
DOCUMENT RESUME

ED 318 797 TM 014 923

AUTHOR Recker, Margaret M.; Pirolli, Peter
TITLE A Model of Self-Explanation Strategies of

Instructional Text and Examples in the Acquisition of
Programming Skills.

PUB DATE Apr 90
NOTE 14p.; Paper presented at the Annual Meeting of the

American Educational Research Association (Boston,
MA, April 16-20, 1990).

PUB TYPE Reports - Research/Technical (143) --
Speeches /Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Comparative Analysis; *Computer Science Education;

Elementary Secondary Education; *Learning Strategies;
*Problem Solving; *Programing; *Protocol Analysis;
*Skill Development

IDENTIFIERS LISP Programing Language; *Self Explanation
Strategies

ABSTRACT
Students learning to program recursive LISP functions

in a typical school-like lesson on recursion were observed. The
typical lesson contains text and examples and involves solving a
series of programming problems. The focus of this study is on
students' learning strategies in new domains. In this light, a Soar
computational model of self-explanation strategies of instructional
text was examined. The subjects, 12 students with little or no
computer programming experience, proceeded through a series of
lessons in the LISP Tutor program on recursion. Subjects, who were
asked to think aloud, were videotaped as they read through an
instructional booklet prior to solving problems using the Tutor.
Subjects were also asked to explain examples to themselves. After
reading their texts, subjects worked through 12 recursion problems
with the LISP Tutor. Subjects were then divided into groups of "good"
and "poor" performers. The verbal protocols were segmented into
elaborations, which are pause-bound utterances and are not a first
reading of the text. Each elaboration was categorized in terms of the
instructional content to which it referred and to one of six types of
comments. Sequences of related elaborations were coded into episodes
(or macro-codings). Results indicate a strong correlation between
types and contents of elaborations made and subsequent
problem-solving performance. Self-explanations of "good" students
were much more structured into goal-based episodes than were those of
"poor" students, indicating more persistence on the part of the
"good" students. Three data tables and three flowcharts are included.
(TJH)

**********************************************************************
* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

***********************************************************************



U.S. DEPARTMENT OF EDUCATION
Office of Educeional Research and Improvement

EDUCATIONAL. RESOURCES INFORMATION
CEP:TER (ERIC)

fLIOis document has been reproduced as
received from the person or organization
originating it

(' Minor changes nave been made to improve
reproduction quality

Points of VIOW or opinions stated in tins docu
meal do not necessarily represent official
OERI position or policy

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

tE &C

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

A Model of Self-Explanation Strategies of Instructional Text and
Examples in the Acquisition of Programming Skills

1 Introduction

Margaret M. Recker and Peter Pirolli
mitni0Soe.Berkeley.Edu

School of Education
University of California

Berkeley, CA 94720

Paper Presented at
The Annual Meeting of the

American Educational Research Association
Boston, MA

April 18, 1990

This paper reports studies of students as they learn to program recursive LISP functions in a typical.
school-like lesson on recursion containing text and examples and solving a series of programmLtg
problems. We are particularly interested in students' learning strategies in new domains. One
commonly seen learning strategy when learning from instructional materials is., self-explanation.
In this situation, the student attempts to construct an interpretation of the instructional text
and examples prior to solving problems. The types and amounts of self-explanations affect the
students' initial understanding and hence have significant impact on their subsequent problem
solving performance (Chi, Bassok, Lewis, & Reiman, 1989; Pirolli & Bielaczyc, 1989).

In our learning model (see Fig. 1), the student actively constructs representations of texts and
examples based on prior knowledge. This produces P get of example encodings and other relevant
domain facts and principles that are stored as declarative knowledge in the learner's memory.
During problem solving, upon encountering a partially nfivi4 problem, the learner will use as much
of his existing domain-specific skill as possible. At problem-solving impasses, in which no previously
acquired skills are applicable, the learner resorts to weak-method problem solving. These methods
operate on the declarative knowledge acquired from texts and examples. Knowledge compilation
mechanisms then summarize each nove!, problem-solving experience into new domain-specific skills.

We have begun to formalize these self-explanation processes within a computational model in
Soar (Laird, Rosenbloom & Newell, 1986). In our simulation, example explanation is taken to be
a process of search in a problem space in which the goal is to generate an explanation structure
that satisfactorily interconnects the example to its intended purpose, to already acquired domain
knowledge, and to new concepts, facts, principles, etc. that have just been introduced in a lesson.
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Overview of power. In the next section, the empirical study, which provides the grounding for
the model, is described. In the third section, results of analyses of student elaborations are reported.
The fourth section provides a brief overview of Soar, the computational basis for the model and
describes how the self-explanation processes have been implemented.

2 The Self -Explanation Study

In our experiment, 12 subjects with little or no programming experience proceeded through a series
of lessons on the LISP Tutor (Anderson & Reiser, 1985). The target lesson for our study was the
lesson on recursion. In this lesson, the subjects were video-taped and asked to "think aloud" as
they read through an instructional booklet prior to solving problems using the Tutor. We also
asked subjects to explain the examples to themselves.

The instructional booklet for recursion was carefully crafted for this experiment such that it
contains the following components (on separate pages):

1. An abstract description of the structure and function of the components of recursive functions.
2. An example program.

3. A description of the computational behavior generated by recursive functions.

4. A *race of the example program as it processes an input.

5. Some design heuristics for writing recursive functions.

6. A description of how the design heuristics were used in defining the example on page 2.

Pages 1, 3, and 5 are texts, and components 2, 4, and 6 are examples.
After reading through their texts, subjects worked through 12 recursion problems with the LISP

Tutor, which were arranged in different sequences for two groups of subjects. The 12 4ubjects were
divided into two groups, Good and Poor, based on a median split of mean error rates per problem
as recorded by the LISP Tutor.

2.1 Protocol Coding Scheme
The verbal protocols were segmented into elaborations, whicf are pause bounded utterances and
are not a first reading of the text. Each elaboration was categorized in terms of the instructional
content it refers to and to one of six top level categories. The instructional content was derived
from the instructional booklet as follows: each text sentence was assigned a unique proposition
number. Each portion of the examples was assigned an example line number.

The top level categories (including protocol examples) are:

Domain. Statements about programming or recursion (see below).

Monitor. Statements concerning one's own state of understanding. "I am definitely confused
at this point."

Strategy. Statements about a. planned explanation strategy. "I'll look at an example maybe
that will help."
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Activity. Statements concerning the tank or the instruction. "This paragraph is too long."

Reread. Statements which are a reread of the text.

Other. Uncategorized statements.

The domain category, the most important coding category in terms of self-explanation processes,
was further decomposed into the following categories (including protocol examples):

Operation. Statements about the process of the function. "Ok, the first thing it does is null
list."

Result. Statements about the result of a computation. "Cdr gives you the last element of a
list"

Input. Statements about the input to a computation. "When the function gets nil as a
value..."

Structure. Statements about the structure of a function. "You use Cond when you're defining
the recursive thing."

Is-a. Statements relating a particular to a concept. "You're using Car list as it's own helping
function."

Reference. Statements relating a concept to a particular. "The recursive step is cdr list."

Purpose. Statements about the purpose of a piece of code. "Cdr... in order to get it closer
and closer to the terrainat'ng case."

Analogy. Statements making analogies. "...like n factorial, we did this in math is equal to n
times n-1 factorial"

Entail. Statements describing the entailments of an action. "When the answer is nil then it
will stop,"

Plan. Statements about a programming plan. "I see, we keep going and going into easier
elements, more and more elementary steps until we know what to code."

Propose. Statements proposing the meaning of a piece of text or example. "Isn't code the
recursives cases the same as assuming the recursive step?"

Question. Statements questioning the meaning of a piece of text or example . "What is the
difference between recursive cases and recursive steps?"

As above, for each of these types of domain elaborations, the content or concept it referred to
was also recorded.

Domain elaborations were recorded it these additional two ways. First, any domain elaboration
which related the text to an example (or vice-versa) was recorded. We call the phenomenon of
relating text and example "making ties." For example, while a student was explaining an example
to himself, he explicitly related terms in the example to the previous text page: "(reading) -the
tests in the function's condition structure are evaluated- so the zerop and t, zerop and t"
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Category Group
Text Example

Good Poor Goo i Poor
Domain 84 33 99 41
Monitor 72 18 46 10
Strategy 9 2 8 0
Activity 33 1 18 3
Other 11 2 4 1

Reread 75 56

Table 1: Summary of elaborations.

Second, the domain elaborations were divided into 2 kinds. We recorded whether the content
of the elaboration attended to deeper features of the examples and text, or to the more superficial,
syntactic ones.

Finally, sequences of related elaborations were coded into episodes (or macro-codings). We
consider a series elaborations related and part of an episode if they are all refer to a similar
explanation goal. The episodes were coded with respect to their length and their episode trigger
(e.g. a self-imposed goal or a comprehension failure).

3 Analyses and Results
3.1 Comparison to Previous Research
In general, the findings are in agreement with those of Chi et al. (1989) 1: skill acquisition in a
programming lesson is correlated with the quantity and kinds of elaborations made by subjects when
they initially try to comprehend the instruction (see Table 1 for a summary of elaborations). More
specifically, Good students produce a greater total number of elabopartions..(but not significantly
more: t(10) = 1.46, p = 0.09). However, they do produce significantly more when processing the
example (t(10)=1.93, p = 0.04). Thus, it appears that simply elaborating a great deal does not
uniquely determine performance. Rather, some kinds of elaborations are more important than
others.

The real difference between groups becomes more evident when looking at the kinds of elab-
orations made. Good students make many more domain elaborations (410)=2.30, p = 0.02). Of
these, they make more that attend to the deeper features of the material, and not to the more
syntactic ones (t(10)=1.78, p = 0.05). Finally, the Good students make many more elaborations
which "make ties." That is, one that attempt to connect the theory explained in the text to the
given examples (t(10) = 2.14, p = 0.02).

In addition, the Good students make more strategy statements and seem to be more aware
of their own states of comprehension as is reflected by the greater number of these statements
(t(10)=2.53, p = 0.02).

3.2 Additional Results

1Preliminary analyses of these data were reported in Pirolli & Bielaczyc (1 89).
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Category Group
Good Poor

Total Mean Total Mean
Operation 115 19.16 69 11.50
Result 61 10.16 14 2.33
Reference 22 3.67 7 1.16
Is-a 16 2.67 5 0.83
Structure 8 1.33 2 ' 0.33
Purpose 7 1,16 8 1.33
Analogy 11 1.83 1

0
0.170Entail 5 0.83

Input 6 1 0 0
Plan 4 0.67 7 0.67
Propose 32 5.33 22 3.66
Question 33 5.50 27 4.50
Total 320 53.33 162 27

Table 2: Summary of domain elaborations.

A striking feature of the self-explanation data is the rarity of incorrect elaborations. Although
students have much opportunity to draw incorrect generalizations and conclusions, they seldom do.
Only 1.8% of all elaborations were judged to be incorrect. This is similar to Siegler Sr Jenkins'
(1989) recent study of how children induce addition strategies. They found that very iew incor-
rect stra.tegies were ever attempted. Thus, it appears making incorrect elaborations is not a key
difference between groups. Rather it is simply a failure to elaborate important information.

The episode coding of the self-explanations also yields some interesting results. In general, Good
students' self-explanations are structured into more episodes (Good moan: 5.50; Poor. mean: 1.17;
*0)=3.01, p = 0.01). These episodes are eiTher triggered by self-imposed goals (e.g. an attempt to
relate the example to the theory explained in the text) or by comprehension failures. This suggests
that Cood students are more persistent and organized in achieving their goals for understanding
the instruction.

Finer-grained analyses of domain elaborations are summarized in Table 2. The results show
that 40% are related to the operation (or process) of LISP functions. Within this category, most
elaborations were concerned with how the actual cases of a specific example are evaluated (33%).

The second most common domain category is the result category (20%) where the concern is
with computing the result of a particular computation. Here, most elaborations involved computing
the result of a specific example.

In the reference category (elaborations that relate a concept to an instance, or vice-versa), most
involved relating new terms introduced in the text (e.g. terminating-case, recursive-call) to their
instantiation in an example. Reference and is.a elaborations accounted for 12% of the elaborations
for the Good students and 7% for the Poor.

The domain elaborations which revealed uncertainty (proposals or questions) were equally di-
vided between the two. They account for 20% of domain elaborations for Good students and 30%
of domain elaborations for Poor students. Not surprisingly, almost all of the uncertain domain
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.664 -.095_ .464
Monitor (total) 571 -.078 .16E
Reread .03 .071 .947

7131Strategy (total) .963 -.061.
Recursion- Related .925 -.55 -.107

-7-07-Non Recursion-Related -.011 .888
lrst New Errors 7.679 .47 .3
lrst New Time - .or .775 .063

Table 3: Factor Analysis: Orthogonal Transformation Solution.

elaboration again concerned the operation (or process) of a LISP function.
A factor analysis of self-explanation data and programming data highlighted some of the sub-

tleties of the relationships between self-explanation and performance. Basically our analysis sug-gests that the acquisition of new programming skills is associated with the generation of domain
elaboration specifically related to the topic of interest (in this case, recursion). The analysis also
suggests that gaeration of domain elaborations outside the topic of interest may actually be detri-
mental.

For this factor analysis, we entered subjects' data on several self-explanation and performance
measures into a princple components factor analysis. Included in this analysis were counts of
subjects' total activity, monitoring, strategy, and rereading elaborations, and subjects' domain
elaborations, which were separated into recursion-related and nonrecursion- related elaborations.
We also included subjects' errors and latencies on their first opportunity for acquiring a new skill
(as indicated by the Lisp Tutor traces). All raw scores were given logarithmic transformations,
which yielded factor solutions that were superior to the untransformed scores.

Table 3 presents the weights for the orthogonal factor solution. Three factors ware found, with
Factor 1 accounting for 56% of the variance, Factor 2 for 25% of variance, and Ficar 3 for 19% of
the variance. We interpret Factor 1 as capturing the skills associated with the correct identification
of comprehension goals and failures, and the generation of useful domain elaborations. From Table
3, it is dear that activity, strategy, and recursion-related elaborations are most heavily associated
with Factor 1. Factor 1 also has a heavily negative association with errors on the first opportunity
for acquiring a new skill. Factor 2 can be interpreted as capturing the generation of domain
elaborations that are less useful (or perhaps, distracting). Factor 2 is heavily associated with
the generation of nonrecursion-related domain elaborations, and is positively related to increases
in errors and and time in the acquisition of new skills. Factor 3 is somewhat more difficult to
interpret. It is strongly associated with amount of rereading, and is positively related to increases
in errors on the first opportunity for acquiring a skill. Factor 3 could be interpreted as a measure
of unsuccessfull attempts to comprehend the instruction.

4 Overview of the Model
We nave begun the implementation of a model of the self-explanation processes in Soar (Laird et al.,
1986). Soar is a general problem solving architecture which includes an experience-based lea,aing
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mechanism, called chunking. Information processing in Soar involves search through problem spaces
in order to achieve a particular goal, with knowledge influencing both the structure and efficiency
of the search process. Soar has been proposed as a candidate theory of the human cognitive
architecture (Newell, in press).

The self- explanation processes are implemented in Soar as a problem-solving process with the
goal of creating an explanation structure. Our hypothesis is that an explanation structure consists
of a set of interrelated situation models (Kintsch, 1986). Situation models are implemented in
Soar as states L the problem space (c.f. Lewis, Newell, Se Polk, 1989) . The purpose of these
models is to specify (a) the structure and purpose of components of a recursive function, (b) the
computational behavior generated by a recursive function, and (c) design heuristics which specify
future programmer behavior.

Understanding the instructional material involves two main components: understailwng the
text and understanding the examples. The instructional text is represented as a set of propositions
defining the main principles, facts, and concepts of the target domain. The example provides a
concrete instantiation of the theory. However, for a novice programmer, many of the concepts are
unfamiliar.

4.1 The Representational Scheme
Each page of the instruction is encoded in working memory as a set of propositions. The propositions
represent an ideal model encoding of the declarative text base. Each proposition matches a sentence
or sentence fragment in the instruction. This encoding mirrors the encoding of the instruction used
in the protocol analysis. The examples are encoded as one working memory element per chunk of
code, where a chunk of code depends on the presumed familiarity of the structure2 to the idealized
student.

4.2 Major Problem Spaces
The top level problem space is called process - instruction. Within the top space are the two major
operators for processing text and for processing examples. These operators are implemented in
their own spaces, read-text and explain-example.

In the read-text problem space, textual information is processed with a knowledge of a par-
ticular focus. The focus is indicated by the current topic as specified in the title of the page of
instruction (e.g. structural information, process information, etc). Depending on the focus, the
relevant situation model is constructed and augmented. Impasses occur when an unfamiliar term
is encountered. To overcome such impasses, the system can either attempt to ground the term in
the examples (if available), flag it as unknown, or ignore it.

Example understanding is implemented in the explain-example problem space (see Fig. 1). Here,
the system can use knowledge available from prior lessons and from the just-read instructional texts
to generate a model of a presented example. For the example understanding process to be effective
with respect to I ture problem solving, it must produce chunks that contain knowledge that will
be useful in problem solving. Additionally, the chunks must be retrieved and assembled by cues
that will be present in the problem solving context.

2So, for example, "Defun function <parameter>" is encoded as one element since a certain degree of familiarity
for function definitions can be presumed. In contrast, each sublist in the recursive case in the example program is
encoded as one chunk since each involve new concepts.
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Similar to Kintscit (1986), we have modeled example encoding as a process that racy involveup to three levels. The first level, verbatim, is an elaboration of the Soar data chunking technique(Rosenbloom, Laird, & Newell, 1987) for declarative data storage. In data chunking, existing knowl-edge is retries ~d and matched against new information from the outside world and summarizedin new produ.t..ctons. These productions can recreate the information at recall time given similarsituation cues.
At the second level,, understanding, the example is parsed with the goal of meeting the recursivefunction's specifications. This process occurs by bringing to bear previous LISP knowledge and byrecognizing matches in the code to the given function's specifications. Finally, at the last level,learning, the system attempts to relate elements of the example to concepts introduced in the text.

4.3 The Task

Figure 3 shows how we expect the system to run. As mentioned above, the system's workingmemory is initialized with the textual propositions representing the first page of the instruction.The system also has knowledge of the instructional topic, i.e. it knows that the text gives adescription of the structure of recursive functions. Very little processing occurs at this stage.The system then has the goal of proCessing the second page of the instruction, the examplerecursive function. Here, as explained above, the example is parsed at three levels. For eachsuccessful match, the relevant situation model is augmented.
The third page of instruction, a textual description of recursive function evaluations, is parsedwith the same mechanisms as the first page. For each text proposition, if no relevant backgroundknowledge exists, the system attempts to match to the example. Again, for each successful match,the functional situation model is augmented. If the proposition cannot be related to the example,it is flagged as unknown.
The situation models created, the way they are related to prior knowledge, and the mannerin which they were generated at comprehension time all determine their availability, paths ofaccessibility, and usefulness at programmer coding time. Piro lli (in press) suggests some aspectsof the created situation models that may be relevant to overcoming problem solving impasse.; inprogramming. These include the amount of structural information, and information about relevantgoals and plans.

5 Conclusion
We have described a Soar computational model of self-explanation strategies of instructional textand examples, based on empirical results. The empirical analyses showed a strong correlationbetween types and contents of elaborations made and subsequent problem solving performance.In particular, the self-explanations of Good students are much more structured into goal-basedepisodes indicating more persistence on the part of the student. Good students make significantlymore domain elaborations, especially ones dealing with deeper domain features and ones making tiesbetween the text and examples. Additionally, effective monitoring seems to be tightly integratedinto the process.

The ;omputational model describes the space of possible explanation processes and products. Inthe model, self-explanations are viewed as the process by which a declarative explanation structureis constructed. The explanation structure consists of a set of interrelated situation models which
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specify the different aspects of programming. With each additional component of the instruction,the situation models can be updated.
The formalization of self-explanation strategies contributes to our understanding of learningstrategies in complex problem. solving domains. Our model addresses the way in which situationmodels are refined and elaborated by instruction thereby deepening our understanding of learningstrategies of typical instructional material. These results should inform research in the area of st,:-dent modeling in intelligent tutoring systems. In addition, it extends work in artificial intelligenceand Soar to more substantial psychological phenomena.In the future, we plan to further investigate the correlation between self-explanation strategiesand problem solving. In particular, we plan to study the role that different instructional represen-tations might have on the effectiveness and efficiency of learning strategies in declarative knowledgeacquisition tasks.

4an%
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