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Abstract

Possible bias due to sampling problems or low response
rates has been an extremely troublesome "nuisance" variable
in all areas of empirical research ever since seminal and
classical research studies were done on these problems at the
beginning of this century.

A wide variety of work, data, and new theories in many
different areas, however, strongly suggest that these
classical formulations and views of the alleged bias problem
are essentially incorrect, misleading, and overly simplistic,
and that under a variety of fairly wellspecified conditions
allegedly biased samples are in fact random (most probably),
and that de facto biased samples can and will "jump" from
being biased to being random samples, in the manner outlined
and described by Catastrophe theory (Zeeman, 1976). These
conditions are when the population is fuzzy and dynamic, and
the number of factors "structuring" the population (or
sample) and those influencing responding or nonresponding
are large, interact with each other, and net out to zero, or
the statistical equivalent of zero (namely, a trivial effect
at best). Researchers and theorists in many areas,
therefore, may be rejecting and disregarding what might be
reasonably and highly (if not perfectly) valid data and
studies. Actual data from a number of recent vtatewide
studies of large, complex, and dynamic populations which had
response rates in the 15% to 30% range empirically support
this view.

A wide variety of simulation studies of these newer
views, which are outlined in this paper, are needed. Some of
these needed simulation studies, as well as the nature of the
problem(s), are also outlined in this paper.

The very strong suggestions of these newer views, if they
prove to be essentially correct upon empirical simulation,
would be a very important discovery, not only for the areas
of research methodology and statistics, but also for the
areas of cognitive psychology and machine intelligence.

Paper presented at the Annual Conference of the American
Educational Research Association (Division 0, Research
Methodology), Boston Ma., April 16-20, 1990.



Increasingly in the social sciences, researchers have

been attempting to conduct important surveys of large and

complex realworld populations on critically important issues

and questions. One problem that has continually plagued

these research efforts, as well as the evaluation and

acceptance of findings of these surveys has been the low

response rates obtained from subjects nominally considered to

be part of the population being surveyed. Typically,

response rates to surveys of large, complex, realworld

populations tend to be 25% to 40% of the sample drawn for

participation. Typically, the sample drawn tends to be 10%

to 20% of the nominal population, so that the resulting

sample of responders tend to constitute data on 5X to 10% of

the nominal population.

Usually, these low response rates are most interpreted

as indicating that there is a de facto bias in the analysis

sample. Consequently, the results of the analyses done are

usually strongly challenged and deemed unacceptable because

of this alleged bias and both the data and results of

analyses are unquestionably considered to be highly dubious

and suspect at best. The key and fundamental problem,

however, is that the accusation and claim of bias is only a

de lure, inferred, extrapolrted, and "armchair" claim of

Lias, and is not a de facto proof of bias (even

probabilistically), and that the very theory upon which this

inferential, armchair conclusion is based is rift with deep

core definitional and conceptual problems, contradictions,



impossibilities, and several other major flaws which makes

this theory extremely dubious at best in terms of providing

an adequate or actual model of events and what actually

occurs in the real world (rather than in urns with balls that

have a single property) and real world situations.

This fundamontal fact (and problem) has led many

theorists and researchers in all areas of science and social

science to strongly question and challenge the general

classical theoretical perspective, views and models developed

primarily in the first half of this century. These views

have been crumbling and stumbling badly in all areas of

science and social science in the last half of this century,

particularly as more and more data emerges that contradict

this general view, and more conceptual and theoretical

analyses are done of this view. These analyses have tended to

produce newer and very different theories rather than

revisions or modification of the general classical theory,

which is essentially a strict set theoretic, logical

positive, linear, onedimensional view and model of the world

and its events and operations.

PrRnticing researchers (in particular') and theorists in

all areas of science and social science are currently

extremely uncomfortable, suspicious of, and ill at ease with

the classical models, positions, and views as they are daily

turning out to be extreme oversimplifications that break

down quickly and do not work (by a long shot) even as a

"very broad gauge macro model" in the real world of everyday



life and research. The real everyday world is qualitatively

very different (see Cronbach, 1988) from the "world" of the

the "simple expeviment," or the simple "hermetic lab, Tmaze,

or urn." Compared to these over simplified "worlds," the

everyday world of reai life and real experiments is "complex"

and even "highly complex," and this "complexity" is very

different from classical (over) "simplicity," and not an

extension of this "simplicity," but rather a new area

requiring a new science; namely, a "science of complexity"

(see Pagels, 1988). The real everyday world is not an

extension of the "simple classical model," but rather, it is

a quantum leap from their "simplicity," and a "jump" of the

kind characteristized by Catastrophe theory (Zeeman, 1976),

which is a general theory of nonlinear phenomena and events.

This great and rapidly emerging "discontinuity" between

the "simple" and the "complex" has been strongly impacting

practicing researchers and theorists in all areas of science

and social science in the past five years, but the impact in

the area of sampling, statistical and research theory has

been minimal at best. This emerging discontinuity, however,

has begun to make some impact on these three areas very

recently, as several leading theorists have begun to express

their oxtreme discomfort with the classical views on key

topics in these three areas, and their concerns with and

alienation from classical theories and models in these three

areas that are blythely and unquestioningly accepted by the

majority of professionals working in these three areas.

3
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Nowhere are these later points more evident than in the area

of the topic of this paper.

Angoff (1988) has called the problem of bias the most

ill and poorly defined, and poorly understood concept in all

of measurement, statistics, and research, and the one concept

most in need of clarification, analysis, conceptualization,

hypotheses formation, and empirical simulation of the kind

finally done by Glass (1972) on the robustness or ANOVA to

violation of its many assumptions, the results of which

suprised everyone, including Glass. And the surprise was a

very pleasant one, particularly for practicing researchers.

Similarly, Wainer (1989) concluded that the bias question

and area is currently shrouded in a very thick fog, and what

is needed is not more statistical equations, formulae, and so

forth, but better conceptualizations, analyses, modeling ane

thinking about the problem that will indicate some directions

that eventually will put a dent in one of the most important

and perplexing methodological problems in research today:

missing observations.

This paper, therefore, is an effort in the direction and

along the lines that Wainer, Angoff, and others have recently

suggested, although our views of the questions and problems

were developed independently and in parallel in the work of

these theorists and in many respects are very different from

the views and analyses of these theorists whose work,

thinking, ideas, conjectures, (and courage) we respect and

admire greatly. Consequently, in this paper, we are going to
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try to outline our views, analyses, and thinking about this

most fundamental of problems as well as the prototype models

and ideas that we have, and have explored to date, as well as

some of the data that support our views and the kind of

activities and studies that need to be done to advance

understanding and models in this area and support or deny

several of our conjectures which are derived from newer

theories and our experiences. Our primary goals in this

paper are (1) to share our thinking and work in this area

with others, (2) to get others interested in the ideas, work

and issues we present, and (3) to encourage and stimulate

others to pursue these ideas, models, issues, and conjectures

independently as no single effort or work is going to be

definitive or conclusive. There are simply too many

questions, and too many pieces to the puzzle at this point,

and not enough data, and particularly simulation data and

studies.

Initially, we must begin by saying that we are quite

confident in the essential correctness of the views,

theoretical analyses, points, criticisms, models, and

conjectures outlined in this paper within the limits,

conditions, and boundaries of the particular situations and

phenomena we are focusing upon in this paper; namely, large,

comllex, and dynamic "populations" that are sampled in an

attempt to make (probabilistically) valid statements about

the population based on the fragment in hand (i.e., the

actual sample data). However, based upon the sound advice of
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a highly valued anonymous reviewer of a summary of this

paper, we wish to emphatically state at this point that our

work, models, data, and thinking cannot be currently

construed at this point in their development as definitive

proof by anyone that their "low response rate" sample is in

fact a random saraple of the population in question, and there

is in fact nothing "wrong" with their sample and that they do

not have to be careful and cautious in analyzing it or

interpreting their results. As will be seen in this paper,

our position, emphatically, is that the resulting randomness

or nonrandomness of any particular sample in fact is a

function of several reasonably welldefined factors and

events that must be present and operational in the situation,

and that the conclusion that the actual sample is essentially

a random or nonrandom one can only be done probabilistically

at this point in time, until the appropriate simulation

studies are done. Our views may differ, and even differ

radically from those of others; however, this difference in

no way implies, or should be taken to imply, that we do nut

strongly adhere to the purposefully conservative position of

science as a process with respect to emerging science.

Conundrums

The views presented in this paper began from two

extremely simple (but highly anomalous) observations and/or

experiences. The first of these two observations or puzzling

experiences was trying to explain how human beings could draw



valid inferences, make valid deductions, and draw valid

conclusions consistently, and in a highly reliable fashion,

from the seemingly highly biased, unrepresentative and very

small samples (fragments) of reality that they experience

daily and unquestionably in the real world. This very

simple, basic, and elementary fact replicated millions of

times an hour (at a minimum), every hour of every day world

wide, cannot be explained in any simple, easy, or straight

forward way by classical sampling and statistical theory, and

places classical sampling and statistical theory and all of

the concepts and conceptual framework associated with it in

the same place and in the same logical and empirical position

as classical neurobiology was in the fifties when Lashley

said that he would logically be forced to conclude that

learning did not and could not exist from the framework,

viewpoints and the "received" theories of contemporary

neurobiology.

This point is neither a specious or trivial point or

argument, nor the stretching of a point or example. It is

the converse of the above simple point that is always and the

only one emphasized by classical (statistical) theory. The

"pro" side of the simple point stated above, however, occurs

with at least equal frequency and is equally correct and

valid, and therefore must be explained by classical or

"received " theory as well. One cannot model and explain

just "one side" of a coin and say that this "onesided" coin

"exists" and is real and that the other side of the coin does
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not exist and is not real. This approach just does not pass

muster intellectually or scientifically. If one is going to

play the "theory game," then one must play it fair and

square, and not make "all" claims for "part" models, because

the very part one has thrown out just might be the most

important part.

The above point and simple conumdrum is a prime example

of the selective attention problem, which is one of the most

key and fundamental problems currently impeding progress on

and resolution of the many issues and disputes associated

with the subject matter of this paper. Selective attention

is often quietly, subtlely, and fatally biased because it is

unweighted and is not paying attention to and open to both

sides of the coin simultaneously, and dynamically adjusting

perspective (and theory) on the weight of argument and

evidence (logical, theoretical and empirical). When the

latter is done, the above coin can spontaneously and

instanteously "jump's from one side to another right before

one's eyes just like one's perception of ambiguous visual (or

statistical) figures. -h "jumps" are considered to be

"catastrophes" by "either/or" views, but are not catastrophes

at all by more inclusive "both/and" views.

The coin described above is a "paradox, contradiction,

or conumdrum" coin. It is riot the coin one reads about in

classical statistical theory. The properties, operations,

and dynamics of the conundrum coin, moreover, are very

different from the classical coin, because there are opposing



(contradictory) forces and interactions built into the coin

that are operating simultaneously and are going to "net out

at different time points and conditions to one side of the

coin or the other being "up." I.; is the conundrum coin that

can explain how an allegedly biased sample due to non

responders can in fact be random, or so close to random as

to constitute totally trivial bias at best. It is also the

conumdrum coin that can explain how a sample could and can

"jump" from being biased to being a random sample under

various sets of reasonably well specified conditions. The

formal theory that best represents the conumdrum or paradox

coin and the exact dynamics and mathematics of its operations

is Catastrophe theory (Zeeman, 1976), which will be outlined

in more detail below.

The conundrum coin and the fact that human beings draw

correct inferences and deductions from allegedly biased

samples cf everyday reality are very key and fundamental

points and part of the very essence of the problem. These

two points go to the very roots of the problem, both

conceptually and historically. If a theory, conceptual

framework, view or position cannot explain very simple,

basic, elementary and incontrovertible facts and events that

can be observed daily and anywhere by anyone, and are

observed daily and everywhere by everyone (and thus large

scale, highly controlled experiments are not even really

neeued), and the use of this theory, conceptual framework,

view, or v.lsition forces one to logically conclude that these
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incontrovertible facts and events do not exist, and cannot

exist, and everyday reality is to be denied, then they are

undeniable and uniquivocably fatal flaws, paradoxes, and

contradictions in the theor", conceptual framework, view, or

position and they are not minor, or minor blemishes, or small

points or quirks that may be remedied in various ways.

The occurrence and existence of the type of point,

condition, and situation outlined above is almost always

indicative of very deep seated and basically fatal flaws,

errors, and contradictions t:lep within the inner vital core

kernel of the theory, conceptual framework, view, or

position. There are many, many examples of this point

historically. Behaviorist theories of language being

completely unable to explain the production or comprehension

of a new sentence by an individual, or the comprehension of

or laughter at a joke, is one pertinent example. Classical

learning theories not carrying over to the natural learning

context of the everyday world and in fact "declining and

falling (seeMcKeachie, 1979)" is another.

All of these points are made to quickly, succicntly, and

simply convey the view that the positions to be presented in

this paper have a very strong a priori credibility (warrants)

basis in simple every day observations, facts, and logic that

cannot be denied or dismissed or patched over and conce,Aled,

and to emphasize that there is another extremely important

reason to pursue the concepts, ideas, new theories, and

thinking directions outlined in this paper beyond sampling

10 13



theory, research, and statistics. Since the ideas, concepts

and new theories outlined in this paper are capable of

explaining the very simple observation described above,

working some of these problems, issues, and ideas out could

make an incredibly valuable contribution to cognitive

psychology and machine intelligence. So there is an

additional and highly valuable incentive and prize and this

prize is basically why we are so interested in this set of

interrelated problems. If any of the ideas, points.

suggestions, and conjectures outlined in this paper prove to

be essentially correct upon further empirical investigation,

such findings would be important to many areas other than

statistics and research methodology, and, this is why we

believe, like Wainer (1989), that this "nuisance variable" is

extremely important and worthy of intense study. This point

is also the reason why we believe that work on this subject

and this "nuisance variable" problem needs to be highly

interdisciplinary. Concepts and theories from several

different disciplines are needed to start making a "real

conceptual dent in this proOem , which according to Wainer

(1989) is our first reel order of business. Consequently, we

would like to begin with what we believe is one of the

essential ingredients to providing some answers to the many

conumdrums in this area; namely, Catstrophe theory.

1114



Catastrophe Theory

Catastrophe theory (Zeeman, 1976) is essentially a

theory and mathematics of nonlinear functions and

relationships that is far more specific and precise than

Chaos theory (Gleik, 1987), which is a general and all

emcompassing theory of nonlinear phenomena. Nonlinearity

is a mathematical and theoretical "catastrophe" for classical

linear models and conceptualizations of phenomena. A

theoretical or observational "catastrophe" occurs when the

linear model predicts the "next data point" or -esults from

previous data points and the predicted result in reality is

observed to be in exactly the logically and mathematically

opposite place.

Seven very distinct and different general "catastrophe"

models have been developed (Zeeman, 1976) which range from

simple to complex depending on the number of observable

factors and behavioral dimensions that are related together

in the model. Each of these general models describes how the

"regression surface" or "plane" in the linear view is

"folded" into co,itoured shapes or structures that can be

described by mathematical equations which make the data

orderly, structured, and predictable, both theoretically and

logically, as well as mathematically.

The key feature of and fundamental principal embedded

within each of these seven specific Catastrophe theory models

is that event points jump from one "logical" state to the
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logical inverse of the preceding "logical" state due to the

interactions of and buildup (net) effects of reciprocal and

contradictory factors operating simultaneously upon the point

in question. The more interacting factors affecting the

point, the more complicated the full event space model and

its folding is, but as the number of contradictory factors

operating increase, they tend to net out to zero net effects,

except for very specific and welldefined regions within the

event space of the model where "jumps" become "confined."

This later point is a very important point for a number of

reasons, but most particularly in terms of the selective

attention problem (focusing on one factor and the effects of

one factor only), and the net effects of many contradictory

or opposing factors interacting and operating simultaneously

upon an event or event point netting out to zero effects

(namely, no resulting bias).

Catastrophe theory is a very specific and very precise

theory and mathematics of interaction and nonlinear

phenomena, which is to say conditional phenomena, rather than

general, simple and uniform phenomena. Catastrophe theory is

not only the other side of the conumdrum coin, but it can in

fact explain the condundrum coin and its operations even to

predicting when the conundrum coin will land on its side. It

should be noted, however, that Catastrophe theory's models of

interactions are very specific, very precise, and well

bounded models of interactions that are unlike those of ANOVA

which are general and almost completely unbounded and do not



have theory contradicting states or outcomes like Catastrophe

theory does. Catastrophe theory, moreover, is also far more

precise and specific than chaos theory, or fractal theory

(Mandrebot, 1975), which also suggests that samples from

large, complex, and dynamic "populations" that are influenced

by many contradictory factors operating simultaneously will

be extremely good "exemplars" of that "population." These

implications of fractal theory, which address the feature of

and the implications and effects of the structure, structural

complexity, and the structural effects of a "population" on

consequent and result samples (fragments of the population)

are incredible ideas that are at first so counterintuitive

as to warrant detailed consideration and investigation in

and of themselves.

Catastrophe theory is not so mysterious at its simplest

and most fundamental level. The deep implications of

Catstrophe theory are that events (samples) can jump from

being biased (or ordered) to being random, or viceversa,

depending upon the nature of the factors, conditions, and

interactions simultaneously operating in a given event space.

This fundamental point and observation is essentially the

fundamental point any observation of Chaos theory and Fractal

theory. Both of these later theories, however, point out that

what may be ordered at one level may be unordered (random) at

another and viceversa. It is our view, however, that only

Castrophe theory at this point in time has the precision

neccesary for simulation studies and that is why we hive a
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strong preference for Catstrophe theory as opposed to other

theories and models.

What makes catastrophe theory so unique and powerful is

that it can handle logically cuntradictory criteria or

dimensions with equal ease and facility as logically

consistent or uniform criteria, and it is this feature of

catastrophe theory that makes it so interesting, and

interesting in terms of the uniquely different surfaces and

models that it generates depending upon the number and

logical type of the input criteria. It is also this feature

of catastrophe theory that makes it so powerful and capable

of modeling with great precision such contradictory,

discontinuous, and nonlinear phenomena as aggression,

anorexia nervosa, the stock market, cathartic release from

selfpity, the buckling of an elastic beam, phase

transitions, and a wide variety of other such nonlinear

phenomena. Catastrophe theory alone, however, cannot explain

our data. Fuzzy subset theory (Kaufman, 1979) is also needed

as well as several other concepts. Fuzzy subset theory is

needed not only to describe the difference between the

process of sampling real world (fuzzy) populations in the

real (fuzzy) world, as oppose to the classical ball and urn

model of these events, but also to clarify the distinction

that must be made between the nominal population and the

effective population (true members who are truly available to

be sampled and/or respond), particularly relative to large,

complex, dynamic, and real world populations. However, it is
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best at this point to discuss our data and data from some

other researchers, as Catastrophe theory's main ideas of the

net effects of interacting (contradictory) factors and

"logical state jumps" are key ideas and concepts relative to

the initial discussion and explanation of findings.

The Second Observation

Our second extremely simple observation and/or puzzling

experience occurred when we conducted 3 consecutive annual,

statewide, largescale surveys of graduates from 15

community colleges and eventually their employers. Through

computerized records given to us on computer tape by each of

the 15 community colleges, we constructed close to a 40

variable database (N=5,781) on various characteristics of the

entire (hypothetical) graduate population (see Carifio and

Shwedel, 1983). When we found that the background

characteristics of the 20% to 30% of the graduates who

responded to the surveys were multivariately no different

than those who did not respond, we were extremely surprised

and tried to develop some initial conjectures as to why.

Rut when the same results happened a second time (population

N=5,627) and a followup study of a 10% sample of non

responders revealed no differences on any of the 15 dependent

variables examined, we did more than conjecture, we started

to build a prototype conceptual model that could explain why

this could happen (see Carifio et al., 1988).

When the same results occured a third time (population
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N=5,129) in a follow up of employers of graduates, we became

more confident in our thinking and model (see Carifio et al.,

1988), and then when we encountered two statewide surveys of

practicing nurses that began with a population database cf

subjects characteristics of N greater than 5,000 and found

that 10% samples that had only 40% to 50% response rates in

terms of the samples survey (making them 5% samples of the

population) were random (see Fazekas, 1989, and Hunt, 1989),

we became even more confident in our thinking, prototype

model and views, and that our results were not just highly

improbable flukes. We also began to have a great deal of

confidence in older reports of similar experiences shared

with us by other researchers engaged in similar activities in

others states (e.g., Boakes, 1981, and Paulson, 1982).

The 5 studies described above all have a large number of

features in common that are extremely important to the

subject of this paper and in explaining the outcomes observed

in these 5 studies. First, all 5 studies were dealing with

relatively large and structurally complex "populations" and

study spaces as compared to the typical study, but most

particularly as compared to the classic "ball and urn simple

experiment model" and/or classical "extensions of this model

to more complex :itudies and spaces (see Coombs, 1964 for the

most detailed of descriptions of these two points). Next,

both the elements (or members) of these complex populations,

and a number of complex intervening factors, were distributed

across the event spaces of these studies, making the event
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space and the population it contained in each of these

studies very fuzzy, lumpy, and distributed in effects rather

than smooth, homogeneous, exact, precise, and certain like

the classical event and study space model as is best outlined

and described by Coombs (1964).

In all of the 5 studies described above, the nominal

population was known in all of its multivariate complexity.

A complex and complete database existed on both the

multivariate features of the nominal population and the

various possible intervening factors and "breakdowns and

influencing factors" within it. Sample results could be

checked back against the population multivariately in terms

of assessing the degree of bias or randomness of the

resulting responder sample. This key feature protects and

protected these five studies from the selective attention (to

armchair identified) factors problem which is the key feature

and major flaw in classical theory and classical "views" and

studies of bias, sampling and the nonresponder problem.

This key weakness is the logical equivalent of the family

wise error rate problem in statistical testing and the need

for control of this problem in doing statistical tests. This

key weakness is one of the major reasons why all of the

classical research, conceptualizations and thinking in this

area is so severely flawed, highly questionable, and

completely dubious. We will elaborate this point more fully

at the end of this paper.



All 5 of the studies outlined above had a real world

fuzzy and distributed (random) variable embedded in the core

of the conduct of each study that the urn of the classical

model and hermetic laboratory context does not allow to

operate or exist. Each study had to construct a definition

of a member and then sieved elements to find the population

(if one thinks that it is extremely easy to define a graduate

of a community college, then one needs to spend some time

talking to registrars at a few colleges). Next, each study

had highly dynamic "true members" of the pepuiation fitting

the constructed membership definitions.

Current street addresses (the major member locator

variable in the large, distributed, fuzzy urn) were

inaccurate for up to 207. of the cases in some instances with

no discernible pattern (bias) in terms of inaccurate cases.

This inaccuracy rate in current addresses is not particularly

high, according to a wide variety of people to whom we have

spoken who work this type of data and problem. Educated

professionals are a highly mobile and dynamic population, and

only an instance of the many kinds of dynamic populations

there are in all areas.

We found that in following up on nonresponders that a

goodly number had never received the survey we sent them

and/or we had not received a goodly number of the surveys

they had returned. Again, this was another dynamic variable

that had no discernible pattern (bias) to it in terms of the

background variables in our database. Again, in talking to

19 22



many other people in a variety of different areas, we found

that this state of affairs is not at all uncommon, and has

been in fact occurring more frequently in the last few years.

The effects of all of the above variables in all 5 of

these studies were (1) to reduce the size of the nominal

response rates to between 5% and 25%, when in fact the actual

effective response rates, when all of these factors were

taken into account, were between 35% and 55% of the effective

population (see Carifio et al, 1987 for details). The

responder samples, therefore, were actually very much larger

samples than one would believe they were, if one evaluated

response rates in terms of the nominal popluation "urn." The

net effects of all of the random and contradictory response

affecting factors in these 5 studies were statistically zero.

Each of the responder samples in each of the 5 studies

were de facto statistically random relative to their

populations, although a wide variety of armchair arguments

could be made about various (selective) factors that would

strongly suggest, if not prove, that the responder samples

were most probably biased samples, when 1,he exact opposite

was true statistically and de facto. Catastrophe theory, in

particular, but fuzzy subset theory and Chaos theory also,

would have predicted, however, that the responder samples in

these 5 studies were most probably random and not biased.

These theories, moreover, led to the most simple initial

formulation of our views.
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This formulation says that as the structural complexity

of a population increases in terms of the number of variables

characterizing the elements of the population simultaneously,

and as the number of interacting factors increase that

simultaneously influence the occurence or nonoccurence of

responding (and as these factors increase in number as

contradictory factors), then the greater the probability that

the resulting responder sample will be a random sample of the

population.

Further, this view says that the probability that the

resulting responder sample will be a random sample of the

population is far, far greater (and closer to 1> than the

probability that the responder sample will not be random;

namely, than the probability that it will be a significantly

(as opposed to merely statistically) biased sample. This

very simplu and somewhat obvious question of just how biased

any given sample is, and exactly how biased is biased, both

quantitatively and qualitatively, is one of the key,

critical, and outstanding unanswered questions in this whole

area, which we will comment on further below.

We initially thought that this view and our predictions

could be construed as a restatement of the "Law of Large

Numbers," where the word "Number" is replaced by the words

"Number of (interacting) factors involved and number of

(interacting) events involved in a given study space." It

could be said that our points and views are inherent, but

masked, in the classical view as unseen, but inherently
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present, implications and deductions from the Law of Large

Numbers. This particular point dues have some validity to

it, but it would mean that we would now have to start

considering and talking about the "Laws of Large Number,"

rather than just the Law of Large Numbers. We have no real

problem with such an approach, other than the fact that it

has taken so long to perceive, and that it could keep us all

shackled to the empiricaldescriptive rather than making the

transition to the conceptual, theoretical, and explanatory.

Stated in the most simple of terms, our view says that

the number and nature of factors simultaneously operating in

an event (NNFSO) is as important as N (sample size) in

determining the resulting state of the event (i.e., the

nature of the resulting sample). This point, it should be

noted, is also the implication of Chaos theory, Fractal

theory, and fuzzy subset theory, but it is only Catastrophe

theory that gives the simplest, clearest, and most precise

explanation as to why this is and will be so.

The simple Cusp catastrophe theory model, whiAl is

essentially a bimodal state probability distribution,

predicts that the sample of responders under the types of

conditions described above will gradually begin to shift and

then eventually "instantaneously jump" from being a biased

sample to being a random sample of responders as the sample

size inlreases, and the number of factors and contradictory

factors affecting responding increase in number, and then

stay random, due to the effects of all of these interacting
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factors netting out to zero, particularly for large sample

sizes. This simple model and the various factors identified

above both explain and account for the observed resulting

random samples in the 5 studies described. Catastrophe

theory's predictions are very precise, specific, and

simulatable. Catastrophe theory says that depending upon the

nature of the factors operating in a given study space (NNFSO

and N), one of two "strange attractors" will begin to operate

and prevail eventually in the study space. The first of

these two "strange attractor" is bias (which has been

somewhat cursorily studied by the classical view), and the

second strange attractor is randomness, which will occur and

prevail in large, complex, and dynamic populations, whose

samples are of some reasonably sufficient percentage size.

It is this second "strange attractor" that is and has been

the focus of this paper.

It should be noted that "strange attractors" are most

often associated with "scale discontinuities," and structural

discontinuities between the "simple" and the "complex."

The populations and samples in the 5 studies described above

were not large and complex in terms of our meaning of the

terms large and complex, but rather only sufficiently large

and complex to cross the threshold into the domain of the

large and complex that is the focus of this paper. The

populations in the studies reported above were only large and

complex as compared to typical studies where the population

and sample N's are usually 1/5 to 1/10 the size. However,
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is a fairly well documented fact that when an effect begins

to manifest itself in a st, :istical model, it starts abruptly

and then moves quickly, and we only have to plot values on

lookup tables in statistical texts to demonstrate this

continually recurring fact. The interesting observation is

that only Catastrophe theory is really capable of giving a

very full and detailed explanation of this abrupt "kickin

effect," which typically tends to be depicted as simply an

empiricaldescriptive fact. Empirical descriptions are not

explanations and empirical descriptions are not theories.

Strange attractors are a key concept of Chaos theory,

but they are also inherent and most definitely present in all

seven Catstrophe theory models, each of which describes and

models, both conceptually and mathematically, the general

points, conditions, and areas where "strange attractors" will

develop and occur. It is the concrete and specific character

of Catastrophe theory that has drawn us to it as a model and

as a thinking model for all of these puzzling questions.

Also, Castrophe theory has a specific and clear "semantic"

and explanatory component to it which these other theories do

not.

Other Features

There are several other features of the above studies

that need to be noted relative to the remainder of the

discussion in this paper. First, the operational definition

of what constitutes a "ball" in an "urn" in a model of a
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simple experiment is rarely a complex, let alone a fuzzy,

definition. "Balls" are not structurally complex entities in

the classical model, and neither are the typical populations

of "balls" studied in "sampling simulations." Next, in

conducting a "ball and urn simulation," one is not making a

large number of decisions, nor does one have a distributed

decisionmaking model operating where many different

individuals (or Selfridge's demons) are making decisions in

parallel producing a net result, outcome, or effect (see

Zadeh, 1974b and Caudill, 1990).

This distributed decisionmaking model (and its effects)

is operating at every step in the process in the event spaces

of the 5 studies described above. The more elements (and/or

demons) participating in a distributed decisionmaking model,

and the more often that this model is operating again and

again in a sequential process, the greater the probability

that the errors produced by this model will be random,

because the probability that a particular bias consistently

and consecutively operate effectively and homogeneously this

many times in a row is very, very, very close to zero. This

later point is also the "tails side" of the conundrum coin.

This distributed decisionmaking model, and its net

effects, are operating at every step in the "real time

conducting of the study processes" in the 5 studies described

above to produce net effects which interact with every prior

and subsequent net effect. As the number of factors in this

"real time" model increase, and as the number of factors
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become contradictory, the net effects across the model will

be randomness, particularly at the higher levels of

aggregation and databreaks. One of the major factors that

affects the "contradiction index or quotient" of the factors

operating in the realtime model is the (relevant) structural

complexity of the traits of the elements that constitute and

comprise the population.

As a population, and the sampling, research process, and

design become more heterogeneous and "complex" in terms of

the number of traits and the number of factors involved and

examined, and their interrelations and interactions, the

greater the probability that the resulting responder sample

will move towards randomness, due to the net effects of this

complexity. Therefore, the resulting sample will be less

biased, at a minumum, than we would think, and particularly

think from the viewpoint of classical theory. Consequently,

our data would be much better than our (classical) beliefs

about our data and we would be highly prone to making "beta

errors" and also in actually making them in the analysis and

interpretation of the data.

All of the above points say that the data from surveys

of large, complex, and dynamic populations are most probably

far, far better than we believe this data to be. Otherwise,

how would we truly (on the average) get along and survive in

the everyday world. All of these same points would also hold

for experiments that fit this large, complex, and dynamic

mole!, and all of the points that we have made also have a
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variety of implications relative to metaanalysis. There

are, however, also several other reasons to believe and

pursue all of the points that have been outlined above.

FamilyWise Error Rates

We know that in a complex set of data or a complex study

space, we can find significant differences (by chance) if we

selectively focus on a single and only single feature of the

complexity. We know that this finding is a false or

"phantom" finding because we have not analyzed the complexity

multivariately and controlled the familywise error rate in

our analyses. The familywise error rate problem is the

selective attention problem in a nutshell, and the perfect

"quick exemplar" of our points and our points about bias and

the biased sample problem. The family wise error rate

problem is an exemplar of the conundrum coin and how it

"spontaneously flips," and why both sides of the coin must be

attended to simultaneously by a balanced algorthm and

sequential decision making process (see Zadeh, 1974a). One's

attentional and analytical model must be full and open

initially and then sequentially move through a "controlled"

process examining for and against data and arguments to

determine which side of the coin should be up or if the coin

should be standing on its edge. It is the clarification and

simulation of this process, moroever, that is the greatest of

outstanding research needs.



Wo do not even have rough gauge empirical rules of thumb

when it comes to the bias question in any shape or form, and

this is why simulation studies are so strongly needed in this

area. And the type of simulation studies that need to be

done are not the scrupulously clean and overly simplistic in

the extreme "ball and urn" classical model studies with one

and only one (extremely gross) biasing factor operating and

affecting seults.

We really do not qualitatively and precisely know how

much any given "biasing" factor or set of factors biases a

given sample whose population has a particular welldefined

set of characteristics. There is no metric, not even a broad

gauge relational metric of the orders of magnitude kind to

assess any study or any discourse or claim on the bias

question in any form. The significant question and

significant research question is not biased or unbiased in

terms of results, but how biased; in the second decimal

place, the first digit, a tenth of a standard deviation, a

whole standard deviation, how biased exactly? Answering this

question to some ordinal degree is the only real way that a

given sample or study can be rejected or accepted using some

type of practical and consistent rule of thumb.

We are aware of no sampling simulation studies that

really answer the question how biased, and/or how biased as a

function of what factors and/or conditions. Claims of bias

and biased results spring up like Topsy all over the research

landscape daily again and again, all typically the results of



long inferential and speculative chains of arguments and

small shreds of suggestive data. When the most major of

these claims are actually tested and checked out in Monte

Carlo studies, they most often are found to be unfounded or

grossly exaggerated (e.g., Glass et al., 1972; Dagenais and

Marasculio, 1973; Richards, 1972). The weight of evidence of

all of these studies should tell us all something; namely,

that assertions of alleged bias should be required to be

proved before they are even entertained, because the results

of the majority of Mi. experimental bias investigations and

simulations tend to be negative and the bias is proved to be

nonexistsnt, trivial, or to hold in only highly restricted

(and usually extreme) situations. The weight of the somewhat

extensive and high quality existing research evidence has to

enter into the consideration of the bias question somehow, at

some level, at some point, even only as a rule of thumb to

evaulate claims and assertions as we work on the problem.

The really outstanding unanswered question is why it does

not.

No one, we believe, can currently state how biased any

given sample will be under any set of real world conditions,

and state it in a way that will roughly prove out to be

correct and support classical models and views of all of

these questions on empirical simulation. All such estimates

most professionals currently make, we believe, are subjective

(bayesian) armchair guesses, and subjective (Bayesian) order

of magnitude estimates in the long standing behaviorist
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posthoc and armchair tradition that is the classical core of

the (overlapping) statistics and research methodology

disciplines, as viewed and construed by the majority of

current practitioners. Consequently, we have assumed in all

of our discussions above, and will assume in all of our

d;scussion below, that we have a simple "Turing Device" that

generates an estimate for us of how biased a given resulting

sample will be under a particular set of conditions. Our

simple Turing Device, however, is a fuzzy and not exact

Turing Device.

Fuzzy Subset Theory

Classical sampling and survey theory, in the main, are

based on classic set theory and linear model views of the

world, which in turn drives all of their logic, inferences,

deductions and conclusions (e.g., see Scheffe, 1953; Coombs,

1964; Hayes, 1981; Cochran, 1983; and Kerlinger, 1986).

Kaufman's (1976) great insight was that neither classical set

theory nor its logic could be applied to real world problems

in any easy, precise, accurate, or truly meaningful way.

Kaufman, therefore, developed fuzzy subset theory to deal

with real --1 ifeg, set theory, problems, situations, and human

thinking, statistically. Fuzzy subset theory is a complete

revision of classical set theory to incorporate the concepts

of uncertainty and probability into set theory. Kaufman, in

devising fuzzy subset theory, actually revised classical

sampling theory, although the implications of these revisions
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were not pursued in any significant way by Kaufman or any

other statistical theorist, to the best of our knowledge.

There is, however, a reasonably well worked out mathematics

of defining fuzzy subsets, manipulating fuzzy subsets and

manipulating them statistically.

In fuzzy subset theory, there are, unlike classical Ehi0..

theory, only subsets (due to the "fuzz"), and every set has

two basic rules. The first rule is the "classical" rule (or

procedure) that defines membership or nonmembership in a

given subset, and the second is the rule (or procedure) that

defines the probability of each member in a given subset as

being a "true" member of the subset and its probability of

being a member of an alternative subset (or set of subsets).

The probability of true membership in the logical subsets is

the "fuzz" and it is the "fuzz" that is of prime importance.

Unlike the welldefined and hermetic urns, balls, and

processes of classical set and sampling theory, membership of

any element in any subset is not a given and absolute, but

rather fuzzy and probabilistic for some percentage of the

elements, and this is Kaufman's real world, key insight and

point.

The above features of fuzzy subset theory forces a

distinction to be made between the nominal set, subset and/or

2o2ulation (which is the classical view), and the effective

set, subset, and/or Ronulation, which are the members of the

set, subset, or population that have the highest

probabilities of being true members of the set or nominal



population in question (which is the fuzzy view). This

distinction is the key and core concept of this view and it

is capable of explaining how survey response rates of 10% to

15% of the nominal populuation can with a very, very high

probability easily be random and representative samples of

the population, if the initial samples were randomly drawn,

particularly for large, complex, and dynamic populations that

are "fuzzy" in nature, such as the populations in the 5

studies described above.

From fuzzy subset theory, it can be shown that in a

"dynamic" population, there is always an effective subset (or

population) that has a higher probability of being randomly

drawn (located, accessed and sucessfully "captured as a

respondent") than another subset; namely, the effective

population is an intervening variable that classical sampling

theory does not take into account because it is based on

classical set theory and not fuzzy subset theory. This

"inability to access and capture" condition was present in

all 5 of the studies described above, and a wide variety of

factors create large and important differences between the

nominal and effective populations in these types of survey

studies.

The question, therefore, becomes is the effective subset

actually sampled biased or random. The answer depends on two

factors, both of which were identified and explained in

detail in the discussion on Castrophe theory above. The

first of these two factor is whether or the factor creating

32 nE



the effective population is random or not. This "first

factor," it should be noted, could also be the effects of

several interacting factors netting out to zero and

randomness (or not). If this "influencing factor" is

essentially a random factor, then the effective population

will statistically be a very, very large random sample of the

nominal population. However, if there is a bias, depending

on its degree of severity, and the size of the effective

population as a percentage of the nominal population, the

effective population for large scale populations will be

very., very close to a very, very large random sample of the

nominal population. So even with biasing factors, fuzzy

subset theory predicts that one comes very, very close to a

random sample at large scales, and this most probable fact is

a reasonably strict deduction from fuzzy subset theory, and

only counterintuitive from the point of view of classical

set and sampling theory. Further, this prediction is why a

good metric and scale for "how biased" is so badly needed.

The second factor that affects whether or not the

effective population and samples drawn from it will be random

or not is the number of influencing factors operating in the

situation. This factor and its operations have been

previously explained above in detail. When many factors are

intei _Aing together to create the effective population

and/or samples drawn from it, the net results are going to

tend to be random almost all of the time when NNFSO and N are

large. The reason that the samples will tend to be random is



the same as that for the effective population as the same

principle is operating in the second step of the process.

From fuzzy subset theory and all of the points made in

all of the discussions above, it is not too difficult to see

why in large scale surveys, response rates are always far,

far higher than calculated by conventional methods and one

has d far, far greater sample size (of the effective

population) than one believes and is represented nominally,

which means that one's data is much, much better than one

would believe by traditional views. Also, in largescale

surveys of large, complex, and dynamic populations, the odds

are very high that one's responder sample is a random sample

of the nominal population when it is 15% to 20% of the

nominal population. A simulation study could be designed to

show that this particular outcome would be so most of the

time. The value in conducting this simulation study would be

the provision of exact points and cutting ratios rather than

estimated points and rough rules of thumb given above.

Fuzzy subset theory strongly suggests that sample data

of a reasonably sufficient size from large, complex, fuzzy,

and dynamic populations is probablistically much better than

we believe it is, according to the classical views; and this

is good news, even if what the data tell us is not good news.

People, therefore, may be ignoring and holding suspect

perfectly good data. The common wisdom and older



interpretations prevail, even when newer theory, simple

logic, intuition, experience, and empirical data give clear

messages to the contrary.

Interim Conclusions

We believe that the weight of argument, empirical

evidence, and newer theories, at this time, is sufficiently

strong enough to suggest that challenges of sampling bias

based soley on arguments of low response rates are highly

suspect and quite dubious at best, but most particularly so

under the sets of conditions outlined in this paper. We

blieve that under the sets of conditions outlined in this

paper that allegedly biased samples are not as biasod as

those that claim bias believe, and that a great deal of

reasonably good real world data is being dismissed and

ignored when it should not be.

We have outlined the basis of our views, and studies

that support our views, as well as numerous studies and

simulations that need to be done to confirm, partially

confirm, deny, or partially deny our views. We believe that

the onus should be upon those who claim bias, particularly

under the study conditions we have described, to prove their

claims or disprove ours as viceversa, which is the current

case. It is our view that such claims should no longer be

unquestioningly accepted by researchers, or accepted as

proven fact until the appropriate evidence is generated to

settle the question. The case against these claims,



currently, is stronger than the case for these claims, and

all newer theory strongly suggests that the clasical views

and claims on these questions will not be supported or well

supported when the appropriate studies and simulations are

done.

The weight of argument, evidence, and newer theciries

(that all converge in the same place) is sufficient, we

believe, to warrant this view, and to cast very serious

doubts upon claims of alleged bias based on classical models

and views. It is really a matter of which new theory or set

of new theories that one dishes to chose to operate from to

get to the conclusiori we b..Tve drawn and the predictions that

we have made. Our cEn,20 Catastrophe theory supplemented

by fuzzy subset theory, for all of the reasons we have stated

in this paper. Catastrophe theory is the only theory (to

date) that precisely explains and predicts the conundrum coin

and its various operations. The very strong suggestion of

these newer views, if they prove to be essentially correct

upon empirical simulation, would be a very important

discovery, not only for the areas of research methodology and

statistics, but also for the areas of cognitive psychology

and machine intelligence.

Real world data is much, much better than classical

views say it is, or lead people to believe it is, and this is

a problem of great importance and a problem that is very

significant both theoretically and practically.

Some of us who worked in this world of "classically
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suspect data" developed an intuitive feeling about the

problem and sought out models and theories to formalize our

intuitions and guide research and thinking, which is still in

its early stages, but all of the empirical data and the

theory is supporting our views. And our views and the data

are saying that we are essentially correct and empirically

observing what we should be seeing, and that the problem is

in the "hermetic urn" views which need to be revised,

radically.

Classical survey and sampling theory is essentially

seriously flawed and fundamentally incorrect and misleading

in several important respects because it has not and does not

incorporate fuzzy subset, Catastrophe theory and Chaos theory

principles into its views. At a very minimum, therefore,

this fact means that we just might now be more open and more

accepting of largescale, real world data rather than just

dismissing it clue to "flawed methodology," which just might

save us in a number of different ways in the long run.

Consequently, it is the "downside" problems and flaws of the

classical views that are the most problematic and flawed

aspects of the classical views, which is a model or view

adoption cost that is rarely considered or considered in the

evaluation of a view, or the decisions and claims that result

from it.

As Student pointed the way for statisticians in the

early part of the century in terms of understanding that the

"very" small and the finite were different from the "typical



laboratory model" of the day that was being used, the newer

theories outlined in this paper are pointing the way for

statisticians now in terms of showing that the large, complex

awl dynamic are very different from the "typical laboratory

model" that is being used today. The large, fuzzy, dynamic

and complex, and the small, welldefined and simple are very,

very different from each other. We ;all need to begin to

accomodate to and deal with this basic fact.

Catastrophe, Chaos, and Fuzzy Subset theory as theory

names does not mean, or in any way imply, unpredictability or

incomprehensibity. This misconcention is one of the most

common misconceptions of these theories currently. Although

still under development, these theories are in fact just the

opposite of unpredictability and incomprehensibility; namely,

they lead to high predictability of events, phenomena,

outcomes, and results, rather than paradox and contradiction.

There are two kinds of general phenomena in this world

and not one; namely, uniform and conditional phenomena.

There are many conditional phenomena in education (learning

is but one), and these conditional phenomena need to be

modelled with conditional theories, if we are to understand

them adequately. Both models and views, therefore, are

needed and needed in fully developed formulations to conduct

reasonable and good research. Practicing researchers and

theoribta simply cannot be be expected to or made to play

with one hand tied behind their backs. A great deal of new

work is needed and has been needed for a very long time.
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With Just a little bit of theory, conceptualization, legwork,

and study design modification, both the quality and certainty

of all of largescale survey data could be improved

immmensely, as well as the costbenefit ratios. And this is

the good new, even if what the data has to say is bad news.
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