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Recent surveys (Petruk, 1985; Hubert, 1988) have shown an exponential increase in the
number of computers in schools during the past decade. Hubert (1988) estimated nearly
27 000 computers in Alberta schools at the end of 1987. This translates into about a 1:15
computer to student ratio or an average of about 100 minutes per week of computer
access for each child in Alberta. The actual time a child spends at a computer, of course,
varies significantly from this theoretical average. Questions remain. If children had
continuous access to a computer all day, every day, what could they do? What would
they learn? Would their thinking patterns change? How would the school program
change?

The Proposal

In an attempt to at least partially answer the broad and open questions stated above, a
proposal was submitted to the Apple Canada Education Foundation (ACEF) for the
establishment of an Apple Centre for Innovation (ACI) in a third grade classroom. The
proposal called for the installation of 1 complete Apple II GS microcomputer workstation
for each child in the classroom. The plan was to network the computers and printers and
ultimately to incorporate a file server. With respect to the curriculum, the plan was to
develop materials that would uniquely integrate the computer into the language arts and
mathematics programs.

Implementation

Hardware

The proposal was approved by the ACEF early in the summer of 1987. Thirteen'
complete workstations were set up on temporary furniture ready for the 26 grade 2/3's
first day of classes in September.

Plans for new functional furniture were completed and the furniture ordcieti. The design
consisted of an octagonal desk-like cabinet with rectangular wings emanating from every
second side of the octagon to form a 4-student workstation as illustrated in Figure 1. The
wings housed the keyboard on a pull out shelf below the table top. Two small shelf-like
compartments and a longer one along one side of the rectangular wing provided storage
for disk drives and the CPU respectively. Only the monitor sat on top of the wing. The
octagonal area in the centre could be used for individual and group work.

Electricians rewired the classroom so that there were no floor or post outlets. AppleTalk
cables were also strung through the walls to completely remove all wiring from places
where it could be accidentally pulled or tripped over. AppleTalk was also extended to
the school office and library at this time.

1
In year 1 the computer to student ratio was 1:2. In year 2 (1988-89) the ratio was increased to 1:1.
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Figure 1. Octagonal 4-Student Workstation

Program

During the summer, the project director (grade 3 teacher) spent many hours preparing
language arts materials which would incorporate the use of the computer so that there
would be experimental materials in place for the beginning of the school term.

It seemed apparent that if grade 3 children were going to make productive use of the
materials, efficient keyboarding skills would need to be developed. A professor in
business education at the University of Alberta agreed to teach keyboarding to the 4
grade 2 and 22 grade 3 students in the ACI classroom. She taught a 30 minute
keyboarding lesson 4 days each week for 3 months. Afterwards periodic keyboarding
review lessons (approximately once a week) were conducted for the remainder of the
year.

In language arts the computer was used as a tool in creative writing, responding to
reading comprehension exercises, theme and book studies, research reporting, and for a
variety of data base activities.

In mathematics the computer was used primarily as a means of providing practice during
the first year of the project. Courseware included MAC 3 (Houghton Mifflin), MECC
(Minnesota Educational Computing Consortium), graphing activities from National
Geographic's Project Zoo, and some practice and problem solving software written by the
project director.
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Year 1 Mathematics Results

Data is available on the keyboarding and language arts component of the program as well
as student and parent attitudes towards the project. The focus of this paper, however, is
the performance of the ACI students in mathematics during year 1 of the project.

Instruments -

In order to monitor achievement in mathematics a test based on mid to late grade 3
material was developed by the researcher. Part A of the test consisted of 30 open-ended
questions. Part B contained 20 multiple-choice questions adapted from released items
used by Alberta Education. There were 48 basic fact items in multiple choice format in
Part C; 12 facts for each of the 4 operations. Students were given 1 minute to do each
section. Parts A and B were not tined.

In addition to the 4 basic facts scores, the t- yielded scores on the 5 strands in the
Alberta curriculum, number, operations, and properties (25 items), numeration (12
items), graphing (2 items), measurement (6 items), and geometry (5 items). These 50
items formed what will be referred to as the concepts portion of the test. In addition 7
items from these strands were considered to be problem solving and were scored as a
sixth strand.

The mathematics test was administered in September 1987 and again in late May 1988 in
2 sittings, usually before and after recess.

The Kuder-Richardson reliability for Parts A and B was 0.78 using pre-test scores and
0.81 using post-test scores.

Control Classes

For comparison purposes, 2 control classes were also given the mathematics test during
the same week as the experimental class. One control class was in a neighbouring school,
the other was in a very different part of the city. Table 1 shows the age and IQ scores
for the 3 classes. There were no statistically significant differences among the 3 groups
on the first 3 variables in table 1. There was, however, a significant difference among
the classes on non-verbal IQ.
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Table 1
Mean Age and IQ Scores

Control 1 Control 2 Experimental

Age (months) 105.85 109.55 107.71
IQ

Verbal 114.95 99.91 106.67
Quantitative 113.65 104.23 112.62
Non-verbal 105.45 97.95 112.48

Pre-Test to Post-Test Gains

It was expected that a significant positive gain in mathematics would be made over the
course of one school year. A one-way analysis of variance with repeated measures for
each class confirmed, in general, this hypothesis but there were some interesting
exceptions. The actual (raw) gains made by each group on the mathematics measures are
included in Table 2.

The gains made by the experimental class were all statistically significant. The 2 control
classes, however, had a total of 7 non-significant gains. All but one of these were in the
concepts portion of the test. Both control classes failed to register significant gains in
graphing and geometry, the 2 strands with the least number of test items. Control group
2 did not reach the level of statistical significance (ps0.05) on measurement and control
class 1 did not reach that level on problem solving. Control 1 also failed to reach
significance on the addition section of the basic facts test. Table 2 also contains a
summary of the one-way analysis of variance with repeated measures.

Relative to the 2 control classes, the experimental group improved its rank from pre-test
to post-test on 9 of the 13 scales, maintained its rank (highest) on 3 of the measures and
declined in rank (highest to middle) on the numeration subscale.

Comparison of Classes

There were no significant pre-test differences (one-way ANOVA) among the groups on
the major scales (concepts, facts, total score). There were, however, significant
differences on 2 of the subscales of the concepts test (numeration and geometry) and on
the subtraction section of the basic facts test.

The major analysis involved a two-way ANOVA (groups (3) by repeated measures (2)).
A summary of this analysis is included in Table 3.
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Table 2
Means, standard deviations, gains, and

anova summary for each group

CLASS/VARIABLE
MEANS

PRE POST
GAIN ST.DEV.

PRE ?On
F

CONTROL 1
CONCEPTS

Number, Operations,
and Properties 12.40 17.70 5.30 3.66 4.01 55.54

Numeration 6.15 8.95 2.80 1.60 1.47 39.62
Graphing 0.75 1.25 0.50 0.79 0.64 4.13
Measurement 2.25 3.50 1.25 1.12 1.19 23.06
Geometry 3.70 3.65 -0.05 0.92 0.93 0.03
Problem Solving 4.00 4.55 0.55 1.52 1.50 2.81
TOTAL CONCEPTS 25.25 35.05 9.80 6.00 6.36 59.71***

BASIC FACTS
Addition 10.45 10.90 0.45 2.50 1.74 1.98
Subtraction 7.95 9.05 1.10 3.15 2.59 5.62
Multiplication 3.60 5.85 2.25 2.78 3.10 8.83
Division 1.20 5.55 4.35 1.58 3.47 20.75
TOTAL FACTS 23.20 31.35 8.15 6.60 8.57 22.61

total score 48.45 66.40 17.95 10.48 12.98 84.86

CONTROL 2
CONCEPTS

Number, Operations,
and Properties 11.09 15.73 4.64 4.24 4.63 37.46

Numeration 5.91 6.96 1.05 2.62 2.15 5.00
Graphing 0.64 0.77 0.13 0.73 0.69 0.59
Measurement 2.36 2.64 0.28 1.22 1.40 0.68
Geometry 2.36 2.59 0.23 1.40 1.40 0.63
Problem Solving 3.05 3.59 0.54 1.68 1.65 5.01
TOTAL CONCEPTS 22.36 28.68 6.32 8.42 7.83 42.03

BASIC FACTS
Addition 10.00 11.59 1.59 2.29 1.01 12.53
Subtraction 5.91 10.14 4.23 2.33 2.23 65.59
Multiplication 2.91 5.14 2.23 1.54 2.34 16.87
Division 1.77 5.41 3.64 1.51 3.08 27.63
TOTAL FACTS 20.59 32.09 11.50 5.10 6.74 103.65

total =ore 42.96 60.77 17.81 11.29 12.31 143.05

EXPERIMENTAL
CONCEPTS

Number, Operations,
and Properties 9.76 18.67 8.91 4.77 3.43 144.92

Numeration 7.43 8.62 1.19 1.81 1.83 16.89
Graphing 0.33 0.95 0.62 0.48 0.67 14.70
Measurement 2.05 3.14 1.09 0.97 0.91 36.48
Geometry 2.76 3.67 0.91 1.09 1.11 21.75
Problem Solving 3.38 4.95 1.57 1.75 1.32 20.28
TOTAL CONCEPTS 22.81 35.05 12.24 836 5.97 120.09

BASIC FACTS
Addition 10.62 11.86 7.24 2.54 0.48 6.32
Subtraction 8.38 10.71 2.33 3.46 2.05 12.66
Multiplication 3.10 7.10 4.00 2.59 3.83 39.53
Million 1.62 6.38 4.76 2.04 4.56 31.77
TOTAL FACTS 23.71 36.03 12.34 8.84 9.17 119.49

TOTAL SCORE 46.52 71.10 24.58 15.96 12.66 223.39

p S 0.05 44 p S 0.01 p 3 0.001
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Table 3
Anova summary (Group by Repeated Measures)

Scale Source df F P
CONCEPTS

Number, Operations,
and Properties Group (43) 2,62 0.98 0.38

Measures (M) 1,63 216.66 0.00
Ci X M 2,63 9.66 0.00

Numeration 43 2,62 4.71 0.01
M 1,63 50.31 0.00
0 X M 2,63 5.65 0.01

Graphing 0 2,62 3.08 0.05
M 1,63 13.62 0.00
0 X M 2,63 1.64 0.20

Measurement 0 2,62 0.84 0.44
M 1,63 31.96 0.00
0 X M 2,63 3.86 0.03

(isometry 0 2,62 7.57 0.00
M 1.63 5.80 0.02
0 X M 2,63 3.51 0.03

Problem Solving 0 2,62 2.89 0.06
M 1,63 24.95 0.00
0 X M 2,63 3.68 0.03

TOTAL CONCEPTS 0 2,62 2.57 0.09
M 1,63 214.23 0.00
0 X M 2,63 7.08 0.00

BASIC FACTS
Addition 0 2,62 0.68 0.51

M 1,63 19.27 0.00
G X M 2,63 1.84 0.17

Subtraction 0 2,62 2.31 0.11
M 1,63 63.38 0.00
0 X M 2,63 8.04 0.00

Multiplication 0 2,62 1.13 0.33
M 1,63 57.56 0.00
0 X M 2,63 2.49 0.09

Division 43 2,62 0.43 0.65
M 1,63 78.57 0.00
0 X M 2,63 0.47 0.63

TOTAL FACTS 0 2,62 1.45 0.24
M 1,63 191.45 0.00
0 X M 2,63 2.76 0.07

TOTAL SCORE 0 2,62 1.93 0.15
M 1,63 423.71 0.00
0 X M 2,63 5.20 0.01
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Testing Effects

The two-way ANOVA produced significant effects due to the testing on all 13 measures.
In all cases the post-test composite mean was significantly higher than the pre-test
composite mean.

Group (treatment) Effects

The study was primarily interested in differences among the groups. There were
significant main effects due to treatment on 3 of the 13 scales; numeration, graphing, and
geometry. All of these were components of the concepts test. There were no significant
group effects on the basic facts test.

A Scheffe post-hoc pairwise comparison of unweighted main effects on the numeration
subscale found a significant difference between control class 2 and the experimental class
(p s 0.02). The experimental class had a significantly higher composite mean than control
group 2.

The Scheffe comparison of unweighted main effects due to treatment on the graphing
subtest found no significant differences among the groups. The difference between the
experimental group and control 1 came the closest to reaching significance (p = 0 08).
On the geometry subtest the significant main effects were primarily due to a significant
difference between the 2 control groups although the difference between the experimental
group and control claw 2 was close to significance (p = 0.06).

Interaction Effects

There were significant interaction effects on 8 of the 13 scales used in the study. The
graphs in Figure 2 picture the interaction for the 3 major scales (concepts, facts, total
score). Figure 3 contains a graph of the interaction nn the 3 subscales of the concepts
test which had significant main effects due to treatment.

The interaction on the facts test was not significant. The interaction on the concepts test
and the total mathematics score seems to be due to the steeper slope (greater gain) of the
experimental group. On 2 of the 3 concepts subscales where then' were significant
treatment effects there were also significant interaction effects. On the numeration subtest
the interaction seems to be due to the greater gain of control group 1 and on the geometry
subscale it seems to be a greater gain by the experimental class that caused the interaction.

Summary and Discussion

On mathematics concepts, basic facts, and on the total score, the experimental class
(extensive use of the microcomputer) mrde greater gains than 2 control classes (incidental
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computer use). In fact the experimental class made greater gains on 9 of the 13 measures
used in the study.

There were statistically significant differences among the groups (based on a two-way
ANOVA with repeated measures) on 3 of the 13 scales used in the study. These were the
numeration, graphing, and geometry subtests of the mathematics concepts test. On the
first 2 subtests the experimental group significantly outperformed one but not both control
groups. On the geometry subtest, the difference was due to the difference between the
2 control groups.
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Figure 2. Interaction Effects on Major Scales
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The results of this study lent some, although not strong, support to the thesis that
supplementary computer experiences enhances mathematical skills. Given the nature of
the treatment (major emphasis on the language arts and a lesser emphasis on
mathematics), the result:: are not surprising. If the same time and energy could have been
given to mathematics as to language arts, the results may have oven more definitive.

Computra use was carefully controlled, the teacher factor was minimally controlled, but
there are many variables such as teaching style, school philosophy, use of manipulatives,
and others which were not cor.trolled in this study. These certainly could have a bearing
on the results.
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Introduction'

For the last fifteen years, we have witneswl extensive discussions on the need to define
what is meant by "understanding". Ephraim Fischbein (1978) stressed the importance of
intuition for the understanding of mathematics and Richard Skemp (1976) provided an
early model which distinguished between instrumental understanding ("rules without
reason") and relational understanding ("knowing what to do and why"). Using
Skemp's model a.:d combining it with Bruner's distinction between analytic thinking and
intuitive thinking (Bruner, 1960), Byers and Herscovics (1977) suggested the tetrahedral
model of understanding :which identified four complementary modes of understanding:
instrumental, relational, intuitive, and formal. Later on Skemp (1979) tended his
model to three nodes of understanding (instrumental, relational, and logical) each one
subject to two levels of thinking (intuitive and reflective) and, three years later, he added
a fourth mode, that of symbolic understanding (Skemp, iC`82). A more extensive survey
can be found in Models of Understanding (Herscovics & Bergeron, 1983).

The reasons for finding better answers to the question "What does it mean to understand
mathematics?" are not purely aesthetic and academic, they are also very practical.
Without some answer to this question, one can hardly expect to train teachers to "teach
for understanding". The training of teachers in the analysis of mathematical concepts
through the use of models of understanding was attempted with a class of practising
primary school teachers (Bergeron, Herscc-4(.3, & Dionne, 1981). Results proved to be
most promising since these teachers ended up de-emphasizing the value of the written
answer and instead assigned equal importance to the thinking processes underlying these
answers (Herscovics, Bergeron & NantaisMartin, 1981).

The early models of understanding were heavily oriented towards problem solving and
proved inadequate to describe the comprehension involved in concept formation
(Bergeron & Herscovics, 1981). Thus, a new model identifying four levels of
understanding in the construction of mathematical concepts (intuitive understanding,
initial conceptualization, abstraction, and formalization) was suggested (Herscovics
& Bergeron, 1981). In the early eighties, this initial model was constantly improved in
the sense of providing clearer criteria for the different levels of understanding (Herscovics
& Bergeron, 1982, 1983, 1984). By 1982 we had characterized our second level of
understanding as "procedural understanding" instead of "initial conceptualization",
and by 1983 we were distinguishing t,etween "abstraction" in the psychological sense
(detachment from the concrete) and "mathematical abstraction" (die construction of
mathematical invariants). In 1984 we adjusted our definition of "procedural

Research funded by the Quebec Ministry of Education (F.C.A.R. EQ-2923)
Based on the analysis of number developed in this paper, we undertook an international study to
assess the kindergartners' knowledge of natural number. Some highlights of this study appear in a
companion paper "The kindergartners' construction of natural numbers: an international study".
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understanding" to include both the acquisition of mathematical procedures as well as the
ability to use these appropriately.

The continued attempt to provide an epistemological analysis of the various conceptual
schemata taught at the elementary level has proved to be the whetstone on which we have
refined our evolving model. Of course, we are using the term "epistemological" very
broadly in the sense of "growth of knowledge" but also within a pedagogical context
which acknowledges the impact of instruction. On one hand, our model of understanding
provides us with a new perspective raising new questions such as "What kind of
knowledge could be considered as evidence of intuitive understanding?". On the other
hand, the research results force us to refine our initial model.

The objective of this paper is to present our two-tiered model of understanding and to
illustrate how it can be used to describe the understanding of a fundamental mathematical
concept such as natural number.

The Understanding of Preliminary Phy. 'cal Concepts

Back in 1983, we described intuitive understanding by pointing out that

For most of the (arithmetical) notions taught, one can find some pre-concepts which can
be viewed as embryonic to the conceptual schema whose construction is intended...There
is not yet any (numerical) quantification, maybe at most some simple (visual) estimation.
These are situations which lead to what Ginsburg (1977) describes as 'informal
knowlege'.

(Heracovics & Bergeron, 1983, p. 77)

The above characterization of intuitive understanding served us well, si -ice it forced us
to search for appropriate situations in the child's experience that could be used as starting
points for each intended concept. The acquisition of new knowledge would thereby be
endowed with meaning and relevance. This last year, we achieved some kind of
breakthrough when, in our analysis of the 'lumber scheme we decided to apply our
existing model to the two notions we consider as pre-concepts of the number concept.

We have identified the notion of plurality, that is, the distinction between one and
several, and the notion of position of an element in an ordered set, as two physical
concept preliminary to the concept of number. We can then define 'number'
teleologically, that is in terms of its initial uses and functions, as a measure of plurality
and as a measure of position.

Applying our existing model to the notion of plurality and to the notion of position meant
we had to find non-numerical criteria which might be interpreted as representing intuitive
understanding, procedural understanding, and logico-physical abstraction of these two
concepts. We would not attempt to find a fourth level of understanding, that of
formalization, since, in effect, the construction of the number concept could be viewed
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as the mathematization of plurality and position. We have been successful in identifying
the needed criteria and in converting these into tasks which have been used to assess the
ldndergartners' understanding of plurality and position. We provide here a brief
summary of the criteria and tasks used to evaluate each level of understanding.

Regarding the intuitive understanding of plurality, quite early in our work we had
designed tasks involving discrete sets that children could compare on the basis of visual
estimation in order to decide which one had more, which one had less, where there were
many, where there were few, or if one set had as many objects as another one. More
recently, we developed tasks in which children used visual estimation tc decide if an
object was before (or in front), after (or behind) another one, if two objects were
together (or at the same time), whether an object was between two other ones. The
ability to estimate these notions visually could be considered as evidence of intuitive
understanding of plurality and position since neither needed to be determined with any
precision, rough approximations proving to be sufficient.

To identify a level of procedural understanding of pluralityand position one had to find
logico-physical procedures that were non-numerical, in which no counting was involved,
but which provided precisior ' J the notions introduced at the intuitive level. Procedures
based on one-to-one correspondencks answered this requirement since they provided
accuracy and reliability to questions regarding plurality and order. Our investigations
have shown that by the time children complete kindergarten, most of them can use
one-to-one correspondences to generate sets that are larger, or smaller, or equal, or that
have one more element, than a given set. They can also generate ordered sets subject to
positional constraints such as before, after, at the same time.

Abstraction in the logico-physical sense was also easy to identify. We used as criterion
the children's ability to perceive the invariance of plurality or position under various
surface or figural transformations. The logico-physical processes which enable them to
overcome the misleading information they obtain from their visual perception provides
them with more stable conceptions of plurality and position. The abstraction of
plurality was assessed through tasks in which sets of objects laid out randomly were
rotated and displaced within the same space, dispersed, and contracted. Two tasks dealt
with the visual impact of the elongation ofa row, the first task involved a single row, and
in the second task, one row was stretched while another one was kept fixed (Piaget's
conservation of plurality). The invariance of plurality with respect to the visual
perception of the elements was tested by hiding some of the objects. The abstraction of
position was evaluated by assessing the invariance of position with respect to the
elongation of a row, with respect to the visibility of all the objects in a row, and with
respect to conservation of position when one of two parallel rows was translated. The
abstraction of position was also assessed by verifying if the child was aware that the
position of an element changed when one of the preceding objects was removed.
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As can be seen from the above outline, it is quite possible to identify criteria that will
clearly describe three levels of understanding of preliminary physical concepts. These
three levels replace advantageously the level of understanding which in our previous
model we described as "intuitive understanding of a mathematical concept" since they
enable us to provide a full blown epistemological analysis of the preliminary concepts
rather than view them as merely the initial embryonic stage in the construction of the
intended mathematical concept. Of course, a model of understanding applied to physical
notions needs to be distinguished from a model applied to mathematical ones. For
instance, the procedural understanding evidenced by the use of a 1:1 correspondence
between two sets of objects can be considered as a logico-physical procedure whereas the
1:1 correspondence between objects and the number-word sequence (counting) is of a
logico-mathematical nature. A similar distinction applies to the construction of
invariants. These comments provide us with the following description of the levels of
understanding of physical concepts:

Intuitive understanding refers to a global perception of the notion at hand; it results
from a type of thinking based essentially on visual perception; it provides rough
non-numerical approximations.

Procedural understanding refers to the acquisition of logico-physical procedures which
the learners can relate to their intuitive knowledge and use appropriately.

Logico-physical abstraction refers to the construction of logico-physical invariants (as
in the case of the various conservations of plurality and position), or the reversibility and
composition of logico-physical transformations (e.g. taking away is viewed as the inverse
of adding to; a sequence of increments can be reduced to fewer steps through
composition), or as generalization (e.g. perceiving the commutativity of the physical
union of any two sets).

The Understanding of the Emerging Mathematical Concepts

We distinguish mathematical concepts from physical concepts when explicit mathematical
procedures and invariants are involved. We then can identify three distinct constituent
parts of understanding: procedural understanding, logico-mathematical abstraction, and
formalization. Once again, we illustrate this with the number concept. In our opinion,
the number concept is present only when enumeration (counting) is involved. Of course,
knowledge of the number-word sequence by itself does not imply numerical knowledge.
However, it is an essential pre-requisite to counting. Fuson, Richards & Briars (1982)
has described different skills in the child's handling of the number-word sequence
(reciting from one, reciting on from a given number, reciting backwards, etc.).

The procedural understanding of number involves explicit counting procedures. Since
we defined number as a measure of plurality and of position, we had to design various
tasks in which all the counting procedures could be used. For instance, asking children
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to count up a pile of chips "as far as they could go" would assess their mastery of the
counting-from-one procedure and their numerical range. Asking them to generate a set
of a given cardinality or to identify an object of a given position would assess their ability
to count and stop at a given number. A task which might favour the counting-on
procedure was developed (cf. Steffe et al, 1983) a row of thirteen chips was glued to a
cardboard and the first six were hidden in front of the children. They were reminded
how many were hidden and then asked: How many there were altogether? Could they
find the ninth chip? Could they find the position of an indicated chip? Another task
which might favour counting backwards also involved a row of twelve chips, some of
which were hidden: with six chips hidden and the tenth chip pointed out. The children
would then be asked: How many are hidden? With three chips hidden and the tenth chip
identified, they were asked to find the seventh chip and afterwards, to find the position
of an indicated chip. Finally, even more sophisticated tasks were selected, tasks that
would involve double counting forwards or backwards. For instance, children might be
asked to count out loud five number words from a given number, or to find how many
number words are between two given ones. As can be seen, many tasks can be designed
to evaluate procedural understanding.

In view of our definition of number as a measure of plurality and of position, the
logico-mathematical abstraction of number must reflect both the invariance of plurality
and the invariance of its measure, leading to the abstraction of cardinal number. It
must also reflect both the invariance of position and the invariance of the measure of
position, leading to the abstraction of ordinal number.

Over twenty years ago, Piaget's collaborator Pierre Greco (1962) felt the need to
distinguish between plurality and the measure of plurality. He mc' Med the original
conse:vation task involving two equal rows of chips by asking the children to count one
of the rows before stretching the other one; he then asked how many chips were in the
elongated row while screening it from view. Those who could answer the question were
said to conserve quotity. Greco found that many five-year-olds claimed that there were
seven chips in each row but that the elongated row had more. Thus, these children
conserved quotity without conserving plurality. For these children, to conserve quotity
simply meant that they could maintain the numerical label associated with the elongated
row, but their count was not yet a measure of plurality, since they thought that the
plurality had changed. It is only when both plurality and quotity are conserved, when
both invariant es are perceived, that number becomes a measure of plurality. At that
stage, one can claim that the child has achieved a logico-mathematical abstraction of
cardinal number. Of course, the Piaget and the Greco tasks are not the only ones by
which abstraction of cardinal number can be assessed. These involve a specific type of
transformation. All the other tasks previously used to assess the invariance of plurality
can also be used here by modifying them to include enumeration.

An entirely analogous approach can be used to describe the logico-mathematical
abstraction of ordinal number. Similar to the notion of quotity, one can introduce its
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parallel in the context of position. We define ordity as the ability to maintain the
numerical label associated with the position of an element in an ordered set subject to
various transformations such as elongation, translation, hiding part of a row. And of
course, there are children who perceive the invariance of ordity without perceiving the
invariance of position. Only when both are present can one claim to have achieved a
logico-mathematical abstraction of ordinal number.

By the formalization of number, we mean the gradual development of various
mathematical notations. When asked to send a message indicating how many objects are
in front of them, children will represent each one by a drawing and later on by a tally
mark. Once they learn to write their numerals, they may write the sequence 1, 2, 3, 4,
5, 6, 7 to represent the cardinality of a set of seven objects, thereby indicating their need
to rely on a 1:1 correspondence between the objects and the numerals; by the end of
kindergarten, most of them can use the numeral '7' with its intended cardinal meaning.

In fact, many of them can write down numbers exceeding nine. Of course, this does not
imply any awareness of place value notation. Nevertheless, it indicates that they perceive
the concatenation of two digits globally (e.g. '12' no longer means 'one and two' but
'twelve'). However, even the understanding of positional notation grows gradually: from
mere juxtaposition (numerals are written next to each other without regard to relative
position), through a chronological stage (the order of production prevails over the relative
position), to a final conventional level.

The above discussion of number suggests the following description of the understanding
of mathematical concepts:

Procedural understanding refers to the acquisition of explicit logico-mathematical
procedures which the learner can relate to the underlying preliminary physical concepts
and use appropriately.

Logico-mathematical abstraction refers to the construction of logico-mathematical
invariants together with the relevant logico-physical invariants (as in the abstraction of
cardinal number and ordinal number), or the reversibility and composition of
logico-mathematical transformations and operations (e.g. subtraction viewed as the
inverse of addition; strings of additions reduced to fewer operations through
composition), or as generalization (e.g. commutativity of addition perceived as a property
applying to all pairs of natural numbers).

Formalization refers to its usual interpretations, that of axiomatization and formal
mathematical proof which, at the elementary level, could be viewed as discovering
axioms and finding logical mathematical justifications respectively. But two additional
meanings are assigned to formalization, that of enclosing a mathematical notion into a
formal definition, and that of using mathematical symbolization for notions for which
prior procedural understanding or abstraction already exist to some degree.
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As can be seen from the first two definitions above, the understanding of a mathematical
concept must rest on the understanding of the preliminary physical concepts. We thus
end up with a two-tiered model of understanding. However, this does not imply that
the understanding of a mathematical concept needs to await the prior three levels of
understanding of the preliminary physical concepts. For instance, our research shows that
kindergartners master counting procedures and the formalization of number well before
they perceive all the invariances of plurality and position. Nevertheless, due to the very
definition of logico-mathematical abstraction, thiscomponent part of understanding cannot
occur without the prior logico-physical abstraction of the preliminary physical concepts
The non-linearity of our model is expressed by the various arrows in the following
diagram:

UNDERSTANDING OF PREUMINARY PHYSICAL CONCEPT
Logico-physicalIntuitive ff..Logico- physicalunderstanding abstractionunderstanding

t
Logico-math,

*Logico-math.procedural .formalization
understanding abstraction

UNDERSTANDING OF EMERGING MATHEMATICAL CONCEPT

Figure 1. The two-tiered model of understanding

Two further important changes in the model need to be brought out. The first one
pertains to our definition of 'formalization'. Whereas in our earlier models we required
prior abstraction in order to recognize formalization as comprehension, we have now
loosened this restriction to include procedural understanding. For instance, when sending
a numerical message, the child may write out the whole sequence of digits and this can
be considered as a formalization of the counting procedure. The other change is more
general. We have avoided using the word 'level' to describe the understanding of
mathematical concepts and replaced it with the expression 'constituent part' in order to
prevent an overly hierarchical interpretation.

The following tables summarize the criteria used to assess the child's understanding of
natural number:
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Table 1. Understanding of preliminary physical concepts of number

INTUITIVE
UNDERSTANDING

PROCEDURAL
UNDERSTANDING
(LOGICO-PHYSICAL)

ABSTRACTION
(LOGICO-PHYSICAL)

Plurality:

Visual determination 1-1 correspondence Invariance of a
of more, less, many,
few, as many

used to generate a set
that has more, less,
as many as, one more

single set wrt
dispersion,
displacement within

than a given set a given space,
rotation, elongation,
the non-visibility of
some of its elements.
Invariance of
plurality in
Piagetian test

Position:

Visual determination 1-1 correspondence Invariance of
of before, after,
between, at the same

used to generate an
ordered set subject

position of an object
in a single row when

time, first, last to positional
constraints (before,
after, at the same

the row is elongated,
when some of its
elements are visible.

time) Invariance of
position of two
corresponding objects
when one row is moved
forward.

Variability of the
position (f an
object in a row when
the first element
of the row is
removed.
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Table 2. The understanding of number

PROCEDURAL
UNDERSTANDING
(LOGICO-MATHEMATICAL)

ABSTRACTION
(LOGICO-MATHEMATICAL)

FORMALIZATION

Counting from 1; Cardinal number: Ability to recognise
from 1 and stopping uniqueness of a numeral and
at a given number; cardinality; generate a
from a given number invariance of card corresponding set of
M; from a given of a row wrt the objects or identify
number M and direction of the an object of
stopping at 1 given count; corresponding rank;
number N>M; backward perception of the ability to represent
recitation from a invariance of the cardinality of a
given number; from a plurality and quotity set:
given number N and of a single set wrt - by drawing an
stopping at a given dispersion, wrt equivalents set of
number M<N elongation, wrt the pictures of the

non-visibility of objects
Double-counting some elements; - by putting down an

perception of the equivalent Let of
Recitation of the N invariance of tally marks
number -words plurality and quotity - by writing out the
following a given of two equal rows equivalent sequence
number-word; when one of them is of numerals

elongated; - by writing a
Recitation from A synthesis of numeral as the
to B>A, keeping counting-on and cardinal of the set;
track of how many cardinality. ability to write the
number-words are rank of an object
pronounced; Ordinal number: in a given row;

perception of the Positional notation
Backwards recitation variability of (for those who can
of the N number- position and ordity recognize or write
words preceding a of an object when the two-digit numbers)
given one; first object of the - as juxtaposition

row is removed; - chronologically
Backwards recitation perception of the - conventionally
from B to A, keeping invariance of
track of how many position and ordity
number-words are of a single set wrt
pronounced. elongation, or the

non-visibility of
some of its elements;
perception of the
invariance of
position and ordity
of two corresponding
objects when one row
is moved forward.
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By way of conclusion

The construction of a fundamental concept in mathematics involves many different ideas
that need to be related to each other into some kind of cognitive grid. As opposed to the
acquisition of isolated parcels of knowledge, the development of fundamental
mathematical concepts involves linking together several different notions into some
organic whole forming some kind of cognitive matrix. But all this knowledge needs to
be significant and relevant. This can be achieved only when it can be related to
problem-situations, that is, situations in which this knowledge provides answers to some
perceived problem. For instance, what would be the point in learning the sequence of the
number words unless these were used to answer questions about cardinality and rank?
We use the expression 'conceptual scheme' to convey both the idea of a cognitive grid
or cognitive matrix, as well as the relevant problem-situations.

As can be inferred from the theoretical part of our paper, our intention has been to study
the learner's construction of a conceptual scheme and not just a part of it. It is with this
objective in mind that we have developed our models of understanding. These models
were to provide a frame of reference in which we could follow each learner's
construction. In this sense, our models can be called 'epistemological'. Of course, this
type of work actualizes what is meant by a constructivist approach to mathematics
education. For instance, since the acquisition of fundamental concepts taught in primary
school mathematics require two or three years, the conceptual analyses obtained by using
our models provide the teachers with an overview of a given conceptual scheme. Without
diminishing the importance of mathematical procedures, our models situate these in a
broader context and emphasize the thinking processes involved. We thus realize a
Lakatosian (Lakatos, 1976) perspective in the co, xt of concept formation.
Our latest model of understanding suggests a basic structure that distinguishes between
a first tier dealing with preliminary physical concepts and a second tier involving the
emerging mathematical concept. This distinction is somewhat analogous to the one Piaget
makes between 'simple' abstraction (or 'physical' abstraction) based on the properties
of objects, anti 'reflective' abstraction (or logico-mathematicar abstraction) that is based
on the coordination of actions or operations. This distinction can be justified as long as
actions and operations are in the mental domain. However, one cannot justify it as
readily when the actions and operations are carried out on concrete objects. In fact,
Piaget has acknowledged this when he suggested two forms of reflective abstraction:

We will speak in this case of "pseudo-empirical abstractions" since the information is
based on the objects; however, the information regarding their properties results from the
subject's actions on these objects. And this initial form of reflective abstraction plays a
fundamental psycho - Heretic role in all logico-mathematical learning, as long as the subject
requires concrete manipulations in order to understand certain structures that might be
considered too 'abstract'. (Reset, 1974, p.84, our translation)

The existence of two tiers in our model takes into account the subject's action on his or
her physical environment. The two forms of reflective abstraction are comparable to the
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two aspects of understanding in our model: Piaget's pseudo-empirical abstraction is
equivalent to our logico-physical abstraction, his logico-mathematical abstraction is the
same as the one we mention in our second tier.

Our new model has several pedagogical implications. it links up explicitly the children's
mathematics to their physical world and thus strongly suggests using the latter as a
starting point in the construction of their mathematical concepts. One cannot
over-emphasize the importance of this approach, for Ginsburg's work (1977) has brought
to light the gap that may exist in the children's mind between their school mathematics
and their 'informal' mathematics, that is, those acquired outside of school. The informal
knowledge that Ginsburg identifies as System 1 corresponds to what we call 'preliminary
physical concepts'. Hence, with it3 two tiers, our model encompasses the two forms of
knowledge.

Other implications of a more practical nature involve applications to instruction and
evaluation. While our model of understanding is definitely not a model of instruction,
nevertheless, its use kr the analysis of a conceptual scheme brings out several aspects of
understanding that are often neglected. For instance, few teachers or textbooks assign to
the ordinal aspect of number the importance it deserves. Moreover, logico-mathematical
procedures are often introduced prematurely, thus neglecting the prior development of
logico-physical procedures. Activities that may provide the children with the possibility
of achieving some degree of abstraction, at both tiers, are usually ignored. Following
the analysis of a conceptual scheme, teachers can develop tasks related to every aspect of
understanding of a given concept. They could thus present to the children a far broader
range of activities whose complementarity adds up to a much richer cognitive
environment.

Such analyses also provide a frame of reference for the evaluation of a child's
knowledge. They enable the teacher to assess the shortcomings in his or her background.
For instance, a child who cannot recite the number words backwards will not be able to
deduce the new rank of an object in a row following the removal of one of the preceding
objects. They also enable the teacher to verify if appropriate linkages have been made,
if different aspects of a conceptual scheme have been integrated. For example, the child
who can count-on from a given rank in a row of chips, but cannot tell the cardinality of
the row, has not yet achieved a synthesis of the counting-on procedure and the notion of
cardinality.

We do not claim that this model will be suitable to describe the understanding of all
mathematical concepts. Up to now we have applied it successfully to the analysis of the
addition of small numbers (Herscovics & Bergeron, 1989) and early multiplication
(Nantais & Herscovics, 1989). Heraud (1987, 1989) has applied it to length and the
measure of length, to surface and the measure of surface (area). Dionne and Boukhssimi
(1989) have applied it to algebraic concepts: to physical point and algebraic point
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(coordinates); to the physical notion of steepness and to the measure of steepness (slope);
to physical straight line and to linear equation.
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Introduction'

In a companion paper, "A model to describe the construction of mathematical concepts
from an epistemological perspective", we presented a two-tiered model that could be used
to follow the evolution of the child's understanding. The first tier dealt with the physical
pre-concepts of the notion involved and consisted of three distinct levels: intuitive
understanding, logico-physico procedural understanding, and logico-physical abstraction.
The second tier described the comprehension of the emerging mathematical concept and
involved three component parts: logico-mathematico procedural understanding,
logico-mathematical abstraction, and formalization. This model was then applied to
identify criteria that might be used to characterize each of the six aspects involved in the
understanding of natural number.

Initially, each of the six components of understanding of natural number was the subject
of an assessment study. Several of these studies have been reported. Two papers have
dealt with numerical procedures (Bergeron, A., Herscovics, N., & Bergeron, J. C., 1986
Herscovics, N., Bergeron, J. C. & Bergeron, A., 1986a). Results on different tasks
dealing with logico-physical abstraction of plurality and logico-mathematical abstraction
of number have also been reported (Herscovics, N., Bergeron, J. C. & Bergeron, A,
1986b). The kindergartner's symbolization of numbers has been studied and discussed
(Bergeron, J. C., Herscovics, N. & Bergeron, A., 1986). Following these assessment
studies which were carried out with different groups of kindergartners, we experimented
all the different tasks on the same children in four case studies (Herscovics, N.,
Bergeron, J. C. & Bergeron, A., 1987; Bergeron, A., Herscovics, N.,
& Bergeron, J. C., 1987).

However, to identify some general tendencies in the children's construction of number,
a few case studies were not sufficient. This is why we extended our study to a larger
group of kindergartners. We first experimented the tasks on the preliminary physical
pre-concepts with a group of 30 Montreal kindergartners (Bergeron & Herscovics, in
press). The following year we were ready to investigate both levels of our two-tier model
with another group of French speaking Montreal children. And to determine if the
cognitive structures observed here were comparable to those of other urban children from
a different cure but with the same language or from the same culture but speaking
another tongue, kindergartners from Paris, France, and Cambridge, Mass., were also
assessed.

The samples used in our study involved 29 Parisian kindergartners of average age 5:8
whose school was situated in a lower socio-economic neighbourhood (lower middle class
and working class); 30 kindergartners of average age 5:10 whose school was located in
a lower socio-economic neighbourhood in Cambridge, Mass.; 14 of these children were

1
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in regular Masses whereas 16 of them were following an activity oriented program for
early childhood based on Mary Baratta-Lorton's Mathematics Their Way (1976); 32
kindergartners of average age 6:2 from 4 different schools in the Montreal area, two
being situated in higher socio-economic sut arbs and two located in lower socio-economic
neighbourhoods. For the overall project, which dealt with all the different aspects of
understanding number, three to four individual interviews lasting on average 30 minutes
were carried out with average children selected by the school authorities. Here are some
highlights of this international study.

Enumeration skills

Pre-requisite to any mastery of the enumeration procedures is the child's memorization
of the number word sequence. However, prior research has shown that a majority of
kindergartners perform better on the enumeration of a large set of objects than on the
mere recitation of the number-word sequence (Bergeron, A. et al. 1986). Thus in order
to assess the extent of their knowledge of the number-word sequence, a set of 76 chips
was provided with instructions to "Count as far as you can". The following table
indicates the distribution of their enumeration skills.

Table 1. Enumeration skills

City N 0-9 10-19 20-29 30-39 40-49 50-59 l 60-69 70+ Ave.

Cambridge

Regular classes 14 0 0 3 3 0 1 3 4 53.7
Lorton classes 16 0 0 0 0 2 1 1 12 70.8

Totals 30 0 0 3 3 2 2 4 16 62.8

Paris 29 1 10 6 5 1 3 0 3 32.4

Nentreml

Higher Soc. Ec. 16 0 4 1 4 1 0 4 2 45.1
Lower Soc. Ec. 16 1 3 4 4 0 1 1 2 37.3

Totals 32 1 7 5 8 1 1 5 4 41.2

What is striking at a first glance is the similarity between the Parisian and Montreal
samples, this, in spite of the fact that the French children were six months younger than
the Canadian ones. But even more striking is the shift in the distribution of the
Cambridge children. Not a single child is in the 0-19 range, in contrast with the 37%
and 25% in the other two cities. Moreover, half the Cambridge children can count
beyond 70, compared to 10.3% and 12.5% in the other two cities.

The distributions provide another interesting fact. It seems that for the Cambridge regular
classes, as well as for the Parisian children and the two Montreal groups, the number 39
constitutes a temporary limit point: 42.9%, 75.8%, 56,3% and 75.0% respectively are
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within the 0-39 range. Perhaps this might indicate that these children have not yet
learned the sequence of multiples of ten. That two decades, from 20 to 29, and 30 to 39,
are sufficient for the generalization of the decade structure, seems evident from the fact
that when the children learn their mtetiples of ten, their range jumps up to the sixties and
seventies. Few of them remain in the 40 to 59 range.

A greater frequency of the Parisian children in the 50-59 range might be explained by
a lack of knowledge of the multiples of ten beyond 50. One might conjecture that the 5
Montreal children in the 60-69 range (16.7%) have difficulties with 70 since in French,
the tens pattern changes (..., cinquante, soixante, soixante-dix, ...). However, the data
does not bear this out, since in the regular Cambridge classes, 3 out of 14 children
(21.4%) are in the same range.

Understanding countingon

Fuson, Richards & Briars (1982) report that when the number word sequence becomes
a breakable chain, children can start counting-up (reciting-up) from a given number and
that this skill translates into a cardinal operation, that of counting-on in the context of
addition (p.52). In our study, we have experimented numerical tasks requiring
counting-on in non-additive situations involving both cardinal and ordinal contexts.

Our results indicate that 84 of the 91 kindergartners could recite up from a given number
and that most of them did not even need a running start. Comparing the performance in
the three cities shows that nearly all (90%) the Cambridge children can start at 12, that
about two thirds of the Montreal children (68.8%) , and about half of the Parisian sample
(48.3%) can also do so. However, when asked to recite up starting from 6, 100% of the
Cambridge children, 93.8% of the Montreal ones, and 75.9% of the Parisian ones
succeeded. These differences can easily be explained by the emphasis on counting found
in the Cambridge school and by the age difference of the Parisian children who were six
months younger than the Montreal ones.

Having assessed the children's reciting-up skills, sore special tasks were designed to
determine their spontaneous use in the solution of cardinal and ordinal problems.
Initially, these tasks were similar to the one used by Steffe, von Gla:Ivrsfeld, Richards and
Cobb (1983). Each child was presented with a row of 13 chips glued to a cardboard,
the interviewer stating:
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Here is a cardboard with some chips. Look, I'm putting it in this bag
(while inserting it 'n a partially opaque plastic bag)

Figure 1: Inserting row in bag

Look, six chips are hidden here (indicating the opaque part)

Can you tell me how many chips are in the whole bag?

The results indicate that with the exception of the Lorton classes, the predominant
procedure used was that of figural counting (counting first the hidden objects by pointing
at each imagined unit and then continuing the count with the visible part): 50% of the
children used it (50.0%, 48.3%, 43.8% and 56.3% respectively in the usual order of
presentation).

Following this cardinal task, the same material was used for an ordinal task that required
locating the chip corresponding to a given rank. The interviewer asked:

Remember, there are six chips that you can't see. Here is the first one
(pointing out the one on the extreme left of the hidden part)
Can you put this little arrow next to the ninth chip?

The data show that once again, with the exception of the Lorton classes, figural counting
is the most common procedure: 78.6%, 65.5%, 62.5% and 75.5% respectively in the
usual order of presentation. Although most children can recite-up, the use of the
counting-on procedure is relatively low, except for the Lorton classes. Less than a third
of the children who possess the reciting-up skill think of using it in the above tasks,
21.4%, 4.5%, 31.3% and 28.6% respectively for the cardinal task and 21.4%, 27.3%,
31.3% and 28.6% respectively for the ordinal tasks.

These results bring into question the meaning of counting-on for most of these children.
To investigate their interpretation, a simple task in which they were asked to count-on
was proposed. The interviewer presented them with 11 chips glued to a cardboard. This
cardboard was then inserted in a partially opaque plastic bag so that 4 chips would no
longer be visible:
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Here is a cardboard with chips glued to It

And I'm putting them in a bag

Figure 2: Counting-on a partially hidden row

Look, there are some hidden chips. When I counted them, I started from here
(pointing to the first hidden chip on the left) and when I got here (putting a small arrow
next to the sixth chip) this was the sixth. Can you continue counting from here on,
from the sixth one?
When the counting was completed:
Can you tell me how many chips are in the whole bag?

The results show that out of 87 subjects who could count-on (compared with 82 who
could recite up), only 33 of them (37.9%) could tell how many. Thus a full 60 % could
not! Of course, this brings into question the children's interpretation of the counting-on
procedure. It is evident that they have not yet been able to achieve a synthesis of the
counting-on procedure and their cardinality scheme. The surprisingly poor performance
on this task might be explained in terms of three conjectures: (1) Perhaps it is the
non-visibility of some of the objects that affects the children's capacity to relate the
counting-on procedure with the cardinality of the set; (2) Perhaps it is their need to still
establish a one-to-one correspondence between the number-words and the objects; (3)
There might be a gap in the children's integration of the cardinal and ordinal aspects of
number, Further details on the procedural understanding of number appear in Bergeron
& Herscovics (1989).

Logico-mathematical abstraction of cardinal number

Several different tasks were used to assess the children's logico-mathematical abstraction
of cardinal number. We provide here details of the two most difficult tasks as well as an
overview of the results obtained for the six criteria.

Piagetian tasks. One of the tasks used to assess the invariance of cardinality was the
classical Piagetian test on the conservation of plurality and the Greco modification
mentioned earlier. The following table shows the results obtained:
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Table 2. Success rates on Plagetian tasks

City Invariance

of plurality
Invariance

of quotity

Invariance

of both

Cambridge

Reg. classes (n14) 8 (57.1%) 12 (85.7%) 8 (57.1%)
Lorton el. (nm16) 16 (100%) 16 (100%) 16 (100%)

Tots s 24 (80.0%) 28 (93.3%) 24 (80.0%)

Paris (n29) 7 (24.1%) 21 (72.4%) 7 (24.1%)

Nontrial

Hi soc.ec. (n16) 13 (81.3%) 14 (87.5%) 12 (75.0%)
Low soc.ec. (n16) 8 (50.0%) 12 (75.0%) 7 (43.8%)

Totals 21 (65.6%) 26 (81.3%) 19 (59.4%)

Results indicate a maximal rate of success among the children following the
Barrata-Lorton program. On the invariance of plurality, the sample from the regular
Cambridge classes compares with the sample from the two Montreal lower socio-
economic neighbourhoods. The sample of Parisian children achieves a much lower rate
(24.1%). This can be attributed in part to their younger age. However, this result is
fairly consistent with their earlier performance on the elongation of a single row, for their
success rate there was about 25% lower than the lowest results obtained in Montreal.

Invariance with respect to the visibility of the objects. In another set of tasks dealing
with the invariance of cardinality, children were given in the first interview a row of 11
chips glued on a piece of cardboard. They were told: "Here is a large cardboard with
little chips glued to it. Look, I'm putting the cardboard ina bag (the interviewer inserting
the cardboard in a transparent bag). Good, are all the chips in the bag?". Following
confirmation: "Look, I'm putting a plastic strip in the bag (the interviewer inserting a
plastic strip with an opaque part large enough to cover three chips). And now, are there
more chips in the bag, less chips, or the same number as before?". Usually in the second
interview, this task was repeated but the children were asked to count up the number of
chips before they were inserted in the bag. The following table shows the results
obtained:
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Table 3. Success rates on partially hidden row

City Invariance

of plurality
Invariance

of quotity
Invariance

of both

Cambridge

Reg. classes (nl4) 1 ( 7.1%) 10 (71.4%) 1 ( 7.1%)
Lorton cl. (n16) S (31.3%) 14 (87.5%) S (31.3%)

Totals 6 (20.0%) 24 (80.0%) 6 (20.0%)

Paris (n29) 8 (27.6%) 6 (20.7%) 1 : 3.4%)

',patriot

Hi soc.ec. (n16) 3 (18.8%) 13 (81.3%) 2 (12.5%)
Low soc.ec. (nl6) 0 12 (75.0%) 0

Totals 3 ( 9.4%) 26 (78.1%) 2 ( 6.3%)

Whereas the results on the invariance of quotity are similar in Cambridge and in
Montreal, their discrepancy with those obtained in Paris is hard to explain. But it is the
uniformly low results on the invariance of plurality that are most astonishing. They
indicate that among most kindergartners, including those in the Lorton program, the
visibility of the objects is still primordial. This is not a question of the permanence of
the objects since it is acquired well before the age of five. Nor is it a question of the
enumerability of the partially hidden set, as evidenced by the invariance of quotity.
Visibility of the objects affects these children's conception of plurality.

In order to have an overview of the children's understanding of cardinal number, the
results (in percents) obtained on the various tasks are summarized in the following table,
invariance of cardinality signifying the invariance of both plurality and quotity:

Table 4. Hierarchy of criteria for cardinality

Invariance Cambridge
Lorton *.egular

classes classes

Paris Montrdel

Lower Higher
income income

Uniqueness of card. 93.8 100. 96.6 100. 93.8
Inv.wrt direction of count 100. 92.9 86.2 81.3 100.
Inv.wrt elongation of row 93.8 71.4 48.3 75.0 81.3
Inv.wrt dispersion of set 93.8 57.1 65.5 62.5 87.5
Inv.wrt Piegetien tests 100. 57.1 24.1 43.8 75.0
Inv.wrt visibility of objects 31.3 7.1 3.4 0. 12.5

What is most striking about this table is that apart from the Parisian results obtained on
tasks involving the elongation ofa set, the basic hierarchy is similar in the three samples.
By and large, the uniqueness of the cardinality of a set and the invariance with respect to
the direction of the count seem to be achieved in this age group. The Cambridge and
Montreal results on the elongation of a row and on the dispersion of a set are similar in
the two regular classes (71.4%) and the two lower income classes (75.0 %). Compared
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with the dispersion of a set, the Piagetian tests are more difficult for both Parisian and
Montreal children. The invariance with respect to the visibility of the objects has the
lowest rate of success in all groups.

Also remarkable is a %. aparison of the success rates in the three middle columns. Again,
if the odd results obtained in Paris on the elongations tasks are ignored, very similar rates
are found among the Cambridge children from the regular classes, the Parisian children
(who also come from a lower middle class and workingclass area), and the two Montreal
classes situated in comparabl.' neighbourhoods.

Logico-mathematical abstraction of ordinal number

Four different criteria were used to assess the logico-mathematical abstraction of ordinal
number. We present here the details on the tasks dealing with the variability of ordinality
and its invariance with respect to the visibility of the objects and with respect to
translation. We also provide an overview of the results obtained for the four criteria.

Variability of the rank. In order to determine if children perceived the variability of
the rank of an object with respect to the number of elements preceding it, we used the
following task. A set of 8 little cars of different colours were aligned in a row.

a 6_11I

0 0 0

green white black yellow blue

I

red

Figure 3: Variability of rank

Asa&

brown orange

Once a common vocabulary was established using the word "number" in an ordinal sense
(Herscovics & Bergeron,1988), we told the following little story: "The parade is now
stopped because the green car broke down. The tow truck is coming to get it (the
interviewer removing the green car), and it won't come back in the parade. Now look
at the little blue car. Do you think that the blue car still has the same number as before
in the parade or do you think that its number has changed?"

In the second interview, the variability of rank was investigated by repeating a similar
question but with an important addition. As soon as the parade of cars was laid out in
front of the children (in the same orderas before), they were asked "Can you tell me the
number of the brown car?". Once the children had found (by counting) that it was in
seventh position, they were again told that the green car (the first one) had broken down,
and the interviewer then removed it. At this point they were asked: "Now, without
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counting, can you tell me the number of the brown car?" while screening the parade with
both hands or the forearm to prevent the possibility of counting. The following table
shows the results obtained :

Table S. Success rates on variability of rank

City permived
change of

blue car's

position

were able

to find new

rank of

brown car

succeeded

both

tasks

Cambridge

mimmmq

Regular classes (n14) 12 (85.7X) 5 (35.7%) 6 (28.6%)
Lorton classes (nmi6) 14 (87.5%) 13 (81.3%) 12 (75.0%)

Totals (n30) 26 (86.7X) 18 (60.0%) 16 (53.3%)

Paris (n29) 25 (86.2%) 16 (55.2%) 15 (51.7C)

liontrdel

Nigh soc -econ (n16) 14 (87.5%) 16 (87.5%) 13 (81.3%)
Low soc -econ (n16) 15 (93.8%) 10 (62.5%) 10 (62.5%)

Totals (nm32) 29 (90.62) 26 (75.0%) 23 (71.9%)

Column 1 shows that without any counting, most children perceived that the position of
the blue car had changed. However, the success rates shown in the second column vary
widely. A low of 35.7% is obtained in the regular Cambridge classes. Results found in
the Parisian group and the two Montreal classes in lower socio-economic neighbourhoods
are comparable (55.2% and 62.5% respectively) as well as for the Lorton classes and the
two other Montreal classes (81.3% vs 87.5%). These comments apply to the third
column, when both tasks are considered.

These results are somewhat surprising. Except for the Parisian children, it is difficult to
explain the poorer results obtained in finding the new rank of the brown car. Among the
French kindergartners only 18 of them (62%) could recite the number-word sequence
backwards from at 1,4st 6. Thus that only 55% succeeded in identifying the brown car's
new rank (6) is reasonable. But for the Cambridge and Montreal samples, absolutely all
children were able to recite backwards. Clearly, this indicates that the cognitive problem
at hand is much deeper than that of mastering recitation skills. Indeed, the very
integration of cardinality and ordinality is at stake here since by removing the head car,
the number of cars preceding the brown car is reduced by one and this should induce a
corresponding change in the perception of ordinality.

Invariance with respect to the visibility of the objects. A task introduced during the
first interview dealt with the invariance of position when part of the set is hidden. A row
of 9 little trucks was drawn on a cardboard, each truck coloured differently. The children
were told: "Look, here is a parade of trucks. Can you show me the white truck?" (in
sixth position). After it was duly pointed out, the interviewer announced "The parade
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must now go under a tunnel" and then proceeded to slide the cardboard under the tunnel
in such a way that part of the first truck was still visible but three trucks were hidden.
The children were then asked: "Do you think that the white truck has kept the same
number in the parade or do you think that it now has a different number?"

tunnel

Figure 4: Trucks in tunnel

The above task was repeated in the second interview with an important variation. The
children wc low asked to find the rank of the white truck. After they had counted to
determine ink (sixth), the parade was moved forward into the tunnel and the
interviewer .,seed again "Now, can you tell me the numb& of the white truck in the
parade?". The following table provides the data obtained with this task assessing the
invariance of position and of ordity:

Table 6. Success rates on partially hidden row of trucks

City Invariance

of position

Invariance

of ordity
Invariance

of both

Cambridge

Regular classes (n14) 4 (28.6%) 6 (42.9%) 3 (21.4 %)
Lorton classes (n16) 11 (611.8%) 12 (75.0%) 8 (50.0%1

Totals (n30) IS (50.0%) 18 (60.0%) 11 (36.7%)

Paris (n.29) 6 (20.7%) 1U Z3A.5%) 5 (17.2%)

Montrdel

High soc-econ (flid) 10 (62.5%) 12 :75.0%) 9 (56.3%)
Low soc-econ (n16) 5 (31 3%) 7 (43.8%) 3 (18.8%)

Totals (n.32) 15 (46.9%) 19 (59.4%) 12 (37.5%)

An examination of the results in the first column indicates that the number of children
who think that the white truck has kept the same position in the row is comparable in the
regular Cambridge classes, the Parisian children, and the Montreal kindergartners from
the two schools situated in a lower socio-economic neighbourhood. The results of the
other Montreal children compare with those of the Lorton classes. On the invariance of
ordity alone as well as on the invariance of ordinality based on both position and ordity,
again the results regroup themselves in two comparable sets, the Lorton classes and those
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of the Montreal children from the higher socio-economic areas in one set, and the other
three samples in the other set.

Invariance with respect to translation. The last set of tasks we developed in our
assessment of ordinal number were somewhat similar to the Piagetian conservation tests
for plurality and quotity , for they involved the comparison of two parallel rows. .The
interviewer aligned a row of 9 identical cars, and asked the children "Would you make
a parade just like mine and next to it?" while handing over another 9 cars. Then using
a blue coloured sheet of paper (the river) and a small piece of cardboard to represent a
ferry she explained: "The parades must cross the river on a little ferry boat. But the ferry
can only carry two cars at a time, one car from each parade. When we are ready, we
take one car in my parade (putting her lead car on the ferry), and one car from your
parade" (asking the children to put their lead car on the ferry). The ferry then crossed
the river with the two cars, unloaded them, and came back for two more:

01040111AAAA.W.A.A..".....ZI

ANOIMAAAAAAW
ANIAMAAAAMAO
"041,0011
AVIAVIANWIAIN
AAAAAMOAAAAAArr........

Figure 5: Two parades crossing a river

The cars were then put back in their initial position and the children were told: "Now I'm
putting this little arrow on this car (the seventh car in the interviewer's row). Can you
put this other arrow on the car in your parade which has the same number as mine?"

,o,AMAAANNAIAA410
"MAIKAANYVVVAANNO1040 47!:, i;. 4:;.c;..cti.=:.=:.cl. ict../1"00 %IRMA/VOW/1M

c;- i;.(::.c,c;:.,:.=:.ci. c;5:.

AAMMAIROAAAAAO
AA00010
00110AVAANIAAM
AAAANVIAMOW00h*A011

Figure 6: Two cars having the same rank
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Once this was done, the interviewer announced "Now look, the parades move on" while
moving the child's parade a small distance and moving her own parade somewhat further
by the lengin of two cars:

c c;E:-
4* C C;S:* C; C;: C;* C1* C:St`

Figure 7: "Will the two cars cross at the same time?"

The children were then asked: "Do you think that the two cars with the arrows will cross
the river at the same time?" Following their answer, they were asked to show the
interviewer how the two parades were to cross the river in order to verify that they were
aware that the cars had to be ferried in pairs. Following the above task, the invariance
of ordity was immediately assessed. The next table provides data on the invariance of
position and on the invariance of ordity:

Table 7. Success rates on translation task

City Invariance
of position

Invariance
of ordity

Invariance
of both

Cambridge
Regular classes (n=14) 2 (14.3%) 9 (64.3%) 2 (14.3%)
Lorton classes (n=16) 4 (25.0%) 12 (75.0%) 3 (18.8%)

Totals (n=30) 6 (20.0%) 21 (70.0%) 5 (16.7%)

Paris (n=29) 2 (6.9%) 18 (62.1%) 2 (6.9%)

Mont:414'1

High soc-econ (n=16) 1 (6.3%) 11 (68.8%) 1 ( 6.3%)
Low soc-econ (n=16) 3 (18.8%) 10 (62.5%) 2 (12.5%)

Totals (n=32) I 4 (12.5%) 21 (65.6%) 3 (9.4%)

The results on the invariance of ordity with respect to translation vary but little between
the groups. The very low results on the invariance of position induce a very low rate of
success on the invariance of ordinality as shown in the third column. Quite clearly, even
the children in the Lorton classes and in the Montrtal classes in higher socio-economic
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neighbourhoods do not manage to overcome the visual effect of the translation of one of
the rows.

In order to have an overview of the children's understanding of ordinal number, the
results (in percents) obtained on the various tasks are summarized in the following table,
variability and invariance of ordinality signifying the variability and invariance of both
position and ordity:

Table 8. Hierarchy of criteria for ordinality

Cambridge Paris Montrial
Lorton Regular
classes classes

Lower Higher
SOC11C SOC-6C

Variab. of ordin. no 75.0 28.6 51.7 62.5 81.3
Inv.wrt elongation 100. 64.3 27.6 56.3 68.8
Inv.wrt visibility 50.0 21.4 17.2 18.8 56.3
Inv.wrt translation 18.8 14.3 6.9 12.5 6.3

Again, as with cardinality, there are marked distinctions in the performance of the Lorton
classes as compared with the regular Cambridge classes and important differences between
the two Montreal samples.

As was the case with cardinal number, the similarities are quite striking. We find
essentially the same hierarchy in the last three columns. For the two Cambridge groups,
the success rates on variability and invariance with respect to elongation are inverted when
compared with the other groups. Aside from this difference, the general hierarchy is the
same. As mentioned earlier, the low performance of the regular Cambridge classes on
the variability of ordinal number is somewhat surprising. The Parisian children's poor
performance on the invariance of ordinal number with respect to elongation is similar to
their poor performance on the other comparable elongation tasks dealing with the
invariance of cardinal number. Regarding the comparison of the Lorton classes with the
Montreal children in the schools located in higher socio-economic subuk:)s, the similarity
is still quite strong.

By way of conclusion

A most important conclusion implied by the international study on the construction of
natural number is that kindergartners in Western urban environments evolve similar
cognitive structures, despite some cultural differences, despite linguistic differences. This
is evidenced by the hierarchies we uncovered among the different criteria used to assess
each component part of understanding. It is particularly true for the three groups that
were comparable in terms of classroom activities and socio-economic background. But
this remains true for the other two groups, those Cambridge classes using activities based
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on the Baratta-Lorton program and those Montrdal children belonging to classes in schools
situated in wealthier neighbourhoods. Although these last two groups had markedly
higher success rates on the various tasks, the hierarchy of the success rates was essentially
the same as for the other three groups.

In terms of logico-mathematico procedural understanding, Table 1 shows that, with the
exception of the Lorton classes, the other four groups were still developing their counting
skills and that in each group the number 39 constitutes a temporary limit point. Again,
in each of these four groups the predominant procedure used to solve cardinal and ordinal
problems in the context of a partially hidden row was figural counting, while less than a
third of the children who could recite up from 6 used counting-on.

Regarding the children's abstraction of cardinality, Table 4 shows that for the regular
Cambridge classes, the Parisian classes and the Montrdal pupils in the lower income
group, not only is the hierarchy of the criteria essentially the same, but the success rates
are also comparable if we except the Parisian results on the tasks involving elongation.
For the Montrdal children in the higher income group, if we ignore a difference of 6%
due to a difference of one child out of 16, the first two criteria are met by all, the next
two criteria meet with comparable success rates (81.3% and 87.5 %). And thus, the
hierarchy obtained is essentially the sant* as for the three previous groups. For the
Lorton group, since they all meet the first five criteria, one cannot order them.
Nevertheless, even they have not achieved the invariance of cardinality withrespect to the
visibility of the objects. Regarding the abstraction of ordinality, Table 8 shows that,
except for the inversion of the first two criteria for the Cambridge classes, all five groups
indicate the same hierarchy.

Our critical analysis of the children's performance may have obscured the fact that these
kindergartners possessed a surprisingly extensive knowledge of number. For instance,
nearly all could recite up from either 6 or 12, as well as recite backwards. Fuson et al
(1982) have shown that such children are dealing with the number word sequence. as a
bi-directional breakable chain. While they did not use counting-on in order to solve
problems in which some of the chips in a row were hidden, nevertheless they showed
great ingenuity in inventing a new procedure, that of figural counting. In terms of
abstraction too, we did not anticipate that nearly all these pupils could perceive the
uniqueness of the cardinality of a set and its invariance with respect to the direction of the
count. But their knowledge was far more extensive than reported in this paper, for almost
all could leave a numerical message indicating the number of objects in front of them.
About half the Parisian children and almost all the North American ones could read and
write numbers beyond 10.

This international study has also brought to light the existence of four unexpected
cognitive obstacles. The first one relates to the task of counting-on from the sixth chip
on a partially hidden row (see Fig. 2). A full 62% of the children who could count-on
were unable to answer the question "How many?". Even the Lorton group did not
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succeed much better (50%). Three possible conjectures that might explain this problem
were suggested in the analysis of the data. A second cognitive obstacle involves the
children's perception of the varier- ty of the rank of an object in a row (see Fig 3).
Table 5 shows that in three of di. five groups, many children still had problems in
determining the new rank of a car following the removal of the lead car.

If the first two obstacles might show evidence of a lack of integration of specific counting
; rocedure 3 (counting-on and counting backwards) into the children's notions of cardinality
and ordinality, the last two obstacles seem to be more of a developmental nature. For
instance, in all five groups, the visibility of the objects affects the kindergartners'
perception of the invariance of cardinality (see Table 3) and to a lesser extent the
invariance of ordinality (see Table 6). A similar interference due to the visual
apprehension of the objects seems to be present in the task involving the translation of a
row of cars (see Figure 7).

Comparing the different results obtained from the two Montreal groups, it is clear that
the overall success rate of the children from the classes in the higher socio-economic
suburbs is greater. We are but mentioning the difference here without any pretence at a
scientific investigation since du objective of our study was to assess the children's
understanding. While we did not control for the quality of teachers, nevertheless it is
well known that quite often, better schools manage to attract better teachers. Moreover,
since officially there is no mathematics program for Quebec kindergartens, teachers are
free to choose their classroom activities, with the result that these may differ both
qualitatively and quantitatively from school to school. Finally, it is also well known that
children in the wealthier neighbourhoods are more likely to experience at home a richer
variety of educational activities. These are all variables that would have to be taken into
account in any investigation of the effect of the pupils' socio-economic background.
However, in our study, the reason for choosing schools in different socio-economic
neighbourhoods was to provide us with a wider variety of subjects.

A comparison of the different results obtained from the two Cambridge groups indicates
much higher success rates for the children following the Baratta-Lorton program. A
closer look at this program shows that it makes extensive use of concrete material, games
and rhythmic body movements, thus touching upon some aspects of the preliminary
physical concepts. Regarding the logico-mathematico procedural understanding of
number, it goes well beyond simple enumeration from 1, and teaches explicitly
counting-on and counting backwards, procedures that are then used primarily in cardinal
tasks. In some of the kindergarten classes, the early arithmetic may even include addition
and subtraction of small numbers. Children are also taught numerals and the conventional
symbolization of the operations. While some of the tasks involved the invariance of
cardinal number with respect to the partition of a set, most of the activities related to
procedural understanding and to formalization. But these activities seem to have had a
marked impact on the children's logico-mathematical abstraction. Table 4 shows that on
the last four tasks dealing with the invariance of cardinality, the Lorton group scored
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much higher than the regular one. This pattern holds for the first three taskson ordinality
listed in Table 8

The results obtained by the Lorton group have serious pedagogical implications. They
bring into question the various government policies specifying that nc mathematical
program ought to be assigned to the kindergarten level. These policies stem from a
laudable desire to allow these children time to play and develop without any curriculum
pressure. However, without confining them into a rigid mathematical program, one can
envisage many numerical activities allowing them to play and develop their mathematical
thinking. But for many kindergarten teachers, these activities are limited to simple
counting tasks. As our conceptual analysis and our international strity have shown,
kindergartners possess intellectual abilities that far exceed those needed o master such
simple procedural skills. In fact, our work suggests that many different numerical
activities could be developed that would enable the child to progress along the different
component parts of the understanding of number.
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I know I've been asked to speak about multicultural influences in mathematics education,
generally, but what I would like to do in this topic group is focus specifically upon
cultural influences among Black, Hispanic, and Native American students. These are
three populations of students which historically have been underachieving and
underparticipating in the area of mathematics and often cultural influences are associated
with their low levels of achievement and participation. Over the past year I have been
working with a project designed to increase the levels of achievement and participation
for Black, Hispanic, and Native American students and to look at cultural influences on
their achievement and participation. Consequently, in this presentation I would like to
discuss this project and our observations regarding the role of multicultural influences.

A review of the literature on the mathematics achievement and participation of Black,
Hispanic, and Native American students contains a great deal of data documenting their
low levels of achievement and participation. There are few studies which look
empirically at possible causes of this low achievement and participation. Until recently,
the only major studies addressing this issue were a clinical study of the mathematical
understanding of Hispanic algebra students focusing on the relationships between language
proficiency and mathematical understanding (Gerace & Mestre, 1982a, 1982b) and an
examination of the role of Black English on the mathematical understanding of Black high
school students (Orr, 1987). More recently, a series of chapters devoted to linguistic and
cultural influences on mathematics achievement has been published (Cocking & Mestre,
1988), although these tend to address opportunities to learn in specific multicultural
teaching contexts as well as the role of language in learning rather than multicultural
influences on mathematical thinking itself. Incidentally, I did not feel that Off made a
convincing case for the effects of Black English on mathematics learning, although her
book is rich with examples of student work demonstrating their difficulties with particular
mathematics concepts.

In our project, we were interested in looking at the relationship between culture and
mathematics achievement. We did believe that Black, Hispanic, and Native American
students were underachieving and underparticipating because they were not being provided
with the kinds of opportunities that would help them construct meaningful mathematical
knowledge. This seemed to fit with the research findings that these populations of
students had little conceptual understanding of many topics in the mathematics curriculum.
We also believed that the reason that these students had little conceptual understanding
was that they were not iving provided with opportunities to explore, discuss, and socially
negotiate meaningful mathematical knowledge. Finally, we believed that since
mathematical knowledge is constructed in a cultural context, there might be some cultural
influences on the mathematical thinking of these students which we hoped would emerge
during the course of the project.

I might add that I think the approach we are taking is a rather novel one considering the
frameworks that are often used to examine the underachievement of Black, Hispanic, and
Native American students generally. During the 1960's, efforts to explain the low levels
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of achievement of these students focused on issues of cultural disadvantage, followed by,
in the 1970's, issues of cultural difference. Now, in the 1980's, issues of effective
instruction for students at risk seems to be the framework for much of this research. I
think it's interesting that the cultural disadvantage and cultural deficit frameworks were
really not all that different. This can be seen if you look at some of the so-called cultural
differences discussed in the literature of that period. For instance, in an article discussing
the relationship between culture and school achievement, a chart entitled "Contrasting
Values and their Effects on Mexican Americans" suggests that the chicano student
"frequently lacxs enthusiasm and self-confidence", "works more effectively in groups;
usually noisy", and "apathetic in school; often embarrassed by deficiency in English and
few successful experiences; may become a dropout" (Instructor, 1972). Oddly enough,
the title of the article is "Building on Backgrounds". In the current framework of
effective instruction, researchers are advocating greater academic learning times with
learning broken down into smaller pieces. In this framework, cultural issues are ignored
completely.

Our project involved examining changes in mathematical thinking of Black, Hispanic, and
Native American middle school and high school students as they progressed through a
Visual Mathematics curriculum (Bennett & Foreman, 1989) as opposed to a more
traditional textbook-based curriculum. This Visual Mathematics curriculum, built around
Math and the Mind's Eye activities developed through an NSF grant (Bennett, Maier, &
Nelson; 1987), is highly student-centred, allows for student exploration and discussion,
and encourages students to construct and share their personal visions of fundamental
concepts in mathematics. We felt that this kind of mathematics instruction would provide
opportunities for underachieving Black, Hispanic, and Native American students to
construct and negotiate mathematical meaning as well as allow any culturally distinct
mathematical views to emerge through their personal visions.

We planned to collect information on attitudes towards mathematics, using the Fennema-
Sherman Mathematics Attitude Scales, and achievement in mathematics using both a
standardized test and an open-ended mathematics test focusing on mathematical concepts
and problem solving, for students using the Visual Mathematics curriculum and students
using the traditional curriculum. In the open-ended test, for example, we asked students
to explain their idea of multiplication and to draw a picture of multiplication. We also
planned to develop case studies of the mathematical thinking of students in each of those
instructional settings through the use of clinical interviews. We were especially hoping
to be able to explore some cultural issues in these interview settings.

This is only the first year of our project and I have to say there have been some
difficulties, the primary one being that the implementation of the Visual Mathematics
curriculum has been quite challenging for many of the teachers. These teachers took a
3-credit course in Math and the Mind's Eye before the project began and, during the
academic year, we have been meeting once a month for an all-day session designed to
provide support as they implement the curriculum. I believe that the challenge lies in the
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fact that teachers are not accustomed to student-centred instruction. In the Visual
Mathematics curriculum, the teacher is largely the problem-poser and the facilitator of
discussion, and it is often impossible to know exactly where the lesson is going to go.
This uncertainty seems to make teachers new to the approach a bit uncomfortable. Also,
as students are encouraged to express their vision of mathematical concepts under
discussion, teachers are often called upon to facilitate discussions about representations
they may have not seen before. Thie also makes teachers a bit uncomfortable. Finally,
we encourage teachers not to "show and tell", but let students try to figure things out for
themselves (with the help of some probing questions from the teacher znd lots of class
discussion). Teachers seem a bit uncomfortable letting students go with their ideas and
sometimes seem to want to show them "the right way". All in all, it is a big change for
most teachers. I will say that when the Visual Mathematics curriculum is working well
it can be very exciting for both teacher and students. We have seen it happen in some
classrooms. Fortunately, our teachers have had enough of these exciting experiences with
the curriculum to keep going and most claim that they could not go back to teaching from
a textbook.

I would like to comment on what we have been seeing in our student interviews thus
far, as this has been our primary vehicle for exploring cultural influences. The students
we have been interviewing have shown very little conceptual understanding of
mathematics topics usually included in the elementary school curriculum. Their facility
with basic mathematical procedures has been quite limited and they seemed to have little
in the way of visual models to help them solve the problems they were asked. We have
seen some changes in students who have been using the Visual Mathematics curriculum.
They seem more apt to say things like "This is how I see it" or "This is how I think
about it". We are seeing a great deal of diversity in the approaches used by these
students although I would have a hard time categorizing those approaches by cultural
background. The only example I can cite that might even remotely suggest a cultural
influence is when a young Native American girl drew several pictures of a measuring cup
to help her think about adding fractions. I should say the questions we were asking were
rather traditional and had a computational focus, for example, asking students to think
about 1/2 + 1/3. However, our intent was to explore how they were thinking about the
problem and we did probe for any contexts in which the problem might be made
meaningful.

Looking back on our beginning efforts to explore cultural influences on mathematical
thinking, I think there are several issues which made our effort particularly difficult. One
is that we were asking questions about school mathematics in the school context. Had ve
moved to a more culturally-relevant out-of-school context and asked questions about
mathematical applications in that context, perhaps we would have found cultural
influences. However, I think a larger problem lies in the area of defining "culture".
Although these students were from several ethnic backgrounds, their affiliation with their
ethnic culture varied tremendously. All of these students were born in the United States
and were to some extent participating in its mainstream culture. Some students seemed
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uncomfortable with their ethnic identity and, for example, corrected us with an Anglified
version of their name when we used its correct pronunciation. For all these students, I
think there were numerous cultural influences such as those associated with television,
contemporary films, rock music, and the many influences associated with the peer culture
of middle school or high school.

As I have tried to think about perhaps better ways to uncover cultural influences on
mathematical thinking, the work that I have found most helpful is a chapter in a recent
Review of Research in Education. The chapter, entitled "Culture and Mathematics
Learning" (Stigler & Baranes, 1988), provides a thoughtful overview of what is known
about the role of culture in mathematics learning. The authors review cross-cultural
research conducted both in and out of schools with both children and adults. In a
discussion of the role of culture in mathematics learning, they suggest that:

As children develop, they incorporate representations and procedures into their cognitive
systems, a process that occurs in the context of socially constructed activities.
Mathematical skills that the child learns in school are not logically constructed on the
basis of abstract cognitive structures, but rather are forged out of a combination of
previously acquired (or inherited) knowledge and skills, new cultural input. Thus,
culture functions not as en independent variable that merely can promote or retard the
development of mathematical abilities, but rather as a constitutive part of mathematical
knowledge itself... In short, we are claiming that culture-specific representations of
number do not merely influence the development of mathematical knowledge, but in fact
remain part and parcel of that knowledge.

This view is similar, I believe, to that of D'Ambrosio in his several discussions of the
concept of ethnomathematics (e.g. D'Ambrosio, 1985). If it is true that culture becomes
and remains "part and parcel" of socially cc nstructtd mathematical knowledge, shouldn't
it be possible to examine the influences of culture in any mathematical context? If it is
true that we need to return to a culturally appropriate context in order to identify those
cultural influences, what would that context be for many of the Black, Hispanic, and
Native American students attending schools in some of the country's largest urban areas?
These, I think, are some very intriguing questions which reed to be answered if we are
to more fully understand multicultural influences on mathematics education.
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Introduction'

The purpose of the research was to explore the meaning of grades assigned by different
teachers of the same Grade 13 mathematics course, and to formulate possible explanations
of any differences in meaning found to exist among the teachers. In Ontario, the high
school curriculum is constrained by provincial guidelines, which specify minimum course
content and length. Local school boards are responsible for implementing the guidelines
in their schools, with differences consequently possible in topic emphasis, grading
methods, and quality of achievement expected for a given mark.

The project began in the spring of 1986, with selection of a mathematics course. In
making this choice, due regard was given to an ongoing transition from Grade 13 courses
to Ontario Academic Courses (OACs). A comparison of Ministry Guidelines for Grade
13 and OAC mathematics courses (Ontario Ministry of Education, 1972, 1985) revealed
that the overlap was substantial for Grade 13 and OAC Calculus. Choice of calculus also
meant that the results of the survey of calculus examinations by Alexander (1987) would
complement and inform the results of this study.

The choice of calculus was made in consultation with a five-member Advisory Committee
for the project, consisting of:

Dr. David Alexander, Faculty of Education, University of Toronto, and The
Ontario Ministry of Education.
Dr. Edward Barbeau, Department of Mathematics, University of Toronto.
Dr. Gila Hanna, Department of Measurement, Evaluation and Computer
Applications, The Ontario Institute for Studies in Education.
Mr. George McNabb, Mathematics Teacher, Sudbury Board of Education,
representing The Ontario Association of Mathematics Educators.
Mr. John Scott, Mr thematics Consultant, Toronto Board of Education.

The design of the study called for the recruitment of 20 teachers. Practical considerations
limited choice to teachers working in the urban core of Southern Ontario. In the end, the
participants were 17 teachers from 17 different schools in 13 different boards. (The
teachers were guaranteed anonymity, so their names must remain confidential.) All
participants held an undergraduate degree in mathematics, had at least five years
experience teaching senior mathematics, and had taught the calculus course at least three
times. Some descriptive information on the classes of the 17 teachers is provided in
Table 1.

1

This is a short version of a long report under the title "Teacher Assessment Practices in a Senior
High School Mathematics Course.' A copy of the long report is available from the authors on
request. This research was conducted with the support of the Ontario Ministry of Education,
through Transfer Grant 52-1028 to the Ontario Institute for Studies in Education.
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Several types of data were collected. The 17 teachers were asked to:
complete a log throughout the Spring 1987 Semester for one Grade 13 Calculus
class, recording the activities undertaken each class period and the time devoted
to each activity;
list on the log the homework and seat-work assigned each day;
report the criteria used to arrive at student grades for the course, including tests,
quizzes, examinations, and other factors (e.g., participation, attendance), along
with the relative weights of each; and
mark a common set of 20 final examination papers obtained from a class not
involved in the study.

In the material that follows, the use of classroom time is considered first. Successively
thereafter, attention is turned to the content of the teaching and testing, testing policy and
practice, and, finally, the exam-marking study.

Use of Class Time

In their daily logs, most teachers picvided descriptions that indicated the kinds, order,
duration and focus of the teaching/learning activities undertaken during each class period.
Four teachers, however, provided more information about topics covered in a class than
about activities undertaken, and a fifth delegated the task of completing the log to
different students, thus providing an uneven record. The logs of these five teachers were
excluded from further consideration in this part of the study, leaving the data for 12
teachers.

There was considerable variation among the 12 teachers in number of class periods and
length of courses. The number of class periods, ranged from 80 to 109 (Mean 86). Total
class time for the calculus credit ranged from 96 to 114 hours (median 105). The
scheduled length of class periods varied from 40 to 80 minutes, although on a given day
the time actually spent in class might have been less than what was scheduled for any
number of reasons.

Six categories of class activities were defined from terms used in the logs:
Administration: taking attendance, making announcements.
Direct teaching: presentations, demonstrations and discussions focusing on new
material.
Student practice: seat-work and board-work pertaining to new material (including
handouts, assignments and orally presented problems considered in class), with
opportunity for individualized instruction.
Homework: tasks assigned for independent completion, either in class time or
outside.
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Table 1. Some Characteristics of the Schools and Classes

Teacher
Number

School
Size

Class
Size

Teaching
Hours

Number
of Tests

1 1400 17 108 10
2 950 30 103 8
3 300 13 107 7

4 1200 15 97 6

5 1100 18 96 6

6 1200 28 105 7

7 900 22 106 6

8 1900 19 105 10
9 1900 16 1C3 7

10 1000 25 106 10
11 2050 24 105 13

12 1800 31 103 10
13 1500 27 110 9

14 1250 21 105 9

15 1300 13 104 8
16 1400 26 103 3

17 950 27 114 9

School aim
Teaching Hours:
Number of Tests:

Rounded to the nearest SO.
Including time for examinations and tests.
Not including mid-course and final examinations, if either was
administered.
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Review: class dme used (i) to cover previously learned material, including
prerequisite knowledge acquired in other courses (e.g., algebra), and content
previously covered in the course, (ii) to prepare for tests and exams, and (iii) to
mark or review tests, quizzes and exams.
Assessment: quizzes, class tests and exams administered in class time.

Analysis of the time spent on each type of activity as a percentage of total time produced
the following results: (a) Administration 0 to 5 percent (median 1 %); (b) Direct
Teaching -17 to 52 percent (median 26%); (c) Student Practice 8 to 47 percent (median
29%); (d) Homework 11 to 43 percent (median 18%); (e) Review 4 to 14 percent
(median 11%); and (f) Assessment 8 to 16 (median 10%). Clearly, the teachers differed
substantially in their use of class time.

In a search for patterns in these data, coefficients of correlation (over teachers) were
computed. A negative correlation was found between total logged time (in hours) and
the percentage of time spent on direct instruction. This suggests that teachers with greater
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amounts of class time tend to do less direct teaching. This interpretation is corroborated
by the findings that percentage of time for direct instruction correlated negatively with
percentage of time for homework and student practice, whereas the percentages of time
for homework and student practice were each positively correlated with total time. The
largest percentage of time, overall, was devoted to student practice. Negative correlations
between the percentage of time for student practice and the percentages of time for review
and for assessment suggest that teachers who place relatively high emphasis on practice
in their teaching of calculus place a relatively low emphasis on review and assessment
activities.

Content of Assignments and Tests

The information about content came from the daily logs of homework and seat-work
assignments that were maintained by the teachers, and from the quizzes, term tests and
exams (plus marking schemes) submitted by the teachers. For this and the remaining
parts of the report, information has been included from all 17 teachers.

A comment is in order at the outset of this section lest our results be taken as implicitly
critical of the teachers who participated in the study. The Guideline for the Ontario
Grade 13 Calculus Course (Ontario Ministry of Education, 1972) mandates broad content
areas, but not relative importance. Thus, we were not investigating whether some
teachers exercise better or worse judgment as to what should be in the curriculum.
Instead, we were investigating differences in the judgments made by qualified and
experienced teachers.

A scheme was devised for categorizing the content of the course. The starting point was
the 1972 Grade 13 Calculus Guideline (Ontario Ministry of Education, 1972) and the
contents of two Ministry approved texts for the course. When a satisfactory version of
the category system had been produced, two students, both about to graduate from a
B.Sc./B.Ed. program in mathematics education and both experienced in practice teaching
the calculus course, reviewed and revised the system, and then applied it to questions on
teacher-produced handouts, quizzes, tests and exams.

The category system includes 126 topics. In applying this scheme, the two students
achieved an inter-rater agreement of 88%. To simplify reporting, the 126-topic scheme
was collapsed into 14 categories; at this level, inter-rater agreement was 97%. The 14
Content Categories were themselves classified into six Content Groups: I the basic skills
of calculus (limits, sequences and series, differentiation, and integration); II proofs of
basic theorems; III applications of differentiation skills, also referred to as
differentiation graphing (slope and equation of a tangent, curve sketching); IV
applications of integration skills, also referred to as integration graphing (area between
curves, volume of revolution); V situational problems (motion problems, related rates,
maxima and minima); and VI optional topics (complex numbers, polar coordinates),
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optional in that a school might decide to deal with these topics in one of the other senior
mathematics courses Algebra or Relations and Functions.

Content of Assignments

Table 2 is a record of the percentage of homework and seat-work questions assigned
during the course by each teacher, the questions having been classified according to the
six content groups. In addition, the total number of question on which the percentages
are based is given for each teacher. Differences among teachers in total number of
questions assigned was great. The median was 1037 questions, but the range was from
460 to 1622 questions.

Several results in Table 2 stand out. First, the emphasis on basic skills (Content Group
I) was high for all teachers, ranging from 41% of questions assigned to 76%. Second,
the greater the emphasis on basic skills, the more almost everything else was de-
emphasized. Third, little attention was paid to questions involving proofs and first
principlcz, although increased emphasis on these issues is mandated in the new Ontario
curriculum.

Table 2. Percentage of Assigned Questions by Content Group
and Total Number of Assigned Questions

Teacher
I

Content Croup
II III IV V VI

Total
Number

1 49 12 5 13 20 1622
2 56 11 5 25 3 836
3 65 13 5 12 4 1498
4 53 21 9 17 456
5 74 8 8 6 5 1003
6 64 3.0 8 18 460
7 66 1 9 4 20 917
8 76 2 11 1 11 1388
9 49 14 11 14 12 1395
10 41 24 15 18 2 1341
11 57 2 17 5 19 967
12 70 10 5 14 1083
13 46 14 11 21 8 970
14 5' 19 5 23 1037
3.5 66 10 12 12 1343
16 50 2 13 5 18 12 850
17 54 18 8 19 1274

Note: The percentages for a row may not sum to 100 due to rounding error.

Note: See text for a description of the content groups.
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Content of Tests

All questions used by teachers in quizzes, classroom tests, and exams were categorized.
From teacher-supplied marking schemes and weighting systems, the relative (percentage)
weight of every question in the calculation of final grades was determined. These relative
weights were summed to yield the percentage of marks toward the final grade that were
allocated by each teacher to questions in each of the six Content Groups (Table 3). The
percentages in Table 3 indicate a relatively heavy emphasis in testing on basic skills
(Content Gro'ip I). Emphasis on Content Group II (proofs of basic theorems) was
relatively low. The teachers varied considerably in the degree to which they emphasized
each content group, but this variation is especially noticeable for Group VI (optional
topics).

Effect of exemptions. A study was made of the effects of exemptions from final exams
on the content of the assessments of student achievement. Four teachers followed a
policy, mandated by the board or the school, of exempting students with a high term mark
(typically 65% or more) from the final exam. In one of these four classes, the final
marks of the exempted students were based on assessments of substantially different
content than the final marks of non-exempted students.

Table 3. Percentage of Test and Examination Marks by Content Group

II

Teacher
I II

Content Group
III IV V VI

1 35 2 14 12 20 17
2 50 3 13 3 20 11
3 51 7 16 4 15 6
4 33 7 18 12 30
5 43 2 13 16 20 6
6 50 3 13 13 21
7 46 2 18 8 26
8 58 1 18 23
9 37 3 14 11 22 14

10 33 2 23 12 27 2
11 35 6 27 8 24
12 48 8 15 8 22
13 26 4 19 15 28 9
14 33 5 24 7 31
15 48 6 14 14 18
16 38 4 15 6 25 13
17 34 10 15 14 25

Note: The percentages for a row may not sum to 100 due to rounding error.
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Effect of discarding test results. One teacher divided the semester into five segments,
referred to as terms. Each term contained up to six short quizzes and one test. The tests
for Terms 3 and 5 were considered to be the mid-course and final exam respectively.
Students were allowed to drop the test and quiz results for one of Terms 1, 2, or 4 from
the calculation of their final grades. Dropping the test and quiz results for Term 4
produced final marks based on an assessment of somewhat different content than dropping
the test and quiz results for either Term 1 or Term 2.

The foregoing results point to problems with the practices of exemptions and selectively
discarding test results. The expectation of many consumers of high school grades is that
they reflect achievement of the same curriculum. By exempting some students from final
exams or discarding some term results from the calculation of final grades, with different
results discarded for different students, marks within the same class will reflect
achievement of different kinds. Unbeknownst to consumers, differences among such
marks are uninterpretable.

Comparing the Contents of Tests and Assignments

A comparison of corresponding percentages in Tables 2 and 3 reveals a general tendency
for teachers to do less testing than assigning of content in Group I (basic skills), slightly
more testing than assigning of the content in Groups II and III (proofs and differentiation
graphing), and considerably more testing than assigning of the content in Groups IV and
V (integration graphing and situational problems). At least some of this pattern must be
due to differences in the relative size of questions for basic skills compared to that for the
other content groups. (Ten differentiation exercises may require less time to complete
than one applications problem.) The greater emphasis on basic skills (Group I content)
in assignments than in tests may also reflect the belief that practice makes perfect, not the
belief that basic skills are especially important. Moreover, the greater emphasis on Group
II content in testing than in assignment may mean that proofs are considered important.
but are dealt with by class instruction and demonstration rather than by assigned exercises.

Grading Practices

The data collected about testing and grading practices were used to study the grading
processes that were used and the actual grades that were assigned.

The Process

The 17 teachers were found to use 22 different grading systems. More than one system
wa. in use by each of the four teachers who followed an exemptions policy the grading
system for a student of these teachers depended on whether the student had been exempted
from the final examination. Also, the teacher who set aside some of a student's marks
in calculating the final grade employed at least two different systems. (Refer to the
description of this method given in the previous section of the report.)
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Two grading criteria were used almost exclusively: tests, usually administered at the end
of units of work, and examinations, administered near the mid-point of the course or the
end or both. The number of tests ranged from three to 13, the number of examinations
from one to two. For seven of the 17 teachers, tests and exams represented 100% of the
students' grade. For the other 10 teachers, the weights for tests ranged from 30% to 80%
of the final grade. The additional criteria used by these teachers included quizzes (six
teachers, weight ranging from 2% to 20%), assignments (six teachers, weight ranging
from 3% to 6%), and a subjective mark for participation (four teachers, weight ranging
from 5 % to 20%). Six of the teachers gave no mid-course exam, while the four who
followed exemption policies had no final exam for the exempted students. The remaining
grading systems included both mid-course and final exams. (We use the designations
first-half and second-half of the course rather than first-term and second-term to avoid
possible confusion over the meaning of term and semester. All our data were collected
in semestered schools during the Spring Semester. The break between first-half and
second-half of the course occurred about mid-April.)

The teachers combined the different test and examination marks into final grades in
!everal different ways. The marks for a test or exam were either (a) weighted awarding
to the number of marks in each (simple summation) or (b) re-weighted to make the
weights of each test or exam equal or (c) re-weighted to reflect the teacher's perception
of the relative importance of the topics covered by each test or exam. Similarly, the
halves of the semester were either weighted equally or unequally. Five teachers weighted
each half equally (at least for some students). The other eleven teachers weighted the
first-half of the course less (about 30%) than the second-half (about 70%).

The time spent on testing activities (including exams) varied enormously, ranging from
nine hours for one teacher to more than 17 hours for another. On average over the 17
teachers, 8.8 hours (range 3 to 15.2 hours) were spent in writing 8 tests (range 3 to 13
tests), not including mid-course and final examinations. The lengths of tests varied from
25 to 75 minutes. The total number of test questions administered during the semester
averaged 104, and ranged from 53 to 180.

The cycles of teaching and testing throughout the course were examined. Nine of the
teachers seemed to have more regular cycles of teaching and testing than the others. All
teachers tested at more-or-less regular intervals throughout the first-half of the course, but
the testing patterns for eight teachers became erratic in the second half. The teachers who
followed more regular teach-test cycles also gave a greater number of tests on average (10
compared to 7).

Another factor that was considered is the number of different topics covered in a test.
The taxonomy of 14 content categories was used to describe test coverage. The number
of categories covered ranged from one to eight per test over all the tests given by the
teachers. The average (for a teacher) of the number of categories per test ranged from
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2 to 4.7. All but two teachers gave at least one test covering only one content category.
For five teachers, the final exam included content categories that had not been covered
in class tests. A possible reason is that the final examinations used by these teachers were
set by other calculus teachers. When one teacher in a school sets a common final exam,
that individual requires a certain amount of prescience to set questions that the students
taught by other teachers have had an opportunity to learn. A class that proceeds more
slowly than expected, for example, is likely to be disadvantaged by the exam.

The Grades

The average mid-course and final grades for each class and the difference between the two
were calculated. The distinction between mid-course and final grades is important in
Ontario for Grade 13 courses offered in the Spring Semester. Early in April, Ontario
universities begin their admissions process. For the courses a student is taking in April,
the school submits interim grades (normally the mid-course grades in semestered schools)
to the Ontario University Applications Centre, and students receive a conditional
acceptance or rejection based on these grades. A concern expressed by several teachers
in the study is that students become less motivated to work once the interim grades have
been submitted.

Averaged over all 17 teachers, the final grade was 67, six points less than 'the average
mid-course grade of 73. For every teacher, the mean final grade was either lower than
or at best equal to the mean mid-course grade. The range of mean final grades was 54
to 75, that of mean mid-course grades, 61 to 79. Although there is a high correlation
between the two sets of grades for a teacher, the difference betweet a teacher's mean
mid-course and mean final grades was as much as 15%.

A comparison of term marks with final exam marks turned up two results of interest: in
the 13 classes in which all students wrote a final exam, the final exam marks were lower
than the term marks by about 12 percentage points (58% compared to 70%). Also, final
exams tended to discriminate more than term marks. For the 13 classes with no
exemption policy, the standard deviation of final exam marks was about 50% larger than
that of term marks.

Despite all the differences found in grading processes and in the grades themselves, no
clear indication was found in the data provided by the 17 teacher-participants that the
observed differences in grading process were related to the observed differences in grades.

Responses to the Common Marking Task

A study was made of the extent and nature of the variation among the 17 teachers in the
standards they applied in marking a set of examination papers. A final calculus
examination, administered in June 1987 to students in a school not oth'rwise involved in
the study, yielded a set of 20 papers that spanned a range of quality. The 17 teachers
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were given the 20 papers, and each was asked to prepare a marking guide and then mark
the papers against it. In addition, the teachers were asked to provide written comments,
should they care to make any, about the examination and performance of the students.

The Examination

The exam contained 11 questions, several of which contained three or more sub-questions.
In total, the examination consisted of 37 sub-questions. The content of each question can
be described briefly as follows:

1. Find the point on a quadratic function where the tangent has a specified slope.
2. Obtain the derivative with respect to x for each of 13 different functions of x six

logarithmic or exponential functions, four polynomial functions, and three
trigonometric functions.

3. Find integrals of nine functions three trigonometric functions, four logarithmic
or exponential functions, and two polynomial functions.

4. Integrate using the method of parts.
5. Find the limits of three polynomials.
6. Solve a problem involving a) acceleration, b) velocity, and c) the position of the

particle in motion after ;palled amount of time has elapsed.
7. Find the area enclosed t4tween two trigonometric functions of the same variable

over a specified range of the variable.
8. For a cubic function, a) find the coordinates of all maximum and minimum points

of the function, b) find the coordinates of all points of inflection, and (c) sketch
the function.

9. Find the rate at which the distance between two moving objects is increasing or
decreasing, given information about the direction and rate of motion of the two
objects.

10. Prove that the formula (given) for the volume of a sphere can be obtained as a
volume of revolution.

11. Find the radius and height of a cylinder, such that the cylinder will have a given
volume and an unspecified but minimum surface area.

The exam was strongly weighted toward the testing of basic skills. According to the
scheme for categorizing homework and test questions, the basic skills topics (Group I)
contained most of the exam questions (26 sub-questions). (The total number of sub-
questions for all other content groups combined was only 11.)

The Marking Guides

The marking guides prepared by the teachers indicate the maximum number of marks to
be awarded for responses to each sub-question. There was considerable variation among
teachers in the total number of marks allocated for perfect performance. The smallest of
the maximum marks was 78, the largest 144, and the median 116. The teachers also
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differed in their allocations of marks to individual sub-questions. For example, wholly
satisfactory performance of Question 7 was rewarded with as many as 12 marks by two
teachers, and as few as 4 marks by one teacher.

What accounts for differences such as this? For the most part, they seem to stem from
differences in the number of steps or stages to an answer that are awarded marks.
Another difference was in the use of bonus marks and deductions. Several marking
guides indicated bonus marks for good form and for stating the answer in a complete
English sentence. Several others indicated deductions for failing to include the constant
of integration in answers or for failing to specify units in answers to questions involving
measured quantities. These bonuses and deductions, when used, were either one mark
or one-half mark.

Despite the obvious disparities found among the teachers' marking schemes, the teachers
were in general agreement as to the order of importance of the examination questions and
sub-questions. A coefficient of correlation was computed for each pair of teachers
between the maximum marks allocated to the questions and sub-questions of the
examination. All the intercorrelations were substantial, ranging from 0.76 to 0.95, with
a median of 0.89. Clearly, the teachers possessed very similar views of the relative
importance of the questions and sub-questions of the examination.

This does not mean that the teachers thought the exam was particularly good, at least as
judged by coverage of the calculus course described in the Guideline (Ontario Ministry
of Education, 1972). Several teachers objected to the strong emphasis in the exam on
integration. Three teachers noted the lack of coverage of polar coordinates and complex
variables. Two teachers pointed to the coverage in the exam of trigonometric functions,
with one feeling it was inadequate and another thinking it was overemphasized. It was
observed by two teachers that volumes of revolution, trigonometric limits and differentials
were given short shrift. And three teachers objected to the preponderance of skill-type
questions, and the lack of questions involving problem-solving. Note that volume of
revolution, polar coordinates, and complex numbers are optional topics. (We did not
suggest that the exam was a model for all teachers to emulate; it was only a means to the
end of studying differences in marking behaviour. In fact, for present purposes we
eliminated the section of multiple-choice questions that appeared in the exam as originally
administered.)

In a draft document entitled A Handbook for the Examination Component of Evaluation
in the OAC Calculus (Ontario Ministry of Education, 1987), attention is paid to the
number of marks awarded for arithmetic and algebraic simplification in answers to OAC
calculus examination questions. An analysis was made of the marking guides in an
attempt to assess the extent of differences among them in the proportions of marks
awarded for arithmetic, algebraic simplification, and other skills and knowledge (from
earlier grades) compared to the calculus skills and knowledge to be acquired in thecourse.
(This analysis was possible for 13 of the 17 guides; four guides indicated only total
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numbers of marks per sub-question.) The percentages of marks for calculus as opposed
to other kinds of mathematical knowledge and skill ranged from 60 to 76, with a median
percentage of 66. Thus, there was some variation, but not a lot, in the extent to which
knowledge and skills peripheral or prerequisite to calculus were rewarded.

Total Student Marks

The comparability of the total marks assigned each paper by the 17 teachers was assessed
by computing for each pair of teachers a coefficiert of correlation between the total marks
assigned the 20 papers. These coefficients were uniformly high, ranging from 0.81 to
0.97, with a median of 0.92. Obviously, there is close agreement among the teachers in
the relative orders into which they placed the 20 papers.

Grading achievement in calculus and other subjects involves more than rank-ordering a
group of students. Determinations of fail and pass and honours are usually required.
How well, then, did the teachers agree as to which papers represented failing
performance, which represented passing performance, and, of the passes, which
represented honours? To address this question, the total marka teacher assigned a paper
was converted into a percentage of the total mark given in the marking guide. Here we
find evidence of inconsistency in standards. Three teachers assigned no paper a mark in
the honours range, and one teacher assigned failing marks to seven papers. On the other
hand, seven teachers assigned no paper a failing mark, and one teacher assigned
percentage marks of 80 or more to 10 papers. Variation in standards is apparent, despite
the fact that the teachers ranked the papers for quality in very much the same way.

The teachers offered comments, several of which are relAvant here. For example, the
stiffest of the markers directed comments at student performance: the solutions were
poorly developed, diagrams were missing, and the responses lacked clear, concise
statements. These might be described as errors of form in the student responses.
(Although the marking guide of this teacher indicated five marks for the first question,
no student was awarded more than three. The apparent reason for this was the failure by
all 20 students to include all the steps listed in the teacher's model answer. Thus, for
example, no mark was awarded for finding the y-coordinate of the answer if the
determination of this coordinate had not been made explicit, even when the student's
answer did contain the correct coordinate.) Another of the hard marking teachers also
noted the errors of form as a problem with student answers, but so did two teachers who
were in the middle of the group as regards severity of marking. The fact that three other
hard - marking teachers did not mention form of answer as a problem, suggests that this
factor does not fully explain the source of severe marking standards.

In fact, no type of comment appears to distinguish the hard from the easy markers. The
easiest marker described the marking exercise as boring. This teacher also described the
exam questions as being all of the skill and recall type, and as not requiring higher level
thinking skills. It is not apparent that adopting this point of view should cause one to be
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an easy marker, although another easy marker also commentedon lack of problem solving
questions on the exam. So too, however, did a teacher in the middle of the group for
marking severity. Perhaps more in line with what might be expected, given the severity
of his/her marking, was a teacher's registration of disappointment in the students' problem
solving abilities. Other comments were made to the effect that the exam was too easy,
was of uneven difficulty, with questions being either very easy or very difficult, was too
long, was "too tricky by halr , and was nicely balanced between straight-forward and
challenging questions.

One factor, however, may distinguish hard from easy marking teachers. Ten of the
teachers followed one textbook (published by Gage) and six others followed another
textbook (published by Holt). (One teacher used a set of notes, and followed no
published book.) The teachers who used the Gage text were, on average, relatively easy
markers, whereas the teachers who used the Holt text were, on average, relatively hard
markers.

HI a final attempt to understand differences among teachers in marking standards, a study
was made of the marks assigned by three teachers the hardest and easiest markers, and
a teacher at the centre to three students a high, middle and low scorer It was found
that these teachers differed relatively little in the percentages of mark! ...warded for
performance of the 26 basic skills sub-questions. Against this standan., ,..)wever, the
corresponding results for the other sub-questions are dramatically different. For example,
one of the students was awarded about half the marks allocated by the easiest marking
teacher for performance of the other-than-basic skills sub-questions, but the other two
teachers assigned only one-fourth the marks they had allocated for performance of the
same sub-questions. These results suggest that the main source of the difference among
these teachers lies in their marking of the exam questions that test other-than-basic
differentiation and integration skills.

Summary

The analysis of use of classroom time showed relatively substantial differences among the
teachers in their allocation of class time to different categories of activities
administration, direct teaching, review, homework, practice, and assessment. Moreover,
those with more class time available expended a smaller percentage of time on direct
instruction, and allocated greater percentage to homework and practice.

Substantial differences were also found among teachers in content emphasis.

Teachers varied widely in the number of questions assigned as homework from
under 500 to more than 1600. A large part of this variation was accounted for by
differences in the number of questions on basic skills.
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Teachers varied considerably in the extent to which they emphasized different
topics in their assignment of questions. For example, the number of questions on
basics ranged from 40% to 75% of the total number of assigned questions.
The emphasis on basic skills was less in the tests than the assignments, whereas
the emphasis on other content groups was greater in the tests than the assignments.

Some of the within-teacher differences between assignment and testing emphases are
probably intentional, as when a teacher decides to test only at the top of a small hierarchy
of skills or knowledge, ignoring the prerequisite skills and knowledge that had been
included in assignments. Conversely, a teacher may teach a difficult concept and choose
not to test it because most students failed to grasp it. Whether or not discrepancies
between teaching and testing constitute a problem to be corrected is a matter not
addressed in the present study. All we have done here is provide evidence that such
discrepancies as these exist.

From the analyses of the grading practices of the 17 teachers, it was learned that
examinations and term tests were the two main determinants of student grades. All
students in all classes wrote a minimum of one examination, as required by provincial
policy. However, the nature of this examination varied. For the fourclasses following
an exemption policy, the majority of students took their only exam on material learned
in the first half of the semester. For six other classes, the only exam was a final exam
based on the entire semester's work. In the remaining seven classes, both a mid-course
exam and a final exam were required. The time that students from different classes spent
in an examination ?tuation ranged from 2 to 4.5 hours. The final examination mark was
weighted from 15% to 40% of the student's final grade and, when a mid-course exam was
administered, the resulting mark was weighted 9% to 30% of the final grade. In some
cases, the calculus content topics that were tested during the semester were not
emphasized to the same extent on the final exam. This might be attributed to the fact
that, while the setting of term tests was usually the teacher's responsibility, the final
examination was the mathematics department's, and not necessarily the participating
teacher's, responsibility.

Term testing was found to vary in the following respects: (i) number of tests (ranging
from 3 to 13), (ii) number of items comprising the tests (from 53 to 180), (iii) amount
of classroom time used for test taking (from 3 to 15.2 hours), and (iv) schedule of tests
(sporadic or regular). Term tests were weighted from 30% to 80% of the final grade.

It is evident from this study that students taking Grade 13 Calculus :n the Spring 1987
Semester from the 17 teachers in this study did not demonstrate their achievement in
calculus through a common process of assessment and grading. It is reasonable to
question whether or not it would be beneficial for students to have experienced similar
grading processes, and to have been judged according to similar standards on similar
criteria of achievement.
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The empirical study of the marking process revealed the following:
The presence of substantial agreement among the 17 teachers as to the relative
importance of the examination questions.
Substantial agreement among the teachers as to the relative quality of the 20
student papers that were marked.
Substantial disagreement among the teachers as to the absolute quality of the 20
student papers.
The marking standards of te4zhers varied, to a limited extent at least, as a function
of the textbook being used.

These results pose a challenge for the Ministry of Education in a jurisdiction where there
is no external mechanism no common, province-wide examination for aligning
standards of calculus achievement. This challenge has not beat lost on critics of
education in Ontario, and it has not been ignored by the Ontario Ministry. A Handbook
for the Examination Component of Evaluation in the OAC Calculus (Ontario Ministry
of Education, 1987) was developed for the purpose of fostering a rater degree of
consistency in calculus examinations across the province. The handbook addresses several
problems found in the present study (i) the practice of granting exemptions from final
examinations and the variation in value of final examinations, (ii) the emphasis on basic
skills to the virtual exclusion in teaching and testing of problem solving, and (iii) the wide
differences in amount of testing and other assessment activities. But the results of the
present study suggest that consistency in assessment will be increased only when other
steps are taken as well.

These steps include the following: increase the consistency of what is taught; increase
the consistency with which those examination questions that test other-e-1.-basic calculus
skills are marked; increase the consistency with which displays of other-than-calculus
knowledge and skills are marked; have more than one teacher independently mark every
student exam paper, and set the exam mark equal to the average of the several marks; and
ensure that exams are sufficiently long and numerous so that all content is covered and
so that the impact on a student's grade of performance on any one question or type of
question is minimized.
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Dr. Raphael discussed the results of 13-year-old Ontario students on the 1988
International Assessment of Educational Progress. The results pertain to both Anglophone
and Francophone student achievement in relation to achievement in the Canadian
provinces and other countries.

The presentation was based on a paper read at the Annual Meeting of the American
Educational Research Association in March 1989. The paper is available through ERIC.
ED 306259
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