
processes, it is not so much because they are not able to do so, but rather that they do not
see any reason. Even ;f they engage such a process, its level depends heavily on the way
students understand the situation. Following a principle of economy of logic they are
likely to bring into play no more logic than what is necessary for practical needs
(Bourdieu, 1980, p.145).

Then the true meaning of the outcomes of students proving processes is to be traced in
the characteristics of the situation in which they are involved.

In situations in which they have to decide a common' solution to a given problem,
students have to construct a common language and to agree on a common system to

By 'common', we mean here a solution supported by the whole classroom, or smaller groups of
students as is usually the case.
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decide of the validity of the solution they propose. The essential role of the social
dimension, mainly in situations for communication, provoking a move from "doing" to
"telling how to do", and their importance in the construction of meaning have been put
in evidence by Brousseau in his theorie des situations didactiques (Brousseau, 1986).
Here we would like to recall what this author wrote about the situations for validation:

The situations for validation "will bring together two players who confront each other
regarding a subject of study composed on the one side of messages and descriptions
produced by the pupils and on the other side of the a-didactic milieu used as referent for
these messages. The two players are alternately a 'proposer' and an 'opposer'; they
exchange assertions, proofs and demonstrations concerninn this pair 'milieu/message'.
This pair is a new apparatus, the 'milieu' of the situation for validation. It can appear
as a problem accompanied by the attempt at solving it, like a situation and its model, or
like a reality and its description...

While informer and informed have dissymmetric relations with the game (one knows
something that the other does not know), the proposer and the opposer must be in
symmetrical positions, both regards the information and means of action about the game
and the messages which are at their disposal, and as regards their reciprocal relations, the
means of sanctioning each other and the objectives vis-h-vis the pair milieu/message."

(Brousseau, 1986, p.158).

We should realize that in such situations, behaviours that are more social than
mathematical, would probably appear. For example, because of self-esteem, some
students might refuse to recognize that they are wrong, or others might refuse to accept
that their opponents are right.

Thus, to sum up, to provoke students proving behaviours we should design situations in
such a way that students come to realize that there is a risk attached to uncertainty, and
thus that there is an interest in finding a good solution. In order to obtain a significant
scientific debate among students, we should provide them with a situation promoting
contradiction, but also promoting acceptance. Otherwise systematic rejection could
become an efficient defensive strategy. In other words, the situation should allow the
recognition of a risk linked to the rejection ofa true assertion, or to the acceptance of a
false one.

Following these principles we have designed teaching situations as experimental settings
in order to study students behaviours in such contexts, and the nature of these behaviours
in relation to the characteristics of these situations. A priori, we thought that genuine
mathematical proving processes will be observed, a deep analysis of our experiments
shown that things are a bit more complex than what is usually acknowledged by
innovative practice resting on social interaction.

In the following section we will report, in some detail, on one of these experiments.
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A Case Study": The Perimeter of a Triangle

A first principle we wanted to satisfy in designing the experiment was to obtain the
devolution' of the responsibility for the validity of the problem's solution from the teacher
to the students. For that purpose we nave chosen a context of communication: We told
the students that they will have to write a message for other students, of the same grade,
in order to allow them to solve a given problem. In such a situation the criteria for
success are left to be decided by students according to their own means for the evaluation
of the erticiency and the reliability of the message they have produced. We thought that
this setting would be sufficient to enzgre that students will consider that they have the
responsibility for the truth of their solution, and that they will not refer to the teacher
expectation.

In such a situation there is usual'y some tensions because of the different individual
motivation and commitment. For this reason, we think that it is not desirable to ask the
students to work individually, but on tit?, Ater hand it is not desirable to ask for a
collective production form the whole class insofar as some students might feel that they
are not concerned, leaving the job to the others. So, we decided to constitute small teams
of three to four students working together, telling them that the final solution will be one
of the ones proposed by the teams, or a modification of it. To promote collective work,
each team must propose only one solution, and during the debate for the choice of the
class solution the team will be asked to express its position through the voice of a chosen
representative. That constraint obliges students to be explicit and to discuss a priori the
correctness and appropriateness of what they want to be said. We think that the quality
of the debate will rest on the .motivation of each team, its willingness to have its message
chosen, but also its commitment to the success of the class as a whole.

The mathematical problem we chostm was the following:

Write for other students, a message allowing them to come to know the
perimeter of any triangle a piece of which is missing. To do it, your
colleagues will have at their disposal only the paper on which is drawn a
triangle and the same instruments as you (rules, etc.).

Together with this text a triangle such as the following (fig. 1) was given to the students.
All the teams in the classroom had the same materials.

The case study reported hors has been made possible because of the close relationships established
by academics and teachers within a research group of the MEM de Lyon. It is a small part of a
four year project which had allowed us to collect a large amount of data. The complete report is
available from IREM de Lyon, Unbar:hi Clause Bernard, Lyon.

Devolution: "A delegating of authority or duties to a subroutine or substitute" (The American
Heritage Dictionary of the English Language, 1979).

13
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The study we made before this experiment
(Balacheff, 1988, pp 321-360), allowed us to think
that all the students will be able to enter the
problem-solving process, with quite different
solutions. This diversity was expected to be the
source of interesting debates. We know that some
students, and thus some teams, will miss the fact
that the solution must work for a general case and
not only for the triangle given as an example. But
we were sure that this will be pointed out during
the debate, and then that it will be taken in
consideration, even with more strength than if the
teacher had warned about it a priori.

i isrure 1

The role of the teacher was to present the situation, then not to intervene in any case up
to the time whep -U the teams have proposed a solution; then the teacher's position will
be to regulate t. ,ate and to give the floor to the teams' representatives. The end of
the sequence w , ,.,me from a general agreement on the fact that one of the solutions,
or a new one obtained as a result of the interactions, is accepted. The debate was
organised in the following way: The messages were written on a large sheet of paper and
then they were displayed on a wall of the classroom. Each team had to analyze the
messages and their representatives had to tell the class their criticisms and suggestions.
These criticisms had to be accepted by the team which was the author of tne message
discussed. In case of an agreement of the class on a false solution, the teacher was
allowed to propose to the teams a new triangle invoking th.tt such a triangle might be
considered by the receptors. (Such material had been prepared taking into account what
we knew from the first study). On the other hand if more than one message was
acceptable with no clear decision from the class then the teacher was supposed to organise
a vote to make the choice, asking the students to tell the reasons for their choice.

I will not report here in detail on di,. analysis of this experimmt. A complete report is
available in Balacheff (1988, pp 465-562). I will here focus here on the outcomes
relevant to my present purpose, as they are related to the observations which have been
made in two different classrooms.

The First Experiment

The first experiment was carried out with students of the eighth grade (13 to 14 years
old). The teacher was a member of the research team, which meant that we were in a
good position to assert that the project was well known to her. The observations lasted
for two sessions of 1:30 hours. After the first one we felt really happy with what had
happened. The second phase raiseda feeling of some difficulties ... beyond these feelings
only the close analysis of the data gathered, led us to discover the existence of the

14
, _,
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parameters which have played a critical role in the teacher decisions, and thus in the
students behaviours:

- First, a constraint of time, which made the teacher intervene in order to ensure that the
whole process would keep within the limits imposed by the general school timetable in
which the experiment took place.

- Second, the teacher's willingness to guarantee an acceptable end in her own eyes. There
was a huge tension between this willingness and the willingness of not breaking the
contract of "non intervention". This tension is the indication of what we would like to
call in the future: the teacher epistemological responsibility.

Because of these two constraints, the decisions the teacher made tended to oppose the
devolution of the problem. In particular, to guarantee that the problem solving phase
would not be too long, the teacher invited students to propose a solution as soon as she
thought that it was mature enough, but with no information about the real feelingof these
students. Also, some teacher's interventions aimed at calling the attention of students to
the word "any" (in the sentence "any triangle"), and doing so she did not think that it
was a mathematical intervention, insofar as she thought that it was only due to the
students' lack of care;ahtess. But all these interventions led students to a feeling of
dependence and the idea of a possible responsibility of the teacher for the validity of their
answer.

A significant phenomenon, is that the teacher (as well as the observers) did not realize
what a continuous contact she kept with the students, making about one intervention every
minute over an 80 minutes period. The content of these intervention could have been
light, as: "Are you O.K.?", or more important as: "Are you sure you have carefully read
the statement of the task? ". All together we have counted, within these interventions,
129 different items. We see this phenomenon as an indicator of the intensity of the
relationship between the teacher and the students in a situation that we thought to be
quasi-isolated from the teacher before we did a close analysis of the records.

The same constraints were an obstacle to the functioning of the second phase. After a
first exchange of critiques by the teams' representatives, the teacher intervened because
she thought that nothing positive will come out of the engaged process at least within
the time available. The teacher then tried to facilitate the progress in the discovery of a
solution, calling explicitly for ideas and suggestions to start from them and go further.
Actually, it was quite clear from her attitudes that not all the ideas were of the same
value. The students' behaviours were deeply transformed by these interventions. They
got confused and they were no longer committed to any real discovery of a solution.

The teacher thought that she had kept the spirit of the sequence, the basic frame being:
search for a solution, critics, new ideas and suggestions to go ahead. But only the
superficial aspects of the intended sequence were still there; its meaning for the students

,
1 15
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were fundamentally changed. They did not enter a true mathematical activity, as
expected, but just a new school game not so different, beyond the new and exiting social
setting, from the ordinary one.

The Second Experiment

We learned a lot from this first experiment, and we thought that it would be worthwhile
to make a second one. We decided to keep the same general framework, but to overcome
the obstacles we came to be faced with, we chose the three following modifications:

(i) To observe a tenth grade classroom in order to be sure that no mathematical difficulty
will disturb the phenomenon we wanted to observe. Also, at this level students have
already been introduced to mathematical proof. The situation could be an opportunity to
evidence its power as a means for proving...

(ii) To open the time, that means that we decided to leave open when the end of the
experiment will end up. We thought that three or four sequences of about one hour each
would be sufficient.

(iii) To ask the teacher not to intervene, as strictly as possible, during the first phase (the
initial problem-solving phase), and then to act just as a chairperson and as the collective
memory' of the class during the second phase (the debate).

The first phase' did not present any special peculiarity. The teacher did not intervene at
all, leaving students free to decide that they had a solution to propose. Four teams among
the five reached a solution, the fifth one which was clearly close to surrender, finally
proposed a "contribution' to the collective effort, as a response to the teacher demand.

During the second phase, she also followed the specifications we decided together.
Then ...

More than a scientific debate, that is, proposing proofs or counterexamples, the data show
that students entered a discussion with some mathematical content in it, but which mainly
consisted of an exchange of arguments pro et contra not necessarily connected the one to
the others. They argued about the different proposed solutions, but they did not prove
mathematically.

The situation for communication has really been taken into account as such by students,
as their remarks on the proposed messages show. The main critics are related to the fact

To be the 'memory* of the class means to take a record of what is said, in particular by writing
students' decisions on the blackboard.

This phase took about one hour.

16
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that this message must be understandable and usable by its receptors. But the problem
of the validity of the proposed solution is not really considered. In that sense we can say
that the situation does not realize a situation for validation. For a clear distinction
betweele"darguing" and "proving" in mathematics', we refer to the distinction as
formula by Moeschler:

"Un diacours argumentatif nest pas un discours opponent ii proprement parley des
preuves, ni un &scours fonctionnant stir la principes de Is deduction logique. En
d'autres tames, argumenter no revient peel d6montrer la verit6 d'uno assertion, ni li
indiquer le caractbre logiquement valide d'un raisonnement [...j Un discours argumentatif,
et east li une hypothbse de &part important., se place toujours par rapport it un
contre-diacours effectif ou virtue!. L'argumentation est I ce titre indisaociable de la
pol6mique." (Moeschler, 1985, p.46-47).

In that sense, what we have observed is first of all an exchange of arguments about the
simplicity of the solution ... or of its complexity. The context of a communication with
other students has favoured the feeling of the relevance of critics in that register. But
what leads us to suggest that this debate is more an argumentation than a scientific
debate, in the Moeschler sense, is the frequent lack of logical relationships between
arguments. Even more, some students can pass in the same argumentation from one
position to another completely contradictory. These arguments can have nothing to do
with mathematics, or even with what is required by the situation ... and it could be the
same for the objections opposed to an argument. Finally, the involvement of some of the
teams in the game, I mean the fact that they are eager to win, had favoured the
appearance of polemics: The strongest opponents to the "too complex" message are the
authors of the "too simple", and conversely.

After a first period of debate the messages had been accepted, provided that some
modifications were made, but their validity has not been really discussed. So, the teacher
proposed a new triangle, in order to challenge the messages. This triangle was such that
the wrong solutions will obviously fail. The debate following this checking phase, shows
how strongly students are more involved in an argumentation than in a scientific debate.
Finally, one solution being accepted as the solution of the class, the teacher asked
students whether they were sure of that solution. They answer: "Yes, beca "se we have
done it in a lot of cases." So, it is even not sufficient to directly address the question of
the validity. Note, that when later on the teacher asked the students about a possible
mathematical proof of their solution, they gave one showing that technically it was
possible to them.



22

Discussion

Efficiency Versus Rigour

Even if we are able to set up a situation whose characteristics promote content specific
students' interaction, we cannot take for granted that they will engage a "mathematical
debate", and finally that they will produce a mathematical proof.

A peculiarity of mathematics is the kind of knowledge it aims at producing. Its main
concern is with concepts specific to its internal development. There is evidence that
Egyptians used intellectual tools in practical situations for which we have now
mathematical descriptions, but the birth of mathematical proof is essentially the result of
the willingness of some philosophers to reject mere observation and pragmatism, to break
off perception (the monde sensible), to base knowledge and truth on Reason. That
actually is an evolution, or a revolution, of mathematics as a tool towards mathematics
as an object by itself, and as a consequence a change of focus from "efficiency" towards
"rigor".

It is a rupture of the same kind which happens between "practical geometry" (where
students draw and observe) and "deductive geometry" (where students have to establish
theorems deductively). Also in numerical activities, like the one reported by Lampert
(1988), the same rupture happens when students no longer have to find some pattern out
of the observation of numbers, but that they have to establish numerical properties in
their "full" generality (using letters and elementary algebra).

Here we have to realize that most of the time students do not act as a theoretician but as
a practical man. Their job is to give a solution to the problem the teacher has given to
them, a solution that will be acceptable with respect to the classroom situation. In such
a context the most important thing is to be effective. The problem of the practical man
is to be efficient not to be rigorous. It is to produce a solution, not to produce
knowledge. Thus the problem solver does not feel the need to call for more logic than
is necessary for practice.

That means that beyond the social characteristics of the teaching situation, we must
analyse the nature of the target it aims at. If students see the target as "doing", more
than "knowing", then their debate will focus more on efficiency and reliability, than on
rigor and certainty. Thus again argumentative behaviours could be viewed as being more
"economic" than proving mathematically, while providing students with a feeling good
enough about the fact that they have completed the task.

18
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Social Interaction Revisited

Social interaction, while solving a problem, can favour the appearance of students'
proving processes. Insofar as students are committed in finding a common solution to a
given problem, they have to come to an agreement on the acceptable ways to justify and
to explain their choices. But what we have shown is that proving processes are not the
only processes likely to appear in such social situations, and that in some circumstances
they could even be almost completely replaced by other types of interactional behaviours.
Our point is that in some circumstances social interaction might become an obstacle,
when students are eager to succeed, or when they are not able to coordinate their
different points of view, or when they are not able to overcome their conflict on a
scientific basis'''. In particular these situations can favour naive empiricism, or they can
justify the use of crucial experiment in order to obtain an agreement instead of proofs at
a higher level (Balacheff, 1988).

Perhaps some people might suggest that a better didactical engineering could allow us to
overcome these difficulties; indeed much progress can be made in this direction and more
research is needed. But we would like to suggest that "argumentative behaviours" (i) are
always potentially present in human interaction, (ii) that they are genuine epistemological
obstacles" to the learning of mathematical proof. By "argumentative behaviours" we
mean behaviours by which somebody tries to obtain from somebody else the agreement
on the validity of a given assertion, by means of various arguments or representations
(016ron, 1984). In that sense, argumentation is likely to appear in any social interaction
aiming at establishing the truth or falsehood of something. But we do consider that
argumentation and mathematical proof are not of the same nature: The aim of
argumentation is to obtain the agreement of the partner in the interaction, but not in the
first place to establish the truth of some statement. As a social behaviour it is an open
process, in other words it allows the use of any kind of means; whereas, for
mathematical proofs, we have to fit the requirement for the use of a knowledge taken in
a common body of knowledge on which people (mathematicians) agree. As outcomes of
argumentation, problems' solutions are proposed but nothing isever definitive (Perelman,
1970, p.41).

Insofar as students are concerned, we have observed that argumentative behaviours play
a major role, pushing to the backside other behaviours like the one we were aiming at.
Clearly enough, that could be explained by the fact that such behaviours pertain to the
genesis of the child development in logic: Very early, children experience the efficiency

I0

II

I mean, content specific.

The notion of "epistemological obstacle" has been coined by Bache lard (1938), and then pushed on
the forefront of the didactical scene by Bromism (1983). It refers to a genuine piece of knowledge
which resists to the construction of the new one, but such that the overcoming of this resistance is
part of a NI understanding of the new knowledge.
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of argumentation in social interactions with other children, or with adults (in particular
with parents). Then, it is quite natural that these behaviours appear first when what is in
debate is the validity of some production, even a mathematical one.

So, what might be questioned is perhaps not so much the students' rationality as a whole,
but the relationships between the rationale of their behaviours and the characteristics of
the situation in which they are involved. Not surprisingly, students refer first to the kind
of interaction they are already familiar with. Argumentation has its own domain of
validity and of operationality, as all of us know.

So, in order to successfully teach mathematical proof, the major problem appears to be
that of negotiating the acceptance by the students of new rules, but not necessarily to
obtain that they reject argumentation insofar as it is perhaps well adapted to other
contexts. Mathematical proof should be learned "against" argumentation, bringing
students to the awareness of the specificity of mathematical proof and of its efficiency to
solve the kind of problem we have to solve in mathematics.

Here negotiation is the key process, for the following reasons:

- First, because the teaching situation cannot be delivered "open" to the students,
otherwise many of them will not understand the point and they will get lost. The
following quotation from Cooney makes it clear:

*Maybe not all of them but at least some of them felt 'I am not going to participate in
this class because you [referring to the teacher] are just wasting my time'. It is so ironic
bvause if I was doing the type of thing they wanted to do, they would be turning around
in their seats and talking. So it's a no-win situation."

(Cooney,1985, p.332).

- Second, because of the rules to be followed, the true aim of the teacher cannot
be stated explicitly. If the rules for the interaction are explicitly stated, then some
students will try to escape them or to discuss them just as maly people do with law.
Also because interacting mathematically might then become "mastering a few clever
techniques" which may turn into objects to be taught, just as teaching "problem solving"
has often become teaching quasi-algorithmic procedures (Scnoenfeld, 1985).

The solution is somewhere else, in the study and the better understanding of the
phenomena related to the didactical contract, the condition of its negotiation, which is
almost essentially implicit, and the nature of its outcomes: the devolution of the learning
responsibility to the students. We cannot expect ready-to-wear teaching situations, but
it is reasonable to think that the development of research will make available some
knowledge which will enable teachers to face the difficult didactical problem of the
management of the life of this original society: The mathematics classroom.
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Geometry is Alive and Well'

31

The reports of my death are greatly exaggerated.
Mark Twain, 1897 (cable to Associated Press

from London, upon reading of his death.)

It is a widely held opinion that geometry is dead. At the Fourth International Congress
on Mathematical Education held in Berkeley in 1980, a lively debate on the topic featured
J. Dieudonne, B. Grunbaum, and R. Ossennan all well recognized research
mathematicians with deep interests in and strong opinions about geometric questions and
the teaching of geometry. In his address, Osserman noted "... to speak of the 'death of
geometry' at the post-secondary or any other level is clearly an exaggeration, [though]
it nevertheless reflects a reality.'

The evidence of the death of geometry as a vital part of the body of mathematics seemed
convincing:

The small role of geometry in the high school curriculum: rarely required, and
typically a one year (or shorter) course.

The insignificant role of geometry in College and University curricula: if offered at
all, limited to a course for prospective teachers, or specialized courses (projective
geometry, differential geometry).

The dearth of research papers, conferences, and symposia devoted to geometry.
The small number of geometry texts at the college level, and absence of any new texts.

Historically, a knowledge of geometry was considered the mark of an educated person.
However, in recent times, a reverse kind of snobbery has occurred: a lack of knowledge
about, and disinterest in geometric questions is a common profile of the mathematical
research community. The view towards geometry is generally a mixture of one or more
of the following beliefs:

1. Euclidean geometry, like Latin, is GOOD FOR YOU. It should be studied (in
high school) for historical appreciation and to build character. The geometric
content is not expected to lead (mathematically) anywhere.

1
An earlier version of this address was given at the Conference on Leaning and Teaching
Geometry, June 1987, at Syracuse University, New York.

2
All quotations in this paper from ICME IV may be found in The Two-Year College Mathematics
Journal, 12 (September 1981) 226-246, which contains the addresses given by Dieudonne,
Orilnbaum, and Osserman.
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2. Euclidean geometry is where students learn logic, the axiomatic method, and
deductive proof. The geometric content of the course is secondary to these aims.
(This course could be titled GEOMETRY AS A MILITARY DISCIPLINE.)

3. Geometry provides some interesting low-level recreational problems to solve, but
there aren't any important unanswered questions. Mathematicians who claim to
do research in geometry are not considered as serious in their interests.

Most mathematicians are totally unaware of the fact that the elementary, intuitive
approach to geometry continues (and will continue) to generate mathematically profound
and interesting problems and results. (B. Grunbaum)

4. The content of geometry has been integrated into (absorbed by) almost all of
higher mathematics linear algebra, analysis, algebraic geometry, topology,
group theory, etc. so there is no need to teach it apart from these.

...mathematicians have been extremely appreciative of the benefits of the geometric
language, to such an extent that very soon they proceeded to generalize it to parts of
mathematics which looked very far removed from Geometry.

(J. Dieudonn6)

This last view was met with a memorable rejoinder by Osserman, who summarized
Dieudonne's nosition as follows:

Geometry is alive and well rnd living in Paris under an assumed name.

Even in recent years, there has always been a small core of mathematicians who have
done considerable research in geometry despite the prevailing mathematical fashion.
H.S.M. Coxeter might be considered the "dean" of such researchers. In an interview in
1979 for The Two -Year College Mathematics Journal with David Logothetti, he gave
testimony to his enduring interest in and excitement about geometry, and his belief in its
vitality. The interview closes with a question by the interviewer, and Coxeter's reply:

L. If I or my colleague Jean Pedersen start rhapsodizing about geometry, the
reaction that we frequently get is, "Oh well, that's a dead subject; everything
is known." What is your reaction to that reaction?

C. Oh, I think geometry is developing as fast as any other kind of mathematics; it's
just that people [research mathematicians] are not looking at it.

In his closing remarks at the 1980 ICME, Osserman echoed similar sentiments:

...geometry...hu gone through a period of neglect, while the arbiters of mathematical
taste and values were generally of the Bourbaki persuasion. On the other hand, ... that
period is already drawing to a close. ... I would predict that with no effort on any of our
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parts, we will witness a rebirth of geometry in the coming years, as the pendulumswings
back from the extreme devotion to structure, abstraction, and generality.

Today we witness a renewed interest in teaching and learning geometry. In 1987, the
NCTM yearbook and an international conference in Syracuse, New York were devoted
to the topic. The newly announced NCTM standards (1989) address the need to
strengthen geometric content in the K-12 curriculum, andan article by Marjorie Senechal
in a collection of position papers (to be published in 1990 by the National Research
Council) on the mathematical content in the K-12 curriculum, identifies shape as a major
content strand at all levels of learning. These are timelyevents, since there is convincing
evidence that points to a renaissance in geometry. There is strong interest in geometric
figures in the plane and 3-space exploration of their properties, their interrelationships
and enumeration of their types. In what follows, I want to convince you that reports of
the death of geometry (in 1980, and even more so today) are greatly exaggerated. The
remarks by Coxeter and Osserman in 1980 were prophetic for whether or not the
,,fficial teachers and researchers in the mathematical community choose to lead (or even
join) in this renaissance, it is happening.

The Evidence

ActiWty outside mainaream mathematics

While mathematicians were neglecting (or ignoring) geometry, its importance grew in
many other fields. Those areas in which geometry has always been central art,
architecture, design and engineering make direct use of geometry to create and build
forms which satisfy aesthetic desires and structural needs. The three-dimensional
Euclidean world which we inhabit demandsanswers to complex geometric questions, and
manufacturers, craftsmen, architects and engineers have not waited for the mathematical
community to provide answers they always have and still continue to solve geometry
problems, sometimes in an ad hoc and ingenious manner. Renewed interest in geometry
related to structure is evidenced in the recent publication ofseveral books concerned with
the geometry of spatial forms,and the topics of incidence and symmetry in design (see,
for example, [Baglivo and Graver], [Blazkwell], [Gasson]) One especially active site of
research into structure and form is the University of Montreal, and its associated
"Structural Topology" gawp, which seeks to have investigators from many disciplines
contribute to the common search for a better understanding of and solutions to geometric
problems.

Many other fields have found geometry a rich source of ideas for creating models to
understand complex forms, relations, and processes which cannot be viewed directly.
Historically, artists and artisans as well as mathematicians have been interested in
polyhedra (Leonardo da Vinci and Albrecht Darer, as well as Johannes Kepler and
Leonhard Euler to name but a few), but today, it is not likely that students or their
teachers even know why a soccer ball has hexagon and pentagon faces, or why it must
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have exactly 12 pentagon faces. Polyhedra, sometimes viewed by mathematicians merely
as pretty ornaments, rather than a rich source for study, are indispensable as models in
diverse fields. The idea of ball and stick polyhedra models to represent molecules gained
wide acceptance by the late nineteenth century. This modelling of chemical structure (the
balls representing atoms, the sticks the bonds between atoms) has been one of the most
productive ideas of modern chemistry. Tetrahedron is the name of an international
journal of organic chemistry, signifying the importance of the model which considers
carbm atoms to be situated at the centers of tetrahedra. Inorganic chemistry as well has
recently developed simple and successful polyhedral models; an international journal in
that discipline is named Polyhedron.

Some of the most exquisite polyhedra can be found in nature as crystals. But the inner
atomic structure of crystals is also highly geometric it is modeled by a vast lattice of
atoms which can be viewed as packed polyhedra, and has been the subject of intense
investigation in recent times by crystallographers, chemists, mathematicians and
physicists. In biology, polyhedra serve as useful models for the structure of viruses
which often (surprisingly) have icosahedral symmetry. The investigation of how
information is carried by viruses, and how viruses self-replicate has led to the study of
repeating patterns on polyhedra, and to questions on polyhedral packing. Soap bubble
froth has been used to study aggregates of polyhedra which model biological structures.
Difficult questions concerning pecking of spheres are of interest to those who model
chemical (atomic) structures and biological processes; these same studies have important
applications in algebraic coding theory.

Another active area of geometry research which has recently emerged involves dynamic
polyhedral models here investigators might attempt to model the growth of a rigid
plant stem through the division of packed polyhed.al cells, or model the functioning of
a robot mechanism. An extremely readable and well illustrated overview of the rich topic
of polyhedra history, properties, occurrences in nature and man-made design,
importance as a modelling device, activities, questions can be found in the book
Shaping Space.

Symmetry is a concept that encompasses very diverse fields; here geometry also plays a
central role. Symmetry is not only a powerful tool for creating or analysing beautiful
designs in the plane or space by means of Euclidean and affine transformations; it is also
a profound idea that gives an approach to understanding many of nature's structures and
processes. Recently there have been several conferences, articles, and books devoted to
symmetry and its many manifestations and applications. A large and varied collection of
articles on symmetry, by authors representing many disciplines and countries, is contained
in the collection Symmetry: Un(I)ing Human Understanding; a sequel volume has just
been published. A newly recognized 'type' of symmetry, that of "self-similarity", has
revealed not only beautiful graphic images of dynamic processes, but offers a new view
of forms and dynamic systems that were previously viewed as random or unpredictable
in shape or behaviour. (See, for example, [Gleick], [Msuldelbrot], [Barnsley].)
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Activity within the mathematical community

Two measures of the vitality of activity in a mathematical field are the output of research
articles and the number lectures, seminars and conferences devoted to the topic.

In recent years, the number of pages in Mathematical Reviews devoted to reviews of
articles on geometry has grown dramatically. Indeed, the category 51, simply titled
"Geometry", now has 14 subtitles (51A - 51N), and category 52, "Convex sets and
related geometric topics" has become a catchall for the large number of papers on
geometric topics for which a separate category has not yet been designated. (Differential
Geometry and Topology have their own category numbers.) This increase in publication
reflects not only a proliferation of articles, but also the establishment of several new
journals devoted primarily to research in geometry. In 1989 alone, two new journals,
Combinatorial Geometry and Symmetry were launched.

Two new areas of research activity in which the publication of papers has been especially
prolific are signalled by the titles of recently published books: Ming: and Patterns, and
Computational Geometry. Artisans of all cultures have designed decorative patterns and
geometric things, and many popular recreational problems concern filings of geometric
figures. Yet mathematicians B. Granbaum and G.C. Shephard found when they set out
to write a work on "visual geometry":

Perhaps our biggest surprise when we started collecting material for the present work was
that so little about filings and patterns is known. We thought, naively as it turned out,
that the two millennia of development of plane geometry would leave little room for new
ideas. Not only were we unable to find anywhere a meaningful definition of pattern, but
we also discovered that some of the most exciting developments in this area (such as the
phenomenon of aperiodicity Pr filings) are not more than twenty years old.

(p.vii, Tillage and Patterns)

Their book brings together the work of many who have investigated filings, sets out
definitions and classification schemes, and, most importantly, indicates many avenues for
further investigation.

The title "Computational Geometry" is simultaneously suggestive and ambiguous I
doubt that agreement could easily be reached on what it is and what it is not. The
authors Preparata and Shamos indicate in their introduction that several contexts have
been clothed with that title, but make clear that the essence of computational geometry
is the design of efficient algorithms (for computers) to solve geometric problems.
Classically, the restrictive tools of compass and straightedge and the algorithms of
Euclidean constructions were used to solve geometry problems. With Descartes and later
Gauss, algebraic and analytic tools could be employed to solve geometry problems, and
in addition, the question of what constructions were feasible could be discussed. Today's
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researchers may use computers as restrictive tools and so the problems as well as the
methods of solution must be recast:

One fundamental feature of this discipline is the realization that classical characterizations
of geometric objects are frequently not amenable to the design of efficient algorithms.
To obviate this inadequacy, it is necessary to identify the useful concepts and to establish
their properties which are conducive to efficient computations. In a nutshell,
computational geometry must reshape whenever necessary- -the classical discipline into
its computational incarnation. (p.6, Computational Geometry)

A few of the concerns are the development of new coordinate systems to encode
geometric information, the creation of very accurate data bases for geometric objects, and
the visual (screen) representation of geometric objects in 2, 3, and higher dimensions.
The emphasis on computation has even changed the way in which many geometry
questions are asked. Instead of asking "How many different types of polyhedra are there
with n vertices?, the researcher asks "How can the computer determine whether two
given polyhedra are of the same type? and "What is the complexity of the best algorithm
to do so?

Conference activity on geometry is decidedly on the upswing, with the participants
representing many areas of mathematics and other disciplines. Here are just a few special
conferences largely concerned with geometry held during 1984-8'7:

"Shaping Space", an interdisciplinary conference on polyhedra, Smith College, April 1984.
"International Congress on M.C. Esther*, Rome, April 1955.
"Eugene Stnos Memorial Conference on Recreational and Intuitive Mathematics", University of Calgary,

July 1986.
Special semester devoted to the Geometry of Rigid Structures, CRM, University of Montreal, January-May

1987.

"Computer-aided geometric reasoning", INRIA, Sophia Antipolis, France, June 1987
"SIAM Conference on Applied Geometry ", Albany, July 1987.

In the last two years, the number of such special conferences on geometric topics has
risen dramatically, and in addition, at the National MAA and AMS meetings the number
of lectures, minicourses, and special sessions reflects the growing interest and diversity
of research in geometry. Here is a list of items on the program of just one such meeting,
the AMS-MAA meeting held August 7-10 in Boulder, Colorado:

Colloquium Lectures:
Special Session:
Minicourees:

Invited Addresses:
Jean B. Taylor:
Progress in Mathematics Lecture:

"Geometry, Groups, and Self-Similar Things", William P. Thurston
"Mathematical Questions in Computational Geometry"
"Chaotic Dynamical Systems", Robert L Devaney
"Group Theory Through Art", Thomas Brylavnki
"The dynamics of billiards in polygons", Howard A. Maur
"Crystals, in equilibrium ar4 otherwise"
"Liquid Crystals", Haim Bret{



I.

37

The impact of technology

Perhaps the greatest single impetus to renewed activity in geometry has been the
availability and proliferation of technological tools. This has created a two-way
interaction involving geometric activity and technology.

On the one hand, the design and implementation of computers and other high-powered
research, design, and diagnostic tools require a high level of understanding oftraditional
geometry and the solution of many new geometric problems. For example,
computer-aided design (CAD) and manufacturing (CAM) (imaging and robotics),
communications (networks and coding), and diagnostic imaging (computer-aided scanning
devices) are areas in which geometry plays a central role. On the other hand,
technological tools can also be utilized to investigate and even prove geometric
statements. The ability to make and test conjectures in geometry (or any subject) is
greatly enhanced by looking at a large number of specific cases. Complicated geometric
forms can be shown rapidly in many aspects on a computer screen, changed and modified
effortlessly, and data recorded and compared. Plausible conjectures based on such
experimental data can be subjected to traditional methods of proof, or in some cases,
proved by computer programs. As high-powered "eyes", technological devices can
reveal the inner geometry of crystals, plant cells, viruses, and even chemical molecules,
making it possible to test the veracity of accepted models and provide challenging new
geometry problems to solve.

Titles of several of the sessions at the meetings held in France and in Albany in the
summer of 1987 (listed below) will indicate some of the areas in which there is strong
interest and active research:

'map processing; Surfaces; Mathematical Methods and Design
Packing and Tiling; Mesh Generation; Graphics; Computational Geometry; Robotics; Sohds;

Modelling for Manufacturing;
Automatic Theorem-proving; Computer-sided design; Applications to Rigidity of Structures;

Applications to Scene Analysis and
Polytopial Realization; Algebraic, Topological and Combinatorial Aids to Geometric Computation.

The availability and use of technology, especially microcomputers, has also begun to
affect the teaching of geometry at all levels. Exploratory activities with LOGO ("turtle
geometry"), computer-aided Euclidean constructions ("The Geometric Supposer", "The
Geometric Constructor', "Cabri") , and transformations using computer graphics can
enrich the teaching and learning of geometry in elementary and secondary school. To
construct a computer program which produces an image on a computer screen the first
task of computer graphics requires a good knowledge of geometry, and affords an
excellent opportunity to teach some traditional collegegeometry in a new light. A recent
text, Projective Geometry and its Applications to Computer Graphics, develops the
geometric machinery necessary to understand the representation and transformation of
geometric objects in order to produce a screen image. Along the way, the main theorems



of projective geometry are proved analytically. The strong purpose of the book linking
the subject to computer graphics makes a compelling case for learning the geometry. On
page 1, the authors make clear that a knowledge of Euclidean geometry is assumed:

The primary purpose of this Dint] chapter is to introduce projective geometry and discuss
it in relation to Euclidean geometry. The reasons for doing this are twofold. First,
Euclidean geometry is well-known and is a good foundation for the discussion of a*new"
geometry. Second, the geometry of real objects is Euclidean, while the geometry of
imaging an object is projective; hence the study of computer graphics naturally involves
both geometries.

Controversy

A subject can be declared moribund only when people cease to ask questions and never
challenge assumptions or methodology. Controversy is a certain measure of health in
research. We are accustomed to announccments of new theories, new interpretations, and
public squabbles among scientists as they seek to explain nature's phenomena revision
of old tenets, and even simultaneous acceptance of competing but equally convenient
theories is not unusual. But controversy in geometry? That has not happened since the
reluctant acceptance in the nineteenth century of non-euclidean geometries as consistent
systems apart from Euclidean geometry. In fact, perhaps more so than in any other
branch of mathematics, the view of geometry has been one of orthodoxy, ruled by the
views of F. Klein's Erlangen program, in which geometry is primarily the study of
invariants of transformation groups, or by the influence of 20th century seekers of
complete axiomatic systems, perfecting the original Euclid. The narrowness of these
confines is being challenged by many.

Among those most vocal is Grunbaum, whose provocative piece "The Emperor's New
Clothes: Full Regalia, G string, or Nothing? decries the arrogance of those
mathematicians who will only analyze geometric figures from the standpoint of symmetry
groups, and who declare decorative art as "wrong", or a "mistake" if it doesn't fit that
scheme. The plea is made to look for other ways to understand and analyse; to look to
the motives and methods of the creators of the works. As if to underscore this very
point, in the last couple of years scientists have seen nature mock the orthodox geometric
model of internal crystal structure, which postulates a periodic repetition of cells, and
hence forbids the occurrence of crystals with five-fold (pentagonal) symmetry. Yet
imaging technology has revealed that such "crystals" do exist, and now mathematicians,
physicists, and crystallographers are scrambling to try to explain how this can occur (see
[Steinhart] and [MO). Adding a bit of extra irony, these "quasicrystals" appear to have
lattice patterns related to aperiodic Wings discovered by Roger Penrose about which
the symmetry group theory gives absolutely no information, since no symmetry leaves
these patterns invariant. This incident also illustrates the fact that so-called "recreational"
mathematics (as Penrose's filings were viewed) is largely a matter of fashion now
researchers are making "serious" attempts at understanding aperiodic filings. (See
[Gardner] and [Ordribaum and Shephard, Chapter 10].)
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Open questions

By now it should be apparent that there are more unanswered than answered questions in
geometry even geometry in the Euclidean plane and Euclidean 3-space. It may seem,
from the applications and illustrations that I have given, that mostare extremely technical
in nature, and are difficult to formulate and understand, much less to solve. Of course,
many are, but many are deceptively simple to state, and point to how little we really do
know about the geometric structure of the space we inhabit. Many are amenable to
experimental investigation by students and amateurs they will yield (at least partially)
to patient enumeration, or to ingenious insight rather than to what may be inappropriate
and complex mathematical structure and theory.

The subject of packings and Wit-4s is rich with such unanswered questions. Many can
be found in ?flings and Patterns; I would lib to point out just a few which are easy to
state.

1. Describe all of the convex pentagons which ,an tile the plane.
Although congruent regular pentagons cannot tile the plane (fill it completely, without
gaps or overlaps), there are many pentagons which can be used as paving blocks to the
the plane. But the list of such pentagons has not been proved to be complete. The
problem was thong to have been solved by a mathematician in 1918, and again in 1968
by another mathematician, yet each was wrong. After Martin Gardner discussed the
problem in his Mathematical Games column in Scientific American in July 1975, several
new types of pentagon tiles were discovered by amateurs. In addition, in 1976, a high
school summer class in Australia discovered all but one type of equilateral pentagon that
tiles the plane. (See [Schattschneider: 1978, 1981, 1985].)

2. If a tile can fill the plane by half-turns only, must there exist a periodic tiling of
the plane by that tile?

Tiles that can fill the ff, ne in a periodic manner using only half-turns were characterized
by J. H. Conway; analysing and creating tiles using his criterion is an enjoyable exercise.
The question above, however, has not yet been answered. (See [Schattschneider, 1980].)

3. Does there exist a single tile that can fill the plane only aperiodically?
The first sets of aperiodic tiles (tiles that can fill the plane only with filings having no
translation symmetry) contained many differently shaped tiles; R. Penrose is credited with
discovering the first such set containing only two different shapes. Other sets of two tiles
which tile only aperiodically have since been discovered, but still a single the that does
so (or a proof that no such single tile can exist) has not been discovered. (See [Gardner],
[GrUnbaum and Shephard].).
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4. Which tetrahedra pack space?
Dissecting simple forms that pack space, such as boxes and prisms, into congruent
(non-regular) tetrahedra gives some answers to the question. But the list is far from
complete. (See [Senechall.) Related to this question is the more general one: For a
given n, describe all convex polyhedra having n faces which also pack space.

5. Is there an upper bound on the number of faces ofa convey polyhedron that packs
space?

It is known that no convex polygon having more than six sides can tile the plane.
Although it seems plausible to believe that there cannot be a convex pottedron which
has a great number of faces and also packs space, no one has yet proved it. Amazingly,
a convex polyhedron has been found that has 38 faces and packs space. (See panzer et
all (the answer to the qur:Aion posed in the title of that article has been shown to be
"no"); see also [Grunbedm and Shephardj.)

Conclusion

I hope that the evidence has convinced you that, indeed, the reports of the death of
geometry are greatly exaggerated the reporters have not kept abreast of the many
exciting developments which are contributing to its rebirth. The news needs to be spread

colleagues and students need to be made aware of the vitality of geometry.

What can teachers do to help bridge the gap between what is happening on the research
frontier and what is learned in the classroom? Osserman ended his address by offering
this advice:

We can initiate and revitalize courses in which students become familiar and comfortable
with geometric insights and methods. Perhaps most important and difficult of all is to
develop courses where the fragile but vital ability to invoke geoh-Atric intuition will be
fostered and nurtured. (R. Osserman, ICivIE IV, 1980)

References

I. A. Baglivo and J. E. Graver, (1983).Incidence and Symmetry in Design and
Architecture, Cambridge University Press, Cambridge.

Michael Barnsley, (1988). Fractals Everywhere, Academic Press, California.

W. Blackwell, (1984). Geometry in Aresitecture, John Wiley & Sons, New York.

Paul J. Campbell & Louise S. Grinstein, (ed.), (1988). Mathematics Education in
Secondary Schools and Thu -Year Colleges, A Sourcebook, Garland Publishing,
New York.

34



41

H.S.M. Coxeter, M. Emmer, R. Penrose and M. Teuber, (ed.), (1986). M.C.Escher:
Art and Science, North-Holland, Amsterdam.

D. Crowe and D. Washburn, (1988). Symmetries of Culture: Theory and Practice of
Plane Pattern Analysis, University of Washington Press.

L. Danzer, B. Grunbaum and G. C. Shephard, (1983). "Does Every Type of Polyhedron
Tile Three-Space?", Structurab Topology, 8, 3-14.

G. Fleck and M. Senechal, (ed.), (1987). Shaping Space, Birkhauser, Boston, 1987.

M. Gardner, (1977). "Extraordinary nonperiodic Wing that enriches the theory of tiles",
Mathematical Games, Scientific American, 236 (January 1977) 110-121.

P. C. Gasson, (1983). Geometry of Spatial Forms: Analysis, Synthesis, Concept
Formulation and Space Vision for CAD, Halsted Press, New York.

James Gleick, (1987). Chaos: Making a New Science, Viking Penguin, New York.

B. GrOnbaum, (1984). "The Emperor's New Clothes: Full Regalia, G string, or
Nothing?", The Mathematical Intelligencer, 6, 47-53.

B. Grunbaum and G. C. Shephard, (1986). Wings and Patterns, W.H. Freeman & Co.,
New York.

I. Hargittai, (ed.), (1986). Symmetry: Unifying Human Understanding, Pergamon Press,
New York.

M.D. Hirschhorn and D.C. Hunt, (1985). "Equilateral Convex Pentagons Which Tile
the Plane", Journal of Combinatorial Theory, ser. A, 39, 1-18.

M. Jaric, (ed.), (1989). Aperiodk Crystals (2 volumes), Academic Press.

D. Logothetti, (1980). "An interview with H.S.M. Coxeter, the King of Geometry",
Two -Year College Mathematics Journal, 11 (January 1980) 2-18.

B. Mandelbrot, (1982). The Fractal Geometry of Nature, W. H. Freeman, 1982.

National Council of Teachers of Mathematics, (1989). Curriculum and Evaluation
Standards.

M. Puma and R. Patterson, (1986). Projective Geometry and Its Applications to
Computer Graphics, Prentice Hall, Englewood Cliffs.

35



42

F. Preparata and M. Shamos, (1986). Computational Geometry, an Introduction,
Springer Verlag, New York.

D. Schattschneider, (1981). "In Praise of Amateurs", in The Mathematical Gardner, ed.
D. Khmer, Wadsworth, pp 140-166.

D. Schattschneider, "Tiling the Plane with Congruent Pentagons", Mathematics
Magazine, 51 (1978) 29-44. Also "A New Pentagon Tiler", Mathematics
Magazine, 58 (1985) 308.

D. Schattschneider, (1980). "Will it tile? Try the Conway Criterion! ", Mathematics
Magazine, 53, 224-233.

M. Senechal, (1981). "Which tetrahedra fill space?", Mathematics Magazine, 54,
227-243.

P.J. Steinhardt, (1986). "Quasicrystals", American Scientist, 74, 586-597.

The Two -Year College Mathematics Journal, 12 (September 1981) 226-246.

36



Working Group A

Using Computers for Investigative

with Elementary Teachers

Benoit Cede

University du Quebec a Montreal

Sandy Dawson

Simon Fraser University

37



45

Participants George Cathcart Claude Gaulin
Benoit Cote Thomas Kieran
Sandy Dawson

All three sessions were devoted to discussions around a LOGO-based software called "Les
deux tortues" presented by B. Cote and a set of mathematical activities that it allows.
Although the working group had been planned to focus on 'ising computers in the context
of elementary teacher training activities, we ended up spending most of our time looking
at the mathematical activities presented, and discussing the role of computers in
mathematical learning.

The system presented is the result of an effort to build a bridge between computer
activities with the LOGO turtle and middle school mathematics curriculum. It is
essentially based on two sets of ideas:

1. Construction and exploration:

Here the turtle is not used in the context of learning programming. A set of commands
are provided that are used in direr mode to produce effects. So we have construction
activities that deal with creating objects, usually geometric figures. The notion of
procedure is used as a tool to create a bridge between the concrete world of actions and
the symbolic level of descriptions of actions as sequences of instructions. The turtle
belongs to both wtzlds. It is a "real" object that we can identify with, that we can
simulate with our body or a paper clip. It is also a geometric object, a point that has an
orientation. Construction has to do with going from one level to the other by simulating
what needs to be done and describing our own actions in terms of instructions, or starting
with instructions and simulating them in order to understand why they do what they do.

Questions arise naturally in the context of construction activities. Is it possible to do...?
Are there other possibilities? What are all the possibilities? What will happen if...? Can
we make a prediction of what will happen if we use such a number, or change that
instruction...? The activity of formulating such questions and trying to generate an
answer is what we mean by exploration. Construction has to do with "doing".
Exploration has to do with "understanding". We have to explain or justify why
something is like this or why it is impossible. It is a world of induction and deduction,
where we try to establish what is true, what is false.

I
Thin prop' ct is funded through a research contract between UQAM and APO Quebec research
centre on uses of computers in education. 1161bne Kayla., Lise Paquin and Tamara Lemerise have
been involved in the first stage of the project.
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2. Working on paper:

Working with the turtle at the computer will often result in an "interactive" way of
functioning, where the student tries things until it works. This empirical mode of
functioning is an important aspect of concrete intelligence and is certainly present in the
mathematician's toolbox. But from the point of view of logico-mathematical
development, it has to be put under the control of a more "reflexive" mode that works
within explicit representations of problems with several kinds of reasoning. (These
modes correspond roughly to what Hi llel and Kieran (1987) call "visual" and
"analytical%)

So we need to set up situations where the interactive mode does not work and the student
has to switch to a reflexive mode. We also need to help students extract the mathematical
knowledge that is interwoven in their interactive functioning (what Vergnaud (1982) calls
"theorems in action"). The notion of turtle is actually a very powerful tool to build that
bridge, provided 1) that these activities are overtly identified as mathematical, and 2) that
the computer is used as an essential reference point but within a larger space that includes
some work on paper. Working on paper means that you have to set up a representation
of how the turtle works, that you can test afterwards with the computer. You can also
use the computer to gather information that you write down in order to analyse a
phenomena and try to understand it. It helps us keep in mind that the goal of all this is
to learn mathematics and not particularly to get a computer to work.

Based on these ideas, we have redefined the basic turtle commands in order to facilitate
work on square paper, with a metric ruler, protractor and compass. We have also added
a set of commands that allow exploration of specific topics like fractions, polygons,
integer operations, perimeter and area, motion geometry, variable ... Moreover, because
of the central role of the notion of turtle, it was important to shape the basic commands
in order to facilitate the understanding of its different aspects. So we ended up with twin
turtles, each with its basic commands and the possibility of working in a fraction or a
decimal mode.

The square turtle is a simplification of the LOGO turtle that evolves on a square grid.
It goes forward in terms of number of squares and turns a fourth of a turn, which allows
only four possible orientations. It can also move along any diagonal. The angular turtle
evolves on a blank plane. It goes forward in terms of centimetres and tuns in a fraction
of a turn that the user can set up. If we type TOURCOMPLET 360, the turtle turns in
degrees. If we type TOURCOMPLET 12, it turns in twelfth of a turn. So we can
simulate the square turtle on square paper and the angular turtle with a ruler and a
protractor.

The first session of the group was spent looking at the basic commands of the two turtles
and getting acquainted with the notions of construction and exploration in this context.
Much time was spent around an exploration activity related to the command CYCLE, that
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asks for a sequence of instructions and repeats it until either the turtle comes back to its
initial state (in which case it prints the number of repetitions) or it finds that it goes
indefinitely away from it (in which case it prints VERS

Using this command with the square turtle, we can ask what are the possible answers of
the machine and how we can predict them. It is an interesting problem in the sense that:

1) although an empirical approach can help find the possibilities (which are 1, 2, 4
and c ), it does not help to find out why they are the only ones ; one has to
identify what is the relevant factor and try to formulate a prediction rule;

2) one can develop a gradual understanding of the situation; that is, understand some
cases before formulating the general rule;

3) the general solution comes from breaking all possibilities into a few categories and
solving the problem for each of them. Although usually not obvious, the solution
is quite accessible to 5th and 6th grade children (and their teachers) since there are
only four possible orientations for the square turtle.

The second session was spent mainly discussing fractions and decimals. There are three
representations of fractions in the system: turn, length and ratio. The notion of fraction
is already involved in relationship with the command TOURCOMPLET. To understand
it, we can fold a paper circle to separate it into 8 or 12 equal pieces and use it as a
protractor. This makes the link with the traditional "pie or pizza" approach to fractions.
We can also type instructions like D (right) 1/3 DE TOUR, that work directly in terms
of fraction of a turn. In this context, no special distinction needs to be made between
fractions that are smaller or larger than unity. The group discussed different ways to
build the operations and some interesting situations like TOURCOMPL Zr 1/4.

We can also have fractions as lengths. One can make the square turtle move out of its
grid by going forward fractions of squares. Using the ruler with the angular turtle, one
comes naturally to want to express centimetres and millimetres, which is done with
decimal numbers. The command POTEAU helpscompare lengths and so create activities
where one goes from fractions to decimals and vice versa. The command FUSEE uses
a fraction to specify the path of a rocket. It is basically the slope interpretation where the
numerator is associated with the vertical component of a move and the denominator with
the horizontal one. This creates activities on equivalence and order that promote the
development of qualitative reasoning on fractions as ratios.

The discussion went around the notion of microworld. Is it a useful concept? Does it
cover almost any software that is not based on direct teaching? In this case, we can talk
about the system including several microworlds; that is, commands that create activities
around a well defined topic. We can also think of domains of knowledge, for instance
fractions, as microworlds. This is a way to see knowledge as a dynamic entity made out
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of a network of elements integrating formal and concrete aspects in a way that has to
function. From this point of view, each learner has to build his own network.

The last session started with trying to characterize construction as object formation and
exploration as relating variables. Although the activities with the two turtles start as
construction of figures, the notion of construction gets eventually a larger sense. In order
to build a figure, one has to choose the right command, with the appropriate number
(build an instruction), formulate a sequence of instructions (build a procedure). Through
the exploratio^ activities, one has to manipulate objects like numerical and algebraic
expressions, to build geometrical transformations like translation or rotation, to formulate
rules ...

Exploration activities are generally based on some classification of objects. We have a
set of commands or characteristics of commands, that can be put into categories, and a
set of results, that can also be put into categories. What needs to be done is to formulate
tly . 'tionship between variations in the command side and variations in the turtle side.
For c4.ample, we might ask what will happen if we tell the square turtle to turn of a
number larger than 4. All the possible turning instructions can be divided into four
c_c pries according to their end result and the question is which object (instruction)
belongs to which category (orientation). We have the same thing with CYrT ere on
one side we have procedures and on the other side number of repetitions ); with
FUSIE, where on one side we have fractions, and on the other side the same or different
paths, or above, below or equal to the middle path, or general ordering in terms of
steepness of slope. We could have on one side possible items of addition and subtraction
of integers (classified in terms of + + , and on the other side the
interpretation in terms of turtle move. Or we can have on one side the regular polygons
divided into normal and stars, and on the other side the sequences of instructions that
generate one or the other.

The session ended with a general discussion on a question raised throughout all workshop
by S. Dawson: do mathematical activities defined around computers induce a reduced
view of mathematics, in particular, and the real world in general?

Much debate throughout the three sessions focused on the supposed neutrality of the
computer, a question centrally addressed by C. A. Bowers in his recent book The cultural
dimensions of educational computing.

The question has to do with whether the technology is neutral: that is, neutral in terms
of accurately representing, at the level of the software program, the domaP a of the real
world in which people live. If the answer to this question is that it is not neutral, the
critically important question of bow the technology alters the lemming process must be
addressed." (Bowers, p. 24)

In particular, computers fostera digital, dichotomous, context-less, ultra rational form of
world view, which though extremely productive in many ways, is also at the foundation
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of many misunderstandings about the world. To paraphrase Gregory Bateson, if we
separate an object from its context we are likely to misunderstand it. Yet computer
educators perpetuate the view that the computer is culturally neutral, that it is simply a
'dumb' machine.

But this overlooks the fact that "...the classroom strengthens certain cultural orientations
by communicating them to the young and weakens others by not communicating them."
(Bowers, p.6)

Bowers goes on to say:

"By interpreting rationality, progress, and efficiency in terms of technological
achievements, this mind-set has developed the hubris that leads to viewing the ecological
crisir as requiring a further technological fix rather than the recognition that our most
fund Dental patterns of thinking may be faulty". (Bowers, p.8)

Much debate throughout the three sessions focused on the supposed neutrality of the
computer and of Logo.

The conclusion which Bowers draws, noted below, was hotly debated:

"Thus the machine that the student interacts with cuts out of the communication process
(the reduction phenomenon) tacit-heuristic forms of knowledge that underliecommonsense
experience. While the technology amplifies the sense of objeztivity, it reduces the
awareness that the da'7. represent an interpretation influenced by the conceptual categories
and perspective of the person who "collected" the data or information. The technology
also reduces the recognition that language, and thus the foundations of thought itself, is
metaphorical in nature. The binary logic that so strongly amplifies the sense of objective
facts and data-based thinking serves, at the same time, to reduce the importance of
meaning, ambiguity, and perspective. Finally, the sense of history, as well u the cultural
relativism of both the student's and the software writer's interpretative frameworks, is
also out of focus. Asa symbol-processing technology, the computer selects and amplifies
certain aspects of language... " (Bowers, pp 33-34)
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At Brock University, the Department of Mathematics and Statistics has established an
undergraduate computer laboratory as an instructional aid in teaching various
undergraduate mathematics courses, particularly introductory calculus courses. This
laboratory contains thirty Macintosh-SE desktop computers linked to an overhead video
display unit. Working Group B was able to take advantage of this facility for some hands
on experience.

During the first session, held in the laboratory, Eric Muller ofBrock University presented
a brief overview of the lab set-up and how it is utilized. The symbolic manipulation
program MAPLE, developed at the University of Wa'erloo, is the computer environment
in which sessions are conducted. Eric indicated that althoughMAPLE was not developed
primarily for educational use, it is being used by a number of universities in the teaching
of undergraduate mathematics. The availability of other software designed for specific
educational use was mentioned.

The first session continued with a demonstration of some of the capabilities of MAPLE
by Stan Devitt. Participants were given the opportunity to experience the considerable
power of MAPLE as a calculator. The ability of the system to carry out routine as well
as complex calculations was demonstrated. As a result, participants gained some
appreciation of the capabilities of MAPLE as an instructional aid and this resulted in a
discussion of some of the implications of this technology for teaching.

Stan Devitt indicated that the primary objective ofcurrent efforts to incorporate computer
algebra systems (CAS) such as MAPLE in undergraduate mathematics instruction is to
build an environment in which all so-called paper and pencil calculations can, with
appropriate commands, be carried out on a computer screen. He suggested that in order
to reach this objective, it will be necessary to design special routines so that students can
easily utilize the full power of the system. For example, special routines, perhaps fairly
advanced in nature, are necessary in order for students to realize the full potential of CAS
as an aid in problem solving in areas like Linear Algebra and Number Theory.
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Generally, during this session, participants had the opportunity to play around with the
system and become familiar with some of its capabilities and potential problems. Even
trivial problems such as how to change an expression after entering it were evident.

After coffee break, Stan Devitt gave a demonstration lesson using MAPLE. He indicated
how the software evolved and introduced some of the commands, such as those for
finding summations, evaluating definite integrals, and for performing numerical
integration using Simpson's and the Trapezoidal Rule. Also, the use of computer
graphics in estimating the area under a curve was demonstrated.

Towards the end of the session, several issues were raised by participants relative to
possible implications of this technology on the mathematics curriculum. In particular,
questions dealing with the evaluation of student learning and how to incorporate computer
algebra systems such as MAPLE in the mathematics curriculum were discussed. The
need to address such issues in a meaningful way was emphasized. The need to know
what has worked well to date in the use of CAS and the need to identify some of the
problems not just the advantages was emphasized.

Session 11

At the beginning of the second session, Stan Devitt provided the group with some
anecdotal experiences resulting from his own attempts to incorporate CAS in
undergraduate mathematics courses. He pointed out that even though CAS have been
around for some time, to date such programs have had very little evident impact on
undergraduate teaching. One of the first available CAS programs was MACSYMA,
developed at MIT and available on mainframes about 1980. MAPLE and other CAS
programs were subsequently developed in an attempt to reduce the large amounts of
computer memory that such programs require, and thus make the capabilities of CAS
available to a much wider audience.

In 1986, the Sloan Foundation provided funding to eight institutions to establish computer
laboratories using computer algebra systems. Included were the University of Waterloo
and the University of Saskatchewan, both of which are using MAPLE. Other institutions
are using different systems, such as Mu-Math at the University of Hawaii. These projects
are now underway and workbooks have been produced. In fact, participants of this
working group each received a copy of "Calculus Workbook; Problems and Solutions",
compiled by Stan Devitt for the project now underway at the University of Saskatchewan.

The collective experience of the institutions funded by Sloan was reviewed at a
conference held at Colby College in the summer of 1988. It was a disappointment to
some that several of the projects were just getting underway after the initial eighteen
month start-up period. Also, institutions reported varying experiences. For example, the
reaction of students using CAS was not as positive as expected. Some students reported
that they experienced more difficulty using CAS than with traditional instruction. On
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the other hand, most faculty members involved in these projects indicated that they would
not consider teaching undergraduate mathematics without using CAS. In summary then,
there appeared to be moderate disappointment with the extent to which progress had been
made in implementing C AS into the undergraduate mathematics curriculum of the
participating institutions, and some disappointment at the initial reaction of students
exposed to CAS in their courses.

By way of elaboration on the above, Stan Devitt explained that at the University of
Waterloo, where the MAPLE project has been underway for the past eight or nine years,
it is not generally being used by faculty members in their teaching. Also, students at the
University of Waterloo indicated that they were under a lot of pressure to get through
their assigned work and the use of C. ',..S meant additional work and material to cover.

At other universities, however, there was a more positive reaction. At Dennison, all
students enrolled in undergraduate mathematics courses receive instruction in a computer
laboratory environment. Also, at Brock University, all faculty members in the
Department of Mathematics are involved in computer labs. However, at the University
of Saskatchewan, with 30 members in the Department, only three members were
seriously investigating the potential of CAS.

One explanation for the apparent lack of interest on the part of some faculty members is
the fact that most are busy people and are not willing to invest large amounts of their
limited time unless there is some evidence that the result will be worthwhile. Clearly,
some faculty remain unconvinced that the result is worth the effort, and it is clear that
much more thought and effort will be required before CAS can become widely accepted.

The above summarizes some of the comments of Stan Devitt at the beginning of the
second session. Eric Muller then gave an overview of the Brock experience. He
indicated that the original objective was to develop over a three year period, computer
labs for all service courses offered in the Department. In the first year, VAX MAPLE
was used by 100 out of 110 students enrolled in such courses, with students meeting in
compulsory lab groups of 15. At the beginning of the second year, 30 Macintosh-SEs
were purchased and used in the laboratory, with approximately 600 students now using
CAS in the computer laboratory.

At the end of each year, a questionnaire was administered to participating students dealing
with their attitudes toward the use of CAS. There were some obvious difference:, in the
responses of the first group (1988) compared with those of the second group (1989). For
example, 47 percent of the students in 1988 rated CAS as a good learning aid while 16
percent rated it poor. In 1989, the corresponding percentages are 11 and 67. Similar
results were reported on such measures as confidence to do mathematics and enjoyment
of mathematics. The course in which these students were enrolled was a traditional
calculus course with applications.

f
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In attempting to explain such results, it has been suggested that "better" students perform
at a higher than normal level using CAS while weaker CAS students nerorm below
normal.

Eric Muller then described how the computer lab at Brock was set up. He reviewed some
of the practical considerations that received attention. For example, who is responsible
for each lab session and who should be present in the lab with the students? At Brock,
it was the practice to have one faculty member and one senior student (familiar with
MAPLE) associated with each lab session. Each week, students would receive prior to
the lab session a sheet of questions. A total of 29 lab sessions of one hour duration were
scheduled over the 40 hour period per week available with about 28 students per session.
There was a network server for each 10 machines in the lab (a total of 30 machines in the
lab).

It was evident that using CAS resulted in changes to the style of teaching. There were
more question and answer sessions than traditionally. However, in the lab setting, many
of the questions were of a technical nature having to do with how to use the system to
solve problems. There was open access to the terminal room during the semester and at
the beginning of the year some introductory sessions outside of class time were scheduled
to familiarize students with the systera.

It was also evident that students at Brock preferred using the Macintosh to the VAX.
However, one complaint, especially in multi-sectioned courses, was that some of the
weekly assignments could be completed without the use of the computer and hence
students did not see the need for the computer lab. This type of problem, however,
seems to be one that could be solved if all faculty members teaching a course could agree
on the nature of assigned work.

With respect to the attitudes of students using MAPLE relative to those of students in
sections of a course not using MAPLE, it was reported that at Saskatchewan the drop-out
rate in the MAPLE sections was higher. One explanation offered for this was that
MAPLE students were left on their own more so than the others and the consequent lack
of feedback when needed may have caused students to quit rather than persevere. In fact,
the reaction of students left in the lab on their own was often very negative.

Some participants, as a result of the above discussion, questioned what possible good was
resulting from this effort to incorporate CAS in the teaching of undergraduate
mathematics. Did the costs justify the results? Is the use of computer/calculator
technology being driven by a stick or a carrot? It was suggested that before many
questions could be answered, there was the need for research on the impact of the
technology in the classroom, and the only way to do this was via controlled experiments
rather than anecdotal reporting of experiences.

I
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Some of the drawbacks of the MAPLE system were mentioned. For example, the lack
of a good graphing package and the fact that the user interface is not one that is very
user-friendly. It was speculated that some of these problems would be addressed in future
developments of the program. For example, a menu driven interface would improve
matters considerably. One suggestion was that there could be developed an educational
version of MAPLE to complement the scientific version. This led to a discussion of the
pros and cons of MAPLE as opposed to a discussion of the pros and cons of symbolic
algebra systems in general.

Session III

At the beginning of the third session, the group convened once again in the computer
laboratory at Brock. Various reference materials were distributed. The session continued
with a typical in-class CAS demonstration by Stan Devitt on limits and continuity.

The Group then reconvened for a group discussion. Eric Muller described the nature of
an applied calculus course offered as a service course at Brock to non-math majors. A
brief outline of the course was presented: functions, special functions, limits, continuity,
differentiation, anti-differentiation, definite integrals, differential equations, probability
distributions, and partial differentiation. In response to a question, Eric indicated that
integration was not introduced as a limit of a sum, to which the question Why? was
posed. This line of discussion raised the following questions: When is CAS a tool to help
concept development? and When is it a toul just to compute? Where does one learn when
to use an algorithm? This resulted in some discussion about the type of student being
taught, that is math versus non-math students.

Perhaps the most interesting question posed was this: If the computer can draw pictures
and compute derivatives, etc., why would a student have to learn any of this? How do
we as mathematics educators deal with this question? Is there any attempt to try and
show students that there are things in mathematics that the computer cannot do? The
suggestion was that we need to give good examples to students that illustrate when it is
(a) stupid, (b) hopeless and (c) inappropriate to use the computer. Perhaps good
thoughtful examples to address the above questions would indicate to students why theory
is so important in mathematics.

The end result of this question was: How do we teach intelligent uses of the computer?
and Why is it important that we teach intelligent uses of the computer? The point was
made that certainly the domain of computation in college courses is different than in the
past or at least it should be. The discussion ended with some comments on potential
dangers of using CAS in the teaching of undergraduate mathematics or a least a
realization that if used inappropriately, certain undesirable outcomes may result. Again,
the issue of the apparent negative attitudes of those students whom, we might assume,
stand to benefit most from using CAS was raised. Also, the need for extra time perhaps
to use CAS effectively.

I.
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In summary then, a synopsis of the activities of Working Group B is as follows:

1. A discussion of a philosophy of teaching mathematics using Computer Algebra
Systems.

2. An overview of CAS in general, providing an awareness of the current state of the
art and what efforts are underway to integrate CAS into the teaching of
undergraduate mathematics.

3. An opportunity to experience in a laboratory setting how CAS can be used in a
teaching situation with an actual demonstration of a lesson in introductory
calculus.

4. An opportunity to become familiar with a Calculus Workbook incorporating CAS,
produced at the University of Waterloo.

5. An overview of several projects at other universities that have been initiated since
1986 with the assistance of grants from the Sloan Foundation.

6. An overview of the Brock University experience of using CAS in the teaching of
undergraduate calculus courses.

7. An indication of some of the problems associated with the implementation of CAS
in undergraduate teaching, including the attitudes of students and faculty.

8. A look at what is likely to happen in the future. For example, the conclusion that
the implementation of CAS requires a great deal of effort and planning for little
evident initial payoff.

9. The opportunity to obtain a number of articles on CAS for retention and further
use.

In conclusion, it is obvious that Working Group B accomplished much in a short time.
However, it is also clear that as many questions were raised as were answered. It seems
that before we can integrate CAS generally into the teaching of undergraduate
mathematics, there is a need for much more thought, discussion, and investigation. There
is no doubt that the availability of CAS has the potential to change dramatically how we
teach and what we teach. It has the potential to remove much of what we might call the
drudgery of elementary mathematics. However, care must be taken in the design of CAS
based curricula that we do not replace one form of drudgery with another form that may
be perceived by students to be equally distasteful.

49



59

There was a clear indication that CAS has a great deal of potential but at the same time
that it can never be used to teach some of the fundamental understandings that are
required of one whom we might classify as a mathematically literate person. Perhaps one
of the important benefits of using CAS in undergraduate teaching is to make available to
instructors more time to concentrate on some of the essential ideas and concepts of
mathematics than is available at present.

The need for the development of good research in this wirile area was also evident.
Controlled experiments on the effects of CAS on mathematics learning and retention
seems to be called for before we jump on any bandwagon. The need for major
curriculum reform efforts appear warranted and perhaps this should happen in any event.
The past practice of permitting textbook writers to essentially determine the curriculum
in calculus and other undergraduate mathematics courses, need not continue. It is
possible with desktop publishing and sophisticated word and text processing capabilities
for individual departments to produce their own curriculum materials and not depend on
increasingly expensive and perhaps inadequate commercially produced textbooks.

In summary, this session proved to be interesting, informative and timely. Special thanks
go to Stan Devitt for sharing his considerable experience with the group and to Eric
Muller for superb local arrangements at Brock University, including of course, the use
of the computer lab which made the session more than a speculative discussion group.
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Science begins with the world we have to live in ... From there, it moves towards the
imagination: it becomes a mental construct, a model of a possible way of interpreting
experience. The further it goes in this direction, the more it tends to speak the language
of mathematics, which is really one of the languages of the imagination, along with
literature and music.

(Northrop Frye, The Educated Imagination)

The descriptive advertisement for the three sessions went as follows.

The group will examine aspects of communicative and other functions of
language used in the service of mathematics and mathematicians. It will
have a partly historical, partly linguistic and partly mathematical focus,
exploring some of the means by which mathematical ideas are expressed
and ways by which neophytes are encouraged to increase their command
of the mathematics register.

Further possible topics for discussion include the notions of metaphor and
metonymy and their uses in mathematics as means for the creative
extension of the expressive potential of language for the invention and
control of mathematical notions.

I started the first session ', tttempting to share some of my current worries and concerns
with the rest of the group. The first was the myth of learning by experience and the
relation of language to that experience (see Pimm, 1986, in reply to Liebeck, 1986): in
particular, the passive role often attributed to language in merely describing or
representing experience, rather than being either a constituent component of the
experience or the experience itself.

The second was an over-narrow conception of meaning in mathematics in terms of
reference rather than connections in both form and content, and meaning in this restricted
sense being claimed to be the most important, indeed only goal of mathematics teaching.
In England, at least, an increasingly common dogma is if in doubt at any stage in
anything mathematical, then told to go back to the 'meaning' (often the concrete) from
which everything is presumed to stem. Valerie Walkerdine (1988) has recently drawn

52



64

attention to the implausibility of such an account in the case of the teaching of place
value. She offers a much more telling if complex account, one that intimately implicates
the teacher's language and positioning within classroom activity. "Signifiers do not cover
fixed 'meanings' any more than objects have only one set of physical properties or
function" (Walkerdine, op cit., p. 30).

In an article entitled On Notation, Dick Tahta has claimed (1985, p. 49) that:

We do not pay enough attention to the actual techniques involved in helping people gain
facility in the handling of mathematical symbols. ... In some contexts, what is required
- eventually - is a fluency with mathematical symbols that is independent of any awareness
of current 'external' meaning. In linguistic jargon, 'signifiers' can sometimes gainmore
meaning from their connectim with other signifiers than from what is being signified.

Linguists have called the movement 'along the chain of signifier? metonymic whereas 'the
descent to the signified' is metaphoric.

The third concern I mentioned was one recently raised by Tahta (at the 1989 ATM Easter
conference) of the current trend towards only stressing how we (or pupils) differ from one
another, rather than what we have in common. How can we endeavour to develop ways
of working together in relation to the learnirg of mathematics? One particular fear Tahta
expressed was of the loss of consensus and commonality as a result of overemphasis on
individual differences, with resulting isolation and lack of community. (I'm sure you will
appreciate the political background of these concerns - in particular, following a decade
of Thatcherism and the attempted wholesale destruction of collectivism at any level,
whether inside education or outside it.)

Spoken language is one of the things that we share in common to a marked extent. It
is socially acquired by considerable individual effort and little overt teaching. Language
exists as a cultural repository, but also as a magnificent resource into which we can tap.
A language both reflects and shapes the conceptual framework of its users. We can ask
how thought is constituted in terms of and in relation to a system of signs, which by
definition are social.

One way of describing the relation between mathematics and a natural language such as
English is in terms of the linguistic notion of register. Linguist Michael Halliday (1975,
p. 65, my emphasis) specifies this notion as 'a set of meanings that is appropriate to a
particular ,unction of language, together with the words and structures which express
these meanings'. One function to which a language can be put is the expression of
mathematical ideas and meanings, and to that end a mathematical register will develop.

Thus, while providing pupils with opportunities to gain access to the resources implicit
in natural language can be seen as a common aim of all teachers (one interpretation of the
'language across the curriculum' idea), a particular aim of teachers of mathematics should
be to provide their pupils with some means of making use of the mathematics register for
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their own purposes. To that end, a mathematics teacher needs knowledge about the
language forms and structures that comprise aspects of that register. Part of learning
mathematics is gaining control over the mathematics register so as to be able to talk like,
and more subtly, to mean like a mathematician.

For these sessions, we were mostly in the realm of the signifier, and tried to explore to
what extent signifiers can be used relatively autonomously from the signified they are
taken to represent. In the second session, we worked on two classroom excerpts on
videotape: Anne Tyson with a class on base five arithmetic and Irene Jones with a class
working on a geometric poster (both from the Open University videotape PM644
Secondary Mathematics: Classroom Practice). In both cases, the pupils and adults were
clearly engaged in a discussion but about what? Where were the referents for what they
were discussing to what is the language pointing?

There are a number of different characteristics and functions of spoken and written
language. One use of written language is to externalise thought in a relatively stable and
permanent form, so it may be reflected upon by the writer, as well as providing access
to it for others. One characteristic of written language is the need for it to be
self-contained and able to stand on its own, with all the references internal to the
formulation, unlike spoken language which can be employed to communicate successfully
when full of 'thises', 'its' and 'over theres' due to other factors in the communicative
situation.

One difficulty facing all teachers is how to
encourage movement in their pupils from
the predominantly informal spoken
language with which they are all pretty
fluent (see Brown, 1982), to the formal
written language that is frequently
perceived to be the hallmark of
mathematical activity. There seem to me
to be two ways that can be tried. The first
(and I think far more common) is to
encourage pupils to write down their
informal utterances and then work on
making the written language more
self-sufficient (Route A in the diagram), for
example by use of brackets and other written devices to convey similar information to that
which is conveyed orally by stress or intonation.

1 Informal noore formal
spoken spokon
knIMIP lingual.

e

thiernal A
wrItlen
ImOulle

formal
written

larculles

A second route to greater control over the formal written mathematic -1 language (shown
as B in the diagram) might be to work on the formality and self-sufficiency of Cat spoken
language prior to its being written down. In order for this to be feasible, constraints need
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to be made on the communicative situation in order to remove those features that allow
spoken language to be merely one part of the communication.

Such situations often have some of the attributes of a game, and provided the pupils take
on the proposed activity as worthy of engaging with, then those pupils have the possibility
of rehearsing more formal spoken language skills. One such scenario is described by
Jaworski (1985), where the focus of mathematical attention is a complex geometric poster.
Pupils are invited to come and out and 'say what they have seen' to the rest of the class,
under the constraints of 'no pointing and no touching'. These help to focus the challenge
onto the language being used to 'point' at the picture. The situation is an artificial one:
in 'real' life, one can often point and this is completely adequate for effective
communication. However, if the artificiality is accepted by the pupils, natural learning
can take place that would otherwise not have been so readily available. There is an
interesting paradox here, one of how quite artificial teaching can give rise to natural
learning under certain circumstances.

lecond instance of such an approach comes from the contexts of 'investigations', when
pupils are invited to report back to the class what they hive done and tound out. Because
of the more formal nature of the language situation (particularly if rehearsal is
encouraged), this can lead to more formal, 'public' speech and stractued reflection on
the language to be used. Thus, the demands of the situation alter the requirements of the
language to be used. Reporting back can place some quite sophisticated linguistic
demands on the pupils in teems of communicative competence - that is, knowing how to
use language to communicate in certain circumstances: here, it includes how to choose
what to say, taking into account what you know and what you believe your audience
knows. A further example of these demands at work can be seen in the study by
Balacheff (1988) on thirteen- year-old pupils' notions of proof, where he asked them in
pairs to write down their claims about a mathematical situation to tell another pair what
they had found out. By providing them with some plausible justification for them writing
a message, he was able to gain access to their proficiency in this matter.

Educational linguist Michael Stubbs writes (1980, p. 115): "A general principle in
teaching any kind of communicative competence, spoken or written, is that the speaking,
listening, writing or reading should have some genuine communicative purpose". Pupils
learning mathematics in school in part are attempting to acquire communicative
competence in the mathematics register, and classroom activities can be usefully examined
from this perspective in order to see what opportunities they are offerint4 pupils for
learning. Teachers cannot make pupils learn - at best, they can provide well-thought out
situations which provide opportunities for pupils to engage with mathematical ideas and
language.

For the third session, a couple of dynamic mental geometry activities were offered (see
Beeney et al., 1982, for further school examples), 'ncluding the pole/polar construction
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between a point outside a circle and the two tangents to the circle passing through it.
What happens when the point moves inside the circle?

In conclusion, the following quotation from the Second World Conference on Islamic
Education (1980) was offered, which was their justification for the compulsory teaching
of mathematics in school.

The objective (of teaching mathematics] is to make the students implicitly able to
formulate and understand abstractions and be steeped in the area of symbols. It is good
training for the mind, so that they [students] may move from the concrete to the abstract,
from sense experiee :e to ideation, and from matter-of-factness to symbolisation. It makes
them prepare for a much better understanding of how the Universe, which appears to be
concrete and matter-of-fact, is actually ayatvilah: signs of God - a symbol of reality.

Items which stood out for me during the discussion

A discussion of Helen Keller and her realisation by means of associating the running of
water over one hand with a pattern being repeated tapped into her other of the possibility
of symbolisation (the juxtaposition being essential in the creation of a sign - and the
notion of sign itself) and her subsequent rapid 'linguistic' progress by demanding the
symbols for many objects or phenomena. Valerie Walkerdine, in The Mastt. of Reason,
asks a fundamental question which has particular salience for mathematics teaching:
"How do children come to read the myriad of arbitrary signifies - the words, gestures,
objects, etc. - with which they are surrounded, such that their arbitrariness is banished
and they appear to have the meaning that is conventional?" This called to mind how we
tend to project our understanding onto the symbols which can then trigger those meanings
subsequently. We read the meanings into the symbols, and yet the projection can be so
strong that we forget that the external manifestation is only the signifier and not the sign.

Being aware of structure is one part of being a mathematician. Algebraic manipulation
can allow some new property to be apprehended that was not 'visible' before - the
transformation was not made on the meaning, but only on the symbols - and that can be
very powerful. "The sign represents an unthinkable non-thing. And yet it can be
used very well in finding theorems." Johann Lambert, in a letter to Immanuel Kant.

Where are we to look for meaning? Self-reference is reference. Mathematics is at least
as much in the relationships as in the objects, but we tend to see (and look for) the
objects. Relationships are invisible objects to visualise. Caleb Gattegno, writing in
book The Generation of Wealth (p. 139), claimed:

My studies indicate that "mathematization" is a special awareness, an awareness of the
dynamics of relationships. To act as a mathematician, in other words, is always to be
aware of certain dynamics present in the relationships being contemplated. (It is precisely
because the essence of mathematics is relationships that mathematics is suitable to express
many sciences.) Thus, it is the task of education in mathematics to help students reach
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the awareness that they can be aware of relationships and their dynamics. In geometry,
the focus is on the relationships and dynamics of images; in algebra, on dynamics per se.

Mathematics has a problem with reference so it tends to reify its discourse in order to
meet the naive desire for reference. The questions 'What is length?', 'What is
meaning?', 'What is the number one ?', etc. produce in us a mental cramp. We feel that
we can't point to anything in reply to them and yet ought to point to something. (We are
up against one of the great sources of philosophical bewilderment: a substantive makes
us look for a thing that corresponds to it.)" Ludwig Wittgenstein, The Blue and Brown
Books.

'I can count faster than I can skip.'

There is an important difference between wanting to follow and having to follow the
teacher. What is the teacher's role and respo..sibilities in attempting to create meaning
for her students? Is it a pretence for the teacher not to be an authority? Who is the
custodian of truth in a mathematics classroom?

Finally, two quotations about symbols:

Civilisation advances by extending the number of important operations we can perform
without thinking about them.

(Alfred Whitehead, Science in the Modern World)

Underlying the notations of mathematics there are verbal components; so the mastery of
the spoken language means that it is possible to base mathematics on language.

(Caleb Gattegno, The Awareness of Mathematization)
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The report contains four parts and three appendices:
A) A summary of the discussions (C. Janvier and R. Borasi)
B) Crucial questions raised (R. Borasi)
C) Short descriptions of some presentations (R. Borasi)
D) A bibliography collected by Claude Janvier, annotations for 3 provided by R. B.

Appendix A, B and C

A) Summary of the Discussions

Our discussions on conceptions had taken place in a constructivist theory perspective: a
theory in which individuals art actively involved when learning. Activity is two-fold: the
individual decides to enter into the process of learning and he/she has to integrate into
his/her past knowledge the new elements making the resulting knowledge a personal
construct. Conceptions are important to consider in mathematics instruction because they
influence such mental activities.

The discussions have shown that we could distinguish (for each individual) cognitive
conceptions from belief systems. Cognitive conceptions could be considered as
elements triggering the action in mathematics reasoning beyond or underneath a set of
mathematical concepts. Belief systems can be regarded as a set of judgments that control
the action of the individual in the sense that they determine his/her willingness to engage,
to remain engaged and define ways of engaging (continuity, multiplication, circle...).

Note: Even though such a distinction was discussed and commented upon, belief systems
and cognitive conceptions are not always distinguished in the summary. Firstly, the
group has not analysed and described their difference. Secondly, it appeared all along the
discussions that, most surprisingly, participants could argue "heir points and agree having
in mind one concept or the other. We note then that the term conception is general
enough so as it can convey the idea of beliefs.

Among the belief systems, it has seemed relevant to distinguish:
the one about the self
the one about mathematics
the one about school
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Combinations of these such as those listed below are important:
self and mathematics,
mathematics in a school setting
school and self,
self and school mathematics.

In the group discussions, we have further enriched the following points: the beliefs about
the self and the ones about mathematics (interpreted as of what mathematics is and what
doing math is), the ones about school (its implicit role). We have also discussed about
the self and mathematics (personal judgments and contrasting them in math and other
disciplines), mathematics in a school setting, school and self (general history of success
or failures in the regular school program and the expectations derived), self and school
mathematics (specific success or failures in mathematics and the expectations derived).

It was proposed to consider conceptions as mental constructs induced by the observers
(self-observation included) on the basis on specific behaviour (action and discourse) on
the part of the subject. As a result, it is no easy matter to identify and describe a
conception. It is important to distinguish between the individual conceptions and the
more general categories that can link several individual conceptions. The latter are more
abstract in nature. For instance, mathematics viewed as a set of rules to obey may be
concretized differently in each individual. Equally of importance is the fact that
conceptions are difficult to imagine without a theory that organizes the observations made
with or on a specific individual.

Conceptions in the teacher-student relations

During the group discussions, it became clear that when considering conceptions relevant
to mathematics education, teachers conceptions, students conceptions and the relations
between these two categories should be considered.

The following three paragraphs are a personal version of the exchanges of ideas. (C.J.)

It has been suggested that when we envisage the teaching-learning relations between the
teachers and the students, we must consider STUDENT COGNITIVE CONCEPTION
(SCC) and STUDENT BELIEF SYSTEMS (SBS) not only per se but also as they are
an integral part of the TEACHER BELIEF SYSTEM (TBS).

It could be interesting to denote the teacher's version of SCC and SBS as SCC' and
SBS'. This part of the TEACHER BELIEF SYSTEM also controls the action of the
teacher as he/she interacts with students in classroom situations.
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If the cilange of TBS becomes a concern, then one must minimally consider in addition
a new wriable the TEACHERS TRAINERS BELIEF SYSTEMS. Note the importance
o F this rew category.

Are them right or wrong conceptions? Changing them!

The dichotomy right or wrong appears to be incorrect. In fact, the word functional
describes more clearly what an appropriate conception is since one can evaluate a
conception only in relation with the effect it has in achieving a set purpose. The essential
factor is the fact that no value should be attached to a conception in absolute terms.

For example, if we take conceptions about what mathematics is, there should be some
room for an informal kind of mathematics that would be distinguishable from "official
mathematics". The idea becomes much more to focus our attentions on the mathematics
activities such as reasoning, generalizing, formulating hypotheses... If one imagines that
official mathenztics results from an understanding between mathematicians, mathematics
educators and mathematics teachers, one needs that informal mathematics by accepted as
valuable by learners. This is partly what has to be changed.

If conceptions need to be changed, it must not be forgotten that teachers and students
stay actors within the school framework constituting a system. And it is clear that
taking into account the students' belief systems in the organisation of mathematics
teaching would have to produce results within the actual school system. Perhaps,
assessment in schools should be adjusted.

Changing the students' conceptions required that first of all they become known to the
teachers or the researchers. How can we determine conceptions? More, from the actions
then from the dialogue? But anyhow, how much do we need to know about students'
specific and individual conceptions since similar past experiences will produce similar
conceptions?

Should the students become aware of their own conceptions as a starting point for
changing them? In the process of change in students' conceptions, should the teacher
expect specific conceptions as goals? Should he/she consider replacement or adding
something stronger? It would mean a certain discontinuity among conceptions: one being
underivable from the others.

At any rate, the working group has agreed that conceptions cannot be directly taught, but
rather developed or formed (implicitly or explicitly) in the individuals on the basis of
experiences. Individuals are partially aware of their conceptions in the sense that they
can only make a partial explicit account of them when solicited.

Acting on the conceptions cannot be achieved without taking into account the ways they
develop. As a consequence, we cannot hope to change conceptions only by talking
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people into them or by teaching them directly. Individuals must be confronted with
relevant or meaningful experiences.

It means that changing a belief system consists perhaps in introducing the seed for a new
conception to emerge and that, as a result, the subject will be faced with a multiplicity
of conceptions "available". This will imply on the part of the subject some abilities to
discriminate and choose how and when to resort to them. Then the notion of context
awareness appears to be of prime importance.

During the last sessions , we turn to the questions asked in the description of the
working group work appearing in the announcement.

Difficulties involved in research and otherwise

Finding out a belief or a conception in children is time consuming and many teachers are
not willing to envisage that it can be worthwhile. On the other hand, as we have said
previously conceptions belong to a theory that is the mental framework enabling the
researcher and the teacher to detect them. Many have claimed that the presence of a
particular conception cannot be assessed if one has not been prepared mentally to notice
it and, even then, the fact that a conception is effectively active remains a hypothesis.

Moreover, it is never sure whether a conception does belong to a more general conceptual
system, a fact that would be more important for its pedagogical consequences. Also,
conceptions are constantly changing and what can be really observed is not the presence
of a conception but mainly the movement of conceptions, and the sudden action of one
particular conception while the others are likely to be activated but not in action at a
particular moment. In fact, we are back to the notion of an efficient model which
requires the recourse to an appropriate conception among others.

The formulation or discovery of new conceptions by researchers does not seem to bring
about unanimity in the group. On the one hand, some members of the group believe that
the formulation of prior hypotheses and the relationships discovered between the
previously analysed variables will lead necessarily to the conceptions that ate involved
in the more or less explicit a priori analysis. Others took more optimistic stands. Even
though they agree that there is a discontinuity between the previously selected variables
and the new variables, some people are able to reach the level of creativity needed for
the discovery of a conception.

Are the conceptions personal or do they belong to a category of students?
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Changing them

The conflict seems to be the "natural" technique. It involves that the teacher should
introduce some facts or events that will clash with or contradict the conception held by
the student(s). This method clearly depends on the capacity of the student(s) to be
receptive to contradiction. Several examples were provided of students supporting
contradictory positions. For instance, a few cases were reported of students believing that
a specific fact r.ould be false in arithmetic and true in algebra. In other words,
mathematics for many is governed by a "special" logic (or by an absence of logic) which
makes the contradiction that the teacher can see or appreciate strictly out of reach of the
children.

As far as changing the conceptions is concerned, the "necessary but not sufficient reason"
principle was very often mentioned. This was the case for having the students talk about
the contradicting fact which is often either neglected or accepted with special sorts of
reasoning. This was also the case for the reflection made possible via the use a daily
journal. Even the list of key words that are slowly arrived at does not guarantee that the
contradiction will be assumed. It is clear that the process requires two phases or stages:
first the actions (and done meaningfully) and then the rejection often helped by the
contradiction.

Reflection leads to awareness and then the chances that they will use their will to do it is
magnified. One needs a motivation to deal with the contradiction. One often accepts
things as they are and one doesn't mind since changing would be too costly for several
reasons. In fact, there are always many things any individual doesn't understand.
Consequently, there is nothing surprising in the fact that the contradiction is not the
powerful tool to resolve issues as we would like it to be.

The interviews can be nice (a fruitful and efficient tool) because the students observe
themselves. The actions during interviews are more meaningful and some participants
think that the contradictions are thus more efficiently made explicit. However, it is not
easy for the teachers to make the right moves and conduct interviews adroitly.

As far as the research goes, the word constraint is more appropriate in the circumstances
than the vocable difficulty because it reflects the fact that there will always be a limit to
the apacity of any research tool. consequently, one should try to use a research
approach that will maximize the outcomes in view to the objectives that are far from
being unique.

Personal conclusions (C.J.)

The whole session was a real challenge and very fruitful. It is easily noticeable that the
questions specific to research issues were less debated than the more fundamental
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problems. Thanks to the contributions of everyone, great steps were made in the
understanding of the intricate network of conceptions of the many actors in the system.

B) Crucial Questions Raised in the Discussions (R. Borasi)

The questions/issues raised seem to cluster around three fundamental
themes/topics:

(a) Determining and studying conceptions
(Whether they are teachers' conceptions or students' conceptions):

How are conceptions determined:
through verbal reports of the subject?
through observation and interpretation of the subject's action?
what combination of the two?

How can we take into account the researcher's frame in "interpreting"
conceptions?

How much do you need to know about specific students' conceptions? (Yet at the
same time we may want to be aware of the motivational value that a teacher's
research on his/her students' conceptions may have, independent of results, just
because it shows the students that the teacher cares for them).

Connection between "getting at" conceptions and "acting on them" (can we really
do one and not the other?).

(b) Studying how conceptions are developed
(mainly for students)

How does (past) teaching influence the development of certain conceptions?

Are there crucial times/events/contents which can affect students' conceptions?

(c) "Changing" conceptions

Can we talk of right/wrong conceptions? (or rather: dysfunctional? unrealistic?
inappropriate?). Thus, can we really talk of "changing" conceptions?

How can we "change" conceptions?

How can we assess a change of conception?
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C) Short Descriptions of Some Presentations (R. Borasi)

About teachers and students' conceptions:

J. Bergeron, N. Herscovics and J. Dionne:
Description of a course for in-service teachers, consisting essentially of a
re-examination of basic math concepts (such as NUMBER) and geared at changing
the teachers' conceptions of maths and teaching mathematics.

(Research strategies used to assess change in teachers' conceptions (JD):
triangulation of:

(a) how the teacher graded (and justified) a set of students math tests
(b) questionnaire, asking teacher to rank and assign a weight, to the three views of

mathematics: traditional (stress: algorithms); formalistic (stress: rigour);
constructivist (stress: process)

(c) individual interview, also discussing previous tasks)

S. Brown and T. Cooney (reported by R. Borasi):
In-depth study of 4 math teachers' belief systems (of math, teaching, teaching
math, etc).
(Research strategies: classroom observations + ethnographic interviews, initiated
through the teacher's discussion of several "episodes", transcribed; the teacher
read the transcript and marked significant statements, and later categorized and
labelled those).

Erika Kuendinger:
Study on teachers' conceptions of themselves as math teachers.
(Research strategies: combination of:
(a)learning history of the teacher (w.r.t. math)
(b)questionnaire
(c)classroom observations (to validate responses on questionnaire))

Linda Davenport:
An intervention study for students, but also addressing the necessity of dealing
with the teachers' conceptions at the same time.
(Research strategies:
FOR STUDENTS: an open-ended math test and interviews addressing essentially
their conception of specific math concepts ex: asking to explain and draw what
1/2 means.
FOR TEACHERS: questionnaire (by P. Ernest see excerpt in Appendix A)
addressing explicitly the teachers' conceptions of mathematics, learning math.,
teaching math and self w.r.t. math).
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Arthur Powell:
Using writing (more specifically, dialogue journals) to help students' learning of
mathematics (including a movement towards less dysfunctional conceptions of
math.).
(Research strategies:
Analysis of what the students write (guided by questions, see Appendix B).
NOTE: to help the students being more reflective and perAnal in their writing
they had:
*a peer and the teacher responding to their journal
a list of "processes involved in thinking mathematically" (see AppendixAC) they
were supposed to refer to).

D) Bibliography

Aiken, L. (1970). Attitudes toward Mathematics. Review of Educational Research,
40(4), 551-596.

Bautier, E., & Robert, E. (1988). "Reflexions sur le riffle des representations
metacognitives dans l'apprentissage des mathematiques". Revue francaise de
pedagogie, 84, 13-20.

Bem, D. J. (1970). Bell*, attitudes, and human affairs. Belmont, California:
Brooks/Cole.

Brown, S. I., & Cooney, T. (1985). Stalking the Dualism between Theory and
Practice (Proceedings of...).
Discussion of goals and methodology of their study of 4 math. teachers' beliefs systems.

Buerk, D. (1982) DISSERTATION (SUNY/Buffalo).
Study of 6 math. avoidant adult women changing their conception of math. as a result of a series
of non-traditional math. activities. Among the strategies used to assess conceptions: writing of
metaphor, math.-autobiography, a journalinterviews.

Cooney, T. (1987). "Espoused beliefs and beliefs in practice: The cases of Fred and
Janice". In Jacques C. Bergeron, Nicolas Herscovics & Carolyn Kieian (ed.),
Proceedings of the I lth Annual Coherence of the International Group for the
Psychology of Mathematics Education, PME-Xl. July. Montreal. 162-169.

Dionne, J. (1987). "School teachers' perception of mathematics and mathematics
teaching and learning: twelve case studies". In Jacques C. Bergeron, Nicolas
Herscovics & Carolyn Kieran (ed.), Proceedings of the 11th Annual Conference
of the International Group for the Psychology of Mathematics Education, PME-Xl.
July, Montreal, 84-92.

67



81

DiSessa, A. (1983). Phenomenology and evolution of intuition. In D. Gentner & A.L.
Stevens (ed.), Mental Models. Hillsdale, NJ: L.E.A., 15-34.

Eisenhart, M., Shrum, J., Harding, J., & Cuthbert, A. (1988). "Teacher beliefs:
Definitions, findings, and directions". Educational Policy, 2(1), 51-70.

Ernest, P. (1988). "The impact of beliefs on the teaching of mathematics". In C. Keitel,
P. Damerow, A. Bishop & P. Gerdes (ed.), Matheniatics, Education, and Society.
Science and Technology Education, Document Series no 35. Paris: UNESCO,
99-101

Gerace, W. J., & Mestre, J. P. (1982). A Study of the Cognitive Development of
Hispanic Adolescents Learning Algebra Using Clinical Interview Techniques.
Amherst, MA: Massachusetts University (ERIC Document Reproduction Service
No ED 231 613).

Ginsburg, H.P., & Russell, R. L. (1981). Social class and racial influences on early
mathematical thinking. Monographs of the Society for Research in Child
Development, 26(6).

Giordan, A., & Martinand, J. L. (1987). Etat des recherches sur les conceptions des
apprenants a propos de la biologie. Anna les de didactique des sciences, no 2,
13-63.

Gonzak 2-Thompson, A. (1984). "The relationship of teachers' conceptions of
mathematics and mathematics teaching to instructional practice". Educational
Studies in Mathematics, 15, 105-127.

Henderson Jakubowski, E., & Chappell, M. (1989). "Prospective elementary teachers'
beliefs about mathematics". In Carolyn A. Maher, Gerald A. Goldin & Robert B.
Davis (ed.), Proceedings of the Eleventh Annual Meeting of the North American
Chapter of the International Group for the Psychology of Mathematics Education,
PME-XI. New Brunswick, New Jersey, 285-288.

Janvier, C. (1987). Conceptions and Representations: The circle as an example. In C.
Janvier (ed.), Problems of representations in the teaching and learning
mathematics. Hillsdale, NJ: L.E.A.

Kaplan, R. (1989). Changes in pre-service teachers' views of priorities in elementary
mathematics as a function of training. In Carolyn A. Maher, Gerald A. Goldin
& Robert B. Davis (ed.) Proceedings of the Eleventh Annual Meeting of the North
American Chapter of the International Group for the Psychology of Mathematics
Education, PME-XI. New Brunswick, New Jersey. 329-333.

£8



82

Kuendiger. E. (989) Research report of her prlject (in progress).

McLeod, D. B. (1989). Beliefs, Attitudes, and Emotions: New Views of Affect in
Mathematics Education. In D. B. McLeod & V. M. Adams (ed.), erect and
mathematical problem solving: a new perspective. New York: Springer-Verlag,
245-258.

Najee-ullah, D., Hart, L., & Schultz, K. (1989). Beliefs about the causes of success and
failure in mathematical problem solving: two teachers' perspectives. In Carolyn
A. Maher, Gerald A. Goldin & Robert B. Davis (ed.): Proceedings of the
Eleventh Annual Meeting of the North American Chapter of the International
Group for the Psychology of Mathematics Education, PME -XJ. New Brunswick,
New Jersey, 279-284.

Nimier, J. (1988). Les modes de relations aux mathematiques. Paris: Meridiens
Kincksieck.

Oaks, A. (1987) DISSERTATION (SUNY/Buffalo).
Study of 4 "remedial math." college students' conceptions of math., self-systems and their
interaction. (No intervention). Strategies: journals (little), a series of ethnographic interviews,
including the student's perform/trace of some math. tasks and their discussion.

Onslow, B. A. (1989). Examining change in teachers' thinking through collaborative
research. In Carolyn A. Maher, Gerald A. Goldin & Robert B. Davis (ed.):
Proceedings of the Eleventh Annual Meeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education, PME-XI. New
Brunswick, New Jersey, 341-348.

Reyes, L. H. (1984). Affective V.,riables and Mathematics Education, Elementary
School Journal, 84(5), 558-581.

Reyes, L. H. (1987). Describing the Affective Domain: Saying What We Mean. Paper
presented at the Annual Meeting of Research Presession to the National Council
of Teachers of Mathematics, Anaheim, CA.

Robert, A., & Robinet, J. (1989a). Representations des enseignants de mathematiques
sur les mathematiques et leur enseignement. Uhler Didirem 1, Paris: IREM
Paris 7.

Schoenfeld, A. (1985). "Metacognitive and epistemological issues in mathematical
understanding". In E.A. Silver (ed.): Teaching and learning mathematical
problem solving: multiple research perspectives. London: Erlbaum, 361-279.

69



83

Schram, P., Wilcox, S., Lappan, G., & Lanier, P. (1989). Changing preservive
teachers' beliefs about mathematics education. In Carolyn A. Maher, Gerald A.
Goldin & Robert B. Davis (ed.), Proceedings of the Eleventh Annual Meeting of
the North American Chapter of the International Group for the Psychology of
Mathematics Education, PME -XI. New Brunswick, New Jersey, 296-302.

Shavelson, R. J., Sterm, P. (1981). "Research on teachers' pedagogical thoughts,
judgements, decisions, and behaviour". Review of Educational Research, 51,
455-498.

Southwell, B. (1988 ). Construction and reconstruction: The relectivee practice in
mathematics education. In Andrea Borbas (ed.), Bvelfth annual conference of the
international group for the Psychology of Mathematics Education, PME -XI. July,
Veszprem, 584-592.

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics,
with a particular reference to limits and continuity. Educational Studies in
Mathematics, 12, 151-169.

Viennot, L. (1979). Le raisonnement spontan6 en dynamique elementaire. Paris:
Hermann, 153 p.

70



84

APPENDIX A

QUESTIONNAIRE ON THE TEACHING OF MATHEMATICS

Scale I: Attitude Towards Teaching Mathematics

a. My knowledge of mathematical concepts is sound
enough to teach link math.

b. I am very enthusiastic about teaching math to
students.

c. I am confident about my ability to teach math.

Scale II: View of Mathematics

a. Someone who is good at mathematics never
makes a mistake.

b. Math consists of a set of fixed, everlasting
truths.

c. Math is always changing and growing.

Scale III: View of Teaching Mathematics

a. If etude es learn the concepts of math then
the basic skills Ain follow.

b. Students should be expected to use only those
methods that their math books or teachers use.

c. Students should learn and discover many ideas
in mathematics for themselves.

Scale IV: View of Learning Mathematics

a. In lacsing math, each student builds up
knowledge in his or her own way.

b. Learning math is mainly remembering rules.

c. Most errors students make are due to
carelessness.

I 71

YES! yes ?? no NO!

YES! yes ?? no NO!

YES! yes ?? no NO!

YES! yes ?? no NO!

YES! yes ?? no NO!

YES! yes ?? no NO!

YES! yes ?? no NO!

YES! yes ?? no NO!

YES! yes ?? no NO!

YES! yes. ?? no NO!

YES! yes ?? no NO!

YES! yes ?? no NO!

From the work of Paul Ernest
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About Journals

You are asked to keep a journal on 81/2" x 1111 sheets of loose-leaf paper. Generally, one

or two sheets will be sufficient for a week's worth of journal writing. Neither your syntax aor grammar

will be a concern or checked; my only concern and interest is what you say, not how you say it. You are

asked to make, at least, one journal entry for each meeting that we have, and, as a rule of thumb, you need

not spend more than five to ten minutes writing each entry. Each week, the latest journal entries will be

collected and returned with comments.

The focus of your journal entries should be on your learning of mathematics or on the

mathematics of the course. That is, your reflections should be on what ygg do, feel, discover, or invent.

Within this context, you may write on any topic or issue you choose. To stimulate your thoughts and

reflections, here are some questions and suggestions.

1. What did ygg learn from the ;lass activity and discussion or the assignment?

2. What questions do yj have about the work ygg are doing or not able to do?

3. Describe any discoveries yss make about mathematics (patterns, relationships, procedures, and so
on) or yourself.

4. Describe the process yg undertook to solve a problem.

5. What attributes, pattern!, or relationships have ygg found?

6. How do ygg feel about y work, discoveries, the class or the assignment?

7. What confused ygg today? What did you especially like? What did yo not especially like?

8. Describe any computational procedure ygg invent.
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APPENDIX C

PROCESSES INVOLVED IN THINKING MATHEMATICALLY
(OR HABITS OF THE MIND)

1. Posing problems and questions

2. Exploring a question systematically

3. Generating examples

4. Specializing

5. Generalizing

6. Devising symbols and notations

7. Making observations

8. Recording observations

9. Identifying patterns, relationships, and attributes

10. Formulating conjectures (inductively and deductively)

11. Testing conjectures

12. Justifying conjectures

13. Communicating with an audience

14. Writing to explore one's thoughts

15. Writing to inform an audience

16. Using appropriate techniques to solve a problem

17. Using technical language meaningfully

18. Devising methods, ways of solving problems

19. Struggling to be clear

20. Revising one's views

21. Wring connections between equivalent statements or expressions, transformations

22. Making comparisons

23. Being skeptical, searching for counterexamples

24. Reflecting on experiences

25. Suspending judgement

26. Sleeping on a problem

27. Suspending temporarily work on a problem and returning to it later

28. Listening actively to peers

Submitted by Arthur Powell
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ABSTRACT

This paper describes the effects of science teacher subject-matter knowledge

on classroom discourse at the level of individual utterances. It details one

of three parallel analyses conducted in a year-long study of language in the

classrooms of four new biology teachers. The conceptual framework of the study

predicts that when teaching unfamiliar subject matter, teachers utilize a

variety of discourse strategies to constrain student talk to a narrowly

circumscribed topic domain. This paper includes the results of an utterance-

by-utterance analysis of teacher and student talk in a 30-lesson sample of

science instruction. Data are broken down by classroom activity (e.g.,

lecture, laboratory, group work) for a number of measures, including mean

duration of utterances, domination of the speaking floor by the teacher,

frequency of teacher questioning, cognitive level of teacher questions, and

student verbal participation. When teaching unfamiliar topics, the four

teachers in this study tended to: talk more often and for longer periods of

time, ask questions frequently, and rely heavily on low cognitive-level

questions. The rate of student questions to the teacher was found to vary with

classroom activity. In common classroom communicative settings, student

questions were less common when the teacher was teaching unfamiliar subject

matter. The implications of these findings include a ggestion that teacher

knowledge may be an important unconsidered variable 3... research on the

cognitive level of questions and teacher wait-time.
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Teacher Knowledge and the Language of

Science Teaching

This paper describes the effects of science teacher subject-matter

krowledge on classroom discourse at the level of individual utterances. This

analysis complements broader analyses of the effects of teacher knowledge at

the levels of conversations and multiple-lesson units of instruction,

described elsewhere (CarlSen, 1988, 1989a, in press).

The conceptual framework of this study is a sociolinguistic model

relating the scientific knowledge of new biology teachers to the structure of

classroom discourse: it predicts that teachers will use discourse strategies

that vary as a function of their subject-matter understanding. When teaching

unfamiliar topics, the framework predicts that teachers will use instructional

and discourse strategies that constrain students' opportunities to ask

questions. Such strategies may serve to protect teachers from having classroom

conversations move into unfamiliar areas. Teacher control of discourse may

have pedagogical advantages, but it may also inadvertently undermine the

teacher's intention to model the syntax of scientific inquiry.

The analyses in this paper utilize as data every audible recorded teacher

utterance and every teacher-acknowledged student utterance in approximately

1500 minutes of recorded classroom conversation, a total of over 4000

utterances. The linguistic imprecision of the term utterance is acknowledged

and has been addressed empirically. Using a computer and time-coded

transcripts, a variety of algorithms were tested to computationally segment

verbatim transcripts into utterances (Carlsen, 1989b). As a result of that

work, an utterance is operationally defined here as a stretch of speech

terminated by a pause of three seconds or a change in speaker. Although this

1
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definition is insensitive to the social functions of talk (in contrast to, for

example, the treatment of utterances in speech act theory), it provides

several advantages in this analysis.1 For example, teacher domination of the

speaking floor could be easily calculated in a variety of ways.

Pilot Study

A number of teacher strategies for constraining classroom conversations

were identified during a pilot study, which contrasted lectures on familiar

and unfamiliar topics by six new biology teachers (Carlsen, 1987). Compared to

lectures on familiar topics, lectures on unfamiliar topics tended to: be

dominated by the teacher (as measured by mean length of utterances, total

number of utterances, and other measures), include more teacher questions,

include a higher ratio of low cognitive level to high cognitive level

questions, elicit fewer student questions and student utterances in general,

and elicit shorter student remarks. Analysis was done using time-coded

verbatim transcripts of pairs of lessons taught to the same groups of students

in public school classrooms.

Although the pilot study findings were intriguing, they were not

generalizable for two reasons. First, the pilot study was exploratory and

emergent in design, rather than hypothesis-testing. Consequently, it was

possible that the findings represent error variance, not knowledge effects.

Second, the pilot study investigated a small number of lessons, all lectures.

A broader study of a variety of types of instruction was therefore undertaken

to provide a more general description of the effects of teacher knowledge on

science instruction.

Design and Procedures

The effects of teacher subject-matter knowledge were documented in a

2
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year-long study of four new biology teachers. The teachers, all of whom had

majored in biology, taught half days in public secondary schools as part of a

master's-level teacher education program. As the teachers' university subject-

matter supervisor, I regularly visited one of their biology classes and

audioave-recorded 12-15 lessons over the course of the school year. Visits

were scheduled to sample a number of curricular topics over a range of teacher

subject-matter expertise. The teachers in the study were aware of the

discourse and curriculum orientations of the study, but were unaware that

relative subject-matter knowledge was an independent variable.

Teacher subject-matter knowledge was assessed in several ways, including

a card-sort task cf 15 biological topics by self-reported subject-matter

knowledge (administered as part of a curriculum workshop during the summer

prior to the study), interviews on teachers' sources of knowledge (conducted

at the end of the school year), and analyses of undergraduate and graduate

transcripts. The principal contrasts in the study were within-teacher

contrasts, comparing planning and teaching by individual teachers across a

number of topics. Because of the wide variety of topics taught in high school

biology, although all of the teachers were knowledgeable about many topics in

biology, none had expertise on all of the topics that they T.:are expected to

teach.

Audiotape recordings of science lessons were made using a two-track

portable tape deck and two microphones, one a wireless unit worn by the

teacher. All transcription was done by the investigator. Transcripts of

lessons were stored on a computer using a format that provided flexibility of

analysis. The transcripts included data on the content of speech (e.g., the

words being uttered, some paralinguistic features), the context (e.g., the

3
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type of classroom activity being conducted, the name of the speaker), and the

time of utterance (data from which pause lengths, rate of speech, and other

measures could be computed). Software was written to print transcripts using

theoretically-sensible transcription rules, and models of classroom discourse

could be played back on the computer screen in real time or at an accelerated

rate. The software was also used to annotate transcripts. For example, teacher

questions were coded by cognitive level while examining the questions in their

conversational uontext.2 Finally, statistics and graphs summarizing classroom

talk could be easily generated.3

For each of the four teachers in the study, two relatively high-knowledge

topics and two relatively low-knowledge topics were identified. For each of

these four topics, two lessons were tape-recorded; consequently, data can be

viewed as coming from a factorial design: 2 lessons x 2 topics x 2 knowledge

levels x 4 teachers. For one teacher, Ms. Ross, two low-knowledge audiotapes

(on different topics) were unusable, leaving a total of 30 lessons for this

analysis. Because the teachers had similar educational backgrounds and because

the focus of this paper is on within-subject variation, absolute levels of

teacher subject-matter knowledge are not discussed here. As a I...ugh metric,

however, the teachers had all had several undergraduate or graduate-level

courses (and, in some cases, research experience) on their high-knowledge

topics and one or no college courses on their low-knowledge topics.

Among the contexts that are important in this analysis is the classroom

activity, defined elsewhere in an analysis of these teachers' lesson plans and

teaching (Carlsen, 1989a). Activities of 29 types were identified in this

research, but communicatively-similar activities are combined in this paper to

make the tables easier to interpret. Examples of combined activities are

4
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student Group work, teacher Instructions, Lectures, and Laboratories.

Results

Four general questions organize the findings in this paper. First, what

is the relationship between teachers' subject-matter knowledge aril the amount

they talk during a lesson? The conceptual framework predicts that teachers

will talk wore when they have low subject-matter knowledge. Dominating

conversation is one way of controlling discourse. Findings 1 and 2 address

this point.

Second, what is the relationship between teachers' subject-matter

knowledge and the frequency with which they question students? The conceptual

framework predicts chat teachers will ask more questions when they do not

understand the subject well. Asking questions may be another way of

controlling discourse. Findings 3 and 4 address this point.

Third, how does teacher subject-matter knowledge affect student verbal

participation in lessons? The framework predicts that wheli teachers understand

their subject well, their students will more actively participate in classroom

conversation. Findings 5 and 6 discuss this prediction.

Fourth, what are the effects of teacher knowledge on the types of

questions that are asked in class? The model predicts that when teachers

understand their subject-matter well, they will ask questions which permit

greater student flexibility in response. Finding 7 examines the effects of

subject-matter knowledge on the cognitive level of teacher questions.

The analyses which follow do not report statistical significance, for

several reasons. First, the data do not represent an empirically perfect and

balanced sample of discourse. Data were collected in natural settings. The

teachers and students knew that they were being audiotaped, but the class

5



activities, the patterns of participation, and the topics of the lesson were

under the control of the speakers, not the researcher. Hence, for example,

although nine laboratory sessions were taped, no labs were taped in low-

knowledge classes for Ms. Nims.4 Second, there is a strong interaction between

the teacher and most of the discourse measures used. For example, Ms. Town

tended to talk more than Ms. Ross on most measures, including number of ques-

tions, number of utterances, and average utterance duration. Third, although

data were collected for a large number of utterances (over 4000 utterances

varying in duration from less than one second to several minutes),

characteristics of the data make the application of parametric statistics

problematic. Speech durations, for example, are highly skewed, with most

utterances lasting six seconds or less. Finally, from a sociolinguistic

perspective, conversation consists of topically-related utterances; any

analysis of utterance data which relies upon an assumption of statistical

independence is internally inconsistent.

Because the characteristics of classroom discourse depend on the type of

activity that is taking place in the lesson, it is not enough to compare

utterances in high-knowledge classes with utterances in low-knowledge classes.

When that analytic strategy is used, differences in discourse attributable to

classroom activity obscure differences attributable to teacher knowledge

level. Many of the findings that follow are broken down by classroom activity.

In a similar fashion, I looked for teacher-specific effects on each of

the Findings; where effects were found, they are noted. Where they were not

found, pooled data are presented. My intention is not to suggest that pooled-

teacher data represent a random sample of teachers, nor that the teachers'

discourse strategies were identical. Breaking all statistics down by teacher

6
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And activity, however, would give the reader little sense of trends in the

data.

Amount of Teacher Talk

Finding 1: Teacher talk as a percentage of class time. Table 1 displays

teacher talk as a percentage of total class time, for all teachers combined.

The data suggest that the teachers tended to talk more in lectures and

recitations (shown here as the combined activity, "Lectures") when they were

subject-matter knowledgeable than when they were not. This finding is

consistent with the conceptual framework. The data suggest that the opposite

effect occurred during Laboratories: teachers talked more, when they w-re topic

knowledgeable. This finding was not expected, and is explored elsewhere in

more detail using discourse analysis (Carlsen, 1990).

Statistics for the other four categories in Table 1 are based on fewer

minutes of observation. Group work, Routines and Seatwork activities had more

teacher talk in low-knowledge lessons (although the size of the difference for

routines was negligible); Instructions (for laboratory and other activities)

had more teacher talk in high-knowledge classes. Overall, these statistics are

consistent with the prediction of the conceptual framework that teacher

knowledge is related to teacher talk, although the knowledge effect in

Laboratories is opposite the predicted effect.

Finding 2: The duration of teacher utterances. Table 2 contains data on

the average duration of teacher utterances, by class activity and teacher

knowledge level. Although the differences were small, individual utterances

were longer in low-knowledge classes for six of the seven activities listed in

Table 2. Teachers tend to "hold on" to their speaking turns for slightly

longer periods in low-knowledge classes. This finding is consistent with the

7
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Table 1

Teacher Talk as a Percentage of Class Time (by Activity)

Number of Minutes

of Instruction

Percent of Time

Teacher Talked

Teacher

Knowledge

Level of

High- Low- High- Low Classes

Knowlcdge Knowledge Knowledge Knowledge with Most

Activity Lessons Lessons Lessons Lessons Teacher Talk

Group work 73 min. 169 min. 44.7% 53.3% LOW

Instructions 82 102 70.0 61.3 HIGH

Laboratories 182 103 56.5 48.7 HIGH

Lectures 269 139 64.9 88.5 LOW

Routines 46 50 55.5 56.3 LOW

Seatwork 42 32 41.1 47.8 LOW

Total 694 595 59.1 62.0 LOW

Note: "Percent of time teacher talked" is the sum of the durations of all

sequences of teac1::.r talk, divided by the number of minutes of instruction.

Sequences of teacher talk were measured in seconds from an initial teacher

vocalization to the beginning of the next pause in teacher talk of three

seconds or more. Note that, unlike the definition of utterances (as used in

"...able 2), sequences ignore overlapping student talk.
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Table 2

Mean Duration of Teacher Utterances by Activity (in seconds)

Type of Lesson

High-Knowledge Low-Knowledge

Teacher

Knowledge

of Classes

mean S .D. mean S.D. with the

Activity (N)6 (N) Most Talk

Group work 9.78 10.3 10.25 22.5 LOW

(102) (525)

Instructions 14.48 28.2 15.12 23.8 LOW

(237) (248)

Laboratories 9.81 15.1 7.22 13.0 HIGH

(630) (415)

Lectures 15.12 29.1 15.37 23.9 LOW

(693) (479)

Routines 14.51 34.7 15.43 37.4 LOW

(106) (110)

Seatwork 5.43 5.2 8.62 10.7 LOW

(190) (107)

a Number of teacher u*terances, all teachers combined.
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conceptual framework of the study. Once again, the situation in Laboratories

differed from that in other classes: in labs, the teachers spoke for longer

periods of time on high-knowledge days.

The rate of speech in number of words per second and number of

transcribed letters per second were also computed. Teacher knowledge level had

no effect on either measure of the rate of teacher speech. Given that finding,

a more labor-intensive calculation of speech rate in phonemes was not

undertaken.

Rate of Teacher Ouestioning

Finding 3: Rate of teacher auestioning. Table 3 presents teacher

questioning rates across all activities for each of the four teachers.5 For

three of the four teachers, questioning rates were highest in classes on low

teacher-knowledge topics. This finding is consistent with the conceptual

framework, which predicts that teachers will ask questions more frequently in

low-knowledge lessons than in high-knowledge lessons.

The trend for Ms. Kaye was clearly different from that of the other

teachers: the average questioning rate in her high-knowledge lessons was much

higher than the rate in her low-knowledge lessons. Inspection of questioning

rates revealed that much of the effect was attributable to one lessons, which

had a teacher questioning rate twice as high as any of Ms. Kaye's other seven

lessons. The anomalous lesson occurred early in the school year, when Ms. Kaye

was struggling to establish control of her class. Early in the lesson, the

teacher stor,ped class and sent a disruptive student to the office, then began

a 43 minute :citation with frequent low cognitive level teacher questions. In

this case, problems of classroom management rather than teacher knowledge

appear to have prompted a highly-inquisitorial teacher discourse strategy.

10
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Table 3

Rate of Teacher Questioning by Teacher (questions/min)

Type of Lesson Teacher

Knowledge

High-Knowledge Low-Knowledge of Classes

with the

Highest

Teacher mean S.D.a mean S.D. Ques. Rate

Kaye 0.99 0.52 0.38 0.23 HIGH

Nims 0.55 0.33 0.93 0.20 LOW

Ross 0.35 0.44 0.58 0.64 LOW

Town 0.73 0.40 0.98 0.55 LOW

a Between-lesson deviation. n-4 for all cells except Ross Low-Knowledge,

whe-:e n-2.
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Finding 4: Rate of leacher questioning during whole-class instruction.

Although imbalances in sampling across teacher knowledge levels and activities

prohibited activity-by-activity analysis of the effects of teacher knowledge

on teacher questioning rates, combining communicatively-similar activities

permitted some further analysis of teacher questioning rates. For example,

combining all lectures, recitations, and teacher- condu'Led reviews of student

homework and examination papers showed that these types of whole-class

instruction were characterized by high rates of teacher questioning. The trend

described in Finding 3 for all activities pooled also characterizes this

subsample of all activities: three of the four teachers asked questions more

frequently in low-knowledge classes. Again, Ms. Kaye was the one exception.

Student Ouestioning Rate

Finding 5: Rate of student questioning by activity. Table 4 presents

student questioning rates and shows that the rate at which students ask

questions to the teacher is highly dependent on which class activity is taking

place. The highest average questioning rates occurred during laboratory

activities, followed by seatwork, lectures, and teacher instructions. Students

asked questions most frequently when whole-class instruction was not

occurring. This finding underscores the necessity of contextualizing data

about student talk within classroom activities.

For comparative purposes, Table 5 presents teacher questioning rates for

the same activities. Across classrooms and activities, teacher questioning

rates were almost always much higher than student questioning rates. The one

exception to this generalization was laboratory exercises, where the rate of

student questions to the teacher (0.702 questions/min.) exceeded the teacv.er

rate to students (0.600 questions/ min.). Again, this suggests that lab

12



Table 4

Rate of Student Questioning by Activity (questions per minute)

Total

Number of

Total

Number of

Total

Number

Mean

Questioning

Activity Classes Minutes Questions Rate'

Group work 10 242 16 0.066

Instructions 24 184 19 0.103

Laboratories 9 285 200 0.702

Lectures 18 408 102 0.250

Routines 25 96 1 0.010

Seatwork 5 74 39 0.527

a This is the overall questioning rate, calculated over all classes and

teachers. It is equal to the third column divided by the second column.
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Table 5

Rate of Teacher Questioning by Activity (questions per minute)

Total

Number of

Total

Number of

Total

Number

Mean

Questioning

ActType Classes Minutes Questions Ratea

Group work 10 242 75 0.310

Instructions 24 184 73 0.397

Laboratories 9 285 171 0.600

Lectures 18 408 556 1.363

Routines 25 96 4 0.042

Seatwork 5 74 63 0.851

a This is the overall questioning rate, calculated over all classes and

teachers. It is equal to the third column divided by the second column.
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activies warrant attention as a special case in the study of communication

in science classrooms. Although student group work was in some ways

organizationally similar to laboratory exercises,6 it was characterized by low

rates of student questioning and moderate rates of teacher questioning.

Finding 6: dent ninz_in student

Imbalances in sampling prohibited an activity-by-activity analysis of the

effects of teacher knowledge on student questioning. Nevertheless, by

combining L.milar activities and pooling the data from all teachers, a rough

test of the effects of teacher knowledge _an be achieved. For example, when

all activities involving student groups are pooled, the student questioning

rate in high teacher knowledge lessons was 0.510 questions/minute, and in low-

knowledge lessons was 0.391 questions/minute. Table 6 displays the

relationship between teacher knowledge and student questioning rates in

lectures and recitations. Again, student questioning rates were highest in

high teacher knowledge lessons.

Quni.timeleyeL2LigacherOuestions

Finding 7: Ratio of high-level to low-level Questions. Table 7 presents

data on the cognitive level of teacher questions, by teacher and subject-

matter knowledge. Each of the four teachers asked relatively more high

cognitive level questions when they were teaching familiar topics. Differences

between teachers were greater than subject-matter related differences,

however.

Assessment of the cognitive level of teacher questions was done, as noted

earlier, by the investigator through discourse analysis of questions in their

instructional context. This method contrasts sharply with the relatively

15
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Table 6

Student Questioning Rate by Teacher Subject-Matter Knowledge

in Lectures (questions/minute)

Teacher Subject- Minutes of Number of Questioning

Matter Knowledge Instruction Questions Rate

High 269, 77 0.286

Low 139 25 0.180
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Table 7

Teacher Questions by Cognitive Level (all activities)

Frequency of Teacher Questions

Teacher

High-Knowledge Lessons Low-Knowledge Lessons

High-Cog Low-Cog

Ratio

High:Low High-Cog Low-Cog

Ratio

High:Low

Kaye 43 168 0.26 8 76 0.11

Nims 48 67 0.72 71 119 0.60

Ross 15 31 0.48 17 42 0.41

Town 72 106 0.68 33 66 0.50

Total 178 372 0.59 129 303 0.46
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decontextualized semantic analysis of questions commonly used in process-

product research on teaching. Although the findings on the effects of teacher

knowledge on question cognitive level are intriguing, the possibility of

investigator bias in coding cannot be dismissed.

Discussion

The findings presented in this paper are selected views of discourse from

a microanalytic perspective. This analysis of the effects of teacher subject-

matter knowledge on classroom language does not clearly indicate that rew

biology teachers deliver better (or wotse) instruction on familiar topics than

on unfamiliar topics. Little can be concluded about the quality of instruction

by looking at individual utterances.

Nevertheless, this study suggests several ways in which teacher subject-

matter knowledge is a critical contributor to the language of the science

classroom. First, an heretofore undocumented relationship is identified

between teacher subject-matter knowledge and the conitive level of teacher

questions. When these teachers were not topic-knowledgeable, they were more

likely to rely upon low-level questions. Second, a relationship is noted

between teacher knowledge and teacher domination of the speaking floor. When

topic-knowledgeable, these four teachers gave their students more

opportunities to speak. This raises the provocative possibility that naturally

extended teacher wait times may be a function of teacher knowledge, and that

wait-time training in the absence of subject-matter strength may be a wasted

effort.? Third, this study points out that teachers ought not view questions

as sociolinguistically inert. Teachers may ask more questions when they are

unfamiliar with the content that they are teaching, and one effect of high

levels of teacher questioning--particularly low-level teacher questioning--
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appears to be a reduction in students' opportunities to speak.

While conducting these analyses, the data were examined in other ways,

with less consistent results. For example, when student questions over All

activities were pooled and displayed by teacher subject-matter knowledge. no

consistent knowledge effect was seen. Activity-related differences in student

questioning rate obscured differences related to teacher knowledge. Clearly,

sensitivity to context is critical in discourse analysis even when relatively

low-inference measures are used.

These results provide support for a sociolinguistic model of the effects

of teacher knowledge on classroom discourse. Nevertheless, this microscopic

view of discourse does not prove that teacher knowled &e has a big impact on

classroom discourse. Part of the difficulty in supporting such a claim is that

the types of classroom instruction that teachers choose vary according to the

teacher, the students, and the subject matter being studied. In order to rake

convincing assertions about the frequency of teacher questioning, the types of

questions teachers ask, and student participation in lessons, one would need

to observe many more lessons. Powerful multivariate techniques might be able

to sort out the relative contributions to variance by teacher, lesson,

academic level of the students, classroom activity and other factors. Several

of the measures considered in this paper would need to be transformed or more

carefully controlled in order to meet some of the assumptions of these

methods, such as normality and homogeneity of variance.

An alternative approach to the problem of quantitative measurement of

teacher and student verbal behaviors would be to more carefully delimit the

teacher's task and the verbal behavior of the students. For example, one might

ask teachers with different levels of subject-matter knowledge to answer
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scripted questions delivered by trained student actors (for an example of such

a teaching experiment, see Carlsen & Wilson, 1988).

The problem with both of these approaches is that they present a very

distorted view of what teaching in real classrooms is like. Numerical analysis

of discourse obscures the give-and-take that occurs in actual conversation.

Experimental manipulations ignore much of what we know about teaching. The

language that teachers and students use is based on routines and shared

meanings that are negotiated over time. When a researcher tells a teacher or

her students to do certain things, the parameters of discourse are no longer

defined by the natural inhabitants of the classroom. Some of those parameters

are defined by an outsider.

Although this numerical analysis offers insights concerning the effects

of teacher knowledge on classroom discourse, it should be viewed as only one

part of a more comprehensive multimethodological analysis of classroom

language, which also attended to the curricular decisions of teachers and the

substance of discourse.
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1. I do not mean to suggest that a computational algorithm can extract

utterances from a transcript without reference to any linguistic theory. The

transcript used as data for such an algorithm is the product of theory-based

human interpretation (Ochs, 1979; Mishler, 1984). At best, an algorithm may be

thought of as a tool for subsequent interpretation that is unusually

theoretically explicit (Carlsen, 1989b). In this study, pauses and changes in

speaker are more heavily weighted than they would be in a conventional

analysis.

2. Questions were coded by the investigator as procedural or instructional.

Procedural questions were excluded from the analysis in this paper.

Instructions" questions were further coded by cognitive level. Low cognitive

level questions were questions that could be answerea by recalling something

stated earlier in the lesson or in an assigned reading. High cognitive level

questions required evaluation, synthesis, computation, or other higher order

thinking. Although this definition may seem fairly straightforward, what may

appear on the surface to be a high level question may simply require recall

from the previous day's lesson. Therefore, cognitive level coding was done

only after: a) listening to the lesson at least three times, b) reviewing

the teacher's lesson plans and related instructional materials, and c)

interviewing the teacher about the content and the history of the lesson. The

pilot study revealed that understanding the context of each question was
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critical to cognitive level coding. This context includes the material in

prior lessons, assigned readings, the communicative habits of speakers, and

discourse from earlier in the lesson.

3. A more complete description of the software and its underpinnings in

transcription theory and computer science is found in Carlsen (1989b).

4. To provide anonymity in such a small study, the four teachers were given

pseudonyms and a coin toss determined the titles of all four teachers. In

reality, two of the teachers were female and two were male.

5. The rates of teacher and student questioning wire calculated using only

instructional questions. Procedural questions (e.g., "When is homework

due?") were excluded.

6. As classified in this study, group work required two or more students to

work together on reports, puzzles, art projects or similar activities, but did

not include any data collection or the use of scientific equipment.

7. Space limitations preclude an extended development of this speculation, but

it may be summarized as follows: 1) subject-matter knowledgeable teachers

naturally wait longer after questions for student responses; 2) long teacher

wait times serve as cues to students concerning the types of responses that

the teacher expects; 3) wait time training in the absence of teacher subject-

matter knowledge changes these cues, encouraging student responses that are

inappropriate for the teacher's knowledge; and 4) the effects of wait time

training decay with time.
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