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Abstract

This paper argues for the existence of persistent conceptual "bugs"
in how novices program and understand programs. These bugs are
not specific to a given programming language, but appear to be
language-independent. Furthermore, such bugs occur for novices
from primary school to college age. Three different classes of bugs--
parallelism, intentionality, and egocentrism--are identified, and exem-
plified through student errors. It is suggested that these classes of
conceptual bugs are rooted in a "superbug," the default strategy that
there is a hidden mind somewhere in the programming language that
has intelligent interpretive powers,
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LANGUAGE-INDEPENDENT CONCEPTUAL "BUGS"
IN NOVICE PROGRAMMINGH* , **

Roy D. Pea

Introduction

It is weli known that students have such pervasive conceptual misun-
derstandings as novice programmers that correct programs early in
the learning process come as pleasant surprises. Even after a year
or more of programming instruction, students have great difficulty
predicting what output a program will have, in what order commands
will be executed, or in writing znd debugging original programs to
solve problems. Furthermore, these problems are nct confined to the
very young student in elementary school (Kurland & Pea, 1984; Pea,
1983) and junior high (Mawby, 1984), but appear to pervade the
programming activities of high school, coilege (Bonar & Soloway,
1983; Soloway, Ehrlich, Bonar, & Greenspan, 1982), and mature adult
students as well. What are the sources of these difficulties?

Many of these conceptual difficulties are confined to specific imple-
mentations of particular programming languages, and presumably can
be remediated by redesigning the particular features of those imple-
mentations. In an exemplary study, Soloway, Bonar, and Ehrlich
(1983) have shown how an invented while locping construct not avail-
able in Pascal was easier for novices to use in writing programs than
the standard Pascal looping constructs. In this paper, however, I
plan to consider instead the kinds of fundamental and widespread
conceptual misunderstandings or "bugs" (Brown & Burton, 1978} in
program understanding that appear, from our own and others' work,
to be relatively independent of specific commands or programming lan-
guages. These misunderstandings, we will argue, have less to do

*The research discussed in this paper was supported by the
Spencer Foundation and the National Institute Education (Contract
No. 400-830016). I would like to thank my c. .agues at the Center
for Children and Technology for discussing these issues.

**¥Submitted to Journal of Educational Computing Research, special
issue on "Novice Programming," edited by Elliot Soloway.




with the design of programming languages than with the problems
people have in learning to give instructions to a computer.

Much of our programming instruction treats learning to program as a
new and independent skill having little to do with previous learning:
"It is almost as close to a situation of a tabula rasa as we are going
to find in an adult" (Anderson, Farrell, & Sauers, 1984, p. 87; see,
also, Pea & Kurland, 1984), Furthermore, in the classroom setting,
students' errors are commonly considered to be idissyncratic prob-
lems. But something much more interesting psychologically is hap-
pening, and we must come to understand it. It is not that students
don't know anything that is relevant to programring--they have an
intuitive understanding of much of what we say about programming.
Depending on their age and developmental level, students have avail-
able experiences, and a broad range of concepts and strategies
relevant to learning to program (Pea & Kurland, 1983). But one of
the most central aspects of their intelligence is misleading when it
comes to learning to program. The novice programmer works intui-
tively and pursues many blind alleys in learning the formal skill of
programming. But what does it mean to work "intuitively"?

Specifically, students have a predominant metaphor that guides their
behavior when, as novices, they write programming instructions to a
computer. This metaphor is conversing with a human. Their strate-
gies for using natural language with other humans leads them astray
as they try to deal with programming, because programming is a
formal system that interprets each part of a program (instructions to
it) in terms of rules that are mechanistic. At least for the program-
ming languages we will be referring to in our examples, there are
strict rules for interpreting commands in a rigid sequential order,
determined by how {low of control is dealt with in the language.
While people are intelligent interpreters of conversations, computer
programming languages are not. This fundamental feature of pro-
gramming systematically violates the canons of human conversation.
For example, a programming language cannot infer what a speaker
means if she is not absolutely explicit. There are similar problems in
the developmental transition from oral to written communication of
natural language (Olson, 1977; Tannen, 1983), where the absence of
the listener sets new constraints on the explicitness with which
meaning must be expressed.

My aim here is to explicate a few oi the major obstacles to program-
ming expertise presented by three major classes of students' coricep-
tual bugs in understanding. These errors are bugs in the sense that
they are systematic--that is, not random errors or sloppy work--and
that they need revision and further instruction for students to make
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progress in learning to program. I will close by suggesting some
implications of these findings for how programmirng is taught.

Classes of Bugs

Parallelism Bugs

The parallelism bug is revealed in diverse contexts, but its essence is
the assumption that different lines in a program can be active or
somehow known by the computer at the same time, or in parallel, We
can distinguish two different kinds of programs in which the parallel-
ism misunderstanding is common.

One context in which the bug occurs is programs where conditional
statements (IF...THEN) occur outside of loops. A common example is
one where, early in a program, a conditional statement appears.
SIZE will be our variable name in this case. The program says:

IF SIZE = 10, THEN PRINT "HELLO

Later in the program, a countup loop is encountered, where a
variable is incremented by 1 each time until it reaches 10.

FOR SIZE =1 to 10, PRINT "SIZE
NEXT SIZE

Now we may ask: What do students think the computer will do? If
they understand the control structure of the programming language
(in this case, BASIC), they know that the IF statement is first
evaluated for its truth. If SIZE is equal to 10, HELLO is printed,
and control passes to the next statement. If the VARIABLE is not
equal to 10, nothing is printed, and control passes to the next state-
ment. The knowledgeable programmer knows that after the first line
of the program--the IF line--is executed, it is inactive, and irrele-
vant to whatever the rest of the program instructions say because the
control cycle never returns to it.

But a recurrent problem for students--in this case, high schoolers in
their second year of computer science--to whom we have offered
problems of this type is that a very different prediction is offered for
what will happen. In one study, 8 out of the 15 students interviewed
predicted that during the looping process, when the variable SIZE
became equal to 10, HELLO would be printed. When asked to explain
why, the student observed that, since variable SIZE was now equal to
10 (i.e., within the loop) and the IF statement was "waiting for" the
SIZE to be equal to 10, it could now print HELLO. But in fact, once
the IF statecment was evaluzted and found false, it was never return-




ed to in the program. There is a sense in which these students
believe that all the lines in the program are active or alive at once,
As one junior high student pronounced: "It looks at the program all
at once because it is so fast." The program is thought to have an
intelligence under the surface that monitors the action status of every
line in the program simultaneously.

Now think about the logic of IF statements in natural conversation
(McCawley, 1981). When I say to you, "If you waunt to go to the
store, I'll drive you," there is a duration to my IF statement. It may
not be active for a week, or even all day, but your response does
not have to be immediate. If in an hour you want to go to the store,
I am still likely to drive you there. The idea of an IF statement
being evaluated and then taken off the beoks, as it were, is odd trom
a natural language perspective. So the student has applied her
intuitions about how IF statements function in natural lanrguage dis-
course to the initially mysterious domain of computer language dis-
course. :

A related finding (Soloway, Bonar, Barth, Rubin, & Woolf, 1981;
Bonar & Soloway, 1983) involved novice Pascal programmers. A
"while demon" bug was revealed when as many as a third of the
college students assumed for simple Pascal programs that the actions
in the while loop were continuously monitored for the exit condition to
become true. For example, one student explained that "every time I
[the variable tested in the while condition] is assigned a new value,
the machine needs to check that value.'! The authors note that this
interpretation is consistent with English wkhile, as in "while the high-
way is two lanes, continue north."

The generality of the phenomenon may be observed in a second
example of the parallelism bug revealed hy students attempting to
comprehend programs not involving conditionals--ia this case, variable
assignment statements which occur in a progza.n after lines referring
to that variable. The student thinks (inccirectly) that what will
happen later in a program influences what happens earlier. For
example, consider the following four-line program:

AREA = Height X Width
Input Height

Input Width

PRINT "AREA

Many students assume that there is no problem with this program,
and predict that it will print out the product of the height and width
values the program user has input. But this is not true. When the
first statement is executed, that is, the one that defines AREA as




height times width, it has not yet received the input values. So it
treats height nd width as egqual to the default value ¢of 0. What is
printed is not, as the student assumes, the product of the input
values of height and width, but the product of the values of those
variables available at the time the first line in the program was
executed, that is, 0 X 0 = 0,

Here, once again, we can see the influence of natural language con-
versational strategies, where implicit knowledge ox expectations of
what will come later can guide the interpretation of what occurs early
in a2 conversation (or text). In natural language, apart from proce-
dural instructions such as recipes or building plans, there is no
reason 20t to skip ahead. But in computer programming. the novice
student must think to herself: "What conditions regarding inputs are
in effect as this line is executed?" In natural language, one does not
violate the meaning of a text by reading parts of it out of order, and
:n fact we even teach scanning ahead for structure as a reading
strategy. ‘

Intentionality Bugs

There is another class of important language-independent conceptual
bugs that we will call Intentionality Bugs. Intentionality Bugs are
those in which the student attributes goal directedness or foresight-
edness to the program and, in so doing, "goes beyond the informa-
tion given" in the lines of programming code being executed when the
program is run. Students adopt what Dennett (1978) calls an "inten-
tional stance" toward the complex system represented by the program-
ming language, and assume that it has capacities or attributes of a
human.

In one exampie which we have studied in detail (Kurland & Pea,
1984), we ask students to talk out loud as they draw -~n graph paper
what the graphics pen will draw as the following tail-recursive Logo
program is executed. As depicted in the figure below, when one
types SHAPE 40, the program draws a large square, a medium-sized

TO SHAPE :SIDE

IF :SIDE = 10 STOP

REPEAT 4 (FORWARD :SIDE RIGHT 90}
SHAPE :SIDE/2

END

square inside it, and then stops. More specifically, the program
draws a square with a variable side that, when initialized on the first




call, is 40 units long. The first line of the program is a conditional
counter w:.th the purpose of stopping the drawing after the two
squares are drawn. When executed, the next line draws a square the
length of the variable SIDE (i.e., 40): REPEAT 4 [FORWARD :SIDE
RIGHT 9Cj. The last line of the recursive program divides the
variable SIDE by 2, and since the program begins with a conditional
statement that says when the variable SIDE equals 10 stop, the
program draws the two squares of size 40 and 20 and stops, because
the variable SIDE then equals 10.

When encountering the second line of the program, a conditional that
says IF the value of the variable SIDE equals 10 STOP, some students
erroneously predict that when the program is run, a box of side 10
will be drawn. When asked why, their comments are revealing. The
students have glanced ahead in the program to see what is to them a
familiar programming schema or "plan" (Soloway & Ehrlich, 1984)--a
command line that vesults in the drawing of a sq .are: REPEAT 4
[FORWARD (SOME DISTANCE) RIGHTANGLETURN (90 DEGREES)].
They then read the IF statement as a command to draw a square with
sides equal to 10, because "it will draw a square," or "because it
wants to draw a square." Othe:r students recognize that the variable
at the IF statement equals 40, but then say that the program sees the

box statement line ahead which it wants to draw, but has to stop at
10!

In each case--the parallelism and intentionality bugs--the program has
been given the status of an intentional bein; which has goals, and
knows or se=s what will happen elsewhere in itself.

Egocentrism Bugs

Egocentrism bugs are the flip side of intentionalit bugs. Whereas
intentionality bugs involve comprehending and tracing what a program
will do, egocentrism bugs are involved in creating a program to do
something. Each bug type presupposes that the computer can do
what it has not been told to do in the program.

Egocentrism, an overemphasis on the perspective of self relative to
that of others, is a pervasive characteristic of novice thinking,
manifested in spatial cognition (Piaget & Inhelder, 1967), communica-
tion (Flavell et al., 1968), and other problem domains. It should
thus come as no surprise that the task performances of novice pro-
grammers are also subject to egocentric biases., Egocentrism bugs are
those where students assume that there is more of their meaning for
what they want to accomplish in the program than is actually present
in the code they have written. Students giving evidence of this bug
egocentrically assume that the computer can follow the advice former
Mayor of Chicago Richard Daley used to give reporters:




Don't print what I say, print what I mean!

For example, lines of code or variable values are omitted by these
students because it is assumed that the computer "knows" or can "fill
in," as a human listener can, what the student wishes it to do.

Students do not literally say thet the program knows what to do; the
errors generated by this bug are almost perceptual in nature--their
current conceptions do not guide their attention to these problems as
relevant reasons for their programs' not working as planned. When
asked to explain what their programs will do, they gloss over the
specific commands in a line of Logo code, asserting that a lin: of
graphics code draws a square when, for example, they have included
a move command to send the graphic turtle forward, but no turn
command for making the necessary right angles:

REPEAT 4 [FORWARD 30]

It is as if they do not see that the necessary specifications to the
computer have been omitted., All they have provided is the skeleton
of a program, assuming that in some way the computer can fill in the
rest, can say what they "mean.,"

Bonar and Soloway (1983) provide another clear case of egocentrism,
manifested by a college student writing a program in Pascal. The
student was writing pseudo-code for the problem: "Write.a program

which reads in 10 integers and prints the average of those integers."
She wrote out:

Repeat
(1) Read a number (Num)
‘la) Count := Count + 1
(2) Add the number to Sum
(22) Sum := Sum + Num
(3) until Count :=10
(4) Average := Sum div Num
(5) writeln (‘average = ', Average)

When the interviewer asked whether (la) was the "same kind of state-
meni" as (2a), it became clear "that she thinks the Pascal translator
knows far more about these roles than it does":

"Are they the same kind. Ahhh, ummm, not exactly,
because with this [la] you are adding--you initialize it as
zero and you're adding one to it [points to the right side
of la], which is just a constant kind of thing. [Points to
2a) Sum, initialized to, uhh, Sum to Sum plus Num, ahh--




that's [points to left side of 2a] storing two values in one,
two variables [points to Sum and Num on the right side of
2a]. That's [now points to lal a counter, that's what
keeps the whole loop under control. Whereas this thing
[points to 2a], this was probably the most intaresting
thing...about Pascal when I hit it, That you could have
the same, you sorta have the same thing here [points to
la], it was interesting that you could have--ycu could save
space by having the Sum re-storing informs.cion on the left
with two different things there [points to right side of 2a],
50 I didn't need to have two. No, they're different to me.
I think of this [point to la] as just a constant, something
that keeps the loop under control. And this [points to 2a]
has something to do with something that you are gonna,
that stores more kinds of information that you are going to
take out of the loop with you." (p. 5)

Here, again, we see the student believing that the programming
language knows more about her intentions than it possibly can.

Soloway et al. (1982) have found among college Pascal program-
mers a set of errors that we believe also stems from egocentrism
bugs. They describe what they call a "mushed variables" bug.
After a semester of Pascal, more than one quarter of their
novice programmers used the same variable incorrectly for more
than one role. For example, in the rollowing program, the vari-
able X is used both to store a value being read in [read (X)]
and to hold 2 running total {X := X+X]:

program Student26 Problem2;
var X, Ave : integer

begin

repeat
Read (X)
X =X+ X

until X + X [greater-than sign] 109;
Ave 1= X div Nx;

Write (Ave)

end.

They observe that students making these errors may have assumed
that the computer would recognize that the same variable played two
different roles, and that it could use the different va'ues appropri-
ately.




Conclusions

All the bugs discussed--parallelism, intentionality, and egocentrism--
appear to derive from what might be called a superbug. The super-
bug may be described as the idea that there is a hidden mind some-
where in the programming language that has intelugent, ‘aterpretive
powers. It knows what has happened or will happen in lines of the
program other than the line being executed; it can benevolently go
beyond the information given to help the student achieve her goals in
writing the program. This "hidden mind superbug" interpretation
provides a deep explanation of the various misconceptions that plaguc
the novice programmer.

But there is too facile an interpretation of this argument that must be
avoided because it is false. It is not that students literally believe
that the computer has a mind, or can think, or can interpret what
was not explicitly stated. 'In our experience, novice programming
students are likely to vehemently deny that the computer can think or
that it is intclligent. Besides, instructors are very good at high-
lighting this point at the beginning of courses: Computers are dumb
and can do nothing but what you tell them! But students' behaviors
when working with programs often ~ontradict their denials; they act
as if the programming language is more than mechanistic. Their
default strategy for making sense when encountering difficulties of
program interpretation or when writing programs is to resort to the
powerful metaphor of natural language conversation, to assume a
disambiguating mind which can understand. This personal metaphor
should be seen as expected rather than bizarre behavior, for the
students have no other analog, no other procedural device than
"person" to which they can give written instructions tlat are then
followed. Rumelhart and Norman (1981) have similarly emphasized the
critical role of analogies in early learning of a domain--making links
between the to-be-learned domain and known domains perceived by
the student to be relevant. But, in this case, mapping conventions
for natural language instructions onto programming results in error-
ridden perfor-ances.

What are the implications of these findings for programming instruc-
tion? First, we need to be aware of the pervasiveness of program-
ming misunderstandings that arise from tacit applications of human
conversational metaphor to programming. This is powerful transfer,
to be sure, but it is misleading and does not work. Seccnd, beyond
being aware of these bugs, we have to arrange many more kinds of
learning activities for students, and diagnostic activities for teachers,
in which the bugs can be made obvious. We believe the persistence
of these bugs is in part linked to the infrequency with which they
are explicitly confronted by students and teachers alike. Bugs like
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these could be snared if one used program reading or debugging
activities as central components of programming instruction. It was
not until we did the tedicus work of having students walk through
every command in a program, thinking aloud and explaining how the
computer would interpret it, that we became aware of the prevalence
of these bugs. After that, we saw them everywhere.

Much mere research is needed on how best to help students see that
computers read programs through a strictly mechanistic and interpre-
tive proces-, whose rules are fairly simple once understood. We
think this can best be achieved by providing clear models that show
how the processing of control and data is regulated by the specific
programming language under study, and by explicit modelling and
instruction in comprehension-monitoring processes for computer pro-
grams similar to those that have been effective for written language
understanding (Palincsar & Brown, 1984). Currently, our own
studies are addressing these problems. Other useful leads will come
from artificial-intelligence, knowledge-based programmers' assistants
(Waters, 1982) and debugging aides that seek to identify and remedi-
ate students' pervasive misconceptions in learning how to program
(e.g., Johnson & Soloway, 1984).

Finally, we can be assured of (although not comforted by) the fact
that such conceptual difficulties are not specific to the programming
domain., There are other formal systems with abstract rules of inter-
pretation--logic, physics, and mathematics--that are also very chal-
lenging for students to learn, rife with bugs (e.g., Gentner &
Stevens, 1983), but well worth our concerted efforts to help students
understand.,
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